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A MODEL OF UNDERSTANDING TWO-DIGIT
NUMERATION AND COMPUTATION

Hanlie Murray and Alwyn Olivier
University of Stellenbosch

This paper suggests that u full tnderstanding of pluce value is not a prerequisite

Jor many powerful, pliable computational strategics; that these strategies are
formulated and widely used by young students; and that the use of these
computational strategies factlitates a full understunding of place value. Based
on an analysis of the computational strategies employed by young children, a
model is proposed for the development of children’s understanding of two-digit
numbers. This model holds serious implications for both when and how to
introduce two-digit numbers, and also for the role assigned to standard written
algontlums in the junior school.

INTRODUCTION

Various models have been proposed to describe the development of young children’s un-
derstanding of place value, e.g. Resnick (1983), Kamii (1985), Ross (1985). The general
consensus among these researchers and also authors such as Richards and Carter (1982)
seems to be that a full understanding of place value necessitates the conceptualization of
ten as a new abstracted repeatable (iterable) unit which can be used as a unit to construct
other numbers. It is also clear that this abstraction is quite difficult and that many third
and fourth grade children have not attained this understanding in spite of many years of
intensive teaching about place value.

We have available taped and transcribed protocols of interviews conducted at the start of
the school year in 1987 with all 140 third grade pupils (aged eight 10 nine) of two fairly
representative white schools. During each interview the student was presented with con-
text-free addition problems involving whole numbers of increasing size, first orally, then
set out horizontally, and finally set out vertically with the digits correctly aligned. The stu-
dent was encouraged to solve each problem in whatever way he chose to, and asked to de-
scribe his solution strategy for every problem. These students had all had at least nine
months’ intensive instruction in place value and the standard vertical algorithm for addi-
tion. Analysis of the protocols shows, however, that these children use the taught algo-
rithm infrequently, but rather prefer informal (untaught) computational strategics. The
data also show vast qualitative differences in understanding of wo-digit numbers, that is
evidenced by the different types of computational strategies utilized by different students.
The data have led us to postulate four levels of understanding of two-digit numbers, each
level easily identified by the computational strategies employed to perform context-free
computations. The levels that precede a full understanding of place value are probably

o important and far more useful than has been realized before, and function as vital

E l C pmental stepping stones towards the place value concept.



DIFFERENT RANGES OF NUMBERS

Steffe, Von Glasersfeld, Richards and Cobb (1983) describe children’s understanding of
the single-digit numbers as progressing through different levels of abstraction until the
number is constituted as an abstract unit item with a meaning independent of physical ob-
jects or counting acts. This implies acquiring the numerosities (“how-manyness”) of the
numbers. Whereas children who have not yet acquired the numerosities of the range of
numbers with which they have to perform computations must necessarily utilize pre-nu-
merical strategies like counting all, children who have acquired the numerosities of the
numbers have the capacity to use numerical strategies like counting on from f{irst, count-
ing on from larger, etc.

One could expect, maybe, that children’s use of numerical strategies in computations with
small numbers will transfer to computations with larger numbers. It has, however, fre-
quently been documented that children find problems involving smaller numbers casier
than those involving larger numbers (e.g. Carpenter and Moser, 1982), and that children
change their behaviour when the sizes of the numbers in a given situation change (Cooper,
1984). The following are clear examples from our research showing children regressing
to more primitive strategies of completely senseless juggling of symbols when they have
to compute with larger numbers. (These problems were all presented orally. A summary
of the child’s strategy is given next to the problem.)

Elsa — a regression to the pre-numerical strategy of counting all
7+5=12 5+ 6=11andadd 1

9+2=11 94+1=10;+1=11
but
11+ 17 =27 draws 11 small circles, then 17 small circles, then counts all
37+ 5=42 draws 37 small circles, then 5 small circles, then counts all

Marlene — a regression to meaningless maniputation of digits
9+2=11 9+1=109+2=11
9+6=15 9+1=10;+5=15

but
29 +4 =9 wrilcs29 + 4,then:2 + 4 = 6 and puls 9 next to the 6
23+ 12=153 wril0523+12,lhcn:2+3=53nd1+2=3
25 + 8 =87 writcs 25 + 8,then:2 + 5 = 7and puts the 8 next to the 7

We argue that this regression is explained by the fact that these numbers are outside the
children’s range of constructed numerosities (and in Marlene’s case, coupled with a per-
spective of mathematics as meaningless manipulation of meaningless symbols). When a
child has acquired the numerosities of the smaller numbers, €.g. up to nine or twelve, he
has not necessarily acquired the numerosities of the two-digit numbers as well, e.g. itis
clear that Elsa’s lack of “feeling” for 37 forces her to recreate 37 by means of circles which
can be counted from the beginning, Although a child may therefore e able to employ hu-
merical strategies within a certain range of numbers, the numerosities of numbers beyond
\“f:" range have also to be acquired before he is capable of using numerical stratcgies when

B 1puting in a range of larger numbegs.
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DIFFERENT TYPES OF COMPUTATIONAL STRATEGIES

When children work with smaller numbers, their computational strategies fall into two
broad classes: the pre-numerical strategies where the child has to count all because he has
not yet acquired the numerosities of the numbers he is using, and the numerical strategies
like counting on or bridging through ten. In computations with two-digit numbers, the
pre-numerical/numerical distinction between strategies of course still exists. We can also
distinguish different types of numerical strategies.

One type of numerical strategy is counting on. Another type, not based on counting, Car-
penter (1980) calls heuristic strategies. Heuristic strategies often involve the decomposi-
tion of one or more of the numbers in a problem in order to transform the given problem
to an easier problem or series of problems, e.g.

36 +27 =30 +4+23 =40+ 23 =40 + 20 + 3 = 60 + 3.

Peter solves 36 + 27 as: “Three tens and two tens gives fifty, and six and then seven, which
gives 63,” whereas Marietjie solves the same problem by saying “Thirty and twenty gives
fifty, then add six and seven.” Although seemingly the same strategy, we see the different
naming as manifestation of different understandings of two-digit numeration.

THE MODEL

We hypothesize that there is a relationship between children’s understanding of two-digit
numbers and the computational strategies that they use. It is not necessarily a linear re-
lationship, because children do not consistently use their optimal computational
strategies; at best we can say that the use of a certain type of computational strategy
“defines” a certain minimal understanding of number and numeration. Based on our re-
search data and a theoretical conceptual analysis, we have formulated a theoretical model
describing four increasingly abstract levels of types of computational strategies with two-
digit numbers in a given range, each type associated with its prerequisite understanding
of number and numeration.

The first level

At the first level the child has not yet acquired the numerosities of two-digit numbers in
a given range, and can therefore only use the pre-numerical strategy of counting all for
computations in this range. The child knows the number names of the two-digit numbers
and their associated numerals, and associates the whole numeral with the number it re-
presents, but assigns no meaning to the individual digits. At this level the symbol group
63 can be regarded as a way of “spelling” the number name. A common error is to inter-
change the digits (e.g. writing 36 for sixty-three), yet often this has no adverse effect on
the child’s understanding of the number itself, as evidenced by Johan. To solve 30 + 4

(presented orally) he writes:
te & .
OtL=3

andsays “thirty plus four is thirty-four.” His incorrect use of the t and esymbols (for “tens”
Q nits” in Afrikaans) in no way affects his computation, because the “tens” and “units”

E lC 10 meaning for him yet.
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Results of previous research support the conclusion that the understanding of the wholc
numeral precedes understanding of the individual digits (e.g. Barr, 1978; Kamii, 1986).

The second level

At this level the child has acquired the numerosities of the two-digit numbers in a given
range, which implies that he can utilize numerical computational strategies like counting
on for computations in that range.

Whereas it is sufficient for a child to use only counting on strategies for smaller numbers,
counting on becomes very tedious and also prone to error when used with larger two-digit
addends.

The third level

At this level the child sees a two-digit number as a composite unit, and can decompose or
partition the number into other numbers that are more convenient to compute with, e.g.
to replace 34 with 30 and 4. This provides the child with the conceptual basis to use heur-

istic strategies.

The heuristic strategies used by students in our research are almost always based on de-
cimal decomposition, i.e. a decomposition into a multiple of ten and some units, €.&. 67
as60 + 7. But the tens are mostemphatically not treated as “so many tens”; they are called
by their full number names, €.8. sixty-seven becomes “a sixty and a seven”, not “six tens
and seven units.” Students then use their knowledge of adding multiples of ten to obtain
answers, e.g. Chris does 23 + 12 by saying: “Take the three away, add the twelve to the
twenty, then add the three again”, partitioning 23 into twenty and three. If both numbers
are large, he partitions both: 36 + 27 is solved as “take the six and the seven away, thirty
plus twenty is fifty; now add six, then add seven.”

We have identified ten different heuristic strategies based on decimal decomposition.
These strategies are very powerful and completely trustworthy: we have not found child-
ren applying them incorrectly. If the answer is incorrect, it has always been because the
child has failed to add the units correctly.

The fourth level

At this level the child is truly able to think of a two-digit number as consisting of groups
of tens and some units, i.e. the child can conceptualize ten as a new iterable unit, without
losing the meaning of the number as a number. Whereas at level 3 the child works with
ten as a number, that is no different than any other number, at level 4 he is able to work
with ten as an iferable unit, a thing that can be counted as a unit, so that e.g. the number
23 is conceptualized as “two tens and three ones.” Richards and Carter (1982) make this
distinction clear:

“Seeing ten as iterable is distinct form (sic) being able, say, to add ten and ten
. to make twenty. Seeing twenty as built up out of two units of ten is concep-
tually different from simply being able to add ten and ten to get twenty. In this
sense, “Ten and Ten’ are distinct from “Two Tens’. The former is not different
lC from taking any pair of numbers...” (p. 61)

8
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Concerning computation, level 4 understanding of numeration facilitates a progressive
schematization (“shortening”) and abstraction of the level 3 heuristic strategies. Here are
some examples of this type of “groups of ten” thinking as opposed to the “tens part as a
complete number” thinking of the previous level: Annemarie solves 26 + 37 (presented
vertically) by saying: “Six plus seven is thirteen. Five tens plus one ten is sixty. Sixty plus
three is sixty-three.” For 36 + 27 she says: “Thirty plus two tens, that’s fifty. Six plus seven
is thirteen, that’s sixty-three.” Very few of the children we interviewed use this concep-
tualization of ten as a new “unit”; even Annemarie frequently prefers the level 3 method:

39+ 1430+ 10 =40:4 + 9 = 13;40 + 10 + 3 = 53,
Level 4 understanding of numeration is a prerequisite for the meaningful execution of the
standard written algorithms. A further abstraction allows one to operate on the digits of
numbers—e.g. in the number 56, the meaning of the five as fifty or five tens can tempo-
rarily be suspended to work with S as a digit for the sake of convenience and the further
progressive schematization of computational strategies.

When executing the standard algorithm has become automatic, it is difficult to deduce
from the child’s behaviour his understanding of the procedure and the underlying numer-
ation concepts. However, it is clear from our research that many children seem to think
of “groups of tens” in the correct (meaningful) way, because they talk about tens and units
while they are computing, yet closer examination reveals completely superficial use of the
terms “tens” and “units”, with no possible evaluation of the numbers involved and the ac-
ceptability of the answers obtained. Sonja shows a proficiency with the standard algorithm
for vertical addition, which is yet not based on a true understanding of the number sym-
bols. She computes 34 + 17 and even 26 + 37 successfully by means of the standard ver-
tical addition algorithm, but 5 + 37 (also written vertically with the digits aligned
correctly)as5 + 3 + 7 = 15,and 5 + 23 becomes 55 (the first S becomes the tens of the
answer, and the units of the answer are the sum of 2 and 3). A superficial facility in execu-
ting the standard written algorithms may therefore hide serious deficiencies in the under-
standing of numbers and place value.

We have not come across a single child who operates with level 3 strategies (“the tens part
as a number,” e.g. “sixty”) showing confusion of the above kind, probably because the
mathematics underlying the level 3 strategies can never be hidden from the child: it is im-
possible to employ a level 3 strategy without understanding what you are doing, but it is
extremely easy to implement astandard written algorithm inrote fashion. When the stand-
ard written algorithm is routinely employed, one operates on the syntactic level, manipu-
lating the symbols directly as ‘concrete’ objects of thought according to certain rules, totally
removed from their meanings as numbers. The level 3 and 4 heuristic strategies are, how-
ever, on the semantic level: One deuls with the symbols by referring back to their meaning,
i.c. in 23 the 2 refers to 20 or twa tens. Many students who falter using the standard algo-
rithm either do not have the necessary level 3 semantic knowledge to monitor their syn-
tactic rules, or their syntactic and semantic knowledge appear to co-exist completely
unconnected.

© _BEST COPY AVAILABLE



SOME RESULTS

The following table represents a summary of a preliminary analysis of the protocols of a
few selected computations:

Percentage of students using types of strategies® b

Levels I & 2 Levels 3 &0 Standard

(‘fomputation Counting strategics | Henristic strategies | algovithm”

25 + 3 (sct orally) 39 (65) 41 (81) 9 (16)

21 1 % (st horizontally) 3 (67) 11 (82) I (29)

27 4+ 6 (set vertically) 31 (81) 360 (92) 22 (16)

34+ 21 (set orally) 16 (22) 49 (77) 16 (55)

34 + 23 (set horizoutally) 1t (27) 56 (90) 19 {63)

36 + 27 (sct orally) 10 (7) 42 (73) 22 (1Y)

\LG+ 37 (set vertically) 4 (17) 34 (87) 21 (31)

aGudents not included in this sununary cither *did not kuow’, ‘guessed’, ‘knew', or were ot
asked, becanse they failed or persevered with similar strategics in similar problems.

dNumbers in parenthesis represent the percentage of students who used a particular type of
strategy that solved the problem correctly.

¢ A student was coded as using the staudard algorithm if he gave direct written or verbal evidence
of computing ones and tens separately as digits, from right to left.

The data clearly show to what extent students prefer heuristic strategies, and the high suc-
cess rate of these strategies. In contrast, the data also show how few students actually em-
ploy the standard taught algorithm, as well as the low success rate in using the algorithm.
The data also show, however, that a large number of students could not cope with the
computations at all (e.g. in the last two categories a maximum of 26% and 41% respec-

tively).

DISCUSSION

If our model provides an accurate description of the development of children’s under-
standing of two-digit numeration, and if one believes that instruction should be based on
the developmental sequences observedin children, then the model and our data have seri-
ous implications for the teaching of two-digit numeration and computation.

We stress that our subjects have had intensive instruction in “tens and units” place value

and in the standard written algorithm for addition. While it is acknowledged that this type

of instruction had contributed to the facility of many students with heuristic strategies

(that were not explicitly taught, and that they preferred to the standard algorithm), this

type of instriction also contributed to some students regressing to primitive (but to them

@ caninglul) counting strategics for computing with larger numbers, to students” poor

E lC‘rusp of the standard algorithm when they chose to use it, and the helplessness of many
thers. 1 O



The near universal method of introducing two-digit numeration is by quantifying sets of
objects by groupings of tens and ones and learning the numeral and number name asso-
ciated with the sets of tens and ones. This approach is based on an a priori logical analysis
of the concepts and has a great deal of intuitive appeal (to teachers) because of the un-
derstanding that (supposedly) precedes the symbolization. Yet, this approach does not
consider the psychological nature of children’s learning: understanding of two-digit num-
bers as groups of tens and ones is at level 4 and can therefore be expected to be too ab-
stract for students who are operating at level 1, 2, or 3. We have ample evidence that it is
not successful to teach children about the tens and ones meaning of the symbols in the
symbol groups before they have become accustomed to a symbol group as representing a
single number (level 1). The child has to work with 63 as a way of writing “sixty-three™ for
along time before he becomes ready to understand 63 as 6 tens and 3 ones. Similarly, level
2 and level 3 thinking are necessary prerequisites for children to understand the sophis-
tication of two-digit numeration and computation (cf. Murray, 1988).

There is some evidence that the compositional structure of numbers arises first in the con-
text of oral counting. Kamii (1985, 1986) attributes children’s difficulty with place-value
partly to the teaching of standard procedures and outlines a teaching sequence based on
counting, and reading and writing numerals without groups of tens, and on children in-
venting their own procedures to add 2-, 3~ and 4-digit numbers. In a teaching experiment
Barr (1978) found that kindergarten children who were introduced to two-digit numera-
tion through counting, and reading and writing numerals before grouping exercises de-
signed to provide understanding, did better than those who did the grouping exercises
first.

It it seems that when students’ level 1 and 2 counting strategies become too cumbersome
for computation with larger numbers, teachers “help™ children by introducing the stan-
dard algorithms as necessary (the only) computational tools. Some teachers may try to
build a conceptual basis for the algorithms (level 4), but such efforts seem ill-fated if level
2 and 3 understandings are bypassed. Other teachers introduce the standard algorithms
at the syntactic level, thereby undermining the development of adequate number con-
cepts and fostering a perspective of mathematics as instrumental understanding. Rather
than trying to discourage counting, teachers should help children to become efficient and
accurate counters, and help develop level 3 understanding of numeration and computa-
tion, i.e. give much more emphasis to the first three levels of understanding. Level 3 un-
derstanding provides sufficiently powerful computational strategies, so that the
introduction of the standard written algorithms may be delayed, if they should be taught
atall.

The influence of computing technology necessitates a re-orientation of goals of elemen-
tary school mathematics, especially regarding the role of pencil-and-paper computation.
There is a call for de-emphasizing standard written algorithms and integrating the calcu-
lator into the curriculum as the primary computational tool, accompanied by an increased
emphasis on mental methods, estimation, understanding of number and algorithmic
thinking as a mathematical process (eg. Olivier, 1988). It seems that the level 1 to 3 un-
derstanding of numbers and computational strategies are exactly those that are necessary
for developing the skills of mental methods, estimation, and flexible computational pro-

res and the understanding of number and numeration. It must be stressed that the

O
E lC istic strategies are not necessarily mental methods, because some children prefer 1o
~ s 1 1
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record at least some portions of their computations. However, the types of strategies for-
mulated by these third graders themselves correspond very closely to the “mental me-
thods” and “street mathematics” described by authors such as Plunkett (1979) and
Carraher (1988).

We have outlined a model describing the development of children’s understanding of two-
digit numeration and computation. Such a model should be complemented by a teaching
program to facilitate transition through the different levels of understanding. We are at
present implementing an experimental syllabus based on these ideas in eight schools. We
shall report the results of the experiment in due course.
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THE COMFUTER PRODUCES A SFECIAL GRAFHIC SITUATION QOF

LEARNING THE CHANGE OF COORDINATE SYSTEM.
Suzon NADOT
GRECO DIDACTIQUE - PARIS

Summary: Articulated by the visual, this research is
situated at the junction of informatic and mathématics. 1t
takes its roots both in 4a technical conjuncture where the
picture and the informatic develop a new communication and a
social conjuncture where the didactic comes back to improve the
pedagogy by analysing the knowledge and the rules whigh run the
transmission of situations. The wérking on the computer
introduces a real problematic which will make second form pupils

think about the change of coordinate system and the change of

variable.

INTRODUCTION

A lesson of maths about functions also deals with the
outline of a curve so as to illustrate, explain and give a
solution. This drawing, both géométrical and schématic is
distinctly defined as an activity which must occupy an important
place in the different parts of analysis programm, being
specified by its language and its representative process; it’s
a real significant which can lead to a direct vision of things.

On the overland, the development of the graphic
possibilities of the computer, must seduce the authors of
didacticiels who conceived automatic graphic treatments: the
imagiciels. As an automatic treatment, the imagiciel gives to
the wutilizer a real short cut in the executive tasks, it gives
the possibility of going beyond the conventionnal and singular
visions thanks to ways of juxtaposition, suﬁerposition and
transformation. In a parallel direction, the learning of
informatic language joins the mathematics notions linked to the
functions.  The writing of a simple imagiciel, the tracer, is
based already in its conceﬁtionlupon the notion of function and
rises all the questions of coordinate system.

By studing both contraint of nowadays ways of teaching
O
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in our second form and the possibility offered by the computer,
we’ve 1looked for an original situation of learning which also

allowed us to see the procedures developped by the pupils.

TODAY’S WAYS OF TEACHING

After analysing different school books, the graphic
activities have been divided into four categories of aims:

— the learning of graphic language where the accent is
put on the explicitation of the translation algebra graphic.

— the writing of graphics where the student must give
in a diagramm all the informations he has got by studying the
function.

— the reading of graphics, the aim of which is to
verify, conjecture, even solve in extremes cases, that is to say
cases the pupils can’t solve in another way. Contrary to the
previous activity, the pupil must sketch what he perceives
visually in an algebric way.

—~ Combined activity where graphics and algebra are

mixed to give and treat information.

r 1
writing | reading |c0mbined |
I

T
|1earning [

I 117% | 847 | 23% | 167
i

L 1 J. ]

The main activity is indoubtly the writing of the
curve, the final point of the algorithm of the study from which
it stands as the instrument of coherence. We can also state the
permanence in all the exercices of the "given coordinate
system". The graphic representations refers on a  triple
(coordinate system, function, drawing ), one of the elements
being fixed, we hust interpret the relation existing between the
two others:

1st case: given the coordinate system, then we wor k
on the re}ation function — drawing; it’s the normal situation.

2nd case:given the function, we work on the relation
coordinate system - drawing, by modifying the system, we can see
different caracters of the function.

o 3rd case: given -the dﬁawing: we‘ work on the
ERIC 14
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coordinate system - {function, by maodifying the coordinate
system, we represent another function, it’s the change of

coordinate system.

THE KNOWLEDGE OF THE PUPILS

Following a double set of questions given to four
second form last february then Jjune, we should know the
abilities of the pupils.

v The item c-1 (february) refered to the interpretation
of the graphic; a drawing being given to him, can the pupil
read the adequate pieces of information in it about the function
it represents.

c-1: By using the graphic representation of the g
function below determine by explaining what you do, g(1), then
the values of x as g(x)=27 g(x)<2?

T;e item c-2 (june) resumed the same question.

Parallel to the item c-1 was asked the item c’-1 in
which the same problem was proposed to the pupils in a different

language. _
We consider the function f definited by f(x) = x2+ 1,
Compute f(2). Determine x so as f(x)=10 ? £(x) <10 ? Justify
your answer.

Z for the pupils who complete this item successfully:

T T T T | —
fitem | £ | ¢ @ [fc,an| x|
ler=t | 88,3z | 79,6% | 6,61 | 137 |
l[e =1 | 26,37 | 12,47 | 3,67 | 137 |
le =2 | se,2z | a2z | 38,77 | 137 |
| - 1 1 1 ] J

The reading of a graphic and its interpretation in
another system .of signs is not completely untersténd by all the
pupiis, even of we can see progress all along the school year.

The way of of interpreting graphic informations is
less unterstan than treating them algebrically.

The three questions we asked belong to the same field
of competence, however there’s a hierarchy between them which
remains after the familiarisation.

Q
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The items b-1 and b-2 refer to the simul taneity of the
coordinate system: a naturel, the one of the squared piece of
paper where the unities are spontaneously related to the square
and so the one of the mathematics universe in which have to be
represented clearly.

b-1 and b-2: 1f you can use a big size Smali squared
piece of paper to situate the points, the coordinate of which
are given below, how would you choose the units 7 Situate the
points is not asked.

*x |- 67|—60|— 52)- 37|—30|— 15| 0 | 15| 30| 37 | 52 | 60 | 67 |
y |-0.7] 1 | 057 O;7| 110 | 1] 0|1 ] 0.7 0,7 1 -0,7]|
For each of the two items,‘the percentages give the

right, unfinished, wrong and the missing answers.

[ 1 T T 1 I 1
| item | right |unfinish | wrong lmissingl DA
| b=t | 22,67 | 13,17 | 21,274 | 43,17 | 137 |
| b-2 | =4 % | 10,27 | 23,4% | 12,87 | 137 |
L 1 H 1 1 1 J

The success remains feeble about this activity which
seems elementary. The choice of the unities refers a numeric
problem and a theorical problem: the one of the double
coordinate system. Observations made in other kime showed that
the change of coordinate system is a blind point among the
majority of students, it stands in all cases as a senseless
point.

We have chosen among a lot of possibilities to set a

didactic situation to introduce the change of coordinate system.

THE DIDACTIC SITUATION

Our situation being settled on an experimental
approach, the computer created the problem and allowed an
obserQation of the procedures of individual resolution.

1)Description of the situation

We asked the pupils to-set out a part of curve on the
screen of the computer by logo graphic programming. For the
programmation of a setting out the curve, the confrontation of

O
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graphic universe set, always the same: the origin is in the

centre of & squaring, the 64000 points of which are coded from
—160 to 159 and from -100 to 99, +the instruction point (x,y)
lights a -point on the screen having (x,y) as coordinates; On
the other hand the mathematic universe conditioned by the part
of the sisnusoid to reproduce on the screen.

2) The population

We have experimented pupils in a second form learning
informatics, for four weeks { four times two hours).

c) The development

The pupils had to write a logo programm which drew a
part of a curve representing the cosine function on the
successive intervals: [-160°, 159°13; [-320, 3181; [-60,2593;
[-160, 3183.

The holding of the problem was immediate, the pupils
had a reproduction of the sisusoid settl.ed by them during a
previous work, they had already used imagiciels and therefore
know what a computer could produce. They know the aim to reach
and could control the rightness of the facts all along the
working of the machine.

d) The procedures.

Immediately in the case equality, they have programmed
the algorithm of construction: 'point (x,cosx) for x which
varies from 1 to 1 between —-160 and 159. The reaction was one
of perplexity, waiting was not successfull (d-1), so they came
back to the programm, changed it but failed, then called us and
facing our behaviour, no syntactic mistake, they have tried to
find and they have seen the illegibility of the logo unity after

several simulations, have pointed (x, BOcosx) (d—2).

(d-1) | : (d-2)
|
!

>

z .
- ..

I l

| -

In the case of the zoom, the first operation being

don O that of change interval of x, modifying -160 into -320

ERIC
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and facing a error messago, two procedures emerged:

1rst type: point (/2,B0cosx) with = varying from
320 to 318. The procedure which developped itself as soon as
the discovery of the relation of the amplitudes of the intervals
and which proved its rightness by showing the right shape of the
curved.

Z2nd type: point (x, 80cosZx) with » varying from
-160 to 159.

To solve [-60,239] has been the most difficult case.
The pupils saying: “we see what is happening, we can see why it
doesn’t work right, but we don’t know how demarrage, We
chouldn’t find the origin in the middle. At last the two
previous procedures reappeared.

Success of the group (two or three pupils in & group?

among the 7 groups of the form.

| 1 i ]
|1st week l2nd week l3rd week l4th week

I l l |

item

drawing on

I 1

l l

I |

| &/7 | 777 | | | [-160,1591 |
| 85,7% | 100% | | | equality |
l l l | ] drawing on |
] 4/7 | &/7 | 7/7 ] | [-320,3181 |
] 57,17 | 85,77 | 100% | | zoom |
| l l l l drawing on |
. 0/7 | /7 | 2/7 | S/7 i [-60,2591 |
| ov%. | 14,3% | 28,6% | 71,4% | travelling |
| | | | | drawing on |
| o/7 ] 177 ] 2/7 ] 3/7 | [-320,3181 |
| | 14,3% | 28,6% | 42,9% | combined |
[ 1 1 ! L 1

ABOUT THE OBSERVATIONS
a) From a mathematical point of view, two main

questions have been raised. We have put the accent on different

coordinate system: nwwe can assert we change of function but we
can also say we change of coordinate system". The change of
‘ Q = the ordered pair (x/2, cosx) and (x, cos2x) are
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different and however we get the same graph 7 The answer has
been more undecided, but it’s precising numerically, the data in
every cases that the pupils have been convinced that cosx and
cosZx can be the result of the same process of calculus owing to
the change of variables.

b) From a cognitive point of view the problem of the
treatment  of  change  of  reference marks revealed itseld very
difficult particulary the case of a travelling, the decentring
raises a bigger difficulty, the treatment of the simultaneity
add - substract is less under control than that of multiply
divid, and the visual signs which helped to make the extending
are helpness when there is a decentring;

schema

c) From a point of view of the didactic situation, the
decontextualisation is not easy. If the experimental generates
some efficient practises and basic questions, a passage remains
to be accomplished; It remains the passage leading to the
decontextualisation. That®s on this particular point we

nowadays continue our work.
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Epistemological analysis of early multiplication

Nicole Nantais, Université de Sherbrooke
Nicolas Herscovics, Concordia University

Prior to launching a three-year study on the understanding of early
multiplication in primary schools, an epistemological analysis of this conceptual
scheme is essential. The approach used in this paper relies on criteria identified
in the elaboration of a two-tier model of understanding, the first tier describing
the understanding of preliminary physical concepts, the second tier describing
the understanding of the emerging mathematical concept. At the physical level,
a situation is perceived as being multiplicative when the whole is viewed as
resulting from the repeated iteration of a one-to-one or a one-to-many
correspondence. Three distinct levels of understanding can be identified with
multiplicative situations. The emerging concept of arithmetic muiltiplication can
also be described in terms of three complementary aspects of understanding.

In the last fifteen years, research on additive structures has been quite extensive and
the results have been rather significant. More recently, several PME and PME-NA
papers have dealt with the concept of multiplication of real numbers. However, hardly
any studies have been concerned with the early beginnings of muttiplication of natural
numbers. An investigation of the acquisition of this conceptual scheme by primary
school children will be carried out over a three year period at the University of
Sherbrocke. The objective of the present communication is to open the discussion on
the proposed conceptual framework used in this project.

The different meanings of multiplication in N
if we ask any teacher what is the meaning of multiplication of natural numbers, one
usually gets as a response: "multiplication is repeated addition”. The description here
refers essentially to the arithmetic procedure needed to find the answer. Curiously, the
other three arithmetic operations can be identified as the arithmetic reflection and
quantification of physical procedures : addition refers to the quantification of either

Research funded by the Quebec Ministry of Education (FCAR Grant EQ-
2923)
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augmenting a given set or of putting together two given sets; subtraction usually
refers to the quantification of the set remaining after some elements have been taken
away from an initial set; division refers to the quantification of the result of
exhaustive equi-partitioning giving either the number of parts, or the number of
elements per part. But when it comes to multiplication, one is hard put to identify a
physical action corresponding to it.

In a survey of the different meanings used for the introduction of multiplication at the
primary level, Herscovics et al. (1983) found that some textbooks presented it by
counting jumps on the number line, while others referred to the notion of a Cartesian
product ( number of blouses x number of skirts = number of outfits). In their critique of
these different models, Herscovics et al. showed that they involved concept more
advanced than the quantification of discrete sets and thus, that they did not constitute a
good intuitive basis for the initial construction of multiplication. They were unlikely to
tap the natural emergence of the multiplication scheme in the young child.

Piaget and Szeminska (1941/1967) are the ones who came closest to identifying
multiplication with a physical operation when they described it as the iteration of a one-
to-one correspondence between several sets: "From a psychological point of view, this
simply means that setting up a one-to-one correspondence is an implicit multiplication:
hence, such a correspondence established between several collections, and not only
between two of them, will sooner or later lead the subject to become aware of this
multiplication and establish it as an explicit operation” (Piaget &Szeminska, 1967,
P.262). In their evaluation of Piaget's model, Herscovics et al.(1983) pointed out that
preliminary results obtained when young children are asked to use a deck of cards to
make four piles of three cards, they are more more likely to achieve this through the
iteration of a one-to-many correspondence than through the more difficult iteration of a
one-to-one correspondence. However, both procedures are possible and hence must
be accepted as actions corresponding to the generation of a multiplicative situation.

That children can generate quite early various multiplicative situations is not too
surprising. But can one claim that by iterating a one-to-one or a one-to-many
correspondence they are actually aware of the situation as being multiplicative? Of
course not. This claim can only be made when they perceive the whole set as resulting
from the iteration of such correspondences. Using this last criterion as a working
definition of multiplication, one is then in a position to perform an epistemological
analysis of this notion. The term ‘epistemological analysis' refers to the analysis of a
conceptual scheme along likely patterns of construction by the learner. The particular

ERIC
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method of analysis that is proposed here is based on criteria developed by Herscovics
& Bergeron (1988) in the elaboration of their Extended Model of Understanding.

An Extended Model of Understanding.

At the last meeting of PME-NA, Herscovics & Bergeron (1988) have suggested that the
construction of some mathematical concepts might be well described within a
framework of a two-tier model of understanding, the first tier describing the
understanding of preliminary physical concepts, and the second tier identifying the
understanding of the emerging mathematical concept. In this model, the
understanding of preliminary physical concepts involves three levels of
understanding:
Intuitive understanding which refers to a global perception of the notion at

hand: it results from a type of thinking based essentially on visual perception; it
provides rough non-numerical approximations;

procedural understanding refers to the acquisition of logico-physical
procedures (dealing with physical objects) which the learners can relate to their
intuitive knowledge and use appropriately;

logico-physical abstraction refers to the construction of logico-physical
invariants, the reversibility and composition of logico-physical transformations
and generalizations about them.

