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Polynomial Logistic Regression

Abstract

Many large-scale testing programs routinely pretest new items alongside operational (or scored)

items to determine their empirical characteristics. If these pretest items pass certain statistical

criteria, they are placed into an operational item pool; otherwise they are edited and re-pretested

or simply discarded. Note that in these situations, reliable ability estimates are usually available

for each examinee based on operational items and may be treated as fixed. If so, polynomial (in

ability, 0) logistic regression analyses can be conducted using a variety of statistical software

packages. In this study, a cubic logistic model (0, 02, 03) was found to fit standard three-

parameter (i.e., discrimination, difficulty and lower asymptote) logistic item response theory

(IRT) model items very well. When employing a polynomial logistic model, well-known

selection routines (such as stepwise elimination) can be utilized to reduce the number of required

parameters for certain items, thus reducing the sample sizes needed for reliable estimation. With

this model, simultaneous confidence bands are easily calculated. As an added benefit, given that

a polynomial logistic function is not necessarily monotonically increasing with ability, poor

quality items and incorrect alternative responses can also be fit using the same estimation

procedures.



Pretest Item Analyses Using Polynomial Logistic Regression: An Approach to

Small Sample Calibration Problems Associated with Computerized Adaptive Testing

Liane N. Patsula, University of Massachusetts at Amherst

Peter J. Pashley, Law School Admission Council

As is evident in the measurement literature of the past twenty years, the use of item response

theory (IRT) by test developers to analyze test data has become increasingly prominent. For

example, Law School Admission Council (LSAC) currently utilizes IRT methodology to assess

the characteristics of pretest items, to direct form assemblies, and for equating purposes. The

three most popular IRT models in common use are the three-parameter logistic (3PL) model

(Birnbaum, 1968), the two-parameter logistic (2PL) model (Lord, 1952), and the one-parameter

logistic (1PL or Rasch) model (Rasch, 1960). These models are appropriate for dichotomous

item response data. The 3PL is the most general model and is defined mathematically as:

cP(6) = c + 1

(1)
1 + e -1'741(8 b)

In this model, P(9), the probability that a randomly chosen examinee with ability e will respond

correctly to an item, is defined by the discrimination (a), difficulty (b), and pseudo-guessing or

lower asymptote (c) parameters. The scaling constant 1.7 (or sometimes 1.702) is often included

so that the item parameters a and b correspond approximately to those that would have been

obtained had a normal-ogive function been employed instead of a logistic function (see next

section for more details on the logistic function). The 2PL and 1PL models are restricted cases

of the 3PL model.

The number of item parameters required is usually dictated by the types of items being used and

the responses they elicit. For example, multiple-choice items can be answered correctly through

3
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Polynomial Logistic Regression

guessing and so a lower asymptote adjustment (i.e., the inclusion of a c parameter) is often

needed to help model the behavior of low ability examinees. If this is not the case, as with

constructed response items, the c parameter might be dropped, and a 2PL model, which accounts

for differences in discrimination and difficulty across items, may be used. If a lower asymptote

adjustment is not needed and the items are very similar with regard to their discriminating power

(resulting in a constant a parameter across all items), a 1PL model may suffice; the 1PL model

simply differentiates between items on the basis of difficulty.

Due to the mathematical complexity of the parameter estimation procedures associated with all

of these IRT logistic models, computer programs are almost always employed to accomplish that

task. The most popular packages for estimating the parameters of a 3PL model are LOGIST

(Wingersky, Barton, & Lord, 1982) and BILOG (Mislevy & Bock, 1984, 1986), the latter of

which is used at LSAC. LOGIST employs a joint maximum likelihood estimation procedure

(Birnbaum, 1968) to estimate item (a, b, c) and person (e) parameters. According to Wingersky

(1983), large numbers of examinees and items (on the order of 1,000 or more examinees and 40

or more items) should be used to obtain stable 3PL model parameter estimates in LOGIST.

BILOG is a more recent estimation program that utilizes marginal maximum likelihood (Bock &

Aitkin, 1981) and Bayesian estimation procedures (Mislevy, 1986). Both LOGIST and BILOG

can also calibrate items assuming the more restricted 2PL and 1PL models. BILOG usually

requires slightly fewer numbers of examinees and items than LOGIST to obtain stable parameter

estimates (Mislevy & Stocking, 1989; Qualls & Ansley, 1985; Yen, 1987). However, a general

rule-of-thumb suggests that sample sizes of at least 1000, 500, and 300 examinees are needed to

accurately estimate the parameters of the 3PL, 2PL, and 1PL models, respectively (Hambleton,

Swaminathan, & Rogers, 1991). As with any statistical estimation procedure, if fewer

parameters need to be estimated, fewer data points are usually required.

