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THE DILEMMA OF TRANSPARENCY:
SEEING AND SEEING THROUGH TALK IN THE MATHEMATICS CLASSROOM

Jill Adler, Witwatersrand University

In this paper, talk is understood as a tool and resource for mathematical learning in school.
As a resource it needs to be seen (be visible) to be used, and as a tool it needs to be seen
through Ito be invisible) to provide access to mathematical learning. This paper argues that
the dual function of visibility and invisibility of talk in mathematics classrooms creates
dilemmas for teachers. An analytic narrative vignette drawn from a secondary mathematics
classroom in South Africa illustrates the 'dilemma of transparency' that mathematics
teachers face, particularly if they are teaching multilingual classes.

INTRODUCTION

The paper draws from a study of South African secondary mathematics teachers'
knowledge of their practices in their multilingual classrooms (Adler, 1996a). In initial
interviews, English-speaking teachers whose 'whites only' classrooms had recently and
rapidly become racially integrated argued the benefit to all learners of explicit mathematics
language teaching (Adler, 1995). This implies that language itself, and particularly talk,
becomes the object of attention in the mathematics class and a resource in the teaching-
learning process. Now that their classes included pupils whose main language was not
English, it became obvious to these teachers that they needed to be more explicit about
instructions for tasks, as well as mathematical terms and the expression of ideas.

In follow-up workshops in the study, Helen specifically problematised the issue of explicit
language teaching. She has tried to develop mathematical language teaching as part of her
practice in her multilingual classroom. However, as she sees and reflects on her teaching
she begins to question what this means in practice and whether and how explicit
mathematics language teaching actually helps. And we are alerted to a dilemma: There is
always the problem in explicit language teaching of 'going on too long', of focusing too
much on what is said and how it is said. Yet explicit mathematics language teaching
appears to be a primary condition for access to mathematics, particularly for those pupils
whose main language is not English or for those pupils less familiar with educated discourse.

This paper argues that Lave and Wenger's idea that access to a practice requires its
resources to be 'transparent', while not usually applied to language as a resource, nor to
learning in school, is useful and illuminating here. Explicit mathematics language teaching,
where teachers attend to pupils' verbal expressions as a public resource for whole class
teaching, offers possibilities for enhancing access to mathematics, especially'in multilingual
classrooms. However, such practices easily slip into possibilities for alienation through a
shift of attention off the mathematical problem and onto language per se. Teachers'
decision-making at critical moments, while always a reflection of both their personal identity
and their teaching context, requires the ability to shift focus off and then back onto the
mathematical problem. The challenge, of course, is when and how such shifts are best for
whom and for what. These assertions will be instantiated and illuminated through an
analytic narrative vignette (Erickson, 1986) based on an episode in Helen's multilingual Std
9 (Grade 11) trigonometry class.
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SOME BACKGROUND AND THEORETICAL COMMENT

The wider study from which this paper is drawn is framed by a sociocultural theory of mind
where consciousness is constituted in and constitutive of activity in social, cultural and
historical contexts (Lave and Wenger, 1991; Vygotsky, 1978, 1986; Mercer, 1995). For
Lave and Wenger (1991), becoming knowledgeable about a practice, like mathematics, is
the fashioning of identity in, and as part of, a community of practice (pp. 50-51). Becoming
knowledgeable means becoming a full participant in the practice, and this involves, in part,
learning to talk in the manner of the practice. Furthermore, becoming knowledgeable in a
practice entails having access to a wide range of ongoing activity in the practice - access
to old-timers, other members, to information, resources and opportunities for participation.
Such access hinges on the concept of transparency.

The significance of artifacts in the full complexity of their relations with the
practice can be more or less transparent to learners. Transparency in its
simplest form may imply that the inner workings of an artifact are available
for the learner's inspection ... transparency refers to the way in which using
artifacts and understanding their significance interact to become one learning
process (pp. 102-3).

Becoming a full participant means engaging with the technologies of everyday practices in
the community, as well as participating in its social relations. Thus, access to artifacts in
the community through their use and understanding of their significance is crucial. Often
material tools, artifacts technologies are treated as given. Yet, they embody inner
workings tied with the history and development of the practice and which are hidden these
need to be made available. Lave and Wenger elaborate 'transparency' as involving the dual
characteristics of invisibility and visibility:

... invisibility in the form of unproblematic interpretation and integration (of
the artifact) into activity, and visibility in the form of extended access to
information. This is not a simple dichotomous distinction, since these two
crucial characteristics are in a complex interplay (p. 102).

Access to a practice relates to the dual visibility and invisibility of its resources. In other
words, the invisibility of mediating technologies in a practice is necessary for focus on and
supporting the visibility of the subject matter in the practice. Meira's (1995) analysis of tool
use in mathematics classrooms is illustrative here: he distinguishes 'fields of invisibility'
which enable smooth entry into a practice, and 'fields of visibility' which extend
information by making the world visible.

Managing this duality of visibility and invisibility of resources in classrooms can create
dilemmas for teachers. The example of pupil discussion of a mathematical task is
illuminating if one understands talk as a resource in the practice of school mathematics.
Discussion of a task should enable the mathematical learning and so be invisible. It is the
window through which the mathematics then can be seen. At the same time, the specificity
of mathematical discourse inevitably enters such discussion and can require explicit
attention, that is, needing to be visible. It is possible then that the discussion itself becomes
the focus of attention, rather than a means to the mathematics. Here it obscures access to
mathematics, by becoming too visible itself. This possibility might well be exaggerated in
multilingual situations where learners bring a number of different main languages.

Lave and Wenger's concept of transparency is developed in contexts of apprenticeships
where there is a situated and continuous movement from peripheral to full participation in
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a social practice (p. 53). As I have argued elsewhere (Adler, 1996b) the school is a very
different context from those of apprenticeships. Lave and Wenger recognise this, but by
their own admission (pp. 39-41) they do not address what, for example, could be distinct
about the visibility and invisibility of resources for mathematics learning in school. Limited
space precludes rehearsing the argument here. Suffice it to say that sociocultural theory,
particularly as it is proposed by Vygotsky (1986, 1979) and elaborated by Mercer (1995)
provides the conceptual tools to comprehend and explain the special nature of classroom
learning and hence mathematical knowledge produced in the context of schooling. In
particular Mercer's distinction between educational discourse - the discourse of teaching and
learning in the classroom and educated discourse new ways of using language, 'ways
with words' and the importance of access to both for success in school is crucial.

Teachers are expected to help their students develop ways of talking, writing
and thinking which will enable them to travel on wider intellectual journeys,
understanding and being understood by other members of wider communities
of educational discourse: but they have to start from where learners are, to
use what they already know, and help them go back and forth across the
bridge from 'everyday discourse' into 'educated discourse' (Mercer, 1995, p.
83).

Thus, in relation to talk as a teaching-learning resource and needing to be both visible and
invisible for access to school mathematics, Mercer's argument suggests a bridge and
mediational roles for teachers in moving between talk as the invisible window through which
mathematics can be seen, and, in Helen's terms, more explicit mathematical language
teaching.

From this sociocultural perspective, the teaching and learning of mathematics in multilingual
contexts needs to be understood as three-dimensional. It is not simply about access to the
language of learning (in this case English). It is also about access to the language of
mathematics (educated discourse and scientific concepts) and access to classroom cultural
processes (educational discourse). To find out how teachers manage their complex
practices, in-depth initial interviews, classroom observations, reflective interviews, and
workshops were conducted. These provided the empirical base for a qualitative study with
a purposive, theoretical and opportunity sample of six qualified and experienced
mathematics teachers, two from each of three different multilingual contexts in South
Africa. Helen was one of these teachers.

In the wider study, the notion of a 'teaching dilemma' (Berlak & Berlak, 1981; Lampert,
1985) was the key to unlocking teachers' knowledge of teaching and learning mathematics
in complex multilingual settings. The wider study revealed that teachers in different
multilingual contexts face different dilemmas in their teaching, thus supporting the notion
of teaching as a contextualised social practice (Adler, 1995). Of course, what teachers
reflect on and talk about is only part of what they know. What happens in practice? In

particular, how does Helen work with the dilemma of transparency, with explicit
mathematics language teaching and the need for both visibility and invisibility of talk in her
class?

THE CONTEXT

Helen is white and English-speaking with six years of secondary experience. Helen teaches
in a girls-only, historically white state school. This school deracialised faster than most other
similar schools, and at the time of the research, fewer than 50% of the pupils were white.
The school is well-resourced. The class where observation and videoing were carried out

2 - 3
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was a 'mixed ability' class of 30 pupils. English, Sesotho and Zulu, all now offical
languages, were some of the main languages in this class. The language of instruction in the
school is English, and all public interaction in Helen's classes is in English.

Helen's classes, while largely teacher-directed, are interactive and task-based. She
introduced trigonometry to the particular class (in their Grade 10/ Std 8 year) with an
outdoor activity investigating shadow length caused by the sun at different times of the
day. This was followed by activities where groups of pupils measured and compared the
ratios of sides of a right-angled triangle with one angle of 40 degrees. Working on the
reports that groups presented, she built their understanding of constant ratios.

During the research workshops Helen invited participating teachers to reflect with her on
her own videos and on whether or not explicit language teaching actually helps, on whether
and how working on pupils' ability 'to' talk mathematics is a good thing and 'saying it' is
indicative of understanding, of knowing. That the dilemma of transparency is particularly
strong for Helen is not surprising considering her view of mathematics as language, of
language as a crucial resource in the practices in her classroom and of a strong relationship
between language and learning. In short, Helen appears to share Lave and Wenger's notion
that becoming knowledgeable means learning to talk, learning mathematical discourse. In
her words: ... if they start to describe something to me in accurate mathematical language
it does seem to reflect some kind of mastery ...

The dilemma of transparency is illustrated by what Helen brings to the second workshop as
a result of her action research with this same class in the following year.

A VIGNETTE - A CLASSROOM EPISODE

As mentioned, the episode below takes place in the first trigonometry lesson of Standard
9, the year following video-taping Helen's teaching trigonometry to her Std 8 class. Helen
asks pupils in groups of four to discuss what 'trigonometry' means to them, and then to
report back their meanings to the rest of the class in a 'maximum of two minutes per group
... using key words and putting across your main ideas'. Most of the presentations related
trigonometry to determining 'the size and sides of the angles', in right-angled triangles and
that 'there are six ratios'. Specifically, two groups' explanations, based on similar triangles,
included the following expressions: '... uh we said the ratio of two angles is independent
to the size of the angle in the other two triangles...' and 'We came to the same thing that
the ratio of two sides is independent to the size of the tri, of the angle in two triangles.'
After all presentations, Helen moved to the front of the class. She drew the class' attention
to various aspects of the reports, and then focused explicitly on the expressions italicised
above:

1 H: Say that to me slowly, the
2 S6: (H writes as pupil talks) The ratios of the two sides 0 is independent
3 to the size of the angles 0 in the two triangles ...
4 H: Is independent to ...?
5 S6: The two tri.., is independent, no, the two sides is independent ...
6 H: The ratio of the two sides is independent to?
7 S6: The size of the angles in the two triangles (and H finishes writing).
8 H: Let's look at that statement carefully ... What does that statement
9 mean to, uh, to anyone?

10 S6: It means that, uh, whether the angles 0 when you've got two
11 triangles, and the angles come up to the same degree, you, uh, it

2 4
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12 doesn't matter how long or short the triangle is, your angles, as long
13 as your angles are equal (inaudible)
14 H: Now listen to what you said: how long or short the triangles are?
15 S6: The length, the length of the triangle.
16 H: Triangle is a shape.
17 S's: (Mumbling) The length of the sides.
18 H: The length of the sides of the triangle. OK. You know. Let's just look
19 at this word "independent". OK. Now I know when I teach this, I use
20 the word independent and then you think, well that's a nice fancy
21 word to use. If I just repeat it nicely in the right sentence then she'll
22 be very impressed. But, when you use the word independent you've
23 got to know what it means. What does it mean? Phindiwe?
24 Phin: (some mumbling) It stands on its own.

After distinguishing 'length of sides' from 'sides of triangle' Helen pulls the word
independent out on its own, and attends to its meaning. She then returns to focus on the
sentence in which it is placed.

32 H: OK. All right. Is that statement true?
33 S's: No//Yes. ()
34 H: Must I put a true or a false at the end of it?
35 S's: True//false
36 H: OK. Who says it's true?
37 S6: (Puts her hand up)
38 H: S6 says its true 'cause she said it.
39 S's: (laugh)
40 H: OK, who says its false?
41 S's: (laugh)
42 H: What do you think?
43 Phin: I don't know, I don't understand the sentence.
44 H: OK, let's try and sort out the sentence. The ratios of two sides, that's
45 a true part of the line, uh, of the sentence . Does that make sense?
46 S's: Yes
47 H: OK. ... So the ratio is independent from what? Size of the angle in the
48 two triangles? () It's true, who says it's true? Why?
49 S7: Because, mam, um, I think it means that, no, uh, if if you, if you
50 have, uh, one big triangle and you have one small triangle and you
51 have the same angle in both of them, uh, the the size of the angles is
52 equal, then the ratio of the, of the sides won't change.
53 H: Now listen to what you're saying. You're saying you've got 0, you
54 said to me (and H links the bold words below to related words on the
55 board as she speaks) you've got the size of two triangles and then
56 you said that the angle inside them is the same, OK. So if we want to,
57 is what she said different to what is on the board at the moment.
58 S's: No//yes 0
59 H: she said to me the ratio of the two sides is independent of the SIZE
60 of the triangle, WHEN you've got the same angle in all of them. So
61 is NOT true to say that the ratios are independent of the size of the
62 ANGLE. The size of the angle is EXACTLY what makes the
63 FUNDAMENTAL DIFFERENCE. Because if I've got two triangles, these
64 two beautiful triangles over here, 40, 40 (and she fills in 40 degrees
65 into two similar triangles on the board),
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76
77
78
79

and these two over here, 20, 20 (and again fills in these angle sizes
onto another set of similar triangles on the board). 0 Would I get if
I say spoke about 0 sin here and sin here? OK? Will I get the same
answer?

80 S's: No
81 H: No! I'll get two different answers. So it is not true to say to me it is
82 independent of the size of the angle because the angle if it is 40,
83 makes the difference to 20, right. It's the size of the TRIANGLE that
84 makes the difference. 0 Does that make sense to you?
85 S's: No
86 H: What doesn't make sense?
87 S2: Mam?
88 H: Ja
89 S2: It makes a difference to what?
90 H: It makes a difference ... to ...
91 S's: (laugh)

H: Where was I starting off? ... um, let me start again...

(Helen then recaps by drawing attention to diagrams on the board, to how two different
right-angled triangles each with 40 degree angles will have the same ratios between their
sides, as will two different right-angled triangles each with 20 degree angles. But the two
sets of ratios will be different precisely because the angles across the triangle pairs are
different. And then she asks the pupil who first articulated the sentence to tell the class
what she understands in her own words.)

HELEN'S REFLECTIONS

Opening the second workshop, before showing the extract above, she says:

Jill and I talked about the part where a child put forward what she thinks
is going on in relation and it is a question of even though her language is
not clear is there understanding amongst the rest of the students? ... it
seems like the rest do understand even though she is using incorrect
language. So we can watch and think around that.

She then plays the video from the point where the student says: the ratio of the two
sides is independent to the size of the angles in the two triangles and she is writing what
is being said word for word on the board for the class to think about. She reflects:

Just after the sentence is written on the board and I ask: 'What do you
understand by this statement?'; one child puts forward a perfect
explanation. She talks about the angle being the same in both triangles
and 1 pick up on that ... and then this child (getting to the place on the
video where a second pupil is responding) now does it absolutely
perfectly. So, that is two very good expressions of what is going on.
And yet when you ask the class: 'Is this sentence correct?' (Pointing to
the sentence she has written verbatim from the first student on the
board), there is this complete silence. So the question for me is: even in
the minds of those two children who put forward such consistent
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explanations, what's going on with them? () that they cannot ... urn ...
pick up incorrectness in the sentence?

She then revisits her question in the first workshop: 'if they can say it, do they know it?'
and finally, she poses a central question on verbalisation and the dilemma of
transparency:

... in retrospect, when I look at that lesson, I went on but much too long
(laughter) on and on and on and I keep saying the same thing and I repeat
myself, on and on ... But the thing is then if you have a sense that there
is a shared meaning amongst the group can you go with it? um ... when
the sentence is completely wrong? ... Can you let it go? Can a teacher
use a sense of shared meaning to move on?

Helen's working assumptions of a strong relationship between language and thought are
seriously challenged as she experiences and observes pupils expressing clear and correct
mathematical thinking but not being able to discern problematic expression in/of others;
and of pupils saying things 'wrong' but creating a sense that they have some grasp of
the mathematics in play. She also sees how through her explicit attention to their use of
dependent and independent, the pupils lost their focus on the mathematical and
trigonometric problem from which this use arose.

DISCUSSION

Through the episode in Helen's class and her reflections we see what we know only too
well: that some mathematics is difficult for pupils to say precisely and with meaning.
She provides opportunity for pupils, amongst themselves, to elaborate and then share
their meanings of 'trigonometry'. This elicitation of pupils' thinking suggests to her that
there is confusion and she moves to clarify this through a particular scaffolding process
where she questions, bringing into focus the incorrect use of the concept and term
'independent', and finally reformulates and recaps emphasising what she sees as most
significant in the description of trigonometry that has emerged from the pupils. But this
explicit language teaching is a struggle here.

Helen's knowledge helps us identify a fundamental pedagogic tension in explicit practices
with respect to language issues, and particularly talk, in her multilingual mathematics
class. She harnesses talk as a resource in her classroom. As a resource in the practice,
its transparency, i.e. its enabling use by learners, is related to both its visibility and
invisibility. Helen attends to pupils' expression as a shared public resource for class
teaching. This is a characteristic of classrooms that is not shared by many other speech
settings (Pimm, 1996). The language itself becomes visible and the explicit focus of
attention. It is no longer the medium of expression, but the message itself that to which
the pupils now attend.

On reflection, Helen feels that her attempt to enable access to mathematical (educated)
discourse brings the problem of 'going on too long'. In making mathematical language
visible, it becomes opaque, obscuring the mathematical problem. The dilemma of
transparency arises: of whether (and when) to make mathematical language explicit. And
there are both political and educational dimensions to this dilemma. If Helen 'goes on too
long', she diminishes pupils' opportunities to use educational discourse and inadvertently
obscures the mathematics at play. If she leaves too much implicit then she runs the risk
of losing or alienating those who most need opportunity for access to educated
discourse. She wonders about the possible effects of leaving in play a shared sense of

BEST COPY AVAILABLE
2

1 Li



trigonometric ratios but a public display of incorrect mathematical language: 'if they
don't say it right, can I let it go?'.

CONCLUSION

Through Helen, we see that explicit mathematics language teaching, while beneficial, is
not a straight forward 'good thing'. It brings a language-related dilemma of transparency
with its dual characteristics of visibility and invisibility. It is not simply a matter of 'going
on too long' but of managing the shift of focus between mathematical language and the
mathematical problem (and of course these are intertwined). Lave and Wenger's notion
of transparency illuminates classroom processes. Transparency involves both visibility
and invisibility, just as with a window. Resources need to be seen to be used. As tools,
they also need to be invisible to illuminate aspects of practice. So too with talk as a
resource for mathematics learning in school. Mathematics learners need to harness talk
as a resource, focus on it when necessary, but then render it invisible and as a means
for building mathematical knowledge. This is the specificity of talk as a resource in the
school context. There is no resolution to the dilemma of transparency for mathematics
teachers, only its management through careful mediational moves when making talk
visible in moments of practice.
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ABSTRACTION IS HARD IN COMPUTER-SCIENCE TOO

Dan Aharoni and Uri Leron

Department of Science Education, Technion Israel Institute of Technology

Abstract
Research in computer science (CS) education, as compared to that in math education, is

still in its infancy. We show that methods and theoretical frameworks used in research on

mathematical thinking can be extended to CS education. This paper presents some results

from an ongoing research on undergraduate students' conceptions of data structures. The

analysis of students' thinking highlights similarities and differences between methods and

menial processes in CS and in mathematics. Some similarities are the process-object

duality, fragility of knowledge and dculties in attaining an abstract disposition. In
contrast, There are subtle differences in the meaning and use of abstraction in the two
disciplines, centered around the important CS concept of abstraction barriers.

1. Abstraction in mathematics and in computer-science

It is a well documented theme in the math education research literature that students

experience much difficulty in negotiating abstraction levels. Moreover, there is a

substantial body of theoretical discussion which strives to postulate various mental

processes that might account for these difficulties. For example, starting from Piaget

and continuing to present-day theorists, the difficulties of passing from process to

object conception of various mathematical entities (such as function or group) has been

documented and analyzed (e.g., Breidenbach et al, 1992; Sfard & Linchevski, 1994).

In the present report we wish to extend the scope of that discussion to a different

discipline and different population, namely, to computer science (CS) majors in a

major Israeli University. This extension is particularly noteworthy due to two special

features of the CS department: First, unlike the math department, enrolling in the CS

department involves fierce competition and elaborate filtering; as a result, we are

dealing here with students who must rank very high on their university entrance score.

Secondly, abstraction is a programming methodology of central importance in modern

CS, and as such is taught explicitly and emphatically in all courses involving

methodology. (In mathematics, in contrast, instructors use abstraction all the time, but

they don't talk about it and do not consider it as part of the subject matter of the

course proper.) It might be expected, therefore, that CS students would be more

disposed to using the abstract tools taught in their classes.
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It should be pointed out that there are subtle differences in the way the term

abstraction is used in math vs. CS. These differences are elaborated in Leron (1987);

for the present discussion, it will suffice to mention the difference in what is taken to

be the opposite of "abstract" in the two disciplines. In mathematics, a common answer

is, "the opposite of abstract is concrete". Thus, if students in an abstract algebra course

complain (as they frequently do) that the stuff is too abstract, a standard response

would be to give a "concrete" example. In CS, in contrast, the opposite of "abstract"

usually means "dealing with the details of implementation in a particular machine or in

a particular programming language." An abstract approach to data structures which

is one of the central topics investigated here would stipulate the organization of the

particular data structure and the operations it admits. For example, an abstract

definition of the data structure "linear array" would be: a linear array is a set of

ordered pairs (index, value), where all the indices are distinct, together with the

operations Insert (inserting a new pair into the array) and Get (returning the value at a

specified index). For example, a linear array can be used to represent our weekly

entertainment schedule as follows:

Entertainment = ((Mon, movie), (Tue, home), (Wed, concert),...)

As a centrally important methodology in the design of complex software systems,

students are urged to use abstraction barriers, in order to keep their thinking on a

given problem relatively free from the intrusion of "low-level" constraints of a

particular programming language (Abelson & Sussman, 1985).

2. Students conceptions of abstract data structures
For the research, we held semi-structured interviewes with 9 CS majors during their

study of the course "data structures". The interview questions covered the following

topics: data structures in general, arrays, stacks, queues, linked lists, and the
construction of a data structure to fit the requirements of a given problem. The

questions covered declarative formulations ("what is an array?"), operative

formulations ("what is required from a data structure in order to be called 'an

array'?"), operations on data structures ("how can a circle in a linked list be found?"),

and more general questions for probing into the student's thinking ("is 'variable' a data
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structure?"). In addition to the interviews, classes dealing with data structures were

observed and documented.

The data analysis is still going on. For the analysis we use methods and theoretical

frameworks from research on mathematical thinking. Previous research in CS

education has mainly documented and analyzed programming difficulties (e.g. Lee &

Lehrer, 1987; Sharma, 1986-87), but there is hardly any research on mental processes

involved in thinking on CS concepts:

So far we have identified several mental (cognitive and affective) processes, which we

list here by labels only, due to space limitations. Cognitive processes: programming-

oriented thinking, conflicting mental structures for the same data structure, constraint-

oriented thinking, extrinsic view of data structures, restricted prototypes for data

structures categories. Affective processes: avoiding algorithms with heavy (machine)

computational demands, avoiding algorithm detail and manual check.

In the remainder of this paper, we elaborate on 3 of the above-mentioned processes.

2.1. Programming-oriented thinking
The question "what is an array?" has been asked by the authors many times, not only

during the interviews, but also in incidental discussions. The question was posed to

undergraduate students and to expert computer-scientists. Only in few cases, an

abstract definition of an array was given. Most of the answers were similar to the one

in following interview excerpt:

Can you tell me what is an array?

Dan: An array is a continuous area in the memory [of the computer],

which holds elements of the same type.

We emphasize the following phenomena:

Dan's thinking is programming oriented: he refers to an array as being held in the

computer memory, namely, as implemented in some (as yet unspecified)

programming environment.

Moreover, Dan's thinking is programming-language oriented, i.e. tied to a specific

programming language: he talks about continuous area in the computer memory,

which is how an array is implemented in the programming language C, but not in all
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languages. Programming-language oriented thinking is on a still lower abstraction

level than programming oriented thinking.

Dan sees an array as containing elements of the same type, again a property

which holds in C but not necessarily in other languages such as APL or LISP.

Again, we see a programming-language oriented thinking.

The next excerpt from an interview with Guy, emphasizes further this phenomenon;

the singly-underlined parts refer to programming, and the doubly-underlined ones refer

specifically to programming in C:

OK, what is an array? An array is a sequence_ it is a

continuous memory segment [_] and one can get to it using a key
which is a continuous key. Actually, [...] it is some segment
which is allocated at the beginning of the program, it is

allocated by the declaration, and is inhibited from being used

for other purposes by other entities. [_] I define its size by
what is declared inside the brackets, and the program allocates

a continuous area in memory to which I can get using a certain
key t...l 0 to, hmm, n-1, hmm, which is the size I declared it

with.

As can be seen, Guy's answer in general is strongly based on programming, and in

parts even on programming in a specific language (C).

In another case, Ron was asked to solve a problem by presenting a general algorithm.

He solved it using stacks'. During his work, Ron talked about emptying the stack by

repeating the POP operation:

Ron: Hmm.. this means_ hmm_ what I'll do is_ at the beginning, it
is a check of the stack [...] hmm_ if it is full [_] I'll do
POP till the beginning of the stack.

How do you know that you got to the beginning?

Ron: I know the beginning address, right?

A stack is a data structure of the LIFO (Last In First Out) kind: it behaves like a vertical
stack of books on a library desk: the books are added ("PUSHed") onto the stack one after
the other, and when one draws ("POPs") books from the stack, the first to be drawn is the
last to have been entered.
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The student talks about the beginning address of the stack. This answer is correct as

far as stack implementation in C is concerned; however, it doesn't refer to the abstract

data structure "stack", as indicated the problem formulation.

The above examples and others which are not presented here, indicate that the students

identified data structures with their implementation in the computer's memory; this, in

fact, is the lowest abstraction level of a data structure. The students did not solve

problems in a general manner using abstract data structures, but kept referring to a

particular "concrete" implementation. This is analogous to students in the math

classroom, who often can work successfully with specific representations of functions

(such as a table, a formula or a graph), but not with the concept of function as such.

Referring back to the process-object duality, one interpretation might be that a process

conception of a particular data structure would be tied to its implementation in a

particular machine or language, but that an object conception would be required in

order to work with it abstractly. In this interpretation, we might say that the students

have acquired a process conception of the data structure in question, but not an object

conception. An object conception might also be required for effective use of

abstraction barriers (Leron, 1987), which would allow students to ignore

implementation details, while concentrating on the problem structure.

It is important to emphasize that, looking at the situation from the student's own

perspective, the students were actually solving correctly most of the given problems,

hence might not be motivated to work harder in order to achieve a more abstract

solution. Similarly, it may be the case that working within the C language they could

solve successfully most of the problems given in the course, and so didn't feel the need

to work harder to achieve a more abstract conception. However, as in mathematics; the

abstract approach is a powerful and desirable habit of mind, which becomes

indispensable in advanced courses and projects. Instructors who want to cultivate this

approach in their students, need to look for problems which will make this a powerful

tool for the students. Our research shows that just telling them about it is not enough:

as long as the less abstract (and apparently easier) approach is good enough to solve

the required problems, they will not make the extra effort needed to climb the

abstraction ladder.
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In fact, as the following section demonstrates, the very same students can detach

themselves from the implementation details when the problem forces them to do it.

2.2. Constraints-oriented thinking

hi solving non-trivial problems in any discipline, we need to negotiate between the

requirements and the constraints of the problem. In CS, in addition to the constraints

inherent in the given problem, there are also the "low-level" constraints imposed by

the particular hardware and software environment. The standard approach taught to

present-day CS students is to suppress low-level detail by erecting an appropriate

abstraction barrier: first, solve the problem assuming an ideal (relative to the given

problem) software environment, and only at a later stage worry about how to

implement this ideal environment on top of the one you actually have (Abelson &

Sussman, 1985). We call this style of problem solving requirements-oriented thinking.

If this approach is not heeded, the low-level details make it harder to solve the

problem in the first place, and the solution tends to be messy-looking if one is
eventually obtained; we call this approach constraints-oriented thinking.

Some of the questions posed to the students intentionally contained implementation

constraints. For example:

You are to computerize a certain restaurant so that the waiters

will enter into the computer each customer's order in turn, and

the chef will draw from the computer one order at a time. The

owner of the restaurant has purchased a programming environment

which has only stacks, since it was very cheap. How will you go
about doing the job?

A requirements-oriented approach to this problem would go roughly as follows:
"Taking into account the requirements of the problem, what we need is a queue2. In

our problem, the waiters enter each order at the end of the queue, and the chef draws

from its head. The algorithms for the operations are such and such. Now, since we
have a constraint we only have stacks we now have another (lower order)
problem: how to implement a queue using stacks."

2 A queue is a data structure of the FIFO (First In First Out) kind; it behaves like a queue for a bus: a
new element is inserted at the queue's end, and an element may be drawn from the queue's head.
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Most of the students didn't use this approach, but rather opted for constraints-oriented.

thinking (We are not presenting here the actual data, due to space limitations): they

"played" with the stacks in many ways, tried to enter the data (customers' orders) into

one stack, then into two stacks; they tried transferring data between the stacks, adding

auxiliary stacks, and so on. All the while, they seemed to be "groping in the dark".

Even in cases where they eventually menaged to implement a queue using stacks, they

didn't separate this lower-order problem from the main problem, but rather continued

to work with the stacks at the level of the waiters' and chef's actions.

The problem, again, is lack of awareness of abstraction levels and, as a result, missing

abstraction barriers. Similar phenomena have been observed in the work of math

students (Leron, 1987).

2.3. Conflicting mental structures for the same concept

Let us go back to the "array" concept. After answering that an array is a continuous

area in the memory of the computer, the students were asked the following question:

Suppose there are two separate segments 20Kbytes and 30Kbytes

available in the memory. Is it possible to implement an array

of 40Kbytes?

All the students answered affirmatively, and described various ways of doing so. This

answer is clearly in conflict with their earlier continuous-segment answer. The two

answers indicate the existence of two conflicting mental structures for the "array"

concept: The first is programming oriented, or even a programming-language oriented,

referring to the array by its implementation. The second refers to the array by its

properties the very heart of abstract data structures. These conflicting mental

structures apparently co-exist in the student's mind, each being called upon in a

different situation, according to needs. This is reminiscent of the phenomenon, widely

discussed in math education research literature, of the fragility of knowledge, or

knowledge in pieces (Brousseau & Otte, 1991; diSessa, 1988; Smith, diSessa &

Rochelle, 1993).

3. Conclusion
The first conclusion that can be drawn from this report is that, despite differences in

subject matter and population, methods and results of research in math education can
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in many cases be extended to CS education: A second conclusion is that abstraction is

difficult, even when the problem is relatively elementary and the students are relatively

advanced. Perhaps a better way of putting it is that thinking at certain levels of

abstraction is not a natural thing for students to do: they will mostly work on the

lowest abstraction level that still enables them (albeit sometimes at great effort) to get

a working solution. It follows that if we want our students to develop a disposition

towards using more abstract tools, we need to work harder at finding problem

situations that would make it worthwhile for them to use these tools.
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CONSTRUCTING PURPOSE IN MATHEMATICAL ACTIVITY

Janet Ain ley
Mathematics Education Research Centre

Institute of Education
University of Warwick, Coventry, U.K.

This paper offers a theoretical discussion of how the ways in which the
purpose of mathematical activity in primary classrooms is constructed by
the participants may affect the learning and teaching of mathematical
ideas. The argument draws on areas of my own writing, but is offered here
as a starting point for directions of future research.

In this paper I offer the outline of an argument exploring the role of purpose in the
learning and teaching of mathematics. I offer it here as a signpost to the directions of
future work, since it contains many conjectures which need to be explored through
further research, but I believe it may also offer a novel way of looking at some of the
issues currently under consideration in the field of mathematics education.

In social, political and even educational arenas, mathematics is commonly portrayed
as a subject whose importance is based on its utility in employment and daily life.

Mathematics is only 'useful' to the extent to which it can be applied to a
particular situation. (Cockcroft (1982), para 249)

This justification of mathematics continues in the face of evidence that not only does
adult life require knowledge of a relatively small subset of the mathematics taught in
schools, but that the mathematical skills learned in school are frequently rejected in
favour of alternative methods in contexts where their use could be of practical value.

Even if learning mathematics could be justified in terms of utility, the concerns of the
adult world are generally far removed from the experiences of young children. Thus
there is a gap between the experiences of children learning mathematics and the
purposes that are perceived by adults for that learning. I feel that little attention has
been paid by curriculum developers, or by researchers, to the questions of what sense
children make of the experience of learning mathematics, and why they think they are
learning it. I have become increasingly convinced that the ways in which children
construct the purpose of mathematical activity in the classroom may have significant
effects on their learning, and have important implications for both teaching and
curriculum development.

Contextualising mathematics

Attempts to give purpose to mathematics by contextualising the abstract content of
the curriculum, particularly through the use of 'real-world' or 'everyday' problems,
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has a long history. However, there seems to be an equally long history within
research in mathematics education of studies of the difficulties which children have
in combining mathematical and 'real-world' knowledge productively in these
contexts (see for example Boa ler (1993), Verschaffel et al. (1996)).

One outcome of the recent interest in research which explores the uses of
mathematics in different areas of everyday life and employment (see for example
Lave (1988), Nunes et al. (1993), Schliemann (1995)) has been the recognition that,
far from being an inferior form of mathematical activity, 'street mathematics' has
characteristics which may be of value in formal education. On this basis, many
developments in 'realistic mathematics education' have explored ways of bringing
features of street mathematics into the classroom via 'naturally occurring or
meaningfully imagined situations' (Nunes et al. (1993) p. 154).

One feature of street mathematics which has been discussed by a number of
researchers as potentially transferable to the classroom is the notion of an
apprenticeship model of teaching and learning (see for example Lave (1988);
Masingila (1993)). In analysing the advantages of an apprenticeship model,
Masingila identifies three key features:

(a) an apprenticeship model enables mathematical knowledge to be
developed within a context, (b) cognitive development can occur as
students work co-operatively with their teacher, and (c) a mathematics
culture is developed within the classroom and students are initiated into
this mathematics community. (p. 21)

This analysis overlooks a crucial difference between the classroom and out-of-school
contexts: that of purpose. When an apprentice learns carpet laying, fishing or
carpentry by working alongside a master, both are essentially engaged in the same
purposeful task, although they may perform different aspects of it. The master's
agenda includes initiating the apprentice, and the apprentice knows that she is there to
learn, but overlaying this is the value and purpose of the task which is being
performed. Master and apprentice share an understanding of the overall task, and the
purpose for the individual skills and techniques that are require to complete it. For
both of them, there is a clear pay-off in performing the task well.

In the classroom, even if situations can be created where children's interest is
engaged in purposeful or meaningfully imagined tasks, and in which they can work
co-operatively with their teacher, the purposes of the tasks of master and apprentices
will not be the same. The teacher's purpose is not to create the Logo program, build a
puppet theatre, explore the mathematics within an investigation or to win the game; it
is to teach. What is more, both teacher and pupils know this, and any pretence on the
teacher's part that things are otherwise will be recognised as such. Thus, even though
the apprenticeship model offers much that is of value in thinking about creating
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meaningful mathematical experiences in the classroom, I feel it is important to be
realistic about its limitations.

Lave's (1988) notion of learning as situated within a particular context offers a useful
framework within which to explore aspects of children's behaviour in mathematics
classrooms. Lave sees the context in which learning takes place as shaping the
cognition, whilst at the same time being shaped, in the learner's perception, by the
cognition. This notion of situated cognition has proved valuable in providing ways of
looking at cognition in 'out-of-school' contexts. I want to turn the focus back into the
classroom, and look at school mathematics as situated within the complex
environment of the classroom. In particular, I see the individual's ways of
constructing purpose within an activity as a key feature on the context. The classroom
is, to a considerable extent, the 'real world' of young children.

In this discussion it is difficult to avoid the expressions 'real', 'reality', 'real world'. I
find these words both problematic and unavoidable, and so I would like to be explicit
about the ways in which I shall use them. First I want to detach the notion of reality
from contexts, and attach it instead to the perceptions of individuals. So, a problem
involving the lengths of curtains in relation to particular windows is a real context for
me as an adult with an interest in interior decorating, but is not real for most primary
school children, or for a colleague who finds the subject of curtains unexciting.

Secondly, I want to detach 'real' from 'real world'. The quality of an individual's
engagement with a problem which makes it 'real' for them does not lie solely in its
utility or application, nor in its physical existence. For young children, the boundaries
between fact and fantasy are often drawn differently from those of adults, but adults
can also become highly engaged with problems which are set in fantasy contexts.

Finally, I want to extend the notion of 'real-ness' being a quality of how an individual
perceives and engages with a problem and detach 'real' from the opposite of
`abstract'. Abstract problems can be very real in terms of the interest and engagement
they arouse. We risk denying children access to huge areas of mathematical culture if
we make the decision on their behalf that only what belongs to the 'real world' can be
interesting.

In much of my research into the views of children and their teachers about
mathematical activities, I have found a number of discontinuities in their perceptions
of the nature of the activity they are engaged in, and of the purpose of school
mathematics (see for example Ain ley (1988, 1991)). If the purpose which is routinely
offered for learning mathematics is its utility in contexts outside the classroom, which
are not real for the children either in terms of their familiarity or of their intrinsic
interest, then it is unsurprising that children will invent other ways of constructing the
purposes of mathematical activity within the classroom.

2 -19

2



The student voice which I hear through much of my reading and my own research
seems to build a cumulative picture of an elaborate, ritualised game being played out
by children in response to their constructions of the behaviour of teachers within the
classroom context. These constructions permeate much of their experience of school,
and I believe that we need to see their learning of mathematics as firmly situated
within this context if we are to appreciate and understand some of their behaviour.

I offer one example from my own recent research in illustration here. In reporting on
early stages of the Primary Laptop Project (Ain ley and Pratt (1995)), Pratt and I
described one example of a behaviour we saw in many children when they were first
introduced to the graphing facilities of a spreadsheet. Children were interested to
explore the range of graphs they could produce, and the graphic effects offered by the
software. When it came to selecting a graph to print out for inclusion in their project
folders, many children made choices which surprised us. They seem to be guided
solely by the visual appearance of the graph, and paid no attention to whether or not
the chosen graph displayed the data appropriately.

Our first interpretation of this behaviour was to feel impatient with children who
seemed to be 'playing' with the software, rather than paying attention to the
mathematics. When we questioned them about their graphs however, we began to
hear a different construction of the purpose of the activity. The criteria some children
used for choosing their graphs tended to be aesthetic rather than mathematical. Their
preference was for ones which looked complex and/or unusual. Questions about the
meaning of their graphs were often met with incomprehension. It began to emerge
that the children did not see graphs as meaningful, or as ways of communicating
information. Their construction of the purpose of graphs, based on their previous
experiences within school, was that graphs were essentially decorative, used to
brighten up classroom displays.

One way of looking at this behaviour is to see this as analogous to the activity often
described as 'emergent writing'. Young children typically begin to imitate the
behaviour of adults writing long before they develop the skills required for 'real'
writing. In doing so they imitate both the form and the purpose of the activity: they
don't just write, they write letters, shopping lists, menus. Through engaging in this
activity they learn important lessons about what writing is for.

I would like to describe the activity many children engaged in with the spreadsheet as
`emergent graphing'. The power of the technology allowed them to play at producing
the sorts of graphs they had seen in the adult world. The strategy we decided to adopt
within the project was to accept these graphs, and to encourage children to work with
them in ways that we worked with other graphs, for example by reading back
information which they contained. Alongside this, we tried to design activities in

2 -20

25



which children produced and worked with graphs - and importantly in which they
saw us as teachers working with graphs - in more directed ways. Gradually, we felt
that the children's understanding of the purpose of graphing developed as they
enlarged their range of skills in using them (Ain ley (1995), Pratt (1995)).

A different perspective on mathematical activity

My research into children's perceptions of the purpose of teachers' questions (Ain ley
(1988)) led to my first notion of the ways in which children's experience of
mathematical activity are shaped by the school context. It seems to me now that the
same shift in perspective may offer an alternative account of why attempts to
contextualise mathematics in the classroom are often ineffective. If children construct
the majority of teachers' spoken questions as designed to test their understanding, it
seems probable that they will interpret written questions, such as word problems, in
the same way, even if this is not the purpose for which teachers use them. Indeed
there seems to be a number of purposes which teachers may offer for setting
mathematical ideas and techniques in context. Three possibilities are:

to support children's understanding of the mathematics;
to support children in transferring their knowledge to situations outside the
classroom by showing them what it is useful for;
to test the children's understanding by requiring them to apply their knowledge.

I conjecture that many primary/elementary school teachers would offer explanations
which cover or combine the first two of these, but may not recognise the third as a
distinct category, even though the purpose here is radically different. (It may be that
their colleagues teaching in secondary schools would take different views.) In
contrast, children's experience of word problems in textbooks is that they frequently
form the last section on the page, following more straightforward examples of the
`sums' on their own. As the contents of the page generally progress in difficulty, it is
natural to see this last section as the hardest, designed to extend your thinking, or to
catch you out, depending on your point of view. Indeed, it is difficult to imagine any
other purpose: if the contextualised problems were designed to help children's
understanding of the mathematics, surely they would be offered first.

I am led by this analysis to conjecture that many children will construct the use of
contextualised problems in school mathematics as a hurdle to be overcome, rather
than as an aid to their learning. The problems are there to make it more difficult to
recognise the calculation which has to be carried out to arrive at the right answer,
which is, after all, what the school game is all about. If this is how children construct
the purpose of the activity, then a sensible strategy to adopt is to pay no attention to
the context, which may distract from this goal. It may be that children are not unable
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to interpret word problems or to transfer knowledge from one situation to another: in
the classroom situation, they simply may not see this as the purpose of the activity.

I see a large part of children's experience of mathematics as an activity situated in
classrooms, and shaped by their perceptions of the purposes of schooling. I believe
that the underlying reason why most attempts to contextualise mathematics fail to
enable children to apply their knowledge in other situations, is because of a failure to
pay attention to how the purposes of mathematical activity are understood by the
participants. Teachers and curriculum developers may use real world contexts with
the purpose of showing pupils how a particular piece of mathematics can be useful.
But if children construct the purpose of the activity and indeed of all school
mathematics - as 'getting the right answers', they will be unable to appreciate what
the teacher's purpose is. Indeed they may fail to appreciate the more fundamental
idea that mathematical knowledge is useful, because the classroom context shapes
their perceptions of mathematical activity so strongly.

The role of purpose

I see the notion of purpose as central both to interpreting mathematical activity in the
classroom, and to the quality of children's mathematical thinking. For me the notion
of purpose is clearly distinct from that of motivation. Children may be motivated by
their enjoyment in carrying out a task, or by the novelty of a situation, but still see
little purpose in what they are doing. The difference in the quality of attention which
comes from engaging in a purposeful task in very marked.

From my work with Logo, I have seen repeatedly the effects of a clear end-product in
generating a powerful sense of purpose for children (and for adults). There seems to
be something very distinctive about the ways in which mathematical ideas are
addressed and understood when they are met within the context of a Logo project.
The child's ownership of the project also has significant effects on the interactions
between teacher and pupil. I would not wish to claim that this kind of purposeful
activity is unique to Logo: similar observations may be made about children's work
in a range of other product-oriented activities. (This idea is developed as
constructionism by Harel and Papert (1991) and others.) However there are
particular features of computer environments which seem to both generate and
sustain this sense of purpose: rapid feedback from the computer, and the ability to
adjust and correct ideas with ease, encourage children to engage in purposeful
activities. My observations of children's work in computer environments have
focused my attention further on the significance of the children's perception of
purpose and how this may relate to the end-product of the activity. This has led to the
second meaning within my deliberately ambiguous choice of title: the exploration of
ways of constructing mathematical activities in which the purposes of teachers and of
children can be brought in line with each other.
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I have found that in many classrooms, and for much of the time, children have
different perceptions of the purposes of mathematical activities from those of their
teachers. This affects the ways in which they see mathematical tasks, and the ways in
which they interpret teachers' behaviour. As a result, teachers and pupils may be
working at cross purposes, and teachers may see children's responses as
demonstrating a lack of understanding, or of attention, or even as deliberate
subversion of the objective of the lesson. However, it also seems clear to me that
children work hard at making sense of mathematical activity, even when they are
given little basis on which to do this. They construct purposes for their activities
within the context of their experience of the classroom and the school, even though
they often fail to appreciate the wider purposes which teachers and curriculum
developers intend to convey in the ways in which tasks are contextualised. Often
these mis-matches arise because children, and sometimes their teachers, are not able
to distinguish those aspects of mathematics which are matters of convention from
more significant mathematical concepts.

In designing activities for children within the Primary Laptop Project, we have often
used the model of Logo projects; aiming for tasks within which children can be given
the freedom to explore and make decisions, and which the children themselves will
see as purposeful. However it has become apparent that these conditions are not
sufficient to produce activities in which children will engage with the mathematical
ideas which are part of our purpose. In working on these ideas with Dave Pratt we
have come to distinguish the overall purpose of the activity from the utility of the
mathematical ideas used within it. I offer two brief examples here which I hope will
serve to illustrate the distinction.

One activity we have used with many groups of children involves trying to design a
good paper 'helicopter' (aspects of this activity are discussed in Pratt (1995)).
Children needed to test their designs by timing how long the helicopter flew, but
quickly realised that their timings were inaccurate. Within the activity we were able
to offer them the facility on the spreadsheet to find the (mean) average of a set of
results as a way of balancing out the inaccuracies of their measurements. At this point
the children used the computer to generate the average value which they then used to
plot a graph. They did not learn how to calculate the average, but they did learn
something about the way in which this value might be used, within the context of
answering a question which they found both real and intriguing.

A second example may be found in a study of an activity involving the maximisation
of the area of a sheep pen (Ain ley (1996)). Within this activity they made use of a
graph of their results to try to identify the maximum value, and then translated their
method for calculating the dimensions of the pen into a spreadsheet formula to
generate more (and more accurate) results, which in turn produced a more useful
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graph. The boys' attention was primarily on solving the problem, which, despite its
rather contrived setting, became real for them through being sufficiently intriguing
(and to some extend also through the interest which we as teachers were taking in
their solution). They are able to appreciate the utility of both the graph, and the
formula which would allow them generate data which would draw a 'better' graph.

I believe that appreciating the utility of a concept or procedure through being able to
apply it in a purposeful context is an extremely powerful way of learning
mathematics. The quality children's work, and the mathematical levels that we have
been able to reach within the Primary Laptop Project, using activities which have
been designed in this way, strongly supports this view. Moreover, it seems that
children who learn about the utility of mathematical ideas in this way, also have the
opportunity to learn that mathematics is useful, not only in the adult world, but in
their world as well. The mathematics classroom seems to be the most appropriate and
convenient context in which to locate school mathematics, and attention to issues of
purpose and utility offer the possibility of constructing learning environments which
support the application of what is learned there to the world beyond the classroom.
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Abstract
This paper reports on part of a study examining the links between teachers' practices,
beliefs and knowledge and pupil learning outcomes in the development of numeracy
with pupils aged five to eleven. From a sample of 90 teachers and 2000 pupils, we
developed detailed case studies of 18 teachers. As part of these case studies we
explored the teachers' beliefs about what it means to be numerate, how pupils become
numerate and the roles of the teachers. From the data three sets of belief orientations
were identified: connectionist, transmission and discovery. Results from pupil
assessments suggest that there was a connection between teachers demonstrating strong
orientation to one of these sets of beliefs and pupil numeracy gains.

1 Aims of the study
The aims of the study Effective Teachers of Numeracy, funded by the UK's
Teacher Training Agency (TTA) were to:

1 identify what it is that teachers of five to eleven year olds know, understand and
do which enables them to teach numeracy effectively;

2 suggest how the factors identified can be more widely applied.

The working definition of numeracy used by the project was a broad one:

Numeracy is the ability to process, communicate and interpret numerical
information in a variety of contexts.

Evidence was gathered from a sample of 90 teachers and over 2000 pupils on what the
teachers knew, understood and did and outcomes in terms of pupil learning.

Studies have pointed to the importance of establishing of a particular classroom culture
(Cobb, 1986), raising the issue of teachers' belief systems about mathematical
knowledge, how it is perceived as generated and learnt, and the impact upon pupils'
learning. It may be that beliefs about the nature of the subject are more influential than
mathematical subject knowledge per se (Lerman, 1990; Thompson, 1984).

Many studies, particularly in the USA, focus on effective classroom practice and
routines (Berliner, 1986) but research demonstrates the difficulty that teacher
experience in adopting new practices without an appreciation of and belief in the
underlying principles (Alexander, 1992). Further, teachers may have adopted the
rhetoric of 'good' practice in teaching mathematics without changes to their actual
practices (Desforges & Cockburn, 1987). While teachers' classroom practices and
subject knowledge were also foci of this research, this paper concentrates on the
findings related to teachers' belief systems. (For full details of the research see Askew
et al., 1997)
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2 Identifying effective teachers of numeracy
Careful identification of teachers believed to be effective in teaching numeracy was
crucial to this study. The idea that effective teachers are those who bring about
identified learning outcomes was our starting point for the project. We decided that
as far as possible the identification of effective teachers of numeracy
would be based on rigorous evidence of increases in pupil attainment, not
on presumptions of 'good practice'.
From an initial sample size of all the primary schools in three local education
authorities (some 587 schools), together with Independent (private) schools, we
selected eleven schools, providing a sample of 90 teachers. We selected the majority of
these eleven schools on the basis of available evidence (national test scores, IQ data,
reading test scores and baseline entry assessments) suggesting that the teaching of
mathematics in these schools was already effective.

A specially designed test ('tiered' for different age ranges) of numeracy was
administered to the classes of these 90 teachers, first towards the beginning of the
autumn term 1995, and again at the end of the spring term 1996 (classes of five year
olds were only assessed the second time). Average gains were calculated for each class,
providing an indicator of 'teacher effectiveness' for the teachers in our sample.

In order to broadly classify the relative gains, the teachers were grouped into three
categories of highly effective, effective, or moderately effective. This classification
was made by putting the classes in rank order within year groups according to the
average gains made (adjusted to take into account the fact that it was harder for pupils
to make high gainS if their initial test score was high). The cut-off points between high,
medium and low gains were made on pragmatic grounds, so that classes in each year
group fell into three roughly equal groups but avoiding any situation where classes
with nearly equal adjusted gains were allocated to different groups. The groups were
not based on any predetermined quantitative differences between the classes based on
expectations of what a 'medium' gain should be.

3 Teacher case study data
Research on the links between knowledge, beliefs and practice suggested a mix of
techniques to elicit teachers' knowledge and understanding backed up by classroom
observation to examine actual practices. From the sample of 90 teachers we worked
closely with 18 teachers who formed our case study teachers providing data over two
terms on classroom practices together with data on teacher beliefs about, and
knowledge of, mathematics, pupils and teaching. These teachers were identified in
advance of the second round of pupil assessment, and chosen through discussion with
head teachers and, where appropriate, with advice from the LEA inspectors and
advisors. While the emphasis was on identifying effective teachers, the group of 18

were chosen so that their pupils were evenly distributed across ages 5 to 11 (year
groups 1-6).
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3.1 Classroom observations
In total, 54 lessons were observed, three for each of the case study teachers. Data
gathered included a focus on:

organisational and management strategies how time on task is maximised,
catering for collective and individual needs, coping with range of attainment
teaching styles - intervention strategies, questioning styles, quality of explanations,
assessment of attainment and understanding, handling pupil errors
teaching resources - sources of activities, range of tasks, resources available,
expected outcomes
pupil responses - ways of working, evidence of understanding.

3.2 Case study teacher interviews
Fifty-four interviews were conducted, three for each case study teacher:

background interview: providing evidence on training and experience as well as
information on beliefs, knowledge and practices in teaching numeracy; teachers
own perceptions of what has made them successful teachers of numeracy, and
reasons for factors identified
'concept mapping' interview: this interview was based around a task that explored
the teachers understanding of aspects of mathematics related to teaching
numeracy.
'personal construct' interview: this interview was structured around a task that
focused on the particular group of pupils that the teacher was currently teaching
in order to explore the beliefs and knowledge about pupils and how they came to
be numerate.

The data were analysed using qualitative coding methods and the constant
comparative method to build up models of belief systems (Lincoln & Guba, 1985;
Miles & Huberman, 1984; Strauss & Corbin, 1990)

4 Orientations in teachers beliefs.
From the analysis of the case study data three models of sets of beliefs that emerged
as important in understanding the approaches teachers took towards the teaching of
numeracy:

connectionist - beliefs based around both valuing pupils' methods and teaching
strategies with an emphasis on establishing connections within mathematics;
transmission - beliefs based around the primacy of teaching and a view of
mathematics as a collection of separate routines and procedures;
discovery- beliefs clustered around the primacy of learning and a view of
mathematics as being discovered by pupils.
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connectionist transmission discovery
Beliefs Being numerate Being numerate Being numerate
about what involves: involves: involves:
it is to be a using both efficient the ability to perform finding the answer
numerate and effective methods set procedures or to a calculation by
pupil of calculation ; routines; any method;

confidence and confidence and confidence and
ability in mental ability in paper and ability in practical
methods; pencil methods; methods;

selecting a method selecting a method selecting a method
of calculation on the of calculation of calculation
basis of both the primarily on the basis primarily on the basis
operation and the of the operation of the operation
numbers involved; involved; involved;

awareness of the confidence in confidence in
links between aspects separate aspects of separate aspects of the
of the mathematics the mathematics mathematics
curriculum; curriculum; curriculum;

reasoning, justifying able to 'decode' being able to use
and, eventually,
proving, results about

context problems to
identify a particular

and apply
mathematics using

number. routine or technique. practical apparatus.
Beliefs Becoming numerate is Becoming numerate is Becoming numerate is
about a social activity based a individual activity a individual activity
pupils and on interactions with based on following based on actions on
how they others. instructions. objects.
learn to Pupils learn through Pupils learn through Pupils need to be
become being challenged and being introduced to 'ready' before they can
numerate struggling to one mathematical learn certain

overcome difficulties. routine at a time and
remembering it.

mathematical ideas.

Most pupils are able Pupils vary in their Pupils vary in the
to become numerate. ability to become

numerate.
rate at which their
numeracy develops.

Pupils have Pupils' strategies for Pupils' own
calculating strategies calculating are of little strategies are the most
but the teacher has importance - they important:
responsibility for need to learn standard understanding is
helping them refine
their methods.

procedures. based on working
things out yourself
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connectionist transmission discovery
Misunderstandings

need to be
recognised, made
explicit and worked
on.

Misunderstandings
are the result of failure
to 'grasp' what was
being taught and
need to be remedied
by reinforcement of
the 'correct' method.

Misunderstandings
are the result of pupils
not being 'ready' to
learn the ideas.

Beliefs Teaching and Teaching is seen as Learning is seen as
about how learning are seen as taking priority over taking priority over
best to complementary. learning. teaching.
teach pupils Numeracy teaching Numeracy teaching Numeracy teaching
to become is based on dialogue is based on verbal is based on practical
numerate between teacher and explanations so that activities so that

pupils to explore each pupils understand pupils discover
others'
understandings.

teachers' methods. methods for
themselves.

Learning about Learning about Learning about
mathematical mathematical mathematical concepts
concepts and the concepts precedes the precedes the ability to
ability to apply these
concepts are learned
alongside each other.

ability to apply these
concepts

apply these concepts

Connections joining Mathematical ideas Mathematical ideas
mathematical ideas need to be introduced need to be introduced
needs to be
acknowledged in
teaching.

in discrete packages. in discrete packages.

Application is best Application is best Application is best
approached through approached through approached through
challenges that need 'word' problems: using practical
to be reasoned about. contexts for

calculating routines
equipment

Table 1: Key distinctions between connectionist, transmission and discovery
orientations towards teaching numeracy.

These orientations are "ideal types". No one teacher is likely to fit exactly within the
framework of beliefs of any one of the three orientations. Many will combine
characteristics of two or more.

However, it was clear that those teachers with a strong connectionist
orientation were more likely to have classes that made greater gains over
the two terms than those classes of teachers with strong discovery or
transmission orientations.
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Analysis of the data revealed that some teachers were more predisposed to talk and
behave in ways that fitted with one orientation over the others. In particular, Anne,
Alan, Barbara, Carole, Claire, Faith (the teacher initial matches the school code, so
Anne and Alan are from same school), all displayed characteristics indicating a high
level of orientation towards the connectionist view. On the other hand, Beth and David
both displayed strong discovery orientations, while Elizabeth and Cath were both
clearly characterised as transmission orientated teachers.

Other case study teachers displayed less distinct allegiance to one or other of the three
orientations. They held sets of beliefs that drew in part from one or more of the
orientations. For example, one teacher had strong connectionist beliefs about the
nature of being a numerate pupil but in practice displayed a transmission orientation
towards beliefs about how best to teach pupils to become numerate.

Highly
effective

Effective Moderately
effective

Strongly
Connectionist

Anne,
Barbara
Carole,

Alan

Faith
Strongly
transmission

Cath
Elizabeth

Strongly
discovery

Beth
David

No strong
orientation

Alice Danielle,
Dorothy,

Eva
Fay

Brian
Erica

Table 2. The relation between orientation and effectiveness

The connection between these three orientations and the classification of the teachers
into having relatively high, medium or low mean class gain scores suggests that there
may be a relationship between pupil learning outcomes and teacher orientations.

5 Links between orientation and practice
5.1 Orientation and the role and nature of mental strategies in pupils

becoming numerate
All the teachers, whether leaning towards a connectionist, transmission or discovery
orientation saw some aspects of mental mathematics as important. Knowing basic
number bonds and multiplication facts provided a baseline of expectations within all
three orientations.

However, the connectionist orientated teachers viewed mental mathematics as going
beyond this recall of number facts. Mental mathematics did not involve simply
knowing number bonds but having a conscious awareness of connections and
relationships to develop mental agility.

This mental agility meant that for the connectionist teachers mental mathematics also
involved the development of flexible mental strategies to handle efficiently number
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calculations. Working on mental strategies, they believed, laid foundations that
extended the pupils' levels of competency. Developing confidence in flexible mental
methods meant that pupils would be able to tackle calculations for which methods had
not been taught.

5.2 Orientation and teacher expectations
The connectionist orientated teachers placed strong emphasis on challenging all pupils.
They believed that pupils of all levels of attainment had to be challenged in
mathematics. Being stretched was not something that was not restricted to the more
capable pupils. They had high levels of expectations for all pupils irrespective of
ability. Intelligence was not seen as static and all pupils were regarded as having the
potential to succeed.

In contrast the transmission and discovery orientated teachers may provide challenge
for the higher attaining pupils but structured the mathematics curriculum differently
for lower attaining pupils.

5.3 Orientation and style of interaction
The connectionist teachers' lessons were generally characterised by a high degree of
focused discussion between teacher and whole class, teacher and groups of pupils,
teacher and individual pupils and between pupils themselves. The teachers displayed
the skills necessary to manage effectively these discussions. The teachers kept pupils
focused and on task by organising these discussions around problems to solve, or
sharing methods of carrying out calculations.

In school A, one of the most effective schools, there was a consistent approach to
interacting with pupils throughout the years. Right from age five pupils were expected
to be able to explain their thinking processes. Because the pupils were explaining,
rather than simply providing answers to questions that the teacher already knew the
answer to, the lessons were characterised by dialogue. In this discussion both parties,
teacher and pupils, were having to listen carefully to what was being said by others.
The result was pupils who, by eleven, were confident and practised in sharing their
thinking and challenging the assumptions of others.

5.4 Orientation and the role of mathematical application
For the discovery or transmission orientated teachers, application of knowledge
involved pupils putting what they had previously learnt into context. Problems
presented 'puzzles' where the pupils already have the required knowledge and the
challenge is only to sort out which bit to use. Alternatively, problems were a means of
demonstrating to pupils the value of what they are learning.

The connectionist orientated teachers also recognised the importance of being able to
apply computational skills. But over and above this they did not see it as a necessary
pre-requisite that pupils should have learnt a skill in advance of being able to apply it.
Indeed, the challenge of an application could result in learning.
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6 Discussion
The importance of these orientations lies in how practices, while appearing similar
may have different purposes and outcomes depending upon differences in intentions
behind these practices.

We would suggest that these orientations towards teaching mathematics need to be
explicitly examined in order to understand why practices that have surface similarities
may result in different learner outcomes. While the interplay between beliefs and
practices is complex, these orientations provide some insight into the mathematical and
pedagogical purposes behind particular classroom practices and may be as important as
the practices themselves in determining effectiveness.

Other teachers may find it helpful to examine their belief systems and think about
where they stand in relation to these three orientations. In a sense the connectionist
approach is not a complete contrast to the other two but embodies the best of both
them in its acknowledgement of the role of both the teacher and the pupils in lessons.
Teachers may therefore need to address different issues according to their beliefs: the
transmission orientated teacher may want to consider the attention given to pupil
understandings, while the discovery orientated teacher may need to examine beliefs
about the role of the teacher.
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Abstract

A case-study of one-year efforts of three students trying to learn mathematical analysis is
reported. Concepts of concept image, concept definition, procept and encapsulation are
used to support the adopted didactical strategy consisting in emphasizing the propositional
calculus with explicit applications of the four rules of inference in such a way as to submit
the concept image to the control of the concept definition, aiming at the encapsulation of the
6-8 discourse. A detailed example is provided. Effects of the learning efforts on the students
and on the faculty are discussed in terms of affective energy.

The research question

This paper reports a case study jointly developed by one teacher, two undergraduate
students in a teacher training program and one graduate student in Mathematics
Education program. The word analysis refers basically to the definition of limit and the
construction of the real numbers. The expression learn analysis refers to the
encapsulation of a particular process as an object. The word average refers to the
students' self evaluation: they ranked themselves in the second quarter of their classes
and in the second group described by Pinto & Gray [1995, p. 2-25]. Among equally ranked
peers they detected widespread rote learning. The directive research question emerged
naturally from their dissatisfaction and desires: can the average student like us learn
analysis? Or is this subject reserved only to the so-called "gifted" ones?

Methodology

The group met once-a-week for three hours during 1996. The activity was considered
as part of a honors fellowship project for one of the undergraduate students, a chance to
improve learning for the other and an opportunity to rebuild the mathematical basis for the
graduate student. In the first meeting, methodological directive lines on subject-matter,
didactical strategy, meta-cognition and evaluation were established. Negotiation
proceeded along the year.

The subiect matter was dictated by the syllabus and homework of a regular one-year
mathematical analysis course that the undergraduate students were taking from another
teacher. In the second semester the group decided to concentrate on a single subject: the
construction of real numbers. This subject had come up several times in the first semester.
The teacher suggested to take the Cauchy sequence approach in order to boost
opportunities to work with epsilons and deltas. The only available Portuguese language
source that describes the construction in detail happens to contain a mistake in the proof
of the fundamental theorem on the completeness of the real numbers. A task was
proposed to the group: in this chapter there is a mistake; find it, give a counter example
and produce a correct proof.

A didactical strategy was chosen: instead of looking for a smooth transition from the
intuitive to the formal level, a radicalization of the cut between concept image and concept

Professor with partial support from CNPq.
2 Graduate student in Mathematics Education with support CAPES.
3 Undergraduate student in Mathematics with support FAPESP.
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definition should be tried, by training the students on semi-formal treatment of
propositional calculus. The four rules of inference: universal and existential
particularization and generalization should be spelled out and systematically used.

Discussions on meta-learninq and meta-teaching were carried out at the end of each
session. They concerned the difficulties and progresses of each student and the overall
evaluation of the days work. Some session of the first and all sessions of the second
semester were videotaped. Some videos were viewed and discussed by the students. The
way the teacher conducted the sessions, the opportunity, aim and effects of his
interventions were analyzed and adjusted along the year.

As for evaluation, the group agreed that a final research report should be submitted
to PME-21 and partial results should be presented in local meetings during the year. In
the beginning of the second semester the honors undergraduate student was scheduled to
present a purely mathematical report to her peer group and their program's advisors at the
end of the year. The performance of the undergraduate students in exams of the regular
analysis course were also to be observed.

The theoretical framework

It was agreed that the theoretical framework to interpret data should be the
conceptualization developed by the Advanced Mathematical Thinking group of PME:
concept image, concept definition, conflict factor [Tall & Vinner, 1981], process, concept,
procept, ambiguity process-product, encapsulation [Gray and Tall, 1994]. It turned out that
the research subject matched that of Pinto & Gray [1995] and Pinto & Tall [1996], namely,
students' misconceptions about limits, rational and real numbers and the use of formal
definitions. The difference is that these authors seek to investigate the existing students'
state of knowledge and institutional conditions, while the present research tries to produce
a change in the state of knowledge and to investigate the outcomes and possibility
conditions of such an attempt. It should be qualified as a case study under an action-
research approach.

The didactical strategy: "1/n XPTO 0"

In this paragraph the necessity of a didactical strategy stressing the discontinuity
between concept image and concept definition will be justified. Next, a fairly detailed
description of the particular elementary procept that supports this strategy will be
presented. Finally a certain ambiguity of process-concept will be held as the expression of
the advanced mathematical thinking in analysis and will be described in terms of
encapsulation.

The didactical strategy of continuity. The undergraduate students had been exposed
to the "intuitive definition" of limit in calculus courses and the graduate student had also
been exposed to the "formal definition" in an analysis course like the one that the
undergraduate students were taking at that moment. In the students' own opinion, they
"attempted to learn definitions by rote but in the main failed to understand the underlying concepts"
[Pinto & Gray, 1995, p. 2-18]. Work with them a year before [Leal et al, 1996] had
produced the evidence that they shared most of the "observed errors" about limits pointed
out by Davis & Vinner [1986, p. 294]. These authors formulate a major question about
misconceptions: "Is there a way to teach these concepts so that misleading images will not be
formed? Or are these "naive" images unavoidable and will be formed no matter how the concept is
taught?" [p. 285]. We add: what to do if they are already formed? According to the authors,
influence of language is one of the sources of misconceptions about limits [p. 298]. Words

2 -34

42



such as "limit" have undue connotations, either inside or outside mathematics. In order to
avoid them, Davis & Vinner report to have tried unsuccessfully, or at lest without clear
success, to postpone the introduction, not only of the concept definition but, also, of the
very word "limit". "The word limit was not introduced until after the correct mathematical concept
was seemingly well established" [Davis & Winner, 1986, p. 299]. Postponing the concept
definition until a reliable concept image can be formed is the same strategy pointed out by
Tall & Vinner [1981] in the SMSP:

"(...) in the SMSP (...) the concept images of limits and continuity are carefully built up over
the two years of the course with fairly formal concept definitions only being given at the very end. In
this way the concept image is intended to lead naturally to the concept definition" [Tall & Vinner,
1981, p. 155].

We shall call such attempts the didactical strategy of continuity. It consists in seeking
a natural transition form the concept image to the concept definition of limit by
painstakingly expanding and adjusting the concept image so that it can take in the concept
definition.

Difficulties with the didactical strategy of continuity. Since the continuity strategies
are dominant in almost any textbook on calculus or analysis, we may trust that they are
associated with, if it is not the cause of:

"(...) the almost insignificant effect that a course on analysis had in changing the quality of
mathematical thinking of a group of students (...). (...) despite their extensive work with real
numbers, their concept image had not expanded to take in the concept definition" [Pinto & Gray,
1995, p. 2-18, our emphasis].

In the first meeting, the students expressed their understanding about the formal
definition of limit by the following phrase: "For anY epsilon there is an N, starting from
which the sequence converges". The teacher asked: "Do your mean that before this N the
sequence might diverge?". Along the discussion the students ran into several
contradictions but the game "someone gives you an epsilon and you have to find an N
such that" appeared to them as an arbitrary caprice of the teacher. The persistence of the
above phrase indicated that the students were trying to graft the concept definition into the
concept image. They were calculating limits correctly and propositions such as the limit of
the product of a bounded sequence by a sequence converging to zero is zero, seemed
completely obvious to them. When asked to produce a formal proof, they mixed phrases
from their concept images with phrases from the concept definition. They soon started
referring to bounded variables outside the formulas where they had been introduced.
Whenever they referred to "this epsilon" in a formula such that ve P(c) the teacher replied:
"I see no epsilon on this black-board', and replaced the epsilon by another symbol,
attempting to show that the meaning of the proposition remained unchanged. This
produced some astonishment among the students but no positive effects. The situation is
well described as a potential conflict factor in Tall & Vinner [1981]:

"A more serious type of potential conflict factor is one in the concept image which is at
variance not with another part of the concept image but with the formal concept itself. Such factor
can seriously impede the learning of a formal theory, for they cannot become actual cognitive conflict
factors unless the formal concept definition develops a concept image which can then yield a
cognitive conflict. Students having such a potential conflict factor in their concept image may be
secure in their own interpretations of the notions concerned and simply regard the formal theory as
inoperative and superfluous" [Tall & Vinner, 1981, p. 154, our emphasis].
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The teacher made an effort to emphasize the role of definitions in mathematics but
his attempt was rebuffed. The students manifested their conception of "definition" as a
"complete description" of an object. For them the definition of limit was simply intended to
make the idea of limit "more precise". Asked to choose a couple of similar notions among
definition, theorem, and axiom, they did not hesitate in uniting definition with, either axiom
or theorem. "The everyday life thought habits take over and the respondent is unaware of the need
to consult the formal definition. Needless to say that, in most cases, the reference to the concept
image cell will be quite successful. This fact does not encourage people to refer to the concept
definition cell" [Vinner, 1991, p. 73]. The teacher tried to emphasize the arbitrary character
of definitions: "Definitions are arbitrary. Definitions are "man made". Defining in mathematics is
giving a name" [Vinner, 1991, p. 66, our emphasis]. However, the comparison of definition
to the ritual of baptism made the students laugh a lot. (They later discussed the video.)

Rupture of concept image and concept definition. It seems that looking for a
continuous transition such that the concept image would be progressively adjusted and
would terminate by incorporating the concept definition, leads to difficulties already
recognized by Vinner [1991]:

"Only non routine problems, in which incomplete concept images might be misleading, can
encourage people to refer to the concept definition. Such problems are rare and when given to
students considered as unfair. Thus, there is no apparent force which can change the common
thought habits which are, in principle, inappropriate for technical contexts" [Vinner, 1991, p. 73,
our emphasis].

If there is "no apparent force", how to unbalance students' notions? The answer to
this question may be found in a previous paper of the same author: "(...) unless the formal
concept definition develops a concept image which can then yield a cognitive conflict" [Tall &
Vinner, 1981, p. 154]. At this point the notion of concept definition image comes in: "For
each individual a concept-definition generates its own concept image (...) which might (...) be called
the "concept definition image" [Tall & Vinner, 1981, p. 153]. The question now becomes: how
to make the concept definition image strong enough so that it acquires the power of
redressing the whole concept image? The answer provided in this paper is: by stressing
precise rules to manipulate the concept definition until an object is formed and
simultaneously submitting the concept image to the control of the concept definition. This
implies attributing an independent statute to the concept definition and introducing a
rupture between concept image and concept definition.

The new didactical strategy. Gray & Tall [1994] characterize the advanced
mathematical thinking as the possibility of ambiguous use of process and product evoked
by the same symbol. As for limits, the process is the tendency towards the limit and the
product is the value of the limit:

"The notation lim f(x) represents both the process of tending to a limit and the concept of

the value of the limit, as does lim sn (...)" [Gray & Tall, 1994, p. 120, our emphasis].

"We conjecture that the dual use of notation as process and concept enables the more able to
"tame the process of mathematics into a state of subjection"; instead of having to cope consciously
with the duality of concept and process, the good mathematician thinks ambiguously about the
symbolism for product and process" [Gray & Tall, 1994, p. 121, our emphasis].

The new didactical strategy consists in redefining process and product in the
situation of limits, consequently aiming at another form of the ambiguity. It starts recalling

2 -36



that the concept definition is a verbal form: "We shall regard the concept definition to be a form
of words used to specify that concept" [Tall & Vinner, 1981, p. 152]. The process is then
redefined as the sequence of inferences necessary to deal with the form of words used to
specify the concept of limit (propositional calculus). The product is redefined as the
demonstration, that is, the effect of truth of the discourse supported by such inferences.
This means a shift of emphasis towards language, while keeping the same basic
conceptualization of Advanced Mathematical Thinking.

Precisely, according to the old ambiguity, the use of the symbol "lim1/n=0" meant
either a tendency process or a final value. The new ambiguity consists in using this symbol
to mean, either that for every epsilon we can find an N (the process), or that the
proposition "lim1/n=0" is true, that is, it can be sustained (by an epsilontic discourse) in the
forum of mathematical community (product). Indeed, whenever a mathematician claims
that something is trivial, as they like to do, s/he is not thinking on the "cognitive complexity
process-concept" but s/he is exercising this specific form of process-product ambiguity:
s/he is ready to sustain a discourse in terms of a chain of propositions. The process of
(epsilontic) discourse has been encapsulated as an object (claim). In order to be realized,
such a strategy should provide the formation of an elementary procept leading to the
construction of this specific object.

"An elementary procept is the amalgam of three components: a process that produces a
mathematical object, and a symbol that represents either the process or the object" [Gray & Tall,
1994, p. 121. authors' emphasis].

Having identified the process as the 6-5 discourse framed by the propositional
calculus, the object became the referent produced by the discourse. Thus the didactical
strategy of rupture aimed at attaining the limit procept from the side of the concept
definition. However, one point was missing. In order to complete the construction of the
elementary procept a symbol was necessary. The experience was that the old symbol
lim an = L inevitably drew the students' attention towards the concept image: for them, "lim"
was the signifier attached to the idea of tendency, "lim" was the name of the concept
image. It was necessary to adopt a name for the concept definition. A neutral signifier was
chosen to play a temporary role: XPTO. So a definition was made and an exercise was
proposed:

1" an XPTO L means Ve 3N Vn (n > N > Ian LI < E) Show that XPTO 0 "
n

It is necessary to stress that XPTO is not a new symbol for the limit; it is a new
symbol for the definition, a name for the definition, not a name for the limit. It is a
temporary signifier to be used, not while the concept image is not well established, but
while the concept definition is not strong enough to rule the concept image. The effects of
the brute force declaration of traditional analysis courses: "from now on " lim a. = L

n-4"o

means this epsilontic definition", that is, the old name now also means something else,
have been negative on students. Of course, this is the desired form of the final ambiguity,
but it cannot be attained by overt imposition4.

"This has nothing to do with getting closer, explained the teacher. "That N that you
have found was just a sketch. The proof starts note/'. He meant that the concept image had
to be fully controlled and redressed in terms of the concept definition. An adaptation of
Rosser [1953] allowed to take full advantage of the propositional calculus without losing

Because in Lacan's terms, it implies a reorganization of the subject's jouissnce.
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sight of the mathematical meaning of the propositions. The four inference rules were made
explicit and connected to language models such as the classical syllogism. The students
were required to shape every homework exercise of their analysis course into this final
form. All proofs had first to be "sketched" and then "written down". Image and definition
were connected but each domain had its independent validity criteria. What had to be
proved was put as a question and surrounded by question-marks. This allowed the proof
to proceed simultaneously, progressing from the hypothesis and regressing from the
thesis, allowing a step-by-step control of what remained to be proved. Concept image was
evoked precisely at the moment of exhibiting a constant to answer a question introduced
by the existential quantifier. Once the last question had been answered the proof was
complete. There was no need to rewrite it in affirmative terms. This strategy will be
exemplified below, as it was presented by the students in a poster session of a work -
shop in May.

Example of the XPTO strategy
Convention: s is a positive real variable, n e N are positive integer variables. Bars over letters
introduce new variables, maintaining_their respective restrictions.'

-7' r
I Hypothesis: ra XPTO 0

1

ir Vn I bn
1K
1

2 1 Thesis: anb XPTO 0
I-

3 r
41

5-1-

6 r

Proof:

anbn XPTO 0?

? Vs 3N Vn > N lanbni < s ?

Clarifying the reader
From the definition we have to show that:

rOnce this question is answered, the proof is finished.

Take any

? 3N Vn > N lantint < ?

Vc Vn > < e

8-1-

9-i-

10

11

12

r

r

3N Vn > N Ianl <K

Let N be such that

Vn > N, Ian I <
K

r
In order to show that Vs P(s) it suffices to take an
arbitrary a and show that P(E) . This rule is called
existential _generalization.

From the hypothesis, by definition.

Since ye P(e) holds and since!- > 0, in particular

P() also holds. This rule is called universal

particularization, it is the form of the classical
syllogism every man is mortal, Socrates is a man,
h ence Socrates is mortal.

Since 3N P(N) holds, we can count on a particular N

such that P(N). This rule is called existential
particularization.

? Vn >ST laribni<E?

Take any ii > Ki

? lafibd

Since, for such N we have P(N), we may conclude
that 3N P(N), answering the last question. This rule
is called existentiatkeneralization.
By universal generalization, it suffices to answer the
question for this .5 .

la.bd = ladb.1 < i+1( =

rFrom (9) and from the hypothesis, by universal
particularization.
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Results and discussion

The first question that should be asked is the following: did it work? The
undergraduate students passed their analysis course, but this is not a reliable parameter;
many who apparently ranked bellow them also passed. However the honors student made
a mathematics-style exposition to another teacher in the mathematics department about
the completeness of the real numbers defined in terms of equivalence classes of Cauchy
sequences, which is a fairly involved 6-8 subject. "She was self-confident on that
epsilontic stuff', he reported. On another occasion the students reported: "Now we know in
which formula to enter with 6/3 and where to pick the 8 from. When the teacher does it, we
can follow her, but when she doesn't we can't avoid filling in the gaps." When the students
were writing the final mathematical report to the honors program they reported: "We had
trouble in refraining ourselves from applying the inference rules at every instance of the
resumes of previous results that did not form part of the main body of the paper, otherwise
we would never end it." From such reports, it seem that they are playing with the 6-5
discourse as a new toy. They still cannot take it for granted and move on, but the
encapsulation of the 6-8 discourse seems at its final phase. They only have to say "this is
trivial", as mathematicians do.

This is the final stage of a long process. The teacher led the students to complete
some formal proofs of exercises that they had done in the analysis courses. They
immediately recognized the power of the method and tried to imitate it. However, at the
beginning the students tried to use the inference rules prematurely, before the sketch had
sufficiently been worked. In the meetings, several times it happened that at the very end of
the formal proof the students lost sight of the sketch, and the whole story had to bee
retaken. Some sessions lasted for more than three hours. At a certain moment, in June,
the teacher requested: "Forget about the formal proofs for the next three weeks and
concentrate on the sketches". At that moment it was not clear that the strategy would work.

Of course, it can be argued that if the same time and effort had been dedicated to
the classical continuity strategy, the same result would have been attained. However the
story of this case shows that such an strategy had failed before and it would have been
difficult for the students to find affective energy to engage in it. On the other hand the
XPTO worked not only as a symbol for the e-E definition but also as a brand for the group.
When the students first showed the strategy in a poster session of a work-shop intended
for students and faculty, despite their efforts in contrary, some faculty members received
the XPTO as an unnecessary new symbol for the limit. A concealed similar point of view
was also expressed by some of their colleagues. This made them angry. They believed in
what they were doing and they wanted to show it to people. They felt as the pioneers of
the new strategy, not as the underdogs of the old one. This was the affective energy that
drove them along the year.

The students evaluated the attitude of such faculty members. "They looked irritated at
the XPTO. It seems they do not want to take into account that students my have difficulties
in analysis" one of them said. Later in the year a video of one of the sessions was shown
to the teacher of the analysis course. Her first reaction was: "But this cannot be done in a
regular classroom". The students connected this episode with the first and concluded: "If
our strategy works, they seem to feel obliged to use to it. This is a threaten to their old
habits".
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Actually up to the end of October the encapsulation of the inference rules into a
single object had not occurred. The existential particularization had simply been
abandoned in several proofs. The connection of the rules with everyday language
situations had been lost. The concept image was getting loose and recovering control over
the concept definition. At this moment the teacher calmly reminded the students: "Next
month you are going to expose this to the faculty. They will certainly ask you about the
apologetic poster session of last May when you claimed that these rules were so
important. What ere you going to answer?" He suggested: "Perhaps you should tell them
that our strategy did not work and make a traditional mathematical exposition as they like
you to do".