The understanding of the emerging mathematical concept can be described
terms of three components of understanding:

n

procedural understanding refers to the acquisition of explicit logico-
mathematical procedures which the learner can relate to the underlying
preliminary physical concepts and use appropriately;

logico-mathematical abstraction refers to the construction of logico-
mathematical invariants together with the relevant logico-physical invariants, the
reversibility and composition of logico-mathematical transformations and
operations, and their generalization;

tormalization refers to its usual interpretations, that of axiomatization and
formal proof which at the elementary level could be viewed as the discovery of
axioms and the elaboration of logical mathematical justifications. Two additional
meaning are assigned to formalization: that of enclosing a mathematical notion
into a formal definition, and that of using mathematical symbolization for notions
for which prior procedural understanding or abstraction already exist to some
degree.

This model suggests a distinction between on one hand logico-physical understanding
which results from thinking about procedures applied to physical objects and about

ERIC 22
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spatio-physical transformations of these objects, and on the other hand logico-
mathematical understanding which results from thinking applied to procedures and
transformations dealing with mathematical objects. In this framework, one can contend
with reflective abstraction of actions operating in the physical realm without necessarily
describing it as somehow having to be mathematical. We will now use this model to
describe the understanding of early multiplication, that is, products of numbers not
exceeding 9, for any discussion of the larger products would also require
consideration of the multiplication algorithms.

The understanding of preliminary physical concepts.

Let us recall that we are identifying conceptualization at the preliminary physical tier
according to thg following criterion: A situation is perceived as being
multiplicative when the whole is viewed as resulting from the repeated
iteration of a one-tc-one or a one-to-many correspondence. Using this as a
working definition, one can then attempt to classify various knowledge related to this
conceptual scheme according to the different levels of understanding.

Intuitive understanding. A first criterion of intuitive understanding might be the
ability to perceive visually the difference between a situation that is multiplicative and
a situation that is not . For instance a set consisting of several equal subsets might be
compared to a set consisting of unequal subsets. Since rectangular arrays are so
useful in illustrating multiplicative situations, a second criterion might establish if the
rows or columns can be viewed as equal subsets. A third criterion might involve the
visual comparison of two multiplicative situations in which one of the "factors” is
different. For instance, without knowing the total number of objects present, one could
compare 4 sets of 5 chips with 4 sets of 6 chips or 4 sets of 5 chips with 3 sets of §
chips and decide where there are more. A fourth task might involve various
configurations of 9 subsets of 7 objects. The total number would be large enough to
discourage enumeration but bring out the fact that if the number of subsets and the
number of efements in the subsets are the same, the whole sets must have the same
cardinality. )

Procedural understanding. We are looking here for the generation of multiplicative
situations calling on logico-physical procedures based on the iteration of 1:1 and 1:n
correspondences. A first criterion might the child's ability to transform a additive
situation (in which all the subsets are not equal) into a multiplicative one, by a
redistribution of some of the elements. Another task might involve the covering of a

O
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rectangle by equal strips which would correspond to either columns or rows. A third
task might verify if the child is able to relate a multiplicative situation generated by a 1:n
correspondence to a multiplicative situation based on a 1:1 correspondence. A fourth
task might assess the the child's awareness of the fact that some quantities of chips
can be arranged into rectangular arrays of two or more rows whereas some quantities
cannot. This type of activity leads to the eventual notions of prime and composite
numbers.

Logico-physical abstraction. The initial problems we are looking for involve the
invariance of the whole with respect to some irrelevant spatio-physical transformations.
A first criterion of logico-physical abstraction might be the invariance of the whole with
respect to various configuration. For instance, a set of 12 chips can be arranged into
subsets of 2, 3, 4 and 6 elements respectively. A second criterion might involve notion
of commutatitvity. This can easily be established by rotating a rectangular array
through 90°. A third task might aim at verifying the equivalence of certain factors
thrcugh a redistribution of the elements. For instance, a set subdivided into 4 subsets
of 3 might be transformed into 2 subsets of 6. This is somewhat different from the first
activity since it starts from an existing multiplicative configuration. A fourth criterion
might involve the notion of distributivity. For instance, a 4 by 5 array and a 4 by 6 array
both represent two multiplicative situations. However, when they are combined along
the rows, the resulting 4 by 11 array is again a multiplicative situation which illustrates
the distributivity axiom. :

The understanding of the emerging mathematical concept

Procedural understanding. By procedural understanding we mean the appropfriate use
of explicit arithmetical procedures. Initially, when young children in grade 2 are asked
*How much is three times four?", many will respond by saying that they have not
learned it yet. Some will model the problem by making three sets of four and count
them starting from 1. While simple enumeration provides an answer, it cannot be
considered as a multiplicative procedure since it does not take into account the
existence of the subsets. The most primitive procedure that can be considered as
being somewhat multiplicative must provide such evidence. This is reflected when the
child manages to skip count on a number line: 4,8,...12. |f no number line is available,
the child may remember the first part and produce "4,.....8,9,10,11,12. A more
advanced procedure involves repeated addition: 4 +4 =8 and 8 + 4 = 12. Gradually,
by grades 4 and 5, children learn to memorize some number facts which they can use
in deriving larger products as for example the product

o 2 4
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4 x 6 which may be obtained by the smaller product 2 x 6 =12 and then the sum 12+12
= 24.

Logico-mathematical abstraction. Gradually, as the child's procedural knowledge
evolves, the reversibility of the operations and the perception of some mathematical
invariants becomes possibte. For instance, the child no longer needs concrete material
to break a number down to its tactors. This inevitably leads to the perception of these
factors as also being divisors and thus the operation becomes reversible. Knowledge
of the multiplication table also enables the child to perceive the equivalence of various
products with respect to a given number without having to depend on their different
configurations. In terms of axiomatizations and generalizations, the commutativity of
multiplication becomes self-evident and somewhat later, so does the distributivity of
multiplication over addition.

Formalization. Interpreting formalization in terms of the symbolic representation of
the learner's previously acquired knowledge, children first learn the usual notation for
multiplication and can interpret 4 x 3 as meaning four sets of three objects. They also
can recognize an appropriate additive situation as being multiplicative by expressing
the sum as a product (6.g. 3+ 3+ 3 +3=4x3 ). On the other hand, when this
arithmetic equation is read from right to left, it expresses a form of procedural
understanding since it symbolizes repeated addition. Interpreting formalization in terms
of axiomatization, the axioms of Ccommutativity and distributivity can be crystallized in
various notations, a simple one beingdx O =0 xJand A (Q+ 0O )=AxO+ Ax O,
The use of letters might create some difficulties initially. '

By way of concluslon.

It shouid be noted that the three levels of understanding included in the first tier are
linear. Without prior intuitive understanding, the acquisition of concrete procedures
could hardly qualify as understanding. Similarly, one cannot expect the child to
achieve any ‘Iogico-physiéal abstraction without being able to reflect on the procedures
used to generate multiplicatfve situations. Neveretheless, the mode! as a whole is not
linear. The aspects of understanding identified in the second tier need not await the
completion of the physical tier. Well before they achieve logico-physical abstraction,
children can start acquiring the various relevant arithmetic procedures by the
quantification of problems introduced in the first tier. The formalization of multiplication
need not await the completion of logico-mathematical abstraction; the formalization of
the arithmetic procedures will occur much earlier than formalization of the axioms. The
following diagram illustrates this non-linearity:

O
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Understanding of preliminary physical concepts
Intuitive ‘ Procedural Logico-physical

—>

understanding | understanding abstraction

/

Procedural Logico-mathematical
> : 1 Formalizati
understanding abstraction —{ Formalization |

wstanding of emerging mathematical concept

This work has some interesting pedagogical implications. it suggests an alternative to
the age-oldt tendency of introducing multiplication merely as repeated addition.
Instead, it suggests that prior to the introduction of this arithmetic operation, one might
present children with didactical situations in which they could recognize and generate
a great variety of multiplicative problems. Indeed, corresponding to the different criteria
used for the different levels of understanding in the first tier, one can develop a broad
sequence of activities. The stress on work at the concrete level should not be
interpreted as an attempt to diminish the importance of the traditional work on explicit
arithmetic procedures. But the prior introduction of multiplicative situations will provide
some motivation and relevance.
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ARE THE VAN HIELE LEVELS APPLICABLE TO TRANSFORMATION GEOMETRY?
Lilian Nasser*
Instituto de Matematica - Universidade Federal de Rio de Janeiro - Brazil
King's College - University of London

Abstract  To fmprove the taaching of Geometry in Brazf & study bas been
Strted to [avestigate possible changes This article L£EPOLIS a1 FLleMPL Lo 203y S8
fhoot Tnmsfgmatm Geomeltry according to the van Hrelo fevels of Lhinking

Van Higle levels were established for Transformation Gwometry and a pilot study
WRS G OUL L0 Ak thelr validity, as well s the rolation between the van

Hiele levels in traditional Fuclidasn Geomelry and i Transformation treomelry.

The teaching and learning of Geometry in Brazilian secondary schools is
problematic. It has not changed for many years, having a Euclidean approach,
based on axioms, theorems and proofs. Whenever teacher training courses are
offered, the most popular subject is Geometry, suggesting how insecure teachers
feel about it. On the other hand, the students do not like Geometry, since tﬁey
cannot grasp its abstraction and the meaning of the demonstrations.

An overview of the most used textbooks in Brazilian secondary schools shows

that:

- the study of Geometry starts with point, line and plane, treated as concepts
that do not admit definitions;

- almost no concrete materials are used; ,

- the Geometry content is concentrated in the final parts of the two most
advanced books. As the time is often not enough to completely cover the
books, a great part of the geometry is missed.

*This study is part of a Ph D degree at King's College, University of London,

~(3 “vised by Professor K Hart.

ERIC 27

IToxt Provided by ERI



26

A change in the teaching of Geometry is, then, urgent, both in its content and in
the way it is taught. To be effective, this "new" Geometry teaching must be based
on research evidence. But there is a lack of research about the teaching and
learning of Geometry, as pointed out by Bishop (1983). Most of the research
papers on Geometry presented at the last PME meetings have been about the van

Hiele levels of thinking.

The van Hiele Levels of Thinking:

In the late 50's, Pierre van Hiele and his wife Dina van Hiele-Geldof, worried
about their secondary students’ performance in geometry in The Netherlands and
50, dedicated their Ph D studies to this problem. In 1957, P van Hiele presented
his paper: “La pensee de l'enfant et la geometrie” (van Hiele, 1959) at a
Mathematics Education conference in Sevres, France. In this article, van Hiele
established a model of thinking in Geometry based on five levels and on five

phases.

The van Hiele levels are summarized by Hoffer (1981, 1983) as:

Level 0 (Recognition) : students recognize figures by their global appearance,
but they do not explicitly identify their properties;

Level | (Analysis) : students analyse properties of figures, but they do not
explicitly interrelate figures or properties;

Level 2 (Ordering) : students relate figures and their properties, but they do not
organize sequences of statements to justify observations;

Level 3 (Deduction) : students develop sequences of statements to deduce one
statement from another, but they do not recognize the need for rigor;

Level 4 (Rigor) : students understand the importance of precision in

demonstrations and analyse various deductive systems.
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To progress from one level to the next, students must experience the following
‘Phases’ : inquiry, direct orientation, explanation, free orientation and integration
(van Hiele, 1959).

The main characteristics of the van Hiele model were summarized by Fuys,

Geddes and Tischler (1988) as follows:

(a) the tevels are sequential;

(b) each level has its own language, set of symbols and network of relations;

(c) what is implicit at one level becomes explicit at the next level;

(d) material taught to students above their level issubject to a reduction of level,

(e) progress from one fevel to the next is more -dependent on instructional
experience than on age or maturation; and

(f) one goes through various ‘phases’in proceeding from one level to the next.

The British Experience:

An attempt to improve the teaching of Geometry was made in Great Britain in the

1ate 60's, replacing Euclidean geometry by Transformation Geometry in the

'secondary school syllabus. According to Kiichemann (1981), the reasons for this

change were:

(a) the fact that Euclidean geometry was not appropriate for the majority-of the
students; it was taught in a deductive way and learned by rote;

{b) the hope that students would discover general rules about the combination of
transformations, providing insights into mathematical structure;

{c) the belief that Transformation Geometry would provide a coherent
embodiment of matrix algebra, giving the students an idea of the unity of

Mémematics.

After more than ten years of school use and influenced by the results of the CSMS
QO t(Hart, 1981), Kiichemann (1980) stated: Unfortunately, it has become
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increasingly clear that these aims (of the introduction of Transformation
Geometry) are as inaccessible to many children as was the deductive geometry
that the transformations replaced, and it is doubtful whether their central role in

courses for 11 - 16 year olds can any longer be justified”.
This suggests the need for further research to find out whether Transformation
Geometry can really be a solution to the challenge of reforming the teaching of

Geometry.

The Present Research:

In this work, levels corresponding to those established by van Hiele for Euclidean
Geometry are suggested for Transformation Geometry. Further, an investigation
was carried out in order to:

(a) check the validity of these levels, ie,, if they form a hierarchy; and

(b) find out if there is a relation between the levels attained in traditional

Geometry and in Transformation Geometry.

The levels considered for Transformation Geometry are:

Basic level : students recogniée and identify the transformations (reflection,
rotation, translation and enlargement);

Level 1 : students identify and analyse the properties of the transformations,
as: mirror-line (reflection), centre and angle of turning (rotation),

scale factor of enlargement;

Level 2 :  students recognize combinations and inverses of transformations;
Level 3 : students understand the significance of deduction, the converse of a

theorem and the necessary and sufficient conditions;
Level 4 :  students make formal demonstrations of properties and establish

transformations in different systems.
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According to van Hiele, it is very difficult to achieve level 4 in secondary school.
Actually, Usiskin (1982) stated that “level 4 either does not exist or is not
testable”. For this reason, this investigation concerns only the levels below level
4. A test on Transformation Geometry was devised, to the same pattern as
Usiskin’s van Hiele test for traditional Geometry ie., sets of multiple-choice
questions, each set cor responding to a van Hiele tevel. So, five questions were
selected from each set of Usiskin's test (excluding set five), to match with the
live questions in each one of the four sets in the Transformation Geomstry test

{corresponding to levels: Basic, 1, 2 and 2).

&2 3 pilot study, both tests were given to 24 15 - year old British students from
a comprehensive school. The tests were marked according to the following
criterion: if the student scored three or more in a set of five, s/hie was considered

as attaining the corresponding level.

It can be stated that the Transformation Geometry levels form a hierarchy, since
only two students (8.3%) attained a higher level without attaining a lower one
(both of them attained level 2 and not level 1). These two students were
excluded from the sample, as well as another student whose response showed the

same type of discrepancy in the traditional Geometry test.

For the sample of 21 students, the relation between the levels obtained is shown
in Table 1. Table 2 shows the number of students that attained dirrerént levels

in the tests.

There 15 a correspondence between the van Hiele levels in traditional Geometry
and Transformation Geometry, as shown by this small sample. However, it is not

as strong as one might hope. All the children in the sample have learned their
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Geometry mainly through transformations. Itis interesting to observe that
Mayberry (19&3) and Gutierrez & Jaime {1987) have found no correlation
petween children’s van Hiele levels on different geometric concepts such as

triangles, quadrilaterals, angles, etc.

Mo of students Level in Level in
0 0 Transformation | Traditicnal | No. of
1 9 Geometry Geometry students
z 2 3 2 1
2 1 3 1 2
2 1 5
1 2 1
Table 1 5ame level in

toth testz (57.18) Table 2: Different levels
Cormments
Ths analysis «f the traditional Geometry test (adapted from Usiskin) showed that,
when the question at the Basic Level required that a square be recognized as a
ractangle, all the éample failed. When a similar question was asked at Level 2,

only three students out of the six who otherwise attained this level succeeded.

_On the other hand, in the Transformation Geometry test, only one student seemad
to know the meaning of “congrusnt triangles” In question 2.5, 13 students have
ticked the first and the third options, showing the knowledge of the properties of
translations. Nevertheless, they did not tick the option that mentioned congruent

triangles.

25 - Tick which are true for a translation:
O The image of a flag is a flag of the same length
O The image of a horizental flag is a vertical flag
0 The imags of a horizontal flag is a horizontal flag
0 The imags of a triangle is a congruent triangle
0 Hone of these is true

O

E MC uestion 2.5 - Transformation Geometry Test
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From these observations, it can be seen that there is a gap in the knowledge of
some concepts and properties of shapes. One possible reason for this could be the
fact that these children had a Transformation Geometry approach, with no
emphasis on Euclidean Geometry. But this is a point that requires further

research.

The fact that the -majority of those shown in Table 2 attained a higher level in
Transformation Geometry can be explained by their greater familiarity with the
terms and pictures in this, rather than with those in traditional Geometry.

The pilot study has demonstrated that it is possible to categorize transformation
geometric concepts according to van Hiele levels and that these levels appear to

be hierarchical.

The continuation of the research will be concerned with the most effective ways

of teaching Geometry in the classroom.
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Intuitive and Formal learning of Ratio Concepts
Pearla Nesher & Michal Sukenik
The University of Haifa

The effect of the formal presentation of blue and yellow color

mixtures as rational numbers on students’ ability to solve ratio

problems of comparing these mixtures was examined. Children in

grades 7, 8, and 9 were first given comparison of mixtures

problems with an opportunity to watch the actual outcome and

check their predictions (Task 1). They were then asked to solve

similar problems, after being introduced to the representation of

the mixtures as rational numbers (Task 2), and Jinally tested

about their ability to reach a general solution to problems of the

same nature (Task 3). Overall results’ analysis showed that a

substantial number of students had benefited from both tasks 1

and 2, but the actual contribution of each one of them still

remains to be tested.
The concepts of ratio and proportion and their development and acquisition in children of differcnt
ages have been the target of many research studies. (Scc Tourniaire and Pulos, 1985 for a partial
review of the literaturc). Most of thesc studics have manipulated onc or more of the following
variables: The context of the problem (c.g. balance beam, fish and food sugar and water, etc.), the
numerical values appearing in the problems,(c.g. presence of an integer ratio, presence of 1, etc.), and
the kind of task (comparison or missing valuc problems). The procedurc was usually consisted of
administering a test of ratio problems, (given with or without illustrations, presented either in
written or oral form), and analyzing the subjeets’ responses in terms of the strategics used (o answer
these problems. The results of most of these studics have revealed that a substantial number of
secondary school students did not usc proportion successfully to solve even simple ratio (asks. One of
the dominant erroncous strategics used by children of all ages is the additive strategy, that is,
viewing the rclationship within the ratios as the difference between terms, instead of realizing that it
is a multiplicative onc (c.g. Karplus et al, 1974; Hart,1978; Quintero, 1987).

The main focus of the present rescarch was not on the way children solve problems involving

ratios, but on the tension between the intuitive judgement as demonstrated in the experimentation of

O
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something that c-alls for ratio and its formal representation in the form of a/b. We were interested in
the question whether children perecive those problems as ones involving ratios at all. If not, then we
were interested in the effect of concrete expericncing with the problems, accompanied by, and
explicitly relating to formal presentation of ratios. Would this cexpericnce make the children realize
the need for using correct strategics, and improve their performance 0}1 those problems.

This study differs from previous ones in several aspects: (1) The ratios used were intensive
quantitics (mixtures of blue and yellow colors that result in a green color shade), which could be
objectively pereeived and judged by the students, thus cnabling them to make concrete comparisons
between pairs of ratios. (2) The exact numerical values of the ratios were not controlled, however
they were obtained so as to induce cither a multiplicative or an additive strategy. (3) In order to see
if the intensive quantitics were perccived by the children as ratios, Ss were asked while solving the
problems, to writc down the quantities they dealt with. We were interested to find out how many of
the Ss will spontaneously use the ratio formal notation. (4) Subjects were gelling immediate feedback
to their responscs, by confronting their judgments with actual results, thus giving them the
opportunity to change strategics accordingly. (5) After concrete and intuitive expericncing with the
intensive quantitics, their formal representation was prescnted to the students prior to their
judgement. This was done in order to cxamine the effect of the formal representation on their
strategics. The subjects’ ability to generalize their learning, in terms of comparing any pair of
intensive quantitics, as a result of the formal reprcscnlalion,'was also tested. The major hypothesis

was that formal representation enhances the understanding of ratio and proportion concepts.

Method
60 subjects participated in the experiment, 20 of each grade 7, 8, and 9 sclected randomly from a
junior high school in Haifa. They were all individually interviewed for a period of about thirty
minutes cach. The subjects were told they arc going to take part in an experiment which deals with
children’s knowledge about mixing colors. Each session consisted of three main tasks: (1) Ss had to

comparc and predict the resulting shade of two mixtures of different paint quantitics in terms of

El{f c 36 -
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same or different color-shade, and then observe the result. (2) Ss were introduced to the formal
presentation of the paint quantitics as rational numbers (ratios), and then had to compare and predict
as in task onc. (3) Ss were given a short written test involving gencralizations about mixing colors.

Following is a detailed description of cach task:

Task 1: Intuitive Judgement

The experimenter presented two containers filled with blue and yellow colored water, and pourcd
with a pipette a specificd number of bluc drops (B1) into a cup (cup 1). The subject was first asked
to predict the shade of color if a specificd number of yellow drops (Y1) was added to the same cup.
Alter obscrving the results, another empty cup (cup 2) was introduced. The subject was (old that a
specificd number of bluc drops (B2) and of yellow drops (Y2) would be added into cup 2 and was
asked to judge whether the color of both cups (cup 1 and cup 2) would be the same or different, He
was also asked to explain his answer. The experimenter then made the mixture of cup 2, and It the
student watch the result, and judge whether his prediction was realized. The color obtained in all
mixtures was demonstrated by dipping a cotton swab into the mixture, so that the judgement of the
color in each cup would not be influenced or biascd by the total amount of liquid in it, and so that
the difference or sameness of color in l;olh cups could be clearly scen. If the subject’s judgement,
after watching the results, about the actual colors obtained, did not coincide with his former
prediction, he was asked (o try to explain the discrepancy. All the above procedure was repeated
scven times with varying values for B1, Y1, B2, and Y2. These values were seleeted so as (o induce
cither a multiplicative or additive judgement strategy. For example, the pair B1=7 Y1=2 (in cup 1),
and B2=14 Y2=4 (in cup 2) was assumed to induce a multiplicative strategy, while, on the other hand,
the pair B1=7 Y1=2, and B2=17 Y2=12, would call for an additive strategy. In addition, the quantitics
were checked experimentally to make surc that the comparison between the two mixtures’ shades
would not be ambiguous. (Sce appendix A for the cxact quantitics). All subjects received the same
quantities in the same order, except for the first two pairs of mixtures, in which the order was

interchanged between subjects. The procedure of the last pair did not include the actual mixing, and
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the subjects had only to predict the outcome. Before cach prediction of the outcome was given, and
the pair of mixtures was made, the subjeet was encouraged Lo wrile down the quantitics specified by

the experimenter, in any way he wishes to do so, for future comparisons of tryouts.

Task 2: Formal Representation

After predicting and observing the resuls of seven pairs of color mixtures, the subject was
introduced to a way of representing the specified quantitics in the form of rational numbers (or
ratios), i.c. B1/Y1in cup 1 and B2/Y2in cup 2. The values of B1, Y1, B2 and Y2 were obtained as
described in task 1 (See appendix A for the exact quantitics). He was then asked (o judge whether
(he color-shade of both mixtures would be the same or differcnt and Lo justify his judgement by
supplying reasons. All children were given the same quantities in the same order. In some cases the
experimenter made the actual mixing, but usually this task did not involve observing the outcome.

Each student had to make three 1o five judgments , depending on his initial responscs.

‘Fask 3: Generalization

A short writlcn test was administered at the end of the session consisted of five items. The subject
was first presented with a given mixture of 2 yellow drops to 3 blue drops presented as 2/3, and
was asked (o suggest the number of yellow and blue drops necded in order o get a mixture with
lighter color than the reference, and a mixture with the same color but in larger quantitics. Another
question asked for the number of yellow drops needed 1o get the samc color (2/3) if 12 bluc drops
were uscd. Finally, the student had to suggest a general rulc that would specify the conditions for
obtaining diffc;'cnl mixtures that have the same color. The last item asked whether the whole

experiment reminded the subject of anything related to mathematics.

38
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Results and Discussion:

The Ss’ performance in cach of the three tasks deseribed above, was analyzed, considering mainly
the strategies used to answer each of the mixture problems, rather than the correctness per se. After
analyzing these stratcgics, one of the following scorcs was given: In‘task 1 (Experience), a plus (+)
indicated the usc of correct strategics on all problems, a minus-plus.(- +) was given (o those who
during the concrete experiencing used both correct and incorrect strategies, and a minus (-)
indicated the use of incorrect strategics on all problems. In.tasks 2 and 3'(Formalism and
Generalization), which included less steps, only two scores were given, cither a plus (+), when the
formalism was realized and.used correctly by the subject, or a minus (-), when this was not the case.

According o thiese scorcs, 12 patterns of performance were possible, as described in table 1:

Table 1: Possible patterns of replies:

Task 1 Task 2 Task 3
Concrete Activity Formalism Generalization
1) + + +
2) + + -
3) + - +
4) + - -
5) -+ + +
6) -+ + -
7 -+ - +
8) -+ - -
9) - + +
10) - + -
11) - - +
12) - - -

The number of children exhibiting cach of the above patterns would suggest the answer to the main
question raised in this study. Children falling in the patterns (1) and (12) were not affected: by the
experiment. Children falling in catcgory (9) improved their performance as manifested by correct
generalizations, due to the formal presentation. Pattern (5) includes children who had improved in the

middle of the concrete experimentation, supported by the formal tasks. We should emphasize that the

O
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concrete experimentation had also a formal touch. Whilc working on the mixing colors task, the
children wrote down the numbers involved with each mixture which probably increased their tendency
to reason about the numbers. Ss’ performance on patterns (4), and (8) show decreasc in the children’s
performance due to the format representation and will contradict the major hypothesis of this study.
Pattcrns (2) and (G) show no achicvement on the more general level. All other patterns would indicate
inconsistent and unreasonable performance, and would require special attention. Each subject was
assigned onc of the above patterns, according to his overall performance, Table 2 presents a summary
of the number of subjects of cach age level, manifesting the various patterns (The empty patterns

were omitted):

Table 2: Distribution of Ss among the patterns:

Pattern Grade 7 Grade 8 Grade 9 Total

1) + + + 2 5 7 14
5) -+ + 4 10 6 10 26
8) -+ - - 2 2 0 4
9) _t+ o+ 0 2 3 5
11) - -+ 0 2 0 2
12) - - - 6 3 0 9
20 20 20 60

To summarize these results even further, it can be seca that patterns 1 and 12 which are irrelevant
for the present analysis, includc 23 children distributed as expected among the age groups and
demonstrating a developmental trend of learning, As for patterns that support the hypothesis about
the contribution of the formal component, pattern (9) consists of only 5Ss whilc pattern (5) which
consists of some lcarning at the concrete experimentation as well as in the formal task includes 26
Ss. Four children in pattern (8) indicatc a situation in which their performance was hindered by the
formal activity. We cannot explain Pattern 11 (2 Ss). In the limitation of the present study we could
not cxaminc the gencralization achicved without being exposed (o the formal lcarning (task 2). This
remained to be studied next.

A question raised by our experiment is, how can children know that the mixture of colors is a
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specific application of ratio and proportion? As noted in previous studics many of the children started

" with qualilative reasoning about colors and with additive strategy. It was interesting (o note that

since the children received immediate feedback they could revise their prior hypotheses, as in the
following protocol: “It looks as though only if the ratio is in multiplication, thea the colors are the
same. That is, if it’s twice between the blue and the blue, and the yellow to the yellow is also twice,
then the colors will be the same, but if it is in addition - then it is not™ (as he thought before).

The struggle between the intuitions about colors and the relevant formal model, caused in many cascs
some tension as cvidenced from the following protocol. In this case the student was not convinced by
the formalism. She was given in task 2 both mixtures (a) and (b) in their formal represcntation:
a=1/4,b=3/12, and when asked to decide if their color shades were the same or diffcrent, she replied:
" B will be darker. (Why?) Oh, no. It will be the same color. Because 3/12 equals a quarter if we
reduce fractions™. The examiner then makes the actual mixtures and the student says: "They look the
same. On second thought, it’s not so rclated, the reducing of the fractions and the drops mixturc”.
(Why?) "Because here (with the drops) you don't ask to reduce, you simply say there are 3 blue and
12 yellow, and if you will reduce you won't put 1 drop of blue and 3 of ycliow. So the reason is

wrong, but the result is right.”

This experiment has demonstrated (o some extent the cffect of the formal representation of ratio
in an intuitive based experiment. It should be holcd, however, that the preseat experiment did not
enable to control separately and independently the impact of the two variables -- concrete activity
and formal prescntation. Thercfore it is difficult to infer about the unique influence of cach one of

these variables on the final performance.
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Appendix A:

The Quantities of Blue and Yellow Drops Used in Tasks 1 and 2

BL Yl B2 ¥2
) 1 3 7 9
2) 1 3 6 18
3) 7 2 17 12
4) 7 2 14 4
) 2 8 4 16
6) 2 8 10 16
) 2 5 3 7
8) 1 4 3 12
9) 1 4 4 7
10) 2 5 6 15
11) 2 5 5 8
12) 2 4 3 6

B1 = Number of blue drops in cup 1.
Y1 = Number of ycllow drops in cup 1.
B2 = Number of bluc drops in cup 2.
Y2 = Number of yellow drops in cup 2.
Steps 1-7 were administercd in task 1.
Steps 8-12 were administercd in task 2.
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EARLY CONCEPTIONS OF SUBTRACTION
Dagmar Neuman
The University of Gothenburg, Department of Education
Abstract

In a phenomenographic study 105 Swedish school starters were interviewed in
order to map out, among other conceptions, the conceptions of how to grasp
the number in the unknown part in subtraction tasks within the number range
1-10. The children were given some easy word problems immedately after
school start, before any teaching in addition and subtraction yet had
started and were observed when they solved the problems, and interviewed
about the ways in which they had done this. It was possible to categorize
even very early conceptions. These are the ones that will be in focus in
this presentation.
BACKGROUND

Phenomenographic investigations aim at mapping out existing
conceptions of different phenomena in the world around us (Marton, 1988). In
a phenomenographic study (Neuman, 1987) 105 7-year-old Swedish school
starters were interviewed in order to find out about their different
conceptions of numbers and of how they get hold of the number asked for in
verbally given problems. One of several intentions with the study was to
find out if there might be some logic in unusual answers to simple addition
and subtraction tasks which had been observed among children in special
education lessons in the first grades. The part of the study which concerned
early conceptions of subtraction ending up in those answers will be
in focus in this presentation.
METHOD

82 of the 105 school starters who were interviewed were all of
the pupils from four classes, while 23 were chosen from five other classes.
13 of these 23 pupils were interviewed because they seemed to have very
rudamental assumptions of how to get hold of the number asked for in
quantitative problems, according to a preliminary test given to all children
before the interviews were carried out. Nearly as many of the pupils in the
four classes where all were interviewed seemed to have as little
understanding of counting as these 13 children.

One of the interview questions was a game, where the child was asked
to put up as many buttons as a figure - 9 - yritten on a card. All the

O
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pupils were able to do that. The interviewer then hid the 9 buttons in two
boxes, and asked the child to guess how many of them vere hidden in each
box. The pupils were alloved to make five guesses.

Beside the guessing game two addition tasks and four subtraction tasks
wvere given. Only two of the latter were given to all pupils. Of these the
first was a missing addend task and the second a take away task:

Q 1. If you have 3 kronor and you want to buy a comic for 7 kronor,

have you got enough money? - (No!) - How many more kronor do you need?

Q 2. If you have 10 kronor in your purse and lose 7 of them, how many

have you got left?

These two tasks together with the guessing game were the ones that best
elucidated the early conceptions of subtraction.

In a phenomenographic study you first separate the answers from the
individuals vho ansvered, categorizing the answers per se according to some
characteristic. After that you again relate them to the individuals looking
for if a group of individuals giving a specific answver to one question gave
an ansver illustrating the same kind of thinking to some of the other
questions. The findings in these two analyses are after that interpreted and
the conceptions they are thought to be expressions of are "labelled" and
described.

, In the present study a quantitative evaluation was also carried out in
order to have some idea of the background knowledge existing among children
expressing different conceptions. In this study the following kinds of task
were given: "How far can you count?"; "Can you add one to eight (subtract
one from seven)?"; "Can you count backwards from 10 to 1?"; "How many
fingers do you have altogether on your two hands?". Beside that the pupils
were given some Piaget inspired problems, e g to put up as many bricks as
the 17 which were placed in a row on the table, to answer the question if
these bricks were more or less or as many as before when the’interviever by
chance had pushed the bricks in one row so they were spread out, and to
seriate 15 sticks of different lengths. One or more points were given to

[E in:rd the tasks (e g tvo if the pupils could count to 30, 1 if they could
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count to 25, and none if they could not even do that). Beside that ongvpoint
vas given for any correct answver to the eleven analysed tasks (the guessing

game and the six questions). Together it vas possible to obtain 26 points in
this evaluation. The median for the children in the four classes vhere all.

pupils vere interviewed was 21.5.