While both LOGIST and BILOG can calibrate items assuming the 3PL, 2PL or 1PL model, users

of these packages must specify a priori which model should be applied to all items. This is true

even though the data may suggest that some items do not require a c parameter, for example.
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Polynomial Logistic Regression

This requirement by LOGIST and BILOG probably results in an over-parameterization of

datasets in many cases. Many theorists (including most Rasch modelists) believe that the 3PL is

fundamentally over-specified (e.g., Wright & Stone, 1979). Note that LOGIST attempts to

overcome this problem of over-specification by allowing users the option of estimating a

common c parameter for a subset of items, and BILOG allows users to specify prior distributions

for the parameters to be estimated.

While in general the 3PL may be over-specified, all three parameters are probably needed for

some items. In particular, very difficult multiple-choice items with strong discriminating power

will probably require something like a lower asymptote to model guessing behavior that occurs

throughout the middle to low ability range. Note that guessing behavior is especially prevalent

when there is no penalty for guessing in the scoring of the test.

In practice, some items may require even more than three parameters to accurately describe their

behavior throughout the ability range. Barton and Lord (1981) suggested that an upper

asymptote might be added to account for less than perfect responding by high ability examinees

on some very difficult items. The extremely flexible non-parametric item regressions described

by Ramsay (1991) and produced by his program TESTGRAF (Ramsay, 1993) often estimate

item characteristic curves (ICCs) that exhibit more plateaus then can be modeled by a standard

3PL model. The item regressions of Ramsay can also model the non-monotonically increasing

behavior of poor quality items. One drawback to Ramsay's approach is that users must specify,

subjectively, the level of "smoothness" to be associated with individual ICCs. McDonald (1982)

has also investigated alternatives to the standard IRT models, using polynomial approximations.

One drawback to McDonald's nonlinear models is that they are not constrained to the probability

correct space (i.e., estimated probabilities may be less than zero or greater than one).

This paper investigates another alternative ICC modeling technique that could be used in

conjunction with standard IRT calibrations; namely, polynomial logistic regression. These are

referred to here as "regression" models because ability estimates are not concurrently derived,

5
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but rather are assumed to be known a priori. This situation may occur in practice, for example,

when analyzing pretest items. Typically, in this case the pretest item characteristics are

unknown, but examinee abilities are known (or at least very well estimated) from the operational

(or scored) sections of a test. In practice, some of these pretest items might be poorly behaved.

Pretest item analyses often identify questionable items that sometimes cannot even be calibrated

by BILOG, for example. Some of these items exhibit negative biserial correlations with test

scores, suggesting that the ICCs are not necessarily monotonically increasing functions of ability.

The polynomial logistic regression models investigated here are not necessarily monotonically

increasing functions and thus have the added flexibility to model very unusual items. While

these unusual items might not be used as is, modeling them correctly may relay important

information to test development staff that could be used to edit the items. As an added benefit,

because they are not necessarily monotonically increasing, these more general logistic regression

functions can be used to model responses to individual distractors (or alternatives).

Three different datasets will be used in this study to empirically evaluate the capacity of

polynomial logistic functions to fit item response data. First, a dataset comprised of real

responses to operational multiple-choice items was obtained. Second, after calibrating the real

dataset with BILOG, resulting item and ability estimates were used to simulate standard 3PL

model item responses. Third, a dataset comprised of real responses to pretest items was

obtained. The simulated dataset was used to assess the fit of the polynomial logistic function to

item responses that are known to be standard 3PL. The original operational dataset was used to

assess the fit of polynomial logistic functions to real and well-behaved item responses based on

various examinee sample sizes. Finally, the pretest dataset was used to illustrate the fit of

polynomial logistic functions to real, but not necessarily well-behaved, item responses.

The Polynomial Logistic Model

A general form of the logistic function is

e l
1TO) (2)

1 + e2' 1 + e
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where A is called a logit. One example of a logit is A = 1.7a(0 - b), which is a 2PL logit. Thus,

the 2PL model can be written as

P(6) = 11(1.7a(0 b)) . (3)

If the a parameter in this 2PL logit was assumed constant across all items calibrated, the result

defines a logit for a 1PL model.