This remark had a decisive effect. The students started scheduling appointments
among themselves in order to prepare for the exposition. The fact that they could not trust
the book but, on the contrary, had to find a mistake in it, made them to become
independent from the teacher. They assumed that the fight for understanding and making
themselves understood was theirs. The demand produced by this kind of situation is well
known to everyone who has learned mathematics. So it can certainly be argued that all
that the XPTO strategy did, was to install a certain pressure. We agree. But, was there
any other way to do it?
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Theorem VI.4.2. If P1, P2, Po, Q, are statements, not necessarily distinct, and x is a variable
which has no free occurrences in any of PI, P2, , P, and if PI, P2, , P,, F Q, then
P2, P, F (x) Q [Rosser, 1953, p. 106].Theorem VI.6.8. Let x and y be variables and P and Q be
statements. Let Q be the result of replacing all free occurrences of x in P by occurrences of y and P
be the result of replacing all free occurrences of y in Q by occurrences of x. Then:

F (x) F(x) (y) F(y) [Rosser, 1953, p. 121].
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Mathematical proof seems attractive to some, yet impenetrable to others. In this
paper a theory is suggested involving "cognitive units" which can be the conscious
focus of attention at a given time and connections in the individual's cognitive
structure that allow deductive proof to be formulated. Whilst elementary math-
ematics often involves sequential algorithms where each step cues the next, proof
also requires a selection and synthesis of alternative paths to make deductions. The
theory is illustrated by considering the standard proof of the irrationality of V2 and
its generalisation to the irrationality of V3.

Cognitive units and connections

The logic of proof is handled by the biological structure of the human brain. As a multi-
processing system, complex decision-making is reduced to manageable levels by suppress-

ing inessential detail and focusing attention on important information. A piece of cognitive

structure that can be held in the focus of attention all at one time will be called a cognitive
unit. This might be a symbol, a specific fact such as "3+4 is 7", a general fact such as "the

sum of two even numbers is even", a relationship, a step in an argument, a theorem such as
"a continuous function on a closed interval is bounded and attains its bounds", and so on. It

should be noted that what is a cognitive unit for one individual may not be a cognitive unit

for another. The ability to conceive and manipulate cognitive units is a vital facility for
mathematical thinking. We hypothesise that two complementary factors are important in

building a powerful thinking structure:

1) the ability to compress information to fit into cognitive units,

2) the ability to make connections between cognitive units so that relevant
information can be pulled in and out of the focus of attention at will.

Compression is performed in various ways, including the use of words and symbols as

tokens for complex ideas ("signifiers" for something "signified"). These may sometimes be

"chunked" by grouping into sub-units using internal connections. A more powerful method
in mathematics uses symbols such as 2+3 as a pivot to cue either a mental process (in this

case addition) or a concept (the sum). This has become a seminal construct in process-
object theories (Dubinsky, 1991; Sfard, 1991). The combination of process and concept
which can be evoked by the same symbol is called a procept (Gray & Tall, 1994). However,

the notion of procept is not the only instance of compression in mathematics:
Mathematics is amazingly compressible: you may struggle a long time, step by step, towork through

some process or idea from several approaches. But once you really understand it and have the
mental perspective to see it as a whole, there is often a tremendous mental compression. You can
file it away, recall it quickly and completely when you need it, and use it as just one step in some

other mental process. The insight that goes with this compression is one of the real joys of

mathematics. (Thurston 1990, p. 847)
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The connections link cognitive units in the focus of attention to other cognitive structures
which will, as a whole, be termed the intermediate working memory. As different items are
brought into the focus of attention, the intermediate working memory changes dynamically,
opening up new connections and shutting off others. As a consequence, different external
prompts may lead to the making of different connections.

Dynamic sequences of links are routinised as action schemas and performed in the back-
ground, taking up little focus of attention. This generates procedural ability to early out
familiar processes. The greater power of flexible thinking arises from using the links in a
collection of connected cognitive unitsprocesses, sentences, objects, properties, sequences
of logical deduction, etcto conceive it as a single entity that can be both manipulated as a
concept and unpacked as a schema. This idea has been formulated many times in different
ways (eg the "varifocal theory" of Skemp (1979) in which a concept may be unpacked as a
schema and a schema viewed as a concept, or the encapsulation of a schema as an object
(Cotrill et al; in press)). More than just saving mental space as a shorthand in place of a
collection of items, it carries with it, just beneath the surface, the structure of the collection
and is operative in the sense that the live connections within the structure are able to guide
the manipulation of the compressed entity. These may then become new units in new cog-
nitive structures, building a hierarchical network spanning several layers. Used success-
fully, this offers a manageable level of complexity in which the thought processes can
concentrate on a small number of powerful cognitive units at a time, yet link them or un-
pack them in supportive ways whenever necessary.

Mathematical proof introduces a form of linkage different from the familiar routines of
elementary arithmetic and algebra. In addition to carrying out sequential procedures in
which each mathematical action cues the next, mathematical proof often requires the syn-
thesis of several cognitive links to derive a new synthetic connection. In the proof of the
irrationality of 42, for instance, having written J2 =(alb) as a fraction in lowest terms, the
step from "42.(a/b)" to "a2= 2b2" is a sequence of algebraic operations, but the step from
this to "a is even" requires a synthesis of other cognitive units, for instancea is either even
or odd" and "if a were odd, then a2 would be odd." We hypothesise that synthetic links
constitute an essential difference between procedural manipulations in arithmetic and alge-
bra and the more sophisticated thinking processes in mathematical proof.
Data collection

To investigate the role of synthetic links in proof, clinical interviews were used focusing on
the proof of the irrationality of 42 and 43. Eighteen students were selected at three different
stages in the mathematics curriculum: 15/16 year olds in a mixed comprehensive school
taking mathematics GCSE, 16/17 year olds in the sixth form of a boys' independent school
taking A-level mathematics, and first year university mathematics students. It would be
unlikely that a student would be able to produce a proof of the irrationality of '/2 without
prior experience, so each was invited to participate in a two-person dialogue, attempting to
make sense of a proof presented as a sequence of steps. At each stage he or she was asked to
explain the given step and perhaps suggest a strategy for moving on:
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(i) Suppose 42 is not irrational.
(ii) Then -42 is of the form alb, where a, h are whole numbers with no common factors.
(iii) This implies that a2 = 2b2,
(iv) and hence that a2 is even.
(v) Therefore a is even.
(vi) Thus a = 2c, for some integer c,

(vii) It follows that b2 = 2c2,
(viii) giving that b2,

(ix) and hence also b, is even.
(x) The conclusion that a and b are both even contradicts the initial assumption

that a and b have no common factors.
(xi) Therefore 42 is irrational.

After this each student was asked to suggest a proof for the irrationality of q3.

Analysis of responses

(i) the notion of proof by contradiction

Before being shown the proof, the idea of supposing that -J2 was not irrational and looking
for a contradiction was not suggested by any students who had not met the proof before. At

this stage they are used to manipulating symbols through sequential action schemas to
produce a "solution". They are unfamiliar with the possibility of proving something true by
initially supposing it to be falsea conflict likely to provoke cognitive tension and insecurity.

(ii) translation from verbal to algebraic

Students with no previous experience of the proof found the idea of writing a fraction in its
lowest terms a familiar concept, but the idea of writing this in the algebraic form "42=alb"
proved less obvious, but acceptable.

(iii) a routinised algebraic manipulation

Having agreed to suppose that q2 is equal to the fraction alb, where a and b are whole
numbers, students were usually successful in showing that this implies a2=2b2 using rou-
tine algebraic manipulation. However, some students who had seen the proof before and
resorted to attempting to memorise it did not always handle the algebra securely. For in-
stance, university student S began by stating the general strategy for the proof by contradic-
tion, yet could not deal with many details. Instead of constructing the proofhimself, he
recalled that the lecturer "did some fancy algebra which I couldn't actually reproduce."

(When asked to do so, he wrote " = 2 ", followed by
b

"a2=4b2", saying, "I think that's

what he did, but he did it in one step whereas normally I would've taken two." When asked

to fill in the details, he obtained the correct result a2=2b2. Similarly, student M said, "I
remember him saying to prove that a is even", but could not remember how. In contrast,
Student L compressed the whole operation in a single step, but was able to give further
details on request.
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(iv) a link from algebra to verbal representation

None of the students new to the proof spontaneously linked "a2=2b2" to "a2is even", al-
though they all readily accepted its truth. (The link loses information, saying "a2 is twice a
whole number" rather than "a2 is twice the square of a whole number". Students may feel
instinctively uneasy losing information, without articulating their concern.)
(v) Synthesising a non procedural step

The step from "a2 is even" to "a is even" requires a more subtle synthesis of links with other
cognitive units. Students offered a number of different strategies, including:

(a) Correct justification, involving a sequence of appropriate connections, usually
along the lines "a is either even or odd", but "a odd implies a2 is odd", and as
"a2 is not odd", this implies "a must be even."

(b) Strong conviction but without justification, such as, "an even number square
has got to have a square root that is even" and "well, it just sort of is [even]."

(c) Empirical verification, trying some numeric cases and asserting that there are
no exceptions.

(d) Inconclusive reasoning, offering related statements, justifiedor otherwise, which
did not help further the argument, such as, "If you could say that a2 had a factor
of 4, then that [a even] would definitely be true."

(e) False reasoning, using inappropriate links, such as the claim which occurred
more than once that if a2 is an integer multiple of 2, then a is an integer multi-
ple of -42.

(f) Unable to respond without help.

The correct justification was not evoked initially by most students new to the proof or by
some of those who sought to remember the proof by rote. The cognitive units "a is even"
and "a2 is even" can coexist in the focus of attention so they may be seen as happening at
the same time rather than one implying the other. "a2 is even" seems to have a stronger
natural link to "a is even" than to "a is odd", thus failing to evoke the alternative hypothesis.

Some students responded in several categories. For instance, Student S began with response
(b) quoting the authority of the lecturer, saying, "the root of an even number is evenhe
just assumed it." When challenged, he reasoned inconclusively, then tried specific cases:

Interviewer: So the root of six is even.
Student S: Good point. [five seconds pause]
Interviewer: If a number is not even, what is it?
Student S: It's odd.
Interviewer: So you've got a choice of odd or even, does that help you?
Student S: Yeh, I see, it's got to be rational, I think, so ... a rational root is either ... odd or

even and if the square is even, then the rational root is even. Is that clear?
Interviewer: Uh, well ...
Student S: So what I'm thinking is the root of 4, 4's even and 2's even, root of 16 equals 4,

's even. I can't remember any other simple squares in my head that are even ...
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Students who could not proceed (category (f)) were given a prompt referring to the odd-
even dichotomy. This often led to a response of type (a), (d) or (e) above. For example, the
prompt "Every integer is even or odd" was often followed by the response, "An odd number
squared is odd". The thought of considering concrete examples (category (c)) was rarely
evoked by this cue.

(vi) From "a is even" to "a=2c for a whole number c"

The translation from the verbal statement "a is even" to the algebraic statement "a=2c" was
usually straightforward, but again students such as university student Mwho admitted
trying to memorise proofshad a faulty recollection of what to do:

Interviewer: If you know that a is even, how can you write a? How do you write down that a is
an even number ?

Student M: If you put a 2, ... you put an a in front of it, like 2a ... I don't know, I'm sorry. I

can't remember.

(vii)(ix) The chance to repeat earlier arguments

Having concluded that "a=2c for a whole number c", the next steps of the proof often
evoked earlier ideas. No student had any difficulty with the procedural steps substituting
"a=2c" into "a2=2b2" and simplifying "4c2 = 2b2" to get b2= 2c2. Students invariably saw
that this situation was similar to the earlier case for a, and asserted that b is also even.

(x)(xi) establishing the contradiction

Some students new to the proof did not recall that a/b was assumed in lowest terms, so did
not see that "a and b both even" gives a contradiction. Student C was silent for 45 seconds
until reminded: "we cancelled out until we had no common factors," immediately replying:

"Oh, right, ... that can't be the case because if they are both even numbers, then they will have
common factors, like two."

Those who had seen the proof before in school or at university immediately grasped the
contradiction, including those who had misremembered the detail of earlier steps.

Generalising the proof to the irrationality of 43

When proving the irrationality of -J3, all students began by supposing that -\/3 was equal to
a fraction a/b in its lowest terms, a typical remark being, "I presume you start in the same
way." On translating this to a2=3b2, all of them evoked the link with a being "even or odd"
and were unable to proceed further. (Just one student wondered whether the "eveness"
might relate to the 2 under the square root sign.) A suggestion that "a2=3b2" tells something
different from " evenness or oddness of a" usually evoked divisibility by 3, but then none
of the students could show unaided that "a2 is divisible by 3" implies "a is divisible by 3".
In particular none considered the algebraic argument squaring the three cases a=3n, 3n+1
or 3n+2 (a synthetic connection requiring coordination of three different possibilities).

A further suggestion focusing on factorisation into primes was sufficient to help all the
university students and some sixth formers to produce suitable arguments although often
expressed in an idiosyncratic manner. Student T, for instance, said:
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" ... the (square) root of a2, I mean a, that doesn't involve the factor 3. Therefore you've still
got a factor 3 which you can divide into a."

She seems to be saying that if 3 does not divide one of the a-factors of axa, then it must
divide the other a.

Student J in the youngest group also imagined a2 as a product of two a factors saying:
" that has got repeated factors of that, so you can't get [ten seconds pause] ... just imagining
how many factors of things. ... They're going to have the same factors. So yes, 3 would have
to divide a."

Discussion

Figure 1 is a representation of some of the typical linkages that may occur in an initial proof
that A/2 is irrational, omitting idiosyncratic links (which occur widely in individual cases). It
is a collage of difficulties encountered by students where links denoted by -.owl> often
prove more difficult than those denoted by --I> and those in grey scale are intermediate
links which may or may not be evoked in detail.

Figure 2 displays a compressed proof structure available to many students who had experi-
enced the proof before; this may be compressed further as an overall strategy in Figure 3.
Even Student S, who remembered little detail and used loose terminology to describe his
ideas was able to say,

"I'd take the case where I assumed it was a rational and fiddle around with the numbers,
squaring, and try to show that ... if it was rational then you'd get the two ratios a and b both
being even so they could be subdivided further, which we'd assumed earlieron couldn't be
true so our assumption it was rational can't be true."

A number of themes arose highlighting difficulties experienced by this sample ofstudents:

(a) The overall notion of proof by contradiction (which becomes less problematic
with familiarity).

(b) Translation between familiar terms "odd and even" and algebraic representa-
tions are acceptable, but not always initially evoked.

(c) The step "a2 even implies a even" is initially not easy to synthesise and re-
mains so for those in the sample who attempted to remember the proof by rote.
For some the cognitive units "a2 even" and "a even" coexist and the direction
of implication is not relevant; for others the idea "a2 even" is more strongly
linked to "a even" rather than to the operative alternative "a odd".

(d) In contrast to other difficulties, most students readily evoked the recent argu-
ment for "a is even" to assert directly that "b is even".

(e) The assumption "alb is in lowest terms" was not always recalled by students
new to the proof, but became part of the long-term global strategy.

(f) The link in the proof of "A/2 irrational" to the colloquial terms "even-odd" was
more powerful than the link to "divisible or not by 2", thus blocking a natural
extension to the corresponding proof for irrationality of A/3.
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If VI is rational :
42=alb for integers a,b a2=2b2 is even
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Figure 2: a compressed proof that -,12 is irrational by deriving a contradiction

42=a1 b in lowest terms
i

7::::( deduce a, b both even 17' contradiction
I ..

Figure 3: a compressed strategy for the proof

Summarising the broad development of the proof of the irrationality of 42 and 43, we see
that there are several initial difficulties that make it a formidable challenge for the uniniti-
ated. Some become less problematic with familiarity, but there is sufficient difficulty to
cause a bifurcation in understanding. Some students make meaningful links that allow
them to compress the information into richly connected cognitive units. Others remember
some of the ideas they were toldeven the overall strategy of the proofyet may rely on
the authority of their teacher rather than building their own meaningful links which might
help reconstruct the subtle detail.
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SUBJECTIVE ELEMENTS IN CHILDREN'S COMPARISON OF
PROBABILITIES

M Jesus Canizares, Carmen Batanero, Luis Serrano, & J.Jesds Ortfz
University of Granada

SUMMARY
In this research work we study the comparison ofprobabilities by 10-14 year-

old pupils. We consider the different levels described in research about these tasks,
though we incorporate subjective distractors, which change the predicted difficulty
of some items. Analysis of students' arguments serves to determine their strategies,
amongst which we identify the "equiprobability bias" and the "outcome approach".
Analysis of response patterns by the same pupil serves to show that the coincidence
between the difficulty level of probabilistic and proportional tasks is not complete
and points to the existence of difkrent types of probabilistic reasoning for the same
proportional reasoning level.

Over the last few years, new curricula for compulsory levels in different
countries have introduced the study of randomness and probability at very early
ages and suggest an active and exploratory teaching methodology. The success of
this proposal depends, however, on the adequate choice of tasks, according to
students' capacities. In particular, proportional reasoning should be taken into
account, as it is essential for estimating and comparing probabilities.
Background

Research into children's capacity to compare two probabilities started with
Piaget and Inhelder (1951), who investigated children's reasoning according to the
different stages described in Piaget's theory. Their results indicate that children at
level I only solve the cases of double impossibility, double certainty or certainty -
impossibility; at level D3, problems depending on only one variable are solved;
level IIA is characterized by the success in problems that can be solved through
additive comparisons; level BB is characterized by a progressive empirical solution
of proportionality problems and, finally at stage III, a general solution is found.

Following Piaget and Inhelder, other researchers, such as Yost et al. (1962),
Goldberg (1966), Davies (1965), Hoeman and Ross (1971), Falk et al. (1980), and
most recently Truran (1994) have undertaken the study of childrens' abilities to
compare probabilities. The work by Fischbein et al. (1970s), who compared the
reasoning of groups of children with and without specific instruction, has particular
interest for education.

Since comparing probabilities entails the comparison of two fractions, the
work by Piaget in the field of probability created a great deal of interest in
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proportional reasoning (e.g.; Karp lus et al., 1983; Behr et al., 1992). Noelting
(1980 a and b) extended the categories of proportional comparison problems
considered by Piaget and Inhelder (1951) and determined different levels in these
problems and in the associated strategies, according to Piaget's development stages.

DESCRIPTION OF THE RESEARCH
An important difference between comparing fractions and comparing

probabilities is that the result of a proportional problem refers to a certain event,
while the result of a probability problem implies a degree of uncertainty. On the
other hand, the subjects sometimes consider subjective elements to assign
probabilities.

In this work we continue our previous study of the influence of these
subjective elements (Godino et al., 1994), analyzing childrens' strategies when
comparing probabilities in tasks that contain these elements and their difficulty
level, as compared to problems without subjective distractors. To achieve this aim,
we applied a written questionnaire (complemented by individual interviews with
some pupils) to a sample of 144 pupils from 10 to 14 years of age, during the
course 1995-96. Below we describe the questionnaire and the results obtained.
Questionnaire

The questionnaire was composed of 8 items. The statement of item 1, 2, 3,
6 and 7, taken from Green (1983) is similar to the following item 1, varying the
composition of the urns and the order of distractors:
Item 1.- Two boxes have in them some white balls and some black balls. You must pick a black
ball to win a prize. The boxes are shaken up and you cannot see inside.
Box A has 3 black balls and 1 white ball; Box B has 2 black balls and 1 white ball.
Which box gives a better chance of picking a black ball?
(A) Box A
(B) Box B
(C) Same chance

(D) Don't know
tWhy?

Item 4. Gilla is 10 years old. In her box, there are 40 white marbles and 20 black ones. Ronit
is 8 years old. In her box there are 30 white marbles and 15 black ones. Each of them draws one
marble from her own box, without looking. Ronit claims that Gilla has a greater chance of
extracting a white marble because she is the older one, and therefore she is the cleverest of both
of them. What is your opinion about this?

Item 5. Uri has, in his box, 10 white marbles and 20 black ones. Guy has in his box 30 white
marbles and 60 black ones. They play a game of chance. The winner is the child who pulls out
a white marble first. If both take out simultaneously a white marble no one is the winner and the
game has to go on. Uri claims that the game is not fair because in Guy's box there are more
white marbles than in his box. What is your opinion about this?
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In addition, we use items 4 and 5, taken from Fischbein and Gazit (1984).
In these two items subjective elements were introduced. In item 4 we used a causal
factor (the age of the child that takes out the ball may affect the result) to study the
belief of some children in the possibility of controling random phenomena
(Fischbein, et al., 1991). In item 5, the belief that, in spite of having equal
proportions of possible and favourable cases, the absolute number of favourable
cases represents an advantage was introduced.

Since the problem implies the comparison of fractions, the different difficulty
levels identified by Noelting (1980 a) and b) were used, as is indicated in Table.1,
where the average age found by Noelting to reach this proportional level is also
shown.

Table 1.- Classification of items according to Noelting's levels
Item Fractions Level (Noelting) Other Average

age

1

2
3

(3,1); (2,1)
(5,2); (5,3)
(2,2); (4,4)

IA comparison of 1st term
D3; comparison of 2nd term
HA; unit equivalence class

3.6
6.4
8.1

4 (40,20); (30,15) IIB; any equivalence class Subjective
factors

10.5

5 (10,20); (30,60) IIB;any equivalence class and Subjetive
two proportional terms factors

10.5

6 (12,4); (20,10) DIA; integer ratio in the
fraction terms

12.2

7 (7,5); (5,3) IIIB; any fraction 15.10

RESULTS AND DISCUSSION
In Table 2 we present the percentage of correct solutions, according to age

and mathematical ability, which was measured by pupils' average score in the
previous academic year. We also include the percentage of correct answers in the
total sample (Total) and in the sample of pupils who gave a consistent and complete
explanation of their strategy in the problem (Total corrected). The results show that
comparing probabilities is not easy, not even for the older pupils, who are able to
operate with fractions.The percentage of correct responses in items 4 and 6
(subjective distractors) that belong to category C2 in Fischbein et al. (1970)
research is lower than that found by these authors in children of the same age
without instruction in this type of problem. However, as these authors used a
different experimental task, this point need further research.

We also point out to the inversion in the order of difficulty predicted by
Noelting's classification in item 4, where we introduce subjective distractors and
in items 2 and 3, probably because in a random situation, the attention is centered
on the favorable cases, more than on the unfavorables ones. As a rule, there is an

2 -51



improvement with age and general reasoning level, though not in every grade or in
every item.

Table 2 : Percentage of correct responses in the items
Age of pupils Mathematics score

Item 10-11 11-12 12-13 13-14 Low Middle High Total Total
(n=36)(n=37)(n=38)(n=32)(n=43)(n=58)(n=42)(n=143)corrected

1 75.0 70.3 86.8 87.5 81.4 67.2 95.2 79.7 80.8
2 52.8 67.6 65.8 56.2 62.8 56.9 64.3 60.8 62.6
3 47.2 54.1 81.6 73.6 65.1 60.3 78.6 63.6 66.9
4 6.0 27.0 23.6 23.8 9.5 22.4 28.5 20.0 25.7
5 13.9 32.4 39.5 43.7 25.7 26.6 47.6 32.5 37.0
6 30.6 27.0 34.2 21.9 27.9 25.9 33.3 28.7 30.4
7 19.4 5.41 5.3 6.2 11.6 6.9 9.5 9.1 9.8

STUDENTS' STRATEGIES
We analyzed the arguments provided by the pupils to justify their response,

which were classified according to the strategies described below.
A) Single variable strategies: Comparing the number of possible cases;

comparing the number of favorable cases and comparing the -number of
unfavorable cases.

B) Two variables strategies: Additive strategies, correspondence and
multiplicative strategies.

These strategies were taken from Noelting's (1980b) classification, though
these and the following type C strategies have also been described by other
researchers in the field of probability (e.g., Fischbein et al., 1970; Green, 1983
and Truran, 1994).

C) Other types: Based on luck, using either "equiprobability bias" (Lecoutre,
1992) or "outcome approach" (Konold. 1989); taking the decision depending on the
arrangement of marbles or other irrelevant aspects in the task.

Table 3: Percentage of different strategies in the items
Item
1

Item
2

Item
3

Item
4

Item
5

Item
6

Item
7

Posible cases 4.9 1.4 5.6 1.4 0.7 7.0 7.7
Favorable cases 51.7 29.4 16.8 25.0 42.7 27.3 13.3
Unfavorable cases 2.8 34.3 1.4 0.7 4.9 11.2 2.1
Additive 7.7 4.9 15.4 2.9 4.2 21.0 39.9
Correspondence 13.3 11.9 36.4 15.0 26.6 6.3 1.4
Multiplicative 1.4 0.0 0.7 0.0 0.0 0.7 1.4
Luck 11.2 4.2 4.2 27.1 4.9 8.4 7.7
Other 5.6 11.2 14.7 5.0 4.2 12.6 18.9
No answer or
inconsistent

1.4 2.8 4.9 22.1 12.1 5.6 7.7
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Though, in general, the strategy of comparing favorable cases prevails, we
can see in Table 3 that the pupils changed their strategy according to the level of
difficulty of the problems. In the simplest problems they use single variable
strategies, resorting to additive or correspondence strategies in more complex
problems.

RESPONSE PATFERNS
In Table 4, we present the patterns of answers to the different items. We

have ordered the items according to their difficulty (percentage of success) and each
pupil's pattern is represented by a vector with 7 components. For example, if a
pupil has the pattern 0100010 he has failed all the items, except 3 (second place in
difficulty) and 4 (sixth place).

Table 4: Response patterns in comparing probabilities
Response pattern
Item:
1 3 2 5 6 4 7

N.correct Frequency

1 1 1 1 1 1 1 7 2
1 1 1 1 1 1 0 6 5
1 1 1 1 0 1 0 5 6
1 1 1 1 1 0 0 5 7
Other pattern 5 3

1 1 1 0 1 0 0 4 13
1 1 1 1 0 0 0 4 14
Other pattern 4 14
1 1 1 0 0 0 0 3 14
Other pattern 3 13
1 1 0 0 0 0 0 2 5
Other pattern 2 10
1 0 0 0 0 0 0 1 19
Other pattern 1 10
0 0 0 0 0 0 0 0 9

This representation is used in Gutman's scalogram to evaluate whether the
different items in a test can be described by a linear scale. Then it is assumed that
a pupils with n correct asnwers in the test. would have more probability of
succeeding in the n easiest items. This does not happen in our test, where only 66
cases of 144 students follow the pattern assumed by the Gutman's scalogram.We
believe that this result also confirms the difference between proportional and
probabilistic reasoning, since the items used by Noelting, with the same difficulty
level as that used in our research, followed Gutman's pattern. Below we comment
on the pattern found.
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Pupils with 7 correct answers (Level IIIB): only 2 students who consistently
used multiplicative strategies (level IIIB) and were not affected by the distractors
in items 4 and 5.

Pupils with 6 correct answers (Levels IIIA and BB): All of them failed item
7, though only 2, who would be classified at level IIIA used a relevant strategy to
solve item 6. The others used the difference between possible and favorable cases
and would be included at level IIB.

Pupils with 5 correct answers (Level IIIA and IIB): There are two main
patterns: a) Pupils who failed items 6 and 7 (6 cases), generally employing additive
strategies to solve these two problems, though in items 2 and 3 some of them
employed correspondence (level JIB); b) Pupils who failed either item 4 or 5 (level
IIB), with subjective distractors) and correctly solved item 6 (level IIIA) (9 cases).

Pupils with 4 correct answers (Levels UM, IIB, IIA and IB). a) Pupils
succeeding in the four easiest items (15 cases). These pupils begin to solve the
simplest problems in level IIB. Item 4 was failed because their reasoning followed
the "outcome approach"; b) Pupils succeeding in problems 1, 2 and 3, failing
problems 4 and 5 (level JIB) and solving item 6 correctly (level IIIA; 13 pupils).
Failure in items 4 and 5 was due to giving a greater probability to the urn with the
greater number of favorable cases, in spite of having the same proportion. c) Other
non systematic patterns (15 cases). Success in difficult items was due to strategies
valid for this problem, but not for the general case. Failure in easy items was due
to choosing a strategy not adapted to the problem. The level of proportional
reasoning amongst these children varied between IB and IIA .

Pupils with 3 correct answers (Levels IIA, IB, IA) a) Pupils who correctly
answered the first three items (13 cases;level IIA); b) Pupils who correctly
answered items 1 and 2 and failed item 3, through not applying the correspondence
strategy (7 cases; level IB). Their success in another problem was due to a mistaken
strategy that was productive for that particular problem; c) The rest of the cases (5)
had no systematic pattern. All of them solved problem 1 correctly ( level IA).

Pupils with 2 correct answers. (Level IA, IB, IIA): a) correct answers to
items 1 and 3 (5 cases). Generally item 3 was solved with an additive strategy, that,
though wrong, provided a correct answer to this problem. They were not able to
compare unfavorable cases in item 2, and therefore gave a wrong solution to this
problem (level IA). b) Pupils with a correct solution to item 2, through additive
comparison, who would be located in the level IB. c) One pupil correctly solved
2 and 3 using correpondence (IIA), in spite of having failed item 1, probably
through not paying attention The remaining pupils (8) do not show identifiable
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patterns, although some of them systematically reasoned according to the outcome
approach.

Pupils with 1 correct response (IIA, IB, I or inferior). a) Pupils who only
solved item 1, generally with additive strategies (level I; 19 cases). b) Pupils who
solved item 2 (level IB), though failed item 1 through reasoning according to the
outcome approach (level IB, 2 cases) c) The remainder (8 cases) only solved item
3 correctly. They systematically gave a response based on either the "outcome
approach" or the "equiprobability bias" and the correct solution to item 3 was due
to the data in this problem. These children had a very poor level of proportional
reasoning, though some ideas about probability idea- even though incorrect- were
observed.

Pupils who failed all the items (Absence of proportional reasoning).These
pupils (9 cases) can be divided into two types: either they only compared favorable
cases, or they systematically reasoned according to the "outcome approach" or the
"equiprobability bias". They are the pupils in which proportional reasoning had not
yet started to develop or who maintain incorrect belief about probability.

CONCLUSIONS
With the same level of proportional reasoning the success in comparing

probabilities was very varied, with the exception of levels IIIB (7 responses) and
IIIA (6 responses). Consequently, though these reasoning are related, there was no
total coincidence. The lack of fit was due to the following causes:

a) Factors of the problem that induce the assignment of subjective
probabilities, in the two items taken from Fischbein and Gazit (1984).

b) Reasoning according to either the outcome approach (Konold, 1989) or to
equiprobability bias (Lecoutre, 1992).

c) Greater attention to favorable cases, even in problems that must be solved
by comparing unfavorable cases, possibly reasoning according to the availability
heuristics.

These three mechanisms are not relevant when comparing proportions, while
they may arise in a probabilistic problem. Consequently, the teacher must consider
these factors, in addition to proportional reasoning, when approaching the teaching
of the probability to children. Proportional reasoning level was low, in general, in
our sample. This might be an obstacle for learning probability, though, also the
teaching of probability could well be a rich context for improving the development
of proportional reasoning in these pupils.
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REUNITISING HUNDREDTHS: PROTOTYPIC AND
NONPROTOTYPIC REPRESENTATIONS

Annette R Baturo and Tom J Cooper
Centre for Mathematics and Science Education

Queensland University of Technology, Brisbane, Australia

This paper reports on a study in which 29 Year 6 students (selected from the top
30% of 176 Year 6 students) were individually interviewed to explore their
ability to reunitise hundredths as tenths (Behr, Harel, Post & Lesh, 1992) when
represented by prototypic (PRO) and nonprototypic (NPRO) models. The
results showed that 55.2% of the students were able to unitise both models and
that reunitising was more successful with the PRO model. The interviews
revealed that many of these students had incomplete, fragmented or non-existent
structural knowledge of the reunitising process and often relied on syntactic
clues to complete the tasks. The implication for teaching is that instruction
should not be limited to PRO representations of the part /whole notion of fraction
and that the basic structures (equal parts, link between name and number of
equal parts) of the part /whole notion needs to be revisited often.

The notion of a unit underlies the decimal number system. However, Steffe
(1986) has identified four different ways of thinking about a unit, namely,
counting (or singleton) units, composite units, unit-of-units and measure unit,
with each type apparently representing an increasing level of abstraction. When
considering whole numbers, singleton units, composite units and unit-of-units
need to be considered (see Figure 1) whereas with decimal fractions, the
measure unit needs to be invoked (Behr, Harel, Post, & Lesh, 1992). (See
Figure 2.) There is a consensus in the literature (Behr et al. 1992, Harel &
Confrey, 1994; Hiebert & Behr, 1988, Lamon, 1996) that the cognitive
complexity involved in connecting referents, symbols and operations can be
attributed mainly to the changes in the nature of the unit.

Partitioning, unitising and reunitising are important to the development of
rational number concepts but are often the source of young students' conceptual
and perceptual difficulties in interpreting rational-number representations
(Baturo, 1996; Behr et al, 1992; Kieren, 1983; Lamon, 1996; Pothier & Sawada,
1983). In particular, reunitising, the ability to change one's perception of the
unit, requires a flexibility of thinking that may be beyond young children. This
has importance for hundredths which need to be thought of as a number of
hundredths sometimes and as a number of tenths at other times. Similarly,
tenths need to be thought of as a number of tenths or as a number of hundredths.

The cognitive complexity required to process the unit-of-units notion has major
implications for acquiring an understanding of the decimal number system. For
example, each place needs to be reunitised in terms of the unit/one for a
complete understanding of the place-value relationships to be known. Figure 1
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shows the ways in which 5 tens (represented by 5 base-10 blocks) can be
unitised in terms of singleton and composite units and composite unit-of-units.

50 ones: 50 x 1-unit (singleton unit)

1 unit of 50 ones: 1 x 50-units (composite unit)

5 tens: 5 x 10- units (composite unit)

1 unit of 5 tens: 1 x 5 x 10-units (composite unit-of-units)

Figure 1. Various notions of a unit applied to tens and ones.

Figure 2 shows that similar thinking is required to process a number such as
0.20. However, the extra dimension of the unit measure needs to be invoked
(Behr et al., 1992) to relate the part to the whole. To transform the units in the
different ways and to keep track of these transformations with respect to the
shaded parts requires a great deal of flexible thinking and would most likely
place a strain on cognitive loading.

xl 100 x 1-unit is unitised as I x 100-unit.
1 x I00-unit becomes the measure unit to which the shaded parts are related.

/71 So 20 is thought of as "h00(1 x 100-unit) or 20 x 11,03 (1 x 100 -unit) = 0.20

10O x 1-units is perceived as 10 xl(Buriit;
10 x 10-units is unitised as 1 x 10 x 10-unit
1 x 10 x 10 -unit becomes the measure unit to which the shaded parts are related.

So 2 is thought of as 2/10(1 x 10 x 10-unit) or 2 x Vio(1 x 10 x 10-unit) = 0.2

Figure 2. Units-of-units notion applied to tenths and hundredths.

When a whole is partitioned into tenths only, students need only unitise once
(i.e., the 10 x 1-unit is unitised as 1 x 10-unit) and therefore there is only one
measure unit to be invoked. Similarly, if hundredths only are to be considered.
However, when hundredths need to be perceived as both tenths and hundredths,
as they are for recording purposes and for renaming from one place to the other
(equivalence), then the cognition required becomes much more complex.

THE STUDY

One hundred and seventy-six students from two schools (low-middle and
middle-high socioeconomic backgrounds) were administered a diagnostic
instrument that was developed to assess the students' understanding of the
numeration processes (i.e., number identification, place value, regrouping,
ordering, and estimating) related to tenths and hundredths. The students were
classified in terms of their overall mean for the test and 29 students were
selected from the top 30% for interviewing. This group of students comprised
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12 high-performing students (HP 90%), 11 medium-performing students
(MP 80-90%) and 8 low performing students (LP 70-80%).

Semistructured individual interviews were undertaken and incorporated a set of
tasks (presented in the same order) designed to probe the students' structural
knowledge with respect to reunitisng hundredths for both PRO and NPRO area
representations. Figure 3 shows the two tasks on which this paper reports. The
full study was reported in Baturo (1996).

TASK 1 (prototypic)

Shade 0.6 of the shape

TASK

below. Shade

2 (nonprototypic)

0.2 of the shape below.

Figure 3. The reunitising tasks.

The interviews were conducted at the students' schools and took approximately
30 minutes to complete. They were video-taped, transcribed into protocols and
then analysed for commonalities in achievement and strategy use within and
between the performance categories (HP, MP, LP).

RESULTS

Task 1
Twenty-one (10 HP, 8 MP, 3 LP) of the 29 students were correct, shading either
6 rows or 6 columns. The remaining 8 students(2 HP, 3 MP, 3 LP) all coloured
6 hundredths. No student mentioned that they counted the number of parts in
order to unitise the shape as 1 x 100-units; rather, they seemed to have the
expectation that there were 100 equal parts, an expectation that could be
attributed to the overuse of the PRO model. When asked to read how much had
to be shaded, 4 of the 8 incorrect students (1 HP, I MP, 2 LP) immediately
realised their error (e.g., I should have shaded 6 strips MP8) and shaded the
correct amount. Three of the remaining 4 students (1 HP, 2 MP) were able to
identify and rectify their incorrect response only after they had been focused on
unitising the shape. The remaining student (LP4), whose protocol is provided,
appeared to be so bewildered by her original answer that she seemed to lose all
ability to unitise.

LP4 [I: How much did you have to shade here?] A six I don't know really. [I: What's this
number (pointing to the 0.6 again because she seemed to be looking at what she had
coloured)?] Six (after a pause). [I: Six what?] Is it one sixth? [I: That's (writing 14) 1
sixth. What's this number (the 0.2 she had read correctly in an earlier task)?] One
second or something.
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Two different strategies could be identified from the students' responses to the
question: How did you work out how much to shade? These were classified as
reunitising (RU) in which the 1 x 100-unit of the given diagram was reunitised
as 1 x 10 x 10-units (either rows or columns) or as equivalence (EQ) in which
the number, 0.6, was reunitised as 0.60, and 60 hundredths were shaded. Figure
4 shows the difference in thinking required by the reunitisation and equivalence
strategies.

0.6 tenths
hundredths

Reunitise hundredths (1 x 100-unit)
as tenths (1 x 10 x 10-unit)

and colour 6 parts.

sCD'00 00

0.6 tenths
hundredths

Change 6 tenths to 60 hundredths
(0.6 to 0.60) and colour 60 parts.

A. Reunitisation strategy B. Equivalence strategy

Figure 4. Cognitive differences in reunitisation and equivalence.

Both strategies required an understanding of equivalence between tenths and
hundredths (i.e., 10 h = 1 t) in order to be applied successfully and this notion
was often explicated by students. A third category, prototypic was suspected
because some students referred to tenths as "strips" or "lines" which may have
been the result of prototypic thinking and not as a consequence of having
equivalence. That is, the 10 x 10 PRO model always has tenths arranged in
rows or columns and therefore they can be perceived without requiring the
cognition of equivalence (10 h = 1 t) or reunitisation (1 x 100-unit can be
reunitised as 1 x 10 x 10-units). However, this strategy was too subtle to
distinguish from the reunitisation strategy so students who were suspected of
employing a prototypic strategy were given the benefit of the doubt and
classified as using the reunitisation strategy.

The EQ strategy appeared to be used by 10 students (4 HP, 5 MP, 1 LP) and was
identified in protocols such as the following. (No student shaded 60 hundredths
at random; rather, each student shaded groups of 10.)

HP3: Because 6 tenths is the same as 60 hundredths and it (indicating the diagram) was
divided into hundredths so I just shaded 60. [I: Show me the 6 tenths parts.] The
whole rows (indicating).

HP10: I just see these (hundredths) as ones and so I colour 60.

MP12: It (diagram) was divided up into hundredths so you had to colour 60. [I: Did you
change that (0.6) in your mind to 60 hundredths ?] Yes.

LP2: Six tenths is the same as 60 hundredths so I thought of zero on the end (of 0.6) and
just coloured 60.
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Nineteen students (8 HP, 6 MP, 5 LP) appeared to use the RU strategy as they
made reference to restructuring the hundredths in the diagram. The following
protocols show the variety of thinking that was used in reunitising hundredths as
tenths.

HP4: Cos 60 hundredths also makes 6 tenths, what I did I thought that these (his shaded
columns) could also be these (indicating the tenths in an earlier task in which the PRO
model had been partitioned into 10 equal columns) and shaded 6.

HP6: There were 100 pieces and if 10 were 1 tenth then I'd need to colour in 6 (indicating her
shaded columns). [I: So can you see that (the whole shape) as 100 little parts and as 10
of something else?] Yes. [I: When you divide it in your mind in 10 parts, what does
that 10 part look like?] Like that (indicating a tenth in an earlier task). Or if I had a
100 of those little cube things (possibly referring to MAB ones), I could divide them
into 10 groups evenly (indicating separate groups with her hands).

MPl: I shaded just one I guess I took them the vertical ones (partitions) out of my mind
and just shaded it in (his shaded 6 rows). [I: You blocked the little bits from your
mind so you could see these rows going across?] Yes [I: So you saw them as 10 rows
of 10 then?] Yes.

MP5:/just did 6 (indicating the shaded columns) because there's 6 there (0.6) and forgot
about the boxes.

MP7: Well, I saw the little squares and there (0.6) it says to show 6 tenths in hundredths so 1
coloured 6 of these (indicating the rows).

The following protocols provide examples of what was suspected of being
prototypic reasoning.

HP11: Well you just you know that six take away ten is four so you miss four columns and
you just colour in the rest. [I: So how did you see the tenths? Do the tenths just go
across?] Well, you just know that that's tenths (pointing to the rows).

MP8: I should have coloured strips. (She had shaded 6 hundredths.)

Task 2
Nineteen (8 HP, 7 MP, 4 LP) of the 29 students correctly shaded 1 row, 2 half-
rows or 4 columns of the NPRO shape. Of the 10 incorrect students, 1 (LP6)
had not attempted the task, 1 (MP12) had shaded half the shape whilst the
remaining 8 students had shaded 2 hundredths, 2 rows or 2 columns. Shading 2
parts was thought to be the most naive strategy because no attempt had been
made to ratify the numerical amount with the pictorial representation. Shading 2
rows or columns was thought to be less naive because an attempt to ratify the
symbolic and pictorial representations had been made but prototypic reasoning
(strips, rows, columns) had been used to reunitise the hundredths as tenths.

With respect to unitising, no student mentioned counting the parts, in Task 1, in
order to unitise the model as 1 x 100-unit and this behaviour had been attributed
to the expectation of 100 equal parts that is generated by the overuse of the PRO
pictorial representation of hundredths. In this task, 8 students (6 HP, 1 MP, 1
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LP), all of whom shaded the correct amount, mentioned counting the parts to
establish how may there were in order to unitise the shape as 1 x 100-unit.
However, when asked to read the number and then say whether the shape
represented tenths all but one student (MP7) immediately recognised their error
and made the appropriate changes. MP7 (who had shaded 2 columns of 5)
revealed that he had a problem in unitising the shape as hundredths as shown by
his protocol.

I: Now how do we know whether that's (his shading) right or wrong?

S: Count up here (top row) and see how many altogether. Well, there's 20 in each row
(after counting) so 20, 40 60, 80, 100 (pointing to the end of each row as he counted).
[I: So what would 1 tenth of that be?] It would be just one of these (indicating a small
square). [I: No, that's 1 hundredth. What about 1 tenth?] (No response) [I: You said
before that that (indicating the first column he had shaded) was 1 tenth. Do you still
think that's 1 tenth of the whole thing?] Yes.

With respect to reunitising, the protocols revealed the same types of strategies
that were revealed in Task 1, namely, the RU strategy (used by 21 students 9
HP, 7 LP, 5 LP) and the EQ strategy (used by 7 students 3 HP, 3 MP, 1 LP).

Results across the tasks
Table 1 provides the students' initial and amended solutions for both
reunitisation tasks and shows that 5 students (2 HP, 2 MP, 1 LP) who had
shaded the correct amount in Task 1 did not shade the correct amount in Task 2.
This behaviour supports the belief that reunitisation is not established until it can
be applied to both PRO and NPRO representations.

Table 1 also shows that 5 (2 HP, 2 MP, 1 LP) of the 8 students (2 HP, 3 MP, 3
LP) who were incorrect in Task 1 were also incorrect for Task 2 and, with the
exception of the LP student who was unable to provide a solution, made the
same error, namely, coloured the numbers given (i.e., 6 and 2) irrespective of the
pictorial representation. The behaviour (i.e., incorrect in the first task but correct
in the second task) of the remaining 3 students (1 MP, 2 LP) could probably be
attributed to the NPRO model. For example, the model was different from the
model usually given to represent hundredths and therefore this oddity acted as a
metacognitive "trigger", alerting the students to examine the task more closely.

The 8 students who self-corrected their response revealed that they had the
appropriate reunitising knowledge available but had not accessed it at the time of
the test. Failure to access the knowledge could have been due to external
environmental factors (one student said she couldn't think because the teacher
was talking), to internal personal factors such as tiredness, illness, early closure,
or to task novelty clashing with task expectations (for example, being asked to
shade hundredths only when the diagram represents hundredths and to shade
tenths only when the diagram is partitioned into tenths). On the other hand, the
interview probably had had some teaching effects because of the probes
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regarding the whole, the equality of the parts and the number of equal parts that
comprise the whole.

Table 1

Students' responseland_solution_strateginitisation tasks,
Task 1 Task 2 Task 1 Task 2

Shading Strategy Shading Strategy Shading Strategy Shading Strategy

HP1 6C RU 4C RU MP1 6R RU 4C RU

HP2 6 C RU 4 C RU MP2 6 C EQ 4 C RU

HP3 6 R EQ 1 R RU MP3 6 h; 6 R EQ 2h;4C EQ

HP4 6 C RU 4 C RU MP4 6 h; 6 R RU 1 R EQ

HP5 6C RU 1R RU MP5 6C EQ 2 h; 4 C RU

HP6 6 C RU 4 C RU MP6 6 C RU 2x1/212 RU

HP7 6 h; 6R RU 2 h; 1 R EQ MP7 6 R RU 2 C

HP8 6 C EQ 4 C EQ MP8 6 h; 6 R RU 2 h;
2 x 1/2 R

RU

HP9 6 C RU 4 C RU MP9 6 R EQ 4 C RU

HP10 6C EQ 2R;
2 x 1/2 R

EQ MPIO 6R RU 4C RU

HP11 6R RU V,; 4 C RU MPII 6C EQ 4C EQ

HP12 6 h; 6 R EQ 2h; 1R RU

LPI 6 h; 6 R RU 1R RU

LP2 6 C EQ 4 C RU
LP3 6 C RU 4 C RU

LP4 6 h RU 4 C EQ

LP5 6 C RU 2 h; 1 R RU
LP6 6 h; 6 R RU ; 1 R RU

Table 1 also reveals that 9 students (3 HP, 4 MP, 2 LP) did not maintain their
strategy across the two tasks. Six students (2 HP, 3 MP, 1 LP) changed from the
EQ to the RU strategy whilst 3 students (1 HP, 1 MP, 1 LP) changed from the
RU to the EQ strategy.

CONCLUSIONS

Table 2 provides the correct solutions (based on initial responses) in terms of the
performance categories. It shows that, with respect to performance overall, the
students were able to reunitise the PRO representation (Task 1) more easily than
the NPRO representation (Task 2).

Tale 2
Correct initial responses to both tasks in terms of the performance categories.

Performance categories Overall

HP
(n = 12)

MP
(n = 11)

LP
(n = 6)

All
(n = 29)

Task 1 10 (83.3%) 8 (72.7%) 3 (50.0%_ 21 (72.4%)

Task 2 8 (66.7%) 7 (63.7%) 4 (66.7%) 19 (65.5%)

Both correct 8 (66.7%) 6 (54.5%) 2 (33.3%) 16 (55.2%
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With respect to the performance categories, Table 2 shows that differential exists
between the categories in Task 1 but not in Task 2. Within the categories,
differential between tasks was exhibited by the LP group. The deviant
behaviour of the LP students on Task 2 was attributed to the teaching effects of
the interview in Task 1.

With respect to identifying students who understand tenths and hundredths, this
study revealed that performance alone is not a sound indicator. However, it also
revealed that, even when the student's strategy is probed, it is sometimes
difficult to know whether syntactic features are used as a crutch or whether they
are the end-product of structural knowledge which has been integrated and
simplified. The interviews also revealed that high-performing students are not
necessarily sound in all aspects of fraction knowledge. For example, some may
have a sound understanding of the notion of fraction but cannot reunitise tenths
as hundredths whilst others exhibit a sound understanding of the concept and the
unitising, reunitising and partitioning processes when PRO representations are
provided but cannot extend this understanding to NPRO representations.
Moreover, some LP students who had performed poorly on the test performed
quite well in the interview, indicating that they had the available knowledge but
could not access this knowledge at the time of the test.

There seems to be evidence, however, that: (a) the fraction concept and the
unitising, reunitising and partitioning processes are essential for performing in
decimal fractions with competence; (b) each of these components needs to be
connected if a student is to be labelled as having an understanding of decimal
fractions; and (c) instruction must include PRO and NPRO representations.
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Students' perceptions of the purposes of mathematical
activities

Alan Bell, Richard Phillips, Ann Shannon and Malcolm Swan
Shell Centre, University of Nottingham, UK

Introduction

The study to be described in this paper formed part of a larger project entitled Pupils'
Awareness of Learning in Mathematics. The aims of this project were to investigate the
metacognitive skills and concepts possessed by students of secondary school age in some
typical mathematical learning environments, to explore the feasibility of raising the levels of
their awareness by appropriate interventions, and to study the effects of such enhancement on
the students' mathematical attainments.
The outcomes of the project are described in a Summary Report; a Teachers' Handbook
containing the set of suggested enhancement activities, trialled and including examples of
students' work; an Evaluation report, containing the evaluative instruments, partially developed
but needing further improvement, together with the results obtained; and a set of Case Studies
of the seven classes during the main experimental year.

Background

Our interest in students' awareness of their learning arose from our work in a previous project
Diagnostic Teaching in Mathematics (ESRC 8491/1) (Bell et al, 1985). In this, a teaching
methodology based on identification of students' concepts and misconceptions and resolution
of the latter by exposure, cognitive conflict and discussion, proved to be strikingly more
effective than more usual methods, particularly for longer term retention. What became clear
was that such teaching methods demanded a radical change in the students' conceptions of what
was appropriate activity in a mathematics lesson. An orientation towards obtaining correct
answers had to give place to a recognition that the aim was to acquire correct, well knit
concepts and methods, and that this involved being willing to expose ones own ideas and
approaches, even if wrong, and to look for personal satisfaction in the enlightenment provided
by participation in a focused discussion. This in turn depended on an awareness of the nature
of this type of learning and its distinction from memorisation and fluency practice. This led us
to consider the possibility of achieving improved learning across the whole mathematics
curriculum by increasing students' awareness of learning methods and their purposes.

Metacognition has several aspects. Flavell (1976) defined it as

"knowledge concerning one's own cognitive processes and products or anything related
to them" (p.232)

but he states that it also refers to

"the active monitoring and consequent regulation and orchestration of these processes."
(p.232)

In the field of mathematical education, most metacognitive research has focused:9n the learning
of general problem solving strategies (e.g. Schoenfeld, 1982,1985; Garofalo et al, 1985;
Lester, 1988; Siemon, 1992). A notable exception is the work of Slife et al (1985), who
showed that it was possible to distinguish certain aspects of metacognitive ability from general
ability and from mathematical attainment. These aspects were the pupils' abilities to predict
their likely success rate on a given set of computations, and afterwards to identify their correct
and incorrect scnutions.

A substantial amount of experimentation in the encouragement of metacognitive activity in
school and teacher education settings has been built around the PEEL project, based in
Melbourne, Victoria, Australia (Baird and Mitchell, 1986; Baird and Northfield, 1992). In this
project, a substantial number of teachers at a particular school worked concertedly at
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developing methods by which the students (aged 15-16) took greater control of their own
learning.

In this project, lessons were rated as achieving Involvement, Awareness or Control on the part
of pupils; awareness was of the aims and objectives of the lesson, and control referred to their
participation in the determining of these aims. Substantial and far-reaching changes in the
approach to learning were achieved by some, though not all, teachers and classes; a notable
obstacle was the resistance generated by the severe conflicts with students' existing concepts of
learning.

An experiment somewhat similar to our own, but with a single class of primary school (year 6)
children, was conducted by Herrington (1992). His one-year programme sought to improve
learning strategy awareness, mathematical achievement and confidence towards learning
mathematics; it used some 70 short interventions involving concept mapping, a Think Board,
self-questioning and writing. Significantly better gains than those of a control group were
shown on learning strategy awareness, and non-significant improvements in confidence and
mathematical attainment.

Biggs (1987) categorised older students' motive and strategies as Surface, Deep and
Achieving, depending on whether they embodied instrumental motives (e.g. to meet
assessment requirements nominally) or intrinsic, meaning-oriented strategies. He noted that
deep approaches and outcomes were associated with metacognitive skills, and, in a large scale
survey of Year 11 and tertiary students, showed correlation between these measures and
student self-rated performance. This is one of the few studies connecting metacognition
directly with a performance measure (albeit an imperfect one).

Our own project has focused on enhancing reflective activities and on providing lesson
experiences through which students may acquire specific knowledge about learningtasks and
processes; and this in real classroom settings.

The project had three phases, first, a preliminary exploration of students'beliefs and
perceptions; second, development of evaluative and intervention materials; third, a pre-and
post-tested experimental year. This involved 25 classes, of which 7 were fully supported and
observed regularly by the research team.

The present study

This was a small-scale experimental study conducted in the summer term 1992, towards the
end of the observational period. It is distinct from the pre-post evaluative written tests in that it
is concerned with understanding students' perceptions of the purposes of mathematical
activities in which they have been participating. Data are reported from four classes, two of
which were also taking part in the main study.

The government enquiry into the teaching of mathematics in schdbls in the UK, like the NCTM
Standards in the USA, has encouraged a much broader range of learning activities than is
currently in evidence.The UK report cites exposition, discussion, practical work, practice,
problem solving and investigational work as particular elements that should be *sent
This advice partly stems from a review of research which identified four elements needed in
mathematical instruction facts, skills, conceptual structures, general strategies (Bell et al,
1983). The development of conceptual structures, those richly interconnecting bodies of
knowledge and understanding which underpin performance, requires considerable reflection
and discussion by the learner. Facts and skills are brought up to a level of recall or fluency
through regulauractice. General strategies require tasks in which pupils make decisions as to
which skills or knowledge to deploy or which approach to take.

The introduction of such activities may, however, prove to be necessary but insufficient if
pupils are unaware of their purpose. This lack of awareness is likely to lead to students paying
undue attention to unimportant or superficial aspects of the task. In our early interviews with
pupils, we found considerable anecdotal evidence for this. In particular, our observations noted
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that students often perceive their task as to "get work done" rather than to gain insight or
understanding.

This study was designed to provide experimental data on pupils' perceptions of the purpose
behind five different classroom activities, and to see how these differed from the purposes
perceived by mathematics teachers.

The experimental design

Five lessons were taught to four different classes drawn from different comprehensive schools
(F, C, M and 0). Classes 0 and M had been exposed to a substantial number of awareness-
raising interventions as part of our main study; class F had experienced just a few and class C
had experienced only one intervention.
The twenty lessons were on the general theme of multiplication and division with decimal
numbers. They were led by the same teacher who standardised her approach as far as possible.
Pupils were randomly allocated to groups at the start of each lesson, although not all of the
tasks were suitable for group work. The teacher did not articulate the intended purpose of the
lesson at any stage, as it was the purpose of this study to discover how well the pupils could
deduce this from the activities themselves. At the end of each lesson, students were asked tQ
describe the purpose of the lesson in their own words. They were also asked to rate each of the
following purposes 0, 1 or 2 according to whether they felt that this was "not a purpose", was
"helped a bit", or was "the main purpose" of the lesson:

What do you think are the purposes of this lesson?
Below is a list of possible purposes.
Think about these and then write 2, 1 or 0 next to each one.

2 - means that this was one of the main purposes of this lesson.
1 means that this was not one of the main purposes but it may have helped a bit.
0 means that this was not a purpose of the lesson at all.

Remember: you can write as many 2's, 1's and 0's as you like,
but make sure that you read each statement carefully.

This lesson was to help you:

(a) to get better at discussing and explaining.
(b) to practise multiplying quickly and accurately.
(c) to practise measuring and drawing accurately.
(d) to learn how to plan and organise.
(e) to learn when multiplying is the right thing to do.
(f) to find the largest answer.
(g) to get better at writing explanations.
(h) to help you understand what multiplication really means.

The five lessons were as follows:

Lesson 1: Concept discussion : "Believe it or not?"

Students were randomly allocated to groups. Each group was handed six statements such as

To multiply by 10 you just add a nought on the end.
Multiplying makes numbers bigger.
It doesn't matter which way round you do a multiplication; ie a x b = b x a

For each statement, pupils were asked to discuss whether it is always, never or sometimes true.
They were also asked to produce examples to illustrate their reasoning. A class discussion was
then held. This lesson resulted in much animated discussion considering the meaning and
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effects of multiplication and division. It exposed many common misconceptions and invalid or
only partially valid generalisations.

Lesson 2: Practical construction: "Maximising the volume of a box"

Students were each given a 17cm by 17cm printed square. They were instructed to make a box
by cutting a 1cm by 1cm square from each corner and folding the resulting shape up into a
shallow tray. The teacher asked the class to calculate the volume of this tray.
Each group was given a second sheet of paper and asked to draw another square of side 17cm
and to make a different sized box. A particular dimension for the square to be cut from each
corner was allocated to each group. The dimensions and the resulting volume of each box were
collated on the board, and the students then considered the question of maximising the volume.

This was a highly structured practical lesson. All organisational decisions were made by the
teacher. The students merely employed the length x breadth x height algorithm using a
calculator. The main focus of the activity was therefore in drawing, cutting out and making the
boxes, in a quiet and busy atmosphere. The achieved purpose was therefore to give students
practice at measuring and drawing accurately.

Lesson 3. A calculator investigation: "Maximising a product"

Groups were given a calculator and a copy of the following
problem

Split 11 into several pieces.

You can choose the number of pieces and
the size of each piece.

Now multiply the pieces together.

What is the largest answer you can make? 4 x 3.5 x 3.5 = 49

Can you beat 49?

Students were encouraged to work on this problem in any way they wished.
The intended purpose of this task is to make pupils realise that a systematic approach is
required if the problem is to be tackled effectively. The task may also be used to develop
concepts of decimal place value, and a feeling for estimation

Lesson 4. Skills practice: "Crossnumber"

In this short lesson, pupils were randomly allocated to groups as before, then given a copy of a
"crossnumber" puzzle and were asked to complete it without the use of a calculator.
This lesson was aimed at improving fluency with the multiplication and divisionfalgorithms.
Pupils worked quietly and individually, although many found the task demanding.

Lesson 5 Recognising the operation: "Do not solve it"

Groups were given twenty-four word problems, and were asked to write down the calculations
that would havo4o be performed for their solution. They were told not to evaluate these
expressions. Typical problems were:

1. How many bootlaces, each 8 metres long, can be made from a 4 metre string?
5. A watch costs £6. If I pay for it over a 12 week period, how much must I pay each
week?

Pupils were thus expected to write down, but not evaluate, the calculations 4+0.8 and 6+12,
respectively. The intention here was to encourage pupils to focus on recognising the structure
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of multiplication and division problems (including partition and quotition types) and thus
identify the correct operation to perform. Pupils worked quietly and individually on this task.

Students' responses

At the end of each lesson, students were asked to write down a free response to the question:
"What do you think was the purpose of this activity?" Typically, they wrote down one or two
sentences. These were analysed and grouped according to key words or phrases. The most
common categories of answers are described below.

Concept lesson: Believe it or not? (n = 91)
Free responses
To learn to work in a group 51%.
To practise explaining 51%
To discuss 45%
To improve understanding of x and + 27%
To practise x and + 22%

Students appreciated that a major purpose of this lesson was to improve their ability to discusi
and explain. This was in close agreement with the teacher's view. In addition, students felt that
the social aspect of learning to work as part of a group was also important. Students rated the
comprehension and written communication purposes rather lower than did their teacher.

Practical construction: Max Box (n = 102)
Free responses
To learn about areas and/ or volumes 53%
To learn to work in a group 40%
To measure accurately 26%
To find a pattern in the results 16%

The questionnaire response shows that the students and their teacher are in close agreement that
the princip purpose is to practise measuring and drawing accurately. This rates rather less
significantly on the free responses, where most students perceive the task as being primarily
concerned with learning about volumes and areas. The teacher was not concerned with this; in
fact during the lesson, she had simply stated the algorithm for calculating volumes without
justification. The students again rated the importance of the social aspects of this lesson more
highly than the teacher.

Calculator investigation: Splitting 11
Free responses

(n = 104)

To learn to use a calculator 31%
To develop the ability to x and + 21%
To think about/ understand decimals 13%
To use decimal numbers 16%
To problem solve/ investigate 9%

Students seemed to find it much less easy to identify a clear purpose in this-activity than in any
other we observed. Their answers were much more diverse. It is noticeable that only two
students mentioned an aim related to "planning and organising", the major intended purpose on
the part of the teacher. In nearly one half of the free responses, students merely described the
activity without analysing its purpose at all. Students were attracted towards the more obvious
surface objective: "to use a calculator" and "to find the largest answer". These again are barely
more than describing the activity. A considerable number also chose "to practise multiplying
quickly and accurately" both in the free and in the questionnaire responses. Presumably they
meant "on a calttulator", as there was no practice at written algorithms in the lesson.

Recognising the operation: Do not solve it (n = 107)
Free responses
To recognise when to x or + 29%
To describe the method for problems 19%
To practise multiplying/dividing 17%
To solve everyday problems 10%
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Students' perceptions in their free responses were again diverse. Many simply described the
activity with little or no analysis of its purpose. It is noticeable that a number (17%) seemed to
believe that the activity would help them to improve in their computational facility, although
nowhere in the activity were they expected to perform a calculation. This was again shown on
the questionnaire responses, although these agreed more closely with their teacher's
perceptions.

Skills practice: Crossnumber
Free responses

= 106)

To practise multiplying/ dividing 73%
To practise working quickly /accurately 44%
To practise working without a calculator 38%
To develop mental fluency 17%

This task produced the closest agreement between the teacher and the students. The
questionnaire, however, shows that a number of students believe that in some way the
performance of the calculation helps to increase understanding of the meaning of multiplication.
Possibly this is true if the calculation is done mentally, as seems to be the case for some
students, but there may be still some confusion between learning how to multiply and learning
when to multiply.

Students' Ratings of Purposes

Students ratings of the ten statements in the questionnaire were also analysed. In this section
we focus on a selection of these items, particularly those where there is an interesting mismatch
between the perceptions of the teacher and the students.

(d) ... to learn how to plan and organise

Means of Students' Ratings (2 = main purpose, 0 = not a purpose)

Concept discussion - Believe it or not? 1.05
Practical work Max Box 0.63
Calculator investigation - Split 11 0.59 **

Recognising the operation Do not solve it 0.40
Skills practice Cross number 0.14

Lessons F(4,12) = 8.55, p<.01
Schools F(3,12) = 2.61, ns

Here there is a clear disparity. The teacher considered that the calculator investigation is the
only one which involves an appreciable amount of planning and organising, while the students
rated two other lessons higher than this. Potentially, the calculatqr lesson was the most open
activity which gave the maximum freedom to students to tackle the problem in their own way.
Perhaps students were unaware of the scope for action they were being offered.

(h) ... to help us understand what multiplication really means

Means of Students' Ratings (2 = main purpose, 0 = not a purpose)

Concept discussion Believe it or not? 1.20 **
Skills practice Cross number 0.98
Recognising the operation Do not solve it 0.94 *
Calculator investigation Split 11 0.74
Practical work Max Box 0.33

Lessons F(4,12) = 27.8, p<.001
Schools F(3,12) = 2.12, ns
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Both the students and the teacher agreed that the 'Believe it or not?' lesson was most relevant
here, but the students also gave a high rating to the Cross Number lesson which simply offers
repetitive practice of multiplication.

A comparison of items (b) and (e) shows that at least some students can distinguish the idea of
practising muliplication from the skill of selecting it as the correct operation, but on this item
these different aspects of multiplication seem more confused. It could be that some students do
not understand the phrase 'really mean', or it could be that they choose to interpret it in a
number of quite different ways.

(i) ... to see how to use mathematics in our everyday lives

Means of Students' Ratings (2 = main purpose, 0 = not a purpose)

Recognising operation Do not solve it 0.78 **
Skills practice - Cross number 0.44
Concept discussion Believe it or not? 0.37
Calculator investigation - Split 11 0.29
Practical work - Max Box 0.20 *

Lessons F(4,12) = 10.6, p<.001
Schools F(3,12) = 1.58, ns

The lesson 'Do not solve it' uses story problems that make simple connections to real events,
and both the teacher and the students rated this as most relevant to mathematics in everyday life.
But the teacher also rated the practical work lesson as relevant while the students saw this as
least relevant.

Perhaps the teacher saw possibilities in the practical work lesson which the majority of students
missed. For the teacher, the task belongs to a class of realistic optimising tasks (e.g. wall
papering a room as cheaply as possible, finding the shortest route from A to B), whereas the
students appear to see the exercise as less relevant than even the three 'pure' mathematics
lessons. Though this is one of the more widely applicable types of problem in the world of
work, the students did not perceive it as having relevance to their own everyday lives.

Mismatch scores

A score was devised to measure the degree of mismatch between the teacher's perception of a
lesson and a student's perception. This was calculated for each student in each lesson by sub
tracting the teacher's rating of an item on the questionnaire from the student's rating, and
adding up the absolute difference for all ten items. This yields a score where 0 indicates
complete agreement, and an increasingly positiiie score indicates an increasing disparity
between the teacher's and the students' perceptions.

Below are the means of the mismatch score for each lesson and for each school.

Calculator investigation Splitting 11 6.36
Practical work Max Box 6.09
Concept discussion Believe it or not? 6.05
Recognising operation Do not solve it 5.18
Skills practice - Cross number 3.64

BES COPY MAILABLE

School C 5.78
School 0 5.15
School M 4.94

Lessons F(4,12) = 19.6, p<.001
Schools F(3,12) = 4.87, p<.05
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There are statistically significant differences across both lessons and schools.
The mismatch becomes more pronounced as lessons become more open with an increasingly
process (rather than product) oriented agenda. The lowest score is with the skills practice
lesson where the students' task is very familiar and well defined, and the purposes of the
lesson are apparent to nearly everybody. The highest score is with the calculator investigation,
where students' opportunity for freedom of action is greatest.

The two classes which had been exposed through project activities to a substantial number of
interventions designed to raise their awareness of mathematical processes (M &O) had lower
mismatch scores than the two which had only experienced a few (F & C); wh.,ich suggests
that the awareness raising activities have increased understanding of the purpose of many types
of lessons. The effect is not confined to the more open or more unusual styles of lesson.

References

Baird, J, R. & Mitchell, I. J. (Eds) (1986). Improving the Quality of Teaching and
Learning; an Australian case study - the PEEL Project. Melbourne, Victoria, Australia: Monash

University.

Baird, J. R. & Northfield, J. R (1992). Learning from the PEEL Experience.
Melbourne, Monash University.

Bell.A., Costello, J,& Kuchemann,D.,(1983). A Review of Research on
Mathematical Education. Part A, Teaching and Learning. London: NFER/Nelson.

Bell, A., Swan, M., Onslow, B., Pratt, K., Purdy, D (1985). Diagnostic
Teaching for Long Term Learning. Report of ESRC Project HR8491/1. Shell Centre for
Mathematical Education, University of Nottingham, England.

Biggs, J. B. (1987). Student Approaches to Learning and Studying. Melbourne; ACER.

Flavell, J. H (1976). Metacognitive Aspects of Problem Solving in Resnick, L. B (Eds).
The Nature of Intelligence. New Jersey; LEA.

Garofalo,J. Kroll,D.L., Lester, F. K.(1985). Metacognition and mathematical
Performance, in Journal for Research in Mathematics Education, 16, 163-176.

Herrington, A.J (1992). Student beliefs and strategies for learning mathematics. Doctoral
dissertation. Perth: University of Western Australia.

Lester,F.K. (1988). Reflections about Mathematical Problem Solving Research, in
Charles, R. I., and Silver,E.A., (eds) The Te.. aching and Assessing of Mathematical Problem
Solving, Reston,VA: NCTM

Schoenfeld, A.H (1982). Some thoughts on problem solving research ?and mathematics
education. In Lester, F. K and Garofalo, J. (Eds), Mathematical Problem Solving Issues in
Research.

Schoenfeld, A. H (1985). Mathematical Problem Solving. Academic Press.

Siemon, D (1992.) Children's Approaches to Mathematical Problem Solving. In
Proceedings ofSixteenth PME Conference, Volume 3. University of New Hampshire,
Durham, NH (USA).

Slife,B.D., Weiss, J., Bell, T. (1985). Separability of Metacognition and Cognition:
Problem Solving in Learning Disabled and regular Students. Journal of Educational
Psychology, 77, 437-445.

White, R.T., Gunstone,R.F. (1989). Metalearning and conceptual change, Int. J. Sci.
Educ. 11, 577-586.

2 -72

8O



STEREOTYPES OF LITERAL SYMBOL USE IN SENIOR SCHOOL ALGEBRA

Liz Bills
Crewe School of Education

Manchester Metropolitan University, UK

I make the case that conventionally in algebra certain roles are associated with
some letters. This is particularly true of x and y, which achieve a special status

through their conventional usage. Through examples from my classroom I
explore the implications of these conventions for students and the tensions implied

for the teacher.

Spend a few moments working on this problem:

Find the equation of a straight line which passes through the point (m, c)

If you had your mathematical education in a setting where m was conventionally
used to stand for the gradient of a straight line, you might have experienced a
discomfort in being required to use m in the same context but in a different role.
In Bills (1997) I describe the responses of some colleagues to this problem. Most
of them had been schooled in England and had been used to seeing m and c in the
context of the equation y = mx + c, which is almost universally used here as a
'general equation of a straight line'. Many reported insecurity, discomfort or
strangeness. They coped with this by using adapted versions of the 'template'
equations which they would familiarly use in this kind of problem. For example,

Y Yi y yi
one used k in place of = m. They described the new template

x xi x xi
as a 'translation' and spoke of having to 'hang on to' the familiar procedure.

I offer this problem as a vehicle for experiencing the special roles played by
some letters in our mathematical culture and the added layer of difficulty created
by forcing the use of different letters. I will use the word 'stereotyping' to
describe our expectation that certain letters fulfil certain roles.

Literature on the effect of stereotyping on students' learning is sparse. Wagner
(1979) points out that a change of placeholder (from x to y) makes no difference
to the mathematical meaning but that in the case of a verbal placeholder there is a
difference, say between he and she. He makes the point that the choice of letter
to represent a mathematical variable makes no difference to the relationships
between quantities it is used to describe. However the psychological difference
to the reader can be immense, as demonstrated in my first example.

Vieta was one of the first to make psychological use of a stereotyped expectation
of role. He was the first mathematician known to use letters to stand for known
but unspecified quantities (in some sense parameters). He used vowels for
unknown-but-to-be-found variables and consonants for unknown-but-to-be-given
quantities, thus producing an expectation of role by his choice of symbol (van
der Waerden 1985).
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Furinghetti and Paolo (1994) observed the effects of stereotyping in students'
responses to one of their questionnaire items. The item presented the expression
x2 + y2 + c2 2xy + 2yc + 2xc and asked what was the role of each letter,
in the student's opinion. The options offered were 'variable', 'constant',
'parameter' and 'unknown' in each case. The greatest number chose 'unknown'
for x and for y, whilst 'parameter' was the most popular choice for c, even
though the expression is symmetrical with respect to the three quantities, and was
given without any context.

Booth (1985) reports an aspect of stereotyping amongst younger students. Asked
'what is the "y"?' a student volunteered a yacht, yoghurt or yam. Booth suggests
that the idea that the letter used to represent the object is the first letter of the
name of the object may be reinforced by algebra work schemes which use
algebraic initialization as a memory aid.

Taken together these references suggest that, although the choice of letter in a
certain role is in some sense arbitrary, for the student there are consequences of
the choice.

As part of a wider research project, which examined students' experiences of
working with more than one variable, I recorded some classroom incidents
which highlighted aspects of stereotyping. In this paper I will concentrate on the
stereotyped roles of x and y.

What is a?

In January 1994 I recorded the following about a lesson with some sixteen year
old students in an English school. Peter is the teacher and Tommy one of the
students.

After some work on the remainder and factor theorems and on
division of polynomials, Peter asks the class

Factorise

(1) x3 1 (2) x3 8 (3) x3 a3

We both walk around the class looking at students' work. I go to
the table where Tommy is working. He is about to begin (3). He
asks for my help, saying 'I don't know what a is'.

In this lesson, which was focused on methods of factorising polynomials and
solving polynomial equations, Peter wanted to take the opportunity to introduce
the students to the factorisations of the difference between two cubes and the sum
of two cubes, commonly expressed as a3 b3 and a3 + b3. All the polynomials
they had factorised so far were in x and had numerical coefficients. Tommy's
statement ('I don't know what a is') betrays that the unfamiliarity of this situation
had thrown him back into the state of wanting to evaluate the letter. ('Letter
evaluation' was identified as one form of response to variables by Kiichemann
(1981)). Notice that he was not concerned that he did not know what x was. The
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role of x as a variable, that is as a quantity which can take any value and takes no
particular value, was well-established. It was the social practice in this school as
in many others to write expressions in one variable in terms of x. In this task
(factorising x3 a3) the roles of x and a are, in a sense, the same. I could argue
that this task is exactly equivalent to factorising a3 b3. However the very fact
of using x and a instead of a and b relocates the task into a different context, that
is the context of polynomials in x, with its attendant connotations of functions,
graphs and equations. For Tommy, in the context of having just worked on
factorising x3 1 and x3 8, the roles of x and a are very different. By the
end of my conversation with Tommy he still was not comfortable with the
presence of a. I suggest that his comfort with x and discomfort with a are
explained partly by the immediate context and partly by his familiarity with the
use of x.

This example, then, highlights the stereotypical role played by x in many
algebraic contexts. It is the generic unknown in equations to be solved and the
generic variable in functional expressions, as well as being the independent
variable in the equation of a curve and first co-ordinate of the general point on a
curve.

Locus
In an interview at the end of a year's course in pure maths Lorne (aged 17)
selected this question to work on

The point (a, b) is equidistant from the x-axis and the point (1, 2). Find an
equation linking a and b.

He worked through it unaided by me except that I corrected one or two errors in
algebraic manipulation as they arose. He used x and y throughout to stand for
the co-ordinates of the point referred to as (a, b) in the question.

5
Lorne: Then y =

I
74+ . (writes this) .. That's the answer to it (writes

ANS by this last equation).

Liz: Okay. Umm .. what was this question about then?

Lorne: Umm the equal distance in, the equal distance between the one point
and the other point - locus.

Liz: Right. You said this was like a question that we've done. (We had
done two questions involving equations of parabolae the previous day.)

Lorne: Uhmhm.

Liz: What's erh similar and what's different about it?

Lorne: Umm well it's the same, what I'm doing here is working out the
equation of a, of the actual line, but the question says find an equation
linking well linking a and b.
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Liz: Uhmhm.

Lorne: Which is the same thing isn't it? Or is it?
Liz: You tell me.

Lorne: Umm ... yes.

Liz: So you haven't strictly speaking answered their question, have you?

Lorne: No, not quite, just an equation.

Liz: So if I was being umm pedantic and saying 'can I have an answer to the
question please?'

Lorne: then umm that's not the answer (he scribbles out the ANS which he had
written next to his equation).

Liz: (laughter)

Lorne: It's, it's

Liz: It was dangerous to write 'answer' next to something.

Lorne: Yes. It's similar to what we've done but what you've got to do is find
an equation linking a and b, and umm linking a and b, I
mean, I don't know actually umm .. an equation linking a and
b. I, I don't, I don't quite understand what finding the equation linking
a and b really means.

Liz: Uhmhm. Well what erh what part does a and b play in this question?

Lorne: It means it's any point on the parabola which is this same length
between the point (1, 2) and the x-axis.

Liz: Right so it's any point on that parabola that you've sketched.

Lorne: Yes.

Liz: Umm when you wrote this equation down you were referring to a
point on the parabola.

Lorne: Yes.

Liz: What did you call it?

Lorne: .. I called it, .... what do you mean what did I call, I mean I
Liz: Well you were talking about this point here weren't you?

Lorne: Yes.

Liz: What are the co-ordinates of that point?

Lorne: The co-ordinates of that point is umm (a, b) ,(y, x) umm (p, q).
Liz: Yes, quite. (a, b) or (x, y.)

Lorne: Anything yes.
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Liz: What, you used x and y.

Lorne: Ah ha. So what I could do is put erh, y is b, so b = Tra2 could I?

Liz: b equals a quarter what?

Lorne: -zta2 +. So, I'm not, what I'm answering is the equation linking x and y

instead of a and b. So it's b = Tla2 Za -I- -54. (writes this) Which is the

answer. (writes ANS by his last equation)

In his working on this question Lorne used x and y to stand for the co-ordinates
of a general point on the parabola almost unconsciously. His answer to my first
question on this issue ('.. I called it, .... what do you mean what did I call')
suggests that he had not recognised my description of his choice of letters. My
question was based on the perception that choosing letters to stand for the co-
ordinates of the general point is equivalent to naming that point. A later answer
('The co-ordinates of that point is umm (a, b) ,(y, x) urnm (p, q)') suggests that he
had not recognised that he had made any choice. He did not see that his writing of

the first equation y = + (2 y)2 implicitly made such a choice. His
familiarity with x and y in this role made the choice automatic, that is un-noticed.
In fact his utterance, 'what I'm doing here is working out the equation of a, of the
actual line, but the question says find an equation linking well linking a and h',
suggests that, in his eyes, for an equation to represent a curve (the actual line) it
must be expressed in terms of x and y.

Test question
The same class which I referred to above were set a test in January 1994.
Among the questions was the following:

Problem Q A circle has centre (2, 4) and passes through the point (-1, 5).
The point (p, g) lies on the tangent which touches the circle at (-1, 5). Find an
equation linking p and g. Hence write down the equation of the tangent.

Of the students who made any substantial attempt at the question, all but one
worked with x and y rather than p and q. Some obtained an equation in terms of
x and y and then substituted p and q into it. Some did not include p and q in
their answer at all.

The students' attention, I suggest, was on finding the equation of the tangent and
the steps on the way to that aim (finding the gradient of the radius and hence of
the tangent, obtaining the equation of a straight line with this gradient and
passing through (-1, 5)). In order to focus on these steps they lost sight of the
specific detail of this question and its reference to the point (p, q). They used the
letters they were familiar with using for a general point, that is x and y.

These students, along with Lorne, demonstrate that their use of x and y as co-
ordinates of a general point on a curve is almost unconscious. Mention of other
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letters in the text of a question was insufficient to bring the issue to the surface.
When Lorne was challenged about his choice of letters, his recognition of what
he needed to do to satisfy the needs of the question was not immediate. His use
of x and y was so automatic that it took some discussion before he noticed it.

As an experienced mathematician I am aware of my ability to choose a letter
when some expression of generality is required. Students may be much more
restricted in their awareness of this choice. One of the factors which restricts
their awareness of choice is the conventional use of certain letters in certain
roles. For example, in answering 'Find the general equation of a line which
passes through the point (3, 2)' students may use the letter m to stand for the
gradient without experiencing any choice. 1 will describe choices dictated by
common usage in this way as culturally determined. In answer to the question
'Find the equation of a line with gradient m which passes through the point
(3, 2)' the choice of m is mathematically necessary. For students these two
questions and the choices implied may be indistinguishable.

A general linear equation
A class of adult initial teacher education students was discussing the solution of
linear equations. I asked them to give me 'a general form for a linear equation'
and ax + by = c was offered by Gill, a member of the group. Another member
offered ax + b = c and then ax + b = 0 to general approval. I asked

'These equations (the ones we had looked at so far) have had xs in them - they
haven't had any other letter in them. Now the equation that Gill's brought up
here (ax + by = c) has got a, b, c, x and y in it and some people are objecting
to the y. Why are you objecting to the y and not the a, b and c?'

After a few moments' pause there were two replies to this question:

'You're assuming that a, b and c are just ordinary numbers and x and y are the
variables'

'a and b are used to stand for numbers that you know and x and y are numbers
that you don't know'

Although it was not something to which they could recall having previously
given any conscious thought, these students were in no doubt that a, b and c
played different roles from x and y. In the ensuing discussion they described this
as 'conditioning'. Some of them expressed surprise that they accepted this
difference between roles without any good reason or conscious
acknowledgement.