FINDINGS

Five different conceptions, one of them expressed through two
different strategies, were mapped out. Thé two earliest conceptions of how.
to find an answver to a quantitative problem could rarely be viewed as
realated to conceptions of addition, subtraction or even.ol number.
However, the third conception observed seemed to be a conception qf early
ordinal, and the fourth one of early cardinal kind. In the fifth conggption
the early ordinal and cardinal qualities of number finally had become
integrated. The five conceptions will be described below.

1. Movements. The most unusual answers to the guessing game were tﬁat
there were 9+11, 11+13, 13418, 10+11 etc buttons in the two boxes. 11 such
ansvers were given altogether by 6 pupils. These ansvérs vere obser?ed.oﬁly
in the guessing game. One of the children who guessed so three times had no
points in the quantitative study, aﬂd the othef twvo vho guessed so more than
once had 7 and 9 points respectively. These two children also expressed some
other early conceptions.

The concrete counting which was carried out when the buttons were
placed on the card by these children, at least by the one who had 0 p in the
quantitative evaluation, seemed to have been carried out as a script where
the couﬁting vords rather were related to the movements in a movement game
than to the buttons placed on the card. In the guesses she just seemed to
choose a couple of number words by chance. This conception only seemed to be
a conception of "how to behave" in the way the adult expects when the
question "How many" occurs.

2. Fair shares. Another kind of odd guesses were that there "had to be
the half" or "the same" in each box as two of the children explained it. 16

() &gave altogether 35 answers of this kind. In the guessing game they
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guessed e g "6+6, 9+9, 2+2 or even i+1, and to q 2 three of them answered
w77 (Only one of the 89 children who did not express this conception in the
guessiqg game gave this answer to q 2.) These answers seemed to reflec; an
experience of "fair sharing" and the belief that the unknown part must be
one of the equal parts. In this conception the counting words seemed to have
been rélated to the objects counted. The counting words used were within the
number range 1-9. However, the parts weré not yet related to the wvhole. This
is easy to understand if it reflects an experience of fair sharing. The
whole is rarely counted before a fair sharing is carried out (cf Miller,
1984). This conception cannot be viewed as related to a conception of number
since no part-whole relations seem to exist.

The median in the quantitative study for the 8 pupils who expressed
this conception twice or more was 8.

3. Names. In the third conception mapped out the guesses were of the
kind "3+9, 5+9, 7+9 or 1+9". 67 ansvers of this kind were given by 32
children. The answver to q 1 was "7" (given by 12 children in this group but
only by 2 of the other 73‘chi1dren) and the answer to q 2 "O" or "1" (given
by 3 children in this group but only by one of the other children). The
median in the quantitative evaluation for the 14 children who had answerd in
this way at least twice wvas 7. The children who had given such answers might
in some situation, e g in a "fair sharing", have been aware of partly that
each object got its own numerical "name" in the sharing procedure, partly
tﬁat the further in the sequence the number name of the last distributed
object is situated, the larger the number of sweets, marbles etc, delivered.
The counting word sequence seemed to have become a kind of "felt" or
imagined "measuring tape" (cf "the mental number line" described by Resnick,
1983). The children seemed to describe the figure on their imagined
"measuring tape" to which the buttons in the boxes reached, if each button
would be related to one of its numerals. The buttons in the last box then
always must end with the button related to the numeral "9". This "limit
nnmf" wvas used to communicate the numbef of the last part as well as of the

©
[E l(: Here the parts seemed to constitute the whole. In take away tasks, i
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e in q 2, and sometimes in guesses (where the children either could think
of the buttons in the last box as taken away from the whole or as a missing
addend added to the first part) the pupils further seemed to express the
conception that take away tasks should be thought of backwards (cf Carpenter
and Mosers, 1982, findings pointing to that small children use different
strategies for problems they experience as additive and subtractive
respectively). Thus they seemed to set out from ten and to think backwards
down to "7" on their imagined "measuring tape” and after that to think also
of the last part backwards to the last limit name, stating that there were
"0" or "1" left if seven were dropped.

However, there was also another strategy related to this conception, a
strategy where the inner limit names were used to describe the size of the
parts. The children using this strategy guessed e g "2+3, 7+8, 344 or 1+2.
Four of them answered "6" to q 2. (Only three children outside this group
gave that answer to q 2.) 24 children have used this strategy 44 times. The
median in the group answering in this way at least gwice (n=14) was 15, thus
much higher than the median for the group of children who used the earlier
strategy related to the conception "Names". Also the children who used this
latter strategy seemed to point to figurs on their "minds measuring tape".
And they seemed to experience take away as something which should be carried
out through thinking backvards, exactly as the children answering "0" or "1"
to q 2 had done. It was possible to interpret these strategies e g from the
way in which a couple of pupils enumerated the "names" of the coins in the
"left part" in q 2: "Seven dropped ... then there are six, five, four,
three, two, one ... six left". The coins "named" "10, 9, 8, 7", thus the
coins down to and including "7" on the "measuring tape", seemed to be the
"dropped” ones. One child used this strategy in a very elucidating way in a
following up task where five buttons were hidden in the two boxes. First he
guessed that there vere three in one box and two in the other, explaining
that he knew because, as he said, "it can’t be four”. When the interviewer
pointed out that she of course might have hidden four in that box, and asked
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how many it then could be in the other, he answered: "Well, then there'’s

three", explaining further: "I knew ... you just take away one" (fig 1).

e
@@ @ *Three and two"
@@ @ "Four and three" Fig 1.

If the button named "four" would be the last one thought to be in the
second box, where the buttons vere taken away from the whole, and thought of
backwards, then the n3_putton" must have been "taken away" from this box and
moved to the first one, wvhere it then would have become the last button
thought of forwards. Thus there had to be three in this box (fig 1).

In these two strategies the children seemed to use an early ordinal
conception of the counting words only: the limit names, which described
vhere parts and vhole ended, thought of eiiher forwvards or backwards. They
seemed to measure the number, not to count the units.

4. Extensions. In the next kind of answers on the other hand, an early
cardinal conception solely seemed to be used and the counting words seemed

to mean "a little", "much/many" or "something inbetween". One child e g

answered q 2 by saying: "Then I’'ve got four left .. or two .. four or two
. you can’t be sure ..". Yhen the interviewver asked if there couldn’t be
eight left the child ansvwered: "Eight left!? ... if you lost that much, it

can’t possibly be that much!" "A little + "rather much" could be "much", but
not "much"™ + "rather much". However, if all the words "two, three and four"
means just "a little", "you can't be sure" of which one you should use. The
extension covered by a number of units on the "measuring tape" seemed to be
what the children expressing this conception had in mind vhen they estimated
the unknown part, while the separate units within this extension did not
seem to be of any interest.

60 children gave together 109 answers of this kind. 13 of these
children gave the answver "3 or 4 or 5" (or only one of the counting words

wan -y 4"y to q 1. Only one child outside this group gave this answer. 7 of
) q
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them gave the answer "2 or 3 or 4" (or only one of the counting words "2" or
"4")) to q 2. Only 2 other children answered so.
The median for the children ansvering twice in this way was 16.

5. Finger numbers and Counted numbers. First in the last of the early

conceptions the children seemed to divide up the extension into units,
representing them by one finger each or with one counting word each only,
counting e g "1,2 ... 3,4,5,6,7,8,9 ... 7 or 8 missing .." (q 1). Here the
early ordinal and the early cardinal aspects of numbers had become
integrated. Yet, the children still had to estimate the number in the part
which was thought to be added or subtracted if it was larger than three.
However, now it was the number of units which was estimated, not an
"extension" only. When the conception "Extension" was expressed no fingers
wvere used and no countingwords were enumerated.

Even when ;Finger numbers and "Counted numbers" were used it was
possible to observe how the strategies used in q 1 and q 2 vere the same as
the ones used in the guessing game and the other questions. 23 children
expresged altogether 38 times the conception that the numbers should be
"Finger numbers" or "Counted numbers", but had not yet developed strategies
alloving them to find the correct number in the added or subtracted part if
it was larger than 3. The median among the children expressing the
conception more than once (n=9) was 18.

DISCUSSION

One after the other the different aspects of numbers seemed to be
separated from the whole for closer investigation, and after that integrated
again, changing the quality of the conception and making it more and more
functional. In the quantitative evaluation it vas possible to see how the
median became higher in the groups of children expressing more developed
conceptions or the more developed strategy within the conception "Names".

The children seemed to express one of these conceptions in many
ansvers, even if they might "fall back" to earlier conceptions in difficult
":'"Cj:"ns. This is illustrated by the ways in which the answers to q 1 and

[E l(: related to the guesses and the other questions in the interview.
Arotte o e - tﬂ E}
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The conceptions following these earlier ones in the map of conceptions
created through the analyses, revealed the ways in which these early
conceptions gradually changed into more functional ones. The fingers used in
a way vhere the numbers became simultaneously ordinal and cardinal "Finger
numbers” seemed to play the most important role in this developmental
process. Used for “keeping track", hovever, the fingers seemed to obstruct
the way towards abstract arithmetic thinking.

The children who used their fingers in the first way did not divide up
the first hand if one of the parts was five or bigger. Thus they could solve
a "missing addend" of the kind 2+_=9 by taking away the two last fingers,
and a take away task of the kind 9-7=_ by folding the seven first ones. The
strategy "Choice" (Resnick, 1983) seemed to be concretely created in this
vay.

I1f the two parts were less than five the thumb - or the thumb and the
forefinger of the first hand — was moved over to the second hand. In this
vay a "Transformation” strategy (Neuman, 1987) changing the parts within the
vhole (e g 5+2 to 4+3) vas concretely created.

The conception that "finger numbers” could be used in these ways in
order to grasp the unknown part in subtraction tasks, was the most
frequently expressed conception in the study. Gradually these ten "finger
numbers" with their strategies became visualized, or just "felt" - "body-
anchored". In the end they seemed to become thinking strategies related to
abstract numbers. 9 pupils illustrated in different ways how they "thought
vith their hands" and about 1/4 of the 105 pupil used the strategy
nTransformation" and/or "Choice" as thinking strategies.
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COMPUTATTONAL. ESTIMATION PERFORMANCE AND STRATEGIES USED BY
SELECT FIFTH AND EIGHTH GRADE JAPANESE STUDENTS
Nobuhiko NOHDA, J. Ishida, K. Shimizu; University of Tsukuba
Shigeo Yoshikawa, Joetsu University of Education
Robert E. Reys, Barbara J. Reys; University of Missouri-Columbia
(Abstract)

Identification and characterization of the computational estimation skills
and strategies possessed by Japanese students were primary purposes of this
project. Second purpose was to contiribute further to the successful development
cf a general framework charactering the thinking processes of stuqent‘s
computational estimation. More specifically, this research was designed to
identify and describe computational estimation processes used by the best
estimators in grade S and 8, and tc characterize their thinking strategies and
techniques. Twelve different Japanese schools (7 elementary and S junior high)
and a total of 273 fifth graders and 187 eighth graders participated in this
rasearch.

Background

The mathewatics curriculum plan released by the Japanse Ministry of
Education identifies estimation as a topic that should be specifically taught
within school mathematics programs (Course of Study, Arithmetic, 1989). The
report issuad by the Japanese Ministry of Education is certain to promote change .
in new mathematics textbooks written for Japanese students. Thus some progress
is being made to focus curricular and instructional attention toward
computational estimaticn.

Computztional estimation has not received much attention in Japanese school
mathematics curriculum but it has been included in some of national assessments
For example, the problem reported in Table 1 was included in a Japanese
nutional assesowent veport (Tols) Assossment in Mathewmat Los, 1984). This
assessment was designed to obtain the “calculation" (e.g., method) used by the

Q ots to arvive al their snswer in addition to the answer itself
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Table 1

‘ Japanese National Assessment # 5-B~7 Jtom on Estimation of Arithmetic

e s e i ]

There is a number which was rounded to an integer after the calculation of
04 X 18.73.

Do rough calculation to find a correct answer, and choose a correct one

froa following items; 1. 570 2. 5697 3. 56967 4. 569673

And write how to do rough calculation:

Although 62 percent of students chose the correct answer, only 19 percent
actually estimated. The majority reported calcultating the exact answer then

matching it to the closest corresponding foil. Although the students were “vory
good at solving straight computation probleas"”, this assessment reported that
they were “rather poor at doing estimation problems".

Previous research has provided ihe beginning for a theory about how good
estimators in grades 7 through 12 as well as adults actually make estimates
(Reys, Baestgen, Rybolt and Wyatt, 1981). Threa global cognitive procCesses
identified among these good estimators (Reys, et al, 1980) These processes are
translation (changing the equation or mathematical structure of the problem to a
more mentally manageable form); reformulation {changing the numerical data into
a more mentally manageable form); and compensation (adjustments made in the
intial o intermediate estimate to exact answer).

Purpose

Identificationland characterization of the computational estimaticn skills
and strategies possessed by Japanese students were primavy purposes of this
project. Second purpose was to contribute further toward the development of a
general framework charactering the thinking processes successfully usad by

students doing computaticnal estimation. More specifically, this rosoarsh was

designed Lo identify and doscribe computational estimation proce
o .
[E l(:ﬂst estimators in grade 5 and 8, and to characterize the thinking strategies

.
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students uzed when est imating.

and techniguesz thos

Twalve different Japanese schools (7 olementary and 5 juniov high) and a

tolal of 279 fifth geaders and 187 eighlh graders participated in this rescarch,

The schools were ected to represent a range of school and econownic

Eight of Lthe schools wore selected within Tsukuba, a city of

backgrounds
approximately 136,200 popuration located about 60 km from Tokyc. In order to

insure a broader representation of schoolg, four rural schools oulside of,

sived. One fifth and eighth pgrade claszs in

within 50 km to Tzukuba were also
aach school was sclected by the principal to be tested. The clazs size raongad
from 33 to U7 students in both the fifth and eighth grade classes. Students in
all classes were hetercgeneously grouped as is the traditional custom in
alementary and junior high schesls in Japan.

he Screening Test

The 39 open-ended item scresning ‘test used in this research contained 25
items from the &CE (Assessing Computational Estimation ) test (Reys, Bestgen,
Rybolt and Wyatt, 1381), Some items from the ACE were modified slightly to ngke
them appropriate for Japanase students and :evéral othar items were added which
the researchers thought might be particularly interesting, such as the 12/12 +
T7/8 items from tha Third National Assessment of Educational Progress.

Each of the 33 items was produced on a 35-mm slide with the items shown
seguentially using & corousel slide projoctor. This format allowed for group
sdninistration and controlled the amount of response times (10-15 seconds) for
each item. Ths test includad 25 straight computation items (those containing
only numerical data) and 1§ applicatioﬁ items (those containing numerical dats
embadded in a physical cootext) all deigned to be relevant to Japanese students
and presented in their naiiive language. 411 four operaticns wero included but

ifems fovolved the oporations: of nultiphicstion and division. A

vhe majority

few items involved {racticns and decimals, but the majority involved whole
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4 standerd sat of instructions for the screening tost wore used in each
school by the test sdminiztrator. Students were told that this was an estimation
test. Since thare is nuot a direct Japanese translation for astimate, the term
“pough calculation” was used in the directions. Thay were told that each
sroblem would ba timec, and that they would have Latwean 10 and 15 seconds o
@ake and record thair estimate. The students wera also told “Not to copy the
problem but to do the work in your head”.

Igg_lggervieu
i individual interview was dooe with 21 (10 fifith and 11 eighth graders) of

best astimators in an effort to learn what strategies and processes @ach of

(1304

the sutjects used in solving differents estimation problems. Students were
askad tc dascrive as fully as cossible the strategies and thought processcs thay
used to arrive ati their estimates.

Students were available for only a limited time, usually one class period
sg only @ feﬁ sstimaticn protlems could be 6osed. Since the researchers were
also interasted in learning how consistent students were in the estimates
produced on the screening test were also used in the interview. A total for 13
ectimaticn problewms, § straight computation and 7 applied computation involving
a multistep multiplication and division problem was used with the eighth grade
students. .

To supplement the interview probleams, specific probes were developed to
provide consistency ameng the four Japanese interviewers as well as to focus
more carefully on specific characteristic hypothesized to be common among good
estimaters. A summary packet which highlighted these strategies and processes
which s{udenis might use, was prepared for each interview problem. Training
sessions were held among the four Japanese researchers doing the interviews
Following the training, the interviewers practiced doing several interviews
vefore any reported interviews were ;onduc{ad.

Screening Test

O
E lCe 2g-iten scresning test for a%fg‘{h grade and eighth grade students was
Arotte o e %
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done respectively. As the results, the scoves were widely distributed, ranging
from 0 tc 2U for fifth and O to 26 for eighth grade, with 7.hU and 11.18 being
the mean number of acceptable estimates on the screening test for fifth and
elghth grades respectively

At the conclusion of the screening test, ali students were asked “Are you a
good ;stimator?" and their responses suggest an interesting paradox. Table U
reports that whereas about three-fourths of students at each grade level said
estimation is important, only a few of them (12 percent of fifth and U percent
of the eighth) rated themselves as a good estimator. It is also interesting that
about two-thirds of the students said they were not a good estimatos, and this
self assessment parallels very closely the generally low performance on the
computational estimation test.

Table 2

Japanese Students Self Assessaent on two Estimation Statements

Statemant ér. § cr. 8

Number of M. F. Total Number of M. F. Total

Are you a good estimator? 150 129 278 o1 91 187
Yes 18.0 5.u 12.21% 7.6 w39
No 57.3 64.3 60.6 4 66.3 73.6 70.1 4%
Not Sure 2u,7 30.2 27.2 % 26.3 25.3 25.7 4

Do you think estimation is important?

Yes 76.7 Tw.u 5.6 4 72.6 69.2 70.6 %
No 6.0 3.1 w71 13.7 6.6 10.7 %
Not Sure 17.3 225 19.7 % 13.7 2u.2 18.7 %

An examination of Table 2 confirms that the screening test produced 3 wide
range of scores, particularly on the upper end from which the “gecsd estimators”
were selected for the interview. It took a score in the top 5% of students in

Hr respective grade level and thereby bacome a candidate for an individual
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intervicw. Altbough therebuas considerable variability among students within
sach of the participating schools there was at least one student in each school
who scored high enough to be interviewed.

An examination of the screening tests for the good estimators showed that 2
of the fifth graders aﬁd 4 of the eighth graders made an acceptable estimate on
the screening test, whereas Table 7 shows that nearly all of thea answered it
correctly during the interview. #lthough a majority of the students at each
grade level recognized #12/13" and “7/8" as being close to one, this observation

was not always immediate. For example, one fifth grade student first found a

- common denominator of 104 and then after one minute observed thaf each fraction

“,ss near one™. On the other hand another fifth grader responded in two second
that the sum was about two. She said, *12/13 is only 1/3 smaller than one and
7/8 is only 1/8 smaller than 1, so their sum is almost 2".
Table 3
Sunmary of Strategies Used on Exercise Involving

Estimating the Sum of Two Fractions

—
Exercise 12/13+ 7/8 Frequency
Strategies 6r. 5 Cr. 8
. Recognition that each fraction is near one
so sum is near one 5 8
. Use of Common Denominator
# 12/13 is about 9/10, 7/8 is about 9/10, so 18/10 1 0
# 12713 is 2u/26, /8 is 21/24, so the sum is about
2U/254+21/25 or U5/25 1 2
# 12/13 is about 10/10, /8 is about 8/10, so 18/10 0 1
# 12/13 is about 12/10, 7/8 is about 7/10, so 19/10 0 . 1
. Computed exact answer using mental algorithm 1
_ |

aAn examination of the strategies highlighted in Table 3 shows a heavey
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reliance on algorithms. Most of the students at each level tried to perform a
written algorithm on this problem, and in the process provided some interesting
insights into their thinking. Some students were successful in using
algorithmic techniques to produce an acceptable estimate. For example, one fifth
grade girl was able to perform the exact coputation mentally and produce an
“estimate of 124/114" in less than half a minute. This is another reminder of
the challenge of getting a valid measure of estimation, and it also gives some
indication as to her ability to do mental computation very quickly and
accurately. Another fifth grader produced an acceptable estimate, by reporting
that each fraction is about 9/10 and then added them together and reported an
“estimate of 18/10". However, this student gave no indication that he understood
that his estimate of 18/10 was near 2. Although some students were successful
using the addition algorithm mentally, other were unsuccessful. For example, a
fifth grade boy added numerators and got 19. He then said 13 X2=26 and 3% 8=2U,
and the average of 26 and 24 is 25, so my estimate is 19/25".

Discussion

Interviews with the highest scoring students led to the identification of
some specific estimation techniques and strategies. gtudents at both grade
levels, but the fifth graders in paticular, tended to apply learned
algorithemic computational procedures. Their tendency to use paper/pencil
procedﬁpes mentally often tended to interfere with the estimation process and
cade it more a mental computation task. Such procedures were not only
inappropriate bul inefficient as well.

An arca which tended to be a strength with the Japanese szmple was their
knowledge and use of place value technigues. Few order-of-magnitude errors were
observed in the interviews when large numbers (i.e. values greater than ten
thousand) were involved. This may be due in part to the Japanese use of the
“mang” (word for 10, 000) as a strong refercnce as oppose to the American
reference of 1,000. It may also reflect the Japanese monitary system which

pruvides regular opportunities for working with large whole numbers.
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Model building is important. Our hope is that research into how students
estimate will lead to a learning model that not only helps describe the
learning process but can provide direction for the development of appropriate
instructional experiences which help all children their computational
estimation skills. We fell that this research contributes further toward the
development of a general framework which describes the estimation processes used
by géod estimators. This study has confirmed that despite the tendency of many
students to mentally apply previously learned paper/pencil algorithamic
teckniques, the earlier hypotheseized cognitive processes of translation,
reformation and compensation were evident amohg Japanese students. Not all
students used all the processes all the‘time. However, we found that each of
students used one or more of these processes during the interview. Similarly,
not all oé the characteristics of good estimators were evident in any one

student, but each was frequently found among the Japanese students interviewed.
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ASSOCIATIONS AMONG HIGH SCHOOL STUDENTS' INTERACTIONS WITH LOGO AND
MATHEMATICAL THINKING

John QOlive
University of Georgia

Even though many claims have been made for the polential of Logo there is still a critical need fo demonsirate
what, if any, impact students’ interaction with Logo has on their mathematical thinking. Three years ago we began
an investigation to determine such impact. This investigation was based on current models of mathematical
thinking which led to the development of qualitative measurement strategies for assessing students’ interactions
with Logo, their geomelric understanding and related thought processes. It is evident that an integrated review
of results from each qualitative measurement strategy and from measures of mathematical achievement can serve
lo strengthen knowledge of how students construct their understandings. Therefore, this paper explores the
associations among the models and related data sources.

Design of the Study

A course in Turtle geometry was developed and implemented for ninth grade students in two inner-city high
schools during the 1985-86 academic year. The focus of the course was on informai explorations of topics such
as polygons, circles, and transformations. High school mathematics teachers were trained to implement a Logo
learning environment, based on a guided discovery approach. The Turtle geometry course was taught to one
class each semester (eighteen weeks per class). Students were enrolled in Algebra |, and were on track to take
geometry in tenth grade. At one school the students were all biack, at the other they were evenly distributed,
black and white. Each dlass was held in a lab setting with fourteen microcomputers, and students generally
worked in pairs. Students®interactions with Logo were recorded in dribble files on disk.

This report documents an analysis of the complexity of students' responses, mode of working, and general
problem solving approaches across a sequence of four tasks given to ail students in the second semester Logo
classes held in the Spring of 1986 (n=30). The results of this analysis are then compared with individual
students’ math grades. A simple method of hypothesis testing has been employed which enables the
investigator to pose and answer questions concerning refationships among the different measures.

Analyses of Students’ Dribble Files

Data on students' interaction with the Logo environment were collected via dribble files on disk and classroom
observation notes. Students’ dribble files were analyzed for the following four Logo tasks:

1. CHECKPOINT 2 assessed students’ facility with debugging simple shape procedures. This was basically a
Logo programming activity given after four weeks of work with Logo.

2. MIDTERM was a more compiicated debugging task involving the use of super and sub-procedures in a
HOUSE design. This task was aiso focussed on the programming structure.

3. PARALLELOGRAMS, explorations with a generalized parallelogram procedure, was focussed on the
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geometric properties of parallelograms, especially class inclusion of special paralielograms. Students were also
challenged to create @ three-dimensional box structure using the paralielogram procedure.

4. RHOMBUS MADNESS, the final exam project, required students to create parts of a flower structure using a
generalized rhombus procedure, and then put the parts together to form the flower. This was both a
programming and geometric challenge for the students.

Teacher instructions and student handouts for the four tasks can be found in the Final Report of the
Atlanta-Emory Logo Project (Olive, Lankenau and Scally, 1988).

The I'ocus' of the dribble file analysis was on the structural complexity of a student's response to the Logo tasks
and indications of relational or instrumentaf understanding of relationships (both Logo and geometric) which may
have emerged from this analysis. The criteria for this complex analysis procedure was based on a synthesis of the
SOLO taxonomy with Skemp's (1979) model of mathematical understanding (Olive, 1985 & 1986).

The SOLO Taxonomy (Biggs & Collis, 1982) was designed primarily as atool for the evaluation of the quality of
student responses to atask. The Taxonomy consists of five levels: Prestructuraf, Unistructural, Multistructural,
Relating and Extended Abstract which can describe how a student uses different kinds of Logo objects (primitive
commands, fixed procedures, variable procedures, etc.) with respect to both the Logo task and the internal
structure of the object itself. The following general guidelines were used for assigning SOLO levels to students’

Logo responses:

Prestructural (P): The Logo object is not used appropriately or the student does not use an available object
when it would be appropriate to do so.

Unigtructural (U): The object is used by itself. Immediate feedback is required on the effects of its use before
any other Logo commands are used (inability to withhold closure).

Multistructural (M): Objects are used in combination with other objects or commands on the same line or within
a procedure (ability to withhold closure), but the objects are not related correctly (with respect o the task).

Belating (R): The objects are related together in order to accomplish the task. The relating operations
(relationships) are dependent on the nature of the task and the structure of the objects. The Logo objects are
used as building blocks.

Extended Abstract (E): Obijects are related together 10 create a new object which is more generalized, more
abstract than its parts; or a generalized procedure is used effectively to create specific objects with which to build
and accomplish a task.

By applying these criteria to the dribbie records of each student's work on the four Logo tasks, patterns emerged
which often determined the quality of learning: instrumental or relational (Skemp, 1976), and which {in some
cases) gave some indication of the student's van Hiele level of thinking (van Hiele, 1986). A student was
assigned "visual” if s/he appeared to make decisions based on the visual feedback from the screen and was
dependent on the visual feedback, while ignoring the syntactic structure of the Logo commands. A student was
assigned "descriptive” if s/he appeared to work primarily with the syntactic structure, often not requiring
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immediate visual feedback in order to make programming decisions. It should be noted that one of the attractions
of Logo is its appeal to a visual mode of working and thinking. [A prior report on relationships among students'
van Hiele levels of geometric thinking (determined through clinical interviews) and experience in the Logo
classes has been given by Scally, 1987.] The detailed results of the dribbie file analyses across the four tasks for
each school can be found in the Final Report of the Project (Olive et al, 1988).

The first two Logo tasks (CHECKPOINT 2 and MIDTERM) dealt pimarily with facility with Logo programming
concepts (debugging and structured procedures), whereas the last two tasks (PARALLELOGRAMS and
RHOMBUS MADNESS) involved work with geometric concepts as well as some programming facility. A summary
of the dribble analyses was performed based on all four tasks, but categorized in terms of a student's responses
to Logo PROGRAMMING challenges and the GEOMETRIC CONCEPTS involved in the tasks. This summary
categorized responses in terms of the SOLO taxonomy, van Hiele leve! of approach to-a task (visual or
descriptive) and Skemp's quality of understanding (relational orinstrumental).

Relationships Among the Ditferent Measures

The summary data from the dribble analysis were combined in a simple data base with the math grades of all 30
Logo students. These data were used to test hypotheses concerning relationships among the different’
measures. By simply selecting cases on the basis of stated criteria concerning the measures, or simply aranging
the data on the basis of one particular measure,-questions concerning these measures could be posed and (in
many-cases) answered. No statistical tests were applied to the following hypotheses. The supporting evidence
can be obtained by inspection of selected subsets of the data or by rearranging the data. The Tables generated
from Table 1 for each hypothesis can be found in the Final Report (cited). They have been omitted from this
paper because of lack of space. The datain Table 1 have been aranged by students’ grades in their final math

course.
lationships emergin i

1. Most students who approached the geometric tasks with some descriptive level thought (van Hiele contains
d) also approached the programming tasks with some gescriplive level thought, but the converse did not appear
to be true.

2 Most students who achieved Relating SOLO level responses to the geometric tasks also achieved Relating
SOLO level responses to the programming tasks, but the converse did not appear to be true.

These first two results suggest the following hypothesis: sophistication in.Logo programming is necessary but
not sufficient for success in Logo geometric tasks.

3. Lack of Relating SOLO level responses on geometric tasks corresponds 10 a yisual approach to the
geometric concepts for most of the Logo students (van Hiele = v).
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4. Instrymental understanding of either programming or geometric concepts (Skemp = I} appears to
correspond to visual level thinking {van Hiele = v}.

5. Relationa understanding of either programming or geometric concepts (Skemp = R) corresponds to
Relating SOLO leve! responses (SOLO contains R) but not necessarily to decriptive level thinking {van Hiele

contains d).

TABLE 1: SOLO, van Hiele and Skemp categories of response with math grades

LOGO PROGRAMMING GEOMETRIC CONCEPTS GRADES

STUDENT SCH SOLO VANH  SKEMP SOLO VANH SKEMP ALG11 ALG12 GEOM1 GEOM2
VH 1 UMR d R M,RE d R B A A B
SF 1 UMR R MR R A B B B
0Ss 1 UMR R UMR R B B B B
(074 2 UMR v R M v B B B B
DS 1 UMR R UM B B Cc B
JY 2 UMR v R MR v R Cc Cc Cc B
CH 2 R vd R MR vd R B B B Cc
DB 1 UMR vd uM v | c B B [
™ 1 UMR v R UMR v R [ [ B [
KY 1 UMR v | M v | Cc Cc B Cc
KR 1 UMR R MR R B [ [ [
AF 1 MR M [ [ [ [
SB 2  UMMR, vd R MR vd R [ [ [ [
Lo 1 UMR v | UMR v [ [ D [
AR 2 UMmed nved med med med med C F o] [
AD 2 UM v | M vd ! [ [ [ D
m 1 UMR vd R umMm v [ B o] D
QA 1 PUM v | UM v I c [ D o]
JR 2 Mmed) m/ed mied Mmed) med med C [ D o]
SH 1 UMR v uMm v | [ F D D
RT 1 UM UM ) [ F D D
RG 2 MRRE vd R MR vd R A [ F D
™ 2 M-R v PUM v | A A [ F
A 2  UMR vd R M v | B B c F
CcM 1 UM v | PMR v | [ F c F
sC 1 UM v | PUM v | [ F F F
Sw 2 MR v | M v | A F N N
LC 1 UMR UMR Cc F N N
SL 1 MR vd UM v 1 Cc B Cc w
RM 1 (V1Y) vd UM [ [ w w

NOTE: “m/ed” indicates that work in the Logo editor was missing from these dribble files An "N" grade indicates
that the student did not take the course. A "W~ indicates that the student withdrew from school.
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RBelationships among quafitative measures and math grades in each course
1. ALG11; Aigebra 1, part 1 (pre-Logo}

Almost all students with grades better than "C" in this pre-Logo course appeared to have Relational
understanding of Logo programming and (to a lesser extent) of the geometric concepts (both SKEMP categories
show "R"). Also, all students with grades of “A* or *B" obtained Relating level SOLO responses on the
programming tasks. Most students with a *C- grade appeared to have only Instrumental understanding of
geometric.concepts (SKEMP = I). There appears 1o be no relationship between Algebra | grades pre Logo and
students preferred van Hiele level of working in Logo.

2 ALG12; Algebra 1, pant 2 {congurrent with Logo)

All students with grades better than a "C* in this course obtained Relating level SOLO reponses and appeared to
have Relational understanding of the programming concepts. Also, six out of the eight students who were
assigned a van Hiele level indicated at least a transition towards a descriptive level of working with Logo. Itis also
important to note that no student who failed the Algebra course was assessed as having relational understanding
of either programming or geometric concepts, nor working at even a transitional descriptive level.

3. GEOM1: First Semester Geometry
Again, the strongest relationship emerging from the data on this course concerns students’ guality of
understanding of both Logo programming and geometric concepts. All except one of the students with grades
better than "C* on first semester geometry were assessed as having relational understanding. Most of the
students with grades lower than a “B* were assessed as having Instrumental understanding of the geometric

concepts on the Logo tasks.