The 3PL model (Equation 1) can be re-written as

P(6) = c + (1 c)11(1.7a(6 b)) . (4)

To avoid confusion with other logistic functions discussed below, this standard IRT 3PL will be

referred to as the Birnbaum 3PL in the rest of this paper. Note that the Birnbaum 3PL does not

take the form of a natural logistic function (as defmed in Equation 2) because the c parameter is

not incorporated in the logit. When it is, the Birnbaum 3PL can be defmed as:

P(6) = (1.70(e b) In c
1 c

(5)

Clearly, the complete logit (i.e., where all parameters are incorporated into the logit) of a

Birnbaum 3PL is not linear, as is the case for the 2PL and 1PL models. This fact may explain

some of the estimation difficulties associated with the Birnbaum 3PL model. Figure 1 illustrates

the shape of a typical Birnbaum 3PL in both the probability correct and logit spaces. Upper and

lower asymptotes, defined respectively by 1.7a(0 - b) and ln[c/(1 - c)], are displayed in the logit

space plot. These asymptotes can be intuitively derived from Equation 5 by letting 6 tend to

negative or positive infinity. Note that 2PL models define straight lines in the logit space and

1PL models define straight parallel lines.

7
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A general form of a polynomial logistic function in terms of ability, 0, is

P(0) = + Pie + P262 + 3363 + 1 464 + ...) (6)

where the Pi's are item parameters: As indicated above, the a values will assumed to be fixed,

and the pi's need to be estimated. As with all standard logistic functions, the P(0) in Equation 6

is restricted to be greater than zero and less than one. If the logit in Equation 6 is reduced to its

linear component (i.e., Po + ,e), the result is mathematically equivalent to the 2PL given in

Equation 3.

Preliminary investigations indicated that a third-order (or cubic) polynomial logit is probably

sufficient to model a wide variety of multiple-choice items. To demonstrate the fit of polynomial

logistic functions to 3PL data, figure 2 illustrates the ICC of a typical Birnbaum 3PL item, along

with best fitting linear (i.e., 2PL), quadratic and cubic logistic functions, using a uniform [-3, 3]

ability distribution. The residual plot included in Figure 2 subtracts the true Birnbaum 3PL

probabilities from those calculated from the other logistic functions. Clearly, cubic, and even

quadratic, logistic functions can mimic this typical Birnbaum 3PL item. The 2PL does not do as

well in this case. However, when the fitting is performed using a standard normal ability

distribution, the 2PL does fit the middle and upper portions of this particular Birnbaum 3PL

better, but still not as well as the quadratic and cubic logistic functions.

Simultaneous Confidence Bands: Confidence bands for response functions are good indicators

of the precision with which data are being modeled. Due to the non-linear nature of the logit

associated with the Birnbaum 3PL model, analytical solutions are not available for deriving

associated ICC simultaneous confidence bands, even when ability estimates are assumed fixed

(Lord & Pashley, 1988). In contrast, Hauck (1983) provided a very simple analytical approach to

obtaining simultaneous confidence bands for polynomial logistic models. This approach is now

briefly presented without details.

8
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13/ = (Po, 1'1, P2, (7)

yi = (1, e, e2, (8)

contain the item and person parameters, respectively. Then in matrix notation, Equation 5 can be

expressed as

P(e) = 117(13/y)

In the logit space, a 1 - a simultaneous confidence band for A = 13'y is given by

[AL, Au] [13/?
(x2k+1.ayiv -1y)29 fyy (x2k+1,ayiv -1y)2

(9)

(10)

where V-1 is the large-sample covariance matrix for 13, which is usually estimated by most

statistical packages that perform logistic regression, and the chi-square value has k+ 1 degrees of

freedom, which equals the order of the polynomial used plus one.

The associated simultaneous confidence band in the probability-correct space is then

[pL(e), pu(3)1 = [T(A.L), IF(A.01 (11)

9
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Empirical Analyses

To investigate the cubic logistic regression model empirically, real and simulated data were

analyzed. The real dataset was obtained by randomly sampling 2,000 examinees from the

approximately 42,000 test takers who took a recent administration of the Law School Admission

Test (LSAT)'. The first 100 of the 101 scored items were used for the 2,000 randomly sampled

examinees. All omits (i.e., no responses) were scored as incorrect. The computer program

BILOG was used to estimate item and ability parameters for this dataset, using all default

settings and assuming a Birnbaum 3PL model. As can be seen from the ICCs in Figure 3, many

items require a Birnbaum 3PL model to adequately fit the data. However, some items could be

modeled using the 1PL or 2PL. In practice, though, a single model is usually employed for all

items, rather than different models for different items. The ability distribution from this real

dataset was found to be fairly normal between -2 and 2, as shown in the normal plot in Figure 4.