The role of x and y as the co-ordinates of a general point on a curve combines
with the roles of x as the unknown in equations and as the argument of functions
to set them apart from all other letters. These students' explanations of the
differences are not entirely coherent but they are deeply felt.
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Discussion
Each of the examples above points to some aspect of the unique roles played by x
and y in our mathematical culture (by this I mean, in particular, the culture
represented by teachers and examiners of 'A' level mathematics in England and
Wales, and into which pupils need to be, to some degree, inducted. Many of the
features of this culture are common to other groups). The very strong cultural
pressure to use x and y in the circumstances exemplified above makes it almost a
mathematical necessity. Consider for instance, the task

'Find the equation of a straight line which passes through the point (x, y)'

Responses of the form y = mx + c hold on to the conventional roles of x and y
whilst making their new roles, suggested by the question, as unknown
particulars, untenable. Responses of the form Y = m(X x) + c relinquish
the expected roles of x and y in order to have them adopt others.

Whilst it may be true in the strict mathematical sense that, in mathematics, the
choice of letter does not necessarily convey information about the quantity for
which it stands, it is by no means the case from the cultural point of view. I have
already made a distinction between mathematically necessary and culturally
determined choices. The examples I have given show that choice of literal
symbol can convey a great deal about the role of the quantity that it represents.
In particular the letters x and y carry with them a great many contexts, meanings
and metonymic triggers.

These messages conveyed by use of letter can be useful or obstructive for the
student. A tension exists for the teacher between establishing the conventions of
mathematical society and exposing them as culturally but not mathematically
necessary.

On the one hand, my practice of cultural conventions in the use of letters allows
me to automatise procedures. I can perform a procedure without placing my
attention on that procedure. The role of each quantity in the procedure is
captured by the name, that is the letter I use. I do not need to ask myself (for
example) 'why was I trying to calculate c?'. I know that the value I have
calculated is the value of the y-intercept. My attention is not on the meaning of c
and can therefore be on some other aspect of the problem. These conventions
can also assist students in dealing with what Adda (1982) refers to as
'homonymy', that is the different roles of letters within the same equation. In
her example, 'axe + bx + c = 0', the roles of a, b and c are in fact separated
from that of x by conventional usage so that distinguishing between them is not
an apparent difficulty for students.

On the other hand, the repeated use of convention in symbol choice makes the
cultural nature of the conventions invisible. It removes from view the choice of
letter, so that the distinction between convention and mathematical necessity is
blurred. The automatisation of procedures is useful precisely because it removes
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attention from that procedure. The drive to automatise through rehearsal may
remove attention too soon from where it is needed.

Conventional use of letters is a means of control for the expert user. These users
can free their attention from the routine to place it on the unfamiliar. They also
have the option of not using the conventional letters if they wish. The novice, by
contrast, is controlled by the choice of letters. Their ability to perform a task
may depend crucially on its being expressed in terms of the conventional literal
symbols or on its being possible to perform the task by using the familiar
notation.

Summary

In the mathematical culture of school and beyond, some letters carry particular
meanings as variables because of conventional usage. Unconventional use can
cause discomfort for the problem solver and may even prevent their reaching a
solution. Whilst the experienced mathematician can exercise control by
distinguishing between cultural determination and mathematical necessity, an
inability to make this distinction may cause problems for the novice.
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APPROACHING THEORETICAL KNOWLEDGE
THROUGH VOICES AND ECHOES: A VYGOTSKIAN PERSPECTIVE

Paolo Boero, Bettina Pedemonte, Elisabetta Robotti
Dipartimento di Matematica, University di Genova

This report deals with the ongoing construction of an innovative theoretical
framework designed to organise and analyse early student approach to
theoretical knowledge in compulsory education, the aim being to overcome the
limits of traditional learning and constructivist hypothesis. Referring to
Vygoskian analysis of the distinction between everyday and scientific concepts
and the Bachtinian construct of 'voice', and drawing on previous teaching
experiments, we hypothesise that the introduction in the classroom of 'voices'
from the history of mathematics and science might (by means of suitable tasks)
develop into a 'voices and echoes game' suitable for the mediation of some
important elements of theoretical knowledge.

1. Introduction.
How to approach basic elements in modern-day scientific culture represents a
serious problem in the compulsory education system. In this report we shall refer
in particular to theorems, to algebraic language and to the mathematical modeling
of natural and social phenomena; henceforth we shall use the term 'theoretical
knowledge' to cover the above elements of mathematics. On the one hand, these are
relevant for orienting and preparing students for the later study, as well as
transmitting important aspects of the human cultural heritage to new generations
(Boero, 1989a). On the other hand, the most common educational strategies (either
traditional or not) to approach theoretical knowledge appear to be unproductive for
most students, even in upper-secondary and tertiary education. In Italy as in other
countries, mathematics and science theories are 'explained' by the teacher to
students as from the 10th grade; the students' job is to understand them, to repeat
them in verbal or written tests and to apply them in easy problem situations. The
results are well known: for most students, theories are only tools for solving school
exercises and do not influence their deep conceptions and ways of reasoning.

Constructivism too presents limits as regards the approach to theoretical
knowledge: see Newman, Griffin & Cole (1989). We have noticed profound gaps in
the aspects of mathematics mentioned at the beginning, gaps which are difficult to
bridge even with the teacher's help. These are between the expressive forms of
students' everyday knowledge and the expressive forms of theoretical knowledge;
between the students' spontaneous way of getting knowledge through facts and
theoretical deduction; and between students' intuitions and the counterintuitive
content of some theories.

The ongoing research study, which is partially reported in this paper, aims to
give useful elements for interpreting and overcoming the above difficulties in the
approach to theoretical knowledge.

2. A Vygotskian (and Bachtinian) Perspective.
The difficulties encountered in the traditional and constructivist approaches pose a
series of questions. We shall try to describe the route we have taken to reach the
definitions and hypotheses presented in Section 3.
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What constitutes the gap between spontaneous and theoretical thinking? To
address this issue we have considered the distinction proposed by Vygotskij,
between everyday and scientific concepts ( Vygotskij, 1992, chap. VI). It is common
knowledge that this is one of the most controversial aspects of Vygotskij's work. It
has often been considered outdated as it contains a systematic critique of the
position taken by Piaget in the twenties, a position later revised by Piaget himself.
On the other hand, the most significant examples Vygotskij uses to develop his
arguments concern language and social sciences, with some generalisation to
mathematics and natural sciences that are not always pertinent. In Vygotskij's
school, Davydov himself has pointed out several weak and even contradictory
points (Davydov, 1972). In addition, Vygotskij claims it is possible to 'teach'
scientific concepts and theories to the point where they are 'internalised'; yet his
hypothesis does not succeed in overcoming the learning paradox: 'How can a
structure generate another structure more complex than itself?' and, more
particularly, 'How does internalisation take place?' (see the discussion of Bereiter's
paradox in Engestrom, 1991). All the above objections have lead to
underestimation of other aspects of Vygotskian analysis, such as the following: the
systematic character of theoretical knowledge (versus the a-systematic nature of
everyday knowledge); and the transition of scientific concepts from words to facts,
versus the transition of everyday concepts from facts to word. Only recently have
some researchers (e.g. John Steiner, 1995) called attention to the significance of
these aspects of Vygotskian analysis. We notice that they shed light on the gap
between students' everyday knowledge and theoretical knowledge, and offer a
single perspective on a variety of different aspects of mathematics, such as those
indicated at the beginning of this report.

Why is constructivist approach unable to bridge the gap between everyday
and theoretical knowledge? On the basis of his distinction between everyday and
scientific concepts, Vygotskij hypotesises that, in children's intellectual growth,
their everyday knowledge has to be developed towards theoretical knowledge by
establishing links with theoretical knowledge and that theoretical knowledge has to
be connected with facts by establishing links with children's everyday knowledge.
Yet, according to Vygotskij, the development of everyday concepts is not
spontaneous: the child cannot be left alone to pursue this process because theoretical
knowledge has been socially constructed in the long term of cultural history and
cannot be reconstructed in the short term of the individual learning process. In
short, 'exposure' to theoretical knowledge is necessary, and must be provided
together with explicit links to children's knowledge.

Which aspects of theoretical knowledge are to be chosen? In our view,
cultural meaning and student motivation are the most important criteria. Therefore,
priority should be given to leaps forward in the cultural history of mankind, even
if, for the abovementioned reasons, these are the most difficult areas for school
study. The sorts of topics we are referring to include, for instance, the theory of
the fall of bodies of Galilei and Newton, Mendel's probabilistic model of the
transmission of hereditary traits, mathematical proof and algebraic language - all
aspects with a counterintuitive character. These are 'scientific revolutions' related
to historical figures from the history of science (Galilei, Newton, Mendel, Euclid,
Viete). In many cases, scientific revolutions have been accomplished by overcoming
epistemological obstacles (Bache lard, 1938) which were a crucial part of previous
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knowledge. The same obstacles are often found in individual history as well
(Brousseau, 1983).

How are the leading ideas of scientific revolutions expressed? Bartolini Bussi
(1995) has suggested referring to the Bachtinian construct of 'voice' to describe
some crucial elements of the turning points in scientific thinking. Bachtin's seminal
work centers on literature, but some researchers in general and mathematics
education have found several interesting elements therein (Bosch, 1994; Seeger,
1991; Wertsch, 1991). As far as the approach to theories is concerned, we draw on
some aspects of Bachtin's work:

the idea that human experience does not speak by itself but needs original voices
that interpret it; the voices are produced in a social situation and gradually
recognised by society until they become the shared way of speaking of the human
experience;
- the idea that such voices act as voices belonging to real people with whom an
imaginary dialogue can be conducted beyond time and space. The voices are
continuosly regenerated in response to changing situations (they are not mummified
voices to be listened to passively, but living tools for interpreting changing human
experience).

How can students be 'exposed' to the leading ideas of scientific revolutions? If
we transpose these ideas to the fields of science and mathematics (intended as a
'field of experience': Boero & al. 1995) we gain a useful perspective for our
purposes: teachers can become mediators of 'voices' (of 'historical voices' in
particular), which embody those scientific revolutions whose sense is to be
conveyed to new generations. This process must take place in a social situation
where the voices are renewed in accordance with changing cultural perspectives.

3. Towards a Theoretical Framework for the "Voices and echoes
game".
Retrospective analysis of some teaching experiments (performed several years ago
in the Genoa Group classes) confirmed the idea that scientists' voices may be
exploited to approach theoretical knowledge and provided us with hints for further
operational activity. As an example, let us consider the teaching experiment
reported in Boero & Garuti, 1994. Students were asked to produce a brief, general
statement about the relationships between heights of objects and the length of
sunshadows they cast; they were asked subsequently to compare their statements
with official statements of the so-called 'Thales theorem'. Analysis of the students'
texts revealed an interesting phenomenon: many students had tried to rephrase
their statements in order to make it resemble to the official statement, or to
rephrase the official statement in order to make it to resemble their own. This was
a constructive effort of a quite different nature from the production of an original
statement; in fact it was an effort to 'echo' proposed 'voices'! A similar
phenomenon is reported in Bartolini Bussi (1996), where the 'voice' of Piero della
Francesca is exploited during a primary school perspective drawing activity.

Taking into account these experiences and the reflections summarized in the
preceding section, we have undertaken the construction of a theoretical framework
for a new methodological approach to theoretical knowledge. We have defined the
'voices and echoes game' and elaborated a general hypothesis concerning the
effectiveness of this game in approaching theoretical knowledge (see 3.2.).
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Consequently, we have planned a teaching experiment, which was performed in
five 8th-grade classes (see 3.3.).

Analysis of the teaching experiment allowed us to elaborate a language (see
3.4.) that we consider useful for describing, classifying and interpreting student
behaviour during the 'voices and echoes' game, and which is also helpful in
recognising and conveniently managing that behaviour.

We think that the research work performed so far makes it possible to plan
further teaching experiments aimed at understanding better the mechanisms of
individual and social cognition that allow the 'voices and echoes game' to work
well; another aim would be to detect the control variables for classroom work. In
summary, we consider that we have built an initial theoretical framework for a
'didactical engineering'(Artigue,1992) considered as a tool for developing research.

3.1. The 'Voices and echoes game'
Some verbal and non-verbal expressions (especially those produced by scientists of
the past but also contemporary expressions) represent in a dense and
communicative way important leaps in the evolution of mathematics and science.
Each of these expressions conveys a content, an organization of the discourse and
the cultural horizon of the historical leap. Referring to Bachtin, we call these
expressions 'voices'.

Performing suitable tasks proposed by the teacher, the student may try to
make connections between the voice and his/her own conceptions, experiences and
personal senses (Leont'ev), and produce an 'echo', i.e. a link with the voice made
explicit through a discourse. The 'echo' is an original idea, intended to develop our
new educational methodology.

What will henceforth be called the 'voices and echoes game' is a particular
educational situation aimed at activating the production of echoes by students. To
this end, specific tasks may be proposed: 'How.... might have interpreted the fact
that...', or: 'Through what experiences ... might have supported his hypothesis'; or:
'What analogies and differences can you find between what your classmate said and
what you read...', etc. The echoes produced may become objects for classroom
discussion. Some may be transformed (given appropriate stimuli and praise from
the teacher) into voices which renew those introduced by the teacher and equated to
the students' outlook and specific experiences.

We note that the object of the 'voices and echoes game' is not to construct a
concept or an original solution to a problem, nor is it to validate a student product.
Rather, the point is to compare a text (generally not produced by the student who
make the comparison) with another text or with some data from everyday
experience in order to detect congruences or contradictions. In this way the
transition of students' thought to a theoretical level can be enhanced. Our general
hypothesis on this issue is that the 'voices and echoes game' may allow the
classroom's cultural horizon to embrace some elements which are difficult to
construct in a constructivist approach to theoretical knowledge and difficult to
mediate through a traditional approach:
- contents (especially, counter-intuitive conceptions) which are difficult to construct
individually or socially;

methods (for instance, mental experiments) far beyond the students' cultural
horizon;
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kinds of organization of scientific discourse (for instance, scientific dialogue;
argumentation structured into a deductive chain) which are not a natural part of
students' speech.

In the case of important and counter-intuitive theories (such as Galilei's and
Newton's theory of falling bodies, which was the object of our teaching
experiment), we think that the transition towards the revolutionary theory should
be made by overturning the contrasting theory that preceded it. Consequently, the
'voices and echoes game' should start with historical voices that give a theoretical
representation of students' intuitions and interpretations. There are a number of
different reason for this approach: cognitive and didactic reasons (students need to
take on board epistemological obstacles see Brousseau, 1983 and, from a different
perspective, Fischbein,1994); historical and cultural reasons (important scientific
changes do not happen in a cultural vacuum, but occur when new theories substitute
old ones); reasons related to student transition to a theoretical dimension (a
theoretical dimension may be more accessible if it initially concerns theories which
resemble students' conceptions about natural phenomena or mathematical entities).

3.2. A Teaching Experiment
A teaching experiment involving the 'voices and echoes game' was performed in
five 8th-grade classes, of different level, belonging to different environments, and
with partially different school background. Bearing this diversity in mind,
management of classroom work differed from one class to another, although the
succession of voices and the tasks for the production of echoes was similar in all the
classrooms.

The theories chosen for our teaching experiment concerned falling bodies.
Preceding classroom experiences perfomed by the Genoa Group had shown that
8th-grade students' spontaneous knowledge about this phenomenon is limited to
perceptual data, with scarce cultural elaboration. Our hypothesis was that through
the 'voices and echoes game' some historic voices (Aristotle) might encapsulate
student perceptions in a meaningful and precise theoretical way, while other voices
(Galilei) might lead them to overturn Aristotle's theory.

Each voice was read in the classroom under the guidance of the teacher, who
provided paraphrases, explanations of words, and information concerning the
general cultural framework of the voice. Following each voice there were tasks that
called for the production of echoes, as well as classroom discussion of some of the
echoes produced.

For each class, the teaching experiment lasted from 12 to 16 hours.
Recordings of classroom discussions and individual texts were collected.
This teaching experiment produced learning results which were much better

and more extensive than those usually achieved when 8th-grade students approach
theoretical knowledge. The following positive aspects were common to all the
classrooms (although varying in continuity and extension from class to class):
- students acquired contents, methods and ways of organizing discourse contained in
the theoretical knowledge proposed to them through the voices;
- high quality scientific debate was attained at particular moments, which differed
from class to class. The importance of this lies not so much in the discoveries made
(in most cases they were inherent in the voices proposed by the teacher), but in the
fact that ancient scientific debate was revived and related to the present cultural and
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expressive horizon. It can reasonably be hoped that, once constructed and
experienced in the classroom, this approach may be applied to other aspects of
theoretical knowledge both in later studies and in daily life. This is in line with
Bachtin' s hypothesis about literature, in which the reader starts to refer the read
text to her/his personal and contemporary collective experience.

In the 'voices and echoes game' situations performed in our teaching
experiment, the productivity of the different phases varied from class to class, for
reasons which, althought not fully clarified yet, appear to depend not only on the
classroom background, but also on the peculiar dynamic evolution of the situation
and the particular didactic choices of teachers. Notwithstanding the differing
productivity, interesting patterns in student behaviour were observed; these allowed
us to create a classification of student behaviour related to the general aims of the
'voices and echoes game' (see 3.1.)

3.3. Description and Classification of Student Behaviour
Students may produce echoes of different types (depending on tasks and personal
reactions to them). First of all, we need to distinguish individual echoes and
collective echoes (these are produced during a classroom discussion which may
concern some of the individual echoes selected by the teacher).

Individual echoes can be classified as follows:
superficial echoes: these are produced in an effort to perform a task requiring

echo, but do not succeed in understanding the voice. These can be recognized in
inappropriate use of terms and expressions deriving from the voice, contradictions,
confusion between students' conceptions and those inherent in the voice, etc.

mechanical echoes: precise paraphrasing of a verbal voice or the correct solution
of a standard drill exercise. The student does not go beyond the level of
'mechanical echo' if she/he is incapable of exploiting the content and/or the method
conveyed by the voice in order to solve a problem which differs to some extent
from the situation inherent in the voice;
- assimilation echoes: these can be detected when the student is capable of
transferring the content and/or method conveyed by the voice to other problem
situations proposed by the teacher that are only partly similar to that inherent in the
voice (see Matteo, Annexe). The student does not go beyond the level of the
assimilation echo if his/her manner of considering natural phenomena or
mathematical entities does not take the voice into account. when faced with
destabilising problem situations;

resonances: beyond the level of assimilation, the situation of resonance is the most
interesting of all. In this case the student appropriates the voice as a way of
reconsidering and representing his/her experience; the distinctive sign of this
situation is the ability to change linguistic register by seeking to select and
investigate pertinent elements ('deepening'), and finding examples, situations, etc.
which actualize and multiply the voice appropriately ('multiplication') (see Enzo,
Annexe);
- dissonances (similar to resonance, but with opposition to the content and/or
method conveyed by the voice).

The echoes which develop at the collective level may consist of series of
individual echoes of the voice at the center of discussion ('source voice'); these
occur one after the other irrespective of classmates echoes. At the other extreme,
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there may be a high level of connection between successive echoes. In particular,
both the examples related to the 'source voice' and the expressions and expressive
registers may undergo rapid and intensive enrichment. In other words, collective
echoes may reveal phenomena of multiplication and deepening, by exploiting both
the 'source voices' and classmates' echoes. We call this phenomenon 'multiple
echo'.

In a 'multiple echo' situation, 'classroom voices' can be generated: these
renew the 'source voices' proposed by the teacher in terms of expression and
cultural references. The multiplication and deepening phenomena, stimulated by
students' examples and continuously enriched by new expressions and experiences,
may make it possible not only to express the content and methodological structure
of the source voice using the students' own language but also to refer these to the
students' cultural horizon.

We believe that the 'multiple echo' and the production of 'classroom voices'
are the conditions which allowed some meaningful experiences of true scientific
debate to take place during our teaching experiment.

3. Ongoing research
The above theoretical framework remains limited to the level of description and
classification of student behaviour. The available data do not allow exact
interpretation of the cognitive processes involved, nor do they provide reliable
indications for reproducing 'voices and echoes game' situations. Further
experiments currently being planned should allow us to progress from detecting the
described behaviours (through the indicators quoted in the preceding section) to
interpreting them, and in particular to identifying variables involved. This research
should focus on the following, interrelated questions:

when students are engaged in tasks requiring echo production, what are the
mechanisms of individual and social cognition through which they appropriate the
level of theoretical organisation of discourse inherent in the voices? As we saw in
the introduction, this point represents one of the main elements forming the gap
between student thought and theoretical thought. Considering this point, and the
importance attributed by Vygotskij (1978) to imitation, we need to pay special
attention to the functions of the mechanical echo (which can be easily 'forced'
through suitable tasks);
- What are the cognitive and affective mechanisms through which the historical
personality 'takes part' (when his voice is introduced by the teacher in the
classroom) as an interlocutor in classroom debate? The effectiveness of the 'voices
and echoes game' seems to depend on this imaginary 'participation' in the game (see
also Bartolini Bussi, 1996);
- What are the variables (class background, kinds of tasks, suggested sign systems,
etc.) which the productive development of the 'voices and echoes game' depends on,
particularly in the production of resonances and the phenomenon of 'multiple
echo'? Observations made so far suggest that available or suggested sign systems
strongly influence multiplication and deepening phenomena at an individual level.
As to 'multiple echo', we think that familiarity with collective discussion (as the
place where students carry out the social construction of knowledge) is a necessary
condition but is not in itself sufficient for generating this type of echo.
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Annexe
Excerpts from one of Aristotle's voices, which was selected for the 'voices and

echoes game': Each body moves towards its place, if it was removed with force
According to its nature, fire moves upwards, earth moves downwards 1.4. The
reason for he heaviness or the lightness of the other bodies (i.e. compound bodies)
is the difference between the simple bodies (earth, water, air, fire) which are their
components. Bodies may be light, or heavy depending on the greater or lesser
quantity of this or that simple body they contain.

Task: If you were Aristotle, what would you tell a young student of yours in order to
explain why smoke moves upwards?

Matteo's echo: Because smoke derives from fire and does not contain earth, it tends to
move upwards, due to its affinity with fire

Enzo's echo: Smoke is produced by fire and fire is absolutely light, but it is also
produced by wood, which is heavy but is also light, so fire prevails because wood is
heaviness - lightness and fire is only lightness; consequently smoke moves upwards,
but not so much as fire, because it is kept downwards by the residual part of wood.
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THE TRANSITION FROM ARITHMETIC TO ALGEBRA: INITIAL
UNDERSTANDING OF EQUALS, OPERATIONS AND VARIABLE
T.J. Cooper, G.M. Boulton-Lewis, B. Atweh, H. Pillay, L. Wilss, and S. Mutch.

Faculty of Education, Queensland University of Technology, Australia

This paper discusses understanding of operations, equals, operational laws and
variable in relation to understanding of algebra. It proposes a two-path model for
developing complex algebra. It reports on a study in which 51 grade 7 students
were interviewed and their knowledge of the components of this model categorised
(binary arithmetic, binary algebra and complex arithmetic). It describes the
students' responses which indicated difficulties with equals, division, commutativity,
order conventions, and multiples of unknowns.

The literature has stressed the link between arithmetic and algebra (e.g.,
Cortes, Vergnaud & Kavafian, 1990; Linchevski, 1995; MacGregor and Stacey,
1995), has identified a gap in this transition (e.g., Herscovics & Linchevski, 1994),
and proposed a pre-algebra level to cover this gap (e.g., Filloy & Rojano, 1989).
This paper reports on the first stage of a three-year longitudinal study instigated to
follow students from the beginning of early algebra instruction, grade 7, to the
completion of initial algebra instruction, grade 9. It focuses on the initial
interviews undertaken before any algebra instruction and reports on students'
understanding of: (a) two aspects of arithmetic that appear to continue into algebra,
equals and the operational laws; and (b) an aspect of algebra new to arithmetic
students, variable. The purpose is to explore students' readiness for algebra
instruction and linear equations in terms of prerequisite knowledge.

Equals. The presence of an equals sign means that both sides of an equation
are equivalent and that information can be processed from either direction in a
symmetrical fashion (e.g., Kieran, 1992; Linchevski, 1995). However, research
indicates that students have a persistent idea that the equals sign is either a syntactic
indicator, a symbol indicating where the answer should be written, or an operator
sign, as a stimulus to action or `to do something' (e.g., Behr, Erlwanger & Nichols,
1980; Denmark, Barco & Voran, 1976; Filloy & Rojano, 1989). The research also
indicates that a restricted understanding of equals appears to persist through
primary school (e.g., Baroody & Ginsburg, 1983), continue into secondary and
tertiary education (e.g., Behr, Erlwanger & Nichols, 1980), and affect mathematics
learning at these levels. As well, there appears to be a lack of attention to the two
different ways equality can be approached: (a) in static terms as 'balance', for
example, 2+3 balances 5; and (b) in dynamic terms as 'change' or 'transformation',
for example, 2+3 changes 2 to 5 by adding 3 (Cooper & Baturo, 1992).

Operational laws. A sound understanding of operational laws is essential
for generalisation and recognition of patterns between numbers that is a basis of the
transition from arithmetic to algebra (Bell, 1995) and for solving of algebraic
equations (Demana and Leitzet, 1988). The operational laws are what enables the
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numbers and the operations of addition and multiplication to form the mathematical
construct called a Field. The properties of operations that have significance for
algebra are the commutative, associative and distributive laws, inverse and the
order convention (e.g., Bell, 1995; Cooper & Baturo, 1992; Demana and Leitzel,
1988). Misconceptions with respect to these properties may lead to a "conceptual
obstacle" in algebraic understanding (Bell, 1995; Herscovics & Linchevski, 1994).

Variable. According to Usiskin (1988), variable can be conceived in the
following four ways with the first three conceptions to be replaced by the fourth
when expertise is gained: as a generalisation of arithmetic; as an unknown in
procedures for solving certain types of problems; as a relationship among
quantities; and as a member of an abstract system. However, some educators (e.g.,
Chalouh & Herscovics, 1988) have argued that unknown is not an appropriate
conception for variable as it does not represent multiple meanings. Hence, Sfard
and Linchevski (1994) proposed variables as generalisations and relationships as
more advanced conceptions than variable as unknown. In this they reflected
Kucheman (1981) who proposed six different levels for students' understanding of
variable: as a number, without meaning, as an object, as a specific unknown, as a
generalised number, and as an abstract variable.

Students have difficulty with the concept of variable (Booth, 1988) and this
difficulty can be basic to a lack of success in algebra (Demana & Leitzel, 1988). It
is difficult to move from arithmetic to algebra; students' conceptions of operations
performed on numbers have to change in order that the concept of operating on
variables may be developed (Filloy & Rojano, 1989). Common student
misconceptions include believing variable only has meaning when its value is known
and thinking a variable represents objects instead of numbers (e.g., Booth, 1988;
McGregor, 1991). Kucheman (1981) found that students generally operate at his
first three levels.

METHOD

Data was gathered by a structured clinical interview. All students were given
the same tasks in the same order. Interesting responses were probed for cause.

Sample. The sample consisted of 51 grade 7 students (12 years of age) from
four state schools in Brisbane Australia before they undertook any algebra
instruction.

Tasks. The interview tasks were developed as a result of a content analysis of
algebraic equations such as 3x+7=22 which hypothesised that such algebraic
equations were complex in relation to their use of operations and that they were the
end product of a two-path sequence of topics that included binary arithmetic (24+37
and 35x29), complex arithmetic (more than 2 operations - 24+35x29), and binary
algebra (3x, x+5). Figure 1 briefly outlines the model. A fuller description of the
model is in Boulton-Lewis et al (1997).
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BINARY ARITHMETIC

COMPLEX ARITHMETIC

BINARY ALGEBRA

COMPLEX ALGEBRA

Figure 1. Two path model for developing complex algebra
(Boulton-Lewis et al, 1997)

The tasks took account of the potential influence of number size and the order
in which numbers and letters are presented and covered equals, operational laws
and variable. For equals, the students were asked for the difference between
28/7+20 and 28/7+20= and what the equals sign meant in 28/7+20= and
28/7+20=60-36. For the operational laws, the students were asked: (a) for the
operations to complete 35??76=76??35 (commutative law); (b) how 60+18 and
42+36 could assist with 6x13 (distributive law); (c) to relate 5x71=355 and
355?5=71 and 64-29=35 and 35?29=64 (inverse); and (d) would the answer change
if the operations in 3x6-2 were interchanged and how they would solve 32+(12x8)/3
(order convention). For variable, the students were asked what the boxes and
letters meant in expressions and equations, []+5, [] +5 =9, 3x and x+7=16.

Along with these tasks, the meaning of the operations were checked by asking
the students for their understanding of the four operations, and the use of concrete
material to represent a box or a letter in a linear equation was checked with
counters and cups.

Procedure. The students were removed from class and interviewed for
approximately 20 minutes. The expressions and equations used in the tasks were
placed on cards. The interviews were videotaped.

RESULTS

Analysis. The videotaped interviews were transcribed into protocols which
were analysed using software Non-numerical Unstructured Data Indexing Searching
and Theory-building (NUDIST, 1994). Initial analysis of the data was used to
identify key ideas which formed categories and subcategories. NUDIST was used to
classify the protocols under these categories/subcategories and to develop
explanations for the students' responses. Overall, the NUDIST analysis categorised
responses as satisfactory or unsatisfactory, and as arithmetical (using arithmetic
based approaches), algebraical (using algebraically based approaches) and no idea
(unable to determine the basis of the approach used). However in this paper,
responses are only given in their subcategories.
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Student responses. The responses of the students for the tasks are
summarised in Table 1. The responses with regard to meaning of operations and
using concrete materials in linear equations follow the task results.

Table 1
Student-response categories for equals, operational laws and variable (n=51).

1 0 0

TASKS RESPONSE CATEGORY NUMBER
Equals
28+7+20 = Answer (e.g., It's asking for the answer) 41

Outcome (e.g., In total, what is the actual outcome of the sum) 8
Equal it all (e.g., That you have to equal it all up together) 2

8+7+20 = 60-36 No idea (e.g., I'm not sure what the equals sign means) 2
Another sum (e.g., Gives answer and starts onto another sum) 5
Answer (e.g., Put down the answer of the sum before it) 7
Answer is 60 (e.g., Equals 60 and then they've taken away 36) 11
Answer is 60 - 36 (e.g., The answer is 60 take-away 36) 9
Answers the same (e.g., 28 divide 7 plus 20 same as 60 take 36) 10
Both sides equal (e.g., Both sides are 24, so it's equivalent) 7

Operations
Commutative
35??76 = 76??35 No idea (e.g., I can't think of anything) 11

Variety of signs (e.g., You could probably use all of them) 14
Answer is after = (e.g., 35 'any operation' 76 wouldn't equal 76) 4
Either way (e.g., Plusltimes can be either way; divide /minus can't) 14
Same answer (e.g., They were same numbers with pluslmultiply) 5
Equivalence (e.g., Equal the same on each side of equals sign) 3

Distributive
6x13 60+18 No idea (e.g., I don't see what they've done) 17

Other (e.g., Put a zero after the 6 and add a 5 onto the 13) 14
Connection (e.g., Timesed 6 by 10 to get 60 & 6 by 3 ... 18) 20

6x13 42+36 No idea (e.g., You could choose any numbers) 24
Other (e.g., 6 times 7 to get 42 and 13 times 3 I think to get 36) 13
Connection (e.g., 13 was 6 & 7. Six 6's are 36 and 6 7's are 42) 14

Inverse
5x71=355; No idea (e.g., You use the same numbers) 4

355??5=71 Calculation (e.g., just work out this one, 5 x 71 = 355) 9
Connection (e.g., Because that's times so that would be divide) 14
Reverse (e.g., It's the reverse - divide because five 71's is 355) 9
Opposite (e.g., Divide because it is the opposite of times) 15

64-29=35; 35 ?29 =64 No connection (e.g., knew 35+29=64, didn't even look at other) 2
No idea (e.g., Subtraction, because it's the same as the other one) 3
Calculation (e.g., Add, not times because work into more digits) 8
Guess & check (e.g., With adding it would probably get close) 1

Connection (e.g., Minus and plus are kinda like partners) 14
Reverse (e.g., Well if you reverse plus sum, you get minus sun) 7
Opposite (e.g., Plus and minus are the opposite to each other) 16

Order convention
No idea (e.g., I don't know - Maybe) 1effect of swapping x

and in 3x6-2 Yes (e.g., Yes. It would just be the same) 17
No (e.g., No. Do times first, because it's a higher number) 5
Different answer (e.g., Multiplying is a bigger value than minus) 8
Left to right (e.g., Should go left to right unless it has brackets) 8
Correct use of convention (e.g., Use that BOMDAS thing) 12
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32 +(12x8)/3 No idea (e.g., First I would do the sum 32+12x8)
Left to right (e.g., +, x then I ... because numbers are there first)
Incorrect order (e.g., 12 times 8 plus 32, and divide it by 3)
Incomplete (e.g., 12 on top, times 8, divide 3 and then add 2)
Correct order (e.g., 12 times 8, divide by 3, and then add 32)

16
8

15
2

10
Variable
11+5 (expression) No idea (e.g., I don't know what the square means) 2

Other (e.g., Nothing plus 5, square plus 5) 6
Answer (e.g., Can't work out answer, don't know what it is) 4
Like x or y (e.g., It's an unknown, like x or y value, like algebra) 2
Unknown number (e.g., Missing number you put number there) 29
Any number (e.g., It can be any number) 8

[1+5=9 (equation) Other (e.g., Nothing plus 5 equals 9) 6
Solved (e.g., That equals 4, because a square plus S equals 9) 22
Can be solved (e.g., It means something plus 5 equals) 5
Like x or y (e.g., Well it can be x or y) 1

Unknown number (e.g., It means that a number plus S equals 9) 17
3x (expression) No idea (e.g.,! wouldn't have a clue) 11

Times (e.g., Three x I think of 3 times itself) 32
Like x or y (e.g., The number 3 and it might be x like in the letter) 3
A number (e.g., It could be like another number, like 31) 5

x+7=16 (equation) No idea (e.g., I'm not sum what the x is) 3
'Times (e.g., Times then plus the 7 to make the 16) 13
Solved (e.g., It's a mystery number which is 9, so 9 plus 7 = 16) 7
Like x or y (e.g., Like the square we had, probably put a y there) 6
Unknown number (e.g., x is the unknown, have to work it out) 22

Equals. For the first series of operations, all but one student stated, in various
ways, that `-=' meant that you had to find an answer. One student said that it
sometimes means equivalent. For the second task, 9 students explained that 60-36
was the answer and 17 that both sides of the equation were the same. The other half
of the sample could not explain adequately what `=' meant in that context.

Operational laws. Commutativity for addition and multiplication was
explained satisfactorily by 43% of the sample, and the inverse operations of
addition/subtraction and multiplication/division were satisfactorily explained by
74% and 76% of the sample. Only 23% of the sample could satisfactorily explain
the correct order of operations for the first task and 19% for the second one (which
was not presented sequentially).

Variable. In the first expression, 76% of the students could adequately explain
that a box meant an unknown. In the equation, 6 students could not explain the box
satisfactorily, 27% either solved the equation or said it could be solved, and 35%
said that it was like x or y or that it meant an unknown number that needed to be
found. When asked to explain x in the linear equation x+7=16, 70% either solved
the equation, said it was like a box or the x and y's in algebra, or said that it
represented an unknown number. However, when asked about x in the expression
3x, only 16% had an intuitive idea about the meaning of the x. Because of this
difference in performance, the 3x was placed in an equation and the students again
asked what the x meant. Again, only a low percent (17%) had any understanding.
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Meaning of operations. The majority of students had a sound knowledge of the
symbols and meanings of operations for addition (82%), subtraction (98%),
multiplication (86%) and division (61%). Most of the students explained addition
and adding or plus, although 9 students still thought of it as counting on.
Subtraction was mainly explained as 'take off' or 'take away', although one student
said it meant to count backwards. Satisfactory descriptions of multiplication were
`multiply' and 'lots or arrays', whilst 7 students explained it as repeated addition.
Division was explained satisfactorily as 'divide' or in terms of 'times', 2 students
did not know what it was, and 35% thought of it in terms of repeated subtraction.

Concrete materials. Most of the students (75%) just replaced the box in the
linear equation with counters and gave an arithmetical explanation of this
representation. A few students (10%) were able to give an algebraic explanation
for the equation but they did not use any materials. When the box was replaced in
the equation by x, approximately 50% of the students used counters and gave an
arithmetical explanation, whilst, as before, another 10% gave an algebraic
explanation. However, this time they represented the x by a space or a cup.

DISCUSSION

Almost 100% of the students believed that the equals sign in an unfinished
equation with a series of operations meant find the answer, and only 50% of the
students could say that the equals sign in a completed equation meant that both sides
of the equation were the same (similar to, e.g., Behr, Erlwanger & Nichols, 1980).
This means that, in subsequent learning of algebra, many students would initially
want to find the answer after the sign and at least half of them would need to learn
the concept of equivalence. As well, there was little evidence of equals being
perceived in terms of 'either direction' or 'change' (Cooper & Baturo, 1992;
Kieran, 1992)

Most of the students had sufficient understanding of the basic binary operations
or sequences of binary operations for subtraction, multiplication and addition, in
that order, to be able use them as a basis for algebra. Some students did not have
sufficient understanding of division. Two thirds of the group had sufficient
understanding of the inverses of multiplication/division and addition/subtraction.
About 50% of the sample did not understand commutativity. A significant minority
did not understand distributivity and, to a lesser extent, inverse. Only about 20-
25% of the sample had sufficient understanding of the correct order of arithmetical
operations to allow them to apply this satisfactorily to learning linear equations.
There was some evidence that students were having difficulty with the distributive
law as it applied to division in the last order convention task. According to the
literature, any inadequacies in arithmetic will cause difficulties in algebra (e.g. Bell,
1995; Herscovics & Linchevski, 1994).

More than half the sample could solve an equation with a box as an unknown
number or knew intuitively that it was like an x or y despite having no explicit
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instruction in variables. The majority of students understood what x meant in a
linear equation but less than a fifth of them had a satisfactory concept of multiples
of x. However, their understanding focused on variable as 'unknown', which is
more a prealgebra than an algebra understanding (e.g., Chalouh & Herscovics,
1988; Sfard & Linchevski, 1994). When asked to use concrete materials, most of
the students used them to illustrate their arithmetical solutions. A few had an
intuitive idea of algebra and did not need materials. Most of the students who used
materials and gave an arithmetical answer really did not need the materials either as
evidenced by their explanations for variables.

CONCLUSIONS
At this stage, the developmental sequence for the sample appears to fit well

with the two-path model in Figure 1, that is, that complex algebra develops from
binary arithmetic via both binary algebra and complex arithmetic (arithmetic with a
sequence of operations). With respect to the components of the model, the students
appeared to have some difficulties in all parts.

With respect to binary arithmetic, the students knowledge was, for the most
part, satisfactory. For instance, most students appeared able to use binary
operations in linear equations. However, the students studied need better
understanding of division and equals. With respect to binary algebra, the students
had difficulty with multiples of the unknown. They need careful and explicit
instruction in the meaning of x as a variable rather than the unknown and then in
the meaning of multiples of x (perhaps with the use of cups to represent variable).
With respect to complex arithmetic, the students need better understanding of the
order convention for a sequence of operations and to learn the equivalence meaning
of equals in an equation (perhaps with the use of a balance beam analogy). They
interpreted equals narrowly, as calling for an answer. Some students also need
instruction on the commutative and distributive laws and inverse. As well, students'
understanding of division distributivity and inverse as it applies to a sequence of
operations should be foci of further research.
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EXPLORING IMAGERY IN P, M and E.
Chris Breen, University of Cape Town, South Africa

This paper represents an exploratory formulation of theoretical aspects of the use of
imagery as a tool for aiding learning and draws on the author's work with pre-
service mathematics education students. The use of images in teaching particular
mathematical content topics is described and then contrasted with their use in the
domains of didactics and psychology. Issues of universality as opposed to personal
preference in respect to the choice of images are discussed as well as possible
methodological and therapeutic consequences.

1. Introduction
Time and Space are Real Beings.
Time is a man, Space is a Woman.

William Blake

Algebra and geometry can be contrasted by describing the paths by which we
arrive at each. So we get sound, repetition and time on the way to algebra - and
sight, imagery and space on the way to geometry.

Dick Tahta 1995

In general it is visual imagery that is used. But the dynamics of the mind when
formalised produces all the conceivable algebras. Algebra differs from geometry
in that the first describes mental dynamics while the other uses mental content,
imagery.

Caleb Gattegno, 1965:38

Hilbert (1952) identified two tendencies which he said illuminated the dual nature of
mathematics. The one was the tendency towards abstraction, which 'seeks to
crystallise the logical relations inherent in the maze of material ... in a systematic
and orderly manner'. The other was the tendency towards intuitive understanding
which stressed processes of visualisation and imagery. Generally schools have
mainly concentrated on the former and a consequence of this has led to the claim that
`a vast majority of students do not like thinking in terms of pictures' (Eisenberg
1994). This view has been challenged by the research of Wheatley and Brown (1994)

which shows that, far from being reluctant to visualise, many students use their
visualisations as a tool for meaning-making in mathematics. Presmeg's (1985) study
makes the point that, since much of this visualisation is of a private nature, students'
imagery may not be apparent in written protocols. My own experience has been that
images provide an important tool for learning.

Over the course of the past twelve years, I have been offering method of
mathematics courses for preservice mathematics teachers, and I have become aware
of the enormous potential for using images as a powerful starting point for offering
rich learning situations. While these images initially had a strong focus on
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mathematical topics and were mainly of a visual nature, I have increasingly used
different types of imagery as a learning tool for exploring concepts that range widely
over the varied dimensions that impact on the life of a mathematics teacher. In the
following sections of this paper I will attempt to describe and reflect on this
experience in order to mark out some of the considerations and issues for selection
and use of images in the teaching situation.

2. Mathematical Images?
Vignette 1. The room is darkened and the class watches a screen where a
scene is unfolding. A horizontal line segment first appears and then two
intersecting lines appear above the line and then drop down so that each
touches one end of the line segment. The intersecting lines move around
and their point of intersection traces out a circle. The film is over in less
than three minutes and when the lights are on, the teacher asks the class to
close their eyes and try to recapture some of the images from the film.
Over the period of the next week's lessons the class discusses and debates
what they saw and then begins to work on the agreed-on images.

This lesson is using one of the films developed by Jean-Louis Nicolet, a Swiss
mathematician. The methodology described is one that has been used by the author
but the use of these films has been more fully described by Tahta (1981) and
Gattegno (1981). The power of using the films is that the original image is simple -
there is no sound track to accompany the film. The students are particularly
challenged in working on what has obviously been a neglected skill - the use of
imagery - but as they talk about what they saw they enter into debate and listen. The
teacher's main task is to maintain their focus on what they saw. The challenge to act
as script writer to give the necessary instructions to ensure that the intersecting lines
trace out a circle encourages them to look for the what remains constant - the rigid
framework established by the fixed angle between the intersecting lines. As they
script the film, students investigate the same special cases that they will later find in
their school Euclidean Geometry syllabus. Each time that I have used this film's set
of images I have been struck by the enormous returns this initial investment of time
and energy gives the students.

Vignette 2. The class is invited to work on the image of a point travelling
at a uniform speed around the circumference of a circle on which a
horizontal diameter has been drawn. Their attention is drawn to the
relationship between the moving point and a point on the diameter which
is found by dropping a perpendicular from the moving point to the
diameter. The teacher works with the whole class and gets participants to
work on their images and to describe what they see. Necessary information
is provided at appropriate stages to allow the class to move further.

The image given here is simpler and even clearer than in the previous example, and
as the class works on the image they inevitably find themselves coming face to face
with the core concepts of trigonometry.
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The basic images used to introduce the area to be investigated in both these vignettes
seem to be powerful and universal, and getting students to work on them can only
lead them to the essence of a particular mathematical topic. They are essentially
economical images that give direct access to the mathematical concept and have the
added advantage of seeming to be timeless and context-free, so they should be
suitable for exploration by any group of people throughout history. The teacher
controls and focuses discussion to ensure that each student is able to reach an
inevitable conclusion. It is a powerful teaching method and a rewarding task would
be to form a collection of similar 'canonical' (relating to a specific rule or concept)
images.

It was my experience of the successful introduction of these images into my
mathematics classes that led me to explore the use of images that had generated
powerful personal insights into the dynamics of teaching into my method course
material. The next section will explore two of these images and look for similarities
and differences between these and the canonical images described above.

3. Educational Images?
Vignette 3. The students have been involved in a role play situation that
concerns an incident of poor discipline in the classroom. The teacher's
authority has been directly challenged by one of the class and the students
have begun discussing various options that would be open to them as
teacher. At this point the lecturer gets the students to break out of role and
offers them an image taken from Aikido. The students get into pairs and
stand facing each other. They push against each other by making contact
with the fists of their outstretched right arms. They act out three
possibilities. In the first they keep pushing against each other as hard as
they each can and the strongest wins after a lengthy struggle. In the
second, the teacher stops pushing suddenly and the student's fist strikes
the teacher on the chest with force. In the third option the teacher steps
aside quickly and, maintaining contact with the student's fist, allows the
student's energy to pass him by. The students change roles and re-enact
all three possibilities again. They discuss the implications of these options,
and then return to role to discuss the teacher's options in the discipline
problem.

What sort of image is this? The image of the teacher choosing not to engage at the
moment and to allow the student's negative energy to pass him by in a controlled
and guided way is certainly a personally powerful image. The image also seems to
travel well in that it was also used in an English university setting and the students
seemed to have no difficulty relating to the image. This suggests a universality in the
image. Furthermore, an unsolicited comment after the session where a student said
that he had learned more from the activity than he had from the full term's lectures
on classroom management testifies that at least for him the image was economical.

BEST COPY AVAILABLE

2 -99



But does the image lead inevitably to a specific rule in such a way that it can be
called canonical?

Vignette 4. The class is organised into pairs with partners facing each
other. To the accompaniment of gentle music the students are asked to
assign one partner to be the leader. The follower has to mirror the
movements of the teacher. After a while the roles of leader and follower
are reversed and the 'mirror dancing' activity continues to music. The next
step is to continue the task, but the challenge now is to create a smooth
`dance' where the lead changes from one to the other without jumps.

Again the activity and its implications are discussed in a non focused way.
The pairs are then given a remedial teaching situation to role play where
the teacher tries to find the point of concept block by asking questions.
They are asked to hold the last mirror dance image in mind as they work,
so that, once the teacher asks the question she passes the leadership role
over to the student so that the student can try to teach the teacher about
his perceptions and understandings.

This is not an easy exercise to describe but the aim is to follow Kierkegaard's (1938)
advice where 'to be the teacher you have to be a learner and understand what it is
that he understands and in the way that he understands it'. The image of changing
roles from follower to leader has been powerful for the class particularly when the
person holding the pen is described as the 'leader'.

It seems that one of the differences between the images that were offered in the
previous section and the above two images is that the images were such that students
in the former cases reached the same endpoint - geometric and trigonometric insights
that could be shared and agreed upon. In the latter two cases presented in this
section, although the images may be universal and easily accessible to the students,
the interpretation of these images and conclusions drawn may be open to dispute. For
example, a method student made the following comments in his course journal:

The punching/blocking exercise also gave me problems. Is letting it flow past you
really helping the other person? I prefer open confrontation between two people,
not necessarily in public though. We turn the other cheek so as not to give
confrontation to those who seek it, but if we love someone we will take care to
instruct them in what is right. I aim to go the extra mile with them in love so as to
dissolve their desire for conflict with me.

Different interpretations such as this do not seem to have diminished the impact of
the image. There is a universality in these images that has provided students over the
years important access to the concepts addressed. The role of the methodology used
in presenting these images has been to increase possibilities for individual action
rather than formulate specific 'rules' for action. A great deal is left open for personal
interpretation and further reflection is encouraged, but not forced or mediated,
through the use of journals. So the earlier use of the word canonical to describe the
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images in the mathematical section also refers to the outcome of working on the
image. The images used in this section are personal in the sense that they have been
selected from the repertoire of images that have had a significant impact on the
lecturer. The extent of their universality can only be determined through their use in
different contexts, and the existence of alternative and possibly more appropriate
images depends on the contributions and offerings of the recipients. What is also
clear is that the use of an open-ended methodology with these images allows
students to impose their own personal belief systems onto their acceptance or
rejection of the implications of the interpretation of the images in a way that was not
possible with the simpler and more directed canonical image from the mathematics
section. For example, one student wrote the following in his journal.

Love will cause you to be patient with the pupil, not to threaten and intimidate
them. Love will make you strain to find more imaginative and effective Ways of
teaching the children. Love will make you humble and willing to learn yourself.
God is Love and yet God is a leader. Therefore I reject a leaderless state as being
more desirable.

This is much more a comment on the inner world of the student himself than on the
insights that the presented image was intended to provide about classroom
methodology, and leads directly to the third strand of this paper.

4. Psychological Images?
As lines so loves oblique may well
Themselves in every angle greet.
But ours so truly parallel,

Though infinite can never meet.
Andrew Marvell, from: Definition of Love

This extract from one of the metaphysical poets linking the realm of the psyche to
mathematical ideas is intended to signal a challenge to the neat summary and
categorisation that I have attempted to draw in the previous two sections. Part of the
problem with the use of images in education that I have described above, is that they
move into the messy business of life and hence the teacher approaches them more
circuitously and leaves room for differing interpretations, while the earlier canonical
mathematical images appear purer and allow the teacher to maintain a directed focus
on the outcome of the exploration. There are various suggestions in the literature that
it might not be so easy.

Vignette 5. A one-to-one situation: A girl is asked to close her eyes and to
picture a screen in front of her eyes. She then pictures a circle on that
screen as well as a green line which initially stands outside the circle. She
is then asked to picture the green line moving from one side of the circle to
the other, and is told that when the line crosses the circle it becomes red.
After she has spent some time describing her images, she is asked what
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colour the line is when it touches the circle? She replies "Oh dear, it's a
helpless man".

This scene, described by Tahta (1970), allows us to enter the 'real world' of a pupil
and to see the way in which the line has taken on its own identity. This takes us into
the world of psychoanalysis, where symbols can act as condensations for a variety of
other initially hidden meanings. These thoughts, associations and feelings will
inevitably vary from person to person. Thus symbols are often charged with some
personal meaning that is not apparent from the initial form of presentation of the
symbol. In the above case the mathematical symbols being invoked triggered such a
charge in the girl.

I had a similar experience during a course at Exeter in the seventies when we were
shown a film based on Poincare's work on n-dimensional space, where various
differently coloured lines were moving around with increasing rapidity and chaos -
only to reach some stability when a new colour (dimension) was discovered. When
asked to give an account of the film, I did not immediately relate the film's contents
to mathematics, but rather identified it with the frenetic and apparently hopeless
struggle of the people of South Africa for freedom from apartheid. I can remember
feeling rather hesitant at giving this interpretation to peers in a mathematics class,
and, after it received a very subdued reception, I hurriedly moved on to try to find
some more appropriate mathematical insights.

In attempting to address the same Poincare's question as to why so many people fail
at mathematics, several writers have begun to explore the possibility that, in some
cases, this failure may have psychological roots. Tahta (1994) quotes the work of
Weyl-Kailey, a teacher and therapist, who describes a depressed adolescent for
whom the answer to 5 2 was always 2. When he was asked to display this problem
by using his fingers, he would be unable to sustain an answer of three and had to fold
another finger down. Weyl-Kailey suggests that this was a way in which he kept out
of the family conflict (since 3 is associated with the family triple - mother, father and
child). Pimm (1994) describes the startling evidence obtained by Melanie Klein from
her comprehensive survey of the role of the school in the libidinal development of
children. In analysing a particular case, Klein is led to conclude that the tendency to
overcome the fear of castration seems in general to form one of the roots from which
counting and arithmetic have evolved. Similarly, Maher (1994) believes that the
experience of actually doing geometry is the quintessence of mathematical activity
and that the affective power of geometry comes from the mirror phase of personal
development (Lacan: the child's first gaze at its whole self in the mirror; and
Winnicott: the child's reflection in the eyes of its mother gazing at it).

This brief sampling from literature, together with the two examples given earlier,
suggests that in some cases mathematical symbols provide a trigger that may
uncover hidden condensations that may be connected with disturbed incidents or
unresolved conflicts. It also appears that there might be a reciprocal relationship
between the symbol and its condensation.
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For Lacan, mathematics is not disembodied knowledge. It is constantly in touch
with its roots in the unconscious. This contact has two consequences: first, that
mathematical creativity draws on the unconscious, and second, that mathematics
repays its debt by giving us a window back to the unconscious..[...] so that doing
mathematics, like dreaming, can, if properly understood, give us access to what is
normally hidden from us.

Turkle 1992, p.240

The possibility exists that working more dynamically with geometric symbols as
images, and at mathematics in general, might contribute to the development of the
inner self through the resolution of psychic conflicts by symbolic means.

5. Reflecting on Canonical and Universal Images
This brings me back to the canonical mathematical images that were described in
section 2. As presently set up, the students are being asked to direct a narrow and
focused gaze on the symbols and to exclude all hidden meanings. The methodology
of presentation specifically excludes the possibility of straying from this path. In
contrast, in presenting the images described in section 3, the task is left open-ended
enough for students to explore whatever response the image triggers. In the
situations described this is likely to impact on their outer and inner lives. Section 4
presents some evidence that suggests the possibility that uncovered conflicts may be
at the root of a student's fear of mathematics and also that work with mathematical
images may enhance the development of the student's inner self. The question that
needs to be asked is whether teachers need to take responsibility for possible charges
that are triggered by the mathematical symbols by allowing the nature of the
questions asked to be sufficiently open to allow this possibility of exploration to be
regarded as valid.

In addressing this question it is important to realise that the examples in section 4
came from one-to-one situations and especially that the psychoanalytic situations
were conducted by a trained professional. It is unlikely that teachers will have the
training or the time to work on an individual basis with any of their students, and
should thus not be expected to work explicitly on acting in a therapeutic way.
However there seems to be some advantage in opening the possibilities of
methodology to allow differing interpretations of images (such as in my reported
Exeter experience) to be accepted as valid for contribution to class situations. In
doing this, teachers will be allowing students to work on their outer and inner
realities as they work with mathematical symbols. Present evidence suggests that in
working this way, students may well be engaged in an implicit sense-making and
healing process.

Finally, it seems as if it might be useful to re-look at the benefits of the more focused
methods used in working with the canonical mathematical images when working
with the educational images. It appears that there is too much freedom given for
personal interpretation and there may well be canonical possibilities that need to be
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more directly explored. The following student's comments on the leading/following
activity stands in contrast to the earlier 'God is Love' extract at the end of section 3,
and in this case the contradicting interpretation does not seem to stem from a
differing belief system. It seems as if a clearer and more directed methodology
would help clear up ambivalences about intended interpretations.

The point was not to promote a leaderless state, but to demonstrate/experience a
situation where one can move freely and intentionally between the leading and
following states. I believe that until you are able to do this your Sunday school
children will not feel comfortable in freely participating in your lessons.

Further reflection and research on the use of canonical, personal and universal
images as a teaching tool is obviously called for.
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This study identified frameworks in teachers' analyses of children's solutions to
mathematical problems and monitored changes in framework use across the first
year of implementing cognitively guided instruction. In May 1995 and June
1996, participants (22 female teachers in grades K-3) completed transcript
analyses of a dialogue between a 1st-grade teacher and 3 students. Responses
were categorized by 5 frameworks: developmental, taxonomic, problem solving,

curriculum, deficiency. The curriculum framework was used most often,
followed by the problem solving and deficiency frameworks. Across the two
administrations, use of the curriculum framework increased, and use of the
problem solving framework decreased.

In implementing cognitively guided instruction (CGI), teachers learn to assess
students' thinking (primarily through listening to students explain solutions to
mathematics problems) and then use that knowledge to plan instruction
(Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Fennema, Carpenter,
Franke, Levi, Jacobs, & Empson, 1996; Fennema, Carpenter, & Peterson, 1989).
The information gathered by teachers about students would seem to be highly
influenced by a teacher's frameworks for human development, curriculum, and
mathematics, since these frameworks are filters for deciding what aspects of
students' explanations to attend to and what aspects to ignore.

As part of a five-year inservice project to help teachers learn to use CGI, we
are gathering a variety of data on teachers' beliefs, interpretations of children's
solutions to mathematics problems, and instructional decision making. In this
paper, we analyze the frameworks that seemed to have been used by project

participants as they analyzed a transcript of interactions between a first grade
teacher and three of her students. In the transcript the students explained their
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solutions to word problems. In particular, we focused on changes in these
frameworks from the beginning of the project to the end of the first year of
implementing CGI. Earlier we reported a detailed analysis of participants' initial
interpretations of the transcript (Bowman, Bright, & Vacc, 1996). In this paper
we extend that analysis by identifying more explicitly the frameworks that
participants seemed to bring to the task of interpreting students' mathematical
thinking and by monitoring use of frameworks during implementation of CGI.

CGI has been repeatedly described and evaluated (Carpenter, et al., 1989;
Fennema, et al., 1989; Fennema, Franke, Carpenter, & Carey, 1993; Fennema, et
al., 1996; Peterson, Fennema, Carpenter, & Loef, 1989). Briefly, CGI is an
approach to teaching mathematics in which knowledge of children's thinking is
central to instructional decision-making. Teachers use research-based knowledge
about children's mathematical thinking to help them learn specifics about
individual students and then to adjust instruction (e.g., sequencing of types of
mathematical problems, kinds of numbers used in problems) to match students'
performance.

Method
Participants and Instrument

The study was conducted during the first year of a five-year teacher
enhancement project (NSF Grant ESI-09450518) in which primary-grade
teachers are being given opportunities to learn to use CGI as a basis of
mathematics instruction. Teachers and mathematics educators from different
regions in North Carolina formed five teams; each team is composed of 2 teacher
educators (i.e., team co-leaders) and 6 primary-grade teachers. The data
reported here come only from the primary-grade teachers.

All project participants completed a transcript analysis instrument. The
instrument contains three teacher-and-student dialogues (Mac, Tom, and Sue) that
occurred while a group of 23 first-grade students worked individually on 5
written problems. The teacher interacted with Mac after he had completed the
problem: If frog's sandwiches cost 10 cents, and he had 15 sandwiches, how
much did frog's sandwiches cost altogether? As the teacher moved to Tom's
desk, Tom was working on the same problem. The teacher's interaction with Sue
occurred as she was working on a different problem: Frog had 15 sandwiches.
If each sandwich cost 5 cents, how much do all the sandwiches cost altogether?
After reading the dialogues, participants were asked to state their conclusions
about the three children's (a) levels of thinking and (b) mathematical
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understanding. Participants were also asked to identify specific evidence from
the transcript that was important to them in making those conclusions. No
definition for the phrases "levels of thinking" or "mathematical understanding"
were asked for or provided during the administration of this instrument.

Transcript analyses were completed during a morning session on the first day
of the project's introductory workshop in May 1995 and again on the first day of
the second summer's workshop in June 1996. The instrument was administered
in a whole group setting, but participants worked individually, without
discussions. Complete data were available for 22 teachers: 5 kindergarten
teachers, 7 first-grade teachers, 4 second-grade teachers, and 6 third-grade
teachers. All teachers were female.

Between the two administrations of the instrument, teachers participated in
two formal workshops (3 days in May 1995 and 10 days in July 1995) and began
CGI implementation during the 1995 -96 school year. During 1995-96 each team
met after school approximately once a month to discuss their progress, each
teacher was visited approximately once a month during mathematics instruction
by one of her team's co-leaders, and each teacher was visited during mathematics
instruction once each semester by project staff. The purpose of the visits was to
support teachers as they struggled with implementing CGI; visits were never used
to "evaluate" teachers.
Analysis of Responses

First, content analysis on verbatim written responses was completed manually.
Responses were carefully dissected, fragments grouped by content, and category
labels were identified for clusters of comments. Seven categories of responses
were created (Bowman, et al., 1996). Second, a variety of frameworks that
might reflect the ways that teachers analyzed the transcript were considered.
Evidence for each framework was discussed by the authors, until agreement was
reached on the nature of evidence that would be accepted for categorizing
responses according to these frameworks. Five frameworks emerged, and
teachers' responses were then re-categorized according to these frameworks.

The five frameworks, along with brief quotes from teachers' responses to
suggest the use of each framework, are presented below:

1. developmental (e.g., Piaget): "Mac ... solved the problem in an abstract way
... Sue needs to work on a very concrete level."

2. taxonomic (e.g., Bloom): "[Sue] has a grasp of some mathematical concepts
but she is unable to apply the skills."
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3. problem solving (e.g., Polya): "Mac and Tom understood what the problem
was asking.... Sue does not know what she needs to find out."

4. curriculum (e.g., grade-appropriate content knowledge): "[Mac] knew to
add a 0 at the end of the 15 because he was counting by 10's." "[Mac's]
understanding of math goes beyond what one would expect of a first
grader."

5. deficiency (e.g., lack of mathematical prerequisites): "Sue has not mastered
the concept of skip counting."

In North Carolina the State Board of Education has specified mathematics
objectives for each grade level. Elementary teachers are held responsible for
teaching the mathematics objectives assigned to their grade levels; teachers are
usually very cognizant of the objectives for their grades and for the grade that
immediately follows. Consequently, the curriculum framework was expected to
be commonly used in interpreting children's thinking.

Results
Teachers' Rankings of Children's Thinking

The teachers almost universally agreed that Mac and Tom exhibited higher
levels of thinking and better mathematical understanding than Sue. Teachers did
not always explicitly order the three students by their levels of thinking, but the
comments universally referenced greater understanding by Mac and Tom than by
Sue. Often, teachers suggested that Mac exhibited higher levels of thinking than
Tom, though sometimes teachers' comments left the impression that they thought
that Mac and Tom were at about the same level of thinking.

Teachers often defined "levels of thinking" either relatively as higher level
thinker versus lower level thinker or advanced thinker versus less advanced
thinker or absolutely in terms of a developmental framework. Less precise
descriptions included "good thinker" and "independent thinker." In the first
administration of the transcript analysis, there was consensus among the teachers
that use of concrete objects necessarily indicated lower level thinking while use of
mental math and visualization showed higher level thinking.
Teachers' Frameworks

The categorizations of teachers' apparent frameworks for interpretation of
students' responses are given in Table 1. On the two administrations, about half
of the teachers were classified as using only one framework (9 and 11 teachers,
respectively) and about half were classified as using multiple frameworks (11 and
10 teachers, respectively). In each administration one teacher's response was too
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brief to be classified, though the two instances were for different teachers.
Because of the classification of multiple frameworks for some responses, the sum
of the percentages for some grade levels is more than 100%. Interestingly, all of
the grade K teachers were classified as using only one framework on each of the
administrations, while all other teachers were classified as using more than one
framework on either the first or the second administrations (or both).

Table 1. Percentages of Teachers (First Administration/Second Administration)
Categorized for Each Framework

Framework

Grade
Total

(n=22)
K

(n=5)
1

(n=7)
2

(n=4)
3

(n=6)

Developmental 00 / 00 29 / 14 00 / 00 00 / 17 09 / 09

Taxonomic 00 /00 00 / 00 25 /25 17 / 00 09 / 05

Problem Solving 60 / 20 43 / 29 50 / 25 17 / 17 41 / 23

Curriculum 20 / 40 57 / 86 75 / 75 67 / 83 55 / 73

Deficiency 20 / 40 29 / 43 25 / 50 67 / 17 36 / 36

In both administrations, the curriculum framework seemed to be the one most
often used by teachers, with the problem solving and deficiency frameworks next
most often used. The general "psychological" frameworks were not frequently
used. From the first to second administrations, the curriculum framework was
more frequently used, and the problem solving framework was less frequently
used. The deficiency framework was used about equally often in the two
administrations. In each of grades K, 1, and 2 the teachers collectively exhibited
use of the same frameworks in both administrations.

Twelve of the teachers were classified as using a common framework in both
administrations. In 9 instances the common framework was curriculum (one at
grade K, three at grade 1, two at grade 2, and three at grade 3), in 2 instances the
common framework was problem solving (one at grade K and one at grade 1),
and in 1 instance the common framework was developmental (grade 1).

From the first to second administrations, most teachers either "gave up" or
"took on" one or more frameworks; that is, for each teacher, a framework
identified in the first administration was not identified in the second
administration, or a framework identified in the second administration was not
identified in the first administration. It must be remembered that because of the
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identification of multiple frameworks, some teachers were classified as giving up
or taking on several different frameworks. In particular, 1 teacher gave up the
developmental framework and 1 teacher took it on; 2 teachers gave up the
taxonomic framework and 1 teacher took it on; 7 teachers gave up the problem
solving framework and 3 teachers took it on; 3 teachers gave up the curriculum
framework and 5 teachers took it on; and 8 teachers gave up the deficiency
framework and 8 teachers took it on. Particularly striking is the fact that none of
the teachers who used the deficiency framework on the first administration used
it on the second administration.

Discussion
The categorization of frameworks undoubtedly underestimates the actual use

of multiple frameworks by teachers. The classifications were made only on the
basis of what the teachers wrote; their thinking is certainly more complex than
their writing. We are unsure how to interpret the fact that the only teachers who
were classified as using a single framework on both administrations were exactly
the teachers in grade K. Perhaps this reflects the limited amount of content
specified for grade K in the North Carolina curriculum. Further investigation is
warranted on the relationship between use of frameworks and teachers'
knowledge about curriculum.

Not surprisingly, teachers focused most frequently on the curriculum
framework; this is the framework that is most likely to be familiar to all teachers
in North Carolina. The "stability" of the use of the curriculum framework across
administrations (i.e., 9 of the 12 teachers who used this framework on the first
adminfstration also used it on the second administration) may reflect the deep
familiarity of the teachers with the state curriculum. Further study is needed
about the stability of use of frameworks and teachers' understanding of the
knowledge underlying each framework.

The problem solving framework can, at some level, be thought of as being
related to teachers' view of curriculum, at least as instantiated in textbook. Over
the past 10-20 years, many elementary school textbooks have used a set of
"stages" for problem solving derived from Polya's (1945) four steps for problem
solving: understand the problem, devise a plan, carry out the plan, look back. It
is not surprising, therefore, that teacher's would think at least initially about these
stages in trying to interpret students' solutions to word problems.

It is encouraging, however, that across the first year of implementing CGI,
teachers would put more emphasis on students' demonstration of understanding of
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specific content (e.g., as instantiated in the state curriculum) rather than on
generic stages of problem solving. Teachers in the project seem to be trying to
understand the specifics of students' solutions rather than generic thinking skills.
It would be interesting to study the relationship between teachers' knowledge of
their students and the teachers' use of particular frameworks.

The use of the deficiency framework might also be interpreted as supporting
the development of teachers' skills at understanding specific mathematical
thinking of students rather than generic thinking. But we are not able to interpret
the fact that the teachers who used the deficiency framework on the first and
second administrations are totally different teachers.

In light of the small numbers of teachers in the grade-level groups, the
differences in collective use of frameworks across these groups are probably not
important. It is possible, however, that there may be some influence of the
increasingly broader range of content objectives from grades K to 3.

On average, each teacher either gave up or took on almost two frameworks;
the range in number of changes was from 0 to 4. This seems like a substantial
amount of change and might reflect the changes in philosophy of mathematics
teaching that project participants are likely to have made during their struggles to
implement CGI (e.g., Fennema et al., 1996). It would be interesting to
investigate whether similar changes in use of frameworks might occur either
independent of inservice programs or along with other kinds of inservice
programs.

We will continue to follow the project teachers' interpretations of the
classroom dialogue. One pattern that we have noticed in their explanations is that
in the second administration there were a variety of "prescriptive" comments,
some related to the children and one related to the teacher.

"[Tom] got the right answer but could use more experiences with
money."
"Sue needs more practice with simpler problems using 10's or 5's."
"Teacher should have waited to see what she [Sue] was going to do."

These kinds of comments were completely absent in the first administration. We
expect that as the project progresses, more and more often teachers will
"spontaneously" move from assessing children's thinking to prescribing needed
changes in instruction. Further, we expect that teachers will increasingly base
their assessment on identification of specific mathematical strengths and
weaknesses of the children. This suggests that there might also be an increase in
their use of the curriculum and deficiency frameworks.
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THE STORY OF SARAH:
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Using an enactivist methodology (Reid, 1996) one classroom incident, Sarah's story, observed
through our work as teacher-researchers, is repeatedly analysed. The paper tells the story, through
three critical stages, of the developing complexity of our theories-in-action (Schein, 1991) over a
period of 18 months. These theories-in-action are related to the way in which teacher and student
purposes (Brown and Coles, 1996) act as organising foci through which intuitive ways of
knowing (Bruner 1974, Fischbein 1982, Gattegno 1987) are accessed. The parallels between our
learning, as teacher-educator and teacher, and the learning of our students are marked. As
'narrative authors' (Clandinin and Connelly, 1991) we aim to share our particular re-tellings of
experience; the general can be found through the active participation of the reader through
resonance and re-working of these stories in their own practice.

In this paper we will use one classroom incident, 'Sarah's story', as a vehicle to explore our

developing theories-in-action (Scholl, 1991) as we, a pair of teacher-researchers, worked together

and kept returning to this incident in our reflections over a period of 18 months. We work within

what Bruner (1990) called a 'culturally sensitive psychology':

`(which) is and must be based not only upon what people actually do but what they say they
do and what they say caused them to do what they did. It is also concerned with what people
say others did and why ... how curious that there are so few studies that (ask): how does
what one does reveal what one thinks and believes.' (p16-17)

As teachers in a classroom, so much of our behaviours in response to what the children say and do

are seemingly automatic and yet deal with a complex space. Our work looks at the detail of

practice, what we do, using the strategy of giving 'accounts of' (Mason, 1994) significant

incidents for us and reflecting on, or accounting for those incidents to probe our motivations and

implicit beliefs and theories (Claxton, 1996). Here, the paper tells the story of our developing

theoretical frames which help us not only to articulate our interpretations of events but also to work

on our practice. Mason (1996) stresses our sense of the transformative aspects.of our work:

`the overt product of research is some supported assertion(s). A covert product of research is
a transformation in the perspective and thinking of the researcher. Undoubtedly, one of the
most significant effects of any piece of research in education is the change that takes place in
the researcher.' (p58)

It is with these changes that the story which we tell in this paper is concerned. Alf Coles is a

teacher of mathematics to 11-18 year olds in the UK and Laurinda Brown a mathematics teacher-

educator. We work together in Alfs classroom, each with our own questions and agendas to

which we are true and use an enactivist methodology where:
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`we work with a common collection of data, about which we each reach conclusions related
to our own interests and theories ... The analysis of data in enactivist research can also be
seen as a process of coevolution of ideas. Theory and data coemerge in the medium of the
researcher. The necessity of theory to account for data results in a dialogue between theory
and data, with each one affecting the other. As enactivist researchers we attempt to make use
of this interaction to transform the analysis of data into a continual process of change and
encourage this process as the mechanism of our own continuing learning.' (Reid, 1996)

Laurinda's questions are concerned with ways of working with teachers in training and those new

to the profession to develop effective practice. Alfs questions are concerned with developing his

own practice as a teacher and the learning of mathematics of the students in his classroom.

Inevitably there are many overlaps and parallels in our concerns and developing theories. These

commonalities interest and motivate us. We use, for ease of the reader of this paper, the first

person singular where classroom incidents are described and where there are strong resonances in

our work.

From looking at one instance of a mathematical pattern it is possible to see the general structure but

perhaps not be aware of how to generalise through an awareness of sequences and patterns. As

teachers we recognise that we have more connections available to us within the mathematics of the

classroom than our students. We see our task as increasing the complexity of the mathematics

available to the students within the problems on which they work. It is important therefore to be

aware of what is not available to them and work with that. In the same way we offer our

interpretations, in increasing complexity, of one classroom incident. These interpretations have

developed through time in relation to awarenesses of patterns within our teaching and are therefore

general for us even though we have chosen not to share a range of other supporting stories. We are

exploring the possibilities inherent in the assertion (Brown, S, quoted in Pimm, 1987) that:

`One incident with one child, seen in all its richness, frequently has more to convey to us
than a thousand replications of an experiment conducted with hundreds of children. Our
preoccupation with replicability and generalisability frequently dulls our senses to what we
may see in the unique unanticipated event, that has never occurred before and may never
happen again.' (p194)

What follows, after a brief background to the incident, is an account of what we call 'Sarah's

story'. We then give three interpretations of this story to tell another story, through three critical

stages, of our developing theories-in-action, our 'transformations in perspective' over 18 months.

This is how we talk about our practice. As a reader, what of this is true for you? Certainly take

some time before reading our interpretations to work on where the resonances lie for you in

reading the story and what you are reminded of from your own experiences and practice. What

ideas stay with you from the interpretations? What generality can you see in these particulars?

1 2 2
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Background

The mixed ability class of 11 and 12 year olds were in the middle of an investigation related to

perimeter and area. They had all started with the problem of finding the rectangle with the largest

area, given a perimeter of 12cm. Having solved this starter problem students were encouraged to

try other perimeters, begin looking for patterns and start generating and working on their own

questions. At the beginning of one lesson we shared what they had found out so far:

The largest area for any different perimeter is a square.
- To draw a rectangle with a perimeter of an odd number you must use halves.
- Odd sides means an odd area.

Even sides implies an even area.
Divide the perimeter by 4, then times by itself, what you get is biggest area.

These statements were written on the board as they came and no explanations were asked for or

given. When the list was completed, I added that I had been thinking about the first question and

wondered whether it was possible to find the perimeter of a square when the area was 50cm2.

There was an invitation to stay with what they were working on or incorporate any of these ideas

into their investigations. The class continued to work individually or in small groups.

Sarah's story

After some time Sarah, who had been working on the 50cm2 problem, came up to me stating that

the perimeter must be 4cm. I drew a square with area lcm2 on the board with is marked around the

perimeter (see Fig 1) and waited for some response. When none came I asked her how she had

f'33
I said, 'OK, times by itself' and wrote: 4 --P

She quickly replied '16' having had experience of writing functions in this way, and I wrote 16

next to the arrow, followed by: 6 --P

worked the 4cm out. Sarah talked about 'reversing the rule divide the

perimeter by 4 then times by itself to get the biggest area'. I started

writing the flow diagram for this as she spoke and Sarah reversed

`times by itself' to 'divide into itself' and 'divide by 4' to 'times by

4'. This gave 50 / 50 x 4 = 4.

The answer '36' again came quickly. I offered: -49

She responded with 7 immediately. We agreed that this had not been 'divide into itself' but what

was it? She went off to work on this.
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Interpretation 1: It's not the answer that is wrong!

Why did Sarah come up to me with her offer of 4cm for the perimeter of the square of area 50cm2?

The question was posed by me and perhaps Sarah was wanting to show that she had a solution? Or

perhaps she was aware that the perimeter could not be 4cm and she was wanting to sort this out?

We cannot know. We are not concerned with Sarah's possible motivations. What we keep coming

back to is what our actions as teachers say about what we think and believe.

Reflecting on what happened I did not dismiss Sarah's offer of 4cm as being wrong, nor tell her

what the answer should be, nor immediately try to understand her thought processes. I offered a

square with perimeter 4cm (Fig 1) which was not responded to. I also did not try to find out why

Sarah did not respond. It would be possible to tell stories about why Sarah said nothing. Perhaps

she was already aware of this conflict? Perhaps she could not connect my image with her way of

getting to the answer of 4cm? I let this go since even a directed question to try to get Sarah to work

out the area of the square with perimeter 4cm seems to be taking Sarah further away from her own

thoughts.

Why not ask straight away how she had got 4cm? The initial offer had come from sharing my own

understandings of what a square of perimeter 4cm would look like. This was creating a conflict for

me in that how could a square of perimeter 4cm have an area so much greater than one? My prime

interest is not in how Sarah got 4cm at this stage. In working with students interactively, if I

recognise that I do not accept what has been said I share what seems to be creating my problem.

Given that this image did not take us any further I needed some more information so that another

offer might be possible. I now asked how she had got 4cm. This provoked an energised statement

from her 'reversing the rule divide the perimeter by 4 then times by itself to get the biggest area'

which seemed to be saying 'This has to be true even though it feels odd'.

Here the student is convinced of their world. I have something to offer again which comes from

my awareness that times by itself and divide into itself are not inverse operations. The offer comes

in a form where I am not telling. I am offering objects in the world for her to adapt to. She has a

strong awareness of inverse (doing and undoing) but, as it turned out, needed to extend those ideas

to cope with squared functions on the domain of positive integers forced by the context. At a later

stage she might meet a context where c-49 might demand a different response.

We have developed a practice of never commenting on answers as being wrong since they have

arisen from the student making sense of their world. We work with the process offering more

complexity for the student to adapt to in some way which can include our images which are in

conflict in some way with theirs.



Interpretation 2: 'It's not the answer that is wrong!' as a purpose

What is motivating Sarah to come and interact with me? How do I know what to respond?

No two events or responses are ever quite the same in the classroom. In contrast, when I begin to

work on a new piece for the piano I first attend to the fingering in detail and practise difficult

transitions. Each time I play the piece the fingering will be the same; eventually the fingering is

automatic. There is little in the detail of our practice of the teaching and learning of mathematics

which is exactly repeatable in this way; no one has come up to me With Sarah's question before.

What does seem repeatable is on the level of what we have come to call `purposes' (Brown and

Coles, 1996). For instance, at the start of a topic or theme how can we find out what the individual

students in our class know and where they find problems so that we can make decisions about

what to offer? We, as teachers, would have a whole variety of possible strategies which we could

choose to adopt to carry through such a purpose. Which one we use would depend on the

individual circumstances of the class.

In Sarah's story we recognise our intention of not commenting on answers as being wrong and the

consequent actions as a purpose. We are not simply telling what is right from our own viewpoint

but are moving away from the right/wrong dichotomy into something richer and more complex.

Purposes help us to deal with the decision-making necessary in the face of the complexity of the

classroom. I did not know that these particular circumstances would arise, but, working through a

filter of It's not the answer that is wrong!' allowed me to be aware in the moment of my

behaviours in the face of Sarah's statements. The purpose is the distillation of a complex web of

intentions, thoughts, past experiences and actions which inform my practice. In the moment I am

staying with what Sarah is saying and responding to that.

In preparation for the lesson in which the Sarah incident occurred we had been working with the

purpose of `sharing responses'. Alf, as a teacher, was interested in extending his repertoire of

strategies to explore the richness of responses among the students. Laurinda was working with

how a model for teacher development, related to purposes, functioned in allowing Alf to work on

this. As the students in the story worked on their own questions, or ones which had been written

on the board, they too were making decisions about where to take their investigations. They were

exploring an increasingly complex field of ideas about area and perimeter.

These parallels were striking for us. Sarah was working with energy on this mathematics. She was

`mathematising' (Wheeler, 1975). Her purposes seemed to be related to sorting out relationships

between area and perimeter at a global level but, as the story proceeds, within that purpose she is

identifying other aspects to focus on such as `what's the perimeter of a square with area 50cm2?'
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and 'what's the opposite of times by itself?'. What could be motivating Sarah is the fact that these

are her questions which she has chosen to engage with within the wider purpose set to the class by

the teacher.

There is a parallel between our ability to move between purposes such as 'sharing responses' or

'it's not the answer that is wrong!' related to the range of behaviours to carry through those

purposes in action and Sarah's ability to move between her purposes within mathematics and

accessing the techniques which she needs. What seems important for all the purposes for teachers

and students is the way they motivate learning. They are removed in some way from the current

action but provide an organising strand, often over a long time, for learning through experience

and also support the decision making necessary for the individual to act in the moment.

Interpretation 3: 7 is instinctual

How can students and teachers in these new situations make decisions so fast? Sarah responded

with 7 immediately. I offered the square (Fig I) and moved into working with the squaring

function immediately. When we first started to talk about Sarah's story we referred to the response

of 7 as being instinctual. What allows us to act so quickly in the face of complexity? There is time

for neither analysis nor reflection.

We kept returning to thinking about Sarah's response of 7 whilst reading about intuition and

analysis. We recognise two uses of intuition as discussed by Bruner (1974) and Fischbein (1982).

One use develops through previous learning experiences (including analysis) where frequency of

exposure educates a seemingly automatic response. We have come to call examples of this use

'educated intuitions'. For instance: The shop assistant asked for 5p to help give change. I reached

into my pocket and took out, by feel, a coin and gave it to the man who registered surprise. I then

noticed that I had given him a new 10p coin which was similar to a 5p coin which had gone out of

circulation over ten years earlier! Those experiences of handling the old 5p coin had created an

educated intuition which was still available, inappropriately in this case because of a change in the

environment. Another example would be finding myself dropping a perpendicular to a line from a

point when solving a problem. This automatic behaviour has arisen through recognition, over time,

of its importance in a range of contexts and a gradual condensation (Fischbein, 1982) through use.