Itis interesting to note that one of the students (RG) who failed this course was assessed as having relational
understanding of both programming and geometric concepts, reached a transition towards extended abstract
responses on the programming tasks and relating SOLO levels on the geometric tasks, and appeared to work
somewhat descriptively on both programming and geometric tasks. He also obtained an *A* on the first algebra
course. As can be seen in the Table, RG stayed in the geometry sequence and passed the second semester

course!

4, GEOM2: Second Semester Geometry
The relationship between relational understanding of both programming and geometric concepts and success in
the geometry course also holds for the second semester course. All students with better than a “C" grade in this
course had relational understanding of programming, and no student was assessed as having instrumental
understanding of geometric concepts; whereas, only one student (RG) with a grade less than "C" was assessed
as having relational understanding of the geometric concepts. No student who failed the course had relational
understanding of the geometric concepts, and only one appeared to have relational understanding of Logo

programming.

AR
® sy
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The above comparisons looked at each math course separately. The foliowing three Tables pose questions
concerning students' grades across all three math classes post Logo. They were generated from the data in
Table 1 by specifying certain sefection criteria.

Table 2 indicates that five students obtained consistently low grades post Logo. All failed algebra at the end of
ninth grade, even though one (SW) obtained an “A” in the first algebra course. None of these students were
assessed as having relational undersianding of either Logo programming or geometric concepts. None
indicated work at even a transition toward descriptive level thinking on either programming or geometric
concepts. However, three of the five students did obtain relating SOLO levels on programming tasks.

TABLE 2: Which Logo students obtained consistently low grades post Logo?
Selection: ALG12, GEOM1 and GEOM2 are greater thanC

LOGO PROGRAMMING GEOMETRIC CONCEPTS GRADES
STUDENT SCH SOLO VANH  SKEMP SOLO VANH SKEMP ALG11 ALG12 GEOM!I GEOM2
SH 1 UMR v UM v | (o} F D D
RT 1 UM UM c F D D
SC 1 UM v | PUM v | c F F F
SwW 2 MR | M v | A F N N
Lc 1 UMR UMR (o} F N N
TABLE 3: Which Logo students obtained consistently good grades post Logo?

Selection: ALG12, GEOM1 and GEOMZ is less than D

LOGO PROGRAMMING GEOMETRIC CONCEPTS GRADES
STUDENT SCH SOLO VANH  SKEMP SOLO VANH SKEMP ALG11 ALG12 GEOM1 GEOM2
VH 1 UMR d R MRE d R B A A B
SF 1 UMR R MR R A B B B
oS 1 UMR R UMR R B B B B
(874 2 UMR v R M v B B B B
DS 1 UMR R UM v B B (o} B
JY 2 UMR v R MR v R [ c c B
CH 2 R vd R MR vd R B B B (o}
DB 1 UMR vd Um v I (o} B B (o}
™ 1 UMR v R UMR v R Cc (o} B (o}
KY 1 UMR v | M v | [ c B c
KR 1 UMR R MR R B (o} Cc (o}
AF 1 MR M c c [ c
SB 2 U-MMR, vd R MR vd R [ c c c

All students in Table 3 obtained at least a transition towards a relating SOLO level on Logo programming. Only
o students were assessed as having instrumental understanding of programming of geometric concepts.

The last Table provides further evidence for the relationship between Relational Understanding and success in

the math courses which has emerged from all of the comparisons in this set.
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TABLE 4: Selection: both SKEMP categories contain R

LOGO PROGRAMMING GEOMETRIC CONCEPTS GRADES
STUDENT SCH SOLO VANH  SKEMP SOLO VANH SKEMP ALG11 ALG12 GEOMi1 GEOM2
VH 1 UMR d R MRE d R B A A B
SF 1 UMR R MR R A B B B
0s 1 UMR R UMR R B B B B
JY 2 UMR v R MR v R C C c B
CH 2 R vd R MR vd R B B B C
™ 1 UMR v R UMR v R c C B C
KR 1 UMR R MR R B C C C
SB 2 UMMR vd R MR vd R C C c C
RG 2 MRRE vd R MR vd R A c F D

With one exception (RG) all students assessed as having refational understanding of both Logo programming
and geometric concepts obtained a grade of “C* or better in all of the math courses.

Conclusions and recommendations

A most important outcome of this study is the refinement and synthesis of the three major theoretical models
which were used as a basis for the design of the study and the analyses of qualitative data. The links established
among students’ levels of thinking (van Hiele model), the structural complexity of student responses to Logo
tasks (SOLO taxonomy), and the quality of understanding (Skemp’s model), have faid the ground work for an
integrated model of Teaching and Learning. Some initial development of this integrated model has emerged
from two detailed case studies (Olive and Scally, 1987) which looked at the relationship between students’
learning processes in the Logo environment and their progress in geometric thinking as determined via the van

Hiele interviews.

This current report demonstrates that relational understanding of both Logo programming concepts and
geometric concepts is linked to success in math courses. It also suggests that the more successful math
students pre-Logo were more likely to reach that level of understanding within the Logo course.

Although some students did appear to achieve relational understanding while working at a predominantly visual
level of thinking, a transition towards descriptive level thinking appears to be indicative of success in algebra but
not necessarily in geometry courses. Perhaps this result is evidence that the Logo environment can help
students whose predominant level of thinking is visual, 1o effectively use a visual approach to solving geometric
problems. On the other hand, the ability to use Logo in a purely visual way may have inhibited some students’

movement towards a descriptive level of thinking and working.

The Logo course developed during this project attempted to use Logo programming as a vehicle for
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mathematical exploration. The above resuits indicate that success in the programming experiences was
necessary in order 10 grasp the geometric concepts. However, some students who were successful with the
programming tasks did not appear to grasp the geometric concepts, thus programming success was not
sufficient for understanding the mathematics. This result strongly suggests that, for some students, a
non-programming use of Logo may be more beneficial for exploring and constructing mathematical concepts.
The use of Logo microworlds, specifically designed for the exploration of particular mathematical concepts,
integrated into the regular math classes, is a major recommendation of the Project.
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‘GRAPHIC.CONSTRUCTIONS WITH COMPUTER TO )
LEARN 3D REFERENCE SYSTEM

1. OSTA
Equipe de Didactique des Mathématiques:et de I'Informatique de Grenoble

Can ‘computer help 'to :overcome ‘problems raised by representations of spatial
-configurations, in-the-context: of.3D:geometry teaching ?.can it.contribute.to restate
‘themeaning link between spalia! and nuymerical frameworks in leaming 3D analytic
.geometry ?

Adopting the hypothesis of an interaction -between the mastery of graphic
representations and the construction:of 3D:geometric-knowledge, we constructed a
teaching sequence ‘having the 3D reference system -as object, “based on the
‘production and transformation of plane representations of 30 configurations, -by
{using .computer (two-CAD softwares) as a tool. The dynamictreatment of graphic
irepresentations ‘must.use specific geometric knowledge;:it-must, also, extend and
make evolve this knowledge.

By -observing the scheol-books and the teaching practice, ‘we-can notice that the
reference ‘system notion is introduced,-since the complementary level, as_an established
fact. It isn’t constructed as.a solution to specific problems necessitating.to.organize and to
structure physical'space.

-As this notion is intreduced, pupils are suddenly projected in analytic geometry . A
new language, a new system of symbolic representations are used, fixed.by the teacher, but
-not constructed by ‘the pupils, on the base of :their geometric knowledge. Algebraic
relations are defined.and used'to replace geometric relations between the elements of a
spatidl configuration. Then, the geometric.activityis:transformed into a cdlculatory activity,
An-which the.interpretation:at the geometric level is.neglected. ' With this.modification of the
nature of "geometric” activity, graphic representations almost disappear. The meaning link
between spatial and algebraic frameworks.risks then'to'be suddenly broken.

In.3D geometry , such.a problem is even -more accurate: fhere is a strict separation
between concrete activities of manipulation and observation on one‘hand, and activities
using abstractions, theorizations and concepts on the other.-One of the-main reasons of such
an aggravation-is-the difficult access to spatial situations. It can essentially be done through
plane graphic representations; some of the characteristics of the spatial configuration are
then absent or modified; It's necessary 10 make explicit a code of interpretation and
production of representations. Although it is necessary, such.a code is not sufficient to
overcome difficultics related 1o coordination of viewpoints or construction of relations

Q tween graphical and physical spaces.
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We suppose that using computer as aid tool permits a new approach of the above
problems. Situated in the frame of a constructivist theory of knowledge, our method is to
construct several “situations” linked to each other, aiming to a learning process, and based
on using graphic softwares. Computer intervenes in these situations as an aid tool in
teaching. Teaching computer science is not our aim, neither is training to use softwares.
Nevertheless, we adopt the hypothesis that there exists a close interaction between the
acquisition by the pupils of the concerned geometric knowledge and their construction of
the functioning mode of used softwares. Our research aims to study, in the context of
rcsoluuon of problems with specific softwares, the processes of adaptation and evolution of
pupils’ strategies, taking in account their confrontation to the constraints of these

softwares, based on different systems of information treatment.

Teaching sequences have been constructed and realized, in the context of a computer
workshop in a french school, with pupils of the forth complementary class (14-16 ycars).
pupils work by pairs. During this experience, we recorded the steps of pupils’ work (as
computer files), we recorded also their dialogues; we used this data for a clinical analysis

of the evolution of their strategies.

In this paper, we present one of the situations of this teaching sequence (for more
details about the other situations of the sequence, see Osta 1988, chap.l). The problem
consists in constructing the graphic representation of a spatial configuration, by usmg Mac

Space.

Conceptual analysis of Mac Space :

Mac Space is a conversational graphic editor, it works on Macintosh. It helps user to
construct representations of 3D objects by constructing the three views (top, face and side
views). Treatment is possible in the three windows of orthogonal views; the representation
in perspective appears progressively in the 3D window that is only a control window.
During the treatment, modifications on one of the three views are translated on the other, as
well as on the perspective which translates spatial transformations on the represented
object. In the space of Mac Space, the basic geometric element is the polygonal facet: any
treatment of a representation (creation, elimination or transformation) can only be executed

on facets; its then impossible to trace segments or isolated points.

68
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Analysis of the sujacent reference system: The space of

the sofiware is controlled by an implicit orthonormal
reference system, composed by three non-materialized
axes, two by two perpendicular: Ox, Oy, Oz. Here's 2
simulation, in the 3D window, of the three virtual axes of

this system.

In the interface, the coordinates system is apparent in a communication window
where, since the selection of a graphical t00l, are displayed the coordinates of the current
point represented by the cursor. The space is represented in all windows. It is considered, in
each one of them, as an addition of a privileged direction, perpendicular to a privileged
plane. It is isomorph in each window to a non-associative product of three unidimensional
spaces: (Ox.0y).Oz in the window of the top view, Ox.(Oy.Oz) in that of the side view and
(02.0x).0y in that of the face view.

One point of the space is characterized, in each window, by:
* its coordinate along the privileged direction of this window. At the practical level, this
coordinate is communicated to the machine in a static way, by using the command "3°
coord.” of the menu "curseur”. In default of such an operation, this coordinate is equal to
2€r10.
* the coordinates of its projection on the privileged plane of this window. At the practical
level, these coordinates are communicated to the machine in a dynamic way, by moving

the cursor in the window.

When introduced, the
3°coord. with respect 10 one

window won't be influenced,

as the two other coordinates,

by the displacement of the

spese yelrm raTrs seby Y] Yotee Toam T

Cursor.
Proposed task and objectives :

At this moment of the teaching sequence, pupils had acquired some aspects of the
reference system controlling the software: the bidimensional system of the privileged plane
in each window. They had, also, constructed correspondances between the displacements of
the cursor along the principal directions of each window on one hand, and the variations of

the coordonates values on the other.

This task aims to overcome and extend this knowledge, toward the 3D reference
system. In each of the treatment windows, pupils have to construct the functioning mode of
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referring along a 3° dimension; they have also to coordinate it with the bidimensional
reference system in the privileged plane of the corresponding window. Without such a

construction, it's impossible to realize the task.

Assignment: By using the software Mac Space, construct the graphic
representation of a surface in steps, having the following
characteristics: the dimensions of one step are 10 and 7 units of

measure; the height of one counter-step is 5 units.

A priori analysis of the task :
To construct a rectangle with Mac Space: The rectangular facet is the fundamental object in

this task. This analysis will only take in account the rectangular facets parallel to the planes

of the rectangular trihedron of Mac Space.

A rectangle constructed with Mac Space is determined,
in the corresponding window, by:
+ the value of the "3°oord.", coordinate of the plane of

this rectangle with respect to the privileged plane of the
window; this “reference-value" determinates the

adequate processing level for the facet construction;

* the absolute coordinates of the first validated vertex;
* the dimensions of the rectangle that are relative C
coordinates of the 2° validated vertex with respect to the

first one.
At the practical level, the value of the “3° coord."

having been introduced, the rectangle is constructed in Y RV S T S YT
the corresponding window by the validation of two

opposite vertices.

As longer as the graphism takes place in one window, the three other views of the
rectangle (between which the perspective one) are reproduced in the other windows. The
displacement of the cursor is accompanied by a dynamic dislay of the coordinates (x,y,z) of

the current point it represents.

Peticular structuration of space: The objects concerned by this situation are sufficiently
known by the pupils; their familiar structure makes possible to the pupils to have for these
objects an internal representation according to the different principal observation
directions. The planes of the component facets are separated by a constant "step” which is

not necessarily the same in the three directions.
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Constructing the reference system of the software: To construct each one of the consecutive

facets, pupils have to communicate to the machine the right values of the parameters
defining this facet. At every operation, they have to re-invest the value of the
corresponding "step” to determine the position of the new component; then, they have to
explicitely.communicate to the machine the numeric value that determines this position, by

using a mode-of representation fixed by the machine.

If the: pupil didn!t explicitate this value, he obtains an undesired graphic result; there
is then. awareness- that it is necessary to communicateto the'machine an adequate numeric
value, that.of: the "step" between two successive facets. So, he is engaged in a research

process, searching for a.function or a command that:permits to communicate this value.

Some resplts:

In the following, we most present results about the important interaction we elucidated
between. the spatial and numeric frames. We:care about the two following exigencies of the
task:

* to communicate to the machine the numeric data of the problem: using which mode of
representation? by affectation to which parameters?....

* to assure, between. the: component facets of the scale;, adequate geometric relations
(especially connexity and relative positions); to construct one peticular facet: what position
parameters. have to be determined? with respect.to which other facet? with respect to

which system?.....

The following results demonstrate the importance of experimentation possibility given by
the computer; they show the retroactions in the pupils' intellectual activity: an undesired
graphic result.incites to a research for the reason of error, this reason can induce an other
representation of the solution, based on other conceptions. The realization of the new
representation infers a new experience and a new graphic result, which consolidates or

devaluates these conceptions....and so on.

During the pupils' activity, we noticed a close interaction between the evolution of their
construction of reference system and that.of the significations they progressively attributed
to the "3°coord.". The motors of such an evolution are: the exigencies of the task, the
interaction with the reference system of the software, and.the interaction between spatial,

numeric and graphic frames.

The_"3°oord." as "3°measure”: This signification appeared after the construction of the

first step. Two given numeric values (10 and 7, dimensions of the step) having been
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communicated to the machine, the pupils’ main preoccupation was to find a means to
connnunicate the third given value (5, height of a counter-step): “we've got to tell him that the
height is 5. Such a signification reveals that the aspect "measure” of the “3° coord.” is

predominant with regard to the aspect “reference”.

The “3°oord." as a "reference-value” 10 situate the departure point of the new facet: Some

u 1ls showed this signification at the moment they wanted to construct the 2° step which,
pup g y P

wuhout any indication, was situated at the same level as the first one.

For them, there is problem “because we ‘ve got to 'say’ lo
the computer where we want to put the step”. After B
several trials, they found that the "3°coord.” is the way to

=4

do it. Such a signification was accompanied by a

dynamic conception of referring. Having obtained a

graphical result as that of this fig., pupils searched for a
means o “push ", or 1o "pull " the 2° step.
The "3°coord." as the permanent value of the displacement step”: Such a signification

dppbdrg,d after the pupils discovered the command "3°coord."” as a solution; It's related to a
specnflc representation of the functonning mode. This signification appeared at the moment
pupils wanted to construct the 3° step: "no, we don't have lo type the 3° coord., it's already

there...”

This significcation supposes that the effect of an
affectation of a value to the "3°coord.” stays valid for s
every later operation. It seems that the "3°coord.” is more “

considered as a parameter for the whole problem than a

parameter for the construction of one facet. The fig.

gives the resulting drawing.
The "3°coord." as a temporary value of the "dlsnhremem step”: The undesired graphic result

destroys the last conception, about the functioning mode of the software: "it returns to the
same place! ™ Pupnls discover that the value of the "3°coord.” returns to zero at the end of
each Opcrauon nevertheless, they don't give up the meaning of "3°coord.” as the

"dxsplacement step”, between two consecutive parallel facets. Again, they affect the value 5.

This signification is related to an internal representation
of the construction as a continuous process, working by g
connexity, and based on a principle postulating that: "a

new construction begins where the last one reached”.
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The "3°coord." as a value determining the position with respect to the first facet of the same
window: This new signification shows an important evolution in the process of discovering

and constructing the refernce system of the software: at least in the current processing

window, it reveals an awareness of the existence of a inique referential, with respect (o
which are referred all the components to construct in this window; this referential is linked to
the object . On the other hand, it consolidates the conception of the "3°coord." as a reference-
value and eliminates all remainers of its conception as a measure-value. With this
signification, pupils overcome the exclusive relation between "3%oord." and the value 5, by

affecting to it other values.

The "3°coord." as a value determining the position with respect to a referential independant
from the object: We'll develop the evolution toward this signification by using the example
of the pair O.&S., one of the rare who reached this signification.

After the steps were constructed in the top view window, pupils chose the window of the top
view, for the construction of the counter-steps. With this first window changing, the
exclusive relation pupils constructed between “3°coord.” and the top view window had to be
broken. The exigencies of the task and the constraints of the software occasioned an

evolution of this relation toward its extension. Recognizing this command as a solution to
the same problem into an other window hasn't been automatic. It's been preceded by several
strategies, revealing an opposition to generalize its effect. In this paper, we cannot develop
these strategies (voir Osta 1988).

To-construct the first counter-step, pupils tried the value
7 as "3°coord.". But the departure point of the first step
had initial coordinates unequal to zero; they obtained a

mQDDE

non-accepted graphic result. In fact, their trial reveals a
representation of the solution based on the relations:(R1:
v0 =7 and R2: vi = vi-147): the first value of "3°coord."
is 7, each one of the following values being obtained by

0
r_l

adding 7 to the previous value.

A conflict is created by the contradiction between this CL7/
mental construction and the result of experience; the ga

graphic result is not compatible with R1, at least. They
decide to approach the right position of the facet by
adequately modifying the value of "3°oord.", at each
trial. To validate their result, their means of control is

011
L’r

perception. After several trials, the value 11.5 assures

the connexity.
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. . . . 7
For the pupils, it's the value 7 that gives all their meaning o
. . . . I=
to relations R1 & R2. For them, this value instates, in g
fact, a relation between the relations R1 & R2. When the

value 7 was devaluated, this relation between R1&R2

I
.—l._.

stayed valid. It's assured by the value 11.5. The two

relations become:

(vO = 11.5) & (vi = vi-1 + 1L.5).
So, for the 2° counter-step, value of 3°oord. = 11.5 + 11.5 = 23. The graphic result being
not acceptable, they try again 10 approach the right position:
S:... Let's try 21 & a half, now 5
O: no, it's clearly less.... you try.... 18 g
S: 18 & a haif?
After several trials, experience showed that the value f— -

18.5 is the right one. E __r"—

O: since it's 18.5, we had to know that we have to add seven

.

at each time...
S: oh yes,7... that's obvious., the width is 7.... don't you think it's logical, you?... it will be 7 by 7,
because the width is7.... it grows 7 by 7.

The two relations become: (R1: v0 = 11.5 & R2: vi = vi-1 + 7). The relation R2 takes
again its meaning as assuring the "displacement step” pupils have to add, at each step, to the

previous value.

Having found this intelligible relation between all the elements implicated in this
problem, pupils have even succeded in interpreting the meaning of the numeric relation R1,
and in linking it to its correspondant in the geometric framework:

O: we've got to look, from the beginning, at the coordinates

S: or simply begin at zero... | think we understand now.... we've got to begin in the corner... at
zero... so we couldn’t have problems

This dialogue reveals the acquisition by the pupils of the whole logic controlling the
funcdoning of the software for this problem (and for all those of the same type).

Conclusion

By the pupils' activity, this situation gave us informations that helped us to elucidate
the processes of construction of their knowledge, in the context of the used software. The
pupils' activity (esecially at the end) showed an evolution toward an organization and a
structuration of the software space. Such a structuration is surcly based on a non-isotrope
represcntation of space, considering the construction of one peticular facet, because the
communication to the machine of informations concerning its position cannot be done in the

]: lil)‘cne way for all these informations. But, from a global point of view, this situation infers an
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isotrope representation of space, which means that a perfectly analogue treatment must be

done in the two windows: that of the top view and that of the face view.

This situation also gave to the analysis some phenomena concerning the evolution of
the construction, by the pupils, of the reference system controlling the space of the software. -
The analysis showed an interaction and a concomitancy between such a construction and the
evolution of the signification of "3°coord.”. This evolution is related to progressive
abstraction and generalization of the meaning of "3°oord.", and of its status with respect to
the space of each window. From the "3°coord." as a practical method to fix the position of a
facet in a one window, by using peticular values, there is evolution toward the "3°coord."” as

a concept, independant from a peticular window, value or direction.

On the other hand, the important interaction that took place between geometric and
numeric frameworks was a guaranty for the construction of the meaning of analytic
knowledge as a link between these two frameworks: pupils constructed correspondances
between successive positions of facets into one window and the numeric values attributed to
"3°oord.". Even more, we found indicia of construction of correspondances between the
displacements of a facet in one orientation or another and the algebraic operations

(augmentation or diminution of the value of "3°coord.").
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APPLIED PROBLEM SOLVING IN INTUITIVE GEOMETRY
John P. Pace
Essex County College, Rutgers University

A recent study with 67 adult community college
developmental arithmetic students has established a
well-defined model for teaching and learning the basic
concepts of area and perimeter. A pedagogical
perspective, some theoretical background, the research

design and a sketch of the results are described.

If thinking does not imply a purpose or goal,
discovery would be a blind guess, communication
a miracle and a twice told tale the shattered
accents of an echo. (Hook, 1927, p. 56)

In the million year gap between hominid and present human,
the conscious development of abstract ideas that can be
characterized as mathematical in nature is a relatively new
phenomenon. Primoridal man, overburdened by the difficulties of
surviving the harshness of a world marked by irrepressible
scarcity, could ill-afford sustained abstract speculation
concerning shape or quantity. Even in most of the ancient
agrarian civilizations of more recent millenia, we find
mathematic notions so intertwined with a human struggle to
survive as to make them emerge more as an aspect of broader
cultural development than as some separate well-defined
collection of ideas. The ultimate disassociation of
mathematical ideas; their objectification from the broader
cultural context, per se, is an exceedingly modern
interpretation of what is in the nature of mathematical subject
matter. ‘This objectification of mathematics, especially in the
most recent of times, has helped lead to a vast development of
our advanced mathematical knowledge. However, whether in the
name of deductive efficiency or otherwise, the ahistorical
precipitation of mathematical concepts out of any apparent
cultural context can nearly erase any association of mathematics
to human interest and pursuit. Especially to new learners, the
extraction of mathematical concepts from a suitable identifiable
human context can seem to sacrifice all sense of logical purpose
a?d direction within mathematical studies. Surprisingly, one

¢
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example of a mathematical subject that, from the learners' point
of view, can seem to make such a sacrifice concerns the study of
area and perimeter with simple polygons; work preliminary to the
study of Euclidean geometry.

The edifice of logic that is today's school geometry rests
upon a firm but obscured foundation that has beeen poured by
ages of human experience. In fact, geometry represents an
informed and concisely symbolic casting of one part of mans'
knowledge. To borrow the sense and terminology of John Dewey,
like any subject, geometry is a curricular "reconstruction"
(1966, p. 76) of some various parts of the human experience.

But this reconstruction at which we have arrived; this geometry,
is not only a logical set of axioms and theorems; the
assumptions and the derived rules and regulations by which
deductions may be correctly realized, it is also a formal
product; one devoid of all but the faintest hint of the
centuries of historical process by which, or any of the variety
of intended purposes for which, it came to be created and
developed.

In classes where topics such as area and perimeter; topics
preliminary to the study of Euclidean geometry, are being
developed, there may be little recognition by students of the
possible purposes or ultimate consequences of such studies.

They could not be expected to be aware of the historical context
of the development of such activity, may often question the
intended purposes of their work and, at times, even doubt that
the results of their labors signify anytuni-_  at all.

In an attempt to explicitly address what can be seen as the
purposefulness of such geometric topics, and in conjunction with
what is an axiom that describes humans essentially as creatures
seeking meaning in their actions, we designed an applied problem
solving research study. The purpose of the study was to develop
and realize a well-defined applied problem solving model for
learning and teaching the concepts of area and perimeter by

adult students in an arithmetic class.
Population

The 67 predominately Black and Hispanic adults students who
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participated in this study were enrolled in 4 sections of a
remedial mathematics course, (2 sections during Fall and 2
during Spring of 1987-88) at Essex County College; located in

New Jersey's largest city, Newark.

Design of the Study

Time

To —2.5 weeks
AGT Pretest

1 —2.5 weeks —

[, Lxperinental— yysT R %ma:;;m_, AGT Posttest, Classroon
Class A NJCEBST na A » InqULIXY
g [ ) Dodel \‘_,“ Oadel
b AGT Pretest ‘,-\‘
YHGT B

b comtrcal — DICEST » Arithmetic —y AGT Posttest’ ‘git;’mellc

(Class B) Unita

I2 2.5 weeks — I3 2.5 weeks-T¢

Itherinental—s AGT Posttest —s iritmmetic — 4GT Deldved - Video

o B Poattest Interviews

=3 (Class B)

O (continued)

M AGT Delayed

O Control —— Ppatteat ——Aritimetic — Yidea -
[(Class A) Interviews

Figure 1. Outline of the experimental design.

The reseach design is given in Figure 1. Briefly, at time
Ty, Students in each of two classes were administered two
assessment tests, the Van Hiele Geometry Test (VHT) (Usiskin,
1982), and the New Jersey College Basic Skills Placement Test
(NJCBSPT); and a content specific pretest, entitled the Applied
Geometry Test (AGT). Following the testing, for a 2 1/2 week
period, the first class (Class A) participated in a classroom
inquiry model; one primarily involving applied geometry problem
solving situations. Meanwhile, the second class (Class B) was
taught basic topics of arithmetic computation; topics unrelated

to geometry. At time Ty, the classes were then retested with a

different form of the AGT. During the next 2 1/2. weeks, the

treatments were reversed for each class, and at time T3, a third

form of the AGT was administered. During the next 2 1/2 week

period, both classes were taught arithmetic. At time Ty,

videotaped interviews were conducted with randomly selected
\ 18
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students from Class A, while students in Class B were tested

again with the AGT. Finally, at time Tg, randomly selected

students from the Class B were video-interviewed.
Some Theory

Knowledge is constructed when human minds are actively

engaged in some persuit.

The roots of thought must be sought in
action, and operational schemata derive
directly from action schemata. . .Generally
speaking, logico-mathematical structures are
extracted from the general coordinations of
action. . . (Piaget, 1971, p. 181)

It requires little valor to agree with Jean Piaget.
Nonetheless, in our research, it was still required that we
operationalize that agreement. We had to consider the serious
and thorny problem of just what student "action" would provide
the fertile ground for "the roots of thought”. It was action we
sought to incorporate, but not just any action would do.
Activity, in and of itself, is motion; sheer sensory motor
dynamics, and,

"Mere engagement in activities will not facilitate learning,
of course, if those activities are not appropriate to the
students' needs" (Brophy, 1986, p. 327).

And the "needs" that we saw for students were precisely those
which would be met by the kinds of actions .*.t would most
likely lead to the "general coordinations" that Piaget describes
above. These actions are typically not so easily specified.
Thus, while Piaget's epistemology of constructivism may provide
a viable model for the genesis of human thought, there yet seems
an unanswered question as to a specified mechanism that will
cause an engagement of the constructive process. For Piaget
(1971), this "engagement" issue may be moot.

“"Life is essentially autoregulation" (p. 26), and while the
organism exists, the proce;; of equilibration actively
"compensates against outside perturbations" (p. 25), and "the
organism as -a whole preserves its autonomy and, at the same

time, resists entropic decay" (p.13).
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Thus, it seems, for Piaget, "Cogito ergo sum" (I think
therefore I am) is a biconditional statement; i.e., "Sum ergo
cogito”, as well. However, while life itself may imply the
autoregulated functioning of thought, it does not necessarily
imply that the content of that thought will be mathematically
rich. Thus, after even so compelling a description fo the
epigenesis of knowledge as Piaget demonstrates, for the
mathematics educator, there still must always remain the
question of how to engage students' constructive processes in
mathematically significant concepts. For one answer we turned
to John Dewey (1980).

The weakness of ordinary lessons in
observation, calculated to train the senses,
is that they have no outlet beyond
themselves, and hence no necessary motive.
Now in the natural life of the individual and
the race there is always a reason for
sense-observation. There is always some
need, coming from an end to be redched, that
makes one logk about to discover and
discriminate whatever will assist him.

Normal sensations operate as clues, as aids,
as stimuli, in directing activity in what has
to be done; they are not ends in themselves.
Separated from real needs and motives,
sense-training becomes a mere gymnastic and
easily degenerates into acquiring what are
hardly more then knacks or tricks in
observation. . . (p.9%93)

Dewey's comments imply the notion of purposeful inquiry on
the learner's paft. Briefly, it is a subject's actions, on the
basis her/his self-felt purposes, within mathematiéally and
conceptually rich domains that were the ensembles that this
research sought to promote. One way of providing purpose, or
"necessary motive", is through the use of applied problems
(Lesh, 1981).

Generally and briefly, our model tried to blend to
constructivism of Piaget, the purposeful instrumentalism of

Dewey and the small group applied problem solving of Lesh.
A Treatment Example
During the experimental treatment, students were asked to
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.consider a variety of applied problems. These applied problems
(Lesh, 1982) were constructed as lifelike situations in which
mathematics was used as a major element in the resolution of
some difficulty; or might have assisted in making some

evaluative judgement between a variety of alternatives.

" walkway
$20,000 _ 60 §8_ 120,500
East |45
Tots rea $20,250
already
purchased 65 W 40
. 20 ™~ 28
I

(all Tot measurements in feet)

You and two other members of this class have pooled your
money and convinced a bank to grant you a significant loan in
order to open a small business in one of Newark's soon-to-be
revitalized downtown commercial neig.borhoods. You are
presently considering likely 1locations for your business. In
the figure you see three possible alternative anpd parcel
selections, labeled North, East and South, and the price of
each. Make a choice for purchase that you all agree on, and

give the reasons why you chose as you did.

Figure 2. The Shopping Mall Problem

One such prototypical problem (see Figure 2) concerned small
groups of students working together to choose a potential
business site from among alternative land parcels. This problem
was one that we felt could potentially be of interest to adult
stndents; especially as we were located within the physical and
social context of contemporary urban redevelopment in the city

of Newark. The task, which was designed as a vehicle for
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developing area and perimeter concepts, sought to actively
involve students in a problem situation where geometrical
concepts were "lurking close by" in a fairly natural and

inescapable manner.
Results Sketched

The full technical results of this research are detailed in a
forthcoming publication (Pace, 1989). However, briefly, through
a number of single and multivariate, stepwise, linear regression
models whose parameters were estimated by the computer program,
Regress II (Madigan & Lawrence, 1983), we established that, by
the measure of geometric achievement utilized, the experimental
program of teaching was susccessful in both short and long term
cases. Summaries of the videotaped interviews supplemented the
guantitative findings with both critical support for and dissent
from the major findings.

It may be neither surprising nor particularly impressive that
students were taught and therefore they demonstrated achievement
and retained growth. After all, this research makes no claim
that this particular experimental model is significantly better

" than other methods of teaching area and perimeter concepfs. Any
such claims of pedgogical superiority ultimately require a
discussion of how one defines superiority; in terms of explicit
educational values (Pace, 1988) and goals. On the other hand,
what is claimed is that this research offers a well-defined
model; one theoretically justified and operationalized, one that
exists and can be known as a possible alternative to whatever
other approaches may exist. Following the traditional
methodology of mathematical reseach, this research has
established through its results, the existence of a particular
method. Any demonstrated uniqueness of results of that method;

i.e., in the sense of superiority to other methods, remains to

be shown.
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L'INCIDENCE DE L'ENVIRONNEMENT SUR L A PERCEPTION ET
LA REPRESENTATION D'OBJETS GEOMETRIQUES

Pallascio, Richard,
Talbot, Laurent,
Allatre, Richard et
Mongeau, Pierre (1989)*

Centre Interdisciplinaire de Recherche sur V'Apprentissage
et le Développement en Education (CIRADE), Université du
Québec a Montréal (UQAM)

Abstract

First, we discuss the basis of a new typology for classifying the
spatfal abilities. Next, we present the results obtained from interviews
with 10- and 11-year-old children, functioning in various types of space.
Some interesting contrasts arise from these findings, allowing us to
question some elements of Plaget's theory and the interventional model
used actually for the teaching of geometry in schools.