The mean, standard deviation, and skewness values for the sample of 2,000 examinees were

approximately 0, 1 and -.27, respectively.

The first evaluation of the polynomial logistic function involved fitting data known to be 3PL

(i.e., simulated data). BILOG parameter estimates from the real dataset were treated as "true"

parameters and used to generate a "simulated" dataset of responses of 2,000 simulees to 100

Birnbaum 3PL items. The simulated dataset was then re-calibrated with BILOG. The ability

estimates produced from this second BILOG run, rather than the "true" values, were used as

fixed values for subsequent polynomial logistic regression analyses. (The rationale for this is

that the "true" values are not known in real test data. The ability estimates from the operational

items would be used as the fixed values when performing polynomial logistic regression analyses

'The LSAT is large-scale paper-and-pencil assessment of reading comprehension and
reasoning skills that is generally administered to college seniors and college graduates for use as
an aid in making law school admission decisions. The LSAT currently consists of four sections:
Reading Comprehension, Analytical Reasoning, and two Logical Reasoning, usually
contributing to a 101 five-choice item test. An unscored variable fifth section is also
administered to all examinees in addition to the scored items; the variable section is used to
pretest or pre-equate items.
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on pretest items. Calibrating the simulated data and using the resulting ability estimates is

somewhat analogous to using the ability estimates from operational data while investigating

pretest items, under the assumption of unidimensionality.)

The second evaluation of the polynomial logistic function involved fitting the original "real"

dataset that contained responses that did not necessarily adhere to the Birnbaum 3PL model.

When these items were modeled with polynomial logistic functions, the original BILOG ability

estimates (i.e., from the first BILOG calibration of the real dataset) were used as fixed values.

Again, this procedure is somewhat different from using operational score item ability estimates

as fixed while analyzing separate pretest items. However, the purpose here is to evaluate the

modeling capabilities of the polynomial logistic function, rather than assessing the influence of

fixed ability distributions on fitting items.

Finally, 24 pretest items were analyzed. In this case, ability estimates from the operational (or

scored portion) of the test were assumed fixed for the 1,000 examinees who were given these 24

pretest items and used to fit polynomial logistic functions to all 24 pretest item alternatives.

Large-Sample Results. In general, the cubic logistic regression model was found to mimic

simulated Birnbaum 3PL data very well. The polynomial logistic regressions were performed

using the LOGISTIC procedure in the statistical package SAS. A stepwise selection procedure

was evoked, and reduced models resulted for many items. Table 1 provides counts of the

number of items which required a linear (2PL), quadratic, or cubic polynomial for the simulated

and real datasets. Interestingly, almost half the simulated and real responses were fit well using a

2PL model.

Figures 5-9 illustrate how well the estimated polynomial logistic functions and Birnbaum 3PL

BILOG estimates matched the true Birnbaum 3PL curves. The 95% simultaneous confidence

bands shown are for the polynomial logistic functions. Figure 5 illustrates a typical item from

these analyses; the polynomial logistic function fits very well. Figure 6 provides an example

11
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where the polynomial logistic function does not perform as well as BILOG in the lower and

upper tails, while Figure 7 provides an example where it actually does better in the tails but not

as well in the middle range. Figure 8 illustrates the wider confidence bands that result from

using the full cubic logistic model. Finally, Figure 9 gives a rare example of fitting (or

misfitting) a non-monotonically increasing function. Note, however, that the simultaneous

confidence bands given in Figure 10 always include the true Birnbaum 3PL throughout the

displayed ability range.

Evaluating Birnbaum 3PL Fits. The polynomial logistic function can also be used to assess the

fit of Birnbaum 3PL models to real data. To accomplish this, the polynomial logistic function

calibrations of the real dataset were re-run with an added term. This added term was the

Birnbaum 3PL complete logit (see Equation 5) with parameters estimated by BILOG. If the

Birnbaum 3PL was the best fitting model, one would expect the stepwise selection algorithm to

eliminate all terms but the added logit term and the intercept, and their estimated 3 coefficients

would be expected to be approximately one and zero, respectively. In fact, this occurred for only

56 of the 100 items investigated. Of the rest, 35 were modeled as 2PL and nine others were a

mix of specifications. This analysis indicates that, for at least this data, the Birnbaum 3PL

generally does a good job of modeling real multiple-choice item responses, but could be reduced

to a 2PL in many cases.