Sarah's 7 is not an educated intuition. There is still work to be done. She had not said 7 in

response to 49 by using 'divide into itself'. It was not a condensation of past experience, but

seems to have been provoked by the experiences immediately preceding its articulation. The

response was, nonetheless, immediate. She might have some educated intuitions related to

multiplication facts which were used in the moment, but she now has something to work on in

relation to questioning 'divide into itself. We recognise this as an example of the second use of



intuition which provides motivational energy, whether in the sense of Bruner's (1974) 'invitation

to go further' or Fischbein's (1982) 'global perspective' or our preferred working definition of

intuition as a way of knowing from Gattegno (1987):

`needed when encountering complexity, and one wants to respect it, to maintain it ... Once
we become aware that we can function as an intuitive person, we find that all (other ways of
knowing) are renewed and capable of serving us as they never have before.' (p79)

It was as if Sarah surprised herself by her response and then went away to work through what she

had done using analysis and other ways of knowing. She knew something she did not know she

knew.

My response to Sarah's first statement that the perimeter of the square was 4cm was immediate and

in the moment. In parallel with the story above there was no time for reflection or analysis. I knew

that which I do not know that I knew. The purpose of 'It's not the answer that is wrong!' acts as a

mechanism through which the intuitions, both holistically and through educated intuitions, can

operate. My attention being on looking for that which I do not understand or which makes me

uncomfortable when talking with a student is a necessary precondition to noticing what is there and

then acting. Over time the behaviours happen seemingly automatically. The decision-making is

simplified whilst I am respecting the complexity of the situation, trusting that I will act. I become

an intuitive practitioner both acting in the experience and learning from it since I am allowing the

world to change me as much as I change the world.

Damasio (1994) (thanks to David A Reid for pointing me in this direction through an unpublished

paper) writes on how complex decision-making is facilitated by feedback from the brain's

emotional centre. We are beginning to explore links with this work and the relationships between

intuitive and analytical ways of knowing. The crucial elements here are the speed at which the

decisions happen and the richness of possible responses developed through experience. We

currently have an image of purposes supporting our decision-making as intuitive practitioners in

the classroom allowing us to work with and in the complexity through adaptation to and from

experience.

Conclusion

What can be seen in general from this particular will depend on your resonances. We have offered

our interpretations, but the 'Story of Sarah' and the metastory of our developing theories-in-action

now have an independent existence. You will, perhaps, notice and work with different things to

where our own attention lies and we hope you will find your own stories.

We have developed an image of an intuitive practitioner who is able to subordinate their own

(teaching) purposes to the learning of the students. It is this subordination that allows the
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accumulation of experience which can condense into educated intuitions and is a continuous

process of learning for us as teachers. The research process of interacting theory and data with the

re-tellings of the stories from our practice over time is essential to our work since in itself the

creation of narrative forms part of that holistic sense which drives us forward and allows us to act.
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TEACHERS' CONTENT KNOWLEDGE AND PUPILS' LEARNING
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Abstract
This paper reports on part of a study examining the links between teachers'
practices, beliefs and knowledge and learning gains in numeracy with pupils aged
5 to 11. From a sample of 90 teachers and 2000 pupils, 18 teachers.were selected
for case study. Data on teachers' content knowledge was gathered through concept
mapping interviews, lesson observation and questionnaires. Most teachers had an
adequate level of subject knowledge but the most effective teachers provided
explanations which were both conceptual, rather than procedural, and connected
with more diverse meanings and representations.There was a negative relation
between effectiveness and level of formal mathematical qualification, and a
positive relation with extended professional development in mathematics teaching.

1. Aims of the study

This paper reports one area of the results of a 16-month study Effective Teachers of
Numeracy, funded during 1995/6 by the UK Teacher Training Agency.

The aims of the study were:

1 to identify what it is that primary teachers know, understand and do which
enables them to teach numeracy effectively;

2 to suggest how the factors identified can be more widely applied.

The area of the work reported in this paper is that concerned with teachers'
mathematical content knowledge. Other aspects of the work are reported by Askew
et al. (1997).

2. Related Theory and Research

A broad definition of numeracy (or 'number-sense) was used:

Numeracy is the ability to process, communicate, and interpret numerical
information in a variety of contexts.

Shulman (1987) included subject content knowledge as one aspect of teachers'
understanding and knowledge that impact on practice. Many of the findings in this
area present a deficit model of teacher knowledge. For example, in terms of
mathematical content knowledge, research shows that many teachers' own
mathematical understandings are limited (Wragg, Bennett &Cane, 1989; Kennedy,
1991; Bennett & Turner-Bisset (1993); Aubrey, 1994). On the basis of such
findings it has been argued that improving teachers' own mathematical knowledge
base will lead to better teaching (Alexander, Rose, & Woodhead, 1992).
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While this may be a logical conclusion of such research, there appears to be little
research to support this conclusion in practice: research may demonstrate that
teachers with limited mathematical knowledge are not very effective, but there is
scant evidence that teachers with sound mathematical knowledge are actually more
effective. Where evidence for the importance of mathematical subject knowledge is
presented it tends to be based on the effect on classroom practice rather than pupil
outcomes (e.g.Bennett & Turner-Bisset, 1993). However Leinhardt, Putnam, Stein,
& Baxter (1991) in their analysis of good and poor mathematics teaching
concluded that subject knowledge impacted in several ways. Teacher's mental
plans for lessons were dependent upon their familiarity with the content to be
taught (c.f. Borko, Livingston, Mc Caleb, & Mauro, 1988) and the questions asked
and explanations offered to pupils reflected the teachers subject knowledge.

Other research has suggested that it may be more important to have a sound grasp
of pedagogical content knowledge than subject content knowledge (Carpenter,
Fennema, Peterson, & Carey, 1988), or that beliefs about the nature of the subject
are more influential than mathematical subject knowledge per se (Thompson, 1984;
Cobb, 1986; Lerman, 1990).

3. Sample

It was important in selecting teachers who were believed to be effective teachers of
numeracy to use criteria which as far as possible were based on rigorous evidence
of increases in pupil performance.

From an initial sample size of all the primary schools in three local education
authorities covering areas with different socio-economic characteristics(some 587
schools), together with Independent (private) schools, we selected eleven schools,
providing a sample of 90 teachers. We selected the majority of these eleven
schools on the basis of available evidence (national test scores, IQ data, reading
test scores and baseline entry assessments) suggesting that the teaching of
mathematics in these schools was already effective.

However other schools were selected to provide a contrast, some being indicated
by the data to be of average or weak effectiveness.

18 teachers were selected as case-study teachers, and detailed data was collected
about these teachers by interview and observation. It was intended that the case-
study teachers would be selected as the most effective teachers. However because
of time constraints the selection of case-study teachers had to be done before the
final pupil data was available, and therefore on the basis of recommendations from
the headteacher and local advisory staff. When the pupil data across both sets of
schools was analysed it became clear that the case study sample contained both
more and less effective teachers of numeracy.

4. Methods of data collection and analysis
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Pupil Attainment The identification of effective teachers of numeracy was based on
rigorous evidence of increases in pupil attainment.

The pupil assessment instruments had to be both appropriate for a wide range of
attainment and age, and take a broad view of numeracy. A series of three 'tiered'
assessments were developed: many items were common to two tiers and some to
all three to enable comparisons across year-groups. All the tests were designed to
be verbally administered to the whole class by the class teacher.The specially
devised tests were based on earlier work at King's College (Denvir & Brown,
1987).

More than 2000 pupils in the classes of the 90 teachers were tested twice, with an
interval of 6 months between the testing. Marking, coding and analysis was
conducted centrally by trained personnel. The mean gains for each class, adjusted
to compensate for ceiling effects, allowed the relative effectiveness of teachers of
each year-group to be compared.

Teacher content knowledge An understanding of the teachers' numeracy subject
knowledge was built up from data from three sources

questionnaire data from the full sample of 90 teachers;

profiles of mathematical subject knowledge for the 18 case study teachers
from focus schools, arising from concept mapping interviews, and to a more
limited extent from other interviews;

observations of 54 mathematics lessons with the 18 case study teachers.

Each of the 90 teachers provided information about their level of qualification in
mathematics as part of a background questionnaire. All primary teachers trained
over the last 20 years have been required to attain a grade C or more at GCSE
(taken at age 16). In addition some teachers had specialised in mathematics to age
18 (Advanced Level), some had specialised in mathematics as part of a degree in
education, and some had obtained mathematics or science degrees prior to teacher
training.

Some teachers had also completed in-service diplomas or certificates as a result of
extended courses of professional development (the equivalent of 10 days or more)
in mathematics education.

While qualifications can give some broad indication of mathematical competence,
for many teachers this is not a reliable measure as it is not a valid assessment of
their understanding of basic numeracy concepts, and in any case often reflects
achievements gained many years previously.

It did not seem either appropriate or helpful to give teachers a 'test' on numeracy;
since what was of interest was less their formal ('decontextualised') knowledge
than their 'craft' ('contextualised') knowledge i.e. how they were able to deploy
content knowledge in planning and in teaching numeracy.
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It was also felt that any test would have unfairly discriminated against the teachers
of younger pupils; teachers of older pupils preparing for national tests would be
much more familiar with the type of 'test item' normally used in numeracy. It
would also have been only too easy to set off a 'panic' reaction.

Observation provided information which was comparable between teachers in the
sense that it related to what they were doing with pupils. This data was analysed
using ethnographic methods.

Nevertheless it was thought that it would be valuable to have some data on
teachers' more global understanding and knowledge of numeracy that was
consistent in covering the same areas with all teachers. It was therefore decided
that the most appropriate method would be an interview which would allow
teachers to talk informally about how they understood numeracy. This was called
the concept mapping interview.

During the concept mapping interviews, using a method similar to that of Leinhardt
(1990), the 18 case-study teachers from the focus schools were asked to propose
mathematical ideas which they considered to be important in numeracy (e.g.
fractions, multiplication, estimating areas), writing each one on a card. They were
then asked to draw a diagram showing how these concepts (supplemented where
necessary by some suggested by the researcher) linked together, and also to explain
the nature of the links. Interviews were taped and transcribed.

The method of analysis was partly quantitative and partly qualitative. It emerged
that two distinct aspects of numeracy subject knowledge needed to be given
attention:

knowledge of content - knowledge of facts, skills and concepts of the
numeracy curriculum, e.g. knowing what a median is and how to calculate it;

knowledge of relationships - knowledge of how different aspects of the
mathematics content relate to each other, for example, the relationship between
decimals and fractions.

From the list of ideas that the teachers produced and the way they grouped them
together, two measures of knowledge of the content of mathematics related to the
teaching of numeracy were developed:

fluency - the number of valid numeracy concepts suggested (the range given
by teachers varied between 12 and 22);

scope - the breadth of the teacher's vision of numeracy, measured by the
number of broad aspects of numeracy touched on, e.g. whether the concepts given
cover aspects such as the meaning of operations, methods of calculation,
estimation, measurement, etc. ( teachers volunteered concepts from between 5 and
10 different aspects of numeracy).

Three measures were used for the way teachers identified relationships between
aspects of numeracy subject knowledge:
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links- the number of legitimate links proposed between concepts, for
example merely indicating that there is a link between fractions and decimals
(between 12 and 23 links were noted by different teachers)

explanation - the percentage of links that were at least to some extent
explained; for example stating that both decimals and fractions are 'just ways of
demonstrating parts of a whole' but choosing not to elaborate further

understanding - the percentage of links well-explained. Typically this
included a key relationship (e.g. inverse operations) and/or a number of aspects
which were relevant

depth - the percentage of links which are explained in conceptual terms
rather than being only procedural (rule-based).

5. Results and Discussion
A teacher's own subject knowledge is clearly an important aspect of a primary
teachers' competence in teaching numeracy. However exactly what aspects of a
teachers' knowledge made a significant difference in terms of pupil gains was
much harder to identify than was anticipated. Certainly it turned out to be nothing
as straightforward as the level of qualifications, or the fluency with which teachers
could list ideas which contributed to numeracy.

(a). In terms of adequate understanding of mathematical concepts there was
little to distinguish between the case-study teachers. Some teachers were
uncertain in regard to specific items of numeracy knowledge, but this was
either at levels they were not teaching or in non-fundamental areas; either
way there was little evidence that this would do clear damage to children's
numeracy standards.
There was very little relationship between the effectiveness of teachers in terms of
the mean gains made by their pupils and the teachers' performance on the concept
mapping interview. Teachers were generally able to give a reasonably
comprehensive list of the key ideas in numeracy, to relate them appropriately and
to provide at least some element of correct explanation of these relationships.Only
in relation to the depth variable was there any distinction (see next section).

Nor was there a strong relationship overall between any of these variables and the
year groups taught by the teachers. Although some of the best performances were
by some of the teachers of younger pupils, there was some tendency for early years
teachers to do less well on the explanation and understanding variables i.e. the
number and quality of the explanations for the links were less strong. This was
almost always because of weaker contributions in areas where the ideas were more
advanced than those they were currently teaching.

In none of the 84 lessons were there any significant mathematical errors made by
teachers, and in only two were there occasions when teachers found themselves to
be clearly limited by their knowledge. Although these examples did demonstrate
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gaps in subject knowledge, neither would seem to be especially damaging or
difficult to retrieve. Most teachers admitted that there were sometimes questions to
which they did not know the answer, but that they had people whom they could
ask, or books they could refer to. The more confident teachers were unashamed
about losing face, and made a positive learning opportunity of it, encouraging
pupils to find out the answer before they did.

Similarly in the interviews, no mistakes were made but two of the 18 teachers (both
teachers of 7-year-olds) confessed that they could not immediately remember how
to convert 1/7 to a decimal. However despite the panic it caused them, they both
felt confident that they would be able to recall or work out a method given more
time.

(b) Effective case-study teachers whose pupils made large gains tended to
demonstrate deeper understanding of the links between different numeracy
concepts than other teachers in that they both gave a high proportion of
conceptual explanations and gave explanations which connected with more
alternative meanings and representations.

The group of most effective teachers were almost all classified as connectionist
teachers in terms of their beliefs and practices (see Askew et al., 1997, for details).
In their classroom practice, and in their justification of this in interviews, they
tended to prioritise pupils' ability to relate and select from different mathematical
ideas, and different representations of each idea. Similarly in the concept mapping
interview they were happy to elaborate on their explanations of why they had
linked different ideas, trying to identify a variety of meanings, although their
explanations were often rather incoherent and not necessarily mathematically
sounder than those of other teachers.

Teachers who were least effective in our case-study sample could classified as
belonging to one of two styles in terms of their beliefs and practices, transmission
and discovery. Transmission teachers gave a higher proportion of superficial
procedural explanations than conceptual explanations in relation to other teachers,
which was unsurprising in relation to their procedural priorities in the classroom.
Discovery teachers did not differ significantly from connectionist teachers on the
overall quality of their responses as indicated by the variables described, but tended
to give less elaborated responses in terms of alternative meanings and
representations.

The multi-faceted nature of the meanings and uses of concepts in numeracy are
what makes the teaching of numeracy challenging, and it is the knowledge and
awareness of these that appears to distinguish between the most effective and the
least effective teachers.

c) There was a negative correlation between the level of teachers' formal
mathematical qualifications and their effectiveness in terms of pupil gains.
However there was a strong positive relation between attendance at a course
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of extended professional development in mathematics education and teacher
effectiveness.

One reason why higher mathematics qualifications did not appear to improve
performance was that what the teachers had learnt at higher levels of mathematics
was irrelevant, in that it was too far removed from what they had to understand to
teach effectively. Some of those with high qualifications demonstrated a lack of
ability to explain connections between low level concepts. Some also had negative
attitudes to the subject which they attributed to very procedural approaches at more
advanced levels of mathematics.

In contrast, teachers who had been on extended professional development courses
spoke about their realisations during these courses about different strategies and
representations used by pupils, and the enthusiasm such courses had given them
for mathematics.

Informal conversations with more knowledgeable contacts also appeared to
improve effectiveness.

6. Implications

Lack of evidence of any positive association between formal mathematical
qualifications and pupil gains should not be interpreted as suggesting that
mathematical subject knowledge is not important. What would appear to matter is
not the level of formal qualification but the nature of the knowledge about the
subject that teachers have.

Ball (1991) argues that correctness, meaning and connectedness are requirements
of teachers' mathematical subject content knowledge for teaching mathematics for
understanding. Although not corresponding exactly to our categories there would
appear to be some similarities.

One implication of this is that teachers do not need additional mathematical
knowledge. More is not necessarily better in terms of helping pupils understand
mathematics. Rather, primary schools teachers may need to develop a fuller,
deeper and more connected understanding of the number system in order to
effectively teach numeracy. This would include the multifaceted nature of
meanings and applications of mathematical elements and operations and their
many representations, and in particular the use of different representations of the
same concept and the same representation used with different meanings.

References

Alexander, R; Rose, J & Woodhead, C (1992). Curriculum Organization and
Classroom Practice in Primary Schools. London: Her Majesty's Stationery Office.

Askew, M.; Rhodes, V; Brown, M; Wiliam, D and Johnson, D C (1997). Effective
Teachers of Numeracy: report of a study carried out for the Teacher Training
Agency. London: King's College London.

2 127
.11 3,--



Aubrey, C (1994). Overview of advances in understanding of learning and teaching
subject knowledge. In C. Aubrey (Ed.), The Role of Subject Knowledge in the
Early Years of Schooling London:Falmer Press.

Ball, L (1991). Approaches to the professional development of teachers. In L. Bell
& C. Day (Eds.), Managing the Professional Development of Teachers Milton
Keynes: Open University Press.

Bennett, N & Turner-Bisset, R (1993). Case studies in learning to teach. In N.
Bennett & C. Carre (Eds.), Learning to Teach London: Routledge.

Borko, W; Livingston, C; McCaleb, J & Mauro, L (1988). Student teachers'
planning and post-lesson reflections: patterns and implications for teacher
preparation. In J. Calderhead (Ed.) Teachers' Professional Learning Lewes: Falrher
Press.

Denvir, B. and Brown, M. (1987) The feasibility of class administered diagnostic
assessment in primary mathematics. Educational Research, 29(2), 95-107.

Carpenter, T P; Fennema, E; Peterson, P L & Carey, D (1988). Teachers'
pedagogical content knowledge of students problem solving in elementary
arithmetic. Journal for Research in Mathematics Education, 19(5), 385-401.

Cobb, P (1986). Contexts, goals, beliefs and learning mathematics. For the
Learning of Mathematics, 6(2), 2-9.

Kennedy, M (1991). An agenda for research on teacher learning. NCTRL Special
Report. Michigan: Michigan State University.

Leinhardt, G (1990). Capturing craft knowledge in teaching. Educational
Researcher, 19(2), 18-25.

Leinhardt, G; Putnam, R T; Stein, M K & Baxter, J (1991). Where subject
knowledge matters. In J. Brophy (Ed.) Advances in Research on Teaching, Vol II,
Teachers' knowledge of subject matter as it relates to their teaching practice
Greenwich, Conn: JAI Press.

Lerman, S (1990). Alternative perspectives of the nature of mathematics and their
influence on the teaching of mathematics. British Educational Research Journal,
16(1), 53-61.

Shulman, L S (1987). Knowledge and teaching: foundations of the new reforms.
Harvard Educational Review, 57, 1-22.

Thompson, A G (1984). The relationship of teachers' conceptions of mathematics
and mathematics teaching to instructional practice. Educational Studies in
Mathematics, 15, 105-127.

Wragg, E C; Bennett, S N & Carr& C (1989) Primary teachers and the national
curriculum. Research Papers in Education, 4(3), 17-45.

2 128



METAPHORICAL THINKING AND APPLIED PROBLEM SOLVING:
IMPLICATIONS FOR MATHEMATICS LEARNING

Susana Carreira
New University of Lisbon, Portugal

Abstract
The notion of metaphor is at least as remote as the works of Aristotle and since then it never ceased
to generate controversial judgements about its nature. Today those who place metaphors at the
core of our conceptual systems are still fighting the idea that metaphors are ornamental devices of
little or no importance. From an educational perspective it is undeniable that any attempt to escape
from metaphors is condemned to failure. This is also the case in mathematics education.
This paper addresses the value, the nature, and ultimately the need for metaphor in a kind of
pedagogical scenario where mathematization and applied problem solving stimulate the production
of mathematical meanings. Drawing on a modelling situation from micro-economics, we intend to
stress the fact that connecting mathematics with real phenomena involves the creation of nets of
metaphors. Mathematical models, we argue, are just the formal surface of metaphorical matrixes.

Introduction

Among the many semantic aspects involved in mathematics teaching and learning, the
concept of metaphor is becoming a strong pole of attraction for those who strive to
understand the ways in which people rely on their conceptual systems to come up with
meanings for mathematical ideas and processes.

It has been long since metaphor found a place of its own as an object of study and
critique in a number of different subjects but its power of informing and feeding the
philosophical and scientific paradigms only recently has started to be appreciated
(Santos, 1994).

The contemporary views about the role and importance of metaphor, particularly those
that are embraced by some new approaches in the cognitive sciences, can not deny the
fact that they have inherited a long and rich history that goes back to the times of
Aristotle.

This is why we often find in contemporary works on the nature of metaphor a clear
preoccupation in overcoming the rhetorical and aesthetic aspects of metaphor, thus
denouncing a need to stand aside from a certain tradition where metaphor is depreciated.
After all, there are good reasons for associating metaphor with the fields of poetics,
literary ornaments and linguistic refinements. Metaphor has been pushed to the realms
of Poetics and Rhetoric by Aristotle himself and for centuries the use of the word
metaphoric was tied to the opposite of truth and rational argumentation.

Such a long standing tradition in western philosophical thinking has contributed to some
of the present suspicions about the value of metaphor. In fact, according to Santos
(1994), the contemporary rehabilitation of metaphor has not yet been set free from some
Cartesian reminiscences where concepts are supposed to have a clear and universal
content, which is built apart from all experience and history.

To be aware of this intellectual heritage should then places us on a better position to
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capture the new insights proposed by those who are suggesting a crucial role for
metaphor in creating meanings to new concepts and ideas. In particular, it may
illuminate our attempts to interpret the kind of metaphorical thinking that takes place in
mathematical classes as an intrinsic part of the ongoing mathematical activity.

For the discussion of the role of metaphor in mathematics learning some valuable trails
have already been open by the works of others like Pimm (1987; 1995), Nolder (1991),
Sfard (1994), Sierpinska (1994), and Lopez-Real (1989; 1990), and their contributions
on the pedagogical status of metaphor have decisively informed our current theoretical
point of view.

In our present approach we are specifically addressing the field of mathematical
modelling and applied problem solving which has been in the centre of our work for the
last five years, through the development of research projects and teaching experiments.
Therefore, in this paper we wish to stimulate a discussion over the pedagogical and
cognitive role of metaphor in real world problem solving, where the process of
mathematical modelling and metaphorical thinking are regarded as being fundamentally
interwoven.

The consequences of this structural relationship between models and metaphors in the
activity of mathematization are then approached from a mathematics education point of
view.

Conceptual Metaphors as Cognitive Tools

In his paper on the contemporary theory of metaphor Lakoff (1993) stressed one of the
key points about the true nature of metaphor in our conceptual systems. There is more to
the notion of metaphor than the usual conception of a figure of speech. We have to look
deeper into our conventional and common forms of thought in our everyday experiences
to unfold what is the essential place and function of metaphor. We don't just talk or
write metaphorically, we actually think and act on the basis of powerful and pervasive
metaphors. If evidence corroborates the ubiquitous character of metaphor in our ways of
conceiving and understanding the world, from the more mundane to the more abstract
domains, it is because metaphor is one of our tools for learning and coming to know.

The centrality of metaphor in the development of concepts entangles a particular
epistemological view ideas and knowledge are not concealed in some sort of closed
and hermetic conceptual compartments. Ideas have a capacity of crossing boundaries, of
travelling between systems and semantic domains and of finding new grounds where to
germinate in new creative forms.

The cognitive power of metaphor results from its capacity to generate and transform the
relationships between topics that tend to be seen as separate or even independent. To
think metaphorically is to put in action the latent connections between different concepts
and domains thus enabling new ways of perceiving reality or, as Black (1993) puts it, to
understand how things really are.
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Before going into the analysis of the value of metaphor in mathematics learning and
understanding we shall take a closer look at its mechanism by focusing on two crucial
processes that are embedded in the way metaphors work those of projection and
interaction.

Every account of a conceptual metaphor must start with the idea that two conceptual
domains, which are called the source domain and the target domain, are brought into
play. The metaphor allows one to look at the target domain in terms of the source
domain, by projecting knowledge of the source domain onto the target domain. In this
process, the metaphor sheds a new light over the target domain. To be more precise, we
would say that a certain complex of implications inherent to the source domain is
projected onto the target domain where it produces a parallel complex of implications
(Black, 1993).

It seems however that this projective quality of metaphors should be extended in such a
way that projection is not reduced to a one-way path. Interaction comes as a necessary
attribute of metaphors when we realise that some of the properties and features of the
source domain are reinterpreted when we produce a metaphor. In other words, metaphor
has a mediating role in bringing together two conceptual domains. It is a way of eliciting
meanings for the concepts of both the target domain and the source domain.

Whenever a metaphor is created, some things are chosen to be the relevant aspects to
which attention is drawn and simultaneously there are things that become ignored. In
this point it comes as a good example the metaphor of the complex plane, suggested by
Pimm (1987). This is likely to be an adequate metaphor if one intends to make salient
some of the properties of the complex numbers. It takes us across the isomorphism
between the set of complex numbers and the set of points in the Euclidean plane, it
suggests a representation for the number a+bi as an ordered pair (a,b), it invites us to see
a complex number as a vector and the set of complex numbers as a vector space and it
may even show us a complex number as a location in the plane determined by a
direction and a distance: rcis O.

It is quite true, as Pimm notices, that this projection of geometrical concepts onto the
notion of complex numbers does not state what complex numbers are; it is far from
being a definition of the complex numbers.

To understand a concept with the help of a metaphor is something very different of
summing up the concept under a definition or description that would encapsulate some
pre-fixed meaning. The metaphor induces similarities and multiple meanings, elicits
some aspects of the concept while neglecting others and above all it creates connections
between concepts. Nothing is given but the mediating tool to approximate different
domains and that is the basis upon which an opportunity to make sense of a certain
concept is created. The metaphor does not deliver the right meaning, it provokes the
production of meanings inasmuch as it stimulates an act of understanding (Sierpinska,
1994).
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Consequences of Metaphors for Learning

According to Petrie and Oshlag (1993), there are two general ways of considering the
role of metaphor in educational settings: one that seeks the purity and rigour of literal
meanings and leads to the conception of metaphor as an obstacle to learning, and the
other that finds in metaphor a valuable resource to the understanding of new ideas.

The first position is described by Aspin (1984) as the purists' demand for pure and clear
communication of meanings between language users who hold that "metaphor is simply
a confusing or emotive use of language and, when not actually meaningless, quite
unsuited to the rigors of scientific or philosophical discourse" (p. 23).

The second one is well represented in the words of Holton (1984) who argues that "in
the work of the active scientist there are not merely occasions for using metaphor, but
necessities for doing so, as when trying to remove an unbearable gap or monstrous
fault" (p. 98). That's why, as a result of those necessities, "we speak of families of
radioactive isotopes, consisting of a parent, daughters, grand-daughters, etc. We
constantly tell stories of evolution and devolution, of birth, adventure and death on the
atomic, molar, or cosmic scale." (p. 101). Another good instance of this view is offered
by Sfard (1994) in her account of the metaphorical forms of reasoning of
mathematicians. The revealing statement "First of all I have to get a metaphor...." is one
of a series of testimonies showing how metaphorical thinking is quite alive in even the
most abstract areas of mathematics.

In what concerns the pedagogical value of metaphors in education, and in spite of a
certain enthusiastic wave on the study of the cognitive potentials of metaphors one can
easily agree on the fact that metaphors are not neutral. This means that there are
subjective and idiosyncratic forces operating in the understanding of a metaphor,
presumably comparable to the understanding of a joke, as Aspin (1984) describes it:
"metaphors are like jokes or lies: they meet, or fail to meet, with 'uptake' in terms of
the hearer; and, in accordance with the hearer's knowledge of language, receptivity and
imagination, so their utterance is more or less 'happy" (p. 33).

As Pimm (1987) and Nolder (1991) recall us, metaphors in mathematics learning and
teaching are not immune to risks and pitfalls. However, being aware of those risks
should not inhibit us of underlining the idea expressed by Sierpinska (1994) that
building a metaphor is often a good sign of an act of understanding.

Therefore, while keeping in mind that words' uses and meanings are plastic and
plurivocal, we should reflect on the words of Aspin (1984) for whom there is no
language without metaphor "metaphor is a basic feature of language and we strive in
vain to avoid it" (p. 29), and on Black's arguments (1993) in sustaining that metaphor
is the only way of actually knowing how things really are.

Having accepted the bottom line that metaphors can not be dismissed from language in
school scenarios, our investigation about the role of metaphor in mathematics learning
will then be directed to the metaphorical nature of applied problem solving situations.

In the next section we intend to illustrate the metaphorical side of mathematical
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modelling in a problem from micro-economics, where we expect to exhibit how
mathematical concepts are projected onto real world concepts.

An Example: Measuring the Utility of Consumption

Economists define consumption as the last stage of production and the ultimate end of
all economical activity. Therefore, the final aim of production is the satisfaction of the
consumer needs and desires, that is, the production of utility.

Under this assumption, the production of a certain good must be adapted to the
characteristics of the market. For instance, if we take the production of bread, it is not
difficult to imagine how relevant it can be to know how to manage the production of
different kinds of bread in quantity and variety. Thus economists are obviously
interested in finding a mathematical model to describe (and control) the consumer's
utility with the consumption of bread, which means to come up with a process for
measuring and quantifying utility.

A first approach to this economical problem started with the hypothesis that the
consumer could be thought of as a kind of machine that received an input of goods and
services and produced an output of satisfaction or utility. Under this conception, the
utility was supposed to be measured as a cardinal quantity, that is, a cardinal value,
expressing the exact number of units of utility corresponding to the psychological
output of the consumption of a good. Thinking in terms of a cardinal quantity one would
be induced to imagine the creation of a special instrument something to be called an
utilmeter that would be plugged to the consumer and register the effective utility he
would get out of the consuming.

However this first metaphorical approach to the mathematical modelling of utility could
not prevail since nobody has been able to come up with such a device that would
provide a direct measurement of an ideal quantity, which is, in fact, a subjective result of
consumption.

A second approach was then attempted, this time based on the idea that the consumer is
usually confronted with a choice between several products offered (as it happens, for
instance, with the various kinds of bread available in bakeries and supermarkets). In this
case, the aim was to look for an ordinal model of utility.

For the sake of simplicity, one can restrict the mathematical modelling to the
consumption of two kinds of loaves of bread: white bread and brown bread. The
modelling process begins with the notion that a consumer has a daily purchase of these
two types of bread. We assume that the quantity of white bread, x, and the quantity of
brown bread, y, purchased by the consumer may be represented by an ordered pair (x,y).
Each ordered pair is metaphorically considered as a basket of the two goods. Thus we
have the consumer deciding what is the basket that he or she prefers and, projecting this
situation onto mathematics ideas, we have each basket being represented by a point on
the plane XOY. The set of all possible pairs (of all the baskets) will be a set of points in
the plane and it will be called the consumption space.
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At this point, what must be determined are the preferences of the consumer between
several different baskets. In particular, it is expected that some choices will be
indifferent to the consumer. This set of indifferent choices (a set of points) will define a
curve on the plane the so called indifference curve. And this is how mathematics is
found to be a suitable domain to obtain a representation of the consumers' choices. If we
ascribe a real number to each of these indifference curves a new progress is made; since
the set of real numbers is an ordered set, it will induce via metaphor an order structure
on the consumer's relative preferences. In fact, the higher the number attached to the
curve the higher is the preference of the consumer for the correspondent set of baskets.
The introduction of an index number is clearly a convenient way of summing up the
range of preferences and it facilitates the use of mathematics through the application of
the notion of indifference curves. By asking the consumer to reveal his or her choices
between more and more baskets of bread, one can identify more and more points lying
in successive indifference curves. This way we can gradually arrive at a theoretical
description of the consumer's preferences, which gives us his or her map of indifference.
It provides us a metaphorical (a mathematical) picture of his range of preferences.

In possession of the map of indifference, we can use mathematics to find the best
continuous function of two variables, u(x,y), that fits the level curves referred above as
the indifference curves. The mathematical model thus obtained is called an ordinal
model of utility. It should be noted that the two-variable function u(x,y) was looked for
only after the map of indifference has been constructed. So the fundamental data are to
be found in the indifference curves and not on the values of the function u, which makes
a fundamental difference from the cardinal model.

We have just seen how the mathematical knowledge about representation of curves on
the plane and about the relationship between a family of indexed curves and a two-
variable function can provide the means to quantify the utility, by resorting to the
discovery of the consumer's preferences between several baskets of bread.

We want to claim that this process illustrates many instances of metaphorical thinking
within the mathematical modelling process; some examples are the following:

the different baskets of bread are points on the plane;

the set of baskets which are indifferent to the consumer are curves on the plane;

the consumer's preferences are ordered numbers;

the consumer's range of preferences is a map of curves;

the consumer's relative preference for a particular basket is the output of a certain two-
variable function.

Throughout the modelling process what economists do is to think about the problem of
utility in terms of mathematical ideas and concepts. So they choose a particular angle of
vision one from which utility is seen as something indirectly derived from the
consumer's preferences between several alternatives. What the utility function really
gives is an information about the ordering of the consumer's choices.
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From Metaphors to Models: Implications for Mathematical Meaning

The example from economics is aimed to foster some reflection upon the general notion
of mathematical modelling. There is a widely accepted view according to which a
mathematical model of a real phenomenon or situation consists of a triple made of a
certain part of the real world, R, of a certain piece of mathematics, M, and of a certain
correspondence, f, that is established between them (Niss, 1989). Some authors (like
Skovsmose, 1989) contend over the need to integrate a human element among these
entities based on the argument that the modelling subject carries with him objectives,
motives, beliefs, theoretical backgrounds, and different sociocultural constraints. This
surely represents a strong point to the recognition that the modelling activity, and in
particular mathematical modelling, is not a kind of straightforward process where one is
supposed to isolate the real world variables and to find the right mathematics to translate
their behaviour in a way that matches reality.

One fundamental question still persists and it concerns the how's of mathematical
modelling. More precisely, what remains disturbing about mathematical modelling is
how do we create that correspondence f between reality and mathematics? or in other
words how do we make reality and mathematics fit together?

We are offering a possible answer to this question in saying that each model is a result
of a conceptual metaphor. To create a mathematical model of a certain aspect or
phenomenon of our experience we have to find some way of articulating two different
conceptual domains. We claim that the connection to be found between them demands
the production of a conceptual metaphor. Therefore, looking for a metaphor is the first
real step towards any attempt of mathematical modelling. Built in that metaphor there
are the mechanisms of projecting inferences from one domain to the other. That is the
place where mathematical models are to be found, those are the operational elements
that make possible to look at the real problem in terms of mathematical ideas. From this
perspective, behind any possible model there must be a metaphor and so without a
metaphor no modelling can be successfully achieved.

To stress our main point, we would say that metaphors are the mediating key elements
without which no process of mathematization is ever conceivable. More precisely, the
relevance of this or that piece of mathematics can only be judged in the frame of a
metaphorical approach to the problem.

Therefore the role of metaphor in mathematical modelling is one of mediation between
looking at phenomena and explaining them. Thus a mathematical model is only formal
and abstract in the surface since its holds in it a sometimes complex metaphorical
matrix. In a way, a mathematical model is just a shadow of a hidden metaphor, where
the sensible and imaginative elements were covered up by the formal and the symbolic.

To look at applied problem solving from this perspective raises a new range of
possibilities to develop meanings for mathematical ideas and concepts. To shift our
attention from the translation process that is from the naive view of modelling where
a one-to-one mapping between reality and mathematics is suggested (Pimm, 1995) to
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the investigation of the nets of metaphors involved in a real world problem, will foster
the conception of a many-to-many mapping and enlarge the semantic potential of
applied problem solving.

As it was suggested with the economics problem of conceptualising utility, the
metaphoric nets provide the sources for understanding and explaining both the real
economical problem and the mathematics that is being activated as a result of
metaphorical thinking, through projection and interaction.

To invest in the creation and unveiling of the metaphorical matrixes makes the activity
of applied problem solving a privileged scenario for interpretation in mathematics
classrooms. If students are invited to see mathematics concepts in terms of something
else (even in terms of other mathematical objects), as it is common in poetry or literature
when other relevant semantic fields are evoked and connections are found, they will
experience the need to work on the meanings of the concepts involved.

Finally, we feel that metaphors have usually such an elasticity that its power in
generating new mathematical ideas and even new problems is quite surprising. In saying
so, we are also remarking that the same real world problem has the potential to be
extended in different new ways if the metaphorical thinking is at the heart of the
discussion in mathematics teaching and learning. In this perspective we consider equally
valid and desirable the opportunities for students to encounter and explore metaphors
suggested by others or to invent and expose their owns.
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ALGEBRA AS A LANGUAGE IN USE:
A STUDY WITH 11-12 YEAR OLDS USING GRAPHIC CALCULATORS.
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Abstract
A research carried out with twenty three 11-12 year olds who have not had algebra instruction is
reported. The classroom environment was arranged so as to take advantage of the symbolic facili-
ties offered by the graphic calculator to introduce children to learn the algebraic code through

using it, in a similar way in which we learn the mother tongue. Analysis of individual interviews
and children's written work provided promising results that show that after twelve 50 minute ses-

sions, where children were using the calculator code to describe number patterns, most of them

were able to extend this experience to confront algebra problem situations. The results also
showed that children developed informal notions and strategies that allowed them to sort out tasks

involving algebraic equivalence and inverting linear functions. The report discusses the theoreti-

cal and methodological issues that provide a rationale for such encouraging results.

Background and theoretical issues
The major aim of this research was to explore the learning of algebra within the pragmatic
paradigm of language acquisition. The report centres only on one of its research aims: in-

vestigate the extent to which the use of the calculator language as a means of expressing

general rules governing number patterns, helps children grasp that the algebraic code can

be used as a tool for coping with problem situations. This pragmatic view implies conceiv-
ing a teaching approach in which the learning environment mirrors, as much as possible,
those social circumstances which frame the acquisition of the mother tongue. Accordingly,
such an approach must be different from both a syntactic or semantic teaching-oriented ap-
proach.

A syntactic-oriented approach is conceived here as a teaching position in which the
pupil plays the role of 'consumer of linguistic input', more specifically, a consumer of those
rules governing the use of algebraic code. A good deal of text books exemplify this ap-
proach: first definitions and rules, then a list of exercises and problems to be solved.

A semantic-oriented approach relies on supporting the introduction of algebraic syn-

tax by providing pupils with 'meanings' for the symbolic system. The teacher is the most
active person in the classroom and tries to offer as many different approaches to problem
solving as possible intending to help pupils induce general properties or rules from a limited
number of examples.

A pragmatic-based approach must allow pupils to enter into algebra by using its
code, this principle marks the main difference with the other approaches. This approach is
not based on syntactic rules or definitions (which characterise a syntactic approach) nor on
rich examples for children to be followed and later on induce generalisations (which char-
acterise a semantic-based approach). The pragmatic approach is founded on a tight relation
between context and language use, so that the use of language can always be checked upon
context itself. Though it seems paradoxical to propose starting to use a formal symbolic lan-
guage before we know at least some definitions about it, there is a good example: children
learn their native tongue without any previous knowledge of grammar rules or definitions. In
principle, both natural language and school algebra deal with learning to use a sign system.
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One of the most overt differences between acquiring these sign systems is that natural lan-
guage is learnt within the rich environment provided by adult-child interaction, it embodies
a learning process which is hugely aided by what Bruner (1983) calls a Language Acquisi-
tion Support System (LASS). The present research proposes that, following Bruner's con-
cept of LASS, the school setting can be artificially arranged to create an Algebra Acquisition
Support System (AASS), a system in which the teacher's expertise in using algebraic code is
strengthened by incorporating a technological component (graphic calculator) that allows
him/her to achieve a milieu where children encounter the algebraic code as language-in-use
for expressing and negotiating mathematical ideas.

The theoretical referent adopted in this study mainly relies on Bruner's research on
the acquisition of the mother tongue (1980, 1982, 1983, 1990) 1. Some outcomes and princi-
ples drawn from Bruner's work were recast to provide support for the design of a classroom
environment within which the teaching of algebra could be approached attempting to simu-
late the ways in which children learn the rudiments of natural language. The adoption of
children's language acquisition as a theoretical referent was inspired by the characteristics of
the symbolic facilities offered by the graphic calculator. The graphic calculator code offers a
tight link between numerical facts and the algebraic language that allows us to put 11-12
year olds in the position of using the calculator's language without having previous instruc-
tion about its structure and syntax rules. It is hypothesised that if the learning environment is
suitably arranged, such a link may provide the children with a referent that helps them deal
with the algebraic sign system being supported by their previous arithmetic knowledge.

Methodological issues
The calculator's role.
The calculators used in this study allow three ways of representing functional relationships':
the analytic expression, used to type a program (figure 1); the tabular representation, ob-
tained on the calculator's screen by inputting a range of values to the program's variable
(figure 2), and the graphic representation The tabular representation was used as an arithme-
tic referent for the analytic expressions. These characteristics of the machine's operation
were exploited to create a mathematical environment where the calculator's formal code is
available to anyone with basic arithmetic skills.

The activity consists of a game-like task
in which the children 'guess' someone else's
program. Pupils must recognise the numeric
pattern shown in a table and program the calcu-
lator to produce this table. The interaction occurs on two levels: student-
machine and student-teacher. The underlying hypothesis is that pupils,
through use, create meanings for the calculator's sign system, somehow
emulating the process through which we acquire the basics of our native

Fig. 1
? * A: 2xA+5

Declaring Programming
variables expression

A detailed discussion of this theoretical approach can be found in Cedillo, 1996.
'Graphics resources were not used.
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tongue. When they engage in these activities the children are using the programming code as

the language that the calculator 'understands'. Arithmetic plays the role of context that helps

them set up and verify conjectures which they express through the calculator's language.

Subjects
Eight' children were chosen to be observed during the experimental phase using a case-
study methodology. They were selected according to their mathematical attainment prior to

the experimental phase. This was done as follows: (i) a boy and girl of below average at-
tainment, (ii) two boys and two girls of average attainment, and, (iii) a boy and girl of above

average attainment.
Tasks
Activities were introduced in worksheets (a total of 55), this way of presenting

the tasks was intended to respect (as much as possible) each child's pace, which

in fact is the way in which language acquisition occurs. In order to do this the
following working routine was set up: at the beginning of the class each child

was delivered an envelope containing a format's sheets without being told how

many should be completed. They returned it at the end of the class. In the next
class they collected their envelopes, finding their work marked by the teacher

along with the sheets they had not completed. Activities were organised into six

groups called formats. Format 1 contains the 'raw material' on which formats 2

to 6 elaborate. In this format, expressions containing letters are introduced as the mathe-
matical language that allows children to control the calculator. For example, running the

program 2 xA+1 for A=2, 5, 9 outputs the table shown in figure 34. They are then asked to (i)

Find how the input is operated on to get the output, and express that in natural language, (ii)

program the calculator to reproduce the worksheet's table, and (iii) Complete another table
given with the same program.

This game contains the basic elements used to constitute the communication platform
on which increasingly complex activities were designed. This structure was intended to help
children gain self confidence in using the new mathematical 'words' involved in the calcu-

lator's code and start making sense of the new formal code in-use. For example, expressions
of the form ax+b were like 'new words' for children; the use of these expressions imply
leaving some calculations in suspense which is something that they seldom confronted when
working arithmetically. This routine was used to softly introduce new elements which were
intended to keep children's interested in doing the tasks as they gained experience in dealing
with the new code to cope with different mathematical tasks. Each worksheet included a
new element, be it numerical, with a sign or decimal point, or structural, like 'two step'
rules, for example 3 xD is a 'one step' rule and 3 xD+1 is a 'two step' rule. Below, each for-
mat used in this study is described as is the sequence in which they were introduced.
Format 1
This format consists of 15 worksheets that are aimed at introducing the use of the calculator
programming code. Here, the children were supposed to learn 'how to say' to the calculator

9

2

9

5

9

9

Fig. 3

5

11

19

' The below average boy got sick at the middle of the study and was out of school for two months.
°Although the calculator recognises expressions like 2A+1, the arithmetical notation formerly known by the children
was respected.
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the rules of linear functional relationships which were presented in its tabular form (5 ses-
sions of 50 minute each).
Format 2
This format consists of five worksheets. The rules the children constructed were used to cre-
ate a table which they gave as a clue for a fellow pupil to guess what program was being
used to produce such a table (one 50 minutes session).
Format 3
This format consists of 10 worksheets aimed at introducing the notion of equivalence be-
tween algebraic expressions. The tasks are presented as follows: firstly, children are asked
to program the calculator so that it duplicates a given table. Then pupils are required to con-
struct at least four more programs which must display the same table (three sessions of 50
minutes each).
Format 4
This format consisted of 10 worksheets, its content is based on finding rules of decreasing
functions (expressions of the form b-ax). As well, the child is confronted with story-based
problems which require the pupil to symbolise part-whole relationships, for example, arbi-
trarily cutting in two parts a piece of wire with length 16 cm, if one of these parts is called x,
the other should be called 16x (Three sessions).
Format 5
The tasks were aimed at introducing the notion of 'inverse programs' (inverse functions)
and were delivered as follows: for a given table, pupils were asked to find a program that
outputs it, then a program that outputs the inverse table (two sessions).
Format 6
This format consists of 10 worksheets aimed at observing the extent to which children can
extend their experience in Formats 1-5 to negotiating problem solutions. A succinct descrip-
tion of the tasks is made in what follows. Worksheets 46-48 deal with sequences presented
by geometrical patterns. The pupils are asked to program the calculator so that it helps them
to obtain any specific member of the sequence. Worksheets 49-51 and 54-55 require the
children to cope with word-based problem situations (like calculating the perimeter or the
area of rectangular shapes where the length is 30 meters larger than twice the width, or cal-
culating the length and width where a relationship between them and the perimeter are
given). Worksheets 51-53 concern problem situations which involve the notion ofpercent-
age.
Data gathering
The main sources of data were (i) children's written work throughout the fieldwork, (ii) in-
dividual interviews (each of the case-study children was interviewed three times, twice dur-
ing the study, and once at the end), and (iii) notes taken by the researcher after each class-
room session during the fieldwork addressing relevant children's interventions.
Results5
The children's algebraic attainment throughout the study provides empirical evidence for
the approach to learning a new sign system by using it, and for the potential of the graphic
calculator as a fundamental support in the fulfilment of this enterprise. With different level

5 Due to space constraints the results are discussed only around the tasks in Format 6.
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of attainment, all the case-study children were able to use the calculator code to cope with
algebra word problems. Some examples of children's work are discussed below.

A relevant issue raised when children confronted problem solving is how they re-
sorted to using their incipient notions and strategies as tools for negotiating solutions, par-
ticularly those notions about algebraic equivalence and inverting a given function. For ex-
ample, Jennifer and Jimena, using different strategies, looked for an equivalent expression to
obtain fresh information to face a problem situation. The following extracts illustrate these
claims.

Jenny made the program (A+2)2(AxA) to obtain the num-
ber of white squares in any member of the sequence shown in fig-
ure 1. She then became engaged, on her own, in inverting the pro-
gram to complete the table for the cases where outputs were given
The complexity of the expression did not allow her to do it but she
finally found another way of interpreting the number pattern and produced the equivalent
program Ax4+4. She then built the "inverse program" to complete the task: (A-4)+4.

Jenny explained that she made the program (A+2)2(AxA) "taking
away the area of the grey square from the area of the whole square ...
The "A" is the length of the grey square (fig. 1) ... I found a different
program when I saw the shape as a cross" (fig. 2). This allowed her to
count the number of squares surrounding the grey square, then added the
four squares on the corners: Ax4+4.

Jimena's work provides another interesting example. It illustrates
how context provides support for children's insights when children are ready to face new
problem situations. Jimena became engaged in inverting a complex expression to complete a
table where the outputs were given. Her attempt led her to "uncover" the distributive law.
She had made the program (Ax2+Ax3x2)x53 to compute the cost of any window wooden
frame which "they all are three times as high as they are wide and the price per metre is $
53.00" (worksheet 49). When working out the inverse function she found that
(Ax2+Ax3x2)x53=106xA+318xA. She explained it as follows "if I had two sides which
cost 53 each, altogether should cost 106 times the length of one ... I did the same with the
other two sides of the window ... I then checked it with the calculator and saw it works".

The following episode with Erandi exemplifies another children's strategy. The
problem situation was the following:

"In the sculptures parlour of a certain Art Gallery, the windows have the following features:
Their sizes vary, but, in all of them the height is 50 cm less than three times the width. The
material used to build the frames costs $62 per metre. Can you program the calculator so
that it helps you compute the cost of any window frame? " (worksheet 50).

It is relevant that Erandi, being supported by context, used her incipi-
ent knowledge about algebraic simplification in producing an expression
that properly describes these relationships. She built the program

3x13-0.5

((B+B)+(Bx6-1))x62 to compute the cost of any window's frame. To ex-
plain how she obtained this program Erandi sketched a diagram like the one
on the right to explain: "The width is B ... there is another B on the top ...
the height is 50 cm less than three times the width, that is ... 3xB-0.5 ... the

Fig. 1

NINE

NN

Fig. 2

B
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opposite side is the same ... Then I computed the perimeter, that's B plus B plus the other
two ... they are six times B but one metre less (pointing at 0.5)... all this multiplied by 62
gives the cost".

The final illustrative situation to analyse here is Jimena's solution to the following
problem: Find the length and width that gives the maximum area for the "three sides"
rectangle with perimeter 100 metres".

Jimena made the program (100A)÷2xA. She wrote the following explanation:
"(100A)÷2 is going to give the short side, i f I multiply it by "A", which is to be the large
side, I will get the area".

Since the children were not given examples that directly relate problem solving with
their previous experience (describing number patterns), their achievements document the
potential of putting them in the position of learning a language, not in the role of spectator,
but through use.

The experience of describing number patterns using the calculator language helped
pupils make sense of traditional algebra word problems and provided pupils with a formal
code to negotiate problem solutions. This result strongly contrasts with outcomes obtained
in studies that have investigated the effects of introducing school algebra through describing
number patterns (Stacey, 1989; Herscovics, 1989; Arzarello, 1991; MacGregor and Stacey,
1993; Stacey and MacGregor, 1996). These studies reported students' difficulties in pro-
ducing algebraic rules from patterns and tables. MacGregor and Stacey (1996) concluded
that "a patterns-based approach does not automatically lead to better understanding; the way
students are taught and the practice exercises that they do may promote the learning of a
routine procedure without understanding" (p. 3). They reported that students were able to
recognise and describe the involved quantitative relationships, but their approach was rather
a rhetorical description (in the sense of Harper, 1987) which leave children far from de-
scribing the problem algebraically.

There are various factors that may explain the strong contrast observed in the findings
of the present study and previous research outcomes. What seems the most immediate ex-
planation is that the students reported by MacGregor and Stacey worked.within a paper and
pencil environment. MacGregor and Stacey (1996) found that most of the students guided
their procedures by natural language descriptions. They conclude that this approach hardly
helps them structure an algebraic expression to properly describe the relationships between
two variables. This contrasts with the fact that the calculator programming language is situ-
ated within the computing environment, this feature places the children within a milieu
where algebraic formulation becomes an inherent part of the problem situation to be solved.
The use of the calculator language leads children to describe the_relationships in a problem
situation operationally, even if they make this description in natural language. When work-
ing with the calculator the children do not look for the relationship between the "x" and "y"
variables to find out the underlying pattern (which was the question used by MacGregor and
Stacey); the calculator environment allows us to make the same question so that the children
are led to think of what operations they can make with the input in order to produce the cor-
respondent output. The data obtained from the present study provide evidence for this asser-
tion: when the children were asked to use natural language to describe the relationship in-
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volved in a number pattern, they used expressions which always include an operative de-
scription, for example, "I multiplied by 2" which they expressed as Ax2 to program the cal-
culator. When the rules were more sophisticated, they ignored the constraint of using natural
language and directly used calculator language, for example, 3xA+2, "because the calcula-
tor language makes it easier to explain this" (Diego, Format 1). This use of the calculator
code allowed the children to focus on the operational structure of the calculator expressions,
whether describing number patterns or describing the relationships involved in story-based
problem situations. This operational approach does not necessarily occur when the children
work within a paper and pencil environment, where natural language is the immediate
means of communication, this situation seems to lead children to see the use of algebraic

code as a sophisticated teacher's imposition.
The mathematical content and the sequence of the tasks used during the study provide

another source of explanation for pupils' achievements in problem solving. The tasks ad-
dressed the following issues: expressing generality (formats 1 and 2), algebraic equivalence
(Format 3), inversion (Format 4), decreasing linear functions (Format 5), and problem solv-
ing (Format 6). A close look at the tasks provides an explanatory framework for how the
children developed such notions and strategies which finally they exhibited when coping
with negotiating problem solutions. This review is intended to provide support for the con-
clusion that these tasks shaped a didactic 'route to algebra problem solving'.

The tasks in Formats 1 and 2 allowed the introduction of calculator language as a
language-in-use. The main feature of these tasks was to place children in the position of us-
ing the calculator code to fulfil their communicative intention. This guided the children to
gain awareness of the inherent generality of the algebraic expressions they were using from
the beginning of the study. The tasks in these formats also introduced children to the use of
parentheses and the idea of inverse function (finding the input when the output was given).
The tasks in Format 2 introduced children to the notion of algebraic equivalence. During in-
dividual interviews they showed they were able to operate with algebraic expressions when
the task was changed to that of transforming an algebraic expression to make it equivalent to
a target expression, for example, transform the program Bx7 so that it produces the same as
the program Bx9. The work carried out by the pupils in Format 6, where they produced ex-
pressions as ((Ax3)x2+(Ax2))x53, suggests that the experience of transforming algebraic
expressions was a key point in helping children gain awareness of the feasibility of using
expressions of the form ax+bx+c. The tasks in Format 4 required the children to deal with
inverting linear functions. The children's responses to questions about number sequences
show how their previous experience with inverting linear functions helped them cope with
problem situations which required them to apply their incipient notion of inverse relation-
ships. Finally, the tasks in Format 5 introduced the children to new number patterns gener-
ated by linear decreasing functions. The children's responses to worksheet 55, where they
produced expressions like ((100A)+2xA, provide evidence of the extent to which their ex-
perience in producing decreasing functions influenced the ways in which they used the alge-
braic code to negotiate solutions.
Final remarks
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The data drawn from this study shows that the approach to algebra as a language in use
helped children use the calculator language to negotiate solutions for algebra word prob-
lems, and confront tasks involving algebraic manipulation, such as simplifying similar
terms, transforming an algebraic expressions to make it equivalent to another, and inverting
linear functions. The study suggests that the pupils have reached a promising starting point
to confront more traditional school algebra. Nevertheless, there are still many aspects of al-
gebra which the children did not encounter within this study. A number of research ques-
tions should be faced in order to refine/consolidate the results of the existing study. Among
the major issues leading to further research are the following:
In which. sense may the pragmatic approach to teaching and learning algebra help/obstruct
children's learning:

a) of formal syntactic rules for algebraic manipulation?
b) when confronting algebra problem solving which involves using equations?
c) of more formal methods for establishing algebraic equivalence?
d) of a more formal approach to the notion of function?
e) of graphs as another way of representing number relationships?
0 when confronting that a conjecture about number relationships cannot be validated

on the basis of the results obtained from specific cases?
g) of the value of counterexamples as a means of proof/refuse mathematical conjec-

tures?
The above questions tell us about the potentialities and limitations of the present

study. About its potential because these questions give an account of the wide range of alge-
braic topics that children experienced during a relatively short school time (about 18 hours).
As well, these questions tell us of the limitations of the present study because they bring to
light issues that still have to be investigated before setting up stronger claims about the po-
tential of the approach to learning and teaching of algebra as a language in use, and the sup-
port provided by the symbolic capabilities of the graphic calculator to fulfil such an enter-
prise.
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EMERGENCE OF NOVEL PROBLEM SOLVING ACTIVITY

Victor Cifarelli

Department of Mathematics
The University of North Carolina at Charlotte

This paper examines the novel problem solving actions of a college student. The
analysis highlights the role of the solver's inferential processes (abductions,
deductions, inductions) as structuring resources that contribute to both the solver's
understanding of the problem and the emerging novelty that constitutes viable
solution activity.

Introduction

The philosopher and logician Charles Saunders Peirce (1839-1914) asserted
that there occurs in science and everyday life a pattern of reasoning wherein
explanatory hypotheses are constructed to account for unexplained data or facts.
Peirce called this kind of reasoning abduction, distinguishing the process from the
two traditionally recognized inferential types of reasoning, induction and deduction.
Specifically, abduction furnishes the reasoner with a novel hypothesis to account for
surprising facts; it is the initial proposal of a plausible hypothesis on probation to
account for the facts, whereas deduction explicates hypotheses, deducing from them
the necessary consequences, which may be tested inductively. According to Peirce,
abduction is the only logical operation which introduces any new ideas, "for
induction does nothing but determine a value, and deduction merely evolves the
necessary consequences of a pure hypothesis" (as quoted in Fann, 1970, p. 10).

Since Peirce argued that abduction covers "all the operations by which
theories and conceptions are engendered" (as quoted in Fann, 1970, p. 8), it appears
that abduction may play a prominent role in the mathematical knowledge that
learners construct while in the process of solving a problem. Of particular interest
here is the role of abduction as a sense-making process which aids solvers in
"getting a handle on" or developing understanding about the problems they face. In
this context, the solver's hypotheses may include novel ideas about the problem,
that pave a way for them to make conjectures about both potential courses of action
to carry out as well as the result(s) of those actions.

The work of Polya (1945) is based on ideas consistent with the view that
problem solvers reason hypothetically in the course of solving a problem.
Specifically, Polya identified heuristic reasoning as "reasoning not regarded as final
and strict but as provisional and plausible only, whose purpose is to discover the
solution of the present problem" (Polya, 1945, p. 113). Further, Polya cited the
usefulness of varying the problem when solvers fail to achieve progress towards
their goals because the solvers' consideration of new questions serves to "unfold
untried possibilities of contact with our previous knowledge" (Polya, 1945, p. 210).
Hence, solvers who reason hypothetically are (1) cautious in their reflections about
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appropriate courses of action to carry out; (2) always looking to monitor the
usefulness of the activity they plan to carry out; and, (3) willing to adopt a new
perspective of the problem situation when their progress is impeded.

The importance of such reflective activity has been emphasized by Burton
(1984), identifying the process of making conjectures as a component of
mathematical thinking through which "a sense of any underlying pattern is
explored" (Burton, 1984, p. 38). More recently, Mason (1995) has remarked on the
importance of examining where learners' conjectures come from, suggesting that a
fresh examination of the abduction process is warranted. Nevertheless, the
researcher agrees with Anderson's (1995) contention that the process of abduction
is transitory and slippery, difficult to foster, impossible to teach, and probably easy
to discourage.

Objectives

The purpose of the study was to clarify the processes by which learners
construct new knowledge in mathematical problem solving situations, with
particular focus on instances where the learner's emerging abductions or hypotheses
help to facilitate novel solution activity. The perspective taken here is that problem
solving situations are self-generated by solvers, arising from their interpretations of
the tasks given to them. Their interpretations may suggest to them questions and
uncertainties, the consideration of which helps them construct goals for purposeful
action. Successful completion of the task may involve many such constructions, all
generated in the course of on-going activity and each monitored for its usefulness
by the solver, as well as having the potential to re-organize their evolving goals and
purposes. In this way, problem solving can be viewed as a form of hypothetical
reasoning, where solvers try out viable strategies to relieve cognitive tension,
involving no less than their ability to form conceptions of, transform, and elaborate
the problematic situations they face.

In an earlier study (Cifarelli and Saenz-Ludlow, 1996), examples of
hypothetical reasoning activity were discussed, highlighting its mediating role and
its transformational influence in the mathematical activity of learners. The current
study sought to extend these results by specifying more precisely the ways that
learners' self-generated hypotheses serve to organize and transform (or re-organize)
their mathematical actions while resolving problematic situations.

Methodology

Twelve graduate students enrolled in a Linear Algebra class taught by the
researcher participated in the study. The students were interviewed on 3 occasions
throughout the course. These interviews took the form of problem solving sessions,
where students solved a variety of algebraic and non-algebraic word problems while
"thinking aloud". All interviews were videotaped for subsequent analysis. In
addition to the video protocols, written transcripts of the subjects' verbal responses
as well as their paper-and-pencil activity were used in the analysis.
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Based on the analysis of the verbal and written protocols, a case study was
prepared for each solver. The solvers' protocols were examined to identify episodes
where they faced genuinely problematic situations. Previous studies conducted by
the researcher characterized the conceptual knowledge of solvers in terms of their
ability to build mental structures from their solution activity (Cifarelli, in press). For
example, solvers were inferred as having constructed re-presentations when their
solution activity suggested they could combine mathematical relationships in
thought and mentally act on them (e.g., they could reflect on their solution activity
as a unified whole, mentally "run through" proposed solution activity, and anticipate
the results without resorting to pencil-and-paper actions). The current study
examined more thoroughly the novel actions of solvers, with particular focus on the
role that hypothetical reasoning played as a structuring resource for solvers.

Analysis

Subjects of the study solved both algebraic and non-algebraic tasks. One of the non-
algebraic tasks involved exploring an array of letters that could be used to spell out
the palindrome WAS IT A CAT I SAW (see below). The use of such non-algebraic
tasks in the study enabled the researcher to observe solvers grappling with problems
which were unfamiliar to them, requiring novel solution activity.

WAS IT A CAT I SAW

An early edition of Alice in Wonderland
included the spatial diagram shown here.

See how many mathematical problems
you can make up and solve using the
array.

W
WAW

WAS AW
WAS I S AW

WASIT IS AW
W A S I T A T E S AW

WAS I TA C AT I SAW
WASIT A TISAW

WASIT IS AW
WAS I S AW

WAS AW
WAW
W

The following section describes the problem solving activity of John as he solves
the palindrome task.

John's Inferential Processes. John was an aspiring secondary mathematics teacher
and proved to be a strong mathematics student in the Linear Algebra class,
achieving high scores on all exams and assignments throughout the course. He
demonstrated strong problem solving activity throughout the interviews, as
indicated by the novelty of his actions in completing the tasks.
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Upon reading the instructions for the palindrome task, John interpreted that
"his problem" was to make up and solve mathematical problems. As he began to
formulate problems to solve, John remarked on how the task differed from other
problem solving tasks he had encountered:

John: Well, this is unusual. I think of problem solving as usually here is one problem, there is a problem
you solve it. This is like you make a problem, it's like... orders of abstraction because I get, the
problem is to make up problems. It's a little difficult.

Despite his comment about the difficulty of the task, John routinely generated five
problems, all of which had to do with counting letters and words:

Table 1: John's Problem Solving - Part 1

1. How many of each type of letter ?

2. How many times does a particular word show up ?

3. How many words total ?

4. How many letters in the array ?

5. How many different patterns of counting the letters ?

As he was working, John remarked on the superficial quality of the problems he had
constructed. For example, in formulating problems #2 and #5, John commented:

John: How many mathematical problems can you make up and solve using the array? ... Hm,you could

ask how many times a particular word shows up (writes it on problem sheet as problem #2' ). The
answer will depend on the word. Like, 'WAS' is going to show up a lot of times. 'IT' shows up
fewer times. ... They're problems but they're so, I don't know, so unsatisfying. I'd like to find
something interesting.

John: You might want to come up with how many different ways to count the letters. You could move

around ... how many different... sort of basically different patterns of counting can you establish
(writes it on problem sheet as problem #5)? You could also do rows and 1, 3, 5, 7 and you would

be adding odds duplicate 2 ones, 2 threes, 2 five's, 2 sevens, 2 nines, 2 eleven's, 2 thirteen's, do it
that way. It reminds me in a way of Pascal's Triangle, but I don't think you can do anything with
that because they're not offset the right way. Let's see ... that's about all.

The episodes above are noteworthy for the following reasons. First, John's
comments indicate a genuine lack of interest on his part regarding his newly
constructed problems: he sees his made-up problems as "unsatisfying", and that he
"would like to find something interesting". Second, John's comment about Pascal's
Triangle appears to be a reference to an idea that he sees as both interesting and
potentially useful. (His idea about Pascal's Triangle will re-appear later in the
interview when he formulated a new problem.) Third, after generating problem #5,
he has given up his quest to pose additional problems and looks to the interviewer
for direction. The interviewer then prompts Ram:

Interviewer: Can I give you one?

John: Yeah.

Comments in boldface describe the non-verbal actions of the solver.
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Interviewer: Okay, the palindrome Was It A Cat I Saw, can you give me some ways that you could spell
it in the array?

John: Oh, to spell out the whole thing? Oh, okay, well, I mean you obviously got the 2... you could... all
diagonals. (solver traces the palindrome along vertical and horizontal paths, followed by many
seconds of reflection) Interesting!

With the comments above, John initiates a shift in his reasoning activity. He
has a new problem to solve, his curiosity has been aroused, and he begins to become
more engaged in the problem situation. He then adopts a pattern of hypothetical
reasoning activity, generating provisional explanations of what his new problem
might be about. He proceeds to explore the array of letters in a more focused
manner, with a view towards learning about the different ways he could spell out
the palindrome. For example, after tracing several paths through the array, each
spelling out the palindrome, John generates a hypothesis:

John: If you come in anywhere, you take a turn and finish it (traces several zigzag paths on the array).
From below, you turn up. At every place you got ... options of switching. It's like you've got a
network type problem or something like that. You get little nodes and you're going through nodes
or something.

John's hypothesis about the array of letters constituting a network of
switching options helped organize and direct his further explorations. Further, his
hypothesis, while providing him with only an initial idea about the different paths,
served as a source from which he was able to elaborate and derive more
sophisticated properties about the different ways of spelling out the palindrome.
For example, after traversing several more paths through the array, John
hypothesized a property that all appropriate paths must possess:

John: Hm, ... Was It A Cat I Saw. I could finish here, that will get down to the C but I could come up or
finish that way, or I could come up and finish that way, or finish that way, or finish that way, or
that one. So, (several seconds of reflection) it's all of them have to go through here because that's
your only C. And if you're going to get the palindrome, you've got to go through the C, so they all
have to go through the center.

John then summarizes his ideas, using the following analogy:

John: Kind of reminds me ... of Chinese Checkers or something... it's like regardless of where you start,
you've got to diagonally move your way in ... and ...in some way or another... work your way out.

John elaborates on his analogy as he further explores the array:

John: You can ... you can make a move down from this position you know, down or right, down or right,
down or right ... (solver traces a zigzag path through the array) ... Here, you can't go right
anymore. You've got to go down either way as you work you way through here. It looks like kind
of like a bus. You know, the kind of problems where they talk city blocks and how many they could
get from here to here, you know, I get what 2 choices here, then you get, then here you got 2
choices, so to get here, you got 4 choices to get here ... 8 choices to get here, but then these 2,
those are straight in, these you got 2 choices ... get I, 2, ... It is just basically, I mean, it's like 8
paths to get in here from here ... Because you've 2, 2, 2 ... 1 don't know, I'm thinking out loud.
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From this elaboration of his original analogy, John proceeds to look for a pattern to
help him to count the paths:

John: /don't know...if I play with a little more it turns a pattern I, 2... may be its more than 8... 1,2,...
Yes, it has to be more than 8. But that's just from this position !!

John's sudden surprise was a realization that there might be many more paths to
spell out the palindrome than he initially anticipated. He reflects on this unexpected
result, and continues to press forward towards a solution:

John: And you can come in from all these other positions. But I mean this has the most choices (points
to middle Won the boundary). If you start here (points to horizontal and vertical paths), you've
got to come straight in, and you could either go straight out ... or straight out if you come here you
get one choice. At some point you've got to branch over to main channels, sort of speak, sooner or
later you get a branch over the main channel... two possibilities... it seems you could work
something out with that. I mean in terms of like literally how many paths could you come up with
the form of the palindrome ... a lot !!

John then generates a hypothesis about a possible solution to counting the paths:

John: I feel it has something to do with powers of two because you've got choices of 2 in each of these
nodes. Even if you can work your way up from here, still you've got 2 choices of each node, but
you're basically working your way in, and then you've got to work your way out. Let's see, ...
(many seconds of reflection) ... actually working your way out you get like 3 choices from here but
then once you've got to one of those ... (more reflection) ... you could, ... its kind of mindbogglingll

John continues to explore, now looking to use "powers of two" as part of his
solution.

John: But it does remind me like, you know, city streets or patterns or even like probability in it
like from here to here there is one path, from here to here, there is, you know, 1, 2, 3, 4, 5,
you could count may be, I don't know, or it might have to do with is how many letters there
are in 8 paths. I'm not sure. (many seconds of reflection here) 1, 2, 3, 4, 5, 6 ...
something like that and count from here, same thing, you probably find a pattern. (more
reflection here before exclaiming) Oh, this would be would be Pascal's Triangle, 1, 6, 10,
15, 10, 6,12 ... (writes sequence on boundary of array);

John's sudden and emphatic statement relating Pascal's Triangle is noteworthy
because: (1) it emerged as a result of his persistence to find a pattern for counting
the paths (i.e., came out of a genuine problem solving opportunity that he had
initiated and sustained); and, (2) signaled a newfound confidence for him, placing a
high level of certainty on both his prior as well as future actions. John continued
his activity of counting the paths, using his knowledge of Pascal's Triangle to
organize his actions.

John: I'm trying to figure out Pascal's Triangle in my head. ... it reminds me of a problem / had in class
one time. It's like you leave your house, go to Pizza Hut or Taco Bell, you have to make a turn at
every corner. But yeah, it's like this, there's more paths from here than from anywhere else
(points to middle Won the boundary), and I can just do Pascal's Triangle, you know, I'll double
check my arithmetic's, OOPS, I'm off. So, 1, 6, 15, 20, 15, 6, 1, so I'd say, ..., you know, there's

2 while the solver's conjecture was viable, these numbers do not correspond to a row of numbers in Pascal's
Triangle; he appeared to make an error in recalling the rows of Pascal's Triangle, an error he later identifies
and corrects.
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that many ways to get into the center once you pick where you're going to start, and then (traces a
path and appears surprised when he gets to the center C) to finish is like, do you let yourself
repeat? I mean can you come back this way (points to the same quadrant in which he started) to
finish palindrome? or you have to go out to each sector, or you have to kind of spell it out or it's
like... What if you come back out in same sector? Just with in here this way. So you'd have this
many ways to get in, but then from here out (several seconds of reflection here) ... it'd probably be
the sum of this (points to sequence of numbers on boundary), 2 to the 6th ... 64, so I'm guessing
basically there would be 64 ways to come back out. No, it is not just a guess, it's an intuition
because there is basically 64 ways to come in, spread out in these different positions, so they reach
64 ways to go out because once you get to the center you have more choice in finishing the letter.

In asserting his "intuition", John has placed some certainty on his reasoning,
confident that he is close to a solution to the problem. John continues to explore
and elaborate his hypothesis:

John: To start it you're kind of locked into a particular place to start. So, I guess what you could come
in to the C as I'm figuring 64 different ways, and you could come out 64 different ways. So just
within the sector, there are 642 different ways you come out. And if you start, I mean multiply here
by 4... another 16, something to get the whole thing. If you get to go in here then you get 4 choices
coming out here. 4 times 4 I think 16 times, that'll give you like total ways.

John: That's a good question! (solver points to the 5 prior problems he made up and had written
down) These really didn't satisfy me so much.

Discussion

The results characterize John as an assertive, aggressive sense-maker,
continuously looking to make sense of the situations he finds himself in, and at the
same time, aggressively projecting results of his problem solving actions towards
the solution of other questions and problems. It was inferred that John's hypotheses,
while providing ideas that contributed to his solution activity, also served to create
new questions or problems for him to address, which were then actualized in the
form of particular explorations. In this way, his evolving hypotheses concerning
what the problem was about, went hand-in-hand with his continuously changing
goals of what he was trying to achieve through his actions. In other words, as John
solves his problems, new problems arise for him that need to be addressed.

Table 2 summarizes the researcher's inferences about the relationship
between John's goals and purposes (his problems) and hypotheses that contributed
to his knowledge about his problems (his solved problems).

Table 2: John's Problem Solving - Part 2

Goals and Purposes: His Problems John's Hypotheses: His Solved Problems

explore some ways to get the palindrome
(what constitutes a path?)

explore properties of the paths
(what properties are common to all paths ?

looking for some efficient way to count paths
(what is the pattern ?)

looking to make a generalization
(is going out the same as going in ?)

H, : need to get onto a diagonal to spell
out the palindrome

H2: all paths need to go through the center C
and back out again to spell the palindrome

H3 : number of ways to spell out the palindrome
appears related to Pascal's Triangle

H., : the number of ways into the center C is the
same as the number of ways out to the boundary
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From Table 2 it is clear that John's hypotheses evolved continuously in the
course of his actions as he determined how many ways there were to spell the
palindrome. With each hypothesis, John solved a problem, the result of which
fueled his understanding of the overall situation. The linear appearance of Table 2 is
not meant to suggest a linear progression of problem formulation followed by
hypothesis generation; rather, the researcher posits a relationship where the solver's
problems and problem solving activity continually feed and nourish each other,
each providing sources of action.

In more theoretical terms, John's problem solving performance constituted a
confluence or flowing together of his evolving hypotheses, deductions and
inductions. Specifically, John hypotheses, while serving to answer questions that
arose for him in the course of his on-going solution activity, also served as
conceptual springboards to (1) provide structure for his potential actions (i.e., by
structure I mean he could organize his potential activity in ways that were
compatible with his goals), and (2) actualize hypothetical relationships in solution
activity (i.e., self-generate particular trials that could feedback to his conjectures).
For example, he started with the relatively primitive question of what constitutes a
path, generating a hypothesis (H1) that enabled him to inductively generate and
examine several actual paths. Results of these inductive trials provided him with
feedback that enabled him to abduce more sophisticated properties about
appropriate paths through the array (H2-H4), with each successive hypothesis
suggesting new questions to explore.
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NESB MIGRANT STUDENTS STUDYING MATHEMATICS:
VIETNAMESE STUDENTS IN MELBOURNE AND SYDNEY'

Philip C Clarkson
Australian Catholic University (Vic)

Lloyd Dawe
Sydney University

This paper describes one part of a project which is working with migrant bilingual
children who are learning mathematics in Australia. We are particularly interested
in students who choose to switch between their languages when processing
mathematical problems. In this paper data collected in both Sydney and Melbourne
from grade 4 students will be discussed Particular emphasis is given to the
Vietnamese students' responses. Comparisons between the two cities which have
some different approaches and conditions in their schools will be noted. Comment
on Cummins threshold hypothesis will be made, as will some reflections on the
implications for teachers and curriculum developers.

Australia is a land of many languages. Although the official and by far the most
dominant language is Australian English, many other languages are used everyday
as citizens go about their daily lives. One way this has been recognized is through
the continuing policy of 'multiculturalism'. This policy is not just a recognition that
Australia has drawn citizens from many lands, some of which do not have English
as their first language, but is a policy that actively recognizes the multicultural
background of its citizen as they live together in one nation.

In most urban schools in Australia's major cities there are many languages
represented. It is common for a class grouping of 25 to 30 children to come from
families representing five or six countries. In some parts of Sydney and Melbourne
this can rise to ten or more. What then is the teacher to do who is probably a
monolingual English speaker? For the most part English is used as the language of
the classroom, although other languages represented in the classroom are
recognized in some way. Such a response is normally justified on social grounds
such as it gives access and status to each student's particular cultural background
which is held to be important. The authors are totally in favor of this response.
However they suggest that other cognitive grounds are just as important and are
often not recognized by teachers.

The interplay between language and mathematics learning is now recognized as
being a critical factor for the mathematics classroom (see Ellerton & Clarkson,
1996 for a comprehensive review). Earlier research by the authors has contributed
to this debate in the area of bilingualism; Clarkson with primary students in Papua
New Guinea and Dawe with secondary students in England (see for example
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Clarkson, 1992; Dawe, 1983). This earlier independent work drew on the
theoretical position of Cummins (Cummins & Swain, 1986). Cummins hypothesized
that the level of competence that a bilingual child achieved in both her/his languages
was critical to academic performance.

In working with teachers in Australian schools there was not always a recognition
of this cognitive feature of bilingualism. Often a naive position was taken that the
first language (L1) was some what irrelevant, although competence in the language
of learning, in this context English (L2), may be important. Many non bilingual
teachers, the majority in our systems, were not really aware that their bilingual
students would indeed swap languages while thinking about their classwork. If this
was conceded by some teachers, then such a possibility may happen for cultural or
language based work, but not for mathematics. Of course when you are teaching
children from such a diverse background of languages, in the pressures of 'keeping
the classroom going', it is not always easy to see such common threads. This is a
very different teaching situation for an English speaking teacher who might have a
classroom of bilingual children, but virtually all of them are from say a Spanish
speaking background, which may happen in the southern states of the USA

The Present Project
The authors have reported on this project elsewhere and the details will not be
repeated here (Clarkson, 1996; Clarkson & Dawe, 1994). This paper reports on
preliminary analysis of a data base of some 850 year 4 (age 9-10 years) students
studying mathematics in Melbourne or Sydney. Eighteen schools were involved with
parents coming from 42 identified country plus others, 34 of which were
predominately at least non English speaking. For this paper, 252 cases were drawn
from this data base representing those classes which had a high proportion of
Vietnamese students. But still 24 identified countries were represented with 18
different non English speaking backgrounds.

In this paper the following group tests will be referred to:

an English language competency test with a maximum score of 20,

a Vietnamese language test with a maximum score of 8,

a mathematics test composed of symbolic items with no words in an alternate
answer format, the raw score of which can be converted to Byte Scores, a
measure of cognitive level,

a mathematics test which was composed of short extended answer word problems
(Mathematical Word Problems Test) with a maximum score of 10,

a mathematical test which was composed of open ended items in that there was more
than one correct answer (Mathematical Novel Problems Test). This test gave rise to
a raw score (the number of items for which one answer was correct giving a

2 154



maximum score of 10) and a 'novel' score (one point for each correct answer, with
up to three answers scored per item, giving a maximum score of 30).

Using Li for Mathematics?
The first notion we were interested in exploring was whether the children did use
their two language when attempting mathematical problems. Tables 1 and 2 show
that indeed an important percentage of this sample of students did so for each of the
mathematics tests. There seemed to be a consistent higher proportion of Sydney
students who used their L1 in the solution process. Based on observations of the
schools in which the authors were working, there did seemed to be a higher support
for the maintenance of the students' LI in Sydney schools with the employment of
full-time bilingual teachers for this specific task. In turn this seemed to be a
function of the larger size of the Sydney schools and hence their ability to direct a
larger amount of money to this task, even though the proportion of funds in both
Melbourne and Sydney individual schools may be similar. However it seems clear
that the first message for teachers and curriculum developers is that a high
proportion of students will be using their Ll for at least some of their mathematical
thinking.

It is one thing to know that students are, using their LI in the solution process.
However whether it makes a difference to the academic performance of students is
another question. Table 3 suggests that the use of LI does have some effect, but it is
not consistent across mathematical context, and different schooling experiences may
also play some role.
TABLE 1: Number of items for which the following percentage of students chose to use their LI for
at least part of the solution process on the Symbols Test (Sydney N=57; Melbourne N=85)

No. of items
chosen

Sydney Melbourne No. of
items
chosen

Sydney Melbourne

0 47 62 11 0 2
I 2 0 12 2 1

2 0 4 13 4 2
3 4 1 14 0 2
4 5 2 15 0 1

5 0 1 16 4 0
6 4 0 17 2 0
7 0 1 18 0 1

8 2 0 19 0 2
9 2 2 20 19 11
10 5 2
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TABLE 2: Number of items for which the following percentage of students chose to use their LI for
at least part of the solution process on the Word Problems Test and on the Novel Problems Test
(Sydney N=57; Melbourne N=85)

Tt0' 0
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1 10 mium.
TABLE 3: Correlations between scores on the three tests and the number of items for which students
chose to use their LI for at least part of the solution process (Sydney N=57; Melbourne N=85)

Type of test mathematics test Sydney Melbourne
N r N r

Symbols 20 - 0.16 21 - 0.04
Words 23 0.53* 30 0.18
Novel - raw score 30 0.26 32 0.30*

- novel score 30 - 0.20 32 0.30*

The Effects of Bilingualism
Table 4 shows the means and standard deviations for the two language tests and two
mathematics tests. It is seen that there appears to be little difference between the
performance of the groups.