La réalisation de cet article a été rendue possible suite a
une recherche appuyée par le FCAR (EQ-3046) et le CRSH
(#410-87-1277).

*Richard Pallascio et Richard Allaire sont professeurs au
département de mathématiques et informatique de 1'UQAM,
Pierre Mongeau est étudiant au 3e cycle (U. de Montréal) et
Laurent Talbot est étudiant au 2e cycle (UQAM).
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Introduction

Apres avoir identifié les facteurs composant I'habileté 3 percevoir
I'espace et examiné divers moyens de la développer, nous nous sommes
Int\éfessés 3 V'apport de I'environnement dans le développement organisé
des habiletés perceptives et représentat ives d'objets géométriques, situés
dans un micro-espace. A cette fin, nous avons élaboré une typologie des
habiletés spatiales, que nous présentons dans ies paragraphes qui suivent.

L'objet de I'expérimentation relatée ci-aprés traite des relations
entre ces habiletés spatiales et les types d'espace qui environne le sujet.
L'intérét de cette démarche est de provoquer éventuellement une
diversification des fnterventions didactiques dans I'enseignement de la
géométrie et de toutes autres disctplines touchant & la maitrise de
'environnement, comme les arts graphiques, - qui - tiendrait compte des
types d'espace qui environne les sujets.

La perception structurale de I'espace

Piaget avait mis en lumiére l1a nécessité de dissocier I'espace
perceptif de I'espace représentatif, afin de bien comprendre 1'ordre dans
V'appropriation des propriétés géométriques: la notion de voisinage
intervenant avant les autres axiomes euclidiens, I'intuition des dimensions
fondée sur 1'intériorité et I'extériorité intervenant avant I'abstraction d'un
volume euclidfen...? L'espace peut aussi se caracteriser de plusteurs points
de vue: physique, social, geométrigue, etc. Notre recherche s'est intéressée
3 la perception d'un espace géométrique. Cette perceptton peut enfin
S'examiner sous un angle forme! du structural.

@
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Alors qu'une perception formelle consiste en I'intériorisation2
guantitative d'un modéle spatfal par T'analyse et la Synthése de ses
propriétés en termes de rapports, de proportions, de mesures et de
coordonnées, la perception structurale considére plutbt I'intériorisation
qualitative d'un modéle spatial par I'analyse et la Synthése de ses
propriétés topologiques, projectives, affines et métriques. Nous
prévilégions dans notre étude cette derniére approche. “La représentation
spatiale est une action intériorisée et non pas simplement l'imagination
d'un donné extérieur queiconque.*3 '

La typologie des habiletés spatiales

La typologie que nous avons développée (Baracs, Pallascio,
Mongeau), est définie sur la base dun tableau a triple entrée. Une de ces
entrées est définie par cing (5) habiletés hiérarchisées, une deuxiéme
entrée est deéfinie sur les quatre (4) niveaux géométriques, alors quune
dernfére entrée distingue les deux (2) plans, perceptif et opératoire (ou
représentatif). Le tableau contient donc quarante (ou 5 x4 x2)
intersections, correspondant potentiellement & autant de degrés d'hablleté
spatiale ol pourrait se situer un individu.

Les habiletés spatiales sont respectivement la transposition, 1a
structuration, la détermination, la classification et la génération. La
transposition est I'habileté & établir les correspondances, les
équivalences, et a effectuer le passage entre les différents modes de
représentation (physique, linguistique, algébrique et géométrique) et
niveaux géométriques. La structuration est I'habileté a identifier les
propriétés et la combinatoire géométriques d'une structure spatiale. La
détermination est I'habiteté a délimiter les é1éments ou les parameétres
définis par des contraintes géométriques sur une structure spatiale. La
classification est I'habileté a grouper des structures spatiales selon un
choix de propriétés ou paramétres géométrigues communs. '

86" |
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Enfin 1a génération est I'habileté 3 produire ou modifier une
structure spatiaie de facon a ce que cette structure réponde a certains
critéres geométriques prédéterminés.

Les niveaux géométriques sont les niveaux topologique, projectif,
affine et métrique. Le niveau topologique correspond principalement 3
'etude des propriétés d'adjacence et de connexité des structures
Spatfales, propriétés qui sont conserveées suite a une ou des déformations
continues, telles que I'étirement, le retrécissement, le pliage ou la
torsion. Le niveau projectif Correspond principalement & 1'étude des
propriétés d'incidence et de platitude, dui sont conservées suite a une
projectfon centrale. Le niveau affine correspond principalement a 1'étude
des propriétés de paraliélisme et de convexite, qui sont conservées suite 3
une projectfon paraliéle. Enfin le niveau métrique correspond
principalement a I'étude des propriétés de distance et d'angulation.

En derniére analyse, le plan perceptif est constitutif d'une
action mentale de reconnaissance des formes, alors que le plan
représentatif est constitutif d'une action concréte de transformation
des formes.

Les types d'espace

Alors que le micro-espace est le lieu de 1a manipulation de
petits objets ol 11 est facile pour le sujet de changer de points de vue par
rapport a l'objet, et que le méso-espace est I'espace des déplacements du
sujel dans un domaine contrglé par la vue et qui s'obtient par le
recollement de micro-espaces connexes, le macro-espace est celui qui
nécessite une représentation implicite des mouvements relatifs de
plusieurs systémes de reférences, que Yon pourrait imager par un
“recollement de cartes”, selon I'expressfon de Guy Brousseau (1986).
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Nous avons cherché a déterminer les relations et les incidences:
qu'il pouvalt y avoir entre un environnement donné et les habiletés
perceptives et opératoires appliquées a un micro-espace, comme celui des
formes géométriques utilisées dans un test-entrevue élaboré
antérieurement pour valider partiellement notre typologie. Pour ce faire,
nous avons choisi et comparé deux groupes de sujets, dont Fenvironnement
spatial est radicalement différent: un groupe d'enfants vivant dans un
environnement rural du sud du Québec et un groupe du méme age vivant
dans un village Inuit du nord du Québec.

Au niveau du micro-espace, les enfants du sud, en milieu rural
ou urbain, sont davantage initiés au dessin imaginatif ou figuratif, plutot
quau modelage de formes tridimensionnelles, alors que les enfants Inuit
sont inftiés trés jeunes & la sculpture dans la pierre & savon, tandis que le
papier demeure une denrée plus rare (les arbres sont loin).

AU niveau méso-spatial, l'environnement visuel varie
sensiblement d'un milieu & l'autre. Alors qu'en milieu rural, les habitations
sont des prismes rectangulaires allongés, étendus ou pyramidés (fermes,
demeures isolées.) et quen milieu wurbain les édifices sont
essentiellement  des  prismes  rectangulaires, les habitations
traditionnelles des Inuit, les Igloo (qui signifie "maison” en inuttitut), que
les enfants apprennent encore a construire lors de sorties familiales pour
la chasse ou la péche, sont formées de pyramides tronquées, ot le
parallélisme ne domine pas.

Enfin, au niveau macro-spatial, alors que les dénivellations sont
variables en milieu rural et fortes en milieu urbain (métro, stationnement
souterrain, édifices a plusieurs étages.), cest plutdt un espace
bidimensionnel qui s'ouvre & I'horizon de V'inuit qui doit compter sur des
accidents de terrain épars pour se repérer dans la toundra.

Ic 88
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La méthodologie

Le test utilisé, administré par entrevue individuelle, était
composé dune douzaine de taches ou problémes a résoudre, couvrant
nécessairement une partie seulement de 12 typologie, a savoir sept (7) des
(40) modules, correspondant & F'un ou J'autre des niveaux topologique ou
projectif, a I'une ou I'autre des habiletés et dans V'ordre du plan. perceptif,
constitutif d'une action mentale de reconnaissance des formes, ou du plan
opéeratoire  (représentatif), constitutif dun action concréte de
transformation des formes.4

Les deux groupes d'éléves comparés étaient composés de 16
enfants. Un premier groupe (du sud) était formeé de 8 gargons et 8 filles,
alors que le second groupe (du nord) était formé de 12 gargons et 4 filles,
tous et toutes des fnults, sauf un jeune Amérindien du peuple Cree. Le test,
Himité & 13 taches, a 6té administré au printemps 1988.

Les résultats

Nous observons que les deux groupes s‘opposent radicalement au
niveau des plans perceptir et représentatif, au niveau des
propriétés géométriques, topologiques et projectives, et au niveau des
habiletés perceptives et représentatives qui dominaient, soit les activités
du début de 1a typologle, soit celles de Ia fin. Le sexe des sujets
nintervient pas, ni & V'intérieur des groupes, nt globalement.

Tableau - Compararson globale

Groupe av sud Groupe dv nord

Plan perceptif Plan-représentatif

Reconnaissance des formes Transformation des formes

Géométrie topologique Geométrie projective
Transposition,siructuration Génération, détermination et classification
Début de Ia typologie Fin de la typologie

IToxt Provided by ERI
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Bien sdr, les espaces différents qui définissent les
environnements des deux groupes de Sujets ne sont probablement pas 1a
cause unique des différences observées dans 1a perception et la
représentation des objets géométriques micro-spatiaux. Au niveau meso-
spatial, par exemple, certaines constructions coutumiéres chez les inuit
leur font manipuler des objets aux propriétés davantage projectives
quaffines (p.e.: les blocs de neige servant a la construction d'un igloo sont
des pyramides quadrilatérales tronquées et disposées en spirale, et non
des paratiélipipédes). Mafs les relations et les inctdences que nous avons
identifiées sont suffisantes pour nous questionner sur la nécessité
d'établir des parcours différentiés dans le développement des habiletés
spatiales, objet de nos prochaines recherches

Notes

1 Lareprésentation de I'espace chez I'enfant, Piaget, J. et B. Inhelder, PUF, 1948, p. 535.

2 Par intériorisation, nous entendons un détachement graduel de la réalité
permettant aux états de devenir des représentations de classes
d'objets et permettant aux actions de se transformer en opérations mentales.

3 Pisget, J., Id., p. 539.

4 Lavalidation de 1'ensemble de la typologie (40 modules) se poursuit actuellement aupres de
groupes de sujets plus nombreux et d'age divers: environ 200 sujets, enfants,
adolescents, étudiants universitaires et aduites.
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ANGLES & PIXELS "~ Quelle synergie & 9 ans ?

Christophe PARMENTIER
Labo. de Psycho. du Développement .
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46 rue St Jacques
75005 PARIS - FRANCE
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RESUME

Nos travaux de recherche sont orieniés vers I prise en comple d'un enseignement de la programmation cn
LOGO graphique afin d en constater I'cfficacité lors de transferts et d interactions avec d'autres domaines de con-
naissance. Dans cet article, les résultais obtenus @ Iissue de trois Tesls rendent complc de I évolution des compé-
tences lors de mesures d"angles pour dewx groupes apparcillés. Leur analyse apporte des éléments sur la structura-

tion du concept d' angle grice & la comparaison de deux traitements pédagogiques utilisant des supports de repré-

sentation différents: avec écran versus sans écran.

INTRODUCTION

Dcpuis les intuitions de S. Papert, de nombreux travaux ont &1é conduits sur les rapports entre le concept d'angle
ct son approcke en LOGO graphique. L analyse des champs conceptucls menée par A. Rouchier <1>, J. Hillel <2>
ou les recherches concerant la structuration de ces notions auprés d'¢leves menées par C. Hoyles <3> n’cn sont
que d'excellents exemples. Il convient toutcfois, pour comprendre les résultats préscatés d'ajouter deux précisions :
-Logo cst un systéme sans unité oulcs ordres sont conférésainsi: AV 30 TD 30.L'¢levc doitassimiler quel'or-
dre comprend cn lui méme la notion d'unité. Le plus petit éiément géométriquement traitable sur feuille cst le point,
sur éeran c'est le pixel. Les différentes définitions d'écran déterminent alors la valcur réelle de 1'unité cc qui
constitue un référent complexe pour un éléve, ct conduit par cxemple & pouvoir établir la distinction & priori entre

une figure représentant un polygone de 25 coiés ct un cercle cn fonction de la surface ¢t de la qualité de I'¢eran.

- Le systeme de mesure des angles Logo cst basé sur 1a division du cercle en 360°. 11 supposc donc unc certaine
représentation de la division que n’ont pas tous les éléves en début de cycle moyen. Enfin, les cffets de 1a primitive
TOURNE pcuvent sc combiner, pir opérations, dans un sysiéme de basc 360, dans lcgucl, O ct 360 ont un cffct

identique. Si cette logigue rappetlc celle du cadran horaire, clle conslituc loutclois un sysitme asscz nouveau pour

les €léves au début du cycle moyen.

Pour ceite recherche, des épreuves ont €16 construites ¢l vérifiées auprés d'un échantillon représentatif clles

¥
Y tent de readre compic de 1'étal des compétences lors du caleul de périmétres ou de mesures d'angles. Par
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ailleurs, elles vérifient I"évolution de certains pré-requis concernant I'aptitude a iiérer une suite ou 3 discriminer
droilc et gauche sur un plan oricnté. Enfin, elles évaluent certains «savoir-faire-faires en Logo. A la suite d’une
premiére passation, deux classes dc CM 1 sont respectivement scindées en 2 groupes rendus homogeénes @ A ct B,
Hs vont alors découvrir concepts ¢t outils en suivant simultanément deux progressions préalablement définies de
12h. A I'issuc de chacune, ils repassent les épreuves. Les résultats obtenus par 24 éleves découvrant implicitement
certains concepts grice A I'apprentissage de la programmation ¢n Logo graphique, puis explicitement sans ordina-
teur, sont comparés & ceux des 24 autres découvrant ces mémes concepts dans un ordre inversé sclon le plan

suivant:

Test 1 [ entrainement | Test 2 | entrainement Test 3

groupc A LOGO géométric

groupe B géométric LOGO

La misc en place des progressions s’inscrit dans le cadre général de I'enscignement des mathématiques ct plus
particuli¢rement de la géométric 4 1'école élémentaire. A cc sujet, M. Blanc, <4> dégage trois périodes dans 1'ensci-
gnement des mathématiques 4 1'école ct au college :

- de 1945 2 1970 : Les problemes de mesurage sont au centre des préoccupations;
- de 1970 2 1977 : Mathémaliques modemes; les angles nc figurent plus au programmc;
- depuis 1977 : L'idée de situation probleme s*imposc. L’angle apparait comme.un élément pentinent. dans la cons- -- -

truction de figures ¢t comme un invariant lors de certaines transformations géométriques.

Résolument axés sur les acquis de notre époque, les conceptions issucs de la rroisiéme période ont marqué
I’élaboration dcs progressions construites en €quipe afin de s'inserire o 1 cadre scolaire. La progression utilisant
le LOGO graphique proposc aprés 2 séances de découverle des primitives fondamentales de faire dessincr sur
I"écran des figures choisics dans un corpus ordonné sclon des difficulids croissantes. L'agencement de celles-ci
permel, I'acquisition de I'itération, puis, la définition dc procédures. Les figures proposées sont des polygones, des
figures composées de polygones, de segments, d’angles droits ou non-droits. Des difficultés pédagogiques sont
soulevées par la misc en ocuvre de cetle progression <5>. La progression dc géométric sans ordinateur, conduit
les ¢leves A découvrir I'angle pour I'intégrer comme élément lors de situations dc description. Ce descripleur cst
alors retenu ¢t combiné A d’autres afin d’élaborer unce classification des polygones ct figures inscrites aw pro-

gramme.

Les résultats obtenus A I'issuc des trois Tests : T1, T2, T3 font I"objet de traitements statistiques éclairés ct complé-
1¢s par I'analyse des justifications apportées par chaque éleve. Délaissant momentanément les résullals concemant

© perimetre qui ont déja en partic fait I'objet de présentations <&> les résultats ruppontés concernent la
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mesure dangles.
EPREUVE DES ANGLES (cf. annexc)

Lors du rodage des épreuves el des progressions, nous avons fail passer celle épreuve 2 85 €éltves, en début de
cycle moyen, répartis sur plusicurs classes dont cclles des enscignants qui ont participé a I'expéricnce I'année
suivante. A deux cxceplions prés les éleves n'ont rien répondu. De ce fait cette Epreuve n’a pas éié passée au T1

les résultats nuls élant considérés comme acquis.
Alissuc du T2

Préalablement 2 1oute constatation partant des résullats, I'obscrvation des réactions des éleves lors de la passation
de celte épreuve est riche d’enscignements. Elle permel de remarquer que plusicurs individus du groupc A
demandent 2 aller chercher leur régle alors que certains du groupe B réclament leur rapporteur. Poursuivant celle
pistc, nous constatons a la lecture des résultats que 8 éléves du groupe A fournisscnt toutes leurs réponscs sans
unité. Sculs 2 éleves du groupe B réagissent ainsi. Ces différences relevées peuvent en partic s’expliquer par le
statut déja mentionné qu’occupe I'unité dans la géométric LOGO. L'absence de référent explicite ct d’unité discri-
minante en géométric LOGO nc permet pas, aussi facilement que pour la progression non-Logo, a I'éleve débutant,

de dissocicr 1'assimilation souvent conslatéc entre longucur ct écariement des cotés.

Sur le tablcau suivant ol sont successivement représente en ligne : la somme (SX) des réponses justes obtenues
puis la moyenne (MOY) pour chacun des groupes A ct B, la valeur calculée au «T de Student» pour la comparaison
des ces deux moyennes, cafin le scuil de signification de celle<Ci en considérant 46 d.d.l. et nc retenant comme Si-
gnificatives que les valeurs inféricures 2 .10. En colonne, chaque item cst représenté par la réponse atiendue, ct la

demiére colonne représentée par un «Tn cst le résultat en ligne tous items confondus.

AN.T2 | 90° 180 60° 320 45° 45° 60° 30° 60° 120 { T

SX 37 36 29 22 16 13 6 2 2 1 164
MOY A 0,79 0,54 0,50 0,42 0,4?__ 042 0,25 — — ——| 3,50
MOY B 0,75 0,95 0,70 0,50 0,25 0,12 _ — — 333
tcal )33 3,72 1,47 0,56 1,21 235 276 —— —— ——| 025
SEUIL |N.S. <01 <.10 N.§. NS. <05 <0l — —— —— 1| NS

@ o obticnt 164 réponses justes sur 480 auendues soit 34 % de bonnes réponscs. Ces réponses sont également

E MC tics sur les deux groupes donnant des mognngs presque identiques. On peut déji considérer que du point
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de vue des angles, les éleves du Groupe 13 ont appris quelque chose, on pouvait s’y atiendre;mais ceux du Groupe
A ont également progressé... ct ailleurs qu'en LOGO. liem par itern la comparaison des moyennes pennct de savoir

si un groupe progresse plus que autre.

II'n’y a pas dc différence significative cnire Ies deux groupes pour I'item concernant P'angle de 90°. C'est I'item le
micux réussit alors que "angle de 90° est ici intégré dans unc figurc probiéme. Ceci montre en outre que Ics éléves

ont pu lirc, rester attentifs jusqu’au 5° jiem ct repérer dans celie situalinn unc connaissance acquisc.

Le groupe B réussit micux les items 2 c1 3 (180 ct 60°). L'addition d’angles pour obtenir 180° cst 1'item qui marque
le plus la différence entre les deux groupes. Les éleves du groupe B justificat les résultats obtcnus  I'item 180 par
unc addition de méme & 1'item 60° ils utilisent souvent la soustraction : 180 - 120 = 60. S'il y a unc réclle influence de
la méthode sur ces deux items, ce qu'il ne sera possible dc vérificr qu'au T3, alors unc recherche des causcs scra

cntreprise afin de justifier cc constat.

Pour I'item 1 de 320° (complément & 360° de 40°) Ia différence cntre Ies deux groupes cst non-significative.
Toutefois cet item cst mois bicn réussi que ceux concernant I'angle plat. On peut penser que la disposition des items
sur 1a feuille induit quelques bonnes réponscs en séric pour les items 2 ct 3. I1 convient toutefois de remarquer que
lc concept d'angle semble sc construire 4 partir de I'angle de 90° pour s'€largir  I’anglc dc 180° puis 4 I'anglc de
360°. 11 s"agit pour des éléves nc maitrisant pas cncorc I mécanisme opératoirc dc la division d’unc approche par

fraction (moiti¢, quart). Ceute obscrvation, scra détailléc par I'analysc du protocole dc Farid.

L’obscrvation des résultats obtcnus aux itcms 5-A ct 5-B des deux angles de 45° du demi-carré montre, que tous
les €lves du Groupe A réussissant un item réussissent 1'autre, 1l en n’cst pas de mémc pour le groupe B : trois
€leves réussissent un item ct pas l'autre. Pour cux ces deux items ne son .denliques. 11 s’agit 13 d'un mauvais re-

pérage des invariants lors dc la constitution de la représentation d'unc classe d’équivalence.

Les éleves du groupe A réussissant aux trois items du rectangle 6 ne sont capables de justificr de Icur réponsc ni

a1'écrit A 1'aide d’unc opération, ni méme A I'oral.

L’angle dc I'hexagone dc 1'item 4 est pour I'ensemble des éléves encore inaceessible. Aucun transfert ne sc fait

pour le groupe A & partir du «Théoréme du Trajct Total de la Tortue» (<13).

9

La mesure de la dispersion s'imposc cnsui‘ICA Ellc permet d’obtenir unc valeur de 2,64 pour 1"écart type du
Groupe A contre 1,62 pour celle du groupe B. Le groupe A est donc beaucoup plus dispersé. 1l 'y a unc influence
de la méthode sur cet indice. Toutcfois, il conviendra d'affiner ¢t éventucllement de confirmer cc constat d’unc part

Q ©observations similaires menées  I'issuc du T3 d’autre part cn analysant la répartition «cs bonnes
ERIC
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réponses suivant les individus.

Enfin, quclques explications relevées parmi celles fournics par des éleves corroborent certaines obscrvations:
- FFarid (groupe A) justific toulcs scs bcnn‘cs réponscs par des affirmations utilisant des fractions connues : Ic quart
ou la moitié. Ainsi 2 I'item 3 il proposc : PARCE QUE : «120 cst Ics trois quart dc 180» ct 2 1'item $-B concemantun
angle de 45% PARCE QUE : «45° cst Ic demi quart de 360%». Cetic logique basée sur des fractions connues ne lui
permet alors d’accéder ni 2 I'hexagonc ni au rectangle de 1'item 6. Elle montre toutefois comment un éleve encore
incapable de poser unc division 2 rclié cetic opération au concept d'angle. L’utilisation dc 1a division lors dc
conjeclures sur les angles devrait permeitre 3 Farid de passer de 1'angle droit, traitable, comme il I¢ fait, par les frac-
tions dc quart ¢t de moitié & I'angle de 90°. Il pourrait, cn intégrant toutes lcs divisions du cércle de 360°, améliorer
scs performances.
- Tagati (groupc B) justific sa bonne réponsc dc 90° au 5-A ainsi : PARCE QUE : «c’cst un angle droit alors I'anglc
droit mesure 90%». La liaison logique qu'clic &ablit par 1'utilisation dc «alors» montre que la corrélation cntre unc

classc d’équivalence ct son signifié n'cst pas encorc établic de fagon trés logique ct surc.

Si 1’on rapproche les conclusions de cetic obscrvation de celle du protocole précédent alors on constate que
I'association : angle droit, angle de 90° sc construit ct A unc Signification. Ellc marque ic passage d’unc représenta-
tion renduc fonctionnctle par Iutilisation de fractions  unc représentation devenuc fonctionncllc ¢t opérationnali-
sablc.

Al'issuc du T3

Les résultats obtcnus sont présentés sur Ic tableau suivant dont la présentation cst identique au précédent.

AN.T3 90° 180 60° 320 45° 45° 60° 30° 60° 120 T

SX 40 a4 33 37 27 25 4 5 1 q 221
MOY A 0,83 0,88 0,67 0,79 0,54 0,46 0,04 0,08 0,00 0,04} 4,38
MOY B 0,83 0,96 0,71 0,75 0,58 0,58 0,13 0,13 0,04 0,13{ 4,83
t «cal 0,00 1,03 o0,38 0,36 0,38 0,19 0,15 0,32 1,00 0,15] 0,73
SEUIL N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S N.S.

Tout d’abord, 221 réponscs cxactcs, soit 46 % dc bonnes réponscs, sont obtenucs. Cela correspond a unc
progression de 12 points par rapport au pourcentage obtenu au T2 (36 %). Cc progrés cst moins important que
celui constaté entre Ie Tt et le T2. Cela semble logique si 'on estime que les notions les plus faciles d'acees sont

E lk‘l'c«:cs cn priorité. 9 8
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les deux groupes n’étaient plus homogenes apres le T2, Lear permutation a eu pour conséquence de niveler
les différences révélées par les résultats. La répdtition des effets vient donc, confinmer les hypothéses préscntées a
Vissue du "I2. La plus générale étail issuc de I'observation des éearts types. Au T3 on reléve une valeur de 2,00
pour I"écant type du groupe A ct de 2,25 pour celle du groupe B. Comple tenu qu'il y a progression cl raltrapage
des différences aprés inversion des trailcments pédagogiques, on csl maintcnant cn mesure d'affirmer que du point
dc vuc des résultats obicnus 3 I"épreuve des angles, la géoméuric LOGO telle qu'elle a é&ié praliquée engendre
plus d’écart entre les €leves. L'analyse des flux entre les deux Tests permet méme de montrer quc la géomélric

non-LOGO misc en place est plus démocratisante. |l convient A nouveau de conduire "analysc itcm par ilcm.

Pour I'angle de 90° il n’y a aucunc différence significative entre les deux groupes. Mais, I'ordre des réussitcs
s'cst modifié : Les €leves, au T3, réussissent micux I'item 3 concernant I'addition des valeurs pour arriver a 180°, que
celui de 90°. Additionner des valeurs représentant des angles cst devenu plus simple qu'identificr un angle de 90° .

sur unc figure.

Aux items 180 ct 60° unc différence significative entre les deux groupes a P'issuc du T2 a été constatée. Puisque
cette différence n'est plus significative aprés I'inversion ;ics trailcments pédagogiques,, on peut conclure a un
meilleur effet de la progression non-LOGO pour ces deux items. Les t';lc‘:vcs doivenl, pour réussir ccs deux ilems
dévclopper dcs conjecturcs utilisant la supplémentarité. Celles-ci sont liées dans un cas 2 I'addition dans 1'autre a la
soustraction. L'acquisition dc ces mécanismes en LOGO a déja été étudiée par D. Mendclson <7>. Par la progres-
sion non-Logo la découverte de la complémentarité ¢t de la supplémentarité avait éié abordée par I'observation de
plans symbolisant des ouvertures de pories dans la ligne des travaux proposés par ERMEL concernant les fausscs
€querres ci faux compas <8>. Les sitvations évoquées par les portes correspondent (r&s exactement 3 ces deux
items. La meilleure cfficacité d'unc progression s’cxplique alors par la naturc de la mélaphore ecmployée qui permet

plus facilement le transfert des compéiences opératoires.

Pour les deux angles de 45°, on constate & nouvcau I'inversion des tendances déerites, concernant la répartition
des résultats crure Ies deux groupes A I'issuc du T2. Maintenant, tous les €léves du Groupe B répondant jusic i I'un
des items concemant I'angle de 45° répondent jusic a I"avtre. Deux éléves du groupe A préscntent un pattern de
réponse différent pour ces deux items. Le travail en LOGO favorisc la constitution des invariants nécessaires 2 la

formation de classes d*équivalence: pour les angles.

Four les items 6. la différence entre fes groypes cst non- significative. A Pissuc du T2 elle n’avait pu étre tesiée
3
puisqu’aucun éldve du groupe B ne répondait A ces items. Toutefois 1'obscrvation des distributions par groupc des
crreurs avail conduit 3 constater que les éléves du groupe A cssayaient plus facilement ccs items. Cetie tendance

s’inverse 3 nouveanr.
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1 angle de hexagone n'est plus item le plus difficile A rénssir. 2 éleves ayant débuté par le LOGO sont capa-

bles de répondre justement.

CONCLUSIONS

La premitre conclusion qui s'imposc conceme I'efficacité de I'épreuve construite qui permet une discrimination
asscz finc des éléves en carcgistrant tout dc méme des cffcts plafonds (90°) ct planchers (rectangle). 1l manquc
toutcfois 4 cc corpus quelques items conduisant A comparer des angles. Par un plan cxpérimental adapté, les résul-
1ats obtenus 2 I'issuc de traitements pédagogiques différeats montrent que les ¢leves ayant utilisé LOGO ont non
sculement appris cc langage mais qu'ils ont également acquis des connaissances sur les objcts manipulés. Ce constat
n’autorisc toutcfois pas A plaidoyer cn faveur de 1'apprentissage de la programmation & I'école sans qu'unc ré-
flexion pédagogique soit cntreprise 2 partir de 1'cnsemble des conclusions. En cffct, les représentations du concept
danglc éuablies A partir de la progression LOGO sont moins fiables que celles établics a partir de la progression
non-Logo. Par aillcurs, si Logo a dévcloppé un esprit d’analyse parfois performant pour des figurcs complexcs, sa
portée, expérimeniée cn dehors de tout cadre conceptuel a éié restreinic lorsqu’unc conceptualisation modélisantc
a é16 catreprisc A posteriori. Enfin ct surtout, 1a progression utilisant LOGO, introduite sans distinction auprés dc
tous lcs Eleves de deux classes de CM 1, comparée 2 partir dc criteres institutionnels 2 unc progression n’employant

pas cct outil, a cu, sur cctte réussite, des cffets ¢litistes.
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SSION AND "SCIENTIFIC DEBATE? IN A

INTERACT [ON 1Y OPLN D15CL

CLASS OFF 12-VEARS OLD PUPLLS

Rescarch group on Didactics of Mathematics of the Section of
Pedagogy, History and Philosophy of Mathematics
Department of Mathematics

University of Patras, Greece

Presentation: T. Patronis

Summary: This paper is a report_and analysis of an experience
which s an instance from one year of experimentation with a
class of 12-13 years old pupils. The general object of study
is the development of thought in solving "open-ended genera-
ting problems" and the corresponding interaction between
solvers. In the experience reported here there was a problem
given, where it was asked from the pupils to compare the num-
bers of trees planted in three different ways in rectangular
fields of same dimensions. In analysing the results of this
experimentation, we discuss the role of a socio-cognitive
conflict during the development of the process of solving the
above problem in the classroom, in a situation of open discus-
sion and debate.

1. The general context of the research

The experience that follows is only an instance in one
year of experimentation with a class of 30 young pupils of
12-13 years of age. The general object of study is the deve-
lopment of thought in solving "“"open-ended generating problems"”
and the corresponding interaction, between the solvers, in a
situation of open discussion in the classroom.

By an open-ended generating problem we mean a problem,

formulated not in the usual mathematical language, but in a
natural language familiar to the solvers, which leads poten-
tially to some specific mathematical concepts (or models),

provided that, either these concepts or the way of their ap-
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plication to the solution of the problem are not known in
advance to the solvers.

By open discussion in the classroom we mean any discus-

sion on some problem and/or the process of the problem's
solution, the formulation, the models used etc., provided

that in this discussion the following conditions are satisfied:
- every student (or pupil) has already obtain some autonomy

of action, and he (she) keeps this autonomy;

- any point of view, any ideas or conceptions are respectable
and can be expressed in the discussion;

~ there are several intentions in the discussion, but none of
them (in particular neither those of the teacher) is
considered as dominant a priori.

Interaction by open discussion may give rise to psycho-

logical and conceptual(éocio—cognitive)conflicts which are
important for the construction and claboration of mathematical
concepts and ideas, -but it corresponds to.a "didactical con-
tract" - in the sense of G. BROUSSEAU (1986) - which, in
general, cannot be easily realizedAin practice (see for exam-
ple M. LEGRAND and his group (1987) ¢ . an organization of
"scientific debate" in classes at the university level).
Although situations leading to interaction by open discussion
and "scientific debate" in the classroom can be provoked and
stimulated by suitable (open-ended) genherating problems,
actually the larger part of such a discussion is spontaneous
and the whole process cannot be predicted in advance, neither
it can be evaluated;by tests etc.

Starting from these remarks, we adopted the following
organization of the discussion and method of observation:

Q ™he class is divided into small groups, with 3-6 pupils in
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cach one of them. Discussion of a problem in these groups,
developing of an idea (or plan) and carrying it out constitute
the first phase of the process of interaction. The second phase
comprises communication of results, open discussion and criticism
in the classroom. In case of a lasting debate (as the one re-
ported below) there is also a third phase, in which representa-
tives from "opponent" groups are called to form a new group
where the discussion continues. During all these phases each
member of our research group undertakes a role of participant
observer in one of the groups of the pupils and gives a report
at the end of each meeting. Meanwhile all discussions have been
tape-recorded; the tapés are compared to the children's notes
or drawings and to the "local" reports of the observers, so that

an énalysis from a "global" viewpoint becomes possible.