Can the 2PL also be reduced to a 1PL for many items? Figure 10 plots the slope versus the

intercept terms for the 48 real items that were modeled well by a 2PL (see Table 1). Clearly

there is a wide dispersion of slope parameters. Some could be grouped to develop small Rasch

(1PL) subtests, but the 48 items taken together certainly do not constitute a Rasch test.

Modeling Response Alternatives. Figures 11 through 14 illustrate polynomial logistic function

fits of correct and incorrect responses to four real pretest items based on responses from 1,000

real examinees. Ability estimates for the examinees were derived from their operational sections

using BILOG. Figure 11 displays a quite easy item with all distractors functioning at about the

12
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chance level. Figure 12 illustrates another easy item, but with one preferred distractor, especially

around the middle of the ability range. Figure 13 illustrates a fairly hard item and, again, one

strong distractor. Finally, Figure 14 displays another hard item, but with a more even pull among

distractors. These types of graphs can be very helpful to test developers who are concerned with

the influence of distractors on item performance. Note that in all these four cases the correct

response ICCs are monotonically increasing, the alternatives are not. So, while BILOG could

model the correct response of these four pretest items, it could not model the alternatives. Within

a pretest item analysis, for example, if one of these four items was miss-keyed, BILOG would

simply skip calibrating it.

Small-Sample Results. Because the use of polynomial logistic regression models have been seen

to reduce the numbers of estimated parameters, one natural application of such models is to the

estimation of item parameters with small sample sizes. As a preliminary investigation of the

effects of small samples on polynomial logistic function estimation, the original dataset

containing real item responses was reduced from 2,000 examinees to samples of 1000, 750, 500

and 250. These samples were chosen to be inclusive in ascending order. That is, the 250

examinees in the smallest sample were also included among the 500 examinees in the second

smallest sample, who were all included in the third smallest sample, and so on. (Note that the

ability estimates used as fixed independent regression variables were calculated from the full

sample, as before.) This design might be appropriate for CAT environments in which statistics

for new items could be checked periodically while they are being pretested. As such, obviously

unstable items might then be removed from pretesting after relatively few responses (i.e., 250 or

500) are collected to release a pretest position that might be used to investigate a potentially

better item.

Table 2 contains selected polynomial logistic function frequencies for the different sample sizes,

including the original sample (i.e., the first row of Table 2 corresponds to the last row of Table

1). As expected, the number of 2PL fits increases as the sample size decreases, because with

smaller sample sizes additional parameters cannot be estimated as well. Interestingly, the largest

13
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increase in frequency of 2PL selection is from the 2,000 to 1,000 sample sizes. This may suggest

that the rule-of-thumb indicating sample sizes of 1,000 are minimally sufficient for 3PL

calibrations might be too low for some cases.

Tables 3 and 4 provide more specific information on the comparative fits of the polynomial

logistic function, based on various sample sizes, versus BILOG estimated Birnbaum 3PL ICCs

for the 100 real items. Note that the BILOG estimates were based on the full 2,000 examinee

sample. Table 3 contains bias statistics for seven ability levels. As expected, the least amount of

bias is found in the middle ability range. Interestingly, for the smaller sample sizes the increase

in bias below the zero ability level appears less than the corresponding increase in bias above the

zero ability level. The root mean square errors (RMSEs) in Table 4 are more symmetrical about

the zero ability level. Tables 3 and 4 suggest that the polynomial logistic function can do a

relatively good job of identifying the shape of ICCs for good quality items, even with small

sample sizes, at least in comparison to large-sample BILOG calibrations.

Figures 15 through 19 provide examples of the fit of polynomial logistic regressions to real item

responses of various sample sizes. These residuals are derived with regard to the BILOG

estimates obtained by calibrating all original real responses to 100 items by 2,000 examinees.

The items displayed in Figures 15 through 19 correspond to those shown in Figures 5 through 9,

respectively. Note that while Figures 5 through 9 are based on calibrations of simulated data, the

curves designated as "True 3PL" are in fact the BILOG 3PL estimates obtained by calibrating all

original real responses to 100 items by 2,000 examinees, which were then used as generating

values.