To have some measure of the bilingual students' language competencies, a process
similar to that employed by the authors and others in earlier studies was used. The
frequency of scores on the English Language Test for the sample of English
speakers was analyzed. Cut off scores which divided the group into thirds were
determined. These cut off scores were then used to partition the sample of
Vietnamese students into three groups. The frequency of scores on the Vietnamese
Language Test for the Vietnamese students was analyzed. The group was partitioned
into two groups using the median score. Hence the Vietnamese students were
partitioned into six cells. In this way it was able to identify Vietnamese students who
had relatively high competence in both their languages, students who had relatively
low competence in both their languages, and students who had high competence in
one of their languages termed 'one dominant' students. There were also some
students in this sampling process who were dropped out of the sample as they were
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TABLE 4: The means and standard deviations of four group instruments for the total sample of
students, the Vietnamese speaking, and the English speaking students.

R I TR T AN. D .

Total Sample
(N=252)

Language n) (max. 20) 12.6 4.9
Math 'Wor s max. 10) 6.5 2.2
Novel (R.S) max. 10) 4.7 4.4
Novel (N Sr) max. 30) 9.0 4.9

Vietnamese speakers
(N=93)

Language (Eng) (max. 20) 12.0 4.9

Novel .S. (max. 30) 9.2 5.4
English speakers
(N=48)

Language (En) (max. 20) 12.7 5.0
Math Words (max. 10) 6.6 2.1
Novel (R.S.) (max. 10) 4.9 1.9
Novel (N.S.) (max. 30) 10.3 5.3

deemed to have a medium competency in English. Hence a new variable 'Bilingual
Language' with three categories was defined.
Three analyses of variance were computed to investigate the effect of the level of
bilingual competence on the raw scores of the Mathematical Word Problems Test,
the Mathematical Novel Problem Test, and on the 'novel' score on the latter test. In
each analysis the Byte Score, which is a measure of their cognitive level, for each
student was incorporated (Tables 5, 6 and 7).

Each analysis showed that the students included as having high competence in both
their languages outperformed the other two groups, although Scheffe tests indicated
that in each case the differences between this group and the 'one dominant' group
were not statistically different. Both these groups however were significantly
different to the students who were categorized as having low competency in both
their languages. Although this is a small sample and more detailed analysis is still to
be completed, it is interesting to note that these results are in line with Cummins'
threshold hypotheses, and are similar to previous results that the authors have found
working with very different groups of students in other countries.

Why do Students Swap?
The analyses show so far that the bilingual students do swap between their languages
when doing mathematics, a fact not always recognized by teachers and curriculum
developers. Further there is some suggestion that this is influenced by mathematical
context and schooling. Not only this, the competencies that students have in both
their languages may well be another important factor in their learning of
mathematics.
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TABLE 5: Analysis of variance using the score on the Mathematical Word Problems Test as the
dependent variable, a Bilingual Language (LL) variable as an independent variable, with the Byte
Score (MSBS), a measure of cognitive level as a covariant.

Source of Sum of Mean Sig
Variation Squares DF Square F of F
Covariates 42.81 1 42.81 18.74 .00

MSBS
Main Effects 56.87 2 28.43 12.44 .00

LL
Explained 99.68 3 33.23 14.54 .00
Residual 127.97 56 2.29
Total 227.65 59 3.86

Multiple classification analysis
Grand Mean = 6.65 Adjusted for

Independents
Unadjusted + Covariates

Variable + Category N Dev'n Eta Dev'n Beta
IL

1 10 -2.15
2 42 0.18
3 8 1.72

Multiple R Squared
Multiple

0.56

-1.90
0.14
1.62

0.51
0.44
0.66

TABLE 6: Analysis of variance using the raw score on the Mathematical Novels Problem Test as the
dependent variable, a Bilingual Language (LL) variable as an independent variable, with the Byte
Score (MSBS), a measure of cognitive level as a covariant.

Source of
Variation
Covariates

MSBS

Sum of Mean Sig
Squares DF Square F of F
7.65 1 7.65 2.06 .16

Main Effects 47.24 2 23.62 6.36 .00
LL

Explained 54.89 3 18.30 4.93 .00
Residual 211.67 57 3.71
Total 266.56 60 4.44

Multiple classification analysis
Grand Mean = 4.61 Adjusted for

Independents
Unadjusted + Covariates

Variable + Category N Dev'n Eta Dev'n Beta
IL

1 11 -1.79 -1.71
2 42 0.20 0.19
3 8 1.39 1.36

0.44 0.43
Multiple R Squared 0.21
Multiple R 0.45
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TABLE 7: Analysis of variance using the 'novel' score on the Mathematical Novel Problem Test as
the dependent variable, a Bilingual Language (LL) variable as an independent variable, with the Byte
Score (MSBS), a measure of cognitive level as a covariant.

Source of Sum of Mean Sig
Variation Squares DF Square F of F
Covariates 65.20 1 65.20 3.12 .08

MSBS
Main Effects 177.31 2 88.65 4.24 .02

LL
Explained 242.50 3 80.83 3.87 .01
Residual 1191.44 57 20.90
Total 1433.93 60 23.90

Multiple classification analysis
Grand Mean = 9.03 Adjusted for

Independents
Unadjusted + Covariates

Variable + Category N Dev'n Eta Dev'n Beta
LL

1 11 -3.85 -3.58
2 42 0.63 0.58
3 8 1.97 1.85

0.38 0.36
Multiple R Squared 0.17
Multiple R 0.41

However there is still the intriguing question of why do students swap languages, in
learning environments that do not actively encouraged students to do so, nor
recognize that this strategy is used. A sample of students from each school was
interviewed on how they completed three or four mathematical problems, in
particular what language did they used in the process, and why. Some speculation on
this has been entered into elsewhere (Clarkson & Dawe, 1994) and some
preliminary comments have also been recorded (Clarkson, 1996). Further analysis
of the interview data is progressing and future papers will focus specifically on
these matters. It seems to us that some interlocking factors are present here, with
probably more than one having an influence in any one situation. Difficulty is
certainly one dimension. If the student feels the item is difficult because of meanings
not being clear when reading or comprehending the problem, then a switch may
occur. However an affective response may also be playing some part in that students
simply like to use this or that language. Memory also plays a role in that some
students may recognize a problem, or an aspect of a problem, which is similar in
some way to a previous one for which they obtained help from a significant other.
If that help was given in their I., 1 , then this may prompt a switch as the student
enters fully into that memory situation.

We can not stress enough the complexity of the process in which the students are
involved. Any solution process is involved, if it is more than rote application of a
well known routine for the student. With bilinguals there are clearly added fields of
complexity. We feel we are dealing with 'messy' data all the time, not because we
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have inadequate methodological approaches, but because the very nature of the
phenomena is complex and 'messy'. However we also believe it is giving rich
insights into how children learn mathematics.

Conclusion
In 'The Age', Melbourne's leading broadsheet newspaper, a recent article on page
three was headed 'Schools are failing immigrants: study' (Milburn, 1996). The gist
of the argument was that students from non English speaking backgrounds at school
needed more help with learning English as a second language. We have no problem
with this position, as far as it goes. The recent government cutbacks at both Federal
and State level do not help. But we would contend that this is only part of the story.
Such students also need help with maintaining competence in their Ll. Just as
teachers recognize the importance of different ways of thinking about mathematics,
be they analytic, visual, etc., and attune their methods of teaching to support these
thinking strategies, so they, and curriculum writers, also need to be far more aware
of the role that Ll plays across the whole of the school curriculum including
mathematics, and plan to use the advantages that this can bring.

Notes

1. We gratefully acknowledge the finacial support for this project by an Australian
Research Council Large Grant in 1994/5, and by internal research grants from both
our Universities.
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YOUNG CHILDREN'S CONCEPTS OF SHAPE

Douglas H. Clements
State University of New York at Buffalo
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We investigated children's early conceptions of geometric shapes with the goal
of creating detailed descriptions of these ideas. Data were collected through
individual clinical interviews of 97 children ages 3.5 to 6.9 emphasizing
identification and descriptions of shapes and reasons for these identifications.
Young children initially formed schemas based on feature analysis of visual
forms. As these schemas develop, children continue to rely primarily on visual
matching to distinguish shapes. They are, however, also capable of, and show
signs of, recognizing components and simple properties of familiar shapes.
Thus, evidence supports previous claims (Clements & Battista, 1992) that a
pre-representational level exists before van Hide level 1 ("visual level") and
that level 1 should be reconceptualized as syncretic rather than visual
(Clements, 1992).

Extensive evaluations of mathematics learning indicate that elementary students are
failing to learn basic geometric concepts and geometric problem solving, especially
when compared to students from other nations (Clements & Battista, 1992).
Apparently, much learning of geometric concepts has been by rote. Students
frequently do not recognize components, properties, and relationships. One tenet of
teaching for understanding, accepting a constructivist view of learning, is building
on a child's existing ideas. We investigated children's early conceptions of
geometric shapes to provide detailed descriptions of these ideas.

Theoretical Framework
Previous studies of children's geometric conceptions have provided useful
foundations, but have also left gaps that are critical to the development of
curriculum and the improvement of teaching. Three dominant lines of inquiry have
been based on the theories of Piaget, the van Hieles, and cognitive psychology
(Clements & Battista, 1992). Piagetian and cognitive psychology research have
illuminated children's conceptions, but have not been grounded in educational
concerns. Also, much of Piagetian research investigated the topological primacy
hypothesis, which has not received strong support (Clements & Battista, 1992). In
contrast, van Hielian research was grounded in educational concerns; however, the
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original theory (van Hie le, 1959; van Hie le, 1986; van Hiele-Geldof, 1984), and
most of the subsequent research studied students in middle school and beyond.
Indeed, Clements & Battista (1992) postulated that a combination of the Piagetian
and van Hielian perspectives is necessary, as the latter theory does not adequately
describe young children's conceptions.

This study was designed to investigate the geometric concepts formed by young
children. The goal was to answer the following questions. What criteria do
preschool children use to distinguish one shape from another? Do they use criteria
in a consistent manner? Is the content, complexity, and stability of these criteria
related to age or gender?

Method
Participants were 97 predominantly middle class children, 48 boys and 49 girls
from two preschools and an elementary school with two kindergartens. All children
whose parents completed permission forms were involved. The children were aged
3.5 to 6.9 years and were divided into 3 groups according to age. Children younger
than 4.5 years at the time of the study were grouped as the 4-year-olds (n=25),
children between 4.5 and 5.5 years were grouped as the 5-year-olds (n=30), and
those above 5.5 were grouped as the 6-year-olds (n=42).

Data were primarily collected through clinical interviews of the 97 children by
researchers in an one-on-one setting. The focus of the interview was the children's
responses as they performed shape selection tasks. These were pencil and paper
tasks with the children marking all the circles on a page of separate geometric
figures, similarly for squares, triangles, and rectangles (most of the distractors were
visually similar to the goal shape), and ending with circles and squares in a complex
configuration of overlapping forms (see Appendix). Each interview, lasting about
20 minutes, was videotaped. The responses were scored and coded, and the data
analyzed to determine patterns and trends in the children's understanding of
geometric concepts.

The first data set was created by scoring children's selections for correctness. The
second was an analysis of children's verbalizations, both spontaneous and in
response to the interviewer's questions. The interviewer asked these open-ended
questions to clarify the criteria the children were using in making the selections
(e.g., "How did you know that was a rectangle?"). Children's responses were coded
into one of 22 response categories, based on the van Hie le theory and previous
research. Each response category was classified in one of two superordinate
categories, "visual" or "property." A visual response was coded for any reference to
a form looking like an object and for descriptive such as "pointy", "round" and
"skinny". A property response was one in which the child referred to the geometric
components or properties of the form, such as "four sides the same length." In cases
of multiple responses about a single figure, the dominate response was coded when
possible; if no response was dominant, code 20 (more than one response in the
visual category) or code 30 (more than one response in the property category) was
used. Multiple responses spanning both categories were coded in the property
category.
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Findings
Developmental and gender differences were assessed with analyses of variance for
each task. There were no significant difference between boys and girls on the
overall scores of any shape selection task. To analyze children's verbal responses,
we calculated the percentage of visual- and property-based responses children gave
for each shape. To look at specific responses, we categorized each of the shapes into
two groups, examples and non-examples of the shape class, and calculated
percentages of each verbal response based on the total number possible for each
group. For example, 84% of the 25 4-year-old children responded "I don't know"
to one or more of the 9 examples of circles shown.

The circle selection task was the easiest for the children with a mean score of 14.5
out of a possible 15. A significant developmental difference was found in this task
with the 6-year-olds performing significantly better than the younger children (F =
5.54, p < .005). Among the distractors, the ellipse (shape 11) was the most
distracting with 12% of the children marking it as a circle; most of these children
were either 4 or 5 years old. In addition, 20% of the 4-year olds identified the
curved shape (shape 10) as a circle. Of the 57% of children who responded about
the reasons for selections 56% were visual responses. Children, particularly the 4-
and 5-year-old, gave more verbal responses for the non-examples than examples of
circles. For the examples of the circles, the most dominant response was "round,
curved, no straight sides, no corners." No one used a property response to justify a
circle. Further, there was no significant correlation between children's property-
based responses and their correct selection of the circle.

The mean score on the square selection task was 11.2 out of a possible 13,
suggesting that the children were quite able to discriminate a square from the other
forms on the page. Though there was no significant overall developmental
difference, 28% of the 4-year olds and 13% of the 5-year olds, compared to only
5% of the 6-year-olds, identified the rhombus (shape 3) as a square. In contrast,
63% of the 4- and 5-year-olds and 68% of the 6-year-olds accepted squares with no
side horizontal (shapes 5, 11, and 13) as squares. Of the 59% of responses giving
reasons for selections, 44% were visual responses, generally "It just looks like a
square." This was predominantly seen among the 4- and 5-year-old children who
used more verbal responses for the non-examples rather than the examples of
squares. The 15% of property responses referring to the number of sides and
corners suggested that some children at this age are beginning to discriminate
squares by components or properties. The statistically significant correlation
(r=0.32) between property-based responses and children's correct selection of the
square suggests that children are more likely to be accurate in their square
identification should their reasoning be based on the shapes' attributes.

The triangle selection task was more difficult for the children; the mean score was
8.2 out of a possible 14. There was no significant difference between the age
groups. Of the 70% of selection responses, 52% were in the visual category and
18% were in the property category, indicating young children's limited ability to
recognize (or perhaps verbalize) geometric components and properties of this shape



category. Again, the children (particularly the 4- and 5-year-old) provided more
verbal responses for the non-examples rather than the examples of the triangles. Of
the visual responses, referring to another shape on the same page or alluding to "It
looks like" appeared to be more popular. Of the property-based responses, the
children referred to the number of sides and corners most frequently. One
developmental pattern among the three age groups and their selection of particular
figures emerged. The 5-year-olds were more likely than either the 4- or 6-year-olds
to correctly identify the examples of triangles (shapes 1, 6, 8, 10, 11, 12), thereby
indicating an inverse U-shaped trend in growth. However, the 5-year-olds were
also more likely than both the 4- and 6-year-olds to accept curved sides, either
convex or concave (shapes 3, 5, 7, 14).

The total mean score on the rectangle selection task was 8.01 out of a possible 15.
Again the responses were mainly visual (52% of the total 61% of responses)
confirming the children's apparent reliance on comparison to a visual image when
distinguishing between forms. Again, more verbal responses were used for non-
examples than examples. Of the visual responses, children responded "It looks like"
more frequently. Of the few property-based responses, the 5-year-old children
(more so than the others) referred to the number of sides and corners. The 4-year-
olds were more likely to accept the squares as rectangles. Shape 2 was selected by
28% of the 4-year-olds, compared to 17% and 10% of the 5- and 6-year-olds,
respectively. Shape 7 was selected by 16% of the 4-year-olds, in contrast to 3% and
7% of the 5- and 6-year-olds respectively accepting it. The children tended to
accept "long" parallelograms or trapezoids (shapes 3, 6, 10, and 14) as rectangles;
they were less likely to choose the shorter and nonparallelogram forms as
rectangles. Children referred to properties less frequently for rectangles than they
did for triangles and squares.

Finally, on the circle/square complex configuration, the mean score was 16.77 out
of a total of 28. A significant difference was found between the age groups with the
6-year-olds children scoring better than those younger (F=13.526, p<.0001). The
younger children identified two of the ellipses, shapes 6 and 14 (50% and 42%
respectively), as circles. A fewer number of children so identified ellipses as
circles in the circle selection task. In this task, some of the circles and squares were
embedded within each other; children were less likely to identify these embedded
shapes. For instance, shape 8 (a square) has shape 9 (another square) embedded
within it and is also divided into four quarters to create four more squares (shapes
10, 11, 12 and 13). While 32% of the children selected shape 8, only 17% selected
shape 9 and an even fewer number selected shapes 10, 11, 12 and 13. Few of the 4-
year- olds, in particular, selected these embedded squares. The same was true with
the circles. While 76% of the children identified shape 26 (an outer circle), only
17% identified the circle embedded within this shape (shape 27). Also, only 35% of
the children marked the square inside the circle (shape 23), whereas 87% of the
children selected the circle itself (shape 22). Overall, scores were lower on this
embedded figures task. Few children provided verbal responses for these shapes,
with hardly any property-based responses. A caveat is that some children showed
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signs of tiring on this task and may have been giving less attention to their
selections.

Several patterns emerged across the various shapes. On the square, triangle and
rectangle tasks the children sometimes appeared not to distinguish the concepts of
"side" and "corner" (or "point"). A child would say that a form had four "sides"
and then, when asked to count them, would count the corners. This was particularly
prevalent among preschool children and needs to be considered in further research.

Discussion
We investigated young children's conceptions of geometric shapes. Children
identified circles with a high degree of accuracy. Six-year-olds performed
significantly better than the younger children, who more frequently chose the
ellipse and curved shape. Most children described circles visually, if at all. In sum,
the circle was easily recognized but difficult to describe for these children.
Evidence indicates that they matched the proffered shapes to a yisual prototype.

Children were only slightly less accurate in identifying squares. Younger children
were less accurate classifying nonsquare rhombi but no less accurate classifying
squares without horizontal sides. A minority of the children's reasons for selections
referred to properties, but there was a significant relationship between such
responses and correct selections.

Children were less accurate recognizing triangles and rectangles. Property
responses were again present but infrequent (18% for triangles) There was an
inverse-U pattern in which 5-year-olds were more likely than younger or older
children to accept both non-standard triangles and those with curved sides.

Children identified slightly more than half of the rectangles correctly. The 4-year-
olds were more likely to accept the squares as rectangles. All children tended to
accept "long" quadrilaterals with at least one pair of parallel sides as rectangles.
They referred to properties less frequently for rectangles than for triangles and
squares.

Children's accuracy was lowest on the circle/square complex configuration; in
addition, the 6-year-olds were significantly more accurate than the younger
children. More children identified ellipses as circles in this complex and embedded
configuration.

These results have two theoretical implications for the realm of children's
geometric understanding. First, the data support previous claims (Clements &
Battista, 1992) that a pre-representational level exists before van Hiele level 1
("visual level"). Children who cannot reliably distinguish circles or triangles from
squares should be classified as pre-representational; those that are learning to do so
should be considered in transition to, rather than "at," the visual level. We propose
that children at this level are just starting to form schemas (networks of
relationships connecting geometric concepts and processes in specific patterns) for
the shapes. These early, unconscious schemas perform pattern matching through
feature analysis (even though the objects form undifferentiated, cohesive units in

2 16/ 7 as



children's experience, c.f. Smith, 1989). For example, nascent schemas may
ascertain the presence of a closed, "rounded" shape to match circles, four near-equal
sides to match squares, and parallelism of opposite "long" sides to match rectangles.
Later, these schemas incorporate other visual elements, such as the right angles of
square, and thus can produce traditional prototypes. These prototypes may be over-
or undergeneralized compared to mathematical categorization, of course, depending
on the exemplars and nonexemplars children experience.

Second, the results support a reconceptualization of van Hie le level 1. The high
proportion of visual responses were in line with theoretical predictions. However,
there is also evidence among these young children of a recognition of some
components and properties of shapes, though these may not be clearly defined (e.g.,
sides and corners). Some children appear to use both matching to a visual prototype
(via feature analysis) and reasoning about components and properties to solve these
selection tasks. Thus, this study provides evidence that Level 1 of geometric thought
as proposed by the van Hie les is more syncretic than visual, as Clements (1992)
suggested. That is, this level is a synthesis of verbal declarative and imagistic
knowledge, each interacting with and enhancing the other. Thus, the name syncretic
level, rather than the visual level, signifying a global combination without analysis
(e.g., analysis of the properties of figures). At this level, children express the
declarative knowledge more easily to explain why a particular figure is not a
member of a class, because the contrast between the figure and the visual prototype
provokes descriptions of differences. Children making the transition to the next
level sometimes experience conflict between the two parts of the combination
(prototype matching vs. component and property analysis), leading to incorrect and
inconsistent task performance.

For example, in some cases, as children made increasingly more references to
attributes during the categorization tasks, they also made fewer correct selections.
These errors were made because, instead of relying solely on comparison to a
mental prototype, these older children began to rely on attributes that they had
determined as defining the category. For the square, many younger children
interviewed categorized a form as a square because it "just looked like one".
However, some children attended to the integral attributes that for the young child
are "four sides the same and four points". The fact that a square also is defined by
four right angles is not yet understood as integral by the young child and, thus, the
acceptance of a rhombus as a square. The young child's reliance on nonintegral
attributes or inattention to integral attributes thus leads to categorization errors.
Mervis and Rosch (1981) theorized that generalizations based on similarity to highly
representative exemplars will be the most accurate. This would account for the
higher number of correct categorizations by those children who appeared to be
making categorization decisions based on comparison to a visual prototype without
attention to nonintegral features. Finally, strong feature-based schemas and
integrated declarative knowledge, along with other visual skills, may be necessary
for high performance, especially in complex, embedded configurations. To form
useful declarative knowledge, especially robust knowledge supporting transition to
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level 2, children must construct and consciously attend to the components and
properties of geometric shapes as cognitive objects.

There were no significant difference between boys and girls on the overall scores of
any shape selection task. Consistent with recent reviews, there is no data to support
any hypothesis of gender difference in early geometric concept acquisition.

In summary, young children initially form schemas based on feature analysis of
visual forms. These children can be classified as pre-representational (level 0). As
these schemas develop, children continue to rely primarily on visual matching to
distinguish shapes. They are, however, also capable of, and show signs of,
recognizing components and simple properties of familiar shapes. The
discrimination of shapes using a combination of visual schemas and an initial
understanding of components and properties is characteristic of Clements' (1992)
defmition of a syncretic level of geometric understanding, a redefinition of the van
Hie les' level 1, or visual level.

Descriptions of children's early conceptions of geometric shapes are important not
only for theory, but also for teacher education (e.g., for cognitively-guided
instruction models), and for developers of constructivist-oriented curricula. Too
often, teachers and curriculum writers assume that students in early childhood
classrooms have little or no such knowledge (Thomas, 1982). Obviously, this belief
is incorrect; even preschool children exhibit substantial knowledge of simple
geometric forms. Instruction should build on this knowledge and move beyond it.
Students do not reach the descriptive level of geometry in part because they are not
offered geometric problems in their early years (van Hie le, 1987). The "prolonged
period of geometric inactivity" (Wirszup, 1976, p. 85) of the early grades leads to
"geometrically deprived" children (Fuys, Geddes, & Tisch ler, 1988).

Evidence supporting the hypothesized syncretic level and an earlier pre-
representational also provides useful information to researchers and to teachers of
young children. We consider this level the syncretic level, rather than the visual
level, signifying a global of combination of declarative and imagistic knowledge
(without analysis). The question should not be whether geometric thinking is visual
or not visual, but rather, whether imagery is limited to unanalyzed, global visual
patterns or includes flexible, dynamic, abstract, manipulable imagistic knowledge.
This latter type of knowledge, and the concurrent development of active and
reflective visualization that acts on figures, not just on drawings, is a viable goal at
all levels of thinking. So is robust, explicit knowledge of the components and
properties of geometric shapes as cognitive objects.

The limited verbalizations of these young children, and the consequential ambiguity
of the meaning of their utterances, imply that these results are suggestive rather
than conclusive. We are presently conducting research using materials and
methodologies to address remaining shortcomings in our knowledge of young
children's geometric concepts of shapes.
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LEARNING FROM DISTRIBUTED THEORIES OF INTELLIGENCE

Paul Cobb
Vanderbilt University

The analysis reported in this paper focuses on the distributed view of intelligence
developed by Pea and colleagues. I begin by identifying general areas of agreement
and then discuss two points of contention. The first concerns the legitimacy of
taking the individual as a unit of analysis, and here I argue that the distributed
perspective implicitly accepts key tenets of mainstream American psychology's view
of the individual even as it rejects it. The second point of contention concerns
distributed intelligence's characterization of tool use. Drawing on a distinction made
by Dewey, I argue that it is more useful for the purposes of instructional design to
view activity that involves using an artifact as the tool, rather than the artifact per se.

As the title of this paper implies, I see much value in analyses of activity
developed by Pea (1993) and his colleagues that stress the distributed nature of
intelligence. I will discuss both the contributions of this theoretical orientation and
the adaptations that I and my colleagues have found it necessary to make for our
purposes as mathematics educators interested in instructional design.

Background
The practice of conducting longitudinal classroom teaching experiments in

collaboration with teachers constitutes the background for the discussion. As part
of the part of the process of preparing for an experiment, we clarify our overall
instructional intent and outline provisional sequences of instructional activities. As
Gravemeijer(1994) clarifies, the initial phase of this design process involves an
anticipatory thought experiment in which the designer envisions how the
instructional activities might be realized in interaction in the classroom, and how
students' interpretations and solutions might evolve as they participate in them. In
approaching design in this manner, the designer formulates conjectures about both
the course of students' mathematical development and the means of supporting and
organizing it. The domain-specific instructional theory that we draw on when
conducting these initial thought experiments is that of Realistic Mathematics
Education (Treffers, 1987). The issue of tool use and thus of the distributed nature

The analysis reported in this paper was supported by the National Science
Foundation under grant No. RED-9353587. The opinions expressed do not
necessarily reflect the views of the Foundation
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of intelligence comes to the fore when we consider how students' mathematical
learning is to be supported in this approach to instructional design.

A central heuristic of RME proposes that instructional sequences should involve
settings in which students are explicitly encouraged to develop models of their
initially informal mathematical activity. This modeling activity might involve acting
with physical devices and computer-based tools, or it might involve making
drawings, diagrams, or tables, or developing non-standard notations and using
conventional mathematical notations. The conjecture underlying this heuristic is
that, with the teacher's guidance, students' models of their informal activity will
evolve into models for increasingly sophisticated mathematical reasoning. The
designer therefore speculates that a shift will occur such that means of symbolizing
initially developed as protocols of action (Dorfler, 1989) will subsequently take on a
life of their own and become integral to mathematical reasoning in a range of
settings. In this approach to design, tool use is viewed as central to the process by
which students mathematize their activty. Asa consequently, anticipating how
students might act with particular tools and what they might learn as they do so is
central to our attempts to support their mathematical development. I and my
colleagues have followed this approach with some success in several teaching
experiments, including one in which we designed computer microworlds as
components of coherent instructional sequences. Vygotsky's (1987) claim that the
tools with which people act profoundly influences the understandings they develop is
therefore more than a theoretical conjecture for us. It instead describes the
pedagogical reality in which we act when conducting teaching experiments. Given
these considerations, it is readily apparent that theories that emphasize the distributed
nature of intelligence are of great interest to us.

Distributed Intelligence
On my reading the distributed account of intelligence developed by Pea and his

colleagues has evolved from mainstream American psychology and draws heavily on
Vygotsky's treatment of semiotic mediation. A central assumption of this viewpoint
in that intelligence is distributed "across minds, persons, and the symbolic and
physical environments, both natural and artificial" (Pea, 1993, p. 47.) In Dorfler's
(in press) formulation, this implies that "the whole system made up of the subject
and the available cognitive tools and aids realizes the thinking process . . .

Mathematical thinking for instance not only uses those cognitive tools as a separate
means but they form a constitutive and systematic part of the thinking process."
Consequently, tool use does not merely amplify human capabilities but is instead
integral to the creation and reorganization of those capabilities.

One of the strengths of this view of intelligence is the manner in which it
attempts to transcend the traditional philosophical dualism between the cognizing
individual and the world about which he or she cognizes. In our work, I and my
colleagues have also cast our analyses of students' mathematical activity non-dualist
terms. In particular, we view students as participating in and contributing to the
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development of classroom mathematical practices that involve reasoning with tools.
By virtue of this participation, they are seen as acting in a taken-as-shared world of
signification that constitutes what Lemke (in press) calls the semiotic ecology of the
classroom. As a consequence, the relation between the students' activity and the
world in which they act can be characterized as one of mutual constitution, a position
consistent with Pea's viewpoint. As Whitson (in press) observes, theoretical
approaches of this type that begin with activity in a world of signification simply
bypass a number of philosophical issues including the classical problem of reference.

The Individual as a Unit of Analysis
The areas of consensus identified above serve to situate contrasts between the

distributed perspective and the interpretive stance that has emerged in the course of
our work in classrooms. The first of the two contrasts I will draw concerns Pea's
critique of analyses that take the individual as a unit of analysis. In his view, the
functional system consisting of the individual, tools, and social contexts is the
appropriate unit of analysis. Pea's admonition contrasts sharply with the explicit
attention that I and my colleagues give to individual students' interpretations and
meanings. I will shortly suggest that the difference between Pea's position and ours
hinges on the way in which the individual is characterized. First, however, I want to
explain why I we find it essential to analyze individual students' mathematical
interpretations as part of our practice in classrooms.

The lessons conducted in the course of a teaching experiment typically involve
small group or individual activity followed by a teacher-orchestrated whole class
discussion that focuses on the students' interpretations and solutions. During small
group and individual activity, the teacher usually circulates around the classroom to
gain a sense of the diverse ways in which the students are attempting to solve the
tasks. For our part, I and a graduate research assistant each observe and interact
with two students to document the process of their mathematical development on a
daily basis. Towards the end of small group or individual work, the teacher, the
graduate assistant, and I "huddle" in the classroom to discuss our observations and to
plan for the subsequent whole class discussion. In these conversations, we routinely
focus on individual students' qualitatively-different interpretations and meanings in
order to develop conjectures about mathematically significant issues that might
potentially emerge as topics of discussion. In this opportunistic approach, our intent
is to capitalize on our prior observations by identifying specific students whose
explanations might give rise to substantive mathematical discussions that will advance
our pedagogical agenda. It is important to emphasize that our primary concern is
with the quality of the discussion as a social event in which the students will
participate. In particular, we conjecture that participating in discussions in which
mathematical significant issues emerge constitutes supportive situations for the
students' mathematical development. The teacher's role in these discussions is
therefore not to persuade or cajole the students to accept one particular
interpretation, but is instead to initiate and structure a conversation about issues
judged to be mathematically significant issues per se.
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It is important to emphasize that, as part of this planning process, we adopt a
psychological constructivist perspective that focuses squarely on individual students'
activity. To be sure, we are aware that we are analyzing individual students' activity
as they participate in the mathematical practices of the classroom community.
Nonetheless, a focus on individual students' diverse meanings is a central aspect of
our classroom practice in that it enables us to be more effective in our collaborations
with teachers. However, analyses of this type are prime examples of those
disallowed by distributed theories of intelligence.

Characterizing the Individual
I have noted that distributed theories of intelligence evolved from mainstream

American psychology. More precisely, this approach as formulated by Pea has
developed in part by resisting key tenets of mainstream psychology. Foremost
amongst these is the traditional separation between internal representations in the
head and external representations in the world. However, distributed accounts of
intelligence as formulated by Pea and his colleagues carry the vestiges of their
development from mainstream psychology even as they react against it. This is
particularly apparent in the debate between Pea (1993) and Solomon (1993) on the
legitimacy of taking the individual as a unit of analysis.

Salomon contends that, in distributed accounts of intelligence, "the individual
has been dismissed from theoretical consideration, possibly as an antithesis to the
excessive emphasis on the individual by traditional psychology and educational
approaches. But as a result the theory is truncated and conceptually unsatisfactory"
(p. 111). Salomon goes on to argue that some competencies are not distributed but
are instead solo achievements, and that the individual is the appropriate unit of
analysis in such cases. Pea for his part counters that many tools and social networks
are invisible, and that intelligence is distributed even in the case of apparently solo
intelligence and purely mental thinking processes. Despite these differences in
perspective, Pea and Salomon appear to agree on at least one point. The individual
of whom they both speak is the disembodied creator of internal representations who
inhabits the discourse of mainstream psychology. It is this theoretical individual
who features in Pea's claim that intelligence is distributed across the individual,
tools, and social context. In developing his viewpoint, Pea, in effect, attempts to
equip this mainstream character with cultural tools and place it in social context.
However, in doing so, he implicitly accepts the traditional characterization of the
individual and preserves it as a component of tool-person systems even as he rejects
it. In my view, however, the implicit assumption that mainstream psychology offers
the only possible conception of the individual should itself be scrutinized.

As a starting point, I note that the psychological orientation that I and my
colleagues take when analyzing individual students' activity is not part of the
mainstream story, but is instead part of an alternative European tradition that draws
on aspects of Piaget's (1970) genetic epistemology (Johnson, 1987; Winograd &
Flores, 1986). In this tradition, there is no talk of processing information or
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creating internal representations. Instead, intelligence is seen to be embodied, or to
be located in activity. Further, rather representing a world, people are portrayed as
individually and collectively enacting a taken-as-shared world of signification
(Varela, Thompson, & Rosoh, 1991). The goal of analyses conducted from this
perspective is therefore not to specify cognitive mechanisms located in the head that
intervene between input information from the environment and observed output
responses. Instead, it is to infer the quality of individuals' experience in the world,
and to account for developments in their ways of experiencing in terms of the
reorganization of activity and of the world acted in.

Once this shift is made in the characterization of the individual, the dispute
between Pea and Salomon dissipates. It no longer makes sense to talk of intelligence
being stretched over individuals, tools, and social contexts. In particular, the physical
devices and notations that people use are not considered to stand apart from the
individual but are instead viewed as constituent part of their activity. As a
consequence, students are described as reasoning with physical devices, computer-
based tools, and notations. What, from the distributed intelligence perspective, is
viewed as a student-tool system is, from the perspective I have outlined,
characterized as an individual student engaging in mathematical activity of which the
tool is constituent part. Thus, although the focus of this psychological viewpoint is
explicitly on individual activity, its emphasis on tools is generally consistent with the
notion of mediated action (John-Steiner, 1995; Meira, 1995).

With regard to the remaining component of the functional system posited by
distributed intelligence, social context, I have already suggested that a students'
activity can be viewed as an act of participating in the collective mathematical
practices of the classroom community. As a consequence, we find it essential to
coordinate psychological analyses of individual students' activity with an analysis of
evolving the mathematical practices in which they participate (cf. Cobb,
Gravemeijer, Yackel, et al., in press). This latter analysis of communal practices,. it
should be noted, simultaneously delineates the learning of the classroom community
and the evolving social situation of the individual students' mathematical
development. In such an approach, the basic relation between the communal
practices and the activity of the students who participate in them is one of
reflexivity. This is an extremely strong relation in that it does not merely mean that
individual activity and communal practices are interdependent. Instead, it implies
that one literally does not exist without the other. Cast in these term, both the
process of individual students' mathematical development and its products,
increasingly sophisticated ways of mathematical knowing, are seen to be social
through and through. As a consequence, although psychological analyses are an
essential part of our practice, they do not by themselves result in adequate accounts
even of individual students' mathematical development. By the same token, an
analysis that focuses only on communal practices is also inadequate for our purposes.
Given our agenda, we find it necessary to focus on both the classroom practices in
which students participate and the quality of their individual acts of participation.
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In the analytical approach that I have sketched, individual activity is necessarily
located in social context that is not assumed to exist apart from that activity. As a
consequence of this reflexive relation, it does not make sense to talk of intelligence
as being stretched over the individual and the social context. As is the case with
tools, the issue of whether it is legitimate to take the individual as a unit of analysis
arises only if one accepts mainstream psychology's characterization of the individual.
The issue dissolves if social context is viewed as an integral aspect of individual
activity. Given the alternative view of the individual, there is no need to equip
individuals with tools or to place them in social context for the simple reason that
individuals do not act apart from tools and contexts.

Tool Use
The second point where I and my colleagues find it necessary to depart from

distributed accounts of activity concerns the way in which tool use is characterized.
We have seen that, in distributed accounts, intelligence is said to be stretched over
individual-tool-context systems. In this scheme, tools are treated in purely
instrumental terms that separates ends from means. I can clarify this contention by
referring to Dewey's (1977) discussion of two different ways of thinking about tool
use. The particular example that Dewey considers is that of the role of scaffolding
in the construction of a building. In one characterization, the scaffolding is viewed
as an external piece of equipment, and in the other it is viewed as integral to the
activity of building. He argues that "only in the former case can the scaffolding be
considered a mere tool. In the latter case, the external scaffolding is not the
instrumentality; the actual tool is the action of erecting the building, and this action
involves the scaffolding as a constituent part of itself' (p. 362).

The view of the individual implicit in distributed accounts of intelligence leads
to the first of these characterizations in which people are equipped with tools.
Analyses cast in these terms provide compelling demonstrations that the introduction
of a tool results in changes in forms of activity. For example, it has frequently been
noted that students who are equipped with computers can "off load" computational
processes and engage to a greater extent in planning and problem solving activities.
Illustrations of this type clarify that tools are not mere amplifiers of activity.
However, accounts based on the first of the two characterizations that Dewey
identifies typically limit their focus to that of documenting the reorganizations that
occur when people are equipped with tools by contrasting before and after snap
shots. Although analyses of this type might be appropriate for many purposes, they
do not address an issue central to my interests as a mathematics educator. This
concerns the process by which mathematical activity evolves. When we analyze
teaching experiment data, for example, it is not sufficient to demonstrate that the
students' mathematical activity is qualitatively different than that of students who are
not equipped with particular tools. Instead, when planning teaching experiments, we
find it essential to anticipate the process by which ways of reasoning with tools might
evolve. Further, when planning whole class discussions, we find it important to
consider the various qualitatively-distinct ways in which individual students act with
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those tools. In doing so, we adopt the second of Dewey's two characterizations of
tool use by viewing the tool as a constituent part of the students' activity that is itself
the instrumentality.

Bateson's (1973) example of a blind person using a stick provides perhaps the
most well-known illustration of this second viewpoint on tool uses.

Suppose I am a blind man, and I use a stick. I go tap, tap, tap. Where do I start? Is
my mental system bounded at the handle of the stick? Is it bounded by my skin?
Does it start halfway up the stick? Does it start at the top of the stick? (p. 459)

For Bateson, the person-acting and the artifact-acted-with are inseparable.
Significantly, in making this point, Bateson approaches activity from the inside
rather than from the position of someone observing a blind person. He asks us to
pretend that we are blind and to imagine the nature of our experience when using the
stick. This actor's viewpoint stands in sharp contrast to the observer's orientation
inherent in distributed accounts wherein an artifact and a person using it treated as
separate components of a functional system. For the actor, however, the two are
inseparable. In the case of Bateson's illustration, the tool is the act of tapping with
the stick, not the stick per se. More generally, I and my colleagues preference for
this actor's viewpoint is not restricted to the issue of tool use but is instead central to
our activity as mathematics educators who co-participate in the learning-teaching
process with teachers and their students. To co-participate is to engage in
communicative interactions that involve a reciprocity of perspectives characteristic
of the actor's viewpoint.

Conclusion
In this paper, I have delineated general areas of agreement with distributed

theories of intelligence and have discussed two points of contention. In doing so, I
have attempted to illustrate what I have learned as I have come to understand these
theories, thereby acknowledging my debt to their developers. The challenges that
these theories pose for those of us who see value in constructivist analyses of
individual students' activity is particularly apparent in the case of tool use. As
Walkerdine (1988) observes, semiotic processes in general and symbolizing in
particular have often played little if any role in constructivist analyses of
mathematical development. Instead, mathematical reasoning has sometimes been
viewed as occurring apart from mediational means, with symbols serving as mere
vehicles used to express its results. Much therefore remains to be learned from
distributed analyses of mathematical activity. The challenge as I have framed it is to
view mediational means as constituent parts of individual students' qualitatively
distinct ways of participating in communal practices. The analyses that I and my
colleagues have conducted of recent teaching experiments represent one attempt to
move in this direction.
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AUSTRALIAN AND INDONESIAN STUDENT TEACHER BELIEFS ABOUT
MATHEMATICS AND PERFORMANCE ON A CLASSIC RATIO TASK'

John Conroy and Bob Perry
University of Western Sydney Macarthur, Australia

Abstract
This paper reports on data from Indonesia and Australia which investigates

first year primary (elementary) student teachers' performance on the classic
student/professor ratio task and links this to their espoused beliefs about
mathematics, mathematics learning and mathematics teaching. It forms part of a
larger study covering five countries which was commenced in 1993. This bilateral
investigation shows that there are significant differences to be found between the
national cohorts in espoused beliefs and approach to the ratio task but not
correctness of solutions. However, there appears to be little relationship between
espoused beliefs, approach taken to the ratio task and correctness of solutions either
within the two national cohorts or between them.

Introduction
It might be expected that there is some connection between the underlying

beliefs about mathematics held by individuals and the nature of the performance of
those individuals on a given piece of mathematics (Garofalo, 1989; Schoenfeld,
1985). In this paper, the beliefs about mathematics espoused by groups of beginning
elementary student teachers in one university in Indonesia and two in Australia have
been compared with the students' performance on a classic ratio task.

Beliefs and Mathematics
A belief can be defined as "any simple proposition, conscious or unconscious,

inferred from what a person says or does, capable of being preceded by the phrase:
'I believe that... " (Rokebach, 1968, p.2). "...Everyone has a set of beliefs about how
mathematics is learned. These beliefs have an influence on all aspects of teaching."
(Baroody, 1987, p.5). Pajares (1992, p.237) suggests that beliefs are "the single most
important construct in educational research". The complex interaction of the
affective and cognitive domains in the learning and teaching of mathematics
continues as an important area of investigation in mathematics education.

Proportional Reasoning
Proportional reasoning plays such a critical role in a student 's mathematical

development that it has been called a "watershed concept, a cornerstone of higher

The authors are indebted to Mr Peter Howard, Australian Catholic University, Sydney, Australia
for valuable assistance in collecting some of the Australian data.
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mathematics, and a capstone of elementary concepts" (Lamon, 1993, p.41). How
children and adults use proportional reasoning and solve proportion problems has
been the focus of extensive research (see, for example: Behr, Harel, Post & Lesh,
1992; Conroy & Sutriyono, 1993; Conroy & Perry, 1996; Cramer & Post, 1993;
Dube, 1990; Lawton, 1993; Perry, Foong & Conroy, 1996; Singer & Resnick, 1992;
Tourniaire & Pulos, 1988).

Background studies
Dube (1990) investigated the performance of 240 high school students in

Papua New Guinea in solving a one step ratio and proportion problem. She found
that the solutions fell into two categories of approach which she called holistic and
analytic-synthetic. "The equation which they wrote down was the result either of a
global perception of the entire problem as an integral whole, or of explicitly and
carefully defined steps, first breaking up the problem into the given and the
unknown, then writing down the required equation after using semantic and
mathematical reasoning, algebraic manipulations, and arithmetical calculations.
The first approach was termed holistic; the second analytic-synthetic." (Dube, 1990,
p.9). Roughly the same proportion of correct and incorrect solutions were produced
by each approach (holistic: 40% correct; analytic-synthetic: 45% correct).
However, the analytic-synthetic approach was by far the most frequently used (by
72% of all students). Dube (1990) analysed the solutions in terms of particular
strategies used by students using the analytic-synthetic approach. This has been done
also by the present authors but is beyond the scope of this paper.

The subsequent investigation by Conroy & Sutriyono (1993) of the
performance of 140 Indonesian first year student teachers produced slightly different
results. While the Dube (1990) classification of approach was applicable to the
Indonesian group, the correctness of solution was found to depend on approach. As
well, Conroy & Sutriyono (1993) investigated a possible connection between the
Indonesian students' beliefs about mathematics and their performance on the
problem-solving task. These data were discussed at the Sixth South East Asian
Conference on Mathematics Education in Surabaya, 1993, and some interest was
expressed in extending the study.

Further data were collected in Indonesia as well as in Australia, Germany,
Singapore and Thailand. In this paper, only the new data from Indonesia and the
Australian data have been considered.

The Sample
The Australian sample consisted of 178 primary student teachers from two

universities (one Catholic and one secular) in Sydney, NSW. Both groups of students
(46 and 132 respectively) were in the first semester of six-semester bachelor degree
programs, each with its own curriculum.
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The Indonesian cohort comprised 78 students in a non-government (Christian)
university in Central Java. They were in the first semester of a four-semester diploma
program preparing them as primary school teachers.

Methodology
The research questions for this study were:

A. Do beginning primary student teachers in Australia and Indonesia hold similar
beliefs about the various aspects of mathematics?

B. Is the ratio problem equally difficult for beginning primary student teachers in
Australia and Indonesia?

C. For beginning primary student teachers, is correctness of solution on the ratio
task related to their beliefs about mathematics?

D. Do beginning primary student teachers who use similar approaches on the ratio
task also hold similar beliefs about mathematics?
To gather data on their beliefs about mathematics, the students were presented

with five incomplete sentences about mathematics, its learning and its teaching.
They were asked to complete the sentences individually in whatever way they felt
appropriate. To encourage the maximum openness of response, no verb was included
in the incomplete sentences. The instructions were as follows:
Please complete the sentences given:
Question 1. In my opinion, mathematics . . .

Question 2. In my opinion, the process of obtaining mathematics knowledge . .

Question 3. I n m y opinion, mathematics in schools . .

Question 4. In my opinion, pupils involved in the process of obtaining mathematics
knowledge . .

Question 5. I n m y opinion, teaching mathematics in schools . . .

Students were given sufficient space after each statement to write their ideas fully.
The students were also presented with the following problem on a separate

sheet of paper:
Please work the following problem as completely as possible:
'In a certain school there are 15 students for every teacher. If S is the number of
students and T is the number of teachers, write down the equation which represents
the given situation. '

Students were encouraged to write whatever explanation was necessary to
support their answers. The ratio problem is identical with that used in the two
previously cited studies (Dube, 1990; Conroy & Sutriyono, 1993) and is derived from
the classic student/professor problem of Lochhead (1980). Students were not given a
specific time limit for the two tasks but, in general, took approximately half an hour
to complete both. The task was presented to Australian students in English and to the
Indonesian students in Bahasa Indonesia. Back-translation was used to check the
accuracy of translations and the compatibility of the different versions. In part, this
explains some of the apparently awkward English used in the sentences (for example,
`In my opinion, pupils involved in the process of obtaining mathematics ...'). The
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coding of student teacher responses to both the 'belief sentences' and the ratio task
was completed by one of the researchers who is proficient in both English and
Bahasa Indonesia.

Results
A. Beliefs

Responses for the incomplete sentence: In my opinion, mathematics . . . were
categorised into five main beliefs; namely, mathematics can be viewed as:
a an affect (enjoyable, interesting, confusing, difficult etc);
b. being useful (important, necessary, beneficial in daily life etc);
c. a body of knowledge (related to other sciences, possessing broad content,

explaining things in general etc);
d. an exact science (concerned with true results, calculation, formulae, technical

terms etc); or
e. a way of thinking (needing rational thought, gaining confirmation through

proof, concerned with how to know and define etc).
Sometimes responses combined two or more of these ideas or gave ideas that fell
outside the main categories.

Almost equaL percentages of the student teachers from Australia (35%) and
Indonesia (37%) believed mathematics to be useful. However, 32% of the
Australians viewed mathematics as an affect, against only 17% from Indonesia and
only 6% of Australian students believed mathematics to be a body of knowledge,
against 15% of the Indonesian student teachers. A chi-square analysis showed the
differences between the cohorts from the two countries on their beliefs about
mathematics were significant (12(6, N = 256) = 20.95, p<0.005).

Student teachers' responses to the incomplete sentence concerning their beliefs
about the process of obtaining mathematics knowledge fell into three broad groups;
namely, mathematics learning viewed as depending on:
a some aspect of teaching (should be sequenced, requires patient teaching,

provision of visual aids etc);
b. some aspect of the learning experiences (memorising formulae, concentrated

effort, use of logic, life experiences etc); or
c. some aspect of the subject matter (difficult content, human creativity etc).
Again, responses also included combinations of these views or expressed other views.

Results show that for Australian students overall, opinions were fairly evenly
divided among these three alternative beliefs about mathematics learning (19%, 26%
and 26% respectively). However, Indonesian students were more likely to believe
that mathematics learning was affected by either some aspect of teaching (28%) or
some aspect of the learning experiences (35%). While these trends are clear, there
was no statistical significance in these differences.

2 180



Responses to the sentence relating to mathematics in schools were grouped into
six main categories; namely, beliefs that school mathematics can be seen as:
a having utilitarian value;
b. affecting attitudes;
c. having broad cognitive implications (for example, it develops thinking);
d. depending on teaching for its quality;
e. needing to match the interests, abilities and understandings of students; or
f. depending on the quality of the curriculum.
Some students gave combinations of two or more of these views or gave other views.

Just as in the sentence concerning beliefs about mathematics, a greater
percentage of student teachers from both Australia (27%) and Indonesia (32%) chose
`utility' in their response to this sentence than any other category. There were no
statistically significant differences between the responses to this sentence from the
two countries.

Completed sentences espousing student teachers' beliefs about pupils involved
in the process of obtaining mathematics knowledge could be divided into four
categories; namely, beliefs that children's learning of mathematics was influenced
by:
a affective factors ( children's interest, motivation, enjoyment etc);
b. its activeness and relatedness to daily life;
c. cognitive and developmental factors (levels of ability, thinking skills etc); or
d. its reliance on memorisation and practice.

Some 32% of the Indonesian student teachers believed that mathematics
learning was influenced by cognitive and developmental factors as against only 19%
of the Australian cohort. Conversely, only 5% of the Indonesians believed that
mathematics learning was influenced by its activeness and relatedness to daily life as
against 24% of the Australians. A chi-square analysis showed the differences
between the cohorts from the two countries on their beliefs about pupils obtaining
mathematics knowledge were highly significant (2(5, N = 242) = 24.77, p<0.0005).

Student teachers' beliefs about teaching mathematics in schools fell into four
categories; namely, beliefs that such teaching:
a should relate mathematics to daily life and encourage student activity;
b. can influence attitudes;
c. can be an obstacle to learning; or
d. needs to relate to student learning.

Higher proportions of Australian student teachers than Indonesian student
teachers held the beliefs that mathematics teaching needs to be relevant and active
(26% and 18% respectively) and that such teaching can influence attitudes (28% and
15% respectively). On the other hand the Australians (4%) were less likely than the
Indonesians (19%) to espouse the belief that teaching needs to relate to student
learning. A chi-square analysis showed the differences between the cohorts from the
two countries on their beliefs about teaching mathematics in schools were significant
(12(5, N = 252) = 24.10, p<0.0005).
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B. The Ratio Task
The one step Dube ratio task was a reasonably difficult mathematical problem

for the beginning student teachers in both the Australian and Indonesian samples
(27% and 35% correct, respectively). There was no statistically significant difference
between the level of performance on the task by the two national groups.

C. Beliefs and Performance on Ratio Task
The data did not indicate any statistically significant relationships between the

espoused beliefs of the student teachers surveyed and their performance on the Dube
ratio task. This held true whether the data were analysed separately in the two
national groups or as one overall set of data. What usually occurred was that the
student teachers held one or two predominant beliefs concerning each of the five
aspects raised by the open-ended sentences, and these were fairly evenly spread
between students who achieved correct and incorrect solutions.

While not statistically significant, the only sentence which did give rise to
some interesting trend data is 'In my opinion, teaching mathematics in schools ...' .
For the Australian student teachers, 29% obtaining an incorrect solution believed that
teaching should relate mathematics to daily life and encourage activity against 18%
who obtained a correct solution. Thirty-four percent of Australian student teachers
obtaining a correct solution believed that teaching mathematics in schools can
influence attitudes while 24% obtaining an incorrect solution felt this way. While the
same trends could not be discerned as clearly in the Indonesian data, the Australian
data was sufficiently strong to ensure that similar trends could be found in the
analysis of the overall combined data set.

D. Beliefs and Approaches to the Ratio Task
There was a highly significant relationship between the country of origin of the

student teachers in the sample and the approach they took to the Dube ratio task
(12(1, N = 211) = 26.71, p<0.00001). Eighty-three percent of the Australian students
who provided a solution to the problem used an holistic approach while the
Indonesians were evenly split between holistic and analytic-synthetic approaches
(49% and 51% respectively). This, coupled with the differences in beliefs between
the cohorts of student teachers from the two countries, raised expectations of
statistically significant relationships between the student teachers' espoused beliefs
and their approaches to the ratio task. However, this occurred with reference to only
one of the 'belief sentences'.

When the data were analysed in the two separate national groups, it was found
that the approach used to the ratio task was independent of the beliefs espoused by
the student teachers. When the analysis was done on the combined data set from both
countries, the same was true except when dealing with the statement 'In my opinion,
mathematics in schools ...' . In this case, a statistically significant result
(12(7, N = 210) = 19.02, p<0.01) was obtained with 38% of student teachers using an
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analytic-synthetic approach seeing mathematics as having utilitarian value as against
25% of the 'holistic approach' student teachers. Further, higher proportions of
student teachers using an holistic approach believed that mathematics in schools
affects attitudes (18%) and depends on teaching (20%) than those using an analytic-
synthetic approach (9% and 10%, respectively).

Discussion and Conclusion
It should be of no surprise that beginning primary student teachers from two

countries as different in their education systems as Indonesia and Australia (at least
New South Wales) should have developed beliefs about mathematics, mathematics
learning and mathematics teaching which were different in many respects. Similarly,
it was not surprising that these same student teachers should attack a ratio problem in
markedly different ways. Perhaps the most surprising finding of this study was that
these differences were not nearly so marked when relationships between the approach
and performance on the ratio task and beliefs about mathematics were considered.
Despite differences in language, culture, curriculum, school system, teaching
methods and teacher education, there was much in common.

Cross-cultural studies are fraught with difficulty in that so many factors may be
acting on the variables under consideration that meaningful interpretation of results
can be tenuous. The value of such studies is that they can, nonetheless, identify what
appear to be significant factors acting across or within cultures, and point the way to
further research which controls for these factors and investigates their influence.

It would appear from this investigation that there are notable similarities and
differences across the samples from Indonesia and Australia in terms of beliefs about
mathematics, success rates on the ratio problem and the approaches used in the
problem solution. Further research needs to be undertaken in an attempt to ascertain
reasons for these differences. Possible topics for investigation include analysis of
composition of mathematics curricula used in schools, approaches to learning and
teaching mathematics in schools, the influence of language on problem-solving
approaches, the nature of teacher education programs and the interaction of these
with beliefs about mathematics. The authors hope to enlist further assistance from
international colleagues to gather additional data in a wider study concerning the
beliefs and performance of teacher education students.
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THE TRANSITION FROM ARITHMETIC TO ALGEBRA:
A COGNITIVE PERSPECTIVE

G.M. Boulton-Lewis, T.J. Cooper B. Atweh, H. Pillay, L. Wilss, and S. Mutch.
Faculty of Education, Queensland University of Technology, Australia

This paper discusses the transition from arithmetic to algebra from a
cognitive perspective, proposes a two path model for learning algebra,
and uses the results of two studies to illustrate the importance of
cognitive load and appropriate sequencing through binary algebra and
complex arithmetic to effective learning of early algebra.

Early algebra teaching and learning has been a major research area in
mathematics education. Part of this research has focused on the transition from
arithmetic to algebra. Other research has addressed specifically the difficulties and
obstacles to developing algebraic concepts caused by what has been described as
cognitive gaps (Booth, 1988; Herscovics and Linchevski, 1994) or didactic cuts
(Filloy & Rojano, 1989) between arithmetic and algebra. Filloy and Rojano (1989)
believe the cognitive gap is located between the knowledge required to solve
arithmetical equations, by inverting or undoing, and the knowledge required to
solve algebraic equations by operating on or with the unknown. They suggested
that an operational level; one of "pre-algebraic knowledge", is needed between
arithmetic and algebra. Herscovics and Linchevski (1994) argued similarly that
while properties and conventions are crucial in algebra, they can be replaced in
arithmetic with an operational approach.

SEQUENTIAL DEVELOPMENT OF ALGEBRA KNOWLEDGE
Linchevski and Herscovics (1996) found, in research into seventh graders'

solutions for first degree equations in the unknown, that for equations with only one
occurrence of the unknown, e.g. ax+b=c, ax+b+c=d+e, nearly all the students used
inverse operations in the reverse order. When the unknown appeared as a
subtrahend or a divisor (e.g., 37-n=18), equations were solved arithmetically
without any transformation of the original equation. With examples involving two
occurrences of the unknown there was a fundamental shift in procedures with the
majority of students using a process of systematic approximation based on
numerical substitution. They concluded that students could not operate
spontaneously on or with the unknown and that grouping algebraic terms is not a
simple problem. They argued that algebraic expressions are intuitively viewed as
computational processes (cf. Sfard & Linchevski, 1994) and that in teaching, instead
of proceeding from the variable to the expression to the equation, arithmetical
solution of linear equations might be more suitable initially for learning to operate
on or with the variable.

Biggs and Collis (1982) described development of algebraic concepts in terms
of the SOLO (Structure of Observed Learning Outcomes) Taxonomy and on the
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basis of Collis' (1975) research. SOLO responses occur sequentially as follows;
prestructural (incompetence, nothing is known about the area), unistructural (one
relevant aspect is known); multistructural (several relevant independent aspects are
known), relational (aspects of knowledge are integrated into a structure), extended
abstract (knowledge is generalised to a new domain). These responses occur in
cyclical fashion, for increasingly more formal modes of learning, from sensori-
motor, iconic, concrete-symbolic, formal-1 to formal-2 modes. Students learning
school algebra should respond at least in the concrete symbolic mode, that is relate
their knowledge of operations to the symbols that represent them. Biggs and Collis
found responses for understanding pronumerals as follows; unistructural, map the
pronumeral directly into a specific number; multistructural, map the pronumeral
into a few sets of numbers; relational, conceive of it as a generalised number to
represent all conceivable numbers; extended abstract, think of it as a variable. For
numbers, operations and closure sequential responses were; unistructural, success
with arithmetical operations where one closure was required (they asserted that the
working memory capacity required for such items was low and quick closure was
achieved on the basis of a minimal use of data, p. 62); multistructural, success both
with large numbers involving single operations and with a series of operations in
sequence with small numbers (closure is made in sequence with series of small
numbers and is not necessary with single operations on large numbers); relational,
'generalized' elements, that is large numbers and x standing for particular numbers
(the idea of operations was generalized sufficiently so that there was no longer the
need to close each operation immediately); extended abstract, a new level of
functioning, closure was not required, and problems with operations on variables
were solved.

Halford (e.g. 1993) proposed a structure mapping theory of cognitive
development where binary operations, that is three elements considered in each
mapping decision (operations with one closure as described by Collis), were at the
system mapping level, and compositions of operations, that is operations where four
elements or more must be considered in each mapping decision (operations with
more than one closure as described by Collis), were at the multiple system mapping
level. A linear equation such as x+5=13 is a binary operation as is 8+5=13 and both
should make the same demand on capacity to process information. What makes
them different is the extra knowledge, that of x representing the unknown, required
to compute the first equation. Halford and Boulton-Lewis (1992) proposed a
sequence of development of arithmetical and algebraic knowledge from the initial
use of concrete materials to represent number, to arithmetic expressions, to
interpretation and manipulation of operational symbols and parentheses in
arithmetic, to recognition of the correspondence of these examples in arithmetic and
in algebra. It was asserted that the tasks themselves would make increasing demands
on processing capacity and that the recognition of the correspondence between the
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arithmetic and algebraic equations would depend on requisite knowledge, that is, of
unknowns and then variables.

Mathematical analysis of sequence for learning complex equations.
Linear equations in algebra such as 2x+3=11 include three crucial components: an
equals sign, a series of more than one operation, and a variable 'x'. Therefore,
these equations are described as complex as opposed to a single binary operations
such as x+5=6. We propose that solution of a complex equation is the end product
of a learning sequence of mathematical concepts that includes: (a) binary arithmetic
operations; (b) complex arithmetic (a series of operations on numbers); and (c)
binary algebraic operations. These considerations underlie the construction of a
two path model for learning complex algebra where binary arithmetical operations
and complex arithmetical operations are necessary components of one path and
binary arithmetical operations and binary algebraic operations are necessary
components of a second path. This means that understanding binary operations such
as 2x and x+3 should be an important prerequisite to understanding 2x+3=11 and
that understanding of operational laws should also be applied to series of operations.
This is because relating laws to more than one operation in a series is important to
understanding inverse operations which require the order of the series to be
reversed as well as the operations. The two path model assumes that learning linear
equations will be facilitated by understanding of similar (isomorphic) structures in
complex arithmetic. Hence, understanding of arithmetical structure becomes an
important component of learning algebra.

On the basis of the discussions above, we are testing the two path model of the
sequential development of prealgebraic and algebraic thinking in a longitudinal
study. In addition to the mathematical analysis the basic assumptions supporting the
model are that: (a) the developmental literature suggests acquisition of prealgebraic
and algebraic concepts in the following order - one occurrence of the unknown in
binary operations, a series of operations on and with numbers and the unknown,
multiples of the unknown, acceptance of lack of closure and immediate solution
with a series of operations on the unknown, and finally, relationships between two
variables and operations on them; (b) the most accessible route to algebra is through
arithmetical procedures for solving problems with one unknown; and (c) crossing
the cognitive gap or the didactic cut requires knowledge that the equals sign
represents equivalence and, at least, knowledge that letters represent the unknown in
algebra.

Representations and strategies used in teaching early algebra.
MacGregor and Stacey (1995) asserted that 'many recommendations in the
pedagogical literature [for teaching algebra] ... have no supporting research
background' (p. 82). They found, for example, that the use of patterns in primary
grades and beyond as a foundation for algebra did not lead to the understanding that
might be expected. This section presents an explanation for the difficulties students
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experience with algebra based on the relative cognitive demands of the
representations and strategies used. There appears to be considerable confusion, in
school based documents and in textbooks, about the use of strategies and
representations in the introduction of prealgebra and algebra and also, about the
conceptions or aspects of algebra to which they relate. A range of representations
and strategies are often used for short periods with little regard to the extra demand
they are likely to make on students' capacity to process information and with no
apparent connection between them and the various algebraic concepts that they are
used to facilitate.

Sowell (1989) compared the outcomes of mathematics instruction with and
without concrete or pictorial materials and found the results of 60 studies were
mixed. She concluded that mathematics achievement is increased through the long-
term use of concrete instructional materials and that students' attitudes towards
mathematics are improved when they have instruction with such materials by
teachers who are knowledgeable about their use. Swelter (Ward & Sweller, 1990)
proposed a cognitive load theory which predicts that tasks will be more difficult if
there is redundancy in the information which must be processed or if attention must
be split between two different sources of information. Concrete materials and other
representations impose a demand, additional to the task, on capacity to. process
information unless these materials are well known (Halford & Boulton-Lewis,
1992), and all physical models contain intrinsic restrictions that can lead to
cognitive difficulties (Bher et al, 1983). Hart (1989) stated that there is apparently
little connection for children between a practical or material-based approach to
mathematics and formal or symbolic mathematical language. She suggested that we
need to think carefully about assumptions that we make concerning the transition
from practical to formal work because it appears that the gap between the two types
of experience is too large and suggested we need to find effective transitional
experiences. Quinlan (Quinlan, Low, Sawyer & White, 1993) described the use of
containers with small objects inside them to represent variables, and objects outside
of the containers to represent constants, in linear expressions to introduce variables.
He has demonstrated that this approach is successful if it is used consistently and if
teachers help students to make explicit mappings from the concrete materials to the
symbols. Thompson (1988) recommended different coloured counters to represent
directed numbers and variables in equations. For his approach, not only must
students keep track of the solution process of the equation, they must also keep in
mind that counters, for example of one colour, cancel out another. This is likely to
increase processing load and lead to confusion. Balance beams can be used, for
example, to lead from arithmetic identities to algebraic expressions with
occurrences and multiples of the unknown on both sides of the equation (Linchevski
& Herscovics, 1996); however, the balance beam itself can increase cognitive load
unless its function is well understood.
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MacGregor and Stacey (1995) investigated the use of patterns and tables of
variables to teach functional relationships between two variables, as an introduction
to algebra. These included geometrical patterns and tables of related variables. It
has been argued that introducing algebra in this way facilitates its use as a language
for expressing relationships and that the patterns can be supported by concrete
materials. These approaches require students to understand variables and the syntax
of algebra, to take into account two operations at once and the relationship between
them, and in some cases to relate this to concrete representations. It is obviously a
more cognitively demanding task than the use of a linear equation with one
unknown and it is no wonder that MacGregor and Stacey 1993) found that many
students have difficulty generating algebraic rules from patterns and tables.

An equation can be conceived in terms of balance or in terms of a two-way
reversible change. Variables can be conceived in terms of generalisations,
unknowns and relationships and well as abstractly (Usiskin, 1988). If different
representations are used to lead to different conceptions, and not explicitly related
to those conceptions, then they will surely cause all but the best students to develop a
very confused understanding of variables and equations. It seems clear that
representations, if used, must be used consistently because if a particular
representation or model is unfamiliar it will add to the processing load of the task.
They must be used for a long enough period because students need time to think and
use materials experimentally. And the different algebraic concepts to be derived
from the materials must be made explicit and related to each other.

As we stated above, the most accessible route to algebra could be through
solving simple linear equations arithmetically. This fits with Sfard's operational
perspective of algebra (Sfard & Linchevski, 1994) and has the advantage that the
transition can be made from arithmetic to algebra without the need for concrete
representations except in the early stages of learning about numbers and arithmetic
and perhaps to illustrate the concepts of the variable. This is in keeping with the
developmental sequence proposed by Ha lford & Boulton-Lewis (1992).

CLASSROOM STUDIES

We have been undertaking a series of studies to investigate: (a) the
knowledge that students acquire and the strategies they use in moving from
arithmetic to algebra; and (b) the effectiveness of different representations in
students' aquisition of algebraic knowledge and strategies. The first of these
(Boulton-Lewis, Cooper, Atweh, Mutch & Wilss, 1995) was a one year study of one
class of grade 8 who were being introduced to variable, equation and solution of
linear equations by instruction which used concrete materials (containers and
objects). The second is a three-year longitudinal study which will follow students
from knowledge of arithmetic and prealgebra in grade 7 to the completion of initial
algebra instruction in grade 9. In these two studies, it was expected that: (a)
teachers would use a range of representations and strategies to assist students to
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understand unknown and variable, expression and equation, and solution of
equations and that these would be one focus of analysis; (b) teachers would be
interviewed to determine what and how they are teaching; and (c) the students
would be interviewed to determine their understanding of relevant arithmetic and
algebra concepts and their use of strategies and representations with particular
emphasis on linear equations.

In this paper, the results of the one year study and the initial interviews
undertaken in the first year of the longitudinal study will be discussed in relation to
the developmental sequence for algebra discussed earlier.

Effectiveness of concrete representations. The results in the one year
study were unequivocal at one level - after instruction, at the post-interview, not
one of the 21 students in the class used the procedures with concrete materials
taught to them to solve linear equations. A minority (6) incorrectly interpreted the
linear equation in terms of one operation, while the majority (14) used inverse
operations in the reverse order (1 student used trial and error). In this, the study
supported the findings of Linchevski and Herscovics (1996). Only one of the
students could use containers and objects correctly to represent the equation. No
students used the containers and objects voluntarily. Even when directly asked to
use materials to solve an equation, only four of the 21 students were able to
reproduce the techniques shown in instruction. When asked about materials,
students gave only limited support to their usefulness.

This failure of direct instruction to influence students' approaches to solution
is interesting on a number of fronts. First, the inverse operations strategy uses a
different conception of equation (two-way change) from the taught materials
approach (balance). Second, the students' responses reflected the findings of Hart
(1989) in that a gap exists between concrete and symbolic representation. Third,
the finding seems to reinforce the heavy cognitive load involved in using containers
and objects. Fourth, the finding also seems to support Kieran's (1992) argument
that algebra knowledge develops from procedural to structural as inverse operations
is a procedural strategy while the containers and objects approach appears to have
structural tendencies. However, this first study also highlighted the common
difficulty that students have with multiples of a variable such as 3x. Many students
interpreted 3x as one variable and a three. It also highlighted the need for students
to understand expressions with a sequence of operations if they are to understand
linear equations in terms of operating on a variable. This and a further search of
the literature led to the proposing of two path model for learning algebra.

Arithmetic to algebra. In the first year of the longitudinal study,
interviews with the 51 grade 7 students provided information about knowledge of
operations and operational laws, equals, pronumerals, variables, and solution
strategies for linear equations. The students would have been taught about
operations and equals as part of the curriculum in arithmetic, but any knowledge of
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variables and linear equations could only have been derived intuitively from their
knowledge of arithmetic

Most of the students had sufficient understanding of the basic binary
operations or sequences of binary operations for subtraction, multiplication and
addition, in that order, to be able use them as a basis for algebra. Some students did
not have sufficient understanding of division. Two thirds of the group had sufficient
understanding of the inverses of multiplication/division and addition/subtraction.
About 50% of the sample did not understand commutativity. Only about 20-25% of
the sample had sufficient understanding of the correct order of arithmetical
operations to allow them to apply this satisfactorily to learning linear equations.
With regard to the equals sign in an unfinished equation with a series of operations,
almost 100% of the students believed it meant find the answer, and in the completed
equation only half of the students could say that it meant that both sides of the
equation were the same. This means that in subsequent learning of algebra most of
them would initially want to find the answer after the sign and at least half of them
would need to learn the concept of equivalence. More than half the sample could
solve an equation with as an unknown number or knew intuitively that it was like
an x or y despite having no explicit instruction in variables. The majority of
students understood what x meant in a linear equation but less than a fifth of them
had a satisfactory concept of multiples of x. When asked to use concrete materials
most of the students used them to illustrate their arithmetical solutions. A few had
an intuitive idea of algebra and did not need materials. Most of the students who
used materials and gave an arithmetical answer really did not need these either as
evidenced by their explanations for variables.

IMPLICATIONS

With regard to the knowledge that students acquire and the strategies they
might use in moving from arithmetic to algebra; it would seem that most of the
students studied would need better understanding of division and the order of
operations in complex arithmetic. Most students appeared able to use binary
operations in linear equations and interpret `-=` as calling for an answer. They
would need to learn the equivalence meaning of `-=` in an equation (perhaps with the
use of a balance beam). They would also need careful and explicit instruction in the
meaning of x as a variable rather than the unknown and then in the meaning of
multiples of x. Thus, for the most part, the students have acquired satisfactory
knowledge of the binary arithmetic and binary algebra components of the two path
model from an arithmetical perspective, with the exception of knowledge of
multiples of the unknown. The developmental sequence for the sample fits well, at
this stage, with the two path model, that is, that complex algebra develops from
binary arithmetic via both binary algebra and complex aritimetic (arithmetic with a
sequence of operations).
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With regard to the effectiveness of different representations in students'
aquisition of algebraic knowledge and strategies, it is evident from our studies that
students did not want to use concrete representations themselves, preferring a
mental inverse-operations approach. In fact, use of concrete representations by
students seemed to be counterproductive due to difficulties with cognitive load.
However, there does appear to a place for containers and objects to represent
variable and multiples of variable, if used explicitly and unambiguously by the
teacher. Overall, our research has found need for consistency in dealing with the
conception of equals and variable when using representations.
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A NEW APPROACH FOR INTELLIGENT TUTORING SYSTEMS: AN
EXAMPLE FOR STATISTICAL ACTIVITIES

Gracie la Bueno, Colegio de Postgraduados, Mexico
Carlos A. Cuevas V. Depto. Maternatica Educativa, CINVESTAV, Mexico

ABSTRACT

In the last 30 years several efforts with different aproaches have been done in
order to use the potential of the computer for education; however, there is still a
long way to go in order to obtain educational software really useful for a wide
group of students in their goal of acquisition of knowledge. In this paper are
presented a proposal for a new class of Intelligent Tutoring Systems (ITS) and an
example of how statistical activities can be implemented in an ITS of this class.

INTRODUCTION

To obtain computer software for education is a very complex task as can be seen
by the wide range of educational software developed in the last 30 years. This
software was built following different epistemological positions and under many
different degrees of refinement. In this paper, we present a new approach for
building educational software that combines two very popular epistemological
positions, the traditional and the constructivist. Our compromise lies in between
the teacher direction and the autonomy of the student. The goal of this approach is

to obtain ITS to function as partners of the teachers. The outline of the paper is
the following: in the first section, we present a brief review of existing computer
software for education, pointing out their epistemological position, and discussing

their characteristics; in the second section we present the approach proposed, in
the third section we present a few examples of how statistical activities can be
implemented using this approach and, in the last section we give some concluding
remarks.

1. COMPUTER SOFTWARE FOR EDUCATION
The idea of improving, individualizing, and making more flexible the teaching with

with a computer have produced a lot of educational software. In this section we
follow the classification of educational computer software given by Allison and
Hammon (1990) which is based on the software's mode of operation: programmed

instruction, learning support environments, and intelligent tutoring systems. This
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classification is by no means exhaustive with respect to computers teaching aids, and

there exits other kinds of scientific and professional software of general purpose, not

specifically educational, that have been widely used in the teaching of sciences,
particularly in engineering and statistics.

Programmed instruction. In their begginings, this kind of systems, called Computer

Assisted Instruction systems (CAI) were strongly influenced by the conductism theory

developed by Skinner (1986). Many of these systems utilized the computer as a
delivery device to convey information or "knowledge" and were no more than
electronic turn-pagers. Others, implemented the simplified idea of knowledge
acquisition based on the stimulus-responce binomio defined for Skinner, to "teach"

the student aspects of some specific domain. This type of software includes the works

of Skinner himself, the works of Ayscough, and Palmer and Oldehoedft (O'Shea and

Self, 1983).

Later, two very ambitious projects were launched in the USA with the aim of a

massive use of the computer, the TICCIT and PLATO projects (ibid.). Most of the

educational materials developed under these projects still were pretty rigid in their

teaching strategy because of the agglutination of the pedagogical and the domain
knowledge.

Recently, more flexible programmed instruction software for specific courses has

been developed (Bishop et al., 1992).

The epistemological approach that underlies the programming instruction based

systems is known as the traditional one. It sees the knowledge as a kind of package
which can be delivered, and in order to "individualize" the teaching, the software are

designed with branching capabilities which allow the student to direct their path
through the system, and many of them are of the drill and practice type. Despite the

fact that this kind of software has been widely critized because of its rigidity, most

of the commercial educational software is of this type.

Learning support environments. The most known representative of this approach,

known as microworlds, is the LOGO project developed by Feurzeig and Papert
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(Papert, 1980) that has been widely used in matheinatics education (Lemeris, 1990).

Other widely known microworlds are Cabri-Geometre (Laborde, 1986), and Voltaville

(Glase et al., 1988).

Microworlds, view the computer as a medium for the student to solve problems

and are based in the belief that the real impact of the computer can only materialize

if the student has complete control over it without the teacher interaction.

The epistemology behind the learning support environments, is a constructivist

one. Learning is seen as a autonomous process of construction of cognitive structures

so a complete control for interacting with the computer is given to the student. The

assumptions behind a microworld design are: 1) the learning of solution methods is
produced as a colateral effect of the interaction of the student with the microworld

tools which are specifically design for suggesting good solution strategies; 2) the
student is motivated and interested in obtaining the knowledge that can be given
through the microworld; 3) the student is eager to explore the microworld; and 4) the

student is capable of extrapolating the knowledge acquired in the microworld to the

real world.

Intelligent tutoring systems. In these systems, a flexible approach to teaching is
implemented through the use of some kind of mecanism to evaluate the student's
response. Depending on the student's answers to questions asked by the system, a
decision is taken to branch to new material or to a remedial one. The author(s) of the

system try to anticipate all possible student errors and specify remedial material for

all the possibilities based on the idea of what might be the bad conceptions that cause

the wrong answer. In order to guide properly the student interaction with the system

a model of the student is internally implemented. There is a wide variation in the
level of detail of the model of the student (learner) in different ITS. Some widely
known examples of ITS are: SCHOLAR (Carbonell, 1970), GUIDON (Clamcey,
1979) and Anderson's Geometry and LISP tutors (Anderson, 1986). One of the main

characteristics of ITS is the separation of the tutorial knowledge from the domain
knowledge.

The underlying epistemology in most ITS is still the traditional epistemology



which sees knowledge as a kind of facility which can be delivered. Intensive research

on ITS has given birth to a wide spectrum of ITS applications in many areas.

2. A NEW CLASS OF ITS
It is nowadays almost a consensus among educators that the student should construct

their knowledge. If the computer is going to be used for improving education, this
idea should be underlying the design of new educational computer environments. The

constructivist epistemology developed by Jean Piaget, describes the knowledge
acquisition as a continuos process of construction of cognitive structures launched by

a situation that cannot be handled with the actual cognitive structures, that is by a
desequilibrating situation. Cognitive structures are organized systems of mental
representation of activities (operations) related by a form of performance which have

an associated expected result. To construct his (her) knowledge the student has to be

involved in some type of activity. A concept is constructed around its constitutive
operations and it is the group organization of these operations which gives its
flexibility for application in a variety of situations. The flexibility attained by the
organization of operations in groups contrast to the rigidity of habits acquired in the

traditional education. This focus on education, where the student is an active entity
who builds his (her) own knowledge through interiorization and organization of
operations is considered in learning support environments, but their openess does not

guarantee that the student will explore the operations needed to acquired a particular

concept and will explore their relations, nor guarantee that the student will extrapolate

the concepts acquired in the microworld to the real world. The teacher guidance is

convenient to organize the activities that might lead the student to interiorize the
operations related to a concept or notion and build his (her) own knowledge. The
teacher could also help the student to extend his (her) knowledge to other real world

problems and to emphasize certain elements.

Extracting the best elements of both ITS and Learning Environments we propose

a model of intelligent tutoring system which implements a constructivist approach of

learning. Considering the actual limitations in our knowledge about the function of

the mind, we support the idea of not trying to develop a computer system to substitute

the teacher but to build a computer system that be his (her) allied in the teaching
process, a kind of teacher's assistant; leaving the responsability of analizing the
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student behaviour and taking specific decisions to guide the student activity with the

system to the teacher. The main characteristics such an ITS should have are the
following:

The system should be capable of operating in a dual form: as an exploratory
world where the student can investigate his ideas about a certain topic with the help

of tools provided by the system, and a tutor environment where the activities which

can help the student to build a concept are gradually provided in a similar form that

a flesh teacher would do it.

In the tutor mode of operation the order of presentation of the activities and the

number of examples and exercicies provided to the student are guided by an
underlying intelligent tutor, which is flexible and adaptable to the student's needs.

More examples, exercises and explanations can be given at student request, for help

him (her), adapting the tutoring to the student and never imposed.

-A student model may be present but it is not a vital part of the system because

in this approach, the ITS is not a substitute of the teacher but a partner which share

the responsability of teaching, and it is the teacher who has to make the tutoring
decisions.

Activities that might lead the student to develop interiorized actions (operations)

related to a concept or notion of interest should be implemented for each concept to

be teached. It is the responsability of the system designer to identify such operations

following the Piaget's idea of their organization in groups, implement activities for

the acquisition of the direct, asociative and inverse operations related to a concept,
and provide facilities for their exploration.

Facilities for the student to investigate around a concept should be provided by
means of tools in the computer environment.

The computer environment with the above characteristics is an intelligent tutor

because in one of its modes of operation, the tutor mode, the student activities with

the system are dosified and organized in a similar way that it might be provided by

a experienced teacher (tutor); this is attained by means of incorporating tutoring
knowledge in the system. It is also intelligent because it is capable of solving
problems and answer questions on its domain (Grandbastein, 1992; Balacheff, 1994),

and it is constructivist, not only because of the facilities for student's action provided

by the system in its exploratory mode, but also because its design is compatible with
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the idea that the student builds his (her) knowledge through the interiorization of
activities and the organization of related operations into flexible structures, that is into

cognitive structures. A first step in this direction is given in the software Lirec
(Cuevas, 1994).

3. SOME ACTIVITIES FOR AN ITS IN STATISTICS
In this section we present with two very simple examples the way in which our
approach can be implemented for descriptive statistic teaching. The examples are
referent to two of the most basic concepts, the mode and the mean. In spite of the

apparent simplicity of the concepts, and therefore usually superficial treatment, it
is frequently the case that the students do not understand the essence of those
concepts and make a bad use of them (Torma, 1995). The activities presented can
be used in an autonomous way by the student to construct by himself ideas about
the central tendency measures and are sequenced only when the system is used in
the tutor mode of operation.