2. The experience and its analysis

A problem was given in the form of a dialogue between a

father-farmer and his three sons, as follows,

FATHER: Boys, I have to go to the city this morning.
I've just started planting those olive trees
in the three fields you saw yesterday. You

-must continue now; each of you will take care
of one field... )

SON A : I'll get the smallest onel!

FATHER: But they are all the same, you know that.

Come and see them once more!

SON B : (Seeing the fields and the trees already
planted-Fig.1): The three fields may be the
same, but as you have put the trees in each-
one of them, father, it seems to me that
there are more trees to be planted in one

- of the fields and less in the others.

SON C : Oh, we have to check this by paper and
pencil...

Son A : Okey...(whispering:) Anyway, I'll plant
the fewest trees myselfl!...

It was aéked from the pupils to continue this dialogue and help

the three brothers in their trouble.
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During the first phase (interaction in small groups) and
also for a long time during the next phases, a group of 6
pupils - which from now on will be called "Group A" - was try-
ing to apply the formula of the area of a rectangle

Area = Base x Altitude

to the given figures, in order to evaluate from this the total
number of trees that would finally exist in each rectangular
field. The same approach has been followed also for a while
by some isolated pupils outside of Group A. But thesé pupils-
were soon discouraged by the reaction of the rest members of
their groups.

Meanwhile, the rest of the cirass (about the 4/5 of it,
as it results from the children's own notes and drawings) had
proceeded in a more direct and natural way: In each field there
would be a final number of trees equal to

8 rows x 11 trees/row = 88 trees.

Subtracting the number of trees already planted (which is com-
mon for the three fields: 24) one gets 64 trees that have to be
pianted in each fieid. We shall consider the pupils who fol-
lowed this approach as belonging to "Group B".

On the other hand, the result obtained by some of the
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pupils of Group A at the beginning of their efforts was dif-
forent: The final number of trees in each ficld was cvaluated
as 7 x 10 instead of 8 x 11. This result follows from a con-
ception of the problem according to a scheme that appeared in
the drawings of Group A (Fig. 2a). According to this scheme,
the external rows of trees form a rectangle (with 4 trees at
its vertices): if the distance between two consecutive trees in
a row is, say, 2 units, then the area of the rectangle is
(7 x 2) x (10 x 2) area units.
Let us call this scheme "Scheme AI". Later this scheme

changed and developed into "Scheme AII" (Fig. 2b).

Fig. 2a

s

i

In the second phase of interaction (open discussion in
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x e ¥ T

the classfoom) there was a strong opposition between Groups A
and B, but in fact only a paft of Group B was engaged in this
debate (unfortunately most of the girls were not). The criti-
cism of Group B was directed mainly against the method used by
Group A. The main argument against this method was the fql—
lowing, as expressed by a boy of Group B:

"How much is the distance between two trees?

Is it 1m? It cannot be so, for if we have

an area of, say, 284m?, then we need not have
284 trees! For the same reason the distance

cannot be 2m or 3m..."

O
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In replying to this argument, the members of Group A
produced their answer according to Scheme AII, which they
defended by the following words:

"Each tree corresponds to a unit of area. If the

distance between two (consecutive) trees was bigger,

then this area unit would be bigger too. The
distance of trees determines the unit of area."

“Let x be the distance between two consecutive trees

in a row. I take this as a unit of length and 1 call

it "tree-unit" (!). Then the area of the rectangular
field will be equal to
(8 « x) - (11 « x). »

But then a new objection was raised:

“The distance between two consecutive trees need not
be the same with the distance of extreme trees from

the edge of the field (Fig. 1). So the true area of
the field is different from that you are talking
about."

(The boy was addressed to Group A.)

As it has already been mentioned in the introduction,
there was also a third phase in this experience. Some represen-—
tatives of the two opponent "parties" were called to form a new

- group and continue the discussion. In this last phase a boy
from Group A explained his point of view with the following
words :

"Look here...in order to unde..cand of what I am

talking about: May be the area is not convenient,

but I have used it in order to make things easier

for me and for you ...because the area of the field

and the number of the trees which will be planted

in it may be related a little: the field contains

as many trees as much is its surface area, and vice-

versa; finally it's the same thing."”

In replying to this, the children of Group B repeated
their arguments, without anything new.

For an analysis and an interpretation of the results
exposed above we took into consideration the views of social
genetic psychology and epistemology, according to which the
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socio-cognitive conflict is a conflict of communication rather
than an internal conflict of the individual; it is by the inte-
raction and common activity of partners that the.subject is led
to the construction (or co-elaboration with some partner) of new
operational schemes during the cognitive development (F.CARUGATI
and G. MUGNY, 1985). On the other hand, according to G. BROUS-
SEAU (1988), in a situation of cognitive conflict the subject
has either to choose among two alternative schemes of action or
models of formulation that are (or appear to the subject to be)
incompatible, or to make these two alternatives compatible by
modifying one of them.

In our case the formula for the area of a rectangle,
which was known to subjects of Group A from the elementary
school, offered to them a mathematical context, a model of for-
mulation (in the sense of G. BROUSSEAU) for the solution of the
problem. However, at the beginning this model was not well
adapted to the problem itself.

In the present experience, as well as in many other ins-
tances of our experimentation, this kind of behavior was typical:
In solving a problem, some pupils tend to apply those mathema-
tical methods and tools (familiar to them from the previous
"successful" mathematical school experience)} which apparently
"fit" the situation. Usually these pupils do not examine
whether their method is relevant to the given problem. Under
the conditions of the usual didactical contract, this behavior
becomes easily stereotyped and it is generally accepted without
any comments or reaction from the teacher and the other pupils.
But in a situation of open discussion there is some reaction,
which may be expressed in several ways. In our case this reac-
Qo tion was expressed at the cognitive level, on the mathematical
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content and method used; thus it took the form of a “scientific
decbate".
This debate is not superficial. The initial approach of
Group A to the given problem evoked a conflict, which has two

principal, complementary aspects:

(i)_{§~{§_qg_1inpernal“ conflict for the subjects of
Group A: The model they used being not well adapted to the pro-
blem, the solution initially obtained does not agree with that
expected from experience (Scheme AI).

(ii) (Social aspect of the conflict:) The rest of the

pupils of the class, having solved the problem in a more direct
and natural way, do not accept the method used by Group A and
some of them produce arguments against it. This situation has
an immediate effect on the subjects of Group A, because these
subjects are now led to justify their approach; but in doing so,
they need to revise and reorganize it according to a new scheme
(besides, this was necessary from (i), since their solution did
not agree with empirical facts).

From this debate emerged a new formulation of the problem

by a suitable modification of the initial scheme. The crucial
step was to establish a natural co..espondence between trees and

units of area (Scheme AII).
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FORMAL AND INFORMAL SOURCES OF MENTAL MODELS
FOR NEGATIVE NUMBERS

Irit Peled', Swapna Mukhopadhyay, and Lauren B. Resnick
P yay

Learning Research and Development Center
University of Pittsburgh, USA

Summary

Interviews with children prior to instruction on negative numbers reveal a progression
from a model of number without negatives to models in which all of the integers, positive
and negative, are ordered in a "mental number line.” In the Divided Number Line model,
two symmetric strings of numbers are joined at zero; children compute in terms of moves
toward and away from zero, using special paritioning procedures to cross zero. In the
more mathematically coherent Continuous Number Line model, they compute as if the
number line were continuous, going "up® for addition and "down™ for subtraction. These
models are abstract and do not refer to practical situations such as debts and assets. They
appear to be efaborations of children’s knowledge of positive integers, which have become
mental objects in their own right, without necessary external reference.

Introduction

Chitdren's concepts of the positive integers can be shown to develop out of their

early experience with the ways in which the physical material of the world composes and-

decomposes, together with their mastery of the formalism of counting (Resnick, in press).
From the fact that physical material adds in systematic ways, and from their experience in
quantifying amounts of material through counting, children arrive at a basic mathematical
principle of additive composition of number. This, in turn, entails properties such as
commutativity of addition and complementarity of addition and subtraction.

Beyond the positive integers. it is not so clear that mathematical knowledge can be
directly rooted in physical experience. When negative numbers are added to the integer
system, for example, there is no way that children can experience the quantification (e.g.,
through counting) of a “negative set.” Does this mean that negative numbers can be
learned only as a formal system? Or do children develop intuitions prior to formal instruction
that they can use in understanding the formal system, much as younger children use their
intuitions about physical quantity as they learn about the integer number system? Put
another way, what mental models of negative numbers and of operations on them do
children have prior to formal instruction?

'Now at School of Education, Haifa University, Israel.
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Method
To address this question, we studied children in a private girls’ school. In this school,
negative numbers were first formally introduced in Grades six and seven. Children in first,
third, fifth, seventh, and ninth grades were given a written test of negative number
knowledge. Following this, six children in each grade were interviewed using a clinical
interview method that probed for their explanations and justifications of problems.

Summary of Test Results
Results of the test showed a clear effect of both age and instruction.’ First graders were
totally unable to do arithmetic on signed numbers. For example, only one of them
recognized that -4 is a larger number than -6. In third and fifth grades, up to half of the
children were able to solve many of the operation problems, and almost all fifth graders
knew that -4 is larger than -6, suggesting that they had constructed a mental number line
that included negative numbers. By seventh grade, a year after instruction on the negative
number system began, almost all students could do all of the problems; and by ninth grade,
performance was perfect. Typical errors on the arithmetic operations problems among the
first graders suggested that they had no conception that negative numbers might exist. Their
answers were always positive integers. To arive at these answers, they inverted numbers
freely (e.g., 5 - 7 was treated as 7 - 5) or ignored signs (e.g., -5 +8 was treated as 5 + 8).
Several made it clear that they thought there were no negative numbers by saying that a
small number minus a larger one (e.g., 5 - 7) yielded zero. Third and fifth graders were
more likely to generate negative numbers as answers, showing that they believed in their
existence. However, they applied idiosyncratic rules that did not respect the conventions of
negative number notation. For example, they treated -5+8 as if it were -(5+8), yielding -13
as an answer.
Interview Re. '
Mental Models of Negative Number

Interview results provide a view of the mental models underlying the children's test
performances. Generally, we saw a progression from a model of number in which negative
numbers (numbers falling below zero) essentially do not exist to a model in which all of the
integers, positive and negative, are ordered in a "mental number line” with a symmetrical
organization of numbers around zero. Based on their number ordering performances,
several first and third graders could be seen to have no representation of negatives as
falling below zero. They either placed negatives next to the corresponding positives or
treated them as all equivalent to zero. At the next level of development, one first grader
knew that negatives fell "on the other side” of zero, but did not represent the symmetry of

O '«
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the numbers around zero. Most third graders and all fifth graders did represent this
symmetry and showed an ordering consonant with the number line.

Studying the children’s responses to the general question of what they knew about
negative numbers and their responses to the opoerations problems reveals that thoro aro two
forms of number line representation. In the most advanced (the Continuous Number Line or
CNL model).. children represent the numbers as ordered along a single continuum from
smaller (the negatives) to larger (the positives):

Larger
3 2 4 0 +1 42 43
Children with this CNL model need no special rules for “counting across” zero. Children

with this model might mention a division of the number fine at zero, but they mostly
computed as if the number line were continuous, going “up” for addition and "down" for
subtraction.

A less mathematically coherent number line model joins two symmetric strings of
numbers at zero and stresses movements toward and away from zero rather than just up
and down. We call this a Divided Number Line (or DNL) modek

Smaller Larger
3 2 1 0 +1 42 43
This model requires special rules for crossing zero, usually in the form of a partition of the

number to be added or subtracted. The typical child using this model would partition the
number to be added or subtracted into the amount needed to reach zero and then continue
counting off “the rest” on the other side of zero. It is characteristic of children using a DNL
model that, on problems in which it is not necessary to cross zero, they talked of doing
addition or subtraction "on the negative side.”

Constructing this mental number line model is not an all-or-none or an all-at-once
matter for children. Several children could describe number line models but not use them
effectively. Interwoven with problems of constructing a coherent mental mode! that includes
negative numbers is the problem children face of learning the conventions of signed number
notation. Several errors in the protocols seem to derive from not knowing how to encode
certain notations. This occurs especially when plus signs are understood but not shown. it
also occurs, however, when a child's mental model cannot handle a problem that is
presented. This is the case when a negative number must be subtracted from a positive
number (e.g.. [+4]-[-2]). Neither the CNL nor the ‘DNL model can coherently represent this
problem. A typical response is either to mentally delete one of the minus signs (yielding
the answer [+2] to our example problem) or to mentally exchange the positions of the plus
sign and the negative operator sign (converting the problem to [-4]+[-2] and yielding the
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answer [-6]).

Concluslon
This study, although only exploratory in nature, provides clear evidence that many
children construct mental models that include negative numbers before school instruction on
this topic is offered. Some become quite facile in doing arithmetic operations on the basis of
this model, clearly drawing on their models of the positive numbers to do this. This is most
apparent in the partitioning strategies (go to zero, then finish the rest on the other side) that
children with the DNL model use.

It is striking that the two number line models that our subjects developed were quite
abstract. We had expected to find them thinking about debts and assets--having numbers of
things _arid owing amounts to others. A few children mentioned such conceptions: for
example, one child said she had seen her mother's budget sheets at work and knew that
negative numbers stood for how many more hours someone had to work to get paid;
another said negative numbers were "bad marks" that balanced good ones. Debts and
assets are thought to have played a role in the historical introduction of negative numbers
in Western mathematics; negatives were needed for the bookkeeping systems that
developed as commerce expanded in the Renaissance. Yet, although they mentioned them,
none of our children actually used debts and assets in their reasoning. 'If they could reason
about negative numbers at all, they did so in terms of the mental number line models we
have described.

What are the possible origins of the mental number line model? First of all, there is
good evidence that a mental number line for ‘he positive numbers is established by most
children even before school entry (Resnick, 1983). They initially use this representation to
compare the relative sizes of numbers. It is. reasonable !o s 'Ppose that over the first years
of school they gradually relate this number line represeiuation to the operations of addition
and subtraction. Children's general experience with symmetry (some even mentioned mirrors
in discussing what negative numbers might be) is a likely source of the divided number line
idea, once the existence of numbers with minus signs have been noticed and thought
about. What would remain would be to find a means of crossing the zero when doing
calculations on the mental number line. Here it seems that children were applying well-
developed ideas of additive composition (cf. Resnick, 1986) to produce the partitioning
strategy that we observed among many children. In sum, children seem able to develop
pre-instructional intuitions about purely mathematical entities (the negative numbers) by
elaborating previously developed ideas about number (additive composition and partitioning)
that were originally rooted in physical experience but have, through practice, become so
familiar as to become intuitions in tﬁeir own right.
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INVERGE PROCEDURES: THE INFLUENCE OF A DIDACTIC PROPOSAL ON
PUPILS' STRATEGIES ¢~> (==>»

Angela Pesci, Dept. of Mathematics, University of Pavia, Italy

SUMMARY

With this research we intend to study the {nfluence of a didac-
tic proposal for the ages 11-12 on pupils' strategies to solve
problems with inverse procedures.

The didactic proposal includes the concepts of relation between
two sets, inverse relation, composition of relation and inverse
of a composite relation; both in and out of mathematical con-
texts and with the aid of visualisation with arrows.

The proposal was presented to an experimental group of 33
pupils. The experimental group and another of control « 21
Pupils) were tested by 3 qQuestionnaires, the results of which

are described.

1. Introduction

One of the principle aims of mathematics teaching to stu-
dents 12-14 vyears old is the acquisition of proportional
reasoning. But, every teacher notes that such acquisition is
still very unstable in students of upper secondary schools.
Horeéver, I would élso say thatAfor many adults, lacking the
help of scholastic habits, the solution, for example, of in-
verse multiplicative problems still constitutes an insurmount-
able obstacle.

This justifies the vast amount of literature on the theme
in question. )

In particular, referring to inverse Vprocedures, it has
been observed by Mariotti et al. (see Ref. 7) that errors can
be due to the fact that, in common didactic practice, addition
and subtraction, but even moreso multiplication and division,
are not considered as two aspects of the same structure
(additive and multiplicative respectively) .

At the first pres%ntation of these operations, at the
(#) This research supported by the C.N.R. and the M.P.I.
(40%) .

(##) The psycologist M.G. Grossi collaborated in this research.
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elementary level, the difference of meaning between addition

and subtraction and respectively multiplication and division is
underlined. But, after, the unified vision of these operations
is not given.

In this perspective it seems important to us to build the
more general idea of relation and inverse relation between two
numerical sets.

Again in agreement with them, we. maintain that, in’
reference to difficulties linked to the dimensional aspect, it
is important to progressively lead the students to "free” them~
selves from the chain of dimension, so that they can work, more
easily, with pure numbers. It is therefore essential to under—
line the structural analogies of the various situations.

The most favourable period for working towards these goals
seems to be from 11 to 14 years old. With these premises we
elaborated a didactic proposal for the ages 11~-12 and we are
studying its influence on the strategies used by the same stu-~

dents to face problems with inverse procedures.

2. The Didactic Proposal

The didactic plan, discussed with the teachers of our
group, has the following order:
- examples suitable to emphasize the concept of relation

(with expressions like "...was born in the month of...",
“...is a fan of...", “...is preceded by..."» "...1s the
double of...")}

- discussion of the various types of representation of a
relation (tables, graphs, list of pairs, etc.);

- the four arithmetic operations as relations;

- the importance of the order between two elements linked by
a relation (ordered pair) and the concept of inverse
relation;

- the choice of the language of arrows as the most powerful;

- the operations addition and subtraction (and respectively

multiplication and division) as inverse relations of each

other;
- the composition of relations in real situations ("...i5
the son of the son of...", “...is the son of the daughter

of...") and in arithmetic type situations ('"add 2 and mul-
tiply by 3", "add 1 and subtract 7, etc.) with the aid of
O
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the lanquaqge of arrows;j;
the problem of v et sy ta the htdltlnu.ﬂﬂlﬂt 1 Lthe com
position of two or more arithmetic operations: the inver-
sion of the composition of relations.
The main objective is to use the concept and the visualisation
of relation and inverse relation for facing the usual inverse

problems in arithmetic, geometry and daily life.

3. The Questionnaires

The first questionnaire with B8 problems (4 direct as

"distractors" and 4 inverse) was presented in three classes

(pupils aged 11-12). Two of these classes are experimental (S,
and Se) in the sense that, after the first questionnaire, the
didactic proposal described above was presented. The third

class ( C ) is a control group.

The problems on the questionnaires are the following:

1. A pencil, which is 14.5cm long, measures 2.4cm less than
another. How long is the second pencil?

2. Consider the following game.
A number is chosen and then 8 is subtracted, the result is
divided by 5 and to that result 18 is added. Alessandra's
answer was 30; With which number did she begin?

3. Im of fabric costs £it 15000. How much does O.&65m cost?

4, A TV program lasts 90 minutes and 1/5 of it is publicity.
How much time is dedicated to the program?

S. Marco calculates 3/4 of a number, then he adds S4 to the
result and his answer is 144,
With which number did he begin?

b, In an art book of 430 pages, 2/5 are illustrated; 173 of
these are in colour.
How many illustrated pages are in colour?

7. With a calculator I did 2/5 of a number and then I multi-
plied the result by 7, getting 266. '
With which number did I begin?

8. On a chessboard there are two pieces, o and ® , that can
be moved only in the following ways:
the move of e : 2 squares up ( ') and then | square to
the right ( —— ) '

o he move of = : 1 square down ( &) and 3 squares to the
- 115



right ( — ).

Look at the following situation:

You know that the pieces e and m HAVE ALREADY DONE three
moves each.

Trace their routes till you find where they began.

Problems 1, 3, 4 and & are direct. Problems 1 and 3 were
selected from those given in the experience described by Deri
et al.(see Ref.4). Moreover, problem 3 turned out to be dif-
ficult enough not only for the ages 11-12 but for the ages 14—
15, too.

Inverse problems 2, S and 7 deal with the inversion of the
composition of two or three arithmetic operations. Inverse
problem 8, which turned out to be the most difficult, requires
the successive application of the inverse of a composite
relation.

It must be noticed that the problematic situations in 2, S
il Soarae simyLay Lo Ll e e ewtenbest by Lhie Lezachier e Lhe
didactic activity. But, the context is different.

As far as problem B8 is concerned, it deals with the more
complex situation described above, which has never been
presented in the class. But, also the context is unusual. The
results of this guestionnaire are in section 4.

After the administration of the first questionnaire, the
teacher developed the established didactic proposal (for a to-
tal of 12-13 hours per class) in each of the two experimental
classes S, and Se. The developing of the work was recorded, by
hand, by two final-year undergraduates in Mathematics (one in
each class).

Just after the conclusion of the didactic unit previously

&) ibed, another queifionnaire was proposed in the three
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classes_S!, Se and C. It also consists of B problems, almost
identical. to those of the first one, however, problem B8 is
identical. This second test gives the initial indications of
the influence of the proposed activity.

The results and the comparison to those of the first ques-
tionnaire are in section 4.

The plan for classes S, and Se included the recalling of
tﬁe concepts and the resolving strategies; not systematically,
but when it is necessary. So we want to consolidate and
develop what has been given in the didactic plan.

A final questionﬁaire (with the same B problems as the
fi%st”oﬁe) will be proposed, in the three classes, at the con-
clusion of the scholastic year. We think it could be indica-

tive of the consolidation reached.

4. The Reaults

The experimental classes S, and Sa are composed of 16 and
17 pupils respectively. The control class C has 21 pupils.
The questionnaire was evaluated attributing O points for every
wrong or omitted problem and 1 point for correct problems. The
calculation errors were not considered.

In Table 1 the percentages of the correct inverse problems
and the average scores obtained, for all three classes, in the
first and -second questionnaires respectively are reported.

In Table 3 there are the percentage variations of the
average scores of the second questionnaire with respect to the
first for all three classes. These ar r_lative to the direct

and inverse problems.

Table.l

S =.5, + Sg Inverse Problems

2 ! S | 7 1 8 t Average Score
1st Q. | S t 3&6% | 18% 1 1B% 1O | 0.73
. I C ) 48% t 24% | 33% | O 1| 1.05
2nd 0. 1 s 1 Slx t 304 1 30% 1 9% i 1.18

I Ct 48% | 28% | 33% | S% | 1.14

Q. -YAVAlLABLE
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Table 2 Direct Problems

1 I 3 [ I o) 1 Average Score
ist Q. | S | S1% | 3&6% 1 _S4% | 394 1 1.82
| C t 71% | _71% 1t Sa%_|_48% | 2.43
2nd Q. | S | Sa% | aai | _S7% 1 39% | 1.79
| C | S2% t S57% 1 S57% | &2% ! 2.28
Table 3 | Direct Prob. ! Inverse Prob.
| {
= | 2% | +62%
| I
Cc ! 6% | +9%

It is interesting to analyse the protocols and to examine
the typology of the errors in the incorrect problems. But,
here we will limit ourselves to some general observations.

1t seems to us that the numerical data, especially in
Table 3, ahow the positive influence of the didactic unit on
the solution of the proposed inverse problems. On the other
hand, as already observed, problems 2, S and 7 repropose
problematic situations encountered in the didactic proposal.

Problem 8 merits a separate discussion. As Table 1l -shows,

this problem was revealed to be the most difficult. First of
all, we recall that its context, of a non-arithmetic type, was
not presented during the didactic activity. Moreover, it not

only requires that the procedure of inversion of a composite
operation is known but also that such procedure is applied
three times in a consecutive way. If the procedure of inver-
sion is not internalised, the successive application becomes
difficult. To internalise a procedure means not only to under-
stand its significance but, also to have placed its formal and
generalisable scheme into long-term memory (see Ref.3).

In this sense we maintain that problem 8 can be considered
indicative of thé effective internalisation of the proposed in-

verse procedures.

S. Final Ohservations
Q ‘irst of all, it should be noted that the results obtained
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are to be held only as indicative, taking account of the
scarce number of pupils tested.

- The most significant contexts for the inverse procedures
(proportionality in problems of similitude, percentages,
etc.) cannot yet be proposed to pupils aged 11-12 because
they are not included in the Government Programs.

- It should be said that the teachers were presenting the
didactic unit for the first time. For that reason, their
didactic procedure was not very well consolidated or

efficacious.
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THROUGH THE RECURSIVE EYE: MATHEMATICAL
UNDERSTANDING AS A DYNAMIC PHENOMENON

Susan Pirie, University of warwick
Tom Kieren, University of Alberta

ABSTRACT

Over the last couple of decades, attempts have been made
to categorize different kinds of understanding. Rather
than considering understanding as a single (or multiple)
acquisition we offer here an overview of a new theory of
understanding as a complex, dynamic process. It can be
characterised as a levelled but non-linear, recursive
phenomemon, each level being self-referencing but not the
same as the preceeding level. This view of understanding
as TRANCENDENT RECURSION allows us to see the way in which
any given level is both dependent on the previous level
for its initiating conditions and constrained by the
nature of the succeeding level. clearly this has
implications for the teaching of mathematics.

“Everything said is said by an observer", Maturana, 1980

The experiencing organism now turns into a builder of
cognitive structures intended to solve such problems as
the organism perceives or conceives.. among which is the
never ending problem of consistent organization (of such
structures) that we call understanding.

von Glasersfeld, 1987.

Over the past 20 years or so there has been a
continuing dialog, much of it through PME, on what it
means for a person to understand mathematics. One of the
features of this dialogue has been the theoretical
identification of different kinds of urderstanding
principally instrumental and relational understanding but
also concrete, procedural, symbolic and formal
understanding. Pirie (1988) has suggested that thus
describing different kinds of understanding is inadequate
as a means of differentiating children’s performances
exhibiting mathematical understanding. She claims, and
illustrates from extensive taped interactions of children
doing mathematics, that mathematical understanding is a

complex phenomenon for the child doing it. A single
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category does not well describe it nor do such categories
capture understanding as a process rather than as a single
acquisition. What is needed is an incisive way of viewing
the whole process of gaining understanding.

There have indeed been recent efforts to go beyond a
cataloging of kinds of understanding or thinking of
mathematical understanding as a singular acquisition.
Ohlsson (1988) performed a detailed mathematical and
applicational analysis of fraction-related concepts.

From this elaborated example, he suggests that
mathematical understanding entails three things; knowledge
of the mathematical construct and related theory: the
class of situations to which this theory can be applied:
and a referential mapping between the theory and the
situations. He does not however, suggest how this mapping
is developed or grows. He infers but does not give a
process model.

Herscovics and Bergeron (1988) give a two tiered
model of understanding and illustrate it using the
understanding of number and pre-number in young children.
The first tier involves three levels of physical
understanding: intuitive, (perceptual awaréeness) ,
procedural (e.g. 1-1 correspondence) and logico-physical
abstraction (e.g. physical invariance). The second tier
is non-levelled and entails as components of understanding
the use of mathematical procedures (e.g. counting) to make
mathematical abstractions reflected through the use of a
notational system.

Both 6f these models of understanding above involve
levels or components which appear to have predicate
quality - they define complexes of components in unique
categorical terms. In that sense they give a picture of
the components which might be involved in the process of
understanding. Von Glasersfeld (1987), however sees
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understanding as a CONTINUING PROBLEM~SOLVING PROCESS of
consistently organizing one’s mathematical structures.
Let us consider the following example drawn from a
study of 7-9 year old working in groups doing fraction
comparison tasks (Wales,1984; Kieren & Pirie,
forthcoming). 1In the task children were asked to compare
the amount of pizza a person A would get if sharing 3
pizzas among 7 persons with the amount person B would
get sharing 1 pizza among 3 persons. Here is
commentary by Hanne working with 2 friends (all aged 7).

Hanne A is hard - let’s skip it.

Hanne B is easy, you ‘Y’ it
(Draws 'Y’ and explains her process to her
friends).

Hanne (I) Let’s use ’Ys’ on A. @ @ .
(Action 1, draws: 635
i.e., Hanne cuts the three pizzas
into "fair shares" in order to give one
third each). @ @ %

(II) (Action 2,

i.e., she cuts the remaining two thirds
into seven smaller pieces).'

Hanne (III) Oh, I see! A gets a third and a bite.
A gets more.

What has happened here? Hanne starts by not
understanding how to divide 3 among 7. It is clear
from the complete tape that she can divide 1 among n
for n small and in particular has formalized this act
for 1 + 3 (’Y it’). In I and II we see her now
successfully divide 3 among 7 using the result of 3
replicates of dividing 1 among 3. - At ‘III’ she marks
the fact that she realizes that she has a successful new

organization of sharing or division.
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This leads us to ask what does Hanne’s understanding
entail? How is it a growing process? Our answer can be

summarized as follows:

Mathematical understanding can be characterized as a
levelled but non-linear. It is a recursive
phenomenon and recursion is seen to occur as thinking
moves between levels of sophistication (as with Hanne
above). Indeed each level of understanding is
contained with in succeeding levels. Any particular
level is dependent on the forms and processes within
and, further, is constrained by those without.

while it is beyond the scope of this paper to
completely delineate this theory of mathematical
understanding which we call TRANSCENDENT RECURSION, or to
fully connect it to data on children’s mathematical
behaviour gathered in England and Ccanada, some major
tenets of the theory are highlighted below. Of course it
should be understood that we are not saying that the
observed action sequence above exhibits these tenets per
se. It is the underlying consistent organization or
personal mathematical understanding, which we are trying
to typify.

In saying that mathematical understanding is levelled
and recursive we are trying to observe it as a complex
levelled phenomenon defined by Vitale (1988) which is
recursive if each level is in some way defined in terms of
itself (self referenced, self similar), yet each level is
not the same as the previous level (level-stepping). To
this definition we have added an idea taken from
Margenau’s (1987) notion of growth of scientific
constructs. New constructs transcend but are compatible

with old ones (they are not simple extensions).
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In trying to use recursion to describe understanding
we also use the concept of thinking drawn from Maturana
and Tomm (1986). Thinking is seen to be a recursive
phenomenon - a distinction among distinctions of
languaging and languaging is itself recursive. It entails
the consensual coordination of consensual coordination of
actions. Thus thinking, means having a consistent
levelled structure leading back to, or/calling, processes
from lower levels potentially all the way back to action.
Growth of this structure, however, can occur in a
non-linear fashion. This view of recursion is useful in
considering the personal ’transfer’ of understanding.
‘Transfer’ to a new situation means using ones current
understanding to reconstruct or reformulate ones knowledge
to accommodate the new situation. Thus, recursion can be
used as a tool to "see" the organization underlying this
reconstruction. This recursive reconstruction,
organization or understanding is seen as Hanne above
‘calls’ the form of her previous level of dividing
knowledge as a basis for her new understanding of dividing
up.

What are inter-relationships among levels? If one
focuses on any one particular level then understandiné at
this level depends upon the level below to provide
necessary initiating conditions, and on tﬁe level above to
provide the environmental constraints w“ich "call out"
forms or processes at the focus leve. (Salthe, 1985]. For
example, Hanne’s ‘1/3 understanding’ level provides an
initiating condition for her ‘3/7 dividing process.’ As
argued below a recursive, dynamic notion of understanding
can provide a description of personal mathematical
knowledge building. Wwhile it is beyond the scope of this
brief paper, this theory can also provide an account of

mathematical problem solving.
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To illustrate one aspect of our theory in less
general terms, we turn to the example of fractions, and
focus on fractional knowledge about and built through
symbolic manipulatien. Such knowledge can play several
roles in the recursive structure of understanding
fractions or rational numbers. It can be called as a
particular example while building, validating or
reconstructing knowledge at the "higher" level of quotient
groups or fields. On the other hand work on a symbolic
task should be able to "call" intuitive knowledge of
fractions as quotients or even the action of dividing up
equally as a basis to reconstruct or to validate symbolic
level activity. Rational number understanding is seen as
a dynamic growing whole consisting of sub-levels which are
self similar in that they are about fractional knowledge.
These levels are not reducible to one another however:
knowledge of gquotient fields is distinct from
computational knowledge of fractions which it organizes,
which in turn is distinct from the intuitive knowledge
below it.

Nonetheless, these levels of knowing are
inter-dependent. One can loock at the fractions as
quotients and the act of dividing up equally as providing
initiating conditions for knowledge gained through
symbolically multiplying or dividing fractions. The level
above, ’‘rationals as a multiplicative grbup’ constrains
such symbolic knowing. This constraint is environmental;
the mathematics itself "calls out" certain symbolic acts
as correct. Thus a person’s symbolic understanding is
environmentally constrained by the normal structure of
that domain of mathematical knowledge, in this case that
of the rational numbers.

No mention has yet been made as to the relevance of
this model of the process of understanding to the teaching

of mathematics. We offer here a brief glimpse of how
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schooling can affect the environmental levels surrounding
symbollc fractional understanding. 1In this case knowing
may be constrained by what the teacher considers to be
mathematics. The teacher may see computations as a set of
procedures.to be learned, which would call forth certain
behaviors in a child. The level below subsumed by
symbolic knowing under such circumstances, might then
provide as initiating conditions all strategies the
student has found successful for survival in school or
with that teacher, such as the blind memorization of
algorithms. Thus a child’s understanding of school
mathematics can be environmentally constrained by the
teacher’s (or text’s) mathematics and might call as
initiating conditions non-mathematical structures or
behaviours.