To make Figures 15 through 19 comparable, the residual scale was kept constant. As a result,

some of the residual curves are cropped in the tails. However, within the range of ability

containing most of the examinees, the residual curves typically lie well within the -.05 to .05

range for these five items, and for most of the remaining 95 items not shown. Some examples to

the contrary do exist, however. For instance, the 2PL model selected for the sample size of 250

14
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in Figure 19 departs markedly from the BILOG 3PL fit below the -1 ability level. Note that the

BILOG 3PL estimate might not always be the best fitting curve for all items. However, given

that residuals typically decrease with large sample sizes, as shown in Figures 15 through 19 (and

in Table 3), there is some indication that the BILOG 3PL model is reasonable for this data.

Summary

Currently, LSAT items, like those of many other large-scale testing programs, are pretested, then

pre-equated, and finally given operationally. Hopefully, poor performing items are weeded out

at the pretest stage. These poor quality items can elicit erratic responses from examinees and are

not easy to model at times, especially with a monotonically increasing Birnbaum 3PL model.

This study investigated polynomial logistic functions as a possible adjunct to the Birnbaum 3PL

model when ability estimates are available and more model flexibility is required, such as in the

case of pretest item analyses.

Results indicate that the polynomial logistic function can fit Birnbaum 3PL items very well.

This model can also be used to evaluate the choice of the Birnbaum 3PL model or reduced

models (i.e., 2PL or 1PL) for a set of data. This was accomplished in this paper by including an

estimated Birnbaum logit term in the polynomial logistic regression specifications and then

seeing whether that term was eliminated or not in a sequential analysis (i.e., by employing a

stepwise elimination procedure).

As the polynomial logistic function is not necessarily monotonically increasing, it can be used to

fit incorrect as well as correct responses. These alternative response curves can be very

informative to test developers who might wish to edit poorly performing items. The precision of

polynomial logistic curve estimation can easily be obtained with analytically derived

simultaneous confidence bands. Finally, polynomial logistic calibrations can be performed with

a variety of popular statistical packages, such as SAS and SPSS. Standard packaged routines

usually provide users with the option of reducing the model specification by selecting out non-
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contributing variables.

In computerized testing programs that provide on-demand assessments, item exposure is more of

a concern than in regularly scheduled paper-and-pencil administrations. To minimize item

exposure and reduce testing time within a computerized testing environment, responses to pretest

items should be collected from as few examinees as possible while still producing reliable item

statistics. Preliminary results given in this paper indicate that a polynomial logistic regression

approach, that includes a variable elimination routine, can provide relatively stable estimates

within small sample conditions.

The findings discussed in this paper suggest that the polynomial logistic regression model might

be a useful tool, especially for the purposes of pretest item analyses under large and small sample

conditions. However, practioners will need to evaluate the efficacy of this model within their

particular assessment environment.

16
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Table 1

Number of Polynomial Logistic Function Types Selected While Modeling

Simulated and Real Responses to 100 Items

Dataset

Polynomial Logistic Function Selected

Linear (2PL) Quadratic Cubic'

Simulated

Original

43

48

39

33

12

19

All third-order models selected were classified as cubic in this table, including some that lacked

a linear and/or a quadratic term.

Table 2

Number of Polynomial Logistic Function Types Selected While Modeling

100 Items with Varying Examinee Sample Sizes

Polynomial Logistic Function Selected

Sample Size Constant Linear (2PL) Quadratic Cubic*

2,000 0 48 33 19

1,000 0 64 21 15

750 0 64 24 12

500 2 71 19 8

250 3 77 9 11

'All third-order models selected were classified as cubic in this table, including some that lacked

a linear and/or a quadratic term.
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Table 3

Polynomial Logistic Function Real Data Calibration Bias° Statistics

for Various Ability Levels and Sample Sizes

Ability Levels

Sample Sizes -3 -2 -1 0 1 2 3

2,000 -0.014 -0.005 0.002 0.001 -0.003 -0.003 -0.003

1,000 -0.022 -0.011 0.001 0.004 -0.003 -0.011 -0.023

750 -0.021 -0.010 0.001 0.003 -0.004 -0.008 -0.016

500 0.001 -0.011 0.002 0.004 -0.004 -0.012 -0.035

250 -0.017 -0.020 0.001 0.006 -0.008 -0.016 -0.054
Bias was calculated as the mean residual from the 100 BILOG estimated ICCs using all 2,000

examinees.