With respect to the mode, we present simple and attractive problems for the
student to solve, in which the need of obtaining a representative number of a
group of data of the type of the mode might be recognized and is the solution to
the problem. The student, hopefully, as a result of his (her) need to solve a
problem, should figure out the need of a representative number of the type of the

mode, for the group of data presented in the problem. The name "mode" could be
given to the student later as well as its precise definition, as part of the tutoring
activity of the system. Alternate problems could be given to the student as his
request or as a result of his (her) performance with the first problem given.
Activities of data manipulation will be suggested with the aim of inducing in the
student the acquisition of the mental activity (operation) to get the measure called

mode. In order to show the effects on the mode caused by data changes, slight
data changes to the original data, like changing a number by a small and a large
quantity, adding a new value, eliminating a value, will be presented and the
solution of the problem with the new data would be asked. More complex data
modification might also be given to the student in order to strengthen the
operation. Activities to recognize the related inverse operation would be suggested;

that is, given a value of the mode the student would be requested to exhibit a group
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or groups of data which might have such a value for their mode. The combination of

these two activities will induce the student to recognize the relation of the direct and
inverse operation connected to the mode.

For the mean, the activities used will be such that they permit the acquisition of

the concept of center of mass of a set of data. This can be attained with several
activities, one of them is the following: using a scale, data from a set of data is drop

one by one into the scale, pointing out how the supporting point of the scale, which

is the mean, has to be moved to mantain the scale in a horizontal position. Other

activities are the following: the data is dropped into the scale in the order in which
it was taken or obtained; the data is dropped into the scale in ascending or descending

order; the first data that is dropped into the scale is the central data and after that, the

extreme data are dropped one by one. Aditional activities are those in which given

the mean of a set of data, a relative big or small data is added to the set of data and

the new mean is requested, with the purpose that the student make an association of

the stability of the mean with respect to data which is relative far from it. It is
important, that once the concept of mean is obtained and understood, to make the

student to explore the effect that the same activities has on the mode. Once that the

student has mentally constructed his (her) concept of the mean, the activities to
perform are those that allow him to discover the relation of the center of mass
concept of a data set with the algebraic expression of the mean. Additionally, a series

of operatory exercices like the ones proposed for the mode have to be done in such
a way that they permit the construction of the inverse operation; that is, given a mean

how is the set of data from which it comes from.

4. CONCLUDING REMARKS
An ITS based on the constructivist epistemology has been proposed. This approach

of computer educational systems might be welcomed by the teachers who will not
see the system as a opponent to their labor but as a partner which facilitates their

educational tasks. In general, the development of computer environments that help

the student to construct congnitive structures about central concepts in specific
domains could be a great help to both the student and the teacher. There is
involved a lot of work and investigation in implementing a constructivist approach

for teaching just a concept. Among the activities involved are the following: 1) to
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recognize the operations involved in a particular concept; 2) to detect the relations

among the recognized operations; 3) to define the activities that the student could
perform to acquire the mentioned operations; 4) to define the activities that might lead

him (her) to recognize the connections among the operations; 5) to implement in a

computer medium the defined activities in an interesting form to the student.
However, the benefits that might be obtained to both the student and the teacher could

be worthwile the effort involved in the design and implementation of such systems.
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EARLY DEVELOPMENT OF ALGEBRAIC REPRESENTATION
AMONG 6-13 YEAR-OLD CHILDREN: THE IMPORTANCE OF

DIDACTIC CONTRACT
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This research is aimed to study the development of algebraic representation,
contributing to the comprehension of its development through the analysis of
problem-solving protocols produced by 72 children, with ages varying from 6 to 13
years. Two other interconnected independent variables were proposed: algebraic
structures (six) and version of problems (two: stressing transformation of a quantity
into another, or stressing the equality between two quantities). Results show that, if
certain written representations for algebraic problems (for both versions indistinctly)
are only detected in age-levels corresponding to the moment of introduction to
algebra at school (11-12 years of age, 6m grade in Brazilian school system), many
other and rich productions were detected among younger children (3m - 41m grades),
in interaction with propositions from the observer/teacher. These data suggest
the non-spontaneous, school-rooted character of algebra, and also rich possibilities
of pre-algebra schema development through didactic contract.

In Brazil, as in many other countries (Bodanskii, 1991), curricula in elementary
mathematics proposes that algebra must "wait" to be formally presented until
some arithmetic principles are well established. Because of this order of
presentation due to didactic transposition of mathematics (Chevallard, 1985), the
passage from arithmetic to algebra has become an important domain of interest
and research in the field of psychology of mathematics education, and both
epistemological and didactic obstacles (Bachelard, 1974) have been described in
this context (Laborde, 1982; Filloy & Rojano, 1984; Vergnaud, Cortes & Favre-
Artigue, 1987; Garancon, Kieran & Boileau, 1990; Cortes, Kavafian &
Vergnaud, 1989). Among the above mentioned obstacles, one of the most
important in the conceptual field (Vergnaud,1990) of algebra is the
representational transposition from natural language (in which word problems are
expressed) to algebraic-formal representation (Laborde, op.cit.; Da Rocha
Falcao; 1992), in which context the equal sign has equally a new and complex
meaning (Schliemann, Brito Lima e Santiago, 1992).

This study shares this interest in algebraic representation, and aimed to
contribute to the comprehension of its development through the analysis of
solving-problem protocols produced by 72 children, with ages varying from 6 to
13 years (six age-groups of 12 subjects in each, corresponding to six school-level
groups from to 6th grade of Brazilian elementary instruction). All children
were invited to solve 12 algebraic problems, presented as short stories during an
unique session conducted as a clinical interview. This set of problems covered
six algebraic structures (see Table 1, next page), each structure being presented
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under two problem versions: version A, stressing transformation of a quantity
into another, and B, stressing equality between two quantities. A complete table
of structures (Table 1) and an example of the two versions of problems
mentioned above (Table 2) are presented below (for a complete reproduction of
the 12 problems proposed, see Brito Lima, 1996):

Algebraic
structures

1 2 3 4 5 6
a+bx=c x+ax=b x+a=bx x

x +
a

= b
a
-1+b=c a + y =

b + x + y
Problems 1 and 7 2 and 8 3 and 9 4 and 10 5 and 11 6 and 12

Table 1: six algebraic structures explored

Problems versions
A: stressing transformation B: stressing equality

PROBLEM 1: Leonardo has started a
collection of self-adhering stickers. He had
23 stickers to put in his album, and he was
given two more equal packets of stickers.
Now, he has a collection of 37 stickers. How
many stickers were there in each of the
packets he was given?

PROBLEM 7: Amanda and Tiane have
collections of post-cards. Amanda's
collection is composed by 68 post-cards,
while Tiane had 22 post-cards, and received
two more and equal sets of post-cards given
by her father. The two girls have now the
same number of post-cards in their
collections. How many post-cards were there
in each set of post-cards received by Tiane?

Problems 1, 2, 3, 4, 5, 6 Problems 7, 8, 9, 10, 11, 12
Table 2: examples of two different versions of problems (stressing transformation
and equality) corresponding to algebraic structure 1.

All children were given paper and pencil, and they were explicitly allowed to
solve the problems in their own, without time-limits. Besides, subjects were
encouraged to discuss their work with the observer, specially after their first
representational proposition to one of the problems.

Subjects solving-problem protocols for the twelve problems were analyzed and
classified according to a categorical scheme composed by four aspects, briefly
described in Table 3 (next page). A multidimensional factor analysis
(correspondence analysis of nominal data) was performed with these modalities
of categories (completed by two additional qualitative categories sex and school
level, grouped in three composed levels: 1s` and 2nd, 3rd and 4`h, 5th and 6'h this
grouping procedure being guided by a previous and specific factor analysis). The
simplified factorial plan (Factorial plan 1, ahead) illustrates the more important
aspects suggested by this study. First of all, neither sex nor problem version have
had important contributions to the factorial plan (the modalities corresponding to
these categories are absent of the plan). This result means that these categories
didn't contribute to any significant partition of subjects in the sample.
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Codes A P M S

Categories Simple Basic Problem Symbolic
performance Procedure Manipulation support
1. Right answer 1. Arithmetic 1. Numeric 1. Symbolic

(immediate oper- manipulation support for

Modalities

2. Wrong / no
answer

ations)
2. Previous repre-
sentation (WS)

2. Previous
manipulation of
numbers and / or

counting (fingers,
matches, seeds,
traits in the paper)

3. Previous repre- other symbols and operating
sentation (AS) (WS)

3. Previous
manipulation of
numbers and / or
other symbols (AS)

(school algorithms,
schemes, drawings)
2. No explicit
support

Table 3: items of categorical analysis of subjects productions with respective
modalities (WS = without suggestion from the observer; AS = after having accepted
suggestion).

On the other hand, the modalities of the category "Simple Performance" (code A)
have an important contribution for the first (and more important) factor (Factor 1,
represented by the horizontal axis in the orthogonal plan). As we can observe,
there is a sub-cloud of modalities corresponding to "wrong answer" on the right
extremity of the horizontal axis: code A, number of the problem and code of the
modality "wrong", 2 (according to table 3 above) - Al2, A62, A112, A72, A52,
A102, A82, A92, A22, A122, A42, A32; opposed to this sub-cloud, there is
another one on the left side of the axis, grouping modalities of the same category,
but corresponding to the modality "right answer" code 1: A31, A41, A81, A101,
A21, A121, A91, A51, A111 (absent modalities didn't have an important
contribution - a percentile contribution over the percentile mean contribution of
all modalities to the factor). Associated to this category, we can see the
qualitative category "School level", with the modality SERI (1S1 and rd level) on
the right side, near the sub-cloud of wrong-answers, and SER3 (5th and 6th level),
near the sub-cloud representing right-answers. The multidimensional frame is
completed by another two sub-clouds, represented by the modalities of the
category P , "Basic procedure": on the right side, a sub-cloud composed by the
modality code 1 (Arithmetic: immediate operations) for problems 2, 3, 4, 8, 9 and
12: P91, P81, P121, P41, P21, P31; on the left side, we have a larger sub-cloud,
composed by the modalities code 2 ("Previous representation without suggestion
from the observer"), for all twelve problems: P62, P72, P52, P112, P42, P122,
P82, P92, P32, P102, P12, P22. We can try to propose, now, a global
interpretation for factorial axis 1: it splits the sample in two clearly opposite
groups, corresponding to the lower (1s1- 2m1) and higher (5th - 6th)
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P62

72

P52

112
P42
M32

P122P82

P92
P32
P102

P12
SER3

P22

M91

M92 A31

Alt
A62

A112 A72
A52

P91 P81
P121 P41 A102
P21 A82 A92
P101 SER1A22 A122

P31 A42 0
A101A21 A121

A91 A51
A111 A32

P33
M33

P103P23 P113

P43 P93 P83
P123 P73 !

SER2 !

M93 P53 P13

5101

S121

511

S71
S81

S51

S41

S91

Factorial Plan 1: "cloud" of modalities distribution in the orthogonal plan produced
by the two principal factors (factorial axes 1 and 2 explains 39,7% of total variance).
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school-levels. Subjects from the first group had important difficulties with the
problems, which they tried to solve arithmetically. Subjects from the second
group, on the other hand, could answer easily the set of problems, proposing by
their own initiative a previous representation for them. We have, in factorial axis
1, the classic arithmetic-algebra splitting, since older subjects from the left side of
factor 1 (5th - 6th school levels) had just been initiated to algebra at school.

Factor 2, the second in importance, represented by the vertical axis in the
orthogonal plan, shows an even more interesting aspect: the up-down opposition,
here, is represented by modalities of Basic Procedure (code P): on the up-side,
we have once more a sub-cloud of modalities related to the proposition of a
"Previous representation without suggestion from the observer" (P62, P72, P52,
P112, P42, P122, P82, P92, P32, P102, P12, P22) also related to the qualitative
category "School level" (SER3, 5th and 6th levels); on the down-side, we have a
new opposition, represented by a sub-cloud of modalities equally related to the
proposition of a "Previous representation", but this time after specific suggestion
from the observer (P33, P103, P23, P113, P43, P93, P83, P73, P123, P53, P13),
and associated to an intermediate school level, SER2 (3rd and 4th levels). Factor 2
is, in our opinion, more interesting than factor 1, because it shows a more tenuous
opposition between an "algebraic" group (freshly introduced to elementary
algebra, and able to represent problems in expressions and to manipulate them
before operating arithmetically) and another group not yet introduced to algebra,
but sensible to suggestions concerning previous representation, as illustrated
below by an extract of protocol produced by K., 3rd level, for problem 12,
reproduced below:

Dona [Mrs.] Vera e Dona [Mrs.] Lia decided to go to the super-market in
order to buy some fruits. Dona Vera bought 67 oranges and a packet of
grapes, while Dona Lia bought 23 lemons, a similar packet of grapes and
bag of apples. The two ladies came back home with the same quantity of
fruits each. How many apples were there in the bag bought by Dona Lia?

K. accepted the suggestion of representing the problem beforehand, and produced
the expression below:

nt31t&, ery-L0,19

;;;?,
1- 4L

6 '1--

Note that K. proposes an expression which includes the equal sign and different
symbols for different fruits, the icon proposed for the packet of grapes being

3
+
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repeated in both sides of the expression. She arrives to solve the problem
implicitly manipulating the unknown represented by the packet of grapes, which
is eliminated when she proposes that 23 lemons plus the apples (unknown
represented by the circle) must be equal to 67 fruits. K. and many other subjects
from SER3 (3rd and 4`11 level) show important pre-algebraic schemes involving
specially the proposition of hybrid equations, where natural language, icons,
numbers and mathematical formal operators coexist. These pre-equations are not
manipulated in an algebraic way, serving only to guide the subject in choosing
and executing arithmetic operations, as shown in another protocol, produced by
T., 4th level, for problem 7 (reproduced in Table 2 above):

Qatk,
3 ra(apj ez,),

_AA)

First of all, T. proposes an expression ("Sentencas"), following not only the
observer's suggestion, but also a very common didactic contract in the Brazilian
elementary arithmetic classroom: before operating arithmetically (using
operational algorithms), write down the corresponding mathematical expression.
T. makes use of the small square () , the first symbolic representation of
unknowns proposed in arithmetic activities like: + 6 = 10 = ? . Once the
sentence proposed ( x 2 + 22 = 68), he by-passes explicit manipulations and
operations to establish the numeric value for the unknown , the only explicit
operation ("Calculo") being a verification of the solution (23), transposed to the
third section ("Resposta", answer) of this elegant work.

It is also important to observe that, if intermediate school-level subjects appear
more sensible than their younger colleagues towards invitations to "represent the
problem first, try to solve it later" (Da Rocha Fated°, op. cit.), it doesn't mean
that representational schemes are completely absent among younger sub-sample

si -i 2nd school level, 6-7 years of age). The extract of protocol on the next page,
proposed by R., a 2nd grade subject, shows an interesting representational effort
where important numeric relations of the problem are detected and correctly
represented, after interaction with the observer/teacher, who wrote in the paper
the letters M ("manila", morning), T ("tarde", afternoon), and D ("dia", the whole
day). After this initial help, R. could represent the first unknown quantity of kites
by the drawing of a kite, and the second unknown by three similar drawings of
kites, since the problem established that children had hand-crafted "three times
the quantity of kites in the afternoon".
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Problem 8: Last Sunday, children from P. and
BV. [beaches in Recife - Brazil] participated in
a context in order to chose the more beautiful
kite. Working on Saturday, children from BV.
hand-crafted a certain quantity of kites in the
morning, and the triple of this quantity in the
afternoon. Children from P. produced 24 kites
in all. Knowing that both group of children
prepared the same number of kites, how many
kites did BV. children handicraft on Saturday
morning?

R's representation of problem 8,
after being aided by the observer:

Equally interesting and ingenious is the
spontaneous representation for the
same problem proposed by A, 2nd

grade, representation which guides his
solving-problem procedure: he starts a
counting-on procedure, distributing
small dots under one + three circles
representing the day-production of BV.
children, and stops when he reaches 24.
Then, he counts the dots under the first
circle (representing the morning-
production, and arrives to the answer of
the problem.

A's representation and solving-
problem procedure (problem 8):

C4.

0

0 0

T

Many psychological schemes (Vergnaud, 1990) can be addressed and amplified
by contract, as already shown in other research efforts involving the proposition
of didactic sequences in elementary algebra (Da Rocha Falai:), 1995). Subjects
from SER2 seem to be, as a matter of fact, in a zone of proximal development
(Vygotsky, 1991) concerning representational algebra, where propositions and
activities from teachers have an important role in algebra sense-making and
solving-problem strategy. Data from the present study show that a very important
work on this issue can be initiated long before the traditional curricular moment
(5th - 6th level), involving a socio-cultural context in the mathematical classroom
where the principal aspects of the conceptual field of algebra can be explored,
understood and incorporated. If usually children can not perform this task
spontaneously, specially when they are submitted to a long and previous
arithmetic "immersion", they are disposable to accept certain contracts
(Schubauer-Leoni, 1986) which are extremely important from a didactic
standpoint, since algebra, like many other activities (Leontiev, 1994), is deeply
embedded in school culture.
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THE AFFECTIVE DOMAIN
IN MATHEMATICAL PROBLEM-SOLVING'

Valerie A. DeBellis and Gerald A. Goldin
Center for Mathematics, Science, and Computer Education

Rutgers University, Piscataway, New Jersey 08855-1179 USA

We offer a research-based theoretical framework for describing the
affective domain in mathematical problem solving, extending earlier
perspectives of McLeod and of Goldin as well as our previous joint
work. Key new ideas include the component of values/morals/ethics as
it pertains to problem-solving affect, the notion of mathematical self-
acknowledgment, and the concept of meta-affect. Our overall frame-
work forms the basis for analyzing interactions between children's
affect and cognition in a longitudinal series of task-based clinical inter-
views. Certain ideas are illustrated with examples from the interviews.

Research on mathematical problem solving has concentrated primarily on cognition,
less on affect, and still less on interactions between them. In examining the strengths
and weaknesses of research on affect in mathematics education, Leder (1993) argues
convincingly for a "multi-layered approach" including students' "subtle responses
and reactions." She adopts in her methodology "a deliberate strategy that questions
the validity of the 'snapshot' approach to the measurement of attitudes." Our
research is based on a similar strategy. In qualitative, exploratory investigations
(DeBellis and Goldin, 1991, 1993) we examined in talented high school students and
in elementary school children the influence of affect on strategic decision-making
during non-routine mathematical problem solving. DeBellis (1996) studied children
over two years through a series of five carefully-structured task-based interviews,
designed to maximize non-directive mathematical problem solving and construction
of external representations. Videotapes of four subjects were analyzed for interac-
tions between affect and cognition, using fine-grained protocol analysis, inferences
made by observers, and a validated facial movement coding system (Izard, 1983).
Partly as a result of this work, we have come to the view that affectand its
detailed interplay with cognitionis the most fundamental and essential system of
representation in powerful mathematical learning and problem solving.

1 Parts of this paper are based on a doctoral dissertation by V. A. DeBellis (1996)
at the Rutgers University Graduate School of Education, under the direction of
G. A. Goldin. The research was partially supported by a grant from the U.S.
National Science Foundation (NSF), "A Three-Year Longitudinal Study of
Children's Development of Mathematical Knowledge," directed by Robert B.
Davis and Carolyn A. Maher. The opinions and conclusions expressed are those
of the authors, and do not necessarily reflect the views of the NSF.
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This article is not intended to summarize empirical results, but to offer a partial
theoretical framework for describing the affective domain in mathematical problem
solving. It extends some earlier perspectives of Goldin (1987, 1988) and McLeod
(1989, 1992) as well as our previous joint work. New points include the component
of values/morals/ethics in problem-solving affect, the notion of mathematical self-
acknowledgment related to this component, and the concept of meta-affect.

Emotions, Attitudes, and Beliefs

McLeod (1989, 1992) usefully partitions the affective domain of responses to
mathematics into emotions, attitudes, and beliefs. These differ from each other in
stability, intensity, the degree to which cognition plays a role in the response, and
the length of time that each takes to develop. Emotionspositive or negative
feelingsare the most intense and least stable. They "may involve little cognitive
appraisal and may appear and disappear rather quickly, as when the frustration of
trying to solve a hard problem is followed by the joy of finding a solution"
(McLeod, 1992, p. 579). Attitudes, where most of what Leder calls "snapshot"
research has focused, are "affective responses that involve positive or negative
feelings of moderate intensity and reasonable stability" (1989, p. 249). They are
seen as developing in two ways: from the automatizing of a repeated emotional
reaction to mathematics, or from an assignment of a pre-existing attitude to a new
but related task. Beliefs may be about mathematics as a discipline, or about oneself
in relation to mathematics. McLeod sees beliefs as mainly cognitive, developing
comparatively slowly. He sums up, "we can think of beliefs, attitudes, and emotions
as representing increasing levels of affective involvement, decreasing levels of
cognitive involvement, increasing levels of intensity of response, and decreasing
levels of response stability" (McLeod, 1992, p. 579).

Affect as a System of Representation

A model developed by Goldin (1987,1988) describes five kinds of internal repre-
sentational systems, constructed over time, that interact continually in symbolic
relationships with each other as human beings engage in mathematical problem
solving: (a) a verbal/syntactic system, (b) imagistic systems, (c) formal notational
systems, (d) a system of planning and executive control, and (e) an affective system.
The latter refers to changing states of feeling during mathematical problem solving
(local affect), as well as more stable, longer-term affective constructs (global
affect). Essential to the idea of affect as a representational system is that as states of
feeling interact with other modes of representation, they encode important informa-
tion (meaning) and influence problem-solving performance.
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Emotional states are then to be considered as local affect. Attitudes and beliefs, as
well as values, ethics and morals (see below), are to be considered aspects of global
affectrelatively stable, self-regulating structures in the individual. Research on
emotions in mathematics education has tended to focus on strong reactionssuch as
anxiety or phobia toward the subject, or elation with successand not (as we think
essential) on more subtle emotions, such as puzzlement, curiosity, frustration, or
confidence, inherent in solving mathematical problems. Though we agree with most
of McLeod's analysis, we differ with his assessment that the level of cognitive
activity involved in emotions during problem solving is low (at least as compared to
attitudes and beliefs). Our studies suggest it is very high, though the cognitions
interacting with fleeting emotions may be difficult to identify.

Affective pathways (Goldin, 1988) are established sequences of (local) states of
feeling, possibly quite complex, that interact with cognitive representational confi-
gurations. Such pathways serve important functions for experts as well as novices,
providing useful information, facilitating monitoring, and suggest heuristic stra-
tegies during the problem solving. Two idealized examples of affective pathways
interacting with heuristic configurations during problem solving are the following.
(1) A positive pathway begins with curiosity and puzzlement at the outset of prob-
lem solving, which evoke exploratory and problem-defining heuristics and motivate
the solver to better understand the problem. A state of bewilderment or impasse
leads to feelings of frustration, which encode the information that to this point the
strategies employed have led to insufficient progress. Heuristic processes are evoked
to revise strategies and challenge previous assumptions. Feelings of pleasure, ela-
tion and satisfaction occur linked with insight (imagistic representation) as the prob-
lem yields to new approaches. Global structures are built that entail positive self-
concepts and anticipation of positive affect in difficult mathematics problems. (2) A
negative pathway also begins with curiosity and puzzlement, but these encode a
search for "safe" procedures rather than an exploratory opportunity. When proce-
dures fail the resulting frustration turns rapidly to anxiety and despair. These also
evoke heuristic processesreliance on authority, defense mechanisms, avoidance
and denial. Global structures of mathematics- and self-hatred are built. Affect may
thus empower or disempower students. Empowering affect serves as an impetus to
persevere, take risks, engage with new external and internal representations, ask
questions, construct new heuristic plans, etc. Disempowering affect hampers
performance, blocks understanding or makes it unrecognizable when it occurs, and
induces negative outcomes associated with "math anxiety" or phobia. In our view
every individual constructs complex networks of affective pathways, contributing to
or detracting from powerful mathematical problem-solving ability.
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Values, Morals, and Ethics

Do the three components of emotions, attitudes, and beliefs adequately capture the
spectrum of affective responses in mathematical problem solving? We think an
important fourth component deserves attention, one that includes aspects of a sol-
ver's values, morals, and ethical judgments that interact with problem decision-
making. A complex values/morals/ethics system (sometimes shared, sometimes
highly individualistic) is one of the most powerful motivators of human beings.
Developing in childhood (Kohlberg et al., 1983) such a system provides the psycho-
logical sense of what is good and badthe feeling of being right, being justified,
being wrong, or judging others to be in the right or in the wrong. It is a system
powerful enough to energize profoundly creative, altruistic, or destructive beha-
vior. But what has this to do with mathematical learning and problem solving? The
importance of the values/morals/ethics component of affect pertains to the indivi-
dual's feelings, tacit or overt, about learning, problem solving success, mathema-
tical behavior, etc., as (morally desirable) virtues or values. Following the rules, or
following directions (including mathematical rules), may be regarded by the child
as "good", failing to do so as "bad". To us this is much more than a belief about
what mathematics is, or what works to obtain solutions. Some students who do not
follow established instructional procedures, as in addressing a non-routine problem,
may actually be tacitly contravening their own moral values or self-expectations,
while others (who value originality, rebellion, or self-assertiveness) may be acting
consonant with them. Cheating in school may be considered evil or shameful, and
doing mathematics with help may for the child be a form of cheating. The tacit
commitments made by students to learn and to understand, their sense of goodness
about themselves when they do as they "should" do, and wrongness when they fail
to do as they "should", all fall within this component.

We have thus come to visualize the affective domain as a tetrahedron (see Fig. 1).
The four componentsemotions, attitudes, beliefs, and values/morals/ethics
pictured at the vertices, are inferred, internal, mutually interacting and mutually
influencing facets of affective states. They interact with each other (as indicated by
the line segments), with cognition, and with the external environment during
mathematical problem solving. The emotions, attitudes, beliefs, and values of other
individuals may influence problem solvers directly, as when the clinician
communicates expectations to the child, or the child searches the clinician's face for
a sign of encouragement, approval, or disapproval. Broader social and cultural
conditions, situational and contextual factors, can also be understood in relation to
the affective tetrahedron as they influence mathematical problem solving.

2 212



Social & Cultural
Conditions

N
Attitudes

of
Others

Beliefs of
Others

Values/Morals/Ethics
of Others

External Contextual
Factors

Emotional
States
of

OthersJ
Figure 1. A Tetrahedron with Components of an Affective Representational System

Mathematical Self-Acknowledgment

We use the term mathematical self-acknowledgment to describe a learner or prob-
lem solver's ability (or willingness) to acknowledge an insufficiency of mathemati-
cal understanding. We place this construct, for many students, in the values/morals/
ethics component of the affective domain, as it may relate directly to the student's
value of self or sense of right and wrong in relation to mathematics. Important
aspects of mathematical self-acknowledgment are: recognition of the insufficiency
of understanding, the decision to take further action, and the nature of the action.
Recognition that something does not make mathematical sense may be expressed to
oneself (as the solver of the problem) or to someone else (e.g., a teacher). Either
type of acknowledgment may carry specific value, moral, or ethical dilemmas for
the solver, which can help or hinder the solver's admission of mathematical
insufficiency. The solver may or may not decide to do something about an acknow-
ledged insufficiency of mathematical understanding. If the decision is to act,
mathematical performance may be hindered or helped, depending on the choice of
action. Actions may include surface-level adjustments, explicit efforts at deeper
understandings, or a combination of both. Examples of surface-level adjustments
might include mathematical bluffingpretending to know, hiding the fact of not
knowing behind a plausible procedure, doing nothing, making up answers, forcing
wrong answers to make sense, or guessing while creating the illusion of knowing.
These we would tend to regard as impeding mathematical understanding. But not all
surface-level adjustments impede understanding. Making rapid conjectures or an
intuitive guess, or generalizing a rule to a new situation, can produce powerful
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results. Deeper mathematical understandings may be sought through a variety of
complex heuristic behaviors, which allow for better problem interpretation and
sense-making. But deeper responses can also be unproductive, as in solving story
problems by classifying them into types that require alternative algorithms. The
strongest problem solvers seem to display straightforward recognition of
insufficient understanding, and deep, productive responses.

When Stan (age 11) was asked in Interview #5 to explain what the fraction 3/1
means, he touched the side of his face. "... that fraction would equal three. Because,
um, say if you had, well just say, you couldn't, well say if you had a pie and (5-
second pause, presses lips together) and you could buy it (4 second pause) well say
um (3 second pause) well (smiles while looking down at paper) ... well, I know that
would be three because urn (5 second pause, furrows brow, presses lips together)
..." After questions by the clinician, he explains that "three divided by one equals
two (writes 3 - 1 = 2 in vertical form) and then you would take uh, two, div, urn I
mean subtracted by one equals one ..." We infer here that Stan recognizes an
insufficiency of understanding, but is reluctant to acknowledge it. He bluffs at first
by telling what he knows to be true (3/1 equals 3), and eventually finds a procedure
(repeated subtraction) that gives him this result. The observer comments, "When
Stan knows the answer, he is very confident and feels pretty good. However, when
he is not sure, he tries his best but starts talking around the answer ... in circles."

There are various forms that denial of insufficiency in mathematical understanding
may take. Denial when one does not know one's understanding is insufficient differs
from denial when one knows it and is trying to cover it up. There is also an
essential difference between "guessing" where the solver tries to create the illusion
of understanding, and "guessing" as part of trial-and-error or testing a hypothesis.

In our view mathematical self-acknowledgment plays an important role in the
construction of the individual's global affect. Feeling "stupid" with one's own
mathematical insufficiency when an error is pointed out discourages behaviors that
foster mathematical power. Disempowering affective pathways block mathematical
self-acknowledging behavior. The alternative is powerful affect, feeling happy that
one's hard work allowed another to point out an error that has become obvious.
This type of affect allows mathematical progress and learning to continue.

Meta-Affect

Meta-affect may be characterized in relation to affect in a way similar to
characterizations of metacognition (Lester et al., 1989). It includes (a) emotions

2 - 214



about emotional states, and emotions about or within cognitive states, and (b) the
monitoring and regulation of emotion. When we say that educators need to help
students analyze how their feelings interact with cognition during mathematical
problem solving, and how they can better manage their own emotional responses,
we are addressing meta-affective capabilities.

One example deals with the affect of "discomfort". At the outset of Interview #3,
we inferred that Londa (age 10) felt discomfort or unease associated with
nervousness or unfamiliarity in the interview situation. Later in the interview, she
is asked "Which would be easier, to cut a birthday cake into three equal pieces or
four equal pieces?" Three Styrofoam objects were located on the table in front of
her; a circle, a rectangle and an equilateral triangle. She replied, "Like if you have
a circle and cut it in three's that would be really hard because it would be something
like that, like that (motions with finger) or if, if you did it like this (repeats same
division) and you found out they weren't equal, you would have a hard time
deciding. But if you had this (reaches for rectangle) all you'd have to do is cut it
here and here." We inferred from gestures, facial expressions, and body movements
that Londa was envisioning what cutting the circle in thirds would be like, an
envisioning included letting herself feel "discomfort." The discomfort feeling was a
way of encoding how difficult it would be to decide where to make the cut. Here it
was an emotion she allowed herself to feel as part of her envisioning process of
what it would be like to try to cut a circular cake in thirds. This discomfortunlike
the discomfort at the beginning of the interviewis an emotion she feels entirely
comfortable about feeling. She is allowing herself to feel the discomfort in a
hypothetical context, one more or less entirely within her control. She has shaped
the context herself and the emotion is a contextualized, localized discomfort.

As this example illustrates, to say that a problem solver is in an affective state or
feels an emotion may be a tremendous oversimplification. Meta-affective infor-
mation is needed to understand how the solver feels about the affect in question, and
how it relates to other affective and cognitive processes.

Conclusion

We have presented some suggestive ideas, a partial theoretical framework, and brief
illustrative examples pertaining to affect in mathematical problem solving. We are
not in any way saying here that "feeling good" is synonymous with powerful affect.
The affect that makes for mathematical problem solving ability is complex, and
includes negative as well as positive feelings. It entails structures of mathematical
self-acknowledgment and meta-affect that serve to promote deeper understandings.
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Creating a Shared Context: The Use of a Multimedia Case in a
Teacher Development Course

Helen M. Doerr, Kay McClain, Janet Bowers

Syracuse University, Vanderbilt University, San Diego State University
Abstract
In this research study, we investigated the impact of a multimedia teaching case
on the professional development of a group of pre-service mathematics teachers,
most of whom were concurrently engaged in their student teaching experience.
In particular, we examined the extent to which the case provided the pre-service
teachers with a common context for analyzing teaching and learning, the degree
to which it supported the reflection of pre-service teachers on their own
developing practice, and the ways in which the materials fostered an examination
of the complexity of the classroom environment. In this paper, we report on
some of the findings from our study, which include the benefits as well as the
limitations and weaknesses of the multimedia case in this particular context.
Introduction

The task of restructuring mathematics pedagogy continues to be a
significant challenge for mathematics educators involved in teacher education. In
this paper, we describe the results of one attempt to create a shared context for
discussing mathematics pedagogy through the use of digitized video on CD-ROM.
Our research goal was to investigate the impact of a multimedia case study of
teaching on the professional development of a group of pre-service mathematics
teachers. The multimedia case is based on a series of lessons focusing on the
concept of volume. These lessons were conducted in a fifth-grade classroom in
an urban school setting.

The multimedia case allowed us to go significantly beyond the use of text-
based vignettes, such as are found in the publications of the National Council of
Teachers of Mathematics ([NCTM], 1991). Unlike the vignettes, the case study
included extensive video clips of a series of lessons developed over three days,
interviews with the teacher on her planning and decision making, digitized copies
of student work, video clips of student interactions in small groups, and links to
text-based material on the NCTM curriculum standards (1989) and professional
standards (1991). The first author of this paper, who was the instructor of the
teacher development course, chose this multimedia case because the richness of
these resources and the ability to selectively focus on particular aspects of the
classroom environment appeared to provide an opportunity for pre-service
teachers to carefully examine the complexity of the classroom and the teacher's
role within that complex environment. Moreover, as pre-service teachers often
have very different practicum experiences, the multimedia case study appeared to
have the potential to provide a common context for understanding teaching and
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learning while simultaneously supporting their reflection on their own individual
student teaching experiences.

In this research study, we investigated three questions: (1) To what extent
did the multimedia case study provide pre-service teachers with a common
context for analyzing teaching and learning? (2) How did the case study support
the pre-service teachers' reflection on their own developing practice? and (3)
Did the materials foster an examination of the complexity of the classroom
environment and an understanding of the role of the teacher in that environment?
In addition to these questions, we examined some of the limitations and
weaknesses of the multimedia case study that arose in this particular context.

Theoretical Framework
First and foremost, this research study is grounded in the view that

classrooms are complex environments. This complexity presents particular
problems for the novice teacher whose limited experience and knowledge make it
difficult to effectively observe the complexity of interactions that occur, often
with great rapidity, in a typical classroom. Beginning teachers are usually
concerned with issues of classroom management and the planning and content of
lessons as important priorities. But the pedagogical content knowledge that an
experienced teacher brings to bear in effective classroom instruction is extensive
and includes elements of epistemology, psychology, mathematics, philosophy, and
pedagogy (Shulman, 1986). The number and intricacy of theories attempting to
model mathematics teaching has increased substantially over the last two decades
(Koehler & Grouws, 1992). For example, in elaborating his model of the
professional development of teachers, Simon (1995) describes mathematics
teaching as the cyclic interrelationships of teacher knowledge, thinking, decision
making, and mathematical activities, all of which are influenced by the teacher's
understanding and evolving hypotheses about students' learning. The pre-service
teacher is thus faced with the challenging task of simultaneously understanding
the complexity of classroom environments, while at the same time integrating a
multiplicity of knowledge elements and beliefs into a coherent, emerging
practice.

The second theoretical perspective that is brought to this study is the notion
of the teacher as a reflective practitioner. In his recent work, Cooney (1996)
advocates that reflection should be a central component of teacher education
programs that aim to develop flexibility of thinking and adaptability to classroom
constraints. In this research study, we explored the extent to which a multimedia
case, in which the classroom teacher herself reflected on elements of her practice,
would support and foster pre-service teachers' own critical reflection on their
emerging practice. Pre-service teachers do not have a common student teaching
experience. In contrast, their experiences vary tremendously in setting, host
teachers, students, grade level, and so on. Thus when they come to their teacher
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development class, disparate rather than shared experiences come to the fore. A
central question was to determine whether a multimedia case could serve as a
common experience for the pre-service teachers to support a more reflective
analysis of teaching and learning.

Methodology and Data Sources
This qualitative research study was conducted with 13 students in a teacher

development course at a mid-sized research university in the United States. The
class met once a week for three hours. Ten of the students were taking the course
concurrently with their second student teaching experience in a variety of middle
school and secondary school settings. One student had already completed her
student teaching, but had not yet had a full year of teaching experience; one
would be completing her student teaching in the following semester; and one was
a visiting student from abroad with several years of teaching experience. Five
students were men, and eight were women; three were undergraduates, and ten
were graduate students in a masters degree program.

Each student was given a copy of the CD-ROM "Investigations in Teaching
Geometry" (Goldman, et al., 1994) developed at Vanderbilt University and a
copy of the "Geometry Investigations" HyperCard stack for accessing video clips
and descriptive text on the CD. The students used the materials on publicly
available Macintosh machines on campus or on their own personal computers.

The primary purpose of the lessons on the CD was to introduce fifth-grade
students to the concept of volume through informal investigations rather than
through formal definitions. This was accomplished through three lessons that
began by visualizing a three dimensional shape drawn on a two-dimensional
plane. The students then worked with one inch cubes to fill a box and were
encouraged to think in terms of layers in order to enumerate the total number of
cubes. The final activity consisted of creating the largest possible box by cutting
corners from a square sheet of paper and folding up the sides. The teacher of
these lessons (the second author of this paper) was not the students' regular
classroom teacher, but came to this classroom for the purpose of teaching these
lessons.

The multimedia case materials included video of each lesson, copies of the
teacher materials and student work, and the written lesson plans. The case also
contained four "Investigations" to be explored by the pre-service teachers: (1)
Planning and Teaching the Lessons, (2) The Teacher's Role, (3) Assessment of
Student Learning, and (4) Key Mathematical Ideas. The investigation on the
planning and teaching of the lesson included commentary and reflection by the
teacher, in which she described her thoughts about what went into the lesson
plans, anticipated student responses, and how she modified her plans. The
assessment of student learning provided a database of students' written work that
could be accessed to examine the strategies that students used in the lessons and to
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assess the class's progress. (cf. Bowers & Cobb, 1995, and McClain & Barron,
1995 for further descriptions of these investigations).

Each of the three lessons in the case study was the subject of one class
session in the teacher development course, beginning with the second class
meeting. Each pre-service teacher was asked to complete a journal entry on the
lesson, responding to a particular focus question. The focus questions provided
the beginning point for class discussion. This process was repeated for each of
the three days of the lessons. In their fourth journal assignment, the students
were asked to select one of the "Investigations" to explore and discuss.

In addition to student journals, the class instructor (first author) took field
notes during class and recorded her own reflections in a series of journal entries.
The class discussion generated many questions and issues about the lessons. As
the discussions unfolded, these questions were addressed via electronic mail to the
teacher of the lessons (second author). Thus, the data sources for this study
included student journal entries, journal entries and field notes by the class
instructor, email exchanges with the teacher of the geometry lesson, course
evaluations completed by each student, and a questionnaire on the use of the
multimedia case study completed by each student. The results reported below are
based on the analysis of this data.

Results

The use of the multimedia case clearly promoted a sense of a shared
context for analyzing the teaching and learning environment. All but one pre-
service teacher strongly agreed with the statement that the "multimedia case study
was very effective in providing a context for our classroom discussion." This
was articulated most clearly by the comment of one student who claimed: "We
were all watching the same scenario and discussing teaching from a common
experience, rather than just trying to express the same things from student
teaching when no one else in the room saw what you are describing and can fully
understand the context of what you describe" (emphasis added). Clearly this
student saw the case study as providing a shared experience, rich in its own
context, and something that is not possible to achieve with the separate
experiences of student teaching.

These sentiments were echoed in the comments of other student teachers
who suggested that the discussions in class were "very beneficial" and
"interesting." One student commented that the class discussion was the most
valuable aspect of the multimedia case. The field notes taken during class
indicated that the discussions were extremely lively and animated, with the
students having vivid and detailed recall of elements of the case study in support
of their arguments. Finally, several students commented that the discussions in
class brought out new perspectives on a common experience. One student
explained that the most valuable aspect of the case study investigations was "the
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discussions we had in class after we had watched part of it. I enjoyed it so much
because people often picked up on things I hadn't even thought about." Thus,
over several weeks, the video lessons became part of the shared experience of the
class, with multiple perspectives being built on and developed within the
conversation of this classroom. This observation is consistent with findings from
research conducted in other pre-service courses (Barron, Bowers & McClain,
1996).

Three major themes about the teaching of the lessons emerged from these
class discussions. First, the pre-service teachers felt that the teacher was
extremely respectful of the students in the class. The pre-service teachers
supported this claim with specific examples from the video in which the teacher
used respectful language when addressing the students as a large group and in her
interactions with them as pairs, over the full three days of the lessons. A second
theme that emerged during the class discussion was that the pre-service teachers
were very critical of the brevity of the wait time given to the fifth-grade students
as they responded to the teacher's questions. This became a key question which
was addressed via email with the teacher. The pre-service teachers felt supported
in their observations as the teacher agreed that her wait time was poor, especially
as the lessons progressed.

The third theme that emerged from the discussions was also related to the
use of language in the classroom and centered around an incident where a student
had given a response of "15 + 15" to describe how she had computed the volume
by adding two layers of cubes, each containing 15 cubes. When restating the
student's answer, the teacher changed that response and wrote "15*2" on the
chalkboard. In the teacher interviews, the teacher explained that she intended to
initiate shifts in the students' thinking by recasting additive solutions in terms of
multiplicative ones when she felt it was appropriate. Some pre-service teachers
argued that the shift to multiplication was the point of the lesson. But other pre-
service teachers argued that the student's response should have been written as
given by the student or the student should have been asked if the re-phrasing was
acceptable. The teacher should have made that shift in representation visible to
the class. Another problematic element with this instance for some of the pre-
service teachers was the sense that it transformed the teacher's role into the
controller and focal point of the discourse in the classroom and the central
authority.

Each of these three themes became focal points for the pre-service
teachers' reflections on their own practice. When asked "As a result of
investigating this CD, what things did you do differently (or pay more attention
to) in your student teaching?", two-thirds of the pre-service teachers responded
that they attended to their own use of wait time. The issue of re-phrasing
students' comments and answers became part of the classroom practice of the
teacher development course, where the pre-service teachers would point out when
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the instructor re-phrased their comments, and perhaps changed their meaning.
Several pre-service teachers reported that they found themselves paying attention
to using a student's own language and representations rather than immediately
changing those expressions to some other form. One pre-service teacher also
explicitly reported that he began to "write multiple solutions out on a chalkboard
like Kay [the teacher in the video] does." Similarly, several other pre-service
teachers commented that they paid more attention to having the students rather
than themselves become the focal point of classroom communications. All but
one pre-service teacher reported that the multimedia case helped them in
reflecting on their own practice. Several suggested that critiquing the practice of
a third teacher (in the case study) helped them in critiquing their own practice.
As one pre-service teacher stated, "I found myself critiquing my own
performance as a teacher as I critiqued Kay (am I doing the same thing I
criticized Kay for?)." While many pre-service teachers mentioned wait time and
becoming self-critical or evaluative, there were numerous other aspects of
practice that were mentioned, such as how to adjust lessons, encouraging
explanations, techniques for asking questions, and accepting multiple and/or
incorrect solutions without judgment.

The breadth of the questionnaire responses to how the pre-service teachers
reflected on their own practice suggests that the complexity of the classroom
environment and their own roles within that environment began to emerge as the
case was investigated. The pre-service teachers described the class discussions on
the case study as "very involved," "heated," "thought provoking" and
"enlightening," which is consistent with the instructor's field notes. Taken
together, these data suggest that the multiple dimensions and aspects of teaching
practice were brought to the fore through this shared experience. The pre-
service teachers were keenly aware of the fact that the video tape of the lesson
was edited. The fact that certain details were left out of the case video was
problematic; in some cases, this resulted in the pre-service teachers making
reserved judgments ("we didn't see, so we don't know"). For example, some pre-
service teachers observed that Kay spent a great deal of time standing at the
overhead; but others pointed out that it is difficult to tell, since other portions of
the tape were edited out. Many of the pre-service teachers felt that these lessons
were "staged" and not necessarily very realistic; many were suspicious of what
parts had been edited out and why. It became clear that they were seeing a
particular view of this particular classroom; but not having some of those omitted
details made it difficult to fully come to grips with some of the aspects of the
classroom environment.

Another indicator that the pre-service teachers experienced some of the
complexity of the classroom environment was the emergence of "why" questions
along with the "how-to's" that are often characteristic of beginning teachers'
concerns. For example, in focusing on their email questions for Kay, the pre-
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service teachers asked practical questions such as "How were the groups formed?"
but also "Why was it done this way?". Other pre-service teachers asked complex
questions such as "How did you accomplish creating an atmosphere where
students were involved and eager to engage in discussion?" Finally, in
commenting on the teacher interviews in the case, about half of the pre-service
teachers argued that the value of the interviews is that they provided the "why"
and the rationale for the teacher's decisions. Other pre-service teachers,
however, felt that the teacher interviews were too brief to be of value.

Discussion and Conclusions
The richness of the resources in the multimedia case provided the pre-

service teachers with a classroom environment that they could investigate,
explore and critique. As their investigations of this environment were shared in
the teacher development class, the three days of lessons on volume became a
shared teaching and learning experience. As they discussed their own
perspectives on these lessons, several common issues emerged: the respectful
atmosphere of the classroom, the need for giving the students more wait time in
responding to teacher questions, and the pedagogical dilemmas involves in re-
phrasing the students' language in order to meet instructional objectives. In
addition to the depth with which these issues were analyzed by the pre-service
teachers and their instructor, the pre-service teachers identified a broad range of
topics and issues that they used in reflecting on their own teaching practice.
Nearly all the pre-service teachers reported multiple ways in which this case
study supported their reflection on their own practice and influenced their student
teaching.

This study confirms the earlier finding that the pre-service teachers found
the classroom to be friendly and supportive (Bowers, 1996), but unlike the
prospective elementary teachers in that study, these teachers were less convinced
about the authenticity of the classroom. Their concerns stemmed from two
perceived impacts: the presence of the video cameras and equipment in the
classroom and the editing that was done to cut the video from three hours to 38
minutes. While some of the second set of limitations were mitigated by the
ability to enter into electronic mail exchanges with the teacher of the lessons, this
suggests that additional background material and more extensive teacher
interviews should be included in the case materials. The pre-service teachers
clearly recognized that the view of the video tape was inherently one perspective
of the classroom and that this will always present limitations to what can be seen
within the classroom. Nonetheless, the pre-service teachers were able to gain
significant insight into the complexity of the classroom environment and the
teacher's role within that environment.
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TRIPLE APPROACH: A THEORETICAL FRAME TO INTERPRET
STUDENTS' ACTIVITY IN ALGEBRA

Jean Philippe DROUHA RD1, Catherine SAC K UR

GECO (Nice), CREEM (Paris), IREM de Nice, IUFM de Nice

We, in the GECO group, use a methodology called "triple approach" (psychology,
mathematics and didactics). We present here three main notions of our theoretical
frame: the local bits of knowledge, their dimensions and the three types of
polarization of the subject's mathematical activity. The relationship between these
notions, the very particular role the conformity polarization plays and the fact that
the experimental actual data are the shifts of polarization rather than the
polarizations themselves are discussed. Thus, we present here a synthesis of
theoretical elements which have been dispersed in various papers until now, taking
into account the most recent state of our research.

Depuis plusieurs annees, nous developpons au sein du GECO un cadre theorique
pour l'interpretation de l'activite du sujet en mathematiques (en particulier en
algebre), base sur une triple approche, psychologique, didactique et mathematique.
Nous exposons ici trois notions centrales de ce cadre theorique: les connaissances
locales, leurs dimensions et les trois orientations ('types of polarization') de
l'activite mathematique du sujet. Nous explicitons les articulations entre ces notions,
le role tres particulier joue par l'orientation de conformite, et le fait que les
observables sont en fait les changements d'orientation. Nous presentons ainsi une
synthese d'elements theoriques jusque-la disperses dans diverses publications,
actualisee pour tenir compte de l'etat actuel de notre rejlexion sur le sujet.

Since many years the GECO group works on the learning of algebra at middle and
high school level. To this end, we built up some theoretical tools: the local bits of
knowledge, their dimensions and the three types of polarization. We use a
methodology called "Triple Approach" (Psychology, Mathematics and Didactics),
and we collect experimental data by interviewing students, during which they
describe for themselves and for us - their mathematical activity.

We built up progressively these notions, as they proved to be fruitful and helped us
to understand some aspects of the learning of algebra. We presented them in
various papers (Sackur & Leonard, 1985, Leonard & Sackur, 1991, Drouhard,
Leonard, Maurel, Pecal & Sackur, 1994, Drouhard, 1995b, Sackur, 1995). These
papers however focused mainly on the way we used these ideas (except Leonard &
Sackur, 1991, published in French). The aim of this paper therefore is now to
present some recent aspects of our theoretical framework (although not achieved).
That is why this paper has an unusual mainly theoretical content.

1 drouhard@unice.fr

2 225



We shall describe here how our approach allows us to analyse the work of a student
in algebra. What we want to observe, can be observed only if we "enter" into the
way the subject thinks, if we focus on his/her private thought. We collect which we
analyse with our theoretical tools. The interviews are led in such a way that the
collected data is quite different (closer to the private thought of the student) from
that collected by a teacher in the classroom, or even during a personal talk with a
student (Sackur, 1995).

TRIPLE APPROACH

The "Triple Approach" has its origin from studies on the students' algebraic
knowledge. We think that what we say here could be applied to various kind of
knowledge, but we will not state this point here. The notion of local bits of
knowledge is essential in the Triple Approach. Our aim, by emphasising this
notion, is to stress the following idea: the errors the students make are not resulting
from incoherence or misconceptions but rather from a particular kind of
knowledge. To study this fruitfully, we were led to claim the following statement:

We claim that any knowledge results from interactions between a subject, a
social group and the reality.

This involves the existence of three areas: the psychological area (intra-cognitive
relationship of the subject with himself), the social area (inter-cognitive
relationship of the subject with a social group) and the area of 'reality' (relationship
with a reality either material or conceptual in the case of mathematics.

We devised these three areas while trying to study the learning of mathematics
within a Piagetian perspective. One may interpret Piaget's ideas (in a very sketchy
way) of how knowledge is constructed as resulting from interactions between
actions which take place in two areas, psychological and 'real' (Piaget, 1974). In
order to take into account how (advanced) mathematical knowledge is built
however, it seemed necessary to us to introduce a socially-related dimension,
related to the society of past and present mathematicians and teachers amongst
others. This dimension relies on the idea that mathematics is a social construction,
and that if even some basic (e. g. logical) knowledge may be constructed just by the
interaction of the child with his/her environment, it is highly improbable that s/he
could build by him/herself advanced mathematical ideas (those which have been
built through a long and uncertain historical path) just by interacting with his/her
environment.

Obviously such ideas are related to those developed by Vygotsky (1987). One may
take care however that we are not focusing here on the social construction of the
mathematical knowledge, but rather on the construction by an individual of the
socially and historically already constructed (advanced) mathematical
knowledge, that is not the same thing (even if related).
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LOCAL BITS OF KNOWLEDGE

Within this theoretical three-area framework we set out the notion of local bits of
knowledge. Every knowledge is local, and may be said 'true' inside given limits.
The subject ignores the existence of these limits, and of course their place in the
whole knowledge field. These limits can be identified by an 'expert', i. e. anybody
whose knowledge is more comprehensive than the subject's.

What do we mean by 'true'? The answer to this question takes place within the
three areas. In the psychological area, the knowledge is coherent by itself for the
subject; it does not contain any contradiction inside the domain where the subject
may use it (it may be contradictory with other knowledge outside however). In the
social area, the local bit of knowledge is valid, validated by a social group (or one
representative) which recognises it as such. In the area of 'reality' at last, the bit of
knowledge is true when it is efficient.

We claim that a local bit of knowledge is coherent, valid and efficient inside its
limits, and loses simultaneously theses three qualities outside. We call these qualities
the 'dimensions' of the bit of knowledge. It is viewed here as static, in a state of
equilibrium.

According to this idea, we assume that the student constructs a local bit of
knowledge in this way: his knowledge is, on the beginning, very local (like above
for multiplying). Then it evolves towards more comprehensive bits of knowledge
acceptable by the reference social group, the teachers and/or the mathematicians for
instance.

A good example of local bits of knowledge we found when interviewing Leslie, a
girl student, aged 15. She was working on quadratic equations, and found at the end
of a computation the following expression:

24 a2 = -8

She then said that she could not find a because "a square number is always
positive". The interviewer asked her how she knew that2. She said that it was clear,
and to prove it "in front of a positive number one finds a "+" sign, and in (a-b)2 =
a2- 2ab+b2, there is a "+" in front of the b2".

The point here is that this "proof' is absurd for the expert, not for the subject, who
coordinates in a coherent way (for her), three bit of knowledge, each of them being
locally true:

LBK1: "a square number is always positive"

2 note that, during our interviews, we try to avoid asking directly the subject a question like
"why?". We know that, in this case indeed, s/he would (unconsciously) tend to re-construct
her/his thought in order to give us an acceptable answer Ca posteriori rationalization') rather than
to give us her/his original private thought (Vermersch, ibid.).
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LBK2: "in front of a positive number one finds a "+" sign"

LBK3: "(a-02 = a2_2ab+b2"

The domains of validity are easy to identify (for the expert). In LBKI, "number"
must means real numbers, and this bit of knowledge turns false for complex
numbers. In LBK2 in contrast, "number" must mean decimal writings of numbers
(i. e. strings of digits, without letter or symbol, except a dot, e. g. "2.5" or "12"),
and LBK2 is false if the "numbers" are denoted by letters. At last, LBK3 is valid
whenever a and b denote elements of a commutative ring, otherwise false or
undefined.

Separately, these local bits of knowledge are coherent for the student who refers to
the convenient objects (numbers or writings), they are mathematically valid (in the
related sets obviously) and are efficient, inasmuch as they yield exact results when
applied to the corresponding mathematical objects.

We can make here two observations:

Firstly, both the mathematical domain of validity, the size of the reference social
group (and the domain of efficiency of the knowledge) are increasing while the
knowledge becomes less local, but of course it is not a term-to-term
correspondence!

Then, we assume that, in general, all knowledge is local. There are universal
mathematics statements indeed, which cannot be falsified since their mathematical
domain of validity is explicitly stated, as:

(Va E Vb E IR) (a-b)2 = a2-2ab+b2

Our focus however is not mathematical statements here, but rather psychological
knowledge and, as seen above, the domain where the knowledge is 'psychologically
true' is not just the domain where the corresponding formula is 'logically true' !

THREE TYPES OF POLARIZATION

Our aim now, as mathematics educators, is to identify the local bits of knowledge
of a student in order to act on it. Our work then involves a dynamic point of view
on bits of knowledge, their use and evolution.

When a local bit of knowledge is used inside its domain of validity, it is coherent,
valid and efficient and therefore there is no need to modify it. When used outside
its domain, it is not valid, not coherent and not effective. The system of Knowledge
of the subject is then perturbed; s/he may not take it into account however, but if
s/he does there is a possibility of evolution. So, let us focus now on the dynamics of
the local bits of knowledge.

A knowledge is used in order to act indeed. Each action is directed towards an
intention. Therefore, one knows whether intentions are reached or not according to
`reaching' criteria, which besides are 'stopping' criteria (allowing to know when to
stop the action).
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Let us now define more precisely the nature of both intentions and criteria. Related
to the three areas, the intention of the subject's activity splits into three types of
polarization: understanding in the Psychological area, conformity in the Social area
and performance in the area of 'reality'.

Within the Area related to the type of polarization, the subject finds the feedback of
his/her action and the clues to guide his/her action.

While working in 'performance', what the student knows about the (conceptual)
mathematical 'reality' may lead him/her to reject a result like 1z1 = -3: this result
cannot be said a "success" since it does not fit the mathematical "reality".

A student who is working in conformity on the other hand, takes his/her clues
within the Social Area; his/her action tends to fit the rules (set by others, for
instance the teacher, representative of the community of mathematicians, or other
students in the case of a group work: students may come to an agreement on wrong
Rules). When asked to explain his/her actions, a student working in conformity
says formula-like sentences as: "When you have x above and below the line, you
remove them", or "To solve an equation, you move the x to the other side".

We found necessary to give different names to intentions and criteria according to
the type of polarization of the activity of the subject. This is summarised in the
following table:

Use and evolution
know

of local bits of
edge

local bits of
knowledge

Areas Types of
polarization

Standards Dimensions

Psychological Understandingt-, Oneself Coherent
Social Conformity Other(s) Valid
`Real' Performance 'Reality' Efficient

Conformity

We shall focus now on conformity. This Type of polarization is nothing but
harmful by itself: we mathematicians work in conformity whenever we need it.
From the very beginning of algebra and Cartesian geometry, mathematicians have
developed rules which permit them to make computations without referring to the
meaning of the computations. It is a conceptual shortcut. The rules which permit to
work on algebraic expressions are strict and there are plenty of them. An expert
mathematician knows many things about them:

(a) s /he knows the rules.

(b) slhe knows where they come from: if slhe cannot, at one moment, demonstrate
one rule, s /he knows that the demonstration exists, that s /he has known it (most of
the time), and that s /he could find it again, either by her/himself or in a book.
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(c) s /he knows how to control the result of the computations s/he makes by using
the rules.

Algebra is such an important tool in mathematics because of the possibility of
using conformity to work. What is harmful, is to work in conformity alone and
never in understanding or in performance and, more generally, to work in one
Dimension alone.

Identification

To identify indisputably the Type of polarization of a subject's activity, is far from
easy. For instance, the rejection of lzl = -3 may follow (according to the context):

from conformity, if s/he knows 'by rote' that "the length of a complex number is
always greater than 0",

from performance, if s/he knows that, in the mathematical 'reality', the lenght of
a complex number is always greater than 0. The difference here is very subtle,
and depends on how s/he knows it instead of whether s/he knows it. In
mathematics indeed, rules of conformity describe mathematical 'reality' (facts
which are necessary)

from understanding at last, if s/he is aware that agreeing with 1z1 = -3 would be
contradictory with the rest of his/her knowledge. Once again, it is a question of
(subject's) point of view since the mathematical 'reality' is coherent (then the
conform rules, too).

We may get plausible clues to the subject's Type of polarization however, by
observing his/her non-verbal behaviour: tone of voice, pace of the discourse,
gestures... That can not be easily described here in few words, since this
observation relies on rather sophisticated interview techniques (Vermersch 1994).
One may note however that a work in understanding is private, with few
communication with the interviewer, often accompanied with murmurs, indistinct
exclamations ("oh yes!", "how stupid!"...) and possibly an emphasis at the moment
of the discovery (analogous to "Eureka!"). A subject who works in conformity, on
the other hand, often recites rules with a more or less uncertain voice while looking
for approval in the interviewers' (or teacher's) eyes.

TYPES OF POLARIZATION AND DIMENSIONS

While Dimensions are related to static aspects of the local bits of knowledge, Types
of polarization are related to its dynamic aspects. Thus, we are led to claim the
following statement:

a) The Dimensions of a bit of knowledge are indissociable. A local bit of
knowledge is Coherent, Valid and Efficient at the same time.
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b) In contrast, the Types of polarization are dissociated. At any moment, the
subject's action (involving his /her local bits of knowledge) is in one type of
polarization alone.

c) Shifts of Type of polarization may be very quick; they may give us worthwhile
clues about the Types of polarization.

It must be emphasized that the shifts are often easier to observe during interviews
than the subject's Types of polarization themselves. These shifts are often the actual
(observable) data indeed, from which we assume the subject's Types of
polarization.

At present we are working on the two following assumptions:

1) A local bit of knowledge depends on the Types of polarization in which it is
constructed.

In other words, a subject's local bit of knowledge, if constructed (from the same
field of bits of knowledge) in differing Types of polarization, differs. This
hypothesis is rather strong, since it involves (among other consequences) that a
local bit of knowledge, depending on the subject's psychological evolution and
learning experience, is definitively more rich and complex than the related
mathematical concepts (and obviously than the symbolic statement which express
i t).

2) We can act on the Type of polarization in which the student works.

This hypothesis is less trivial that it could appear at a first glance. Indeed, one
cannot ask straightforwardly a student to act in performance or in understanding.
Well known is the ineffectiveness of "Come on, please, consider it!" to lead the
student in understanding. Our ongoing research address the question of how to
guide the student by giving him/her tasks (like in the "Write False" interviews
(Sackur, 1995)) which can have an influence upon his/her Type of polarization.

CONCLUSION

We remind that the aim of this paper is just to present the main points of a part of
our theoretical framework: the local bits of knowledge, the three Dimensions and
the three Types of polarization. Therefore, this paper contains no experimental
evidence, since we refer to previous presentations of some aspects of our
experiments. Hence, in this paper there is no discussion of experimental results, and
the aim of the conclusion is just to prevent, one more time, a risk of
misunderstanding.

We do think that there is no hierarchy between the Types of polarization.
Understanding is in no ways a "good" way of doing mathematics in contrast to a
"bad", low-level conformity, therefore learning mathematics is in no ways evolving
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from the latter to the first3. Algebra for instance (and likely all mathematics), takes
its power from the ability to allow the subject to work in conformity. Thus, s/he is
not obliged to come back at any moment to the meaning (understanding) of both the
algebraic expressions and their transformations. Every work in mathematics is
done partly in conformity; on the other hand we observed that the students which
have difficulties in algebra have been often working in conformity alone. That is
why, according to our hypothesis on the possibility to act on the Types of
polarization, our experimental work addresses preferably these students.
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WHEN DOES A WAY OF WORKING BECOME
A METHODOLOGY?

Janet Duffin Adrian Simpson
School of MathematicS Mathematics Education Research Centre
University of Hull and University of Warwick
Hull Coventry
HU6 7RX CV4 7AL
UK UK

Abstract
We reflect on our way of working and try to position it in relation to that
of others. We consider perceptions of methodology and discuss research
questions and the way they affect and are affected by the methodology
they are sited in. Through selected literature and the reactions of
colleagues we aim to establish satisfactory criteria for an acceptable
methodology and apply it to our way of working.

Having worked together for several years developing and using a theory of learning
(Duffin and Simpson, 1995) we have come to a point when we feel the need to site
our work in relation to that of others, and to reflect on our way of working in
order to consider its validity as research.

Quite early in our working association we became aware of some specific
characteristics of the way we work which we felt fed and were crucial to the
conclusions we were reaching. More recently, as we became more aware of the
importance of methodology to any piece of valid research, we have been trying to
see where our work could fit into the range of existing methodologies. We sought
this access both through discussions with others, a notable ingredient in our normal
practice, and through selected literature.

One particular piece of literature stimulated a chain of thought which became a
central focus in our attempt to clarify some unanswered questions about the nature
of research itself and the place of our work within research.

Methodolatry and First Thoughts on Methodologies
It was the work of Daly (1973) that gave us our first signpost to what we were
seeking. Her word `methodolatry' captured our interest and began to take our
thinking forward at this stage. The word appeared in Belenky et al. (1986) in the
context of women's involvement in both learning and the research process and was
strongly influenced by Daly's earlier work. Belenky discusses the idea that a set of
acceptable methodologies can 'render invisible' those whose work does not fall
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within this category, work which wants to ask different research questions or use a
different methodology.

Our attention was caught by the Belenky notion that a methodology, in part at least,
can limit, even determine, the kinds of questions that can be asked in research. We
began to see in this a duality: that a methodology can determine the questions that
can be asked and that the questions a researcher is interested in may determine the
methodology to be used. The two-way process that it indicates is a dominant
feature, certainly of our work but perhaps, more generally, is part of any
acceptable methodology. Indeed, even this may be too clear cut; it may be that
questions and methodology are so bound up together that there is a constant ebb and
flow between them in the research process as both become refined over a period of
time.

As we continued to clarify our thinking on this crucial issue, we began to realise
that the idea of an 'ebb and flow' went beyond the relationship between just
questions and method. We developed the idea of a domain and range of any
research: by the domain of a piece of research we mean who or what is being
researched, and by the range we mean those who can or want to use the results of
the work. We became aware of the possible influences coming from this domain
and range. For example, if the researcher wishes, as we do, to make their research
available for teachers to influence their classroom practice, the form the research
results take must be one that is accessible to teachers. This in turn will influence the
kind of questions to be asked and thus also the focus of the research itself.

From this chain of thought we produced a list of five questions we felt would
provide us with tools for our work and, if we could find answers to them, might
enable us to site our work amongst that of others. These were

who or what is being researched?

what questions is the research asking?

what form do the answers take?

who can or does use the answers?

what do they use them for?

Such a list suggests both a linear flow and a direction (from what is being
researched to what use the answers are put to). In trying to remove these
implications, we developed a diagram (figure 1) which illustrates our belief that
there can be an ebb and flow of influence between the five questions and that there
is no specified direction.

In order to consider some of these questions in relation to our work, and from our
own viewpoint, we need to make explicit the details of our way of working.
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What are we
researching?

What
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are w
askin

Our Way of Working .

When we first began workin
called 'a way of working' w
was even further removed I
experience as learners, teac
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Indeed, we began working to
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One of the features of these e ntly

referring back to our own ler our
respective spheres. We bec ; to
what we brought to the discus t to

us in the sharing: the way in
and, in the talking, enlarged and changed the perceptions of both of us.

It was only at a later date that our attention was drawn to the contrasts between the
approaches of Piaget (seeing learning as rooted in the individual) and Vygotsky
(seeing learning as rooted in interaction between individuals) as we listened to
colleagues more experienced in research than ourselves. For us, both our
individual ways of viewing what we experienced, and the important changes and
developments arising naturally from our interaction, became cornerstones in our
own development.
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It was only recently, as our thoughts turned to ideas about connecting our work
with that of others, that we began to feel the need to try to be explicit about these
features of our way of working. We identified three essential characteristics:

Introspection

Co-spection

'As if from the inside'

By introspection we mean constantly seeking to discern our individual perceptions
of experiences, both past and present, and our reactions to them. We suggest that
looking at ourselves from the inside gives us an access to the mental processes of a
learner that we cannot have in studying other people.

We use the term 'co-spection' to mean the sharing of our own personal reactions to
experience, with the deliberate intention of using samenesses and differences to
further both our individual and our shared perceptions. By 'as if from the inside'
we mean that we try to approach the observation of the actions of others, usually in
some kind of learning context, from a viewpoint which tries to take into account
what individual learner's own perception of their experiences might be.

We recognise that some of the language we use in describing our way of working
stems from that of Mason and from adapting our perception of his ideas to it. It is
he who points out that the sole use of introspection as a research tool in psychology
was strongly challenged by workers such as Watson (1913) and that the excesses of
treating personal, inward looking accounts as unchallengeable partially led to the
development of 'objective' behaviourism (Mason, 1994). Mason's work and his
introduction of the terms extra-, intra- and interspection were influential for us
both in concept and in the choice of vocabulary we made to describe one aspect of
our way of working.

We accept that there are problems with introspection as a research method. Both
Mason and ourselves are trying to solve these problems but we appear to be doing it
in different ways. Mason does it by abandoning the term introspection in favour of
extra-, intra- and interspection, while we do it through adding the notions of co-
spection and 'as if from the inside' to validate, challenge and extend the findings of
introspection.

For us it is the synthesis of all three characteristics - examining our individual
responses to experiences, sharing them closely with the other who tends initially to
respond differently to experiences, and using the similarities and differences of the
internal processes we get from these to consider our observation of others 'as if
from the inside' which constitutes our way of working. The sharing through co-
spection and the examination of any theory we develop through the 'as if from the
inside' process provide us with a challenge to our individual, internal accounts
which introspection alone cannot do.
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The phrase 'as if from the inside' comes from reflecting on Mason (1987) when he
classifies researchers as follows:

We are all trying to model or describe the inner world
of experience. Some of us proceed by contemplating
and studying other people, or by studying ourselves as
if from the outside; others proceed by contemplating
and studying ourselves from inside.

We find a partial symmetry here: relating the two dimensions of studying
ourselves/others and studying from the inside/outside. But while Mason relates the
self to both inside and outside study, he only mentions the notion of studying others
from outside. It seems to us that our attempts to look at others by considering what
internal influences there might have been on their actions brings in a fourth concept
of 'studying others as if from the inside', which appears to complete the symmetry.

This idea entered our work at an early stage before we had encountered the
literature that gave rise to its vocabulary. It arose when we were developing our
theory of learning, natural, conflicting and alien (Duffin and Simpson, 1993).
Initially the theory was based only on the two concepts of natural and conflicting
but, in examining an incident about a seven year old boy, we became conscious that
a clear contradiction, which for us would have caused a conflict, did not perturb
him in the slightest; he merely ignored it. This incident led us to consider what, in
the mental processes of a learner, might lead to this kind of response, resulting in
the third concept of our theory: alien. It also led us to realise that an essential
feature of our work was that we were trying to observe learning incidents that came
our way as if from the viewpoint of the learner involved: as if from the inside.

Connecting Our Way of Working
Our long term aim, then, is to try to connect our own way of working as described
above with the five questions of figure 1. Later in this paper we aim to consider the
ways in which interchange with colleagues has helped to crystallise our perception
of research processes and methodologies generally. Before addressing this issue,
however, it is important to note how our own work has shown the ebb and flow
which we see as central to the research process itself.

In retrospect, and in the light of the processes through which we are now going, we
can see that our earliest work, in which we were trying to describe and explain our
different perceptions of the eight year old girl's work, was the result of a
personally motivated question: how could the other see the incident in the way
he/she did? This clearly influenced the form that any 'answers' we obtained took,
since they were essentially merely answers for ourselves. The flow at that stage was
predominantly from question to the form of answers. However, as we took our
work out to others and sought their responses, we were encouraged to make those
answers available in a form accessible to other researchers and because of our
own interests, to teachers as well. Thus we were led back from the issue of the
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form of the answers we wanted to obtain, to the kinds of questions we were asking
reversing the flow.

This notion of ebb and flow makes the answering of the questions even harder.
Whatever order we tackle them in will surely influence the way in which we answer
them and is, in turn, influenced by our current view of our work. Thus it is
important to recognise that we have only just begun to address the questions and
whatever answers we give are extremely tentative.

If we start with the question 'who can or does use our research?' a first attempt at
an answer might be:

For a considerable amount of the time we have been working
together, we have wanted to make our work available to
teachers. Part of the reason for this comes from our own
feeling that some research which might influence us, both as
researchers and teachers, is inaccessible because we do not
speak its language. We see it as only accessible to other
researchers in the same field who do know the language.
(Here we also see the influence of the question 'what are
answers used for?' over 'who uses the answers?, which also
influences the other questions we are postulating.) So we see
our aim as the production of research for three main groups:
ourselves (to take us forward in our own thinking), other
researchers (to enable them to see our view of learning and
compare it with their own and that of other people) and
teachers (who may wish to use our theory to enable them to
model the learning processes of their pupils differently or
who may wish to use our way of working to develop their
own models).

In producing that very tentative first answer, it is noticeable that we have had to
bring in partial answers to other questions besides the one we started with: namely
`what is the research used for' and 'what form do the answers take'. Indeed, in
coming merely to this initial answer to one question, we have become aware of how
threatening all of these questions can be when they are separated: it appears that the

. research process entangles them so much that they cannot be dealt with easily on
their own. Much work still awaits us before we can hope to arrive at satisfactory
answers to all our questions.

Interchange with colleagues

As an extension of the co-spection element in our way of working, we make a
practice of engaging colleagues in interchange about our ideas. At one of the most
recent of these interchanges, in a session which included several research students as
well as more experienced researchers, we raised some of the issues discussed above
and asked them to relate the five questions to their own research.
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What emerged was interesting on several counts. First, we found that the research
students present seemed to have a somewhat rigidly defined perception of what
constituted valid research, seeing it as being obliged to follow a laid down set of
rules which resulted in a thesis format which told a linear story of their research,
perhaps in one direction only in our figure 1. At the same time they were prepared
to accept that, in doing the work, they were subject to the ebb and flow we postulate
for the processes of research while being more sceptical about its relevance to the
issue in question.

There was also an alternative view: that it was possible at later stages of a research
career to, in the words of one participant, 'open up to alternative, perhaps more
flexible ways of working' while still adhering to the view that, in the initial stages,
it was important to have to conform to accepted norms and formats for working.

Yet a third view emerged: some contributors were prepared to suggest that it was
possible to challenge the received view of what constitutes 'real research', that
perhaps we can begin to take on board alternative forms of question and to use
alternative methodologies. This was not said inconsequentially but was
accompanied by references to Stenhouse (1984) from whom emerged the idea that
research is "systematic enquiry made public".

Our discussion moved on to the idea that the central feature of work to be deemed
research is not that of conformity to a laid-down rigour but instead requires that, to
be valid, the procedures used in the research must be made explicit so that it is
possible to measure those procedures against the reality of experiences. The validity
then comes from that measuring against reality rather than coming from somebody
else's perceptiOns of what valid research really is.

We return to the title of this paper: When does a way of working become a
methodology? Perhaps a first tentative answer might be: A way of working
becomes a methodology when it is made rigorous through being made explicit and
can justify the intricate relationships between the questions it asks and the methods it
employs.

We are starting on a long journey towards achieving this end. We have been
explicit about the processes of our way of working and have started tentative
attempts to answer the questions we have raised for our own work and its purposes.
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Development of Seventh-Grade Students' Problem Posing
Lyn D. English

Queensland University of Technology
Three classes of seventh-grade students participated in a 3-month problem-posing
program. Twenty-three children who displayed different profiles of achievement in
routine and novel problem solving were selected for detailed observation. Thispaper
reports on the children's development in one of several areas explored, namely, in
the complexity and sophistication of the problems they were able to pose from open-
ended situations. Consideration is given to the children's inclusion of critical
information units, their use of semantic relations, the types of questions posed, and
the complexity of problem solution. Links between students' problem-posing and
problem-solving abilities are indicated.

Problem posing is recognized as a significant component of the mathematics
curriculum and is considered to lie at the heart of mathematical activity (e.g.,
Brown & Walter, 1993; Moses, Bjork, & Goldenberg, 1990; Silver & Cai, 1996).
The inclusion of activities in which students generate their own problems, in
addition to solving pre-formulated examples, has been strongly recommended by
several national bodies (e.g., Australian Association of Mathematics Teachers,
1996; National Council of Teachers of Mathematics, USA, 1989; Streefland,
1993). Despite its significance, problem posing has not received the attention it
warrants from mathematics education researchers. We know comparatively little
about children's abilities to create their own problems in different mathematical
contexts, about the processes they use, and about the extent to which these abilities
are linked to their competence in problem solving. There is also insufficient
information on how children respond to programs designed to develop their
problem posing (Silver, 1994).

The present study incorporated a 3-month problem-posing program that was
implemented as part of the regular mathematics curriculum in seventh-grade
classes. The study aimed to:
1. trace the development of students' problem posing across a range of

mathematical situations;
2. trace the problem-posing developments of individual children as they participate

in the classroom activities;
3. monitor changes in children's perceptions of, and attitudes towards, problem

posing and problem solving;
4. identify links between students' problem-posing and problem-solving abilities.

Theoretical Perspectives
The study represents the final phase of a three-year investigation of primary
school children's development of problem posing (English, in press a, b). Given
the paucity of research on the topic, it was necessary to construct a theoretical
framework that would guide the development and implementation of each phase.
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The framework encompasses psychological and sociological components (cf. Cobb
& Bauersfeld, 1995), as displayed in Fig 1.

KEY ELEMENTS OF PROBLEM POSING
Knowledge and Reasoning

. Understanding problem structures and recognising related structures;

. Knowing problem design, in particular, recognising critical information units;

. Being able to model and transform given structures, as well as build new ones;

. Knowing whether and how a posed structure constitutes a solvable problem;

. Being able to think in mathematically diverse ways;

. Knowing how and when to apply processes of analogical reasoning;

. Being able to reason critically in assessing problems and problem experiences.
Metacognitive Processes

. Communicating one's perceptions of, and preferences for, different problem
types;

. Reviewing and enhancing self-efficacy expectations;

. Improving one's disposition towards problem posing and problem solving.
:Sociological Factors

. Participating in classroom communities of philosophical and mathematical
inquiry;

. Engaging in constructive dialogue and debate;

. Sharing and critiquing problem creations.
Figure 1 Key Elements of Problem Posing

Since this paper is concerned with children's problem creations from open-ended
situations, those components pertaining to problem structure are reviewed. One of
the fundamental elements of problem posing is understanding just what a problem
is (Brown & Walter, 1993). This includes being able to recognise its underlying
structure and to detect corresponding structures in related problems. Structure may
be defined as "form abstracted from its linguistic expression" (Freudenthal, 1991,
p. 20). While not denying the importance of problem context (Freudenthal, 1991),
children need to recognise the mathematical structures of problem situations if they
are to utilise these to generate new examples and questions; this requires them to
place the contextual features in the background and bring the structural elements to
the fore. That is, children need to construct meaningful mental models or
representations that recognise the important mathematical ideas and how they are
related (English & Halford, 1995; Nesher, 1992).

The complexity of problem structure is determined, in part, by its linguistic or
syntactic properties (Mayer, Lewis, & Hegarty, 1992; Silver & Cai, 1996). Mayer et
al. found that problem-solving difficulty seemed to be related to linguistic
complexity, with problems containing assignment propositions easier than those with
relational or conditional propositions (defined later). The nature and
number of distinct semantic relations embodied in a problem also have a bearing
on its complexity (Marshall, 1995; Silver & Cai, 1996). For example, a story
problem that involves both multiplication and subtraction would be more complex
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than a comparable case involving only one of these. Of interest in the present
context is how the children's use of linguistic and semantic properties in
generating their own problems developed over the course of the program.

Also of importance in children's facility with problem structure is their awareness
of problem design. In generating their own problems, children must recognise the
critical items of information that are required for problem solution (referred to
here as "critical information units," addressed later). This awareness includes
recognising the nature and role of the "known" and "unknown" information entailed
in their posed problem, as well as any constraints placed on goal attainment (Moses
et al., 1993). This knowledge is necessary for determining whether and how a posed
problem structure constitutes a solvable problem, a basic element of problem posing
(Brown & Walter, 1993). Children's inclusion of critical information units in
constructing solvable problems was of interest in this study.

Methodology
Participants and Selection Procedures
Three classes of seventh-grade students from three state schools participated in this
final study phase, conducted during 1996. Twenty-three students were chosen for
in-depth observation and analysis (mean age of 11. 9 years in term 1). The 23
children (along with an additional six children serving as a small control group)
were chosen on the basis of their responses to tests of number sense and novel
problem solving; these were administered during the first term of the school year.
The tests were modelled on examples that had been used successfully in the previous
phases (English, in press a, b). The number sense test focused on facility with
number and routine computational problem solving, while the novel problem-
solving test included examples requiring a range of reasoning processes (e.g.,
deductive, combinatorial, spatial reasoning), as well as general strategies. The
selected children displayed the following profiles of achievement:
1. strong in number sense but not so in novel problem solving ("SNS" profile; N=6)
2. not strong in number sense but strong in novel problem solving ("SNP;" N=5)
3. strong in both domains ("SB;" N=7)
4. average achievement in both domains ("AB;" N=5)
The intention was to include children from the first three profiles only, however
difficulty in obtaining sufficient numbers necessitated adding the last category.

Procedures
The 29 children (including control group) were individually administered a
comprehensive set of problem-posing activities during the second term and a
parallel set towards the end of the fourth term. The problem-posing program was
conducted during the third and fourth terms and comprised 12 weeks of classroom
activities (approximately 1.5 hours per week). These incorporated a broad range of
experiences that addressed the important elements of problem posing (Fig. 1). A
variety of approaches was adopted, including small and large group discussions,
class debates, sharing and critiquing of posed problems, and individual and whole
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class reflections on students' progress and on the program itself. Throughout the
program we tried to establish a community of inquiry involving meaningful
dialogue or "connected talking" among the children and teacher (English, in press c;
Yackel, 1995). All children maintained journals of their problem creations and we
also video- and audio-taped all the activities of the selected children. The benefits of
this form of research have been well documented (e.g., Cobb & Bauersfeld, 1995).

Analysis of Children's Responses to One of the Activities
This paper reports on the children's responses to one activity type that was
included in the pre- and post-program activities as well as in the program itself
(towards the end of the program). The children were required to construct three
different problems from open-ended situations of the type shown in Fig. 2 (this
example was a post-program activity; the.program itself, included a number of
open situations drawn from newspapers, travel brochures, and historical reports).