Summary and Concluding Remarks

This viewing of mathematical understanding as a
dynamic process allows us to see a person’s current state
as containing other levels which are different, but
compatible, ways of understanding the mathematics,
which allow the person to validate upper level knowledge
or provide a basis for facing unknown but related
mathematics.

Considering mathematical understanding as a recursive
phenomenon is not meant to replace t! e contemporary views
of understanding suggested by Ohls.un or Herscovics and
Bergeron. It is meant to provide insight into how such
understanding grows and how the elements these authors
describe are integrated into a whole. As such the theory
sketched above should allow for the dynamic levelled
analysis of mathematical understanding. In particular, it
should allow one to see the self similarity but
transcendence in the levels, to see the process of
validation of personal knowledge and to comprehend

O
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transfer as recursive reconstruction. It enables one to
identify the roles of form (language, symbolism) and
process both at any level and in the growth between

levels.
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COGNITIVE ASPECTS OF THE LEARNING OF MATHEMATICS
IN A MULTICULTURAL SCHOOL

Norma Presmeg and Anita Frank

University of Durban-Westville

Research results are reported which indicate that when
language-related learning difficulties are discounted,
cognitive differences between pupils from three different
cultural groups learning mathematics together in the

same school are far less evident than are differences
between pupils in different achievement groups or in
different years. This research suggests that it is

viable to use a common curriculum when pupils from differ-
ent cultural groups learn mathematics together in the

same classrooms.

The full title of the project on which this paper is based is
as follows: "An investigation of the role of Culturally
conditioned thinking.in the learning of mathematics by pupils
in multicultural and in culturally segregated schools: a
longitudinal study". The research carried out in 1988 at
Uthongathi, a multicultural school in Kwazulu/Natal, addressed
the first part of this title. The projec. 1s ongoing and in
1989 it will be possible to compare the Uthongathi data with
data collected similarly in schools in three culturally seg-
regated school systems. It is possible, in fact likely, that
the findings in these schools will be different. This paper
deals only with the cognitive aspects of the interview and
test data collected at-Uthongathi. A second paper, by Manjul
Beharie and Yanum Naidoo, reports on the affective aspects of
the Uthongathi research. In both papers illustrations are

drawn from the data of all four researchers.
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Theoretical framework and rationale for the methodology

Evidence of the cultural basis of mathematics which has trad-
itionally been considered culture-free has been drawn from
countries as diverse as China, U.S.A., Jordan, Mozambique and
Australia (Bishop, 1988}. Uthongathi, the first of the New Era
Schools Trust (NEST) schools in South Africa, with its policy
of nonracial education and balance of numbers, is a natural
laboratory in which to study, firstly, the effects (if any) of
family cultural background and home language on the learning
of mathematics, and secondly, any modification to these
effects which may result from prolonged multicultural school-
ing. Hence the study is longitudinal, and a qualitative,
hermeneutic research methodology involving audiotaped inter-
views was considered appropriate to the exploratory nature of

the research.

The pupils
The three mathematics teachers at Uthongathi were given the
task of selecting pupils who were paradigm cases inasmuch as
they represented the following categories in a "J-dimensional“
model: in each of standards 5, 6 and 7 (i.e., grades 7, 8 and
9), pupils of the Indian , Black and White race groups were
chosen such that each of three achievement levels was repre-
sented, viz., high, medium and low. In view of the complex
elements involved in the choice of suitable pupils, it was
considered that their mathematics teachers, who had known them
for periods ranging from three to fifteen months, would be
more competent than the researchers to make the selection. In
practice 25 pupils were selected rather than the 27 required
in the model, because there were only 30 std 5 pupils at the
Q
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school and no pupils could be found to fill the Categorics
high achievement Black and low achievement White in this year.
All other categories were filled without difficulty. For

interviews, these pupils were allocated to researchers as

follows:
Norma : std 5 pupils (7 pupils)
Manjul : high achievers in std 6 and 7 (6 pupils)
Anita : medium achievers, std 6 and 7 (6 pupils)
Yanum : low achievers in std 6 and 7 (6 pupils).

The "cognitive" interviews

Three of the six interviews with each pupil were concerned
largely with cognitive aspects of the pupil's learning of
mathematics. These interviews were based on the following

tasks.

(1) "Matchsticks". Three series of mathematical problems
involving matchsticks were solved by all pupils in the
project. The understanding of these problems required
minimal verbal input, and all solutions were obtainable

using spatial ability and logic.

(2) "verbal problems". Section A (6 prob’ s) from Presmeg's
(1985) test for mathematical visuality was given to pupils
to solve aloud. Pupils had the choice of reading the

problems in Zulu or English or both languages,
(3) "School problems". Pupils solved aloud problems from
their school mathematics textbooks.
Language
The data from these three interviews revealed that, where
differences in the problem solving performances of pupils from
the three cultural droups were evident in a particular standard
and achievement group, these differences were largely attribu-
Q
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English, the medium of instruction at Uthongathi, as their
home language (even if Hindi, Tamil or Gujarati were also
spoken at home).. In contrast, of the 8 Black pupils, only two
named English as their home language, although a further two
indicated that English was a second language (after Zulu)
spoken at home. Even when problems were understood and solved,
some pupils (and especially those new to the school) could not
explain their thought processes in English. Some evidence was
found that there are two types of language-related learning
difficulties in school mathematics (Berry's 1985 types A and B).
but the type A (fluency) difficulties were largely masking the
subtler type B (culturally determined) difficulties in the

present research. The following protocols are illustrative.

NOMBU (std 7, home language Zulu/English): "We are doing word
problems and I'm not enjoying it."

INTERVIEWER: "Why not?"

NOMBU: "I don't understand what the sentence means. Sometimes

I mix it up or misunderstand the sentence." (Anita's data.)

NONHLANHLA (std 5, home language Zulu): "Yes but I don't
understand this thing" (after reading word problem in
English, then its Zulu translation). Only three of the
six word problems were attempted, and each of these three
required extensive explanation by the researcher.

(Norma's data.)

XOLANI (std 5, home language Zulu), read word problem A-1 for
four minutes in English and in Zulu, then pointed out that
the Zulu wording did not mean exactly the same as the
English: "John miss one day, then go, misses one, then go.
Peter misses two dajs, and then go, two days then go.
After four days .... no." Then he speaks in Zulu.

(Norma's data.)

The problem, in English, reads, "One day John an'! Peter visit a

Q ary together. After that, John visits the library regularly
[E l(:/ two days, at noon. Peter visits the libra'y every three
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days, also at noon. If the library is open every day, how many
days after the first visit will it be before they are, once
again, in the library together?"

Xolani shows here the possible type B difficulties which under-
lie even the translation of mathematical problems into Zulu.
Phyllis Zungu (lecturer in the Zulu Department, University of
Durban-Westville), who did the translation, confirmed this
difficulty, pointing out that it was necessary sometimes to
"talk around" English mathematical terms when translating them
into Zulu, either because a direct translation was not possible
or because the Zulu terms were not well known even to Zulu

speakers.

One encouraging finding in the Uthongathi research was that
prolonged schooling at Uthongathi tended to reduce the
differences between English home language pupils and those for
whom. English is- not a mother tongue. Manjul, -whose interviewees
were of above average achievement, reported as follows:

"All participants were fluent in English, and could understand
the language and terms of mathematics (~ _.essed through
English medium). The Black students who have problems with
English attend extra English tutorial classes. The two B]ack‘
pupils in my group sometimes had problems in expressing
themselves but they basically‘understood the various concepts
and terminology in mathematics.

THAMI (std 7) found that learning was more 'enjoyable, because
last year I learned my English background' (meaning the

language), 'and this year I understand the teachers
better.’
TABO (std 6) also pointed out that 'Mr-B__, especially, tends

) o emphasise on Black students reading books every day so

[E l(:hat they become fluent with the English language, but I
)
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think this is also good.'"
Manjul pointed out that "these pupils are socialised in part
with a western culture (i.e., they are exposed to the fruits of
technology - calculators, computers, T.V., ‘scientific and mathe-
matical toys and puzzles, chemistry sets and so on). In addition
their parents take a positive interest in their children's

learning, especially in mathematics."

By way of contrast, Yanum also found little difference between
cultural groups amongst her below average pupils (std 6 and 7)
because these pupils all experienced difficulty at times in
understanding the language and concepts of mathematics.

CINDY (std 6, White) made the following comment about her text-
book: "It's okay if you want to learn from it; it's a bit
difficult to understand. They got the writing saying how
to do it, how to explain it ... but I can't ... I can't

properly understand it."
She indicated that it was the language that she "can't properly

understand".

Matchsticks
The problems in the "matchsticks" interview were as follows.

1. Make the following numbers of identical squares, using all~
24 matchsticks each time: 1; 2; 3; 6; 7; 8: 9.

2. How many squares?

) .
(a) ] (b) (c) (d) Predict for 4 X 4.
{ (e) Predict for 5 X 5.
3. (a) Move 2 matches to make five squares.
_J (b) Move 3 matches to make five squares.

(c) Move 4 matches to make five squares.

After analysing pupils' protocols, all four researchers reported

that there were far greater differences in the performances of
[: i‘ 5>ils from different achievement levels and yuag groups than
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there were between pupils from the different cultural groups. In
fact we had to conclude that no culturally determined differen-
ces were evident for these tasks. The second series of problems
("How many squares?") was of particular interest in this regard
because it allowed for a possible generalisation to the nxn
case. In std 5 no interviewee was able to generalisé and only
the two high achievers correctly predicted the 5x5 case (Norma's
data). Manjul found that only one std 6 pupil (Tebo, Black) in
her high-achieving group correctly predicted the solution for
the 100 X 100 case, in which task all of her std 7 interviewees
succeeded. Only Marc (std 7, Indian) gave an intuitive generali-
sation to the nxn case by pointing out the pattern involved
(i.e., 17+2%+43%+....4n?). None of Anita's pupils went beyond

the 5x5 case, which was solved only by Natasha (std 6, Indian),
Nombu (std 7, Black) and Zarina (std 7, Indian). Even the 4x4
case was solved by only one of Yanum's low achievers (Lisa, std

7, White), and no pupil in her group attempted the 5x5 case.

Visualisation-

Section B (12 problems) of Presmeg's (1' 7, test for mathematic-

al visuality was administered in group mode to all mathematics

pupils in standards 5, 6 and 7 at Uthongathi. The reasons for

examining mathematical visualisation were twofold:

(1) visualisation may provide a possible bridge to understanding
when language difficulties exist;

(2) it was possible that cultural differences would be found in

the need for visualisdtion in mathematics.

Analysis of the test scores of the 136 pupils who wrote section
B revealed no significant differences between the three race

S 1n terms of their median scores or frequency distribution
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graphs. (All pupils were given the choice of reading the prob-
lems in Zulu or in English.) It was concluded that there were
no cultural differences in need for visualisation in mathematics

among these Uthongathi pupils.

Conclusion

Lawton (1975, p.5) wrote, "One view is that a common curriculum
must be derived from a common culture. But this in turn raises
other difficult issues. What is meant by a common culture? Is
it meaningful to talk of a common culture in a pluralistic
society?" The Uthongathi research suggests that a shared school
experience provides sufficient elements of a common culture to
make it possible to use a common mathematics curriculum under

these circumstances.
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QUALITATIVE AND QUANTITATIVE PREDICTIONS AS
DETERMINANTS OF SYSTEM CONTROL

Matthias Reiss
Johannes Gutenberg-Universitit, Mainz, W. Germany

Summary: We investigated the influence of qualitative and quantitative predictions for the
effectiveness of system control using a simulation of a biological system, the fishing pond. In an
experimental paradigm one group of subjects had to give numerical predictions for the optimum of
the propagation function, another group had to apply gqualitative reasoning by answering a
qualitative question. The control group had none of these tasks, but simply played the fishing
conflict game. The qualitative group did not perform better than the control group, but the
quantitative group was more successful than the other two groups. Explanations are given regarding
the function concept for each of the three groups.
1 The role of qualitative reasoning in problem solving
It is obvious that quantitative reasoning seems to be helpful in solving numerical
problems. But qualitative predictions can be useful for the solution of quantita-
tive tasks, too (DEKLEER & BROWN, 1984; BOBROW, 1984; HRON, 1988). The authors
use the term qualitative reasoning in tasks where one is asked to predict the
direction of a quantitative change rather than its absolute value. In such tasks one
has to indicate whether the predicted value is going to stay constant, to become
greater, or less than the current value.
In our study we investigated the influence of qualitative and quantitative predic-
tions on the effectiveness of control of a biole . system. Inferences which
merely predict the direction of change shall be called qualitative reasoning; those
which result in a numerical value shall be called quantitative reasoning. In some
studies qualitative reasoning has been particularly efficient. The authors investi-
gated experts and novices in order to distinguish efficient and non-efficient cog-
nitive processes. A number of studies about processes of qualitative reasoning
while solving mathematics or science problems (BEHR, REISS, HARREL, POST &
LESH, 1986; BRIARS & LARKIN,;1984; GREENO, 1983; LARKIN, 1983; REISS, BEHR,
POST & LESH, 1987- SIMON & PAIGE, 1979) deal with the question of how experts
(persons with a developed schema for a given task) and novices (persons with a
O 3 S
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schema lacking components and relations between components) can be distin-
guished. CHI & GLASER (1982) report that experts classified problems according to
structural relations within the text. They first de-alt with the problem components
and its relations in a qualitative manner and then tried to describe the compo-
nents and their relations in quantitative terms. Their knowledge about structural
relations enabled them to choose adequate procedures for a given task. In con-
trast, novices seemed to associate the solution with surface properties of the
problem. Often they concentrated on irrelevant properties which took additional
time or did not lead to the solution. Experts started on a top level and worked
down to the procedures (top-down approach). Novices started at a low level of
the problem and worked to the top by using known procedures until the solution
was found (bottom-up approach).

Thus experts and novices could be distinguished according to their starting point
and according to the direction of search for a solution. Experts as well as novices
used some kind of qualitative reasoning but experts used structural components
as a basis for qualitative reasoning, whereas novices used surface properties
which were chosen randomly-. All the studies emphasize that experts have better
problem representation because they make intensive use of qualitative reasoning’
about problem components and their relations (CH1, FELTOVICH & GLASER, 1981;
CHI & GLASER, 1982; CH1, GLASER & REES, 1983). The problem representation en-
ables the expert to determine when qualitative reasoning is adequate and when
quantitative reasoning is necessary. Novices, on the other hand, seem to search
for formulas, procedures, and equations in an algorithmic manner. They do not
take a long time to consider when certain formal structures are useful and which
results can be anticipated by using them.

Most of the studies cited deal with physics problems. We want to study the
effectiveness of qualit.ative reasoning within the context of a biological system.
SPADA, OPWIS & DONNEN (1985) have developed the fishing conflict game

(SPADA, OPWIS, DONNEN & ERNST, 1985; ERNST, 1988). This is a simulation of a
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fishing pond. When a fisherman harvests fish from the pool the number of fish
decreases. But at the same time the number of fish increases again because of nat-
ural propagation. The fisherman is faced with a dilemma: He wants to catch as
many fish as possible but in order to be able to have fish on a long term basis he
has to refrain from fishing too .much.

The propagation can be described by a nonlinear function (cf. the theoretical
function in table 2). If the fisherman does:not extract too many the increase of fish
by propagation is greater than the amount harvested. Therefore, the result is an
increase of fish in the pool. If the fisherman catches more than the natural in-
crease of fish within a given period of time then the number of fish in the pool
decreases. There is also a point of equilibrium where harvest and propagation are
the same. In this case the number of fish in the pool stays constant. This propa-
gation function has-to be recognized. by the subjects in order to reach the ecologi-
cal equilibrium. Qualitative reasoning should help in understanding- the propa-
gation function.

The fishing: conflict game has been used. for a number of different questions: The
social psychological.influence i a- game' with' a number of participants- (KNAPP,
1987a, 1988; REISS, 1988), the effect of a time lag' of propagation in reaction to
harvesting (KNAPP, 1987b). In the current. study we-also used: this experimental’
paradigm and focussed on the effect of experimen! , Induced quantitative and
qualitative reasoning on. the effectiveness: of system' control’ (control of the
harvest condition in the pool). It was hypothesized that the qualitative
experimental group would be most successful because it had to store only a
limited number of values in memory and could concentrate on the direction of
change (ELLIS & ASHBROOK, 1987; NEUMANN, 1985). It was expected that this
group had the clearest understanding for the propagation function (the increase
of fish depending on the number of fish in the pool). To a smaller extent we
should also find this kind of function concept in the quantitative experimental

group and less so in the control group.
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2 Method used in the study

The fishing conflict game was given to 79 university students. They took part in
the experiment to earn some money, performed the experiment as single per-
sons, started with 120 tons of fish in the pool, and had to indicate how many tons
of fish they wanted to withdraw from the pool. The experimenter then reported
how many tons of fish was in the pool the next season and the subjects again had
to indicate how many tons of fish they would fish. This went on for 25 trials.

In order to investigate our hypotheses experimentally we had to induce the two
kinds of reasoning. One experimental group had to focus its attention on qualita-
tive reasoning: On three different occasions during the game we presented the
following sentence:

“The less 1 take from the pool (1) the less the number of fish in the pool decreases

(2) the more the number of fish in the pool increases (3) neither of the two.”

Our subjects had to indicate which of the three choices was correct. It was not
important for us which of the three choices was preferred by the subjects, but the
fact that qualitative reasoning was induced by this question. In fact, none of the
three answers alone is correct. Depending on the subject's behavior in previous
trials both of the first two answers are simultaneously correct. It was our aim to
initiate qualitative reasoning by presenting this question.
The other experimental group received a text during the same three occasions in
the game, too:

With how many tons of fish in the pools does the biggest increase occur?

With ___ tons of fish in the pool.

How many tons of increase are there?

tons of increase.

Our procedure was guided by the following theoretical considerations (REISS,
1988): Quantitative predictions lead to the storage of previous predictions in
memory. Memory capacity is used to its limits. The memory load prevents am
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optimal performance in the game. There was a third group of subjects, the control
group, which took part in the game without any additional questions.

The three groups can be distinguished in respect to their performance in the fish-
ing conflict dilemma. More specifically, one could say that the group under the
qualitative condition is going to keep a greater amount of fish in the pool and to
harvest more. And the group under the quantitative condition is going to have

greater success than the control group.

3 Results

One can draw a graph for the two experimental and for the control group indicat-
ing how successful the subjects were in the game. Success was measured by the
sum of harvest and resource (tons of fish in the pool). In contrast to our hypothe-
sis the qualitative experimental group did not perform much different from the
other two groups. On the contrary, the quantitative experimental group per-

formed much better, there is a significant effect of this kind of induction.
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Table 1: Success in the fishing game (sum of harvest and resource) per trial
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There was definitely a difference in the function concept between the quantitative
and the other two groups. In order to analyze more clearly where this difference
comes from after the game we asked the subjects about the expected increase for a
given resource (propagation without interference by a fisherman). The results can

be seen in table 2.

a5

o Z

a0

\ O
- oa‘(ﬂ
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increase
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in tons control group
15 -0- qualitative group
ﬁ ‘M- quantitative group
10 O reaanns
-0- employed
5 theoretical function
a
0 t + + + —t
25 50 * 15 100 125 150

resource in tons

Table 2: Propagation function as used in the game (thcoretical function) and as estimated by
the three groups

It is evident that the control group and the qualitative experimental group con-
sidered the propagation function as a monotonically increasing function, i.e. they
thought the number of fish would not stop increasing the more fish there were
in the pool. In contrast, the quantitative experimental group estimated a propa-
gation function similar to the one underlying the game (the theoretical function).
The highest increase was at 100 tons but the increase did not reach 0 tons as soon
as expected.
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4 Discussion

Our hypothesis that the .qualitative experimental group would perform most
successfully in the fishing conflict game could .not be verified. The qualilative
experimental condition had no effect. The studies cited deal with qualitative
reasoning in physics or mathematics problems. GREENO (1973) emphasizes the
domain specificity of problem solving. This may have been one factor
influencing the results of our study. One could also argue that the experimental
condition was too weak; the subjects had to respond to one simple sentence. But
this argument \:;ould also apply to the quantitative experimental condition.
These subjects had to react to one simple sentence, too. But this sentence had its
effect. The qualitative condition might also not have been successful because the
sentence did not induce this kind of reasoning, whereas the quantitative condi-
tion fostered the understanding of the propagation function. It may have been
that the task was too easy to overload memory by storing numibers, so that-quan-
titative reasoning in this .case ‘was superior but not in general. Another experi-

ment is planned to test the influence of qualitative reasoning with another task.
P q g

References

Behr, M., Reiss, M., Harrel, G.,-Post, T. & Lesh, R. (1986). Qualitative proportional reasoning -
description of tasks and development of cognitive structures. ' L. Burton & C. Hoyles (Hrsg.),
Proceedings of the Tenth International Conference for the  ,chology of Mathematics Education
(S. 235-240). London: University of London.

Bobrow, ‘D.G. (1984). Qualitative reasoning about physical systems. Amsterdam: North-Holland
Publishing Co.

Briars, D. & Larkin, ].H. (1984). An integrated model of skill in solving elementary word problems.
Cognition and Instruction, 1, 245-296.

Chi, M.T.H,, Feltovich, P.J.,, & Glaser, R. (1981). Categorization and representation of physics prob-
lems by experts and novices. Cognitive Science,’5,121-152.

Chi, M.T.H. & Glaser, R. (1982). Final report: Knowledge and skill difference in novices and .experts
{Contract No. N00014-78-C-0375). Washington, DC: Office of Naval Research.

Chi, M.T.H., Glaser, R. & Rees, E. (1981). ‘Expertise in problem solving.'In RJ. Sternberg (Ed.),
Advances in the psychology of human intelligence (Vol. 1) (5.7-75). Hillsdale, NJ: Lawrence
Erlbaum.

deKleer J. & Brown, J.S. (1984). A qualitative physics based on confluences. Unpublished manu-
script, XEROX PARC, Intelligent Systems Laboratory, Palo Alto, CA.

Ellis, H:C. & Ashbrook, P.W. (1987). Research allocation model of the effects of depressed mood
states in memory. In K. Fiedler & J. Forgas (Eds.), Affect cognition and social behavior.
Gottingen, West Germany: Hogrefe.

Ernst, AM. (1988). FCG - cin System zur kognitiven: Modellierung cines ikologisch-sozialen Kon-
{Iikts (Forschungsbericht Nr. 52). Freiburg: Psychologisches Institut.

ERIC 143



E

142

Greeno, J.G. (1978). A study of problem solving. In R. Glaser (Ed.), Advances in instructional psy-
chology. Hillsdale: Lawrence Erlbaum.

Greeno, ).G. (1983). Conceptual entitics. In D. Gentner & A. Stevens (Eds.), Mental Models (pp- 227-
252). Hillsdale, N): Lawrence Erlbaum.

Hron, A. (1988). Analyse qualitativen Denkens beim Verstehen eines physikalischen Problems
(Forschungsbericht Nr. 50 des Deutschen Instituts fiir Fernstudien). Tabingen: Universitit
Tiibingen.

Knapp, A. (1987). Dic Modellwirkung von Opponentenstrategien auf dic Problemlgsefdhigkeit von
Probanden mit unterschiedlich induzierten Emotionen. Sprache & Kognition, 2, 72-78.

Knapp, A. (1988a). The impact of opponent's strategics on subjects’ performance in solving problems
in different moods. The German Journal of Psychology, 12, 63-65.

Knapp, A. (1988b). The interaction of task difficulty and mood intensity on performance in a resource
dilemima with a time delayed propagation function (Forschungsbericht Nr. 5 aus dem DFG-
Projekt "Emotionen und kognitive Prozesse”). Mainz: Psychologisches Institut der Johannes
Gutenberg-Universitit.

Larkin, J.H. (1983). The role of problem representation in physics. In D. Gentner & A. Stevens (Eds.),
Mental Models (pp. 75-97). Hillsdale, NJ: Erlbaum.

Neumann, O. (1985). Die Hypothese der begrenzten Kapazitit und dic Funktionen der Aufmerk-
samkeit. In Neumann, O. (Hrsg.) Perspektiven der Kognitionspsychologie (5.185-229). Berlin:
Springer.

Reiss, M. (1988). Der Einfluf von erwarteten Sozialbezichungen auf Strategien beim Problemlisen
(Forschungsbericht Nr. 7 aus dem DFG-Projekt "Emotionen und kognitive Prozesse”). Mainz:
Psychologisches Institut der Johannes Gutenberg-Universitét.

Reiss, M. (1989). Qualitative und quantitative Vorhersagen als Determinanten des Systemstcuerung
(Forschungsbericht Nr. 9 aus dem DFG-Projckt "Emotionen und kognitive Prozesse”). Mainz:
Psychologisches Institut der Johannes Gutenberg-Universitit.

Reiss, M., Behr, M., Post, T. & Lesh, R (1987). The assessment of cognitive structures in proportional
reasoning. In A.Bergeron & N. Herscovics (eds.), Proceedings of the Eleventh International
Conference for the Psychology of Mathematics Education (S. 310-316). Montréal: Universit¢ de
Montréal.

Simon, H. A. & Paige, J. M. (1979). Cognitive processes in solving algebra word problems. In H. A.
Simon (Ed.), Models of thought (pp. 201-244). New Haven, CT: Yale University Press.

Spada, H., Opwis, K. & Donnen, ). (1985). Die Allmende-Klemme: ein umwcltpsychologisches
soziales Dilemma (Forschungsbericht Nr. 22). Freiburg: Psychologisches Institut.

Spada, H., Opwis, K., Donnen, J., Schwiersch, M. & Ernst, A. (1987). Ecological knowledge:
acquisition and use in problem solving and in decision making. International Journal of Edu-
cational Research, 11, 665-685.

9. 144

RIC

Aruitoxt provided by Eic:



TRANSFER BETWEEN FUNCTION REPRESENTATIONS:
A COMPUTATIONAL MODEL

*
Baruch Schwarz and Tommy Dreyfus
Weizmann Institute of Science, Rehovot, Isracl

This paper describes a framework within which it is possible to build
computational models for problem solving processes in a function
currtculum. One such model is described in detail. It serves to measure
iransfer of information between function represeniations during a problem
solving process. The model has been used in a siudy with ninth graders
who were taught a funclion curriculum specifically designed to encourage
the use of methods from different representations tn an integraled
manner. While it was found that the compulational model does reflect
the cognitive aspects of transfer of information, it carries the risk of
isolating transfer from other, parallel cognitive processes.

Are computational models an szpropriuLc. rescarch tool for investigating cognitive
processes  in mathematics  cducation?  Although this methodological question s
legitimate, not cnough experience has been accumulated to date in order to discuss it
in full generality. Relevant work has been done by Anderson and his group (Anderson,
Boyle & Yost, 1985). They combined computer modelling and cognitive psychology in
order to design and construct intelligent tutoring systems. The aim of this paper is to
further contribute to the discussion of the above question by reporting on the use of a
computational model for studying transfer between ! .uon representations. In line
with this aim, the relationship between the methodological and the cognitive aspects

has been stressed rather than the actual cognitive results of the study.
Function representations

The concept  of function is usually introduced in scveral scttings, either
simultancously or in short successiof. The same function is represented by different
means in each of these scttings. The question then naturally arises whether students

establish appropriate links between the different representations of the same function.

Q anent address: Center for Technological Education, [lolon, Isracl
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tn o stndy with average ability ninth graders Markovits, Eylon and Brockheimer
(1986} found that alter stndying the relevant part of the enrricnlum, stndents had
diffienitics to find the algebraic rule for a functions given in Cartesian graph form and
vice versa.  (Algebra-to-graph was casier when the function was familiar, hoth
directions were equally difficnlt when it was unfamiliar.)  Typically, less than a third
of the students in the stndy were able to find the algebraic form of a linear function

given in Cartesian graph form.

Smith (1972) studied ninth graders with hi;.;h aptitude - in Tnathematics and high
mental ability, who were taught functions in arrow diagram and in algebraic rule
setting. e investigated whether they were able to solve standard excrcises, on which
they had shown competence in these settings, also in ordered pairs and Cartesian graph
settings. Me found that they performed well, better in the ordered pairs than in the
Cartesian graph setting.

Transfer

Both of thesc studics use the term “transfer” for students’ passage between
representations.  According to Gagné (1970), horizontal transfer is the process of taking
a concept from one sctting and applying the same concept in a dilfcrent setting.
Although both discussed studies are concerned  with the link between [unction
representations and both provide relevant and valuable results on students’ learning of
functions, neither study clearly defines what the transferred concepts arc. (Similar
claims can be made for other 'studies of transfer between function representations.)
Smith checks what is usually called transfer of learning: Does performance in one
setting imply performance in the other setting? In order for this to happen, something
must be transferred; it could be a mechanism, copied by analogy. Markovits et al.
look at the ability to translate, rather than transfer. In translation, it is even less
clcar what exactly is transferred. The method of observation used in the two studies,
was to compare student performances; this method is too coarse to allow a refined

study of what is transferred between function representations.

We propose to give a more restrictive, but precise definition of transfer. This
delinition applies' specifically to transfer between function representations during a
problem solving process. Suppose that while solving a given problem, a student works
successively in the representations Ry, Ro, -y Ry, Rk+1' ... . The work of the
student in Ry will be called stage k of his solution process and we will say that this
student used transfer at the transition from stage k to stage k41 il his work
throughout stage k+-1 takes into account all the information gathered during his work
in stages 1 through k. We stress that this definition is extremely restrictive since the
student will only be considered to have used transfer into representation Ry il he takes
into account all the information gathered ducing all his previous work on the problem
and il he does this at all times thronghont his work in Ry. We also stress that
transfer is here considered durrng a problem solving process. Thir is a signilicant type
&) '
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of trunsfer hecause it oceurs daring a natural process. It is also content related:  The
student who uses (ransfer knows how to mterpret information gleaned from previous

representations in the present representation.

We will now turn to the description of a framework which makes it possible to
measure in which representation a student works at any time, what information is
available to him from previous stages of his work, and whether he uses this

information.
The triple representation model

The triple representation model (TRM) is a computer environment which has been
designed as the core of a problem based functions curriculum (Schwarz & Bruckheimer,
1988).  Work with TRM is possible in onc of three modes: T(able), G(raph) or
A(lgebra); each mode corresponds to a functional representation. The link between the
representations is realized by operations named Read — Read A(lgebra), Read G(raph),
and Read T(able) — which allow the student to consult results previously obtained in

one mode while working in another.

The work within any mode is operational; that is, it is organized in operations
that the student has to perform. The most important operations are Scarch, Compute,
Draw, Plot, and Findimage. For the purpose of this paper, we will assume that a
function has been defined algebraically. The Search operation (Algebraic mode, AS)
then enables the student to check algebraic conditions for a large number of

equidistant values such as in

From a to b step 8: If f(x}>C then print (1)
where the student has to fix the lower bound a and the upper bound b of the search,
the step §, the type of comparison (>, <, = or #), and the goal value C. The

Search operation prints on the screen the values of x for which (1) is satisfied; the
values of f(x) can be printed as an option. The Compute operation (Algebraic mode,
AC) enables the student to compute automatically the value of a function for any
given element of the domain. The Draw operation (Graphical mode, GD) enables the
student to draw, magnify, stretch or shrink the graph of a function defined
algebraically. The Plot operation (Graphical mode, GP) allows the student to put the
cursor on any given point of the graph and read its coordinates. The Findimage
operation (Tabular mode, TF) enables the student to obtain the value of f(x}) in a
table by specifying the value of x. These operations will be denoted by their
abbreviations AS, AC, GD, GP, and TF.

The TRM has been designed with the intent to stress parallels between the
operations in the three representations, e.g.  AC, GP, and TF. It cnables the student
to use methods from different representations in conjunction during problem solving,
because they have been integrated to a large extent. A problem typically solved with
TRM is the Open Box problem:
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An open box is constructed by removing a small square from each corner

of a square tin sheet (20cm x 20cm) and folding up the sides. What is

the largest possible volume of such a box (to an accuracy of 1079y
For the solution of this problem the student is forced to use the algebraic
representation since the maximal accuracy in the tabular representation is 102 and the
maximal accuracy in the graphical representation is 103, Therefore, if he ever uses
another representation, he has to carry out at least one passage between representations

during the solution process.
The computational model for transfer

Although the computational model is conceivable within a much wider framework,
it will be described here within the solution process of the Open Box problem with
TRM. The aim of the computational model is to formalize the analysis needed to
decide whether a student has used transfer at the passage from stage k to stage k-+1.