Table 4

Polynomial Logistic Function Real Data Calibration RMSE' Statistics

for Various Ability Levels and Sample Sizes

Ability Levels

Sample Sizes -3 -2 -1 0 1 2 3

2,000 0.029 0.017 0.008 0.006 0.006 0.016 0.031

1,000 0.050 0.030 0.021 0.015 0.015 0.033 0.062

750 0.061 0.037 0.025 0.019 0.018 0.036 0.066

500 0.166 0.071 0.036 0.024 0.029 0.063 0.113

250 0.197 0.094 0.047 0.035 0.046 0.081 0.171
RMSE was calculated as the standard deviation of the residuals from the 100 BILOG estimated

ICCs using all 2,000 examinees.
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Figure Captions

Figure 1: A Birnbaum 3PL with item parameters a = 1, b = 0, and c = .2, in the (i) probability

correct space, and (ii) logit space. Upper and lower asymptotes are also given in the logit space.

Figure 2: Best fitting polynomial logistic functions of varying orders to a Birnbaum 3PL

response curve in the (i) probability correct space, and (ii) as residuals (i.e., minus the true

curve).

Figure 3: Estimated Birnbaum 3PL item response curves for 100 LSAT five-choice items.

Figure 4: Normal plot of 2,000 examinee ability estimates.

Figure 5: Example of a well fitting polynomial logistic function.

Figure 6: Example of a polynomial logistic function that does not model the true Birnbaum 3PL

item response curve in the upper and lower tails as well as a BILOG estimated curve.

Figure 7: Example of a polynomial logistic function that models a Birnbaum 3PL item response

curve in the upper and lower tails better than a BILOG estimated curve.

Figure 8: Example of an item that required a cubic logistic function approximation.

Figure 9: Example of a non-monotonically increasing polynomial logistic function estimate.

Figure 10: Slope versus intercept estimates for 48 items selected as 2PL functions.

Figure 11: Example of polynomial logistic item alternative response curves for an easy pretest

item. (The key for this item is alternative `!C.")
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Figure 12: Example of polynomial logistic item alternative response curves for an easy pretest

item with one distinct distractor. (The key for this item is alternative "A.")

Figure 13: Example of polynomial logistic item alternative response curves for a hard pretest

item with one distinct distractor. (The key for this item is alternative "C.")

Figure 14: Example of polynomial logistic item alternative response curves for a hard pretest

item with three active distractors. (The key for this item is alternative "D.")

Figure 15: Estimated polynomial logistic function minus a BILOG estimate (designated as "True

3PL" in Figure 5) residual curves for various examinee sample sizes.

Figure 16: Estimated polynomial logistic function minus a BILOG estimate (designated as "True

3PL" in Figure 6) residual curves for various examinee sample sizes.

Figure 17: Estimated polynomial logistic function minus a BILOG estimate (designated as "True

3PL" in Figure 7) residual curves for various examinee sample sizes.

Figure 18: Estimated polynomial logistic function minus a BILOG estimate (designated as "True

3PL" in Figure 8) residual curves for various examinee sample sizes.

Figure 19: Estimated polynomial logistic function minus a BILOG estimate (designated as "True

3PL" in Figure 9) residual curves for various examinee sample sizes.



8

4

1.0

08

02

0.0

-8

....................

-2

0i)

(i)

-1 0

19

1

....................

2

0

e

1 2 8

8



LO-

OS-

0.6-

02-

0.0-

-3

0.12-

0.08-

0.04

0.00

-0.04

0.08

012

-2 1 0

e

1 2

-3 -2 -1 0

0

Birnbaum WI, (a =1, c =2)
2PL
Square 130,,ista,

Cubic Logistic

1 2 3



-3 -2 1 0

B

26

Figure 3

1 2 3



100

80

60

40

20

0

.....---"'"'

19

27

Figure 4



02

0.0

3 2 1

True 3PL
Polynomial Logistic
Lower Confidentv Band

0

0

1

BILOG 3PL
Upper Confidence Band

2



1.0

0.8

1
C

0.6

i 0.4

02

0.0

3 2 -1

-----:
ityna a vz,

14fter°rIlial
14es*

Confidence

0

a
I

-
BILoG aPL
Upper conarleane Band

2 3



LO

0.8

0.6

0.4

02

0.0

3 2 1 0 1 2 3

B

'Due 3PL B1LOG 3PL
Polynomial Logistic Upper Confidence Band
Lower Confidprri. Band