SPOOKY TRAVEL
A 5-day tour of the ghost castles on No Man's Island, departing from Munster
Town, costs $1776 per person. A 4-day tour of the bat caves on No Man's Island
costs $1400 per person. Departure from Cape Fear to No Man's Island costs $350
less per person. The cost of food for each of the trips is $450 per person if there
is just one person travelling, and $400 per person if two or more people are
travelling together.

An Figure 2 An Open-Ended Problem Situation

Children's responses to these situations were analysed using the following coding
scheme (this scheme draws upon some of the ideas of Silver & Cai, 1996):
Problem creation and solvability. This was concerned with: (i) whether a
mathematical problem was created, and (ii) whether the problem was solvable with
a unique solution (although problems with more than one solution are important in
the curriculum, such problems in the present context reflected a design weakness).
Problem complexity. This focused on: (i) the extent of critical information units
included in the problem, (ii) the number of distinct semantic relations, (iii) the
number of steps required for solution, and (iv) the type of question posed
(assignment, relational, conditional). A critical information unit, as used here,
refers to an item of information that is necessary for problem solution. For
example, reference to the point of departure in the above example is a critical
information unit, as is a statement on whether food is required. An assignment
question addresses one variable, such as, "How much did the trip cost?" while a
relational question compares two variables, such as, "How much more does it cost to
go on the 5-day tour than the 4-day tour?" (Mayer et al., 1992). A conditional
question imposes a constraint, such as, "How much would you have to pay if you
wanted to depart from Munster Town and if you wanted to take a friend with you?"

Selected Findings
The children showed a distinct improvement in their problem generation between
the pre- and post-program activities. On the pre-program activity, there were two
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instances of a non-mathematical problem being generated (both from children in the
AB profile) and 17 instances of an insolvable problem. Children from the SNP and
AB profiles had the greatest difficulty in creating a solvable problem on the pre-
program activities, while children from the SB profile were the most competent. On
the post-program activity however, every child was able to create a solvable
problem, with children in the SNS and SB profiles better able to create problems
with unique solutions than children in the remaining profiles. In contrast, the six
non-participants had difficulty in generating a solvable problem, with 45% of their
creations being either non-solvable or a non-mathematical problem.

Developments in the complexity and sophistication of the children's problems
between the pre- and post-program activities can be seen in Tables 1 and 2. Among
the more noticeable developments was an increase in the number of critical
information units the children included in their problems (reflecting an increase in
solvable problems). Children from the SNP and AB profiles in particular, showed
substantial growth, as was evident in Nathan's (SNP) case. He progressed from
being unable to generate a solvable problem to creating the problem: Which would
cost more? Being a single person and leaving from Munster Town or having two
people leave from Cape Fear to go to No Man's Island? While children from the
SNS profile also showed considerable improvement in their inclusion of critical
information units, those from the highest profile (SB) showed little change between
the pre- and post-program activity. These children had few difficulties in generating
problems prior to the program and were able to create quite sophisticated examples
during the program. For example, Adam posed this problem after examining a
travel brochure: I've taken a leap year off work and decided to go on as many
holidays as possible. Each time I go on a holiday I have to take the time of the
previous holiday to recover for the one coming up. If two holidays go for the same
amount of time I'll go on the most expensive one, then the cheapest, then I'll go on
another expensive one, then a cheaper one, and so on. What would be the average
cost per day whether I'm at home recovering or on holiday? P. S. Money is not a
concern..

The program made little difference to the children's posing of relational questions.
These were clearly not favored, reflecting the documented difficulties children
experience with comparison problems (e.g., Stem, 1993). On the other hand, 59%
of all the children's questions were of a conditional type and 35% were assignment
questions. This is in contrast to Silver and Cai's (1996) findings where only 5% of
their sixth- and seventh-grade students posed conditional questions. Interestingly, it
was the SNP children who tended to favour conditional questions on both activities.

As indicated in Table 2, the children showed substantial shifts in their inclusion of
semantic relations and in the complexity of their problem solutions. The SNP
children demonstrated the greatest improvement, especially in their ability to
incorporate several semantic relations in their problem; the AB children also
showed marked gains. Children in the remaining two profiles displayed a noticeable
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increase in the computational complexity of their problems, with 59% of their post-
program problems involving 3 or more steps (in contrast to only 10% previously).

Although the sample is small and the data pertain to only one type of activity, there
appear some links between competence in problem solving and problem posing.
First, and not surprising, competence in both routine and novel problem solving
appears associated with competence in posing problems from open-ended situations.
Second, competence in number and routine problem solving appears associated with
the construction of computationally complex problems. The third link, which was
particularly evident in the classroom observations, is that children who are
competent with novel problems but not so with routine numerical problems respond
particularly favourably to problem-posing activities and demonstrate considerable
divergence in their thinking and in their problem creations (these findings reflect
those of the previous study phases).
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A CLOSE LOOK AT THE USE OF MATHEMATICS-CLASSROOM-SITUATION
CASES IN TEACHER EDUCATION

Ruhama Even
Department of Science Teaching
The Weizmann Institute of Science

Zvia Markovits
Center for Mathematics Education
Oranim School of Education

Mathematics-Classroom-Situation Cases (MCS-Cases) are real or hypothetical
classroom situations involving mathematics, in which the teacher has to respond to a
student's question or idea. A previous study indicated that the use of MCS-Cases in
teacher education has the potential to contribute to the development of pedagogical
content knowledge. This article investigates the use of one such case, the Decimal
Point Situation, in an in-service course for twenty elementary teachers. The
Situation was used in four different settings: written questionnaire, individual
interview, whole class discussion and student interview. The findings indicate that
different settings highlight and lead to different outcomes regarding various aspects
of pedagogical content knowledge.

INTRODUCTION

Past professional development activities for in-service mathematics teachers
tended to focus on ways of implementing curricula developed by "experts".
However, such sole approach cannot help teachers to fulfill a role as is envisioned by
current reform movements. Consequently, there is a growing trend which aims to
enhance the professionalism of teachers and to empower the teacher as a decision
maker. In recent years, several innovative teacher education programs that belong
to this trend were designed. Some of them center on and stem from how children
learn and how children's mathematical ideas develop on particular topics (e.g.,
Fennema, Peterson, Chiang, & Loef, 1989).

As teacher education being rethought and experimented, and new understandings
about teacher knowledge and its representation are developed (e.g., Shulman, 1986),
teacher educators develop and examine innovative pedagogies for teacher education
programs. One such pedagogy is the case-based pedagogy (e.g., Merseth, 1996)
which fits naturally with current conceptions about teaching. Teaching is gradually
recognized as a complex and ill-structured domain where theory cannot instantly
determine action, i.e., the "right answers" cannot be derived through direct
application of appropriate principles and theories. In many cases, teacher action
derives from and builds on contextual and local situations and experiences.
Therefore, teacher educators and staff developers began, in the last years, to develop
and use a variety of case materials in their pre-service and in-service courses (e.g.,
Barnett, Goldenstein, & Jackson, 1994; Wilcox and Lanier, in press).
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Our work in the last several years belongs to the same trend. We developed
cases that describe real or hypothetical I classroom situations involving mathematics,
in which the teacher has to respond to a student's question or idea. The situations
designed for junior-high school teachers center on the function concept; those aiming
at elementary school teachers focus on arithmetic and number sense--all deal with
students' ways of thinking and with various characteristics of teachers' responses to
students. We use these cases in teacher education courses (Even & Markovits, 1991,
1993; Markovits & Even, 1994), and we explore the potential of the cases to raise
teachers' awareness and sensitivity to students' ways of thinking in mathematics; to
expand teacher capacity to critically analyze teachers' responses to students'
questions, remarks or hypotheses concerning subject matter; to develop teacher
ability to reflect on their practice, etc.

Because the use of cases and case methods in teacher education is a rather new
phenomenon, there is little research that examines their potentiality. Our research
indicates that the use of the "function cases" with junior-high school teachers raised
their awareness of students' thinking (Even & Markovits, 1993). Other developers
and users of cases also report influence on teacher thinking, cognition and beliefs.
However, as is emphasized in Merseth's (1996), very little is actually known about
the nature of case practice in teacher education. What are promising ways of using
them? What happen teachers work on them alone? in small groups? large groups?
Should teachers discuss the cases among themselves? respond to them in writing?
Our study focuses on the issue of case practice in teacher education. It investigates
the use of one case, the Decimal Point Situation, in four different settings in the
context of a teacher education course, and examines how the different settings
highlight and lead to different outcomes regarding various aspects of pedagogical
content knowledge.

DATA COLLECTION

Subjects

Twenty elementary school teachers participated in the study. These teachers
participated in a two-year program for preparing mentors for elementary school
teachers held in a teacher college. Almost all have participated in in-service courses
on mathematics teaching; some completed a two-year course for elementary school
mathematics coordinators. Most of the teachers had at least ten years of experience
in teaching elementary school, usually in the upper grades (grades 4-6). Overall,
their background in teaching mathematics was somewhat better than the average
elementary school teacher.

'Note. that there are some differences between "our cases" and "cases" as they arc commonly defined in the literature (for
a comprehensive literature review of cases and case methods in teacher education, see Merseth, 1996). For example, in
the literature, cases arc usually real stories and include detailed background data. Our cases, on the other hand, may he
hypothetical (although rely on research); and they focus on students' thinking in a rather short episode, leaving for the
teachers imagination to fill the background details according to their own experiences.
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Mathematics-Classroom-Situation (MCS) Cases

The course "Mathematics Classroom Situations" was part of this two-year
program. It was held in the second semester of the first year. Mathematics-
Classroom-Situation (MCS) Cases formed a major part of the course. MCS-Cases
center on real or hypothetical classroom situations involving mathematics, in which a
student work or idea is described and the teacher is asked to respond to it. The
situations are chosen so that they highlight students' ways of thinking and conceptions
as known from research and personal experience. One such case centered on the
Decimal Point Situation:

*********************************************************************

A student was told that 15.24x4.5 = 6858, and was asked to locate the decimal point.
The student said that the answer is 6.858 because there are two places after the
decimal point in 15.24 and one place after the decimal point in 4.5. Together it
makes three places after the point in the answer.

How would you respond?

*********************************************************************
We chose this situation because it focuses on multiplication of decimals--a typical
basic elementary school mathematical topic, and also because it opens for discussion
the issue of the place of memorized rules and number sense in mathematics classes.

In addition to such situations, we develop and use an extended form of them
which include responses that were given by other teachers to the situations. The
course participants are asked to react to these responses. Following are the responses
that accompany the Decimal Point Situation in its extended form:
*********************************************************************

1. 1 would tell the child: You located the decimal point correctly and also explained
it correctly.

2. I would ask the child to find two whole numbers that are close to the given
numbers and to multiply them. 1 would then ask him to look at his exercise and
the given exercise and to check what is going on.

3. I would tell the child that the multiplication of the integer parts alone (15 x 4) is
60. So we get more than 60. That's why the answer should be 68.58. In
addition, I would write down the exercise, and ask the child to multiply. The
answer would be 68.580 and I will explain that 68.580 equals 68.58.

4. The child does not understand how to multiply decimal numbers. I would give
him several exercises and ask him to solve them using the standard algorithm.

5. I would tell the child: You stated a correct rule but your answer is incorrect,
because when you multiply 4 and 5 the answer has a 0 at the end. Zero is not
shown in your answer, and that's why you made a mistake in locating the decimal
point. The answer is 68.580.

*********************************************************************

2- 2 5 1 2 ; C ` ..4



Settings

The participants met the Decimal Point Situation in four different settings
during the study: two occurred before the course, while answering a written
questionnaire and during an individual interview; two during the course, at a whole
class discussion and when interviewing students.

Written Ouestionnaire

Several weeks preceding the course, a questionnaire was administered to all
participating teachers. Each of the eight tasks in the questionnaire, among them the
Decimal Point Situation, described a MCS-Case.

Individual Interview

Individual interviews were conducted with six of the twenty teachers, several
weeks after the questionnaires were handed in, and a couple of weeks before the
beginning of the course. The interviews centered on the extended form of three
situations, one of which was the Decimal Point Situation. The subjects were
presented with responses given by other teachers to the same situations and were
asked to react to these responses. After reacting to the other teachers' responses, the
interviewees were asked to choose the response they liked the most.

Whole Class Discussion

At the first several course meetings the teachers discussed the ways they had
responded to the questionnaire tasks, in an unstructured manner with no specific
guidelines as to what to pay attention. Then, they were presented with other teacher
responses and were asked to react to them. Finally, after reacting freely to other
teachers' responses for several situations, the teachers were asked to analyze the
responses according to the following criteria:

Does the teacher understand what the student does not understand?

Does the teacher's response concentrate on the student's misconception?

Does the teacher's response emphasize rituals? Does it pertain to meaning?

Is the response teacher-centered? Student-centered?

- Is there any problem regarding content knowledge?

The Decimal Point Situation was discussed during the first two course meetings.
These meetings were videotaped and later transcribed.

Student Interview

As part of the final assignment for the course, the teachers were to explore
students' ways of thinking about mathematical situations and teachers' explanations.
To do that, each teacher interviewed a pair of sixth-grade students, either her own or
from other classes. The teachers presented three situations to the students (the
Decimal Point Situation was one of them) and asked the students to respond. (First
they asked the children to solve the mathematical problems by themselves.) Then,
they presented the students with teachers' responses to these situations and asked the
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students to react. The teachers audio-recorded the interviews and later transcribed
and analyzed them. These analyses were reported in writing to the instructors and
were handed in together with the transcripts and the recorded cassettes.

THE DECIMAL POINT SITUATION IN DIFFERENT SETTINGS

Because of space limitations we describe very briefly the different aspects of the
participants' mathematical and pedagogical content knowledge that characterize their
responses, analyses and reflections in three of the four settings and elaborate more
on the aspects that characterize the "whole class discussion" setting.

In the first setting of this study--the questionnaires--five of the teachers
considered the answer given by the student as correct. The cause for this mistake
seems to be an assumption that the given problem is a standard one and therefore one
can use a mechanical way of solution. These teachers, of course, did not use any
number sense. Eight of the teachers evaluated the student's answer as partly correct.
The reason for this seems to be rooted in their noticing, on the one hand, that the
answer is incorrect, while, on the other hand, the student was still using a well-
known and commonly taught rule: When multiplying two decimal numbers, the
location of the decimal point is determined by adding the number of digits after the
decimal point in the two numbers. The other seven teachers evaluated the student's
answer as completely wrong.

The teachers who thought that the student's answer was correct, focused their
written response to him on a request for an explanation. Such a response is very
interesting. These teachers consider as correct an answer that is wrong.
Nonetheless, what bothers the teachers is whether the student remembers the
explanation for the rule that produced the answer. Not only are the teachers not
aware of the student's mistake, a mistake that was caused by a mechanical use of a
memorized rule instead of an application of number sense, but superficially they
claim to care about understanding, whereas their responses actually point again to
preference of memorization--this time memorization of explanations.

The other 15 teachers used explanations in their written response to the student
that were based on three different strategies. The first kind emphasizes estimation of
the magnitude of the product when multiplying the whole parts in each number. The
second kind of explanation is related to the "missing" zero, suggesting to multiply the
last digits of the numbers. Another kind of explanation concentrates on actual
performance of the standard algorithm for multiplication of decimal numbers. This,
of course, leads to the appearance of the "missing" zero, and allows the use of the
rule. The first two kinds of explanation are based on number sense while the third
kind emphasizes a solution of the problem based on the well-known algorithmic way
only.

The probing in the second setting--the individual interviews--caused the
interviewees to re-examine their previous thoughts and conceptions of the student's
answer and sometimes change them. A dilemma arose in relation to the feeling that
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the rule was correct and still the final answer received by applying this rule was
wrong. The interviewees' reactions to the other teachers' responses, as well as their
preferences when asked to choose among the other teachers' responses, had similar
characteristics to the responses they themselves gave when answering the
questionnaire. This consistency was apparent in both the mathematical approach they
used and in the way they chose to approach the child.

The unstructured discussion in the third setting--the whole-group discussion-
took place at the first course meeting. The aim of this part was to allow the
participants to hear each other's responses and discuss them collectively instead of
individually as was the case when they answered the questionnaires or were
interviewed. The Decimal Point Situation case was the third case they discussed at
the meeting.

While participants' focus during the first two settings of using the Decimal
Point Situation--questionnaires and interviews--centered on suggestions and
evaluation of ways of response to the student, this was not the case during the
unstructured discussion. The instructor launched the discussion by reminding the
participants of the situation and asked them: "How would you respond?" Instead of
suggesting ways of response as might be anticipated, one participant protested:

He was misled from the beginning. They took off the zero... Because if the
zero was there, the whole story would have ended differently... He knows the
rule, but he was misled from the beginning, because we always say it is 68580,
the zero is important in multiplication. He didn't use estimation, he was told
that this is the answer and was asked to locate the decimal point, so he went
ahead and used the rule.

The teacher who said this was one of the teachers who wrongly used the rule of
counting places and therefore answered 6.858 on the questionnaire. However, she
was not the only one to criticize the task. Several other participants (among them
people who correctly answered 68.58) joined her in claiming that it was unfair to ask
a student such a "trick" question. For example, "I think that it is unfair of the
teacher to give an answer which, first of all, is not completely correct." Or, "this is
a question that causes students to fail. It is an unfair question."

The raging debate about the "fairness" of the question continued for some time
during the first course meeting until the meeting ended. We expected this to be the
end of it, but at the beginning of the second meeting the participants initiated a
renewal of the debate. Some of them described to the class how they were bothered
by the task and therefore chose to present it to other people (students and teachers)
during the week between the two course meetings. They then used the responses
they received as support for their claim that the task was unfair.

The discussion of the fairness of the task led the group to examine the issue of
the objectives of asking students questions. The people who enthusiastically argued
against the fairness of the task seemed to implicitly assume that the only aim of
asking students questions is to evaluate their performance of what they have learned
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in class. For example, one teacher claimed: "It does not mean that he doesn't know.
He knows how to do what he was asked to. He knows how to locate the point. This
was the question." According to this approach, teachers are allowed to ask questions
only about the material they have taught:

If you want him to locate the decimal point, and you taught him to do it in the
way the child did, then you have to give him a complete answer so that he can
locate the decimal point.

Another suggestion was to "prepare" the child to answer such questions by gradually
directing him through several tasks in which the teacher can show him that zero may
disappear. For example,

If we want to give such a question to a child to make him think, then there is a
way to lead him to that. [We should give him] similar questions, several such
exercises, showing him that zero is missing. Give him some exercises with
zero. But rank the questions a little bit.

Some participants felt uncomfortable with this narrow approach to student
questioning. They also referred to student questioning as a means to evaluate
students' performance. However, they claimed that the teacher should evaluate not
only the mastery of techniques but also evaluate problem solving performance and
the availability of different tools such as estimation:

Actually, the child needs to use all the tools available to him. I don't think that
one can separate: 'I am teaching only techniques or I am teaching estimation.'
When I give something, some topic, I want him to use all the tools. If I try to

ve a question that focuses only on techniques I think that I fail in my
objectives. A child needs to use all the tools that I teach him.

One of the participants expanded the aim of using student questioning beyond
evaluation of student performance. She claimed that student questioning is also a
means to help them learn:

I think that he [the student] must use some control. I think that it doesn't come
to the student naturally but we have to build it. I think we should give such
questions through which we educate him not to be a robot.

Analysis of the teachers' reflections on the interviews they conducted with
students in the forth setting indicates that for most of the teachers talking to students
with the aim of understanding their ways of thinking was very different from the
way they usually teach. The non-mediation meeting with, and discovery of, their
students' ways of thinking, caused the teachers to reflect on their style of talking to
students, and to re-examine their own actual classroom teaching. This motivated
them to decide to make changes in their teaching regarding content (e.g., teach
estimation) and teaching style (less teacher talk).
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CONCLUDING REMARKS

This study unpacks the potential of using MCS-Cases in teacher education. The
findings indicate that different settings highlight and lead to different outcomes
regarding various aspects of pedagogical content knowledge. Some of the aspects
were explicitly raised by the teachers themselves, while others were implicit in their
answers, responses and reactions, and became explicit in our analysis.
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ACTION-BASED STRATEGIES IN ADVANCED ALGEBRAIC
PROBLEM SOLVING

Pier Luigi Ferrari
Dipartimento di Scienze e Tecnologie Avanzate

II Facolta di Scienze M.F.N. Universita di Torino ad Alessandria

This paper analyzes the strategies of a group of undergraduate students to solve
a set of problems involving divisibility. The focus is'on action-based strategies,
i.e. on strategies depending on physical manipulations which are performed
with little semantical control. It is shown that problems requiring relational
knowledge or impredicative reasoning may result difficult to a number of
students even if only elementary concepts and methods are involved.

1. Introduction
The use of knowledge, including relational one and the semantical control on
resolution procedures have proved crucial steps in advanced algebraic problem-
solving. Unfortunately, instructional methods that may induce students to disregard
meanings and to overestimate a little set of techniques (within well-fixed notation
systems) as paradigms of doing mathematics are yet common in high school (and at
university as well). These techniques are often applied (and assessed) with little care
to context and conditions and it is usual to work within a little number of theoretical
and to represent mathematical ideas in stereotyped ways. This may severely affect
learning processes at university level. Let us see two examples.

Example 1
When dealing with problems like "For which m, me Z, the equation mx+3y=m has

1 -x)
solutions in Z?", some students write y = m(3 and conclude that m must be a

multiple of 3. This happens even after they have been taught the theory and
algorithms appropriate to handle and solve Diophantine equations and may depend
upon the custom of solving linear equations only within a field.

Example 2
Consider a problem like "Given the set A:={0,1,2,3 }, find out all the functions f:
A -A such that f(0)=1 and f(1)=0". Some students answer "There is no function
like this", meaning that no linear or quadratic polynomial function f: A.A satisfies
the conditions. This happens after they have been taught the definition of function
and have seen examples in different representation systems.

In the first example the students apply a technique utterly disregarding the
conditions. Actually, the strategy they perform is little more than a physical
manipulation, with very little semantical control. It is something very close to an
action, in the sense of Dubinsky's action-process-object (APO). framework (see
Dubinsky, 1991; Breidenbach et al., 1992; Dubinsky et al., 1994; Zazkis and
Campbell, 1996). Through this paper I use the word 'action' to stress the lack or
inadequacy of semantical control.
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In the second example the students bound themselves to a narrow class of functions,
which can be represented in a standard way, and show a poor understanding of the
idea of function. In both cases the strength of behaviors and patterns acquired in
their high-school experience overpowers any alternative teaching and are substantial
obstacles to future learning.

Students' achievement of semantical control on their procedures is a central goal for
many mathematics educators. At this regard, Ferrari (1996) has classified the
performances of a class of freshman computer science students according to the
ability to use algebraic knowledge and the semantical control on procedures. This
classification has proved well correlated with students' general academic results.

In this paper I want to improve the analysis of students' strategies when solving a
set of divisibility problems. In particular, I want to focus on action-based strategies
and to see how the contents of problems can affect students attitudes and
performances, in order to become aware that there are activities seemingly
advanced but which encourage the acquisition of mathematical contents with no or
little understanding.

Divisibility have been chosen because it involves some simple ideas that are usually
taught since primary school and offers a wide range of problems that may allow
students to use a variety of different strategies. Moreover, divisibility problems
even simple may require the use of algebraic knowledge represented in relational
form and involve a conceptual frame which is different from the ones generally
overstressed in high school practices.

2. A set of problems
The following set of problems has been administered at the end of November, 1996,
to a group of 39 freshman computer science students after approximately 30 hours
of introductory algebra devoted to language of sets (about 4 hours), the idea of
function (about 8 hours), introductory combinatorics (about 4 hours) and arithmetic
(about 14 hours), with particular regard to divisibility, factorization, greatest
common divisor and congruence. There has been no emphasis on divisibility
criteria. The teaching was oriented to problem solving and was given by the author,
with the help of some senior students (tutors). Tutoring was optional.

Students were allowed 1 hour to solve all the problems and to freely use books,
papers and pocket calculator. The problems were the following.

1. Let M = 34.53.76. 198. Answer to the following questions and explain your
answer.

a. Is M divisible by 63?
b. Is M divisible by 18?
c. Is M+5 divisible by 10?
d. Is there an integer x such that M x M+10 and 8 is a divisor of x?

2. Consider the function f, f: NxN -N, defined by f(m,n)=5"125". Is f injective?

3. Find out the values of m and n (m, n E Z) satisfying the following relations:
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a. gcd{ 3m,5 } I m (the greatest common divisor of 3m and 5 divides m);
b. gcd{ 10,2n} I n (the greatest common divisor of 10 and 2n divides n).

3. A priori analysis
Questions l.a, 1.b, 1.d are similar to some proposed by Zazkis & Campbell [1996].

Students dealing with questions 1.a, 1.b are expected to relate the notion of
divisibility to factorization. They could be more or less aware of the .meanings
involved. In particular, they could have learnt some rule relating factorization to
divisibility with little semantical control. In other words, these questions could be
answered by the simple action of factoring 63 or 18 and materially searching for
the corresponding factors in the given decomposition of M.

1.c cannot be solved by the simple inspection of the representation of M. The
occurrence of the prime factors of 10 within the factorization of M+5 cannot be
empirically checked but only inferred. Students could observe that M and 5 are both
divisible by 5 and thus M+5 must be as well, that M+5 is even (as M and 5 are odd)
and finally that an even number divisibile by 5 is divisible by 10.

Question 1.d involves the recognition of the existence of an object without seeing or
constructing it. Students are asked to do something of the kind of a non-constructive
proof of existence. In this case the construction is possible, but it is much simpler
just proving the existence of such an x than actually computing it. The mathematical
contents involved in this question are not much beyond the usual primary school
curricula.

Problem 2 is similar to a problem already discussed by Ferrari (1996, p.346). It
can be solved by procedures requiring little mathematical control but demands for
some (at least procedural) understanding of the idea of function. It requires more
mathematical knowledge than all the questions of problem 1, even if it could result
easier (from a problem solving perspective) than questions 1.c, 1.d.

Problem 3 is an application of the definition of gcd. Some problems of the same
kind have been previously proposed to all the group. The request for impredicative
reasoning and the double occurrence of each parameter within the formulas could
be an obstacle for action-based strategies. Nevertheless it could be solved by
students even with a poor mathematical background who can accurately apply the
definitions they have learnt.

4. Outcomes
Problem /
For the sake of brevity, I introduce a table to summarize the results related to
problem 1 (questions a, b, c, d). Each row represents a possible combination of
answers (columns 1-4) and the number of students adopting such combination
(column 5). 1 means correct answer to the corresponding question, 0 means wrong
or missing.

BEST COPY AVAILABLE
0 6
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l.a l.b l.c 1.d n °of students
1 1 1 1 5
1 1 1 0 9
1 1 0 1 2
1 1 0 0 14
0 0 0 0 9

Question I.a, 1.b
30 students give a correct answer to both l.a and 1.b. All the correct answers to l.a
explicitly use properties of factorization and someone actually find (by cancellation)34,53,7

7

6,198
that = 32, = 32.53.75.198. All the correct answers to l.b point out that

an even number cannot divide an odd one, or that there was no '2' within the
factorization of M.

The following are some examples of wrong answers to l.a and 1.b.

"M is divisible by 63 because they have some common factor".

"63 does not divide M because the exponents of the prime factors of 63 are
not multiple of the exponents of (the prime factors of) M".
"M is not divisible by 63 because gcd(M) gcd(63 )". (Most likely, by gcd(M)
he means "the largest prime factor of M").

"M is divisible only by its prime factors and their powers".

."M is divisible only by the product of its factors".

1 student tried to perform euclidean division in order to check divisibility and 2
others do not answer to any of the questions l.a and 1.b.

Question 1.c
14 students give a correct answer to 1.c. All of them give a correct answer to l.a
and 1.b as well. The strategies (correctly) used are the following.
0 3 students remark that M+5 must be even (as both M and 5 are odd) and

multiple of 5 (as both M and 5 are multiples of 5).
0 6 students provide a strategy similar to the previous one but, in addition,

explicitly write down: M+5 = 198+1), remarking that the number
within the brackets (which is the successor of an odd number) must be even.

1

0 3 students remark that M+5=10. + and show that the sum of2
the fractions within the brackets is an integer. JJl

0 2 students remark that the last decimal digit of M is a '5', and then M+5 must
end with a '0', and so it is divisible by 10.

The answers to l.c classified wrong have been 25, including missing answers; it is
worthwhile to distinguish between students giving correct answers to l.a, 1.b and
the others.
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Among the students providing correct answers to l.a, 1.b:

C1 5 claim that M+5 is not divisible by 10 because there is no factor '2' within
M+5;

C2 8 try to find out some factor '2' but perform some computations or
manipulations uncorrectly;

C3 1 writes `no' without any explanation;

C4 2 give no answer.

Among the students providing answers to 1.a, 1.b classified wrong:

C*1 2 claim that M+5 is not divisible by 10 because there is no factor '2' within
M+5;

C*3 5 write `no' without any explanation;

C*4 2 give no answer.

Question 1.d
Only 7 students provide a correct answer to 1.d. 5 of them correctly answer to all
of the questions of problem 1, and all explain their answer by means of additive
properties of of N ("at least one number of the form 8+8+... must lie between M
and M+10"). The remaining 2 students correctly answer to l.a and 1.b but not to
l.c because they perform some computation uncorrectly. 21 students do not answer
to question 1.d. Only 11 students provide wrong answers to this question. The
wrong answers are the following.

D1 4 students provide answers like "Of course it exists! Each of the numbers M,
M+1, M+2, M+10 fulfils the condition. But these numbers are not
necessarily divisible by 8." Most likely they interpret the question as two
different questions to be fulfilled separately.

D2 1 student writes: "M+x must be a multiple of 8. Thus it must be M+x = 8.M.
But this equation has no solution, and there is no x like this."

D3 1 student interprets '8 is a divisor of x' as '8 is divisible by x'.

D4 1 student interprets '8 is a divisor of x' as '8=x'.

D5 2 students claim that "There is no factor 8 within any of these numbers." All
of them give correct answers to l.a, 1.b, l.c.

D6 2 students try to compute the number required. They take away M from both
sides, search for an integer x, 121x10, such that 8 is a divisor of x and find
that it must be 8. Since M+8 is not divisible by 8, they conclude that the
problem has no solution."

Problem 2
17 students give a correct answer to problem 2, and 5 students do not answer at all.
All the correct answers consist in the presentation of one or more counterexamples.
Some wrong answers are listed below.
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El 10 students base their answers on wrong interpretations of the ideas of
function and of injective function; among them there are all the 4 students
with a correct answer to 1.c and a wrong one to 2.

E2 5 studerits claim that 5m25" = 5'25Y because of the uniqueness of
decomposition into factors; all of them have given a wrong answer to 1.c.

E3 2 students claim that from 51'25" = 5'25Y or even m+2n = x+2y follows m=x
and n=y.

Problem 3
18 students give a correct answer to 3a, 20 to 3b and 13 to both questions. In other
words 12 students correctly answer just to one of the questions, and 14 to none. It is
remarkable that all students give some answer. The correct answers are generally
based to the computation of gcd(3m,5) and gcd(10,2n) as functions of m or n and a
careful analysis by cases. A large number of different wrong answers has been
found, as listed below.

Fl 2 students introduce the corresponding linear congruences (i.e. 3mx+5y=m
and 10x+2ny=n) and try to solve them as they were within a field.

F2 2 students replace 'a divides b' with 'a.c_b and b=ak for some integer k' and
then use only the first clause (`a...b').

F3 5 students claim that m must be a multiple of 5 (question a) or n must be a
multiple of 10 (question b).

F4 6 students claim that m must not be a multiple of 5 (question a) or n must not
be a multiple of 10 (question b).

F5 5 students compute gcd(3m,5) or gcd(10,2n) uncorrectly (in particular 2
disregard the occurrences of m, n).

F6 3 students consider only m = 1, 3, 5 for (a) and n = 1, 2, 5, 10 for (b).
F7 1 student, answering to question a, claims that "If 5 divides m, then the gcd is

5 and there is no solution, because 5 is not a factor of m".
F8 3 students find only a finite set of values of m, n satisfying the relation (but

not all of them).

5. Discussion
The sequence of questions a, b, c, d of problem 1 seem to provide a reasonable
classification of students' skills, since students failing to answer to a question
generally (with 2 exceptions) do not solve the subsequent ones. Only the weakest
students give a wrong answer to 1.a and 1.b. Their mathematical competence is
very poor and they seem unable to use words to express even elementary
mathematical ideas an relationships. The answers to 1.c are remarkable. Students'
need for actually recognizing the factors 2 and 5 within the representation of M+5
seem to affect their strategies very much. Students providing a correct answer try
to make explicit these factor even when unnecessary. among the others, 7 explicitly
claim that there is no factor 2 within M+5, and even those answering "no" with no
explanation most likely have been dealing with the same obstacle. The answer 'no'
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with no explanation is more popular among students providing a wrong answer to
1.a and 1.b, whereas a number of the students giving a correct answer to 1.a, 1.b
(but not to 1.c) try to find out some factor '2' but cannot carry out the computations
correctly. It is reasonable to think that their correct answers to 1.a, 1.b were based
on actions, in turn based on some rule they have learnt but they cannot relate to
other number properties (e.g., properties relating addition with divisibility).

Question 1.d has troubled students more than one could expect. The lack of an
algorithm they have already learnt has induced a good number of them to provide
no answer at all. Some of the errors are concerned with language (D1-D4). The
position of 'x' within the second clause of the condition given may have deceived
the students answering "Of course it exists! . . . " ( D 1 ) . Maybe the question would
have been easier had I written "... and x is a multiple of 8", for students'
interpretation of the condition is focused on x, and they expect to find it as the
subject of the sentence. Answers like D2 and D4 might be related to the difficulty of
translating relationships represented in words into algebraic formulas. Errors like
these have been studied in detail by Bloedy-Vinner (1996). Other errors (D5, D6)
are caused by action-based interpretations of divisibility, which regard divisibility
as the material recognition of the factor 8 within the given presentation of the
number x and thus the effective construction of a number like that. I do not yet
know the final results, but I guess that students giving a correct answer to 1.d will
prove the top group of the class.

A good number of wrong answers to 2 are caused by an inadequate understanding
of the idea of function (El). A detailed analysis of the errors of this kind, though
interesting, is beyond the scope of this paper. The wrong answer E2 is remarkable
because it implies the material recognition of the factor without semantical control
(they apply uniqueness of decomposition as if the factors were prime); the fact that
all of the students choosing E2 give a wrong answer to 1.c confirms this
interpretation.

All of the students provide some sort of answer to problem 3. There is a wide range
of wrong answers to this problem. Beyond 'opefationaf answers like Fl or answers
seemingly depending on the search for a material occurrence of 5 within m (maybe
F7), there is a number of errors related to algebraic language. Someone finds
difficult to represent divisibility (F2); a discussion on this aspect can be found in
Ferrari (1996, p.349). Others cannot handle the algebraic expressions involved.
Answers F3, F4 may point at some trouble with impredicative relations with a
double occurrence of the parameter. Maybe some students cannot coordinate the
evaluation of 2 parameters at the same time. Someone focuses on the first
expression (F4): if m is not a multiple of 5, the gcd is 1 and the relation is satisfied
with no need for taking into account the expression on the right. In the same way
others focus on the second expression (F3): if m is a multiple of 5 the relation is
satisfied anyway. In both cases they find sufficient conditions that are by no means
necessary. Even answers F5, F6 could be related to a poor command on algebraic
language, mainly caused by impredicativity.
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In general, a number of wrong answers to problem I seem to imply a sort of
`negation by failure': if the technique they have been taught and that usually gives
an answer 'yes' cannot be applied, or does not work, then the answer is `no'. This
happens, for example, with almost all the negative answers to 1.c (C1, C*1, most
likely C3 and C*3 and maybe C2) and with D1, D5, D6. Another example of a
behavior like this is given in Ferrari (1996, p.348), with the distinction between
subjective and objective interpretations of uniqueness. This seem to point out that
students' knowledge is quite unstable: if the methods they have been taught or they
are used to use do not work, they immediately are at a loss and cannot analyze the
problem situation any more. This interpretation is strengthened by the fact that all
students give some answer to problem 3, and 34 out of 39 give some answer to
problem 2, whereas only 18 give an answer to 1.d. Problems 2 and 3 are typical
algebra problems the student can recognize as the tasks they are required to deal
with, and are related to contents and methods they have been taught, even if not
elementary, or easy to understand. Question 1.d involves ideas that are quite
elementary but it is not a typical school problem and is not related to methods they
have been taught. There is a lot of problems which involve primary school concepts
and require relatively simple methods but result difficult even to graduates in
mathematics. Conversely, there are problems that involve seemingly advanced
concepts and methods but require very little as regards modelization and problem
solving, as they allow students to perform action-based strategies which do not
imply any semantical control at all.
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Tacit Mechanisms of Combinatorial Intuitions

Efraim Fischbein and Aline Grossman
School of Education, Tel Aviv University, Israel

Abstract

The problem which inspired the present research referred to the
relationships between schemata and intuitions. Schemata are defined following the
Piagetian line of thought, as programs of processing information and controlling
adaptive reactions. Intuitions are defined as self-evident, global, immediate
cognitions.

Our main hypothesis was that intuitions are generally based on certain
structural schemata. In the present research this hypothesis was checked with
regard to intuitive solutions of combinatorial problems.

Intuitions and Schemata

The main theoretical problem which inspired the present research refers to
the relationships between intuitions and schemata.

An intuition is a cognition characterized by self-evidence, immediacy,
globality, coerciveness and extrapolativeness (see Fischbein, 1987). In the present
text, the term intuition has been used especially as a global, direct, relatively self-
evident evaluation in contrast to a solution based on an explicit computation.

The concept of schema has, in the psychological literature, various meanings.
In the present text it will be used as a program (roughly analogous to a computer
program) aimed to interpret a certain amount of information and to prepare and
control the corresponding reaction.

(For a larger analysis of the concept of schema and for more references, see the
book of Howard, 1987; see also: Anderson, 1977, Attneave, 1957, Fischbein, 1978,
Flavell, 1963, Hastie, 1981, Piaget, 1976, Rumelhart, 1980.) For instance, suppose
one is asked to evaluate the number of groups which can be produced by changing
the order of, let's say, five different objects (for instance, letters: a, b, c, d, e).
One may try to evaluate intuitively (a global guess) or one may try to use a certain
procedure, a schema for calculating (or producing) the number of groups.

The question addressed by us has been the following: An apparently
spontaneous reaction (an intuitive cognition) is genuinely spontaneous or it is
influenced, shaped by a kind of schema, expressed in a tacit computation? If such a
tacit elaboration exists, what is its relationship with the correct, mathematical
procedure (schema)?

It is necessary, at this point, to introduce a distinction which is, in our
opinion, epistemologically important. There are general schemata which have a

2 265 r,
a



basic, structuring role: and there are more content-bound, particular schemata
with a more restricted impact.

For the first category, let us mention the schemata of classification, seriation,
bijection, the concepts of measure and unit, number, the concepts of deterministic
relationships and randomness, the concepts of proportion, probability, correlation
and combinatorial operations, the concepts of formal vs. empirical proof, etc.

With regard to the second category every concept with a specific meaning
(triangle, chair, pencil, etc.), every reflex, every mathematical or scientific
formula etc., represent preconditions for identifying an object or performing a
certain operation. They are specific schemata.

As a matter of fact, one may consider, tentatively, that schemata are
organized in hierarchies from very general ones to specific, content-bound ones.

The basic hypothesis of the present research was that, indeed, intuitions are,
generally based on tacit, sequential structures.

Combinatorial Intuitions

In the research exposed in the present paper, our attention is focused on
combinatorial problems.

Our interest in devising the present research was both theoretical and
didactical. The theoretical interest is obvious. Both schemata and intuitive
cognitions are of high theoretical importance. In both categories, one deals,
generally, with stable, well structured, well integrated, highly influential mental-
behavioral structures. What are the relationships between them?

On the other hand, combinatorics is, per se, an important chapter in
mathematics and its relevance to various branches of mathematics is well known.
Moreover, combinatorial capabilities constitute, according to Piaget and Inhelder,
one of the basic schemata, reaching maturity during the formal operational stage.
The propositional nature of formal reasoning is based on the combinatorial
capability of the adolescent (see Inhelder & Piaget, 1958). (For an updated review
of the literature concerning combinatorics, see the excellent work of Batanero,
Godino & Navarro-Pelayo [1994]. It analyses the area of combinatorics from the
mathematical, the psychological and the didactical points of view.) (See also:
Deguire, 1991; English, 1994; Fischbein & Gazit, 1988; Fischbein et al., 1970;
Inhelder & Piaget, 1958.)

Up to now, combinatorial intuitions were not analyzed specifically. The
existing investigations refer either to the evolution with age of the combinatorial
capacities of the child (expressed in the capacity to produce various subsets of
elements from a given set of n elements) according to a certain definition; or to the
techniques of teaching and learning combinatorics.
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Methodology

Subjects:

a) Three groups of pupils enrolled in the following classes: grade 7 (N = 63),
grade 9 (N = 62), and grade 11 (N = 62). b) Students enrolled in teachers colleges
(N = 41). c) Adults with various mathematical backgrounds (N = 25). These
adults were people with low mathematical education, enrolled in a course in
mathematical literacy. None of the subjects had formerly attended any course in
combinatorics.

Instruments:

A questionnaire was administered containing various combinatorial
problems: Permutations, arrangements with and without replacements,
combinations.

The subjects were asked to estimate, globally, the number of possible groups
of elements which could be produced with a given set of elements according to a
certain procedure.

After the subjects answered in writing, interviews were organized by which
the same subjects were asked to explain their solutions. Twenty-five subjects were
interviewed.

Procedure:

The session started with a general explanation with regard to combinatorial
operations. After that introduction, the questionnaire was administered and the
subjects were asked to estimate the numbers corresponding to the respective
combinatorial problem. Orally, one has insisted that the subjects have only to
estimate the answers (not to compute). The questionnaire was administered in usual
classroom conditions. The subjects were allowed about 45 minutes to complete the
questionnaire.

The interviews asking the subjects to justify their evaluations were organized
some days after the questionnaire had been administered.

The following categories of problems were presented:

1) Permutations of 3, 4, 5 elements (Pn=n!)

2) Arrangements with replacement of 3,4,5 elements taken two by two (A", =

3) Arrangements without replacement of 3, 4, 5 elements taken two by two.

= n(n 1) (n 2) ... (n k+ 1)=
(n k)!

4) Combinations of 3, 4, 5 elements taken two by two
n(n 1)(n 2) ... (n k + I) n!

1,2,3, ... k 10(n k)!
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Results

The averages of estimations for each type of problem are presented in Tables
1, 2, 3 and 4.

With regard to permutations, one may observe the following - for 3 elements
the estimations are close to the correct answer. For 4 and 5 elements the global
tendency is to underestimate the number of permutations.

With regard to estimations of the number of arrangements with replacement,
the results remain close to the correct answers with a slight tendency to
overestimate for 5 elements in older subjects.

With regard to arrangements without replacement, there is a general
tendency to overestimate (about 20%) for every group of elements and of all age
levels.

Table 1: Permutations. Averages of Estimations and Standard Deviations

3 Elements 4 Elements 5 Elements
Mean SD Mean SD Mean SD

Grade 7 5.82 0.77 14.79 5.80 35.47 31.01
Grade 9 6.92 2.65 16.80 11.80 44.60 29.50
Grade 11 8.09 6.02 26.41 15.40 37.10 35.60
College students 7.55 4.76 18.40 12.00 63.60 27.00
Adults 5.96 0.20 19.60 7.16 64.70 28.90
General Mean 6.97 19.27 48.45
Correct Solutions 6 24 120

Table 2: Arrangements with Replacement (k elements taken by 2): Means and Standard Deviations

3 Elements 4 Elements 5 Elements

Mean SD Mean SD Mean SD
Grade 7 6.55 1.77 12.80 2.80 20.00 4.80
Grade 9 8.90 4.54 16.50 7.09 30.40 19.80
Grade 11 12.04 7.30 18.60 12.50 29.40 20.50
College students 7.82 2.13 16.92 8.90 40.50 52.30
Adults 8.80 3.25 14.60 5.30 25.30 11.13
General Mean 8.95 16.05 28.79
Correct Solutions 9 16 25

Table 3: Arrangements without Replacement. Means and Standard Deviations

3 Elements 4 Elements 5 Elements
Mean SD Mean SD Mean SD

Grade 7 7.28 3.04 14.70 3.88 22.30 3.18
Grade 9 6.00 2.30 12.90 3.70 22.30 6.15
Grade 11 9.53 10.20 16.90 18.90 29.80 32.30
College students 7.97 2.80 16.48 7.17 30.36 32.60
Adults 5.84 2.81 10.28 4.30 18.72 6.96
General Mean 7.48 14.67 25.10
Correct Solutions 6 12 20
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Table 4: Combinations. Means and Standard Deviations

3 Elements 4 Elements 5 Elements
Mean SD Mean SD Mean SD

Grade 7 3.46 11.24 6.22 3.09 8.13 3.56
Grade 9 3.69 1.70 6.92 3.98 9.71 5.75
Grade 11 8.01 7.30 15.38 12.80 28.30 30.01
College students 4.31 2.30 10.87 10.60 16.70 25.96
Adults 3.24 1.09 5.68 1.90 8.28 2.54
General Mean 4.74 9.33 14.91
Correct Solutions 3 6 10

Finally, with regard to combinations, there is a still stronger overestimation
(of about 50%) when referring to the global means though, in fact, the
overestimations increase with age.

From these raw data we learn very little about the mechanisms of the
respective intuitions. But let us turn to the interviews. The basic remark is that
most of the subjects try to justify their estimations (that is a posteriori) by
indicating one of the possible binary operations with the given numbers.

For permutations of 3 elements one has got, usually, the answer: 3x2 (which,
by chance, yields the correct answer). For 4 elements one has got the following
variants: 4x4, 42, 3x4 and 24. For 5 elements, similar multiplications have been
obtained: that is 5x5, 25, 4.5, 52.

But the same binary multiplications in various proportions -- were
obtained when asking the subjects to estimate the number of selections for
arrangements with and without replications and for combinations! It is important
to emphasize that the explanations given by the subjects to their guesses were
usually, in accordance with their "spontaneous" reactions.

Nevertheless the means of the estimations are different for the different
combinatorial problems. Moreover. when analyzing the averages of the
estimations, one finds that the relationships of their magnitudes follow
approximately the relationships between the correct solutions.

That is, considering the estimations (e): One has el3r, > eA2 with replacement
> eA3 without replacement > eC2 (see Figure 1).

In other terms, the intuitive guesses are, on one hand, based on some binary
multiplicative operations (which by themselves, are not related to the correct
formulae) and on the other hand, their magnitudes are influenced by what should
be the correct answers. Let us try to summarize what has been said so far and may
cast a light on the relationships between schemata and intuitions.

The intuitive guesses are not wild guesses. In combinatorial problems, the global
estimations express, generally, multiplicative operations which corresponds to
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the fact that combinatorial reasoning is really of a multiplicative type of
reasoning.

The multiplications invoked in subsequent interviews are always binary
operations though in most cases, the correct answers consist in more complex
operations (for instance, Pn=1, 2. 3, ...n). This finding leads us to the conclusion
that intuitions: a) originate in some schemata (which in the present case are
computational), and b) these schemata undergo a process of compression,
yielding the appearance of a global, immediate guess (see Thurston, 1990). This
process of compression seems to be essential for the transition from schemata to
intuitions.

A similar finding has been described by Tversky and Kahneman. Two groups
of high school students were given 5 seconds to estimate the result of a
multiplicative operation. The first group had to estimate the product 8 x 7 x 6 x
5 x 4 x3 x 2 x 1 and the second aroup had to estimate the product lx 2 x 3 x 4
x 5 x 6 x 7 x 8. The correct answer is 40320, but for the first group the median
estimate was 2250 while for the second aroup it was 512. The order of
magnitude of the respective estimates has been determined by magnitudes of the
first numbers of the products presented (the anchoring bias) (Tversky and
Kahneman, 1982, p. 15). As a matter of fact we deal here with a similar type of
compression process as described above with regard to combinatorial
estimations.

The computational schemata do not seem to be the only source of the respective
intuition. A second adaptive-corrective process seems to take place originating
in a further tacit consideration of the conditions of the problem involved. For
instance, when passing from arrangements without replacement to combinations,
a division intervenes:

n(n 1)(n 2)...(n ;J: + I))

k!

The subject seems to interiorize, tacitly, the meaning of the instruction: "...
in combinations, the selections do not depend on the order of the elements", (and,
consequently, there are fewer possible combinations than arrangements without
replacement).

It seems then that the impact of structural and specific schemata in shaping
intuitions (which are sometimes not adequate) may be favorably counterbalanced by
further information originating in the objective given conditions. We face here a
tacit, complex process, the details of which we do not know yet.

Didactical Recommendations

We suggest to use the following steps in teaching the various combinatorial
solving procedures:
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To start by asking the students to estimate without explicit computation the
number of possible selections.

To resort to explicit systematic procedures (for instance, tree diagrams) and to
set up the corresponding formulae;

To contrast the computational results with the initial estimation and to try to
explain the process by which the initial guess has been obtained (under-and-over
estimations)

We assume that this way, one may increase both the interest and the
understanding of the students for combinatorial problems.
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SHADOWS ON PROOF

Fulvia Furinghetti* Domingo Paola**
*Dipartimento di Matematica dell'Universita di Genova. Italy

**Liceo scientifico 'Giordano Bruno' di Albenga. Italy

ABSTRACT. In this paper we refer to an experiment in which students of the age range
14-17 have to proof a statement on natural numbers, writing all their thoughts while
they are working on this task. We perform a kind of 'genetic decomposition' of the
statement and single out some parameters, on which we base the analysis of the
students' protocols. The main schemes found in students' proofs are the authoritarian,
the empirical, the ritual and the symbolic. We study the relations of these proof
schemes with the context chosen by the students to prove. Some students' behaviours
allow to single out elements suggesting the influence of the algebraic or arithmetic
contexts on proving this type of statement: we call it algebraic or arithmetic shadow
effect.

INTRODUCTION

One of the issues that we try to develop in our research on proof is the idea that proof
is not context-free, that is to say that the context has a strong conditioning role in the
students' performances on proving. For example, in a recent study, (Furinghetti &
Paola, to appear), we have presented to students questions having the same formal
structure, but set in different contexts and treated with different languages
(mathematical context with the mathematical language, situations related to usual life
with the natural language). The result of this experiment has been that the students'
performances differ according to the context, since the meaning of the field in which
the tasks are set acts as an element of diversion in proving; we call this phenomenon

semantic shadow effect». In other occasions, see for example (Furinghetti & Paola,
1991), we have worked at the interior of mathematics, and we have found different
performances according that the context was algebra or geometry, even if the
statements presented to students had the same formal structure. In this paper we have
considered the students' performances in proving a statement concerning natural
numbers. The choice of this context was motivated by the fact that the students work
in it from their early days in school and thus we thought that this context would have
resulted particularly 'friendly' for them.
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METHODOLOGY

As a first step we have carried out an in-service teacher training course on proof
consisting of a part on theoretical topics (including elements of logic) and a part on
educational issues. Participants teachers were asked to answer a questionnaire on their
conception of proof. Their answers would have been the starting point for a
discussion on the re-shaping of their style on teaching this topic. After this work we
have invited the teachers to collaborate to our research putting their classes to our
disposal. Three teachers have agreed; the fact that they were aware of the educational
problems underlying proof and that they were motivated by the previous activities
makes us confident that they would have observed the instructions we gave. We were
lucky since the three teachers teach in four classes which differs for the ages of
students (Teacher A: one class of students aged 14, Teacher B: one class of students
aged 15, Teacher C: one class of students aged 16 and one 17) and for the types of
curricula (with more or with less emphasis on mathematics).

The study consisted in analysing how the students solve the following exercise:
«Prove that the product of any three consecutive natural numbers is divisible by 6».
Students were asked to write all their attempts and thoughts. Our analysis has been
performed on their protocols.

The instructions to the teachers were:
- to report the time emploied
- to not help or influence the students
- to push them to write all the things they were thinking in solving the exercise
- to make students aware of which project they were part and to encourage them to an
active collaboration with the researchers; this awareness of students was promoted
also to prevent them from being lazy or cheating the teacher by cribbing from a
school-mate, since this would have polluted the experiment.

We succeeded quite completely in all these points. We have also asked to the teachers
to make a prevision on the students performances. All the teachers agreed that the
exercise was within the capacity of their students and no one considered that it would
be difficult to deal with the technical issues of the exercise such as the interpretation
of the terms involved in the statement (natural, divisible, consecutive). In the
following we give some brief information.

Teacher A. His students (class A) are aged 14. The school where he teaches has a
strong mathematical curriculum; in algebra, among other topics, he develops
modular arithmetics with the remainders classes. He feels that his good students will
be able to prove the statement through the remainders classes. He does not takes into
consideration the exploration through less formal ways.
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Teacher B. Her students (class B) are aged 15. The school where she teaches is
oriented to give a good mastery of foreign languages; the mathematics program is in
line with the recent curriculum changes in Italy, but mathematics is not an important
subject. She thinks that her students will start with examples and afterwards will
generalize. Many students will look for some formulas. The greatest difficulty will be
to formalize the intuition in a logically correct sequence of statements. She feels that
some students will make many examples with the aim of finding counterexamples
which prove that the product of any three consecutive natural numbers is not divisible
by 6.

Teacher C. Her students are aged 16 (class C I) and 17 (class C 11). The school where
she teaches is aimed at preparing the students in economical disciplines. The
mathematics programs is rather innovative; the students learn also to program at the
computer in the mathematics course. She thinks that few students will work on
numerical examples; the majority will look for a formalization and will attempt to
manipulate the expressions (n - 1)n(n + 1) or n(n + 1)(n + 2). Some students will
argument in a quite descriptive way.

ANALYSIS OF THE RESULTS

To analyse the protocols we put us in a perspective similar to that of the 'genetic
decomposition' presented in (Dubinsky, 1991), that is to say we analyse the exercise
proposed to students in order to isolate its main conceptual or procedural components
and the relations among them. As a result we have single out the following parameters
which we shall use as a basis for studying the protocols.

algebraic language (even if in a poor form) is used or is not used
which kind of use of algebra is prevailing, in particular how the letters are used
mastery of the concepts specific to the problem (divisibility, multiples)
role of numerical examples
algebraic or analgebraic thinking, with particular reference to the interpretation of

algebraic expressions
use of some kind of iconic language
use of quantifiers
proof schemes followed by students

We observe that some parameters mainly concerns algebra, others are more specific
of the process of proof, even if we shall see that the distinction is not so clean. At the
interior of algebra we distinguish between pure manipulative issues and issues linked
to the mastery of critical concepts, such as variables and quantifiers.

According to this classification we have singled out general factors concerning all the
classes A, B, C I and C H pointing out differences and analogies. Afterwards we have
analysed more in details the behayiours of the class C II to have more precise
elements.
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The type of the present research does not imply a quantitative analysis of the
numerical data; we only give some general figures which provide a first overview of
the situation.

To make clear the figures in the table we note that:
- The sum of the numbers of the students who use algebra or not is in general greater
that the number of the answering students since some student use both the languages
adopting a sort of syncopated-like language.

The data of the class C I have a meaning different from that of the others: the teacher
has made a mistake in giving the text of the exercise, putting the number 2 instead of
3, so that the text has became <Trove that the product of any two consecutive natural
numbers is divisible by 6», which is an impossible task. We shall see that also in this
case interesting behaviours emerged.

Not in all the classes to solve the exercise was a compulsory task, nevertheless the
third column of the table shows that students participate with good will; this fact is
confirmed by the care employed in working on the exercise.

Classes
`

Students'
ape

Students
answering

Algebraic
language

Natural
language

Iconic
language

Right
answers

Maths
program

A 14 19 of 19 10 12 0 7 strong

B 15 11 of 16 11 0 0 weak

C I* 16 24 of 24 7 17 0 6 medium

CII 17 18 of 18 6 13 0 2 medium

One of the characteristics of this exercise is that it can be easily developed through the
natural language by activating the frame of divisibility or of multiples. On the
contrary, if the statement is translated into an algebraic expression, the attempts of
manipulation may bring to a cul de sac. For this reason we have taken as a first
parameter to consider the use or non use of the algebraic language. In the classes A
and B the literal computation is a topic of the program; in particular in the class B the
teacher focus on it (this is a quite common behaviour in the Italian tradition). The
students of the classes C I and C H have left the study of algebra (literal computation
and so on) since one or two years respectively. It is likely that the relatively high
percentage of right answers in the class A is due to the fact that here the classes of
remainders are part of the program developed: the protocols show that students
understand the text and are able to activate a frame suitable to solve the problem.

In the class B all the students use the algebraic language. No one in the class B
produces right answers. The protocols show that there is a lack of control in algebra
which provokes a loss of control in proving. The students of class B are also victims
of what in (Furinghetti & Paola, 1991) is called «irresistible impulse to calculate»,
that is to say they transform literal expressions and solve equations without any
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precise purpose linked to the task. The proof scheme adopted, according to the
classification in (Harel & Sowder, 1996a and b), is the ritual, since from the analysis
of the protocols it emerges that students think that the justification has to be
communicated via symbolic expressions or computations. In this case the ritual is
combined with the symbolic proof scheme, since symbols are used «as if they possess
a life of their own without reference to their possible functional or quantitative
relations to the situation» (ibidem, p.61).

In the cases A and B it is not clear how much the students' behaviours are induced also
by the authoritarian scheme. According to (ibidem, p.60) this scheme is present when
« students are not concerned with the question of the burden of proof, and their main
source of conviction is a statement given in a textbook, uttered by a teacher, or
offered by a knowledgeable classmateo. This scheme has been clearly evidenced in the
class C I, thanks to the mistake made by the teacher in giving the text of the problem
(see above). We are aware that the form of the text of the exercise «Prove that ...»
was more commanding than the form «Is the product of two consecutive natural
numbers divisible by 6?», thus it strongly pushes students towards the acceptation of
the statement as surely true. Nevertheless the weight of the authoritarian scheme in
conditioning the students behaviour is evident since among the 13 students who find
counterexamples only 6 recognize that the statement proposed by the teacher is not
true, while 7 try to forget it. In these last students the authoritarian proof scheme
prevails on evidence. A confirmation of the fact that the authoritarian scheme
conditions the students' performances is provided by Sara. She produces 6 examples
which satisfies the statement and writes «The product of two numbers must [emphasis
is our] give a multiple of 60. In this case the presence of the authoritarian scheme is
unaware, in other cases is aware. For example, Alessandra writes: «- Natural
numbers are the positive numbers. - Consecutive means one after the other. - The
product is the result of a multiplication. Then I must prove that the result of the
multiplication of two numbers, for example 3 and 4, is divisible by 6. ...I have
understood the statement, but I'm not able to prove it». The analysis of the given
statement performed by expressing the definition of the terms intervening in it with
her own words is due to the doubt on the possibility to solve problem.

We can label this students' behaviour in class C I as the schizophrenia caused by the
acceptation of the existence of two separate worlds - the world of the teacher and their
own world which have not necessarily points of contacts or at least analogies.

As we have observed in the case of the wrong text, also in the right text the form of
the exercise («Prove ...» instead of «Is ...?») pushes students towards argumentation
rather than conjecturing; this fact conditions the way they worked. Nevertheless we
were expecting from the protocols to find some forms of iconic representation: in all
the classes no one has used it. We are referring to the representation of the numerical
rule, to the use of numbers patterns as in the primary school, to arrows for
connecting formulas, to tables for connecting the various examples and so on ... Our
findings are in accordance with some aspects emphasized in educational research
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(Healy & Hoy les, 1996; Presmeg & Bergsten, 1995). This avoidance of the graphical
language could be linked to the premature use of the algebraic language and of the
formalization. This hypothesis comes from the results in (Dutto, 1996), where we
find that students aged 11-13 use different iconic representations, when solving our
problem and other similar.

ZOOM ON THE RESULTS OF THE CLASS C II

This class seems a good set for general considerations. While in the other classes the
role of algebra (especially literal computation) could have been too much
conditioning since it is the main part of the program, here students have left the study
of algebra (literal computation and so on) since two years. Nevertheless they are
working in topics (functions, programming with computer) which can add
motivations to the algebra they have done before. For example, they have had the
occasion to consider the concept of variable from different points of view. From the
analysis of the protocols some facts emerge that we outline in the following.

As observed in (Bloedy-Vinner, 1994; Furinghetti & Paola, 1994) one of the main
problems in algebra concerns the use of quantifiers. For example, Erik writes the
formula 6n = n(n + 1)(n + 2), ascribing the same status to the letter n on the left and
on the right of the sign Here there is a lack of command in using the quantifiers: the
student ignores that the right formulation would be oFor any natural number n a
natural number k exists such that n(n + 1)(n + 2) = 6k».

We have found an empirical proof scheme, see (Harel & Sowder, 1996), based on
the use of examples and confined to a level of pre-generalization. Myriam verifies the
statement in a single case and writes oIt works! ...But it could be by chance. Perhaps I
have to try again with 5 or 6 numbers». In some cases the stage of pre-generalization
is really naive: for example, Maura checks the property expressed in the statement
through 'little' numbers (3, 4, 5) and through 'big' numbers (1001, 1002, 1003),
ascribing a property of generalization to these last ones.

The empirical proof scheme is present only when the natural language is used. The
students who start writing the expression n(n + 1)(n + 2) do not produce examples.
This fact suggests that they do not interpret this expression as a function producing
numerical values, as it was observed in (Bloedy-Vinner, 1995). This explains why we
do not find the empirical proof scheme in protocols where the algebraic language is
used.

The use of letters is not necessarily evidence of an algebraic mode of thinking: in
some cases we observe that letters are used as mere labels. For example, Silvia writes

2 3 /6 = 6/6 = 1» and just after oa(a + 1)(a + 2) /(a + 5)» to indicate that the
product of three consecutive natural numbers is divisible for 6: clearly here a is a
label for the value 1. On the contrary Matteo (one of the two good solvers), after
having proved the statement, writes the expression
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3,0.11.11

It seems that he uses the number in more general terms than the Silvia does with
letters.

There are only two students who solve rightly (Matteo and Mario). Matteo proves
using the natural language, by activating the frame of divisibility evoked with the
sentence «In the product of three consecutive natural numbers one is always divisible
for 2, one for 3 and one for 1». He uses the formula n(n + 1)(n + 2) only for
synthesizing the thesis and afterwards he gives the example quoted above which seems
to have a didactic function. Mario uses five examples for exploring the situation
presented in the given statement and after it grasps that «Given three consecutive
natural numbers one is even and one is divisible by three». At this point he gives his
proof and after verifies the truth of the statement on an example which has a didactic
purpose. The fact that in both the cases the examples are given after the proof with a
didactic function suggests that the students consider examples as a privileged means
for communicating.

In spite of the teacher's expectation (see the chapter Methodology) not all the
students showed a sufficient command on the terms appearing in the given statement.
The bête noire was the word odivisible», some problems were given also by the zero
(if it has to be considered belonging to natural numbers) and to the nature of natural
numbers (are the negative integers natural numbers?). This makes our initial
hypothesis on the property of natural numbers to be a friendly context too much
optimistic.

The comparison of the expectations expressed by the three teachers and our findings
would be an interesting starting point for discussing the didactic contract. For
example, the students considered good by the teacher C used algebraic formalism and
were not able to answer.

CONCLUSIONS

In all the classes the simple problem from which we started revealed itself a Pandora's
vase of issues on students' behaviours both in proving and in doing algebra.

As for proof the most adopted is the empirical proof scheme. It is our opinion that
this fact is strongly dependent on the arithmetic context. We have also observed the
presence of ritual, symbolic and authoritarian proof schemes in students who used the
algebraic language. The authoritarian proof scheme seems to be induced by the kind
of didactic contract between the teacher and the students. The ritual and the symbolic
seem more related to the specificity of the algebraic context that the students have
chosen. We feel that algebra may hide the necessity to be convinced and students are
strongly pushed towards the ritual scheme. The perception that they have of algebra
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as a meaningless domain of symbols confirms their conviction that only a symbolic
way is what the teachers is expecting from them.

The orientation towards formalism has not as a counterpart a good command in
dealing with the tools of algebra. We have observed the poor use of quantifiers, but
also of other basic tools such as variables (or parameters): the letters are often used
only as stenographic signs.

Our exercise shows a double shadow effect on proof. From one hand we observe an
algebraic shadow effect on the meaning that some students would have from
arithmetic which prevents from using it in their attempts of proving. On the other
hand there is also an arithmetic shadow effect which confine students to the empirical
proof scheme and prevent them from generalizing.
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Perpendicular Lines - What Is The Problem?
Pre-Service Teachers' Lack of Knowledge on How to Cone With Students' Difficulties

Hagar Gal The David Yellin Teachers College, Israel
Shlomo Vinner The Hebrew University of Jerusalem

This paper deals with difficulties experienced by students in understanding the
concept of perpendicular lines, and difficulties encountered by teachers when trying to
explain it. We shall fly to suggest a theoretical framework.
This is part of an ongoing research in which an attempt is made to identify students'
and teachers' difficulties in geometry, to suggest an explanation based on cognitive
theories and research, and subsequently to provide teachers with the relevant
cognitive knowledge, recommended by the paradigm of Cognitively Guided
Instruction (Carpenter & Fennema, 1992).

Background. Romberg & Carpenter (1986) pointed out two distinct disciplines of
scientific inquiry: research on children's thinking and research on teaching. Carpenter
& Fennema (1988, 1992) present a model for integrating cognitive and educational
sciences (Cognitively Guided Instruction), in order to plan a more effective teaching
program in mathematics. They suggest a program designed to help teachers understand
children's thinking and use this knowledge to make instructional decisions.
Following these ideas, we are trying to detect and point out problems in geometry
instruction; we then analyze them and attempt to provide an explanation for the
difficulty which takes into account cognitive knowledge concerning perception,
thinking and problem-solving strategies. In this paper we deal with the subject of
perpendicular lines.

Methodology. Difficulties encountered by students and teachers were detected and
identified by monitoring the work of pre-service teachers in their third year of studies.
The monitoring process included reading their lesson outlines, videotaping their
geometry lessons to 9th graders (slow learners), and interviewing the (pre-service)
teacher after the lesson. The interview focused on an attempt to examine and
comprehend difficulties which came up in the lesson.
In the next stage, an effort was made to understand the roots of these difficulties,
analyzing them on the basis of cognitive theories and research. In light of the analysis,
we examined the teacher's reaction to the difficulties and the degree of its
effectiveness. This paper will specifically address the concept of perpendicular lines.

Analysis and Discussion. Let us first consider the following interview which was
made by the researcher (R) after a lesson on the rhombus, with two teachers who
taught two different groups of 9th graders:
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Ora: As for perpendiculars, when I ask them a question sucn as wnal Kina aI
angle is supposedly firmed between two lines which run perpendicular to one
another, I am not sure that they know this for real, but they say 90° straight out.
R: So what does this mean? That they know or that they don't?
Ora: When I ask them what are the diagonals which are perpendicular to one
another, what kind of angle is formed between two perpendicular lines, they tell
me: aha 90°, but then they don't know what they have to check, i.e., they don't
know where they need to check this angle that is indeed 90°.
R: What do you mean, they don't know where? They don't know where the 90°
is?
Ora: They don't understand where the angle is drawn, yes, they don't understand
where it is.
Keren: They know that perpendicular lines represent 90° but do not understand
what this means.
Ora: They don't understand where it is.
R: OK, what should be done to make them understand?
Keren: I don't know, I really don't know.

This Interview suggests two difficulties: first, students find it hard to identify the right
angle between two perpendicular lines; second, the term 90° angle may not have a
visual representation and may not be linked to the concept of right angle.
To analyze the difficulties, let us first examine the concept of perpendicularity and the
various elements involved. The textbook or classroom definition is more or less as
follows: "perpendicular lines" are two lines which intersect at a right angle.
This concept includes a number of elements, some of them are explicit and others are
implicit:
I) Two lines (sometimes two segments or one line and one segment)
2) The lines intersect
3) A right angle is formed at the point of intersection
4) There are three more angles at the point of intersection
5) These three other angles are also right angles
6) A right angle is a 90° angle
A student facing this concept should already understand what lines and intersecting
lines are (element I and 2).
The student should also identify a right angle presented in its basic form (i.e., two rays
emanating from a common point). An expected difficulty at this stage is a limited
prototype of a right angle, with the student being able to identify a right angle only if
one of its rays is horizontal.

"a non- right angle " a right angle ( ? ) a right angle

A difficulty of this kind requires some training with the concept of right angles.
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Let us therefore assume that the student can identify some "basic" forms of right angle
(element 3). At this point he or she still faces a nwnber of difficulties:
A. Identification. In a configuration of perpendiculars, he or she must identify the
right angle in its basic form. In other words, the student is required to identify a simple
form within a complex figure (intersecting lines forming 4 angles).
This difficulty can be explained by the Gestalt principles pertaining to the organization
of perception (Anderson, 1995, pp. 44-46). According to the "good continuity"
principle there we tend to identify lines with better continuity than lines with sharp
bends. For example, ask yourself what you see in the following drawing: (figure 1)

A

C

B
B

Figure 1. figure 2.
Most people's reply will be something like: a line AB and a curve CD. Rarely does
one hear an answer such as "curve" AOC and another "curve" DOB. The "good
continuity" principle explains this tendency of ours.
If we look at the other drawing (figure 2), we will find that the same principle leads us
to see two segments, AB and CD, whereas the right angle can only be seen by
perceiving, say, AOCas a distinguished figure, which contradicts the "good
continuity" principle.
Thus, the student who observes two intersecting lines does not necessarily perceive an
angle between them, and in any case does not know where to look for a right angle.
This difficulty came up in the interview.
Let us examine how visual information is processed in the student's mind, once it has
been perceived and recorded in the cognitive system. After receiving visual
information, it is organized unconsciously in units in such a way that each unit
represents a part of the whole structure. Complex shapes are constituted of hierarchical
units (Anderson, 1995, pp. 123-125). The figure + . for example, may be
decomposed into four distinguished sub-figures, where each sub-figure is a segment:

. In this case, identifying an angle pattern within the complex pattern is not trivial
(the student has to compose sub-figures producing an angle, then compare it with the
right-angle pattern in his mind e.g., he might identify an angle 7 . while the pattern of
the right angle in his mind is ). Of course, decomposing the above figure into --IL
or 11 will make the right angle identification easier. But there is yet another barrier:
what if the observed figure was: x ? It would most likely be decomposed into the
following sub-figures: . Will the student be able to identify in this pattern the
previous one of intersecting (perpendicular) lines, tilted by 45°? Devoting time to
concrete examples of right angles and perpendicular lines, using paper cutouts and

29/
2 283



puzzles, and asking the students to transform them in the plane improves flexibility in
dealing with patterns by making them more familiar.
B. Selection. The student has to decide on which of the four angles in front of him to
focus (elements 3, 5). The understanding that if one of them is a right angle then so are
the rest, and that the selection is therefore arbitrary, cannot be taken for granted.
Such an understanding can be considered as "visual understanding" (level 1-
visualization according to van Hiele's theory, e.g., Hoffer, 1983). As preparation, two
perpendicular lines could be presented, where each of the four angles is emphasized in
its turn. Changing the focus from one angle to another and then to the lines and vice
versa may help perceiving the relations between the angles (and between them to the
lines). Such an understanding can also be considered as a level 2- analysis (e.g., by
taking apart and assembling the four right angles to form the perpendiculars with their
four right angles; or by folding paper into four). This analysis involves mental activity
and it is advisable to follow it up with a verbal description.
It may be assumed that when "quickly overviewing" the four angles before him, a
student will check the one "closest" to the image he or she has in his mind of what a
right angle is. "Closest" in what sense? Is the angle's size the criterion, or its
orientation in the plane? How flexible are his mental transformations and do they
enable a comparison between different positions in the plane?
Now, if we return to the problem of "selection" and the need to identify a certain angle
as a right angle, one might assume that the angle selected will be the angle which bears
the greatest resemblance ("resemblance" in one of the meanings mentioned) to the
pattern in the student's mind.
C. Inference. The inference concerning the other three angles (in the configuration of
the perpendicular lines) is not a trivial matter. There are two possibilities here. If the
student knows that all four angles are right angles in case one of them is right angle,
then the other three will be conceived as right angles. Otherwise, the student might fail
to realize that all the other 3 angles are also right angles. (In such a case, if the teacher
talks about an angle other than the one the student has chosen, it should come as no
surprise if the student does not realize that it is a right angle). Moreover, concerning
one angle, failing to recognize a right angle would cause a failure in recognizing
perpendiculars though concerning another one could make the student succeed!
So far, we have dealt with right angles, without relating to its measure. The right angle
is often defined in class as a 90° angle.
This time we have one more difficulty to boot: we do not know what concept image
(Vinner, 1991) the student has of the right angle and whether it coincides with a 90°
angle. The impression from the interview is that the students have heard the notions of
90° and right angle and are aware that they are synonymous. This does not mean that
these terms necessarily have a meaning, and even if they do, it is not necessarily the
same for both. We will use the term "conceptual behavior" (denoting the result of
conceptual thinking processes, dealing with concepts, relations between them, ideas to
which these concepts are related, logical relations, etc.) as opposed to
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"pseudo-conceptual behavior", which might look like conceptual behavior, but which is
brought about by mental processes which do not characterize conceptual behavior
(Vinner, 1997). According to Vinner, in mental processes which lead to conceptual
behavior, words are connected to ideas, whereas in mental processes which lead to
pseudo-conceptual behavior, words are connected to words, without any ideas behind
them.
The interview above demonstrates a pseudo-conceptual behavior. The students deal
with the notions of angles, perpendiculars, 90°, but seem to be unclear about the
relations between them (if any such relations exist in their minds), and ideas linking the
concepts are not known (at least to the teacher). The words "90 degrees" are associated
with "perpendicular lines", but there are probably no ideas behind them, and therefore
the students do not know where to look for the "90 degrees".
Teachers frequently approach right angles "numerically": calculating angles,
ascertaining perpendicularity according to the numerical size of the angle, etc. Weak
students are also capable of solving such assignments. They rely on arithmetical
knowledge, constructing their answers on verbal cues. The real situation will be
exposed when moving on to non-computational problems.
Let us go back now to Ora and Keren. Ora has noticed that the students fail to "find"
the angle (Ora: "They don't understand where the angle is drawn, ... they don't
know where they need to check this angle which is indeed 90"). Nothing of what
she says indicates that she understands the source of the problem. She does not refer to
the difficulty of identifying a simple figure inside a complex one, nor to the tendency to
see lines which form "good continuity". On the other hand, she does seem to define
better the problem underlying the use of the notions 90° and right angle (Ora: "...I am
not sure that they know this for real, but they say 90° straight out...When I ask
them what kind of angle is formed between two perpendicular lines, they tell me: aha
90°, but then they don't know what they have to check"). Keren sensed this too
(Keren: "They know that perpendicular lines represent 90° but do not understand
what this means"). Despite this, they fail to make a further analysis and to
characterize the problem accurately. In any event, they have no idea how to improve
understanding in students! (Keren: "I really don't know").

Another dialogue took place between a (pre-service) teacher (T) and a girl student (S)
during a geometry class for 9th graders (weak group), where students were asked to
examine the properties of a square. The assignment was to check if the diagonals of a
square were perpendicular to one another. In the Hebrew mathematical jargon this is
expressed by the phrase: the diagonals "cut each other" at a right angle. "Cut" in
Hebrew means: divide into two parts, intersect, split! The students were shown the
following drawing of a square with its diagonals.

29
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A

S: (pointing at AC) They "cut" each
other here, right? So here it's 90
(points at <ADC).
(She probably means that the diagonal
splits the square into two congruent
parts. In the triangles obtained as a
result, the right angle of the triangle,
which is also an angle of the square, is a
quite dominant figure).
T: When we speak about perpendicular
diagonals ... show me the diagonals.
(The teacher tries to locate the source of
the difficulty)
S: (Points at AC and BD)
T: That's right. And where do they
"cut" each other?
S: (points at diagonal AC and shows
that it forms two triangles, ABC and
ADC)
(She probably means that the diagonals
split the square in two)
S (After a brief hesitation): Oh, no, they
"cut through" here (points at the four
vertices)
(Here, she probably thinks that the
question is about the intersection points
of the diagonals with the square)
The dialogue shows that the student does not master the concept of "intersecting lines".
She therefore interprets intersection in different ways: the diagonal dissects the square
into triangles, the diagonals intersect the circumference of the square (at the vertices).
Even after the teacher explains to the student where the intersection point is and the
student identifies it clearly, she constantly turns to another angle when asked to check
whether the angle at the intersection point is right. A number of explanations are
possible:
I. The right angles in triangles ABC and ADC fit the right angle pattern in the student's
mind, and therefore when looking for a right angle, she first "focusing" on angles which
fit the pattern.

T: Where do these two diagonals "cut
each other"?
S: Here (points to 0)
T: Well done. Now, when I ask if they
are perpendicular to one another, what
I mean is that as they "cut each other",
are 90° angles formed there (points to
0)?
S: Yes! (points to the right angle in
each of the two triangles ABC and
ADC, i.e., angles <ACB and <ADC.)
(After a while):
Oh, no, these (points to the two other
triangles and their angles, i.e., -TBAD

and BCD)
T: When I speak about diagonals which
are perpendicular to one another, their
point of intersection has 90°. Where is
that point?
S: (points to 0)
T: Now tell me if an angle of 90° is
formed between this diagonal (points to
AC) and this diagonal (points to BD).
S: (points to --ABC).
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2. As a second thought, she realizing that her answer is rejected, she identifies two
other right angles in the drawing and then points to triangles BAD and BCD.
3. Following the thought process, we might discover that during the visual information
processing stage, the student decomposes the figure into two sub-figures, the two

triangles constituting it: 1 . Such decomposition makes it hard to identify the
required angle for two reasons: firstly, the required angle is not included in the
sub-figures! Secondly, the right angle within the sub-figures (right-angle triangle)
provides her with an answer and with no motivation to "keep on searching". A
different decomposition of the figure into the two sub-figures (e.g., = ) is not at
all simple, especially because an inappropriate decomposition has already been done
previously.
One may wonder what the student's answer would have been had the square in the
drawing been rotated by 45°. The diagonals would then run parallel to the paper
margins and the right angle would appear in its prototypical shape and would therefore
be easier to identify. Hershkowitz's research findings concerning right-angle triangles
confirm this hypothesis (Hershkowitz, 1989). On the other hand, dealing with squares
which were rotated by 45° ("diamonds") is harder for most students (who fail to
identify them as squares).
Going back to the teacher, we shall try to point out communication failure between her
and the student.
When the teacher is given the "surprising" answer concerning the location of the right
angle, she checks whether the student knows what diagonals are, suspecting that the
difficulty lies in identifying them. Her suspicion proves wrong. She therefore moves
on to verify that the student identifies the point of intersection. Since the teacher has no
clue as to what makes the student say the things she says (points to the diagonal, points
to the four vertices), she guides her ("Where do these two diagonals cut each other"?)
and puts words in her mouth ("What I mean is that as they "cut each other"... When I
speak about diagonals which are perpendicular to one another, their point of
intersection has 90°)".
We have analyzed and probed the student mind as well as the teacher's reactions.
Teachers who understand thought processes will almost certainly change their
instruction method and, more importantly, their response to situations of
noncomprehension by students. For example, this topic of perpendicular lines will call
for extensive treatment of all the visual links between right angles, perpendicular lines,
and the complex figures in which they appear. Training can be carried Out by means of
concrete models, drawings, and mental verifications.

Conclusion. In this paper, we have presented some difficulties observed in students
coping with the concept of "perpendicular lines". We have noted a difficulty to
understand the combination of various elements which make up the concept (lines
which are also angle rays; not one angle but four of them; a special anglea right
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the relation is between other right angles "nearby" and the right angle which appears in
the definition).
We suggested various explanations for the origin of these mistakes: hypotheses
concerning ways by which visual information is processed, thought processes
(pseudo-conceptual) and students' concept images.
Finally, we examined the teachers' reaction to the difficulties which cropped up and
found that they were helpless on one hand, and doing their best to "lead" the students
to the solution on the other hand. Our clear conclusion is that a teachers' lack of tools
which would help them understand students' difficulties makes them incapable of
coping efficiently and providing proper instruction.
It can be assumed that training teachers in order to provide them with the relevant
cognitive knowledge and with experience in analyzing such situations as shown in this
paper could contribute significantly to improve instruction and learning (first attempts
of this kind already carried out by the researcher have yielded promising results).
Moreover, the authors believe that the crucial issue in teacher training is not what the
most appropriate explanation is, but the question how to understand the student's
thought processes.
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Actions and invariant schemata in linear generalising problems

Juan Antonio Garcia-Cruz and Antonio Martinon
Universidad de la Laguna

In this paper we outline some results obtained from an ongoing research on the
students' process of generalization. A written test and a task based interview was
administered to eleven secondary students (aged 15-16 years). The teorethical model
for generalization developed by Dallier (1991) has probed to be usefull in analyzing
the students' processes. We report briefly actions performed and invariant schemata
established by students related to two different setting; numerical and spatial.

In its usual presentation, a linear generalising problem is a word problem that includes
the first three terms of a numerical sequence and some pictures to illustrate the situation
described. From a mathematical point of view we have an affin function f(n) =dn+ b, (120), and
there is an essential relationship namely f(n+ 1)1(n)=d, to say that the difference between
consecutive terms in the sequence is a constant.

Current research on student perception and generalization of numerical pattern has
identified and classified the strategies used to solve linear generalising problems (Stacey, 1989;
Orton & Orton, 1994 and 1996; Garcia-Cruz & Martinen, 1996a). The SOLO taxonomy was
used by Redden (1994) to classify the students' responses to a written test and to set a
developing model for generalization. Also Taplin (1995) found an observable pi-egression in
the children's ability to recognise generalisations from their representations of spatial patterns,
which fits the SOLO model.

However, little attention has been paid to the process through which one the students
construct and develop a generalization in these types of problems. The role played by the
drawing in the generalization process has been partially sketched by Garcia-Cruz & Martinen
(1996b).

In this paper we report briefly some results of our ongoing research focused on the
students process of generalization when solving linear generalising problems. The research
questions were:

a) Do students use a visual or a numerical strategy?
b) How do students check their patterns?

Generally, a visual strategy is defined as the method of solution that "involves visual imagery,
with or without a diagram, as an essential part of the method of solution" (Presmeg, 1986,
p.298). In this paper, a visual strategy is defined as one in which the drawing plays an
essential role in the process of abstraction. A numerical strategy is defined, accordingly, as
one in which the numerical sequence plays an essential role in the process of abstraction.

I Theoretical Background
There is a broad agreement that the essential characteristic of mathematical knowledge

is its generality and abstractness. Abstraction and generalization are important as a product but

2 289

297



from a didactic point of view the ass---,. F. CLUtraction and generalization are
much more important. W. Dorf ler (1991) has modelled in detail the process of what Piaget
called reflective abstraction, within this model the abstraction is the mean to construct a
generalization. In our study we have adopted this theoretical model.

The essential features of this model are the emphasis on actions as the genetic source for
abstraction and generalization. The actions that are material, imagined or symbolic are the
starting point for the process of abstraction, even mathematical operations must be regarded as
actions. Thus, the starting point is an action introduced by the student that concerns the
elements given in the problem (either the drawing or the numerical sequence) as a response to
questions which state an objective (calculate the numbers of components f(n) for an object of a
given size n). This action or system of actions directs the student's attention to some relations
and connections between the elements of the action, size and components of the given object,
and as a result to establish an invariant for the action.

This establishing of an invariant and its symbolic description has the character of a
process of abstraction because some certain properties and relationships are pointed out and
attention is focused upon them. Thus, the action or system of actions determines to some
extent the directions and the content of the generalizations, i.e., the invariants, which operative
character (the rules stated) results from the genesis out of the actions. To develop to a certain
degree a generalization the student has to establish the schema of the action (invariant) as a
general structure, i.e., to construct an intensional generalization. At this point the generality
thereby constructed does not represent the qualities of things but relations between things, n
and f(n), which have been established and constructed by actions. The result of this process is
a variable cognitive model that has two complementary aspects, first an expression of a
cognitive activity of the subject and second as part of the objective knowledge, the
mathematical content.

2 Methodology
The research was carried out in two stages. In the first stage a written test was

administered to all students (N=168) in the last year of compulsory secondary education (aged
15-16 years) at a suburban high school and at the begining of the school year. For 133 out of
168 students the written test was the problem-1.

Problem-1

a)How many lights are there on a size 4 tree?
b)How many lights are there on a size 5 tree?
c)How many lights are there on a size 10 tree?
d) How many lights are there on a size 20 tree?

Explain how you found your answer.

In order to get a better analysis of the numerical strategies the following version of
problem-1( with no drawing) was administered to a small group of students ( N=35).
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Problem -la . Ana and Juan are building up the Christmas Tree. In the instructions' booklet they found

the following: A size I tree would need 3 lights, a size 2 tree would need 7 lights and a size 3 tree would

need I I lights. Try to help Ana and Juan answering the following questions:
a) How many lights would need a size 4 tree?
b) How many lights would need a size 5 tree?
c) How many lights would need a size 10 tree?
d) How many lights would need a size 20 tree? Explain how you found your answer.

After the analysis of the written responses eight students were selected from the group
were the problem-1 was administered (students Si to S8). Two of them shown in their
responses that the drawing was used, two shown that only the numerical data were used and

four gave no explanation or from their explanation not a clear conclusion could be obtained

about the use of the drawing or the numerical data. From the second group, problem-1a, three

students were chosen (student S9, 510 and SI I). The whole group of eleven students was
chosen for the variety and quality of their responses to the written test. In the second stage
these students were given individual interviews and asked first about some questions on

problems 1 and la that may have not been clearly state from the written responses and second

they were confronted with some questions about the situation stated in problem-2.

/-6\
size 1 chain
6 matches

size 2 chain
11 matches

A chain with matches

size 3 chain
16 matches

Problem-2

How many matches would
you need to make the
same sort of chain with size
4?

How many matches would
you need to make the
same sort of chain with size
23 ?

The objective of this second task was to verify in situ how students develop the process

of abstraction and generalization and to what extent they recognize the second problem as

similar to the first one. A consequence of this methodology was that the researchers did not

ask necessarily the same questions to each student. Also they did not know if the students had

received a specific instruction on arithmetic sequences, a topic related before, but they were

aware that no student had had any training in sequences from the begining of the school year.
Only two students belonging to the group interviewed had received specific instruction on
arithmetic sequences the year before, but this fact was discovered during the interviews.

3 Results
The process of abstraction and generalization has actions introduced by students

concerning the elements of the situations as its genetic source within the theoretical framework

adopted in this study. The objective of these actions is to find out the number of elements f(n)

corresponding to an object of size n.. Acting upon the numerical sequence or upon the drawing

the elements of the actions are conceived as variables while certain relationship is maintained,
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i.e., the invariant. Now we will describe briefly the actions and the invariant schemata
developed by these eleven students, so the list should not be considered exhaustive.

Actions
Concernig the drawing.

Drawing a picture of the whole object required and counting all the elements is an action
used in the introductory questions, f(4) or J(5), and do not lead to a generalized strategy
obviously. Students usually did it as a mean to check the validity of their calculations, as we
will see below. Actions which lead to a generalized strategy are:

Al: Imaging or sketching to some extent a picture of the object required and adding similar
parts while each new part has a number of elements equal to the constant difference d. The
special feature here is that not direct counting at all is performed by students in the sketch
done.

A2:Imaging an object of a certain size as constituted by aggregation of other objects of
lesser size, i.e., a ten-size object as built up from two five-size objects.

Concerning the numerical data.
A3: Counting from a given term (i.e., f(4) but not IN) the number of d ( the constant
difference) which must be added to get a specific term (i.e.,f(10)).
A4: Similar to action A2 but performed upon the numerical sequence.
A5: Find a functional relationship between the object size n and the number of components
f(n).

A6: Applying the algorithm rule-of-three, which consists in giving three numbers to
calculate a fourth number using the following schema:

5 - 19
10 - x

10x19
x =

5
-38

Obviously the result of this calculation does not correspond with any term in the sequence but
after doing that calculation the student S3 checked it and made some arrangements leading her
to get the correct answer. Below we will analyze in more detail the performance of this
student. Here we have a system of actions instead of only one action.

A7: Applying the symbolic expresion for arithmetic sequences learned before. During the
interview the student S4 recognized the numerical pattern of problem-I as arithmetic and
after some calculations and checking he reconstructed the corresponding general symbolic
expresion f(n)---1(1)+(n-1)d; later while he was confronted with problem-2 lie applied
automatically this formula showing an explicit knowledge of the similar structure of both
problems.

A8: Successive addition of the constant difference to extend the numerical sequence.

Invariant schemata as result of actions
As result of the actions described above students established the following invariant

schemata:

f(n)=d(n-1)+f(1). Developed from actions upon the drawing, also from the numerical
sequence.
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12: f(n)=6n-(n-1). This invariant was developed by S2 within the problem-2. The important
feature of this invariant is that neither the constant difference nor the first tenn in the
sequence is an essential part of it.

Both invariants II and 12 were derived from action Al. Thus, the same action performed
upon the drawing can lead to two different invariants. In II the constant difference d and the
first tern f(1) play a prominent role while in 12 both elements are not essential parts.

13: f(n)=d(n-m)+f(m), m>1. This invariant was developed by student S6 acting upon the
drawing and by student S9 acting upon the numerical sequence.
14: f(2n)=2f(n).
15: f(n)=dn+b. This invariant states the functional relationship between n and f(n),
corresponding to 4n-I and 5n +1 in problems 1 and 2 respectively.
16: Derived from action A6. The student S3 developed this invariant for problem-I and here
its symbolic expression corresponds withf(2n)----2f(n)+ I .
17: f(n)=dn. Derived from action A8, assuming that repeated addition of d impliesf(n)dn.

Table-I summarizes the correspondence between actions and invariant schemata
established by the eleven students in our study:

Table-I Problem-1 and la Problem-2
Drawing Number Sequence Drawing Number Sequence

students Act. Inv. Act. Inv. Act. Inv. Act. Inv.

S1 Al 11 Al 11

S2 AI 11 Al 12

S3 AG 16 A6 16

S4 A6 II AG I1

S5 A4 14 Al 11

S6 AI 13 . A2 14

S7 A5 15 A5 15

S8 Al 11 several no inv.

S9 A3 13 A6 II
S10 A4 14 A8 17

Sll A5 15 AS no inv.

4 Discussion
Although students use more than one action we have placed in Table-I only the

last action with which they have completed the process of establishing an invariant. To
establish an invariant the student has to apply the same rule abstracted from a specific
calculation, i.e.,f(4), at least to another calculation, i.e., f(I0), showing that he or she has made
an intensional generalization (establishing the schema of the action as a general structure) and
an extensional generalization (extending the range of n).

From Table-I we gather the following indications: Different invariants can be established
from only one action, thus action A /performed upon the drawing leads to three different
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invariants, this is so because students' attention is focused in some aspects of the drawing
highlighting these from other aspects. The actions performed upon the numerical sequence
leads to the stating of only one invariant, due to the specific feature of the mathematical
operation involved. Only two students out of eleven did not establish an invariant within the
problem-2. A special case, student S8, will be discussed later.

Checking the rule abstracted should be considered an action as well. This action turns to
be absolutely essential for students performing their calculation in the numerical setting as it is
shown in Table-H.

Table II where do students check
upon drawing upon num. sequence

problem-1 S3, S4, S6, S8 S5, S7
problem -la S9, SI I
problem-2 SI, S3, S5, S6, S9 S7, S8, SI I

If we compare Table-I and Table-II we can see that students performing their actions
upon the drawing do not check their rules using the given numerical data. These students
showed during the interviews more confidence that students performing their actions upon the
numerical sequence. The actions upon the drawing fits the general structure of the nile in the
students' cognition more precisely (intensional generalization), and the subsequent application
of this rule to any other calculation was done with no doubt and confidently. However, some
students whose actions were performed upon the numerical sequence (S3 and S4 within
problem-1; S3 and S9 within problem-2) check the validity or their rules in the spatial setting,
the drawing. Only two students, S2 and S/O did not check their rules during the process of
solution in both problems. Student S4 did not check his rule for problem-2 because he
recognized the problem structure as similar to problem-1 and then he automatically applied the
same invariant. He did not remember the symbolic expression for the general term of an
arithmetic sequence, but he was able to reconstruct it while solving the problem. This case
should be considered as an outstanding performance of developing a generalization.

The usual way of checking the validity of an invariant is counting on a drawing or
extending the numerical sequence till the term needed. The use of routine activities for
checking reinforces the students' confidence on the rule abstracted. Only two checks (student
S7 and S//) were done, using a known pair of values (n, f(n)) and substituting this pair on the
corresponding abstracted rule in both problems. This proved to be essential in establishing the
invariant 15 through the action A5.

An outstanding check was performed by student S3. She assimilates the calculation of
1(10) in problem-1 to the existing schema, rule-of-three, using the pair (5,19) obtained adding
the constant difference to f(4). After doing the corresponding calculations she obtained the
value 38 for f(I0) and comparing this value to the available sequence 3,7,11,15,19 she notes
that the number 38 (even number) does not fit in that sequence (odd numbers). Thus, she turns
to draw a sketch of a size-ten-tree and performs a direct counting of the lights needed
obtaining 39. Then she says that she must add one to the resulting calculations obtained
applying the rule-of-three. For the next calculation, f(20), she applied the rule derived without
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cneciong on me urawing. She accommoaateo the particular suuctud U1 ruse-uptriree to in um
situation, establishing an invariant which symbolic expression is equivalent to f(2n)=2f(n) + 1.

To develop a rule for a specific calculation it should no be considered as the establishing
of an invariant. During the interview the performance of student S8 should be considered as
paradigmatic of the employ of many actions leading to the establishing of no invariant. He
starts calculation off(4) sketching a picture of a size-four-chain to end counting on the sketch
to get f(4)4(3)+ 5= 16+ 5 =21 . When promted to calculate f(15) he applied the rule-of three
using data (4, f(4)) but the outcome calculation was not a whole number, so after some
numerical explorations he used action A3 to get f(I 5)=5 xl I +f(4)=76 . Then he was promted to
calculate f(32) and, instead of applying the rule developed before, he said that the solution
should be f(32)= 21(15) plus something else. At this point he was encouraged to reflect on
previous calculations. Suddenly he starts action AS sketching roughly a table using the
available data and after some trying he concluded the task with the expression f(32) 32 x5 1.

It seems that he has established an invariant after all, but when asked about the validity of that
rule for further calculations he said that he had not enough confidence in that rule unless he had
tried it before, because that rule could fail in some case and then he would have to develop
another one. The whole activity of student S8 shows that neither intensional nor extensional
generalization has been achieved. He has developed a specific rule for every calculation. The
most perplexing thing for the interviewer was that he had successfully developed and
established an invariant for problem-1, but this was done acting on the drawing instead on the
numerical sequence. For this student the numerical setting probed to be harder than the spatial
setting.

Otherwise, for student S/ and S2 the drawing probed to be the best setting for
developing a generalization. Though an example, the calculation of f(4), they were able to
establish an invariant. They felt very confidences with the rule abstracted and that rule was
successfully applied to any further calculations. For these students, the variable elements in the
rule abstracted are detached from their original values that they are associated and gain
meaning by themselves.

The students' performance discussed shows that the role played by the drawing is
twofold. First is the setting for developing (abstracting) a rule and second is the setting for
checking the validity of a rule developed upon the numerical sequence.

5 Conclusions
The theoretical model (Dorfler, 1991) for generalization has proved useful for describing

the students' developing of generalization in this type of problem. To establish an invariant
could need many actions, or system of actions, for some students while other only need of one
action.

We have distinguished within the process two key aspects: first to abstract a rule for a
specific calculation and second to establish the general structure of this rule and to extend the
range of the variable elements (intensional and extensional generalization). The same action
could lead to different invariants and also the invariants could include (or not) essential
elements (d and b) of the underlying mathematical object: the affin function f(n)=dn+ b

The students' use of learned knowledge, although not appropriate for these problems, is
an important feature of students' performance. The case of the assimilation-accommodation of
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the rule-three leading to the establishment of an invariant is an outstanding student's
behaviour. The consistency of students' choice of the numerical or spatial setting is a relevant
conclusion derived from this study (see Table-I and Table-II).

Space limit does not allow us to extend in the analysis of the visual and numerical
strategies, but we hope the above discussion can serve as an outline of our still not finished
research in this area. It should be emphasized here the important role played be the
drawing in the visual and numerical strategies, being the setting were students develop
their rules during the process of abstraction in the former and being the setting for
checking that rules in the later. We also think that more research is needed here to clarify
in more detail the students' behaviour when establishing an invariant and the special
features of the drawing that could lead a student to establish an invariant like 12.

Finally our ongoing research is now mainly directed to the study of the particular
symbolizations students use in these type of problems, also to the meaning they give to the
usual standard mathematical symbolization. But there is another research question: By
what means do students recognize a similar mathematical structure among these type of
problemg?
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A CLASSROOM DISCUSSION AND AN HISTORICAL DIALOGUE:
A CASE STUDY

Rossella Garuti, Istituto Matematica Applicata, C.N.R., Genova

This report deals with a comparison between a mathematical discussion in the
classroom and an historical dialogue. Both regard the mathematical modeling of
the phenomenon of the fall of bodies and in particular the possible dependence of
the fall speed on the traversed space. The protagonists of the classroom discussion
are 8th grade students, while the protagonists of the historical dialogue are
Simplicio, Sagredo and Salviati (Galilei, 1638). Analysis and comparison of the
two 'discussions' raises issues concerning: interpretation of the analogies between
them; and the conditions that allowed the classroom discussion rapidly to cover
some important steps in the development of scientific thinking represented in the
historical dialogue (this was read after the discussion!).

1. Introduction
From a Vygotskian and Bachtinian perspective, one of the main features of a
discussion is the presence of voices. The term voice is used after Bachtin to mean 'a
form of speaking and thinking which represents the perspective of an individual,
his/her conceptual horizon, his/her intention and his/her view of the world' (Clark &
Holquist, 1981; see also Wertsch, 1991). The voice, described and defined by Bachtin
in the literary field, is an innovative expression that communicates meanings
recognisable at the social level, and assumes a universal character.

Drawing on the metaphor of mathematical discussion as a 'polyphony of
articulated voices on a mathematical object that is one of the motives of teaching-
learning activity' (Bartolini Bussi, 1996), it is interesting to analyse what happens
when, under the teacher's guidance, the objects under discussion are the voices
themselves. Voices may be emitted by the students, the teacher, or even by history
when the teacher introduces in the discussion the voices of scientists from the past
on the topic being examined.

Henceforth, we shall use the expression 'voices and echoes game' to express
the idea that, when a suitable task is assigned, the 'source voice' (of a student, of the
teacher, of history) triggers an 'echo', i. e. a link (expressed as a discourse) with the
object of the voice. In this way, the student strives to link this voice to his/her
conceptions, experiences and personal senses (Leont'ev,1978). The echo idea was
originally elaborated during the design and implementation of the teaching
experiment reported in this paper. In the voices and echoes game the classroom
discussion may happen to 'anticipate' a voice from history. This report concerns one
such episode.

2. The teaching experiment.
The case study presented in this report concerns a discussion in an 8th-grade
classroom of 21 students; the topic is the possible dependence of the speed of falling
bodies on the traversed space. The discussion is part of a teaching experiment
designed to study the functioning of the voices and echoes game, making extensive
use of voices from history (see 2.1 and 2.2). For the past three years the students have
been taught by the same teacher and, under her guidance, have learnt to engage
productively in mathematical discussion. acquiring argumentative skills and payin-
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full attention to argumentation consistency. These were necessary conditions for the
implementation of the teaching experiment, as long acquaintance with the active
discussion of schoolfellows' or teacher's utterances put the students in an active
attitude, that allows to discuss and criticise both the voice of history and that of the
teacher' (Bartolini Bussi, 1996).

2.1. Rationale of the teaching experiment.
From previous experiences carried out by the Genoa group, we knew that students'
spontaneous knowledge about the fall of bodies was limited to perceptual data that
had not been developed much from a cultural perspective. Indeed, students'
relationship with eveyday culture and their personal experiences afford them little
opportunity to go beyond obvious facts. Our hypothesis was the following: some
voices of history (Aristotle) can represent fully and precisely the perceptual universe
of students, while other voices (Galilei) can lead them to challenge the Aristotle's
theory. We hypothesised that pursuing suitable classroom tasks could produce echoes
to such voices; in this way the teacher could mediate some crucial steps in the
scientific revolution of the 17th century.

2.2. Phases of the teaching experiment.
a) The first individual task is designed to introduce 'the fall of bodies' phenomenon:
'What do you think is the reason why a feather or a leaf fall to the ground more
slowly than a stone?' . Working individually, many students hypothesise that the
relevant variable is weight. A 'balance' discussion follows.
b) Aristotle's voice is introduced with a classroom reading of excerpts from De
Coelo, where Aristotle claims that fall speed is proportional to the weight, which in
turn represents the tendency of bodies to reach their natural place. Later on, the
'voices and echoes game' begins with suitable tasks ('If you were Aristotle, how would
you explain the fact that a feather falls more slowly than a stone? 'and so on)
c) When the students have appropriated Aristotle's voice, the focus shift to
mathematical formalisation by means of present-day sign systems (algebraic
formulas and cartesian graphs).
d) At this point, Galilei's voice is introduced by reading and interpreting the famous
excerpt (Galilei, 1638) where he refutes the two hypotheses of Aristotle, according to
which fall speed is directly proportional to body weight and inversely proportional to
density. This passage from Galilei challenges previous student acquisitions. In the
discussion that follows and in individual texts the students admire Galilei's arguments
but at the same time are troubled by them. Aristotle's theory and the conceptions of
many students are in crisis: yet it is difficult to think that 'a lead drop can go as fast
as a cannon-ball'.
e) The next day the teacher starts a new discussion concerning the possible
dependence of fall speed on the height from which the fall starts, an idea mentioned
in passing the previous day. This new discussion anticipates the theme and structure
of an excerpt from Galilei (see 3).
0 This excerpt from Galilei is subsequently presented to the students. The voice of
history is perceived (and used didactically) as an echo of classroom discussion.
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3. The object of the case study: a classroom discussion and a dialogue by Galilei.
We shall compare the classroom discussion (phase e) and the dialogue by Galilei
successively read by students (phase f), by looking for analogies and differences in
the following areas:

linguistic utterances: unlike other languages, Italian has not changed very much
from Galilei's times. In the English translation of the discussion we have tried to
maintain original consistency between Galilei's text and the discussion;

the logic of argumentation (alternation between specific examples and
generalisation; use of mental experiments);

argument content (particular conceptions and examples, etc.).
To make comparison easier, we have divided the classroom discussion into

four parts and paralleled it with suitable excerpts from the dialogue by Galilei. The
points of greatest consistency between the two have been underlined.

3.1. Classroom discussion.
[...]
[3] T. Let us go move on another issue: height. In yesterdays discussion the matter
of height was raised: what do you think?
[4] Eleonora: If we make an object fall from the desk and drop a similar one from a
higher place, they should arrive together, since, as Daniele C. said, speed increases
with height.
[5] Daniele C.: No, l' said that speed increases with height, not that the two objects
arrive together.
(Nobody appears to understand the meaning of Eleonora's words)
[6] T: What Eleonora is saying makes sense, as we shall see later. Let's go back to
speed in relationship to height. Yesterday what example did you make?
[7] Daniele C.: If an object falls from 10 meters it makes a hole this big (gestures): if it
falls from 200 meters it makes a much bigger hole.
[8] T.: Galilei also introduces height: in your view, what is the relationship between
speed and height?
[9] Sebastiano: The higher the object, the more speed it acquires.
[10] T.: Right! Galilei thinks that speed increases with height, too. Give me some
examples.
[11] Enzo: If somebody dives from a 2-meter board, he makes a certain splash, but if
somebody dives like a bomb from 20 (meters), the water goes out of the swimming
pool.
[12] Daniela M.: If you throw yourself from the first floor, you don't hurt yourself; if you
throw yourself from the third (floor), you kill yourself.
[13] Vincenzo: If I want to increase speed I need space, I go to the 80- meter track!
(Other examples follow).

From Dialogues Concerning Two New Sciences:
Sagr. So far as I see at present, the definition might have been put a little more
clearly perhaps without changing the foundamentale idea, namely, uniformly
accelerated motion is such that its speed increases in proportion to the space
traversed; so that for example, the speed acquired by a body in falling four cubits
would be double that acquired in falling two cubits and this latter speed would be
double that acquired in the first cubit.
Because there is no doubt that a heavy body falling from the height of six cubits
has, and strikes with, a momentum [impeto] double that it had at the end of three
cubits, triple that which it had at the end of two.
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Daniele C, in his interventions, expresses first the law [5] and then an example,
exactly as Sagredo does. Furthermore both Daniele's and Sagredo's examples
concern the effect produced by the falling body. Eleonora's voice is not grasped: even
if correct it is too far removed from the student's way of thinking; hence it dies out.
The following comments echo Daniele's voice.

3.2. Classroom discussion
[20] T.: Right, but this is a description; from a mathematical point of view, what form
of regularity could you draw? Be careful though, were not yet dealing with a
mathematic law.
[21]: Enzo: When somebody falls from a height, for each meter his speed increases
by a certain amount.
[22] T. Explain that better.
[23] Enzo: Say the speed he gets per meter is 6 km/h , if he falls from 2 meters, the
speed is 12: if he falls from 3 meters. the speed is 18.
[24] T.: What's the name of this in mathematics?
[25] Enzo: Proportionality.
[26]: T.: Proportionality.

From Dialogues Concerning Two New Sciences:
Salv. It is very comforting to me to have had such a companion in error; [...] but what
most surprised me was to see two propositions so inherently probable that they
comanded the assent of everyone to whom they were presented, proven in a few
simple words to be not only false, but impossible.
Simpl. I am one of those who accept the proposition, and believe that a falling body
acquires force [vires] in its descent, its velocity increasing in proportion to the space,
and that the momentum [momento] of the falling body is double when it falls from a
double height; these propositions, it appears to me, ought to be conceded without
hesitation or controversy.

In the voices and echoes game, Enzo represents the collective voice of the
classroom; he is the spokesman for the 'theory' implicit in previous comments. In
fact, from now on the students will always refer to 'Enzo's law'. We notice
consistency between Enzo and Simplicio concerning both words and logical
structure: first the law [21] is expressed in a general way, then mathematisation takes
place [23]. We may observe that while proportionality is explicit ('the double of..') in
Galilei's example, in the Enzo's example it is made explicit only after the teachers'
request. In the comparison between the two excerpts we note that in the classroom
discussion the role of Salviati (who is first to state that the conclusion is false) is still
missing.

3.3. Classroom discussion.
[27] Fabio P.: If it travels at 6 km/h in one meter, at 2 meters, when it has to traverse
the second meter, it goes faster, so it takes less time. That regularity cannot exist.
[28] Andrea: It speeds up little by little.
[29] Vincenzo: But then Enzo says that even with a greater height, speed does not
increase.
[30] T.: Be careful, Enzo says that the fall speed is proportional to height; Vincenzo
says that this means... what? I don't understand well.
[31] Vincenzo: ... having a greater height does not affect speed. I agree with Fabio,
who says that it goes faster. But Enzo says that it goes the same speed.
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[32] T.: Attention, Enzo does not say that speed is constant, but that it is proportional
to height.
[33] Stefania: I don't agree with Enzo: if you throw a stone from, say. 1Q00 meters
the fall, if what you say is true, would be instantaneous, and this is impossible.
(Buzz)

From Dialogues Concerning Two New Sciences:
Sa Iv. And yet they are false and impossible as that the motion should be completed
instantaneously, and here is a very clear demonstration of it.

In the discussion Enzo's voice triggers some dissonant echoes: Fabio introduces
the 'time' variable [27], while Stefania [33] performs a mental experiment, using
practically the same words as Salviati.

3.4. Classroom discussion.
[34] T.: Good girl! A good objection! How do you respond?
(troubled silence)
[35] T.: Repeat your objection.
[36] Stefania: If what Enzo says is true, when you throw a stone from 1000 meters,
the fall is instantaneous.
[37] Elisa: It is not instantaneous: it only goes much faster. Enzo says that speed
always increases by the same amount.
[38] T.: What you're saying is not right. Be more precise.
[39] Elisa: If it falls from 1 meter it has a certain speed; if it falls from 2 meters, the
speed is double; if it falls from 10 meters it is ten times faster.
[40] T: Stefania doesn't agree with you: if it falls from 1000 meters it is 1000 times
faster and falls instantaneously.
[41] Elisa: No, even if it falls 1000 times faster ...
[...]
[44] Cristina: I don't understand what instantaneous means.
[45] Stefania: That if you let it go it has already fallen to the ground.
[46] Cristina: But Enzo says that if it falls from 2 meters it falls with double speed: I
don't understand why you say instantaneous
(Overlapping voices)
[47] Cristina: Well, it falls proportionally to its height.
[48] Daniele: But isn't the 1000 speed the final one? Then it means that it has
reached it, that at the beginning it was 1, then 2 and so on.

[60] T. Let's go back to the objections: Stefania says that if what Enzo says is true,
when I drop it from 1000 meters it falls instantaneously. Fabio's objection: the
relationship here is not proportionality, if in the first meter it goes at a certain speed in
the second meter it goes faster.
[61] Fabio S.: What Fabio says is wrong. If if you drop something from 1000 does it
arrive 1000 times faster?
(doubts)
[62] Daniele C.: It arrives faster...
[63] If he said proportional, that means 1000 times faster, so it arrives 1000 times
earlier.
(Disagreement)
[64] Daniela M.: If you put something 1 meter high and something else 2 meters high,
if it doubles speed at two meters. then they arrive together.
[65] Fabio S.: That's what I said.
[66] T.: I don't think so. You said that they arrived 1000 times earlier.
[67] Fabio S.: Well, that's what I meant
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[...1
[71] Daniele C.: As soon as you drop it, it's already on the ground.
[...]
[78] Daniela M.: I wanted to ask Enzo something.
[79] T.: Enzo has become the reference point, but remember that at the beginning
nearly all of you agreed with him.
[80] Daniela S.: In the longest route, in the first part, does the object go faster than in
the other route?
[81] Enzo: If the first has twice as far to travel as the second, when this has gone
halfway, the other has gone halfway too, and they fall to the ground together.
[82] Daniela M.: But the shorter one cannot take the same time to cover half the
distance (To the teacher) May I go to the blackboard?
(Daniela draws two vertical lines, one twice the length of the other, and a horizontal
line in the middle of the longer one)
Supposing, I stop the body from the highest point in the middle, where is the other
body?
[83] Daniele: The other has gone halfway too.
[84] T. According to Enzo's theory, when the first has gone halfway, the second has
gone halfway too. Hence they arrive at the same time.
[85] Daniele C.: But that means if you throw one from 1 meter and the other from
5000 meters they tie
[86] T.: Exactly. Galilei realised this mistake after 24 years. If the idea of
proportionality had been true, it would have happened like Stefania, Daniela M. and
the others said.
[87] Daniele C.:If you ask me, they cover the first meter in the same way, then in the
second meter it picks up speed, bit by bit.
[88] T. Do you have any idea of how the body would fall, according to what you say.
Try to draw how it would fall.
[89] Daniele C.: If I !drop one body from 1 meter and another from 10 meters, they
have to tie the first meter at least, so the first reaches the ground and the second
does not.
[90] T. If you had to photograph a body every second it falls, how could you draw it?
(Daniele draws a representation of the stroboscopic graph)
[91] Daniele C.: the more space it has to cover, the more speed it picks up, but a little
at a time.
[92] Fabio S.: Speed increases as the body falls.

From Dialogues Concerning Two New Sciences:
Salv.lf the velocities are in proportion to the spaces traversed, or to be traversed,
then these spaces are traversed in equal intervals of time., if, therefore, the velocity
with which the falling body traverses a space of eight feet where double that with
which it covered the first four feet (just as the one distance is double the other) then
the time-intervals required for these passages would be equal. But for one and the
same body to fall eight feet and four feet in the same time is possible only in the case
of instantaneous [discontinuous ] motion; but the observations shows us that the
motion of a falling body occupies time, and less of it covering a distance of four feet
than of eight feet., therefore it is not true that its velocity increases in proportion to the
space.

We note that Stefania's [33] comment puzzles her classmates, as they have to
equate it with 'Enzo's theory'. Stefania proceeds in a Galilean way, but, as opposed to
Galilei, she produces a limit case to refute Enzo's idea and to show the impossibility
of proportionality. The word 'instantaneous' creates unease among the schoolmates,
who react by returning to the proportionality between speed and space. Daniela M.
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[64] unblocks the situation: if two falling bodies start and arrive together, it means
that the spaces are covered in equal times. In comments [82] and [89], which are
connected to Daniela's utterance, the speaker tries hard to elaborate a mental
experiment which is the same as Galilei's. In this excerpt congruences with the
Galilei's dialogue concerning both the expressions and the arguments, may be noted.

As a concluding remark, we note that the roles played by the students in the
discussion are consistent. At the very beginning, Daniele C. is Sagredo: he postulates
the dependence of speed on the traversed space. Enzo is the spokesman for the
Aristotelian perspective; he puts into practice the idea that perception leads to the law
and thus plays Simplicio's role. Finally, acting collectively, Stefania, Fabio P.,
Daniele C. and Daniela M. play the most difficult role, that of Salviati, by disproving
the hypothesis that speed is proportional to traversed space.

4. Discussion.
It should be noted that the comparison is between a real discussion and an imaginary
dialogue (which was read after the discussion). This implies that in the dialogue the
aim is absolutely clear in the author's mind: the protagonists (Simplicio, the
Aristotelian philosopher; Salviati, the clever thinker; and Sagredo, the cultured man
of his age) act according to an established script, which, on the one hand, traces the
steps of Galilei's twenty-year search and on the other points out the contrasts between
Aristotle's and Galilei's theories. It is evident that this does not happen in the
classroom: the teacher's aim is unknown to the participants in the discussion, who are
not following any established script. This makes the discussion less linear in
comparison with Galilei's dialogue, but more lively and varied, from the viewpoint of
reference to experience.

In spite of these differences, the underlinings and comments in Section 3 point
out strong analogies between the classroom discussion and Galilei's dialogue. The
verbal expressions used are often similar. Moreover, both debates have a similar
sequence of phases: general law, example, mathematisation, mental experiment. The
contents too are analogous: the most surprising example is the argument that
disproves the hypothesis of proportionality (a hypothesis that, as we know, Galilei
long supported). In effect, in one hour a class of 13-14-year-olds managed to cover
all the steps Galilei took in over twenty years of research. How was it possible?
Precise interpretation of this episode (observed in a particular teaching learning
situation) seems to require adjustment and specification of the general hypotheses of
Piaget & Garcia (1985) regarding the relationships between ontogenesis and
phylogenesis of scientific hypotheses. In our view the following elements may have
brought about the above analogies:
- some of the teacher's comments ([6], [30], [34], [40]), which single out particular
student comments, explain their content and orient the discussion in the direction of
Galilei's dialogue;
- cultural aspects arising from the voices and echoes game played earlier in the same
teaching experiment. Previous reading of excerpts from Dialogues (Phase d) may
have provided students with the material needed to take further steps. For instance,
Stefania commented on an excerpt from Galilei (Phase d) as follows: 'I was struck by
the reductio ad absurdum made by Simplicio, when he says that speed depends on
density, hence the lower the density, the faster the object. But if we made the density
zero, the object would fall in an instant, and this is impossible as in a vacuum an
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object does not move'. Her utterance is an echo of an excerpt from Galilei; she uses it
to take on Simplico's argument and in doing so interiorises the 'limit' method, which
allows her to produce the utterance [33] in the following discussion. Another
example is given by Daniele C., who contributes towards the construction of Galilei's
mental experiment . In a preceding discussion he said: 'I agree with Galilei, because
at the very beginning I thought that there was regularity and proportionality between
weight and speed ... Moving to the limit case, as Galilei does, I understand that it is
impossible that if a body has covered 100 meters the other has covered none'. In this
case the interiorization concerns both the method and the content;
- aspects from the students' own culture (experience gained either inside or outside
school): as opposed to Galilei, today's students seem to find it easy to grasp concepts
such as 'speed in a given instant' or 'speed variation instant by instant' (see Daniele C.
[48], [87], [91]), possibly because of their experience with car and motorbike
speedometers. Indeed, Galilei initially conceived speed as the ratio between the
whole traversed space and the time spent. Only after many years did he elaborate the
idea of 'speed at a given instant' as the ratio between space and time at that instant. In
addition students possess powerful sign systems (algebraic formulas, cartesian
graphs) that were not used by Galilei. Finally, some aspects of Galilei's way of
reasoning, the same adopted by modern science (relationship between hypotheses and
quantitative data obtained from experiments, use of mathematics in natural sciences
and so on), may have influenced the students' thinking during their previous school
experience, through cultural experiences and by means of information collected in
and out of school settings;
- elements inherent in the structure of debates (hence shared by an imaginary
dialogue and a real discussion) such as the search for possible logical or factual
contradictions to an idea that is not agreed with, or the alternance of general
statements and examples. These may derive from three years' experience in
mathematical discussion, besides the standard development of argumentative skills
in the present out- of- school setting.

We believe that more detailed specification of the above aspects would make
the reproduction of this teaching experiment easier and, more generally, would
improve teacher' management of teaching experiments that focus on historical
sources for the mediation of important steps in scientific thinking.
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The Importance of Social Structure in Developing a Critical Social
Psychology of Mathematics Education'

Peter Gates2
University of Nottingham

Abstract
In this paper I develop the argument (started at PME 20) that we need to consider ways
of re-evaluating a psychology of mathematics education, by looking towards critical
social psychology as an alternative. In this we would need to consider both the notion
of ideology as well as social theory of Anthony Giddens and Pierre Bourdieu for an
understanding of how humans operate and in particular how the mathematics
education classroom practices develop.

A view of the current situation
As mathematics educators, we are perhaps more aware than most of the importance
and significance placed upon mathematics in our society. However this importance is
usually seen as functional, rather than constituting. By functional I mean that learning
mathematics is often seen as enabling the learner to be able to carry out some function,
that it has some purpose to which we should be ascribing. In this I include basic skills,
vocational preparation, preparation for entry to the next stage of education and so on.
By constituting, I mean that learning mathematics plays a role in shaping the society
in which we find ourselves. I make the distinction deliberately, because by constituting
I do not want to imply that it plays a positive enabling role. On the contrary
mathematics is not (just) a 'gateway to', it is also a 'filter out'. Mathematics, along with
other school subjects plays its part in justifying the present social reality. (I guess I
ought here to use the phrase 'school mathematics' to show that what is taught is a
particular subset of the discipline. I will not do so as it will become cumbersome. This
needs to be how this paper is read.)

In Great Britain, you will inevitably see those pupils who find themselves placed in
lower attainment groups' and become labelled as 'special needs', 'in need of remedial
help' and so on, usually come from lower social classes. There is a dominant rationale
for this that social conditions make it difficult for them to get on in mathematics.
(There are other rationales of course, some based on genetic disposition)

There is an alternative viewpoint a radical viewpoint that school mathematics has
the effect of alienating certain social classes. Valerie Walkerdine (Walkerdine 1988)
and others (Gilligan 1982), have written about the process by which school
mathematics alienates women and racial groups for example. Barry Cooper has shown
how the national Standard Assessment Tasks in the UK can result in discrimination
between pupils of different social classes (Cooper 1996). There is a crucial debate about
the degree of intentionality of such a process. I will not develop this here.

' Paper presented to the 21st PME conference, Lahti, Finland, July 1996
2 Address for correspondence: Peter Gates, Mathematics Education Social Research Group, School of
Education, University of Nottingham, University Park, Nottingham, NG7 2RD, Great Britain. Email:
peter.gates@nottingham.ac.uk
3 It is common practice in Great Britain for pupils to be placed in groups for mathematics lessons. It is
claimed that these are based upon 'ability' or 'attainment'. It is also claimed by those who support this
practice that such discrimination is a positive force in tea ping pupils.
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It is sometimes difficult to see just what alternative there could be to the current
dominant practices within mathematical education. This can in part be due to the way
in which rationalising disciplines, such as psychology, are not merely descriptive, but
are also produced and sustained by and within the dominant social structures. They
thereby define our way of seeing the world. Alternatives which seem to challenge this
hegemony can be ostracised and marginalised. Consider Henry Giroux's view of
knowledge:

[A radical view of knowledge] would be knowledge that would instruct the
oppressed about their situation as a group situated within specific relations
of domination and subordination. It would be a knowledge that would
illuminate how the oppressed could develop a discourse free from the
distortions of their own partly mangled cultural inheritance. On the other
hand it would be a form of knowledge that instructed the oppressed in how
to appropriate the most progressive dimensions of their own cultural
histories, as well as how to restructure and appropriate the most radical
aspects of bourgeois culture.

(Giroux 1983, p 35)
I know of no school or government which encourages such a radical view of
knowledge. In addition it is likely that many who are reading this paper see this
viewpoint as at best marginal and idealistic; possibly (most likely!) unrealistic. Such
a view of knowledge could hardly be further away from the experiences of most pupils
in schools today. It might be claimed that Henry Giroux is a hopeless idealist.

However all is not well with the current model of mathematics education and many
children leave school as failures. Why might this be? Some call for 'better psychology'
to better understand the child's learning process. However it is important to ask
though a challenge to many 'sacred cows' what part might child-centred pedagogy play
in this failure? Child-centred pedagogy, and with this I place forms of constructivism,
derive from the tradition of developmental psychology. However developmental
psychology is based upon a set of claims which are historically situated and make
claims to truth about the capacities of the child. The possibility of success of a project
intended to make developmental psychology more adaptable has been critiqued by
Valerie Walkerdine who sought:

to demonstrate the problem in assuming that the way out of dilemmas
about the possibility of both a liberatory pedagogy and a 'social'
developmental psychology is in the limit-conditions of the project of a
developmental psychology itself. Because of the way that the object of a
developmental psychology is formulated, it is impossible to produce the
radical theory which would fulfil the hopes of many within the discipline.

(Walkerdine 1984, p 154)
Current pedagogic practices are "saturated with the notion of normalised sequences of
child development so that those practices help produce children as the object of their
gaze" (Walkerdine 1984, p 155) and in turn, these practices actually produce the child
and the child's development in their own image. Schools are so structured that the
mechanisms for this saturation permeates the architecture, the curriculum materials,
the organisation of the classroom and the assessment arrangements.

Developmental psychology is productive: its positive effects lie in its
production of practices and pedagogy. It is not a distortion of a real object
'the developing child' which could be better understood in terms of a
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radical developmental psychology, for the very reason that it is
developmental psychology itself which produces the particular form of
naturalised development of capacities.

(Walkerdine 1984, p 163-4)
Developmental psychology then is a product/construct which in turn structures how
we view the world. With this in mind, when I look at mathematics classrooms a
number of questions are raised for me. Why is mathematics still a socially unpopular
subject? Why does it alienate learners from lower social classes? Why is it unrelated to
children's real experiences? Why is there so much resistance in mathematics
classrooms. (Note my use of the word resistance. Others may use 'disruption',
'indiscipline'. The choice of words we use is politically loaded). Looking at papers
presented to PME conferences leads me to ask further questions. Why do colleagues
feel the questions they work on are important? What interests are served by some of
the research which is carried out? Why is there not a Sociology of Mathematics
Education conference? (The answer to this is likely to be both politically and
historically situated.)

Teachers and ideology
Over the years there have been numerous disputes about various aspects of
mathematics education: What is the nature of mathematics? Is mathematics absolutist
or fallibilist? What is an appropriate epistemology? However all this goes on in the
face of increasing disadvantage in our societies. In many ways it may be seen that
schools and the models of psychology on which they are based, actually legitimate
social disadvantage. This is not because schools are failing in their duty, it is rather
because it is the purpose of institutionalised schooling to maintain social
disadvantage.'

In all of this though we have to admit that teaching is carried out by teachers who all
have views on what they are doing. A lot of research has investigated the nature and
structure of teachers' knowledge, and there is an extensive literature. However a
dimension which often does not get attention is the influence a teacher's ideology has
upon the nature of the practices which go on in the classroom.

I want to argue that classroom decisions made by teachers (either interactive or prior
planning decisions) are not rational choices made by looking objectively at the
situation. There are influences and structures of thought which impose themselves on
teachers and these influences and structures of thought are just what is included in the
notion of ideology. In some ways ideology is not a fashionable notion to write about
it is also not an easy one. Current interest in post-structuralism has suggested that
ideology as a notion has no further significance and indeed is no longer credible. This
comes through the deconstruction of the 'subject' and rejection of essences. It is not my
intention to give a thorough critique of ideology. This discussion will therefore be a
limited exposure to those parts of the debate which I feel are essential. A fuller critique
of the notion of ideology can be found in (amongst others) (Althusser 1971; Eagleton
1991; Hall 1996; Laclau 1977; Larrain 1979; Larrain 1983; Larrain 1996; Marx and Engels
1846)

4 I recognise this may be considered a controversial claim to make. However it is no more controversial that
to claim that it is the duty of schools to help individual pupils to reach their full potential. What is
crucial here is that this is not considered controversial as it does not conflict with dominant hegemonic
perspectives.
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In claiming that schools are mechanisms of reproducing domination, I am not
claiming that it is teachers themselves who are singularly guilty of that oppression.
This is for (at least) two reasons. First, individuals do not only make society, they are
also agents for it. As Jorge Larrain tells us:

Material conditions and social institutions have been produced in human
practice, but they have acquired an independence over and above
individuals, constituting an objective power which dominates men and
women

(Larrain 1983, p 20)
Secondly there is the whole area of the "unintended consequences of intentional
conduct" (Giddens 1979, p 59). In a paper presented to PME 20, Tony Cotton and I
suggested that we needed to draw together the social and psychological if we want to
change mathematics education for a more just society (Cotton and Gates 1996) and i n
responses to that paper some colleagues said that this was non-contentious. However
there are contentious issues when we begin to explore the unintended consequences.

A well used quote from Karl Marx is pertinent here :
The ideas of the ruling class are in every epoch the ruling ideas, i.e. the
class which is the ruling material force of a society, is at the same time its
ruling intellectual force. The class which has the means of material
production at its disposal, has control at the same time over the means of
mental production, so that thereby, generally speaking, the ideas of those
who lack the means of mental production are subject to it. The ruling ideas
are nothing more that the ideal expression of the dominant material
relationship. .. hence among other things [they] rule also as thinkers, as
producers of ideas, and regulate the production and distribution of the
ideas of their age.

(Marx, 1846 #85)
Interestingly the word 'ideology' is noticeable by its absence and there is considerable
disagreement about what 'ideology' is. I will therefore give some indication of my
understanding and use of the term. First Alex Callinicos gives a helpful clarification:

More precisely, ideologies are practices which function symbolically,
usually through the generation of utterances, subject to definite norms and
constraints. Very often these norms and constraints derive from the
prevailing structure of class power.

(Callinicos 1983, p 135)
The two important ideas here are the symbolic nature of practices generated through
utterances, and secondly the derivation of the norms from the class nature of society.
On the first claim, I want to cite such practices as ability discrimination (or 'setting').
There is a discourse in the UK which gives legitimacy to the practice and it is my claim
that these discourses are generated by social norms. On the second, I claim that the
class nature of society and in particular the economic basis lie at the root of such
discourses. I am currently developing this argument. It is I know very unfashionable
but this very unfashionability is of itself a discourse derived by the social structure.

Why am 1 so interested in ideology? I will quote at length form Stuart Hall, who
articulates my position better than I could:
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The problems of ideology is to give an account, within a materialist theory,
of how social ideas arise. We need to understand what their role is in a
particular social formation, so as to inform the struggle to change society
and open the road towards a socialist transformation of society. By ideology
I mean the mental frameworks - the languages, the concepts, categories,
imagery of thought, and the systems of representation which different
classes and social groups deploy in order to make sense of, define, figure
out and render intelligible the way society works. The problems of ideology
therefore concerns the ways in which ideas of different kinds grip the
minds of masses and thereby become a 'material force' In this, more
politicised perspective, the theory of ideology helps us to analyse how a
particular set of ideas comes to dominate the social thinking of a historical
block, in Gramsci's sense; and thus helps us to unite such a bloc from the
inside and maintain its dominance and leadership over society as a whole.
It has especially to do with the concepts and the languages of practical
thought which stabilize to a particular form of power and domination; or
which reconcile and accommodate the mass of the people to their
subordinate place in the social formation. It has also to do with the
processes by which new forms of consciousness, new conceptions of the
world arise, which move the masses of the people into historical action
against the prevailing system.

(Hall 1996, p 26 27)

My interest in ideology then has to do with structuring frameworks, but in a predictive
way by incorporating some element of being able to predict how individuals might
act/think. This may involve: the nature of idea, where these derive, how they are
mediated, the relation between belief and activity, the construction. of 'common sense'
interpretation and its justification. Ideology calling on these characteristics would
seem to be one source of power and discourse (in a Foucauldian sense). This is not to
suggest that ideological forms exhibit any particular form of coherence or consistency.
The lack of consistency in ideology is well known to us all. We accept everyday the
acceptance of contradictory views as well as actions which seemingly contradict our
views. Rationalisation.is a significant feature of ideology too.

Terry Eagleton further suggests that enduring ideologies depend less on blatant
falsehoods than on accurate but partial representations ideologies are therefore
notable for what they do not discuss (Eagleton 1976, p 35). In addition Clifford Geertz
suggests that ideologies represent the world in a way which people find reassuring
(Geertz 1973). It should therefore come as no surprise that some of the arguments I
may develop come to be seen as uncomfortable

Social discrimination and mathematics pedagogy
There is a debate within the mathematics education community regarding the nature
of a 'critical mathematics education'. Such a critical mathematics education would see
itself as preparing individuals to assume critical stances in society, to recognise and
oppose oppressions. Mathematics can play a part by empowering learners through
discussion, conflict of opinion, challenging the teacher, by demonstrating the injustice
in society. It would require learners to pose real problems rather than the fantasy
world currently on offer.

However such debates take place, while little changes in schools. No government to
my knowledge fosters such an approach certainly not the UK; it is not difficult to see
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why. However it is important to look into schools, and work with teachers to
illuminate the processes by which mathematics is a force for dis-empowerment.

By acknowledging the need for a critical social psychology, educators can
begin to identify how ideologies get constituted, and they can then identify
and reconstruct social practices and processes that break rather than
continue existing forms of social and psychological domination. Bourdieu
argues that the school and other social institutions legitimate and reinforce
through specific sets of practices and discourses class-based systems of
behaviour and dispositions that reproduce the existing dominant society.

(Giroux 1983, p 39)
There is a sense in which the everyday reality of schools forces teacher to operate
within a discourse which they may feel unempowered to challenge. By adopting a
critical stance and opening up a dialogue on practices and the relation to the
unintended consequences, we would be developing a more democratic mathematics
education challenging the hegemony of dominant ideologies and how these organise
the practices in schools. We see this socially articulated in the following way:

[Schools] set such a store on the seemingly most insignificant details of
dress, bearing, physical and verbal manners. . . The principles embodied in
this way are placed beyond the grasp of consciousness, and hence cannot be
touched by voluntary, deliberate transformation. The whole trick of
pedagogic reason lies precisely in the way it exhorts the essential while
seemingly to demand the insignificant: in obtaining respect for forms and
forms of respect which constitute the most visible and at the same time the
best hidden manifestations to the established order.

(Bourdieu and Passeron 1977: 2nd Edition 1990)
Bourdieu's insight here exposes the duality of social norms: they are both imposed
upon individual's thinking, as well as articulated by individuals. Bourdieu's
description has considerable relevance to mathematics education. Not only do teachers
of mathematics play their part in demanding the insignificant, the dominant practices
demand a respect for forms of authority and respect whose unintended consequence is
the continuance of the established order. In particular I am referring to common
practices such as ability grouping, 'investigations', authoritarian pedagogy, assessment
strategies.

Robyn Zevenbergen places constructivism in a social and political context and draws
the conclusion that it is a 'liberal bourgeois discourse' which serves to legitimise the
dominance of powerful social groups (Zevenberger 1996). Michael Apple sees a similar
problem:

Most discussions of the content and organisation of curricula and teaching
in areas such as mathematics have been strikingly internalistic. Or, where
they do turn to "external" sources other than the discipline of mathematics
itself, they travel but a short distance to psychology. . . though it has
brought some gains . . . it has, profoundly, evacuated critical, social,
political, and economic considerations from the purview of curriculum
deliberations. In the process of individualising its view of students, it has
lost any serious sense of the social structures and the race, gender and class
relations that form those individuals.

(Apple 1995, p. 331)
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Agency and structure: the psychological and the social
This leads us into perhaps the central problem of modern social theory: the
relationship between human agency and social structure. (Archer 1988, p ix)
The essence of the issue here is given by Marx:

Men make their own history, but they do not make it just as they please;
they do not make it under circumstances chosen by themselves, but under
circumstances directly encountered, given and transmitted from the past.

(Marx 1852)
In this comment, Marx sums up the tension in acting in a social world pre-empting
social constructionism. Social life is a product of active subjects, working within
constraints which they may chose to ignore. Some are self imposed, others imposed
from without. I see a form of recursion here. Society is not merely individuals
working within an imposed and constraining social structure. Rather it is a dynamic
system in which structure is both formulated by and imposed upon actors. More
recently Anthony Giddens puts it this way:

All human action is carried out by knowledgeable agents who both
construct the social world through their action, but whose action is also
conditioned and constrained by the very world of their creation.

(Giddens 1981, pps 53 54)
Embedded here is the argument for a reorientation in the psychology of mathematics
education to see the frameworks and theories we use as politically located, and
legitimising particular social norms. Arguments that place psychology outside of or
above social structure are no longer tenable.

Structure is not 'external' to individuals: as memory trace, and as
instantiated in social practices, it is in a certain sense more 'internal' than
exterior to their activities in a Durkheimian sense. Structure is not to be
equated with constraints but is always both enabling and constraining.

(Giddens 1984, p 25)
This is a helpful development, and for me brings together Marxian perspectives of
consciousness, Bourdieu's notion of habitus and Foucault's notion of power. In order
to develop the nature of mathematics pedagogy then we need to adopt a perspective
which explores the social structure of society and the roles played by teachers, learners
and theories of learning. In addition it requires us to recognise the existence and
nature of oppression, and how this comes about both through social stratification and
human practices. What is important is to look at then is:

How it comes about that structures are constituted through action and
reciprocally, how action is constituted structurally.

(Giddens 1976, p 11)
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MEANING OF PROOFS IN MATHEMATICS EDUCATION'

Juan D. Godino, University of Granada (Spain)
Angel M. Recio, University of Cordoba (Spain)

Abstract
The main characteristics of the meaning of proof in different institutional
contexts -logic and foundations of mathematics, professional mathematics,

empirical sciences, daily life, and school mathematics- are analyzed.
Consequently, the necessity of inserting the study of the epistemological and
didactic problems posed by the teaching of proof in mathematics classrooms
within the more general framework of human argumentative practices is
deduced. The superposition is also observed at different teaching levels for
the different institutional and mathematical meanings of proof, which might
explain some students' difficulties and cognitive conflicts.

1. Introduction
Growing interest in the problems of the teaching and learning of proof is

presently to be found within Mathematics Education (Hanna, 1995; 1996).

Research publications on this subject have increased over the last five years (see

the special issue in Educational Studies in Mathematics, 1993), though we also find

earlier relevant contributions (Lester, 1975; Bell, 1976; Fischbein, 1982; Balacheff,

1987; etc.)
This interest is justified by the essential role of validation situations within

mathematics, and by the students' poor level in understanding and building
mathematical proofs (Senk, 1985; Recio and Godino, 1996; Harel and Sowder, in

press).
In spite of the aforementioned research, there is still room for research into

clarifying the meaning of mathematical proof, its different types and mutual
relationships. In particular, the idea of demonstration ,which is understood in a
rigid and absolute way by the mathematical community, seems to be the sole, valid
conception. We consider it necessary to carry out a systematic study of the various
meanings of proof, not just from the subjective point of view, but also in the
different institutional contexts. This study would allow for a comparison of the
different research contributions, posing new investigation problems, alternative
interpretations of students' difficulties and elaborating new didactic proposals.

This report has been founded by DGES, MEC. Project PS93-0196.
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In this research report, we analyze the different meanings that the idea of
proof takes in different institutional contexts, using the theoretical framework by
Godino and Batanero (1994) and Godino (1996), concerning mathematical objects
and their meanings. Here, this implies taking the validation situations and the
corresponding argumentative practices as primitive notions. Proof notions emerge
from argumentative practice systems. We, furthermore, distinguish between
personal and institutional dimensions thereof.

2. Situations of validation and argumentative practices
The word 'proof' is used with various senses in different contexts.

Sometimes these various senses are recognized through terms such as 'explanation',
'argumentation', 'demostration', etc. Though in all theses cases there is a common
idea, that of justifying or validating a statement (thesis) by providing reasons or
arguments -, in fact, the differences in the types of situations in which they are
used, their characteristic features and the expressive resources used in each case
can be different. These changes in situations and argumentative practices suggest
different senses of the concept of proof, e.g., various "object proof" according to
our ontosemantic model.

In this paper we shall use the term 'proof' to refer to the objects emerging
from argumentative practices (or arguments) systems accepted at the heart of a
community, or by a person, in validation and decision situations. That is to say,
situations that require justifying the truth of a statement, or the efficacy of an
action.

An important distinction between analytical and substantial arguments is
made by Krummheuer (1995), following Toulmin. Analytical arguments,
characteristic of correct logic deductions are tautological. That is, a latent aspect
of the premises is visibly elaborated, but they add to the conclusion nothing more
than what is already a potential part of the premises. Substantial arguments, on the
contrary, expand the meaning of the propositions to the extent to which they
adequately relate a specific case by means of updating, modification, and/or
application.

From a cognitive viewpoint, we consider that the relationships between
reasoning and argumentative practices are those established between a construct
and its empirical indicators. Balacheff (1987, p. 148) defines the reasoning as the
"very often not explicit intellectual activity of manipulating information to produce
new information from data". From our perspective, this intellectual activity gives
rise to personal or institutional argumentative practices, which constitutes its
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ostensive dimension. Simultaneously, reasoning is developed by means of such
practices, so that the study of reasoning is intrinsically linked to the study of
argumentation.

In the next section we shall show that a proof is a contextual and pragmatic
attribute of a discursive practice.

3. Meanings of proof in different institutional contexts
From a cultural viewpoint, Wilder (1981) wote that, "we must not forget

that what constitutes 'proof' varies from culture to culture, as well as from age to
age" (p. 346). We are trying to show that this relativity must be widened to
different institutional contexts, when we are interested in psychological and didactic
problems involved in the teaching of proof.

We consider that a context or institutional framework is a local viewpoint or
perspective concerning a given 'problematique' , characterized by using expressive
resources and specific tools, as well as habits and specific behavior procedures. In
this section, we shall study the diversity of proofs according to the following
institutional contexts: logic and foundations of mathematics, professional
mathematics, daily life, empirical sciences and the teaching of elementary
mathematics (including primary, secondary and university levels). We have to
recognize that in each of these contexts it is also possible to identify more local
viewpoints in which the problem of truth and proof takes on specific connotations.
However, we consider that the level of analysis adopted in this paper is sufficient
to show the diversity of identificable 'object proof, and in particular that there is
no uniform theory and practice firmly established about mathematical proof.

3.1. Logic and foundations of mathematics
In these contexts, the veracity of a theorem rests on the validity of the logic

rules used in the proof; the theorem appears as a logical and necessary consequence

of the premises, through the corresponding deductive inference. A statement (or
theorem) accepted as true has a universal and intemporal validity.

It is also important to emphasize the nature of the problematic situations that
are faced in these contexts. The aim of the validation process is to justify, with the
maximum guarantees, the truth of the system of mathematical propositions, or at
least part thereof. This implies looking for the minimal independent, non
contradictory and complete system of axioms (self-evident truths), such that the

other mathematical propositions may be derived by applying the inference logic
rules. Hence, it deals with the theoretical problem of organizing and structuring the
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system of mathematical knowledge. The use of formal languages is required to
achieve the greatest guaranties and rigor in this work.

The 'object proof' in these institutional contexts may be synthetically
described as emerging from the system of analytical argumentative formal
practices, and its meaning is given by the intensional, extensional and
representational characteristics described.

Nevertheless, we recognize that substantial argumentation are also used to
justify some statements even in these institutional contexts. In any mathematical
system, the acceptance of axioms or postulates is necessarily reached through
intrinsically inductive arguments. Let's remember what Poincare (1902)wrote :

"What is the nature of mathematical reasoning? Is it actually deductive as it
is ordinarily believed? A deep analysis shows us that it is not so; it
participates to some extent in the nature of inductive reasoning, and that is
why it is productive" (p. 15)

3.2. Professional mathematics
As regards to the real practice of mathematics, the notion of proof clearly

differs from formal logic and foundation studies in mathematics .

Formal proofs become extraordinarily complex, which in practice makes the
complete formalization of proofs in many mathematic investigations impossible,
even when it would be feasible, in principle.

"They may require time, patience, and interest beyond the capacity of any
human mathematician. Indeed, they can exceed the capacity of any available
or foreseeable computing system" (Hersh, 1993, p. 390).

As asserted by Resnick (1992), this makes contemporary mathematics full of
"working proofs", i.e., informal and non axiomatized proofs.

In the field of professional mathematic, proofs are deductive but not formal.
They are expressed through ordinary language completed with symbolic expressions.
There is no generally accepted standard of rigor for systemizing mathematical proof.

In this way, mathematical theorems in fact lose their character of absolute
and necessary truths. Real mathematics acquires a falibilist, social, conventional,
and temporary character. This situation induces us, in real mathematical practice,
to describe proof as a 'convincing argument, as judged by qualified judges' Hersh
(1993, p. 389).

The problem faced by professional mathematicians is to solve new problems,
to increase the knowledge body, and, secondarily, to organize and found the whole
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system of mathematics. The highest degree of safety of the work carried out by
people interested in the foundations of mathematics is not required.

3.3. Experimental sciences and daily life
Proof, in these contexts, is mainly based on substantial arguments (empirical

inductive, analogical, etc. ) from which we conclude that what is true for some
individual in one class is true for all the members of that class, or that what is
sometimes true, will be true in similar circuntances, or with a given probability. The
simultaneous use of deductive arguments, in particular statistical inferences, is not

discarded:
the validity of the statements does not have a universal and absolute character;
their validity is increased when more facts supporting the statement are shown or

produced;
- an example that is not fulfilled does not thoroughly invalidate the sentence.

Proof uses the expressive resources of ordinary language, symbols and any
type of concrete devices.

In the experimental sciences, experiments or observations are made with
maximum care, controlling all possible factors that might influence the results. They

also use symbolic resources.
Reasoning by analogy plays an important role in natural reasoning showed in

our daily inferences. All analogical inferences start from the similarity of two or
more things, concerning one or more aspects, concluding with the similarity of those

things in another aspect.

3.4. Proof in the mathematics classroom
As a rule, mathematical theorems are necessarily true for secondary and

university level curricula, textbooks and mathematics teachers. But arguments
establishing their truth are frequently informal-deductive, not deductive, or they are

even based on external authority criteria.
Elementary mathematics -including mathematics at university courses is a

knowledge whose truth is considered to be completely certain. There are some
proofs for theorems accepted by the generality of the professional mathematicians.
Therefore, this knowledge has not the falibilist character attributed to advanced
mathematics, or at least, is presented in this way in textbooks and in mathematics
classrooms.

In these institutional contexts, particularly at the higher levels, students are
expected to acquire the capacity of understanding and carrying out mathematical
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proofs, to establish the truth of theorems with absolute safety, and to convince
themselves and any person of such unquestionable truth.

This is an idiosyncratic use of proof, different from what is done by
professional mathematicians. Mathematicians must develop proofs to convince
referees for journals; mathematics students must convince themselves, and convince
the teacher of the necessary and universal truth of theorems.

4. Personal meanings of proof
The process employed by a person to suppress doubts about the truth of a

conjecture is called proof scheme by Harel and Sowder (in press): "A person's proof
scheme consists of what constitutes ascertaining and persuading for that person" (p.
12). The different categories of proof schemes they identify represent a cognitive
stage, an intellectual ability in students'mathematical development, and are derived
from the actions taken by the students in their process of proving.

In the ontosemantic model developed by Godino and Batanero (1994), these
proof schemes could be personal or mental objects, and their meanings are the
systems of practices carried out by the person involved in decision and validation
situations.

Harel and Sowder distinguish three main proof scheme categories: based on
external convictions (ritual, authoritarian and symbolic), empirical (inductive and
perceptual) and analytical (transformational and axiomatic).

For these authors, the high incidence of the three subtypes based on "external
convictions" and of empirical-inductive proof schemes in the students could be
explained by the influence of school habits, which reinforce such types of
argumentative practices.

The analysis presented in the previous sections suggests, indeed, that within
elementary mathematics classes argumentative, not analytical practices, may prevail,
mainly at primary and secondary school teaching levels. These arguments
unconsciously implemented by mathematics teachers might be extrapolated from
other institutional contexts, such as daily life or empirical sciences.

Furthermore, the role played by substantial argumentation in the phases of
searching and formulating conjectures in problem-solving should not be forgotten.
Analytical arguments, characteristic of mathematical proof, are not the only
argumentative practices of professional mathematicians to convince themself about
the truth of their conjectures. This form of reasoning is frequently sterile, even an
obstacle, in the phases of creation and discovery in problem-solving, where forms
of substantial argumentation, in particular empirical induction and analogy, are
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allowed and even necessary. We may recall the words of Polya (1944, p. 116):
"Mathematics presented with rigor is a systematical, deductive science, but
mathematics at the embryo stage is an experimental, inductive science".

5. Conclusions and implications for research and teaching
Certainly, we may appreciate some common features in the uses of the word

'proof' in the different institutional contexts described. This allows us to think about
proof in a general sense. But this generic, abstract, metaphysical way of thinking,
should not conceal the rich and complex variety of meanings acquired by the
concept of proof, or, better, by the diversity of 'object proof' each one of them
exists with a local meaning for the members of such institutions. We believe it is
interesting to consider that there is not just a single concept of proof but several,
depending on the subjective and epistemological viewpoint, when we are interested
in the psychological and didactic problems involved in the processes of validating
mathematical propositions (Godino and Batanero, 1994).

By recognizing this diversity of objects and meanings, we shall be in a better

position to study the components of meaning, the circumstances of their
development, the roles performed in the different contexts. In fact, we would better
understand the ecological relationships established between objects and the systemic
nature of their meaning. This ontosemantic modelization can help to take into

account the cognitive conflicts posed to each person forced to participate as a subject

in different institutional contexts.
Since students are simultaneously subjects of different institutions, at the heart

of which different argumentative schemes are carried out, it seems reasonable that
students may have difficulties in discriminating the respective use of each type of
argumentation. Consequently, we consider that such institutional proof schemes
might be explanatory factors for subjective schemes, and therefore they should be
taken into account and investigated in depth.

It is necessary to somehow articulate the different meanings of proof, at
different teaching levels, thereby developing progressively among the students the
knowledge, discriminative capacity and rationality required to apply them in each
case. Informal proof schemes cannot just be considered to be incorrect, mistakes or

deficiencies, but rather as stages in achieving and mastering argumentative
mathematic practices.

Understanding and mastering deductive argumentation by students require the

development of a rationality and a specific state of knowledge. It demands "the
adhesion to a problem that it is not that of the efficiency (exigency of practice) but
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rather that of rigor (theoretical exigency) (Balacheff, 1987, p. 170). But the
construction of this rationality is a progressive process that requires time, as well
as ecological adaptations of the 'object proof(didactic transpositions) at different
teaching levels.
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This paper discusses the presentation and analysis of students' perceptions of
a concept as they interact with different dynamic representations made
available through computer environments. The diagrams used as tools in this
process represent a historical sequence and aim to show the limitations in
students' perceptions, their generality and the way they are interconnected.

One of the problems analysing a longitudinal study of students interacting with
different representations of a concept is how to capture students' progress through the
environments. A methodology was developed (Comes Ferreira, 1997)1, while
investigating students' perceptions of function as they interacted with the different
dynamic representations made available through computer environments. This
culminated in a visual presentation of the evolution of perceptions of a concept the
blob diagram which is the subject of this paper.

Brief description of the research

In this research project, a selection of properties of function (range, periodicity,
variation, turning point and symmetry) was distinguished. The study sought to
analyse how students come to discriminate, generalise, and synthesise these
properties while working with software in activities designed to encourage
exploration of the dynamic features of the programs.

Two software programs which exploit the possibilities of computers to explore
representations of functions by continuous movement were selected: DynaGraph
(DG) (Goldenberg et al, 1992) and Function Probe (FP) (Confrey et al, 1991a).
DynaGraph allows students to vary-the-variable of a function in a visual
representation and to observe the variation of its image. Function Probe allows
continuous and direct transformations of graphs, which change the status of the
Cartesian system into an action representation (Kaput, 1992). Thus, the research was
designed specifically to investigate how the dynamic tools of DynaGraph and
Function Probe might structure students' perceptions of function properties. Both
programs were used in the creation of microworlds consisting of the software tools
and a set of activities.

The design of the microworlds involved: the selection of four families of functions
(constant, linear, quadratic and sine functions) from which twelve functions were

1 This research was sponsored by CAPES and developed at the Institute of Education.
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chosen which highlighted the properties through exploring with the software;
elaboration of activities of description/guessing and classification of the functions
which led to developing a language for discussion; adaptations of DynaGraph, DG
Parallel (with x-axis and y-axis disposed in parallel) and DG Cartesian (with
Cartesian system) to enable exploration of the selected functions without the students
having access to the corresponding equations. In both adaptations, the activities
involved a game where the variable y was represented by a striker. For a complete
description of the microworlds, see Gomes Ferreira (1997).

In order to investigate the use of these microworlds against a background of the
Brazilian curricula, the study was undertaken with four pairs of Brazilian students
who had already studied functions at school. A pre-test and an analysis of the school
approach to functions served as starting points. Both focused on the chosen
properties, revealed students' previous perceptions and pointed some obvious
potential over-generalisations and barriers. These were compared to the range of
epistemological obstacles revealed during the research activities.

The pairs of students followed the microworld activities in two different sequences:
two pairs did the activities in both DG Parallel and DG Cartesian followed by the
activities in FP, and the other two pairs followed the activities in the opposite order.

By working with multiple representations of function, the study investigated how the
students came within each of the microworlds to discriminate and generalise each of
the function properties. It also investigated the syntheses made between perceptions
derived from activities in different microworlds and those constructed in school. A
final interview was undertaken to investigate how students made link during the
activities as well as to motivate new links if possible.

A longitudinal analysis was undertaken tracing the evolution of students' perceptions
of the function properties while interacting with the microworlds, giving
consideration to the origins of these perceptions and the set of functions to which
these perceptions could be applied from a mathematical viewpoint. This analysis
attempted to identify the main aspects of each of the microworlds which appeared to
contribute to the students' progress.

Representations and concepts

Schwarz & Bruckheimer (1988) argue that "Although the concept of function and its
subconcepts are not theoretically linked to a particular representation ... the properties
of a function are often understood in their representational context only and no
abstraction of these properties is made by the beginning students" (p.552). This
argument shows the unfeasibility of disconnecting concepts from their
representations. An alternative notion of concept offered by Confrey et al (1991b)
takes the position that: "representations and ideas are inseparably intertwined. Ideas
are always represented, and it is through the interweaving of our actions and
representations that we construct mathematical meaning" (p.17). In an approach
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which considers that conceptual understanding arises from making connections
across different representations (see Noss & Hoy les, 1996), the main interests were:
to investigate the characteristics of each perception as articulated within different
representations and to investigate whether the use of multiple representations leads to
some convergence across representations

The research used the ways students described functions as evidence of their
understanding of the function properties and the different perceptions as revealed in
the interactions with the software can be interpreted as a map of students'
understanding of the concept.

A model to analyse students' perceptions

Researchers have been working with a model to analyse students' understanding
which classifies the acts of understanding into four categories (Hoy les & Noss, 1987;
and Sierpinska, 1992): Using, Discriminating, Generalising and Synthesising. 'Using'
is the act of using a concept as a tool for the functional purpose of achieving
particular goals. 'Discriminating' is the act of explicating different parts of the
structure of a concept. 'Generalising' is the act of extending the range of applicability
of these parts. In the process of generalising, new aspects of the structure of a concept
are discovered. Finally, 'Synthesising' is the act of integrating different
representations of the same knowledge in different symbolic forms derived from
different domains into a whole. Thus, conceptual understanding arises from making
connections across different domains.

The research adopted three of the phases DGS. It investigated these perceptions
through different representations embodied in different microworlds, and the analysis
needed a model which could categorise acts of perceiving within and between
representations. As the study examined different properties of functions, the model
could not be linear model. DGS is not linear and the categories are not necessarily
followed in ascending order. Rather, it is spiral considering that students can be
working simultaneously in different categories depending on the property as well as
the representation. The research tried to trace the path of students' perceptions of each
function property as revealed in the interactions with the three different microworlds.

Construction of a blob diagram

The longitudinal analysis was divided into three phases. First, a summary of students'
previous knowledge was made from the analysis of their pre-tests. Second, the
students' perceptions of the property constructed during their interactions in the
research environment was examined, in particular how and when they came to
discriminate, generalise, associate, and spontaneously synthesise their different
perceptions of the properties. Finally, the connections motivated in the final interview
were identified. From this analysis a report of students' perceptions was created for
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each property, together with a table of the students' perceptions of the property for
each function in each microworld. All these analyses were brought together in a blob
diagram.

The blob diagram is an adaptation of the
one used by Hoy les & Healy (1996)
which presented information about a
longitudinal approach. Here, an
improved version will be presented to
illustrate the perceptions of monotonicity
developed by Jane & Anne, one of the
pairs of student subjects in the research.

The interactions in each microworld (and
pre-test) are summarised in one
pentagon. The pentagons are displayed to DG Par DG Cart

allow two microworlds to be linked without passing through a third microworld and
to keep the sequence of the microworlds. Diagram 1 shows the disposition of the
pentagons for Jane & Anne, who followed the activities from DG to FP.

Each perception evidenced in the report was represented by one blob which is
shaded. As a topological diagram the position of each blob inside a pentagon has no
meaning. The shade of each blob indicates the families of functions to which the
students discriminated and generalised the perception:

Constant functions Quadratic functions The set of function was not

Linear functions Sine functions clearly identified a general
perception.

to differentiate perceptions as Diagram 2
Pentagon of the pre-test

Diagram 1 Disposition of the
pentagons in Jane & Anne's blob diagram

Pre-test FP

The blobs are labelled
follows:
T referring to a term;
D - defining a term (in the pre-test only)
P characterising functions.

Anne defined the term 'increasing' by "when a>0"
referring to linear coefficient. Thus, two blobs are placed
inside the pre-test pentagon. One for the terms
`increasing' and 'decreasing' labelled T1, and one for
"when a>0" labelled DI. Both blobs were linked by a line
labelled a which represents this connection (see diagram
2). Connections between different perceptions are shown
by lines linking the blobs. Connections were only
represented if there was clear evidence from the
transcripts that a link had been made by the students. Each link is denoted by a Greek
letter to facilitate reference in the text.

Pre-test
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Jane's definition emphasised polarisation when analysing graphs: "increasing is a
function that reaches positive value at the system (y>0)" (D2) (see link (3).
Despite being given as general perceptions, both definitions are in fact valid only for
linear functions, thus, diagram 2 presents the shade of blob T1 for linear functions.

Despite the fact that these definitions were linked only for linear functions, Jane &
Anne were also able to interpret any graph in a variational way (P1) when they were
asked about the behaviour of y when x increased. The generality of this perception is
represented in diagram 2 by inscribing blobs into blobs. The separation between P1
and the other blobs highlights the evidence that the students used T1 only for linear
functions.

In DG Parallel, Jane & Anne developed a
variational perception of monotonicity
articulated within the microworld 'when x is
positive, y follows x or y doesn't follow x' (P2)

to linear functions and then to generalise to
parabolas (see diagram 3). Generalisations of a
perception are represented by inscribing one
blob inside another. The rule 'when x is
positive, y is positive' (P3 in diagram 3) was
used by the students to recognise monotonicity
for linear functions. P3 was also generalised
among quadratic functions and sine functions.
Link 8 was included because P3 was a result of
the students' attempt to generalise P2 while
analysing the function of y=x-6. Jane replaced
P2 for P3 which involves a polarisation of
knowledge.

The analysis of the sine functions in DG
Parallel also led the students to revise P3.
However, they only classified the striker of a
sine as "the striker changes many times" (P4)
(see link x). Note that P4 has no direct correspondence to monotonicity from a
mathematical viewpoint. Blobs are divided into two types: circles and squares.
Perceptions without correspondence with the property from a mathematical
viewpoint are represented with squares, instead of circles. They also present shades.

Diagram 3 clearly shows the separation between knowledge from the pre-test and
those built in DG Parallel. It also shows two kinds of perceptions the students had of
monotonicity. The first is connected with the term 'increasing' which reflects their
previous knowledge about monotonicity. The second group of perceptions is
variational.

Diagram 3
Pentagon of DG Parallel

Pre-test

DO Parallel

Reflecting this separation, in DG Cartesian Jane & Anne presented two distinct sets
of perceptions (see diagram 4). The perception P2, which was articulated within DO
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Parallel, was brought to DG Cartesian. On analysing the behaviour of x and y only,
they changed 'y follows x' into "when x is going to positive, y is going to the
positive" (P5) (see link e). The second set of perceptions (P6 and .P1) was linked with
their previous perception of monotonicity by the direction of the straight line traced
by (x,y) (P6) (see link 4)). Although the perception of the term 'increasing' was
confined to linear functions, the students gave a variational interpretation (P1) for the
property in DG Cartesian (see link y). This perception was also presented in the pre-
test, but there, P1 was not linked to the term 'increasing'. That is the reason to repeat
the label PI. Same perceptions in different microworids are given the same label.
Note that link y reduced the sample in which the students generalised P1 to linear
functions which is very clear in diagram 4 by the shades of P1. This confirms the
existence of an obstacle while using the term 'increasing' a terminology used in
school mathematics.

Diagram 42 Addition of the findings from DG Cartesian to the final interview

Pre-test FP

DO Parallel

2

Ti- Terms 'increasing' and 'decreasing'
P1 Read through a graph the behaviour of y
while x increases
P2 When x is positive, 'y follows x' or 'y
doesn't follow x'
P3 - Rules like: when x is positive, y is positive
P4 When x is positive, y changes orientation

DO Cartesian

P5 Rules like: when x is going to the positive
side, y is going to the negative side
P7 Graph stops growing and starts decreasing
Pg 'y follows x' or 'y doesn't follow x'
P9 Straight lines is recognised by y moves in
only one orientation
D a>0
D2 Graph reaches the positive (y>0)
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In FP the students used 'direction of straight lines' (P6) to recognise whether a linear
function was 'increasing' or 'decreasing' . Note that it is a similar link to the one
already discussed between perceptions in DG Cartesian and the pre-test, thus, it is
also labelled by $. As in the case of the perceptions, similar connections are
represented by the same letter. As the link was evidenced only with the term not with
P6 in DG Cartesian, they were not linked in the diagram despite being the same label
and having an indirect connection.

Once more a variational perception of monotonicity (P7) when applied to non-linear
functions were not connected to the terms 'increasing' and 'decreasing' from school
knowledge. While exploring extreme values in FP, Jane & Anne interpreted the graph
of y=-0.25x2 as increasing or decreasing (P7).

Diagram 4 shows two compartmentalised sets of perceptions: one linked to the terms
but restricted to linear functions, other more generalisable but disconnected from the
school term.

As the final interview investigates the connection between different perceptions in
different microworlds, their blobs and links had to be added in the pentagons. The
lines and the blobs have two colours to distinguish the perceptions and connections
built spontaneously while working with the microworlds and pre-test and motivately
in the final interview: black and grey. The black ones were used for spontaneous
perceptions and links while the grey ones are for the motivated ones. Motivated links
are distinguished by an asterisk as a visual aid in the text. For example, Jane & Anne
connected 'direction of a straight line' (P6) to 'y follows x' or 'y does not follow x'
(P2 and P8) (see links t*, (19* and ri*). They also connected this perception to the term
`increasing' or 'decreasing' restricted to straight lines (see link X *). These two
connections passed through an association (P9). In order to achieve the above-
mentioned syntheses, the students identified 'strikers that move in only one
orientation' as being 'straight lines'.

On trying to generalise the connection to the striker of y=-0.25x2, they used the rule
(P3) 'when x is positive, y is positive' meaning 'y follows x' (see link 8*). This is
similar to link 8 but elaborated in the final interview, thus, it received an asterisk.

Conclusion

The main assertion of this paper is that the construction of the blob diagram served
two purposes: it was a tool for analysis and helped to identify points of development
as well as a means of presentation of the longitudinal analysis of students'
interactions with different microworlds. Studying the diagrams for different students
showed visualisation of:

isolated perceptions;
continuity in the process of constructing an idea;
revision and generalisation of perceptions;
connections between perceptions expressed in different microworlds;
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how one microworld (DG Cartesian in the case) served as a bridge between
perceptions in other microworlds;
difficulty of perceiving a property in a microworld;
dominant perceptions;
the path traced through the sequences of microworlds;
how some perceptions were blocked by others.

The diagram also presents a historical analysis which includes perceptions from the
pre-test to the final interview for which a post-test could be substituted. Moreover, its
design is easily adaptable to more microworlds or settings of further studies. The use
of this diagram allowed Gomes Ferreira (1997) to extract the main points of students'
perceptions from the detailed analysis of transcripts derived from her study.
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