LO

0.8-

d 0.6-

0.4

02

0.0

3 2 1 0 1 2 3

True 3PL BLLOG 3PL
Polynomial Logistic Upper Confidence Band
Lower Confidence Band

31

Figure 8



02

op
s

Ise
Loostit_,

coSuienee

0

_
siV3G

VI:ttleute?Oa_ - IWO
Cs°

`32

Figure 9



2.0-

1.5

o LO

0.5

0.0

-1 0 1

Intercept

33

Figure 10



-3 -2

Response

34
44.1griPe 11

-1

, - A
D

0

6

E

1

-__ G

2 3



1.0

03

1Q
0-6

"
02

0.0 --------------------------------------
--------------------- ----

---------------

-s -2

Response D

0

0

- B

1.

- - C

2



1.0

d 0.6

ral 0.4

02

0.0

3 2

Response

-1 0

B

D
A g

E

36
Figure



1.0

0$

- --
...--_ -

----"" -.""
- -

......".

..-".../
...."".....'".../'....."

....."'
....."-....."

-..... ----

02

0.0

3 2

Response

1

__----- Pi_ to

0

0
_ B

B

1

-...........-.....

- -- C

37

FigUre 14

2



0.08

0.06

0.04

0.02

0.00

-0.02

-0.04

-0.06

-0.08

/ ,- \/z-z" / -- - -'.----- ---',

---- --;----.,_..,_/,' ___-- -------- --_,_
---...--.-

/,'I'/
-3 -2 -1 0 1 2 3

e

r of Examinees (Parameters): -------- 2,000 (2) ----- 1,000 (2)Number'
750 (2) 500 (2)

- - 250 (2)

BEST COPY MAFIA

38

Figure 15

iiiLE



2,



-3 2 1

Number of Examinees (Parameters):

40

0

a

1 3

2,000 (2) 1,000 (2)
750 500 (2)(2)- - 250 (2)

Figure 17



0.08

0.06

0.04

0.02
N

0.00

0.02

0.04 /7
0.06

0.08

3

c.

2 1

Number of Examinees (Parameters):

0 1 2

2,000 (2) 1,000 (4)
750 500 (3)(3)

250 (2)

41

Figure 18



0.08

0.06-

0.01-

0.02-

0.00

0.02'

0.06

0.08

\

\
\ 5/' `\

\
/

\ \ \ -_.-5.-.. --,\:\_. -----
........

\\\ \ ,.\ \ / y \7 \
--------- _i ,...

3 2 1 0 1

Number of Examinees (Parameters):

6

2,000 (4) 1,000 (3)

750 (3)(3) 500

250 (2)



U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement (OERI)

Educational Resources Information Center (ERIC)

REPRODUCTION RELEASE
(Specific Document)

DOCUMENT IDENTIFICATION:

ERIC r
TM027863

Title:

Pretest Item Analyses Using Polynomial Logistic Regression: An Approach to
Small Sample Calibration Problems Associated with Computerized Adaptive Testin

Author(s.1:-Liane N. Patsula and Peter J. Pashley

Corporate Source:
University of Massachusetts
LaSchool Admission Council

Publication Date:

April, 1996

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents
announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users
in microfiche, reproduced paper copy, and electronic/optical media, and sold through the ERIC Document Reproduction Service
(EDRS) or other ERIC vendors. Credit is given to the source of each document, and, if reproduction release is granted, one of the
following notices is affixed to the document.

If permission is granted to reproduce the identified document, please CHECK ONE of the following options and sign the release
below.

11111 Sample sticker to be affixed to document

Check here
Permitting
microfiche
(4" x 6" film),
paper copy,
electronic, and
optical media
reproduction.

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"

Level 1

Sample sticker to be affixed to document 1110

"PERMISSION TO REPRODUCE THIS
MATERIAL IN OTHER THAN PAPER

COPY HAS BEEN GRANTED BY

e.
e.60

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 2

or here

Permitting
reproduction
in other than
paper copy.

Sign Here, Please

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but
neither box is checked, documents will be processed at Level 1.

"I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce this document as
indicated above. Reproduction from the ERIC microfiche or electronic/optical media by persons other than ERIC employees and its
system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other
service agencies to satisfy information needs of educators in response to discrete inquiries."

Signature: ,..------- Position:
Graduate Student

Printed Name:
Liane Patsula

Organization:
University of Massachusetts

Address:

10 Pleasant Court
Amherst, MA 01002

Telephone Number: i
413 549-8644k )

Date:
October 27, 1997

37 OVER