This analysis will be based on the notion of solution domain. The solution domain
of a student at a given moment of the solution process is the interval within which an
expert would locate the solution, given that all information collected by the student
previously was available to the expert. The information available will be in form of a
set of number pairs (x,f{x)) which are known to belong to the function. These number
pairs may have been obtained directly through use of the AC, GP or TF operation or
they may have been printed by running an AS operation or they may have been read
from a graph obtained via GD. In the latter case, only pairs whose x-value is marked
on the scale of the x-axis will be taken into account. The solution domain can now
be computed formally as follows: Assume that n such number pairs are available, and
that after ordering them according to increasing value of x they are (x,f{x;)).
(x9.f(x9)), - (Xpf(xg)), -or (Xpf(x,))- Assume further that the index m gives the
maximum among these points, i.c. f(x,)<f(x} for all k, 1<k<n. Then the solution
domain will be the interval P=(x  _ ;X y). Slight an’ .ther obvious modifications
have to be made to this definition in some special cases: E. g., if m=1 or m=n, one
of the end-points of P will be infinite. Since the set of ordered pairs available alter a
given operation includes the set available before that operation the solution domain will

never increase during a solution process.

For determining whether transfer occurred at the passage from stage k to stage
k+1 the solution domain after the last operation of stage k is relevant, because it
contains all the information about the solution collected up to and including stage k.
Assume that this solution domain is the interval P=(a,b). Each operation at stage
k+1 will now be assigned a trensfer indezx + or — as follows: The operations AC,
GP, and TF use a single value of )3, the index will be + if this value of x is in P, —
otherwise. For the operations AS and GD, the student needs to specify an entire
interval (the interval to be scarched for AS and the domain to be graphed for GD); if,
for a given operation, this inteial igart of P, the transfer index of this operation
O w 4
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will be 4+, otherwise —.

We will say that a student has used transfer from stage k to

stage k+-1 if the transfer indices of all his operations at stage k-1 are positive.

As an ‘example consider a student who first defined a function algebraically, in the

domain 0<x<10, then drew its graph in the same domain, built a table of values for

some values of x, and finally used the Search operation to find a sufficiently precise

value of the maximum.

His work is illustrated in the following figure:

‘f x 3 3.5 3.1
1w N
y Z6806.00 591.50 =90. 3€
1
FROM z Yo S STEP 2.1
i —, \j
rd \\"\,‘
w / o IF £00 > 5%0
. / ‘\'\ X = 3.30
ki .. = 3.40
/ o o i
: —— —— = 2.5 (x)= 551.5
2 ' i ' 1 . ® coaLe 550,00 ot-se
The details of this student’s operations are given in the following table:
Operation Solution Transfer
Domain Index
1 AD f(x)=x(20—2x)2, 0<x<10 (0,10) *
2 GD 0<x<10, 0<y<1000 (2,4) +
3 TF f(3)=588 (2,4) +
1+ TF (3.5)=591.50 (3,4) +
5 TF f(3.1)=590.36 (3.1,4) +
6 AS From 2 to 5 step 0.1, if f(x)>590 (3.2,3.4) -
7 AS From 3.3 to 3.4 step 0.001, if f(x)>592 (3.332,3.334) +
§ AS From 3.332 to 3.334 step 0.0001, if f(x)>592.5925 (3.3332,3.3334) +

The student’s work thus comprised four stages:

Stage O (operation 1): Algebraic mode: Definition of the function.

Stage 1 {operation 2): Graphical mode: Graphing the function.

{
Stage 2 (operations 3, 4, 5): Tabular mode: Tabulating some values.
{

Stage 3 (operations 6, 7, 8): Algebraic mode: Secarching.

Q
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‘T'he solution domains in the table were computed, according to the above rule, from
the information the student received as a result of his actions. For example after
operation 5 (TF at 3.1) the following values were available: The values at f(0), f(1),
£(2), 1(3), f(4), £(5), £(6), 1(7), £(8), {(9), and [(10) from the graph and {(3), f(3.5), and
f(3.1) from the table of the function. Among these, {(3.5) is the largest. The solution
domain is now (3.1,4) becausc an expert can conclude that the maximum of the
function lics between the two known neighbors of 3.5: 3.1 and 4. (Note that when
drawing this conclusion, the expert makes some assumptions about the shape of the
curve; these assuinptions may be justified on the basis of the geometry of the problem
or on the basis of the algebraic form of the function). Similarly, operation 7 prints on
the screen all those among the 10! pairs (x,f(x)), x=3.300, 3.301, 3.302, .., 3.399,
3.400, for which f(x)>592. The maximal one among these is f(3.333)=592.5925..
Thus the solution domain after operation 7 is (3.332,3.334), the interval between the
two closest known neighbors of x  =3.333.

All but one of the student’s transfer indices are positive. For example, in
operation 5, which is part of stage 2, the student asks for tabulation of x=3.5, which
is in the interval P=(2,4), the final solution domain of siage 1. Similarly, the interval
3.332<x<3.334 of operation 7 (stage 3) is a sub-interval of P=(3.1,4), the final
solution domain of stage 2. The interval 2<x<5 of operation 6, however, is not
contained in P=(3.1,4); therefore the transfer index of operation 6 is negative.
According to the given definition of transfer, the example student used transfer at the
transition from stage O to stage 1 and at the transition from stage 1 to stage 2. He

did not usc transfer at the transition form stage 2 to stage 3.

Remark: The model which was actually used in the rescarch is somewhat more
complicated than the one described here. The main reason for this is that a student
using AS or GD in an interval that is slightly larger than P may well be using
transfer, because the choice of the interval is determined by cognitive style as well as
knowledge; for instance, if our example student hud '+ | the interval 3<x<4 in
operation 6, this operation would have been assigned a positive transfer index.

Experiment

The research reported here is part of a larger project for which three ninth grade
classes have been taught the TRM curriculum for about four months. The computer
environment was an integral part of the classroom activity; there was no separation
between ‘work with or without computer. Activity with the environment was
i '~minantly problem sslvir;g. Usually such activity was followed towards the end of
the class period by a teacher-led discussion. '

At the end of the instructional period all students (N=55) were given the box

problem, and their solution path was recorded in dribble files. Fifteen of the students

solved the problem in an interview situation with an experimenter present. Their
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activity was also recorded by the computer; in addition they were asked questions
which assessed why they used a particular operation, especially when this opcleOll was

used just after a passage to a new representation.
Results and discussion

All of the interviewed students solved the problem in either a single stage
(algebraic modc) or in four or five stages. We classified them into four categories:
1. Single stage students.
2. Students who used transfer at all transitions.
3. Students who used transfer at all but one transitions.
4. Other students.

The model thus cnabled us to classify students into those who used transfer of
information, and those who did not. This does not, however, imply anything about the
cognitive validity of the model. This cognitive validity was checked in two
independent ways. First, three experts werc asked to classify scveral students on the
basis of a summary version of the dribble files, into those who use transfer always,
often or not often. Second, students’ cognitive behavior was further investigated with
respect to their problem solving tactics. This was done by another index, the quality
indez. This index was also based on the solution domain and expressed the rate at
which the solution domain decreased. Strong correlations were found between students
who used transfer and those who had a high quality index, even if in some cases the
rapid convergence did not occur at the passage between representations but during
work within one representation. The interpretation of the results showed that transfer
of information alone is not. very valuable in a problem. solving situation. The
combination of both indices, however, was very useful in the assessments of students’
cognitive behavior. For instance, students who transferred well but showed moderate
convergence behavior were interpreted as using representations at a level of significants
and not at a level of signifiers. More specifically, these students, when solving a
problem, do not sce or use the representation of a function as a link to the unified
meaning  of a function (in the sense of unifying the meaning its different
representations).  In addition, interesting observations were obtained from the
interaction between the two indices: therc were students whose quality index improved
as a result of making successful transfer between representations. The cognitive
interpretation adopted in this case is that such students sce the unified meaning of

function through the lens of its diffcrent representations.

The detailed cognitive results obtained from the computational model will be
presented elsewhere. Briefly stated, it was possible to study students’ dynamic
understanding  of the function concept by examining the relationship between the
successive indices during the problem solving sessions. Also, mastery of the software
found its expression in the consistency of the indices. Accordingly, students who had
not mastered TRM as a tool had unstable indices and their data could thercfore not
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be interpreted.  In suminary, the discriminating power of the computational model was
prominent in the analysis of the interviews and led to insight about students’ cognitive

processes when solving problems about functions.

Conclusion

The computational model was found to reflect the cognitive aspects of transfer of
information. This may partly be due to the fact that building the model forced us to
think through the cognitive processes at a level of detail usually not attended to.
There are also disadvantages to computational models for cognitive processes. They are
connected to the same reasons as the advantages, namely to the level of detail
necessary. This level of detail leads to a separation of component cognitive processes
which in reality are closely connected. Models that deseribe such interconnections have
to be very sophisticated. Building computational models for cognitive processes may be
one way to make mathematics education a more scientific discipline, but we are still at

the very beginning of this undertaking.
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TEANSITION FFQM QRERATIONAL T0 STRUCTURAL CONCEPTION:
THE _NOTION OF FUNCTION REYISITED

Anna Sfard

The Hebrew Universitv of Jerusalem

The study repcrted in this paper is a continuation of cur
research on_ the role of algorithms in formation of mathematical
concepts ((53, (61). In (5) we suggested that many mathematical
notions can be ccnceived both aperationally (as processes) and
structurally (as abstract cbiects), and that in most cases the
operational concepticn is the first to develop. In the present
paper we take a closer lcck at the phenomencn of reification —-

converting-a process intc abstract object. Our theoretical €l3ims
are illustrated bv experimental findings regarding secondary-
school students’ understanding cf the concept of functicn. The
mxst impcrtant conclusion from the case studvy is that reification
is an intricate and difficult proccess which, at certain levels,
can be practicallv cut of reach for scme students.

When analvzing the oprocess cf learning mathematics, cne should be aware
of the crucial rcle plaved by such epistemclogical issues as students’
implicit beliefs abcut the nature of mathematics on  the whcole, and of
mathematical entities in particular.

In [53 and (6] it was suggested that the majority of mathematical notions
can be conceived in two fundamentallv different wavs: as static constructs
(structural ccncepticn) ¢r as processes ({(operational concention). For
example, functions can be regarded structurally as aggregates cf ordered
pairs, or operaticnally -- as certain computaticonal procedures. These two
approaches, ostensiblv inccmpatible (how can anvthing be a nrocéss and an
cbject at the same time?) are in fact complementarv. The idea of
complementarity is not new: in physics, entities at subatomic level must be
regarded beth as particles and as waves to enable a full description and
explanation of cobserved phenomena (see also [8)). Similarly, the ability of
seeing a function or a number both as a process and as an cbject seems to be
indispensable for solving advanced mathematical problems.

In the process of concent formation, the operational conception is
often the first tc develep. Out of it, the structural approcach would
gradually evelve. In (51 we argued that these claims apply to histcorical
development as well as to individual learning. Indeed. certain parts of
mathematics can be regarded as a kind of hierarchy, in which what is
conceived purelv cperaticnally at cne level should be conceived structurally
at a higher level. In ancther words. processes have to be converted intc
compact static wholes, or reified, to become basic units of a higher-level
theory.

Two important didactic principles can be inferred from the above claims.

Q :
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PRINCIPLE I: The opropesed medel of concept formation implies that it

would be of little or nc avail to introduce a new mathematical noticn by

means of its structural descriotion. The structural approcach is much mcre

abstract than the cperaticnal: in order to speak about mathematical obijects
one must be able te focus on input-cutput relations ignoring the intervening
transformations. Thus, to expect that the student would wunderstand a
structural definition without some oprevious experience with wunderlving
proccesses seems as unreascnable as hooing that he or she would comorehend
the twc-dimensiocnal scheme of cube without being acguainted with its "real
life" 3-D model. In the classroom, therefore, the cperaticnal apprcach
should precede the structural. Some well-known difficulties cbserved in
secondary-schools mav be due to the common practice of reversing this crder.

FRINCIPLE 1I: Structural apprcach shculd not be assumed untill an_actual

step was made tcward a higher-level theorv, {for which this apprcach is

indispensable. Indeed. tc out up with the ‘“existence" of a new kind of
intangible mathematical cobiects, the student must be highly mctivated. The
required effort of mind would orcbably not be made until the coeraticnal
approach praoves insufficient and reification of the given process beccmes a
necessary condition for further learning. Such a situation arises cnly when
some higher-level processes are operformed on the conceot in auesticn. For
example, as leng as the ncotion of functicn aoPears nowhere but in the
context of basic calculus, the student can do quite well with cperational
conception of function aleone., Converting computaticonal processes repgarded as
functions intoc cobjects becomes necessary only when the perscn comes across
prablems in  which several functions have tc be manipulated simultanecusly,
so that each one of them must be treated as self-contained static whele.
Such treatment of functions 1is peculiar to many branches of modern
mathematics, functional analysis, tcpolegy, and fore scgic among them.

The above two reguirements should be understocd as necessary conditions
for reification (which means that if they are not fulfilled, the reificaticn
is rather wunlikelv). Whether thev are also sufficient, namely, whether thevy
actually help 1in transition from cperaticnal to structural conception. was
the main question addressed in the study which will be reocrted now. In this
research we revisited the concent of function, cur first investigation of
which was oresented in [S1].

The Dreseﬁt studv was carried out in the Centre for Pre-academic Studies
(Hebrew University), amocng 22-25 vyears old particioants of a reagular
course on elementary mathematiés (secondarv-schcol level)., Our first steo
was tco collect as much infermaticn as pcssible about the conceoticns which

develco in  students when orincinles I and 1II are not observed. In this
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report, our cwn findings, coming frem classrcom cbservaticns and from a
special guesticnnaire on functiens. will be combined with the results
obtained by several cther researchers. At the second stage of the study. the
concept of function was taught to a grouo of students bv an experimental
method based on our two orinciples. The results obtained in the experimental

group were then compared to the backaround findings.

WHAT HAPPENS WHEN THE CONCEPT OF FUNCTION IS TAUGHT STRUCTURALLY

Being one of the central ideas of modern mathematics. the conceot of
functicn is given much attention all across the secondarv-schaal curricula.
In most cases. however. the wav it is taught contradicts eur model of
cenceot acquisition. Indeed. to put it inte Malik's werds ([4). p.189).
"function ceurse ([is wusuallv] laced with cet-thecretic notations® (which
almest alwavs means that our first princiole is not chserved). while "the
necessitv of teaching the modern definition of function at schocl level is
not at all ocbvicus" (so the second orinciole is viclated either). It is in
line with our former claims. therefcre. that the qeneral agreement about the
importance of the cenceot of function is accompanied bv another consensus
(€13, (32, [4). (53, [63. C73. (91): in a class. the exact meaning cof thic
ostensibly innccent notion invariablvy turns cut to be surorisingly elusive
and oroblematic.

t. Our former studies ([5]. [61) showed that in spite cf the “cbiect-

criented" wav of teaching, the fully +fledaed structural conceotion of

function is rather rare in high-school students. In our oresent investiga-

tion seme new findings reinforced this conclusion. Firstly, in resocnse tc
the first item in the ouestxonnalre presented in the box below, only 19% of
the pupils (see "control uroup") agreed that funct -~ is a static construct
composed of (infinitely many) parts. Secondly, the student’'s inabilitv tc
consclidate multitude of cordered pairs inte one entity could be resocnsible
for the difficulties cbserved in the classrocm when oroblems involviﬁg sets
of functions were dealt with. For examole. when faced with functicnal
equations (such as f(x+y) = fx)+f(v)), the students usuallv were confused
as to the nature and the number of the saluticns. It is also worth
menticning that the oupils had some serious difficulty with the set-
thecretic notions underling the structural version of the concept of
functien. The student’s conceotion c¢f abstract entities such as domain,
range, image and pre-image was;usually sc fuzzy, that general confusion was
the most cemmon reacticn to oroblems reauiring identification of the

different components cf a given function. Several phenomena presented in
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other papers f(e.q. students® inattenticn tc domain when comparing twa
functicns. [41. cor some opersistent mistakes in svmbelic representation cf
cets. [71) indicate the same problem: thev show that verv often the learner
can not distinguish between sets and their members. It is probably the
student’'s inability of "seeing" even these basic entities as fully f{ledged
objects, which makes such distinctions guite meaningless.

2. We shall argue now that the main difficulty with the structural
definition c¢f function stems not so much from what is actuallv included in
it, as from what is missing. Indeed, in spite of the fact that in the
definitien no mathematical operations are mentioned. the responses to cur
first guestion (see box) indicate that coverwhelming majoritv of pupils (81%)
associate functicons with cemputational processes. We can conclude.
therefcre. that contrarv te the curricula designers’ intenticns the

student’'s concepticn of function is clcser to ooerétional than _tc

structural. Other studies abound in additienal evidence. Vinner and Drevfus,
[9], emphasize the importance of the operational aspect by saving that
accerding to the student: “"ene has to do something te x in order to cbtain

the corresponding y". In our own former investigation ([61), some students
refused tc apply the adjectives “"egual" and “the same" te a couple of
functicns which assumed identical values but were defined by different
computational processes. "General difficulty ... with the constant functien®
({41. p.24; [71) may be interpreted as an evidence for the pupil ‘s implicit
belief that in crder tc speak about function, a change in the independent
variable must be folleowed bv a change in the dependent variable. It is
interesting te note that the dynamical dimensien of the concept was
emphasized in a similar wav by Euler: according to him, "a quantity" shcould
be called function cnly if it depends on other auantity "in such a way that
if the latter is changed the former underq&es changes itself" (17535, [2]).
The historical analogy will go even further if we analvze students’
beliefs about the nature of the computational processes falling intc the
categorv of functicns. In the respense to our second Guestion (see box), 947
of the opupils evaluated as true at least one of the following statements:
"Everv functicn expresses certain regularity". “Evervy function can be
expressed by a certain computational formula®. For all their fuzziness,
these descripticns come strikingly clese to the (eaually inaccurate)
"definitions" of functicn used by mathematicians for nearlv a century (since
Euler and his “analvtical expression" (1748) until Dirichlet’s rebellicn
against the "algo}ithmic" approach (1837): see {21). Moreover. the student’s
responses tc the item A in auesticen 3 (see also {41, {71, {9]) show that,
like many mathematicians before them. the todav’'s students can nct put up
O
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THE BUESTIONNAIRE o
1. Which cne of the following sentences is, in vour opinicn, a better
description of the conceof of function?
A. Function is a computational process which produces some value of
cne variable (v) fram anv given value ¢f ancther variable (x).
B. Functicn is a kind of (possibly infinite) table in which to each
value of one variable corresponds a certain value of another var.
2. True or false?
A. Everv function expresses a certain regularity (the values of x
and y can not be matched in a completely arbitrary manner).
B. Everv function can be expressed by a certain computaticonal
formula (e.?. Y=2x+1 or v=3sin(mn+x)),
3. Which of the following propositions describe functions?
{» and v are natural numbers)
A. If x is an even number then v = 2x+5:
Otherwise (x is an cdd number) y = 1-
BE. If x=0 then v=3,
I x>0 then tc find the corresoonding value of v we add 2 to the
the value of v corresoonding to x-1.
C. For everv value of x we choose the corresocending value of v in an
arbitrary way (e.g. by throwing a dice). .

RESULTS control exoer.
N=48 N=28
1. perc. of s°s who chose item A 81 30
perc. of s's who chose item B 19 30
2. perc. of s's whose ans. to A % B were
ves, ves 46 36
ves, no 26 18
no. ves 21 3
ne. no [ 43
3. perc. of s's who said it was function
item A 50 93
item B 73 93
item C 17 S50

with the so called "split domain® functicns. This attitude is reminiscent of
the cpinion exoressed by d’'Alembert in his response to the Euler ‘s idea of
"discontinucus" function (by "discontinuous® Euler meant a functicn given by
different analytic expressien in various parts of its domain). Finally, cur
respondents’ almost univocal rejection of the "arbitrarily" defined function
(item C) brings to mind the long and heated historical dispute aver the
Dirichlet’'s definition ([2], [31).

3. In the light of our own findings combined with those of other
researchers, the pupil’'s tendencv tc associate functions with algebraic
formulae seems tc be strong and common enocugh to deserve special attention.
Although this tendency can be indicative of operational conception (the
student may perceive a formula as a short descriotion of a computaticnal
algorithm) as well as of a structural (the formula mav be interpreted as a
static relation between ordered pairs), sometimes it is probably neither

this nor that. Such tendency mav signalize a "mutilated". quasi-structural

conception, the deficiency of which would come to light in ﬁany different
contexts. Indeed, unlike Euler, for whom the "analytic expression” was cne
cf twe possible manifestations of an independent abstract entity (a curve
was the other one), the today’s student often seems to regard a formula as a

thing in itself, not standing for anything else. This appears toc be the most
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plausible explanation for such well-known phencomena as the students’

inabilitv to build ‘{ reasgnable bridge between algebraic and araphic
representations of functions ({11), or the common tendencv to interpret
functicnal equalities as nothing but a preduct of svmbol manipulaticons
(6.

Both operational and quasi-structural conceptions are deviations from the
official "structural" approach. But while the former is a healthy, natural
stage in concept development. the latter should be regarded as
unsatisfacterv and potentially harmful. It seems. however, that the
aquasi-structural ceonceoticns can hardlv be avcided within the usual
structural wav of teaching., The data summarized above confirm that the idea
of the set of ordered pairs, when introduced tco early. is dcomed to remain
bevand the comorehension of manv students. In such case. the cbiect-criented
language used by the teacher forces the pupil to look for a maore tangible
entity which may serve as a reasonable substitute. Being the most natural
choice, an algebraic expression turns into the thing it was cnlv meant to

svymbolize (in a different context the same would haopen to a graph, £91),
«++ AND WHAT HAPFENS WHEN THE OPERATIONAL APPROACH IS APPLIED

In the exneriment performed at the second stage of pur study, the concept
of function was taught to $ group of students as a part of a course on
algorithms and comoutability. This time the approach was cperaticnal, namely
the principles I and II were faithfully observed. The space limitations
prevent us from giving the full description of the teaching material, sc we
shall confine curselves tc scme general remarks.

The course (60 teaching heurs) was devoted to the idea of algerithm and
the cencept of function was introduced as a - 5 for dealing with the
semantics of alghorithmic languages. At that time the notion was almost
completely new to all our students.

According to principle I, the operational appreoach was the first tc be
applied. Initiallv, the term "function" was used almost syncnymcusly with
algerithm, and then explained as being a name for "the oroduct” of an
alqorithm. Although it was described also in structural terms (as "the set
of all input-cutput pairs"), our first structural definition onlv emphasized
the ccnnection between functions and computational processes.

Principle Il was imnlementeg as well: the structural aporcach had ncot
been given much attenticn until it became truly necessarv. The first attempt
at separating funcfions from algorithms was made only after the set of the

already known algerithms and the resulting set of functions were brcadened
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several times, to¢ include recursive and “"split dcmain” calculations, amcng
cthers. Different methods of censtructing functions from cther functicns (by
compesitien, by recursion or bv minimization) were discussed. thus the view
of functien as a self-contained entitv which can serve as a building bleock
for ather entities was graduallv premcated. For représenting functicns, the
usual algebraic notation was used and the students exercised translating
explicit and recursive expressions intc comouter programs, and vice versa,

The "inout-cutput" descripticn of function was replaced by the abstract
Bourbaki's definiticn only after a long pericd during which the student’s
attention was fccused on the static ‘“oroducts® of different algorithms
rather than con the algorithms themselves. This final qeneralization led ta
the aquestion cof existence ¢f a noncomputable (not “algorithmic") function,
This last problem was expected tc be the ultimate trigger for'feification
Indeed, without the fully fledoged structural conceotion. the oroblem was
docmed to remain meaningless (tc a person who identifies functicns with
algorithmic processes, the idea of noncomoutable functicn must be as absurd,
as the noticn ¢f a circle which is not round).

Classrocm observaticnsg were carried cout during the entire course.

Initially, almest all the ophencmena described in the former section as
indicative of cperaticnal concention ceuld be witnessed again (not
surprisingly sc, since at the early stages of learning the cperaticnal
cenception was deliberately fostered). The first attemots at transiticn to
the structural approach were met with resistance and lack cf understanding:
many students cculd not cope either with sets of functicns or with general
definitions of operatioﬁs nerformedron fuﬁctions. The dif;iculty diminished
with time but it did not disappeared completely. When the students were
asked to aescribe the set cof the recursive functions (the definiticn of
which had been taught and discussed before), almcst half of the groun gave
faulty answers, indicating a difficulty with treating functicns as building
blecks for other functicns. Not surorisingly, the idea of noncomoutable
function, when menticned explicitly, eveked astcnishment and opposition.

Our ouesticnnaire cn function was administered to the participants at the

end of the course. Althcugh many answers still indicated cperational rather
then structural conception, the results (see box, "experimental arcoup") did
show a substantial preogress toward the latter, at least in ccmparison to the
centrel group. Morecver, even thcugh the structural approach was not fully
adopted by the students, we have geaed reasons to believe that the danger of
“mutilated" concepticns considerably diminished. Indeed, judging from the
answers te the third questicon, there were cnly few students left whe would

still regard a term “function" as svnonvmous with "formula" or "epuation®,
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DISCUSSTON AND CONCLUSIONS

Judging from our results. acperational aporcach does stimulate
reification, at least to some deqree. Soecial attention shcould be agiven,
however, tc¢ the fact that for all the progress made by the students, cur
attempt to promote the structural concepticn can not be regarded as fully
successful. This result mav be much more significant than all the cthers.

One may claim. of course. that it was some deficiencv of the teaching
methad which interfered with cur cbiectives. thus limiting our success. Even
if partiallv true. this explanation does not seem tco tell all the sterv. The
gap between the efforts invested and the orcoaress made is s¢ big, it promots
us to risk another conjecture, according to which reification is inherently
so difficult that there mav be students for whom the structural concepticn
will remain practicallv cut of reach whatever the teaching methcd.

Apart from the ample emoirical evidence, there are some theoretical
consideraticons pointing in  this directien. Cleoser look at the precess of
reification reveals that it mav lead to a osychological vicious circle -- an
cbstacle which seems almost unavoidable. and for manv pecole would remain
insurmountable. Indeed, according to our former argumentaticn (princiole
IT). reificaticn of a concept would neot occcur until scme quher-level
ocperaticns tc be operformed at this concept are introduced; on the other
hand, conceiving a concept as an object seems to be prereauisite for dealing
(meaningfully) with such higher-level operations. To cacpe with these
apparently incompatible reauirements. cone must be able to crchestrate the
lower-level reification with the higher-level manipulations in a subtle,
painless manner. Judging from our results., this ability seems to be rather
rare. Such histerical examples as the turbulent -~torv of the concept of
function and the three century long dispute «... the elusive noticns of
negative and complex numbers show that breaking the vicious circle of
reificaticn can be aquite difficult even for mathematicians,
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Supercaleulators and Research on Learning
Richard Shumway
Ohio State University, Columbus, OH

Centro de Investigacion en Matemiticas, Guanajuato, México

The new technology of hand-held graphics computers with symbol
manipulation capabilities (supercalculators) can have a significant impact on
the learning research in.mathematics education. Technological impacts on
curricula often take 10 years (Burkhardr, | 986). However, mathematics
learning researchers can respond more quickly to the capabilities of
supercalculators. The purpose is to a) describe the capabilities of hand-held
graphics computers; b) argue for the expansion, initiation, and elimination of
various rescarch arcas; and, c) suggest directions Sfor possible future efforts.
The remarks, although founded in research on learning, are inductive,

specudative, and invite comment and debate.

Capabilities. Reading reports regarding machines such as the Hewleut Packard HP-28S
(e.g.. Hewlett Packard, 1988; Michel, 1987, 1988; Nievergeldt, 1987; Tucker, 1987,.1988; Wicks,
1988), or supercalculators (a la Tucker, 1988), lead one to conclude enormous changes in both
fundamental school mathematics topics and fundamental ways of doing mathematics are upon us.

Before examining the impact such changes may have on leaming research, consider a few
examples of the capabllmes of the supercalculators. Some smg]e—key—str.oke capabilities of a
"personalized” machine include: a) two dimensional graphs and zooms; b) vector and matrix
computations; ¢) numerical equation solving; d) symbolic manipulation commands and tests; and e)
structured programs in RPL (Reverse Polish Lisp) or FORTH-, PASCAL~, BASIC—, or LISP-like
languages.

With the help of a few references, single-key-stroke capabilities of a "personalizeci" machine
also include: f) symbolic differentiation and simplification (Wicks, 1988); g) keys labeled, say
SARX, that, given a function and an interval, return the proper integral for surface area of the solid
of revolution about the x-axis set up in symbolic form, together with the numerical value for the
surface area to the nearest 0.01; h) keys labeled PDIV or PROOT that give, respectively, the
symbolic result of the division of two polynomials or the algebraically computed real and complex
roots of up to a fourth degree polynomial (Hewlett Packard, 1988); i) CEQN gives the characteristic
equation of a matrix (Wicks, 1988); or j) symbolic and numeric solutions to classes of differential

O

Ta o s

Aruitoxt provided by Eic:



E

KTC 162

160
equations and curve fitting routines (Hewlett Packard, 1988).

Mathematics texts that place major emphasis on numeric or symbolic computations with, say,
numbers (including complex numbers), graphs, polynomials, vectors, matrices, derivatives,
integrals, Taylor §cﬁcs, trigonometric identities, or zeros of functions, are essentially measures of
supercalulator capabilities, not student leaming. Random samples of exercises from textbooks used
for K~14 mathematics in the United States reveal few exercises that should remain with
supercalculators in the hands of tcachers and students. Perhaps as much as 90% of the excrcises and
explanations should be removed.

Since the early 1950s, numerical compitations, structured programming, and symbolic
manipulations have been available on computers (Hamming, 1980). Mathematicians have called for
mathematical programming (Kemeny, 1966) and computer mathematics systems (Birkhoff, 1972) in
mathematics courses for some time. Today, the addition of user—friendly, graphics capabilities and
the psychological impact of a hand-held, personal carrier of mathematical ideas (a supercalculator)

make curricular changes mandatory (Steen, 1988).

Changes in Learning Research. Past learning research has made progress in many areas.
Research based in concepts and problem solving may be the most robust with regard to technological
advances such a supercalculators. One may be tempted 10 conclude research on leaming with
computers would be some of the most useful research for drawing inferences about leaming
mathematics with supercalculators. However, there is an order of magnitude difference between
former uses of computers and the new supercalculators.

Supercalculators are designed and ready to carry out computations with a single keystroke,
whereas, former uses of computers required significant exchanges of data and coding for similar
computations. Supercalculators are designed to be personal tools to be used regularly and in almost
any setting, whereas, former uses of computers required infrequent, shared use in special settings.
Supercalculators are designed 1o allow special tailoring of key commands for personal mathematical
needs, whereas, former uses of computers involved general procedures and programs designed for
general use by many users. Supercalculators are designed to be symbolic, personal carriers of
mathematics, yvhcrcas fo}mcr uses of computers, while capable of dramatic symbol manipulation
(e.g.. MACSYMA), were, nevertheless, designed for general mathematics users, and not as

individual, personal carriers of mathematics. The supercalculator represents a substantial extension

.

Aruitoxt provided by Eic:



E

of human capabilities in mathematics.

Few mathematics leaming researchers would consider conducting research with subjects
without devices for recording mathematical communications. In the past, these devices have
involved written symbolic communication, verbal (and nonverbal) communication, spatial
communication, and the manipulation of devices in which mathematical ideas have been embedded.
The supercalculator enhances all of these forms 6f communication.

Pollak, in prophetic articles about calculators and computers (Pollak, 1977, 1982), noted
substantial changes were needed in two partial orderings of the curriculum (i.e., those based on
mathematical prerequisites and those based on social importance) and that fundamental changes were
needed in the curriculum. Leaming research must face equally dramatic: a) expansion of certain
research areas, b) initiation of new research areas, and c¢) the elimination or deemphasis of other
research areas.

Expansion. Leaming research which can be expanded and modified to reflect supercalculators
centers about the use and meaning of variables, computer coding to define and relate mathematical
concepts and principles, representational systems, and cognitive development.

Significant work has been done on the meaning of variable (e.g., Chomsky, 1988; Clement,
Lockhead, & Soloway, 1982; Dubinsky, Elterman, & Gong, 1988; Kiichemann, 1981; Krutetskii,
1976; Oprea, 1988; Shumway, 1989; Wagner, 1981) with children ranging from age 5 to age 20.
However promising this work has been, we need to extend the universe of the concept of variable 10

i include variables defined over objects such as: real numbers, complex numbers, strings, vectors, real
arrays, complex arrays, lists, global names, local names, programs, algebraic objects, and binary
integer numbers. Supercalculators take a unified approach to these objects; calculator operations
apply whenever meaningful, and all such objects can be inputs to programs, including programs
themselves. Consequently there are dramatic, mathematical gcncraiizations of the meaning of variable
available on supercalculators. Systematically exploration of the development of such generalized
concepts of variable is needed.

Computer coding and its impact on mathematics leaming has been studied and seems to be most
related to concept development and problem solving (e.g.. Blume & Schoen, 1988; Suydam, 1986).
Arguments regarding relative merits of computer languages are often made on the basis of structured
programming, recursion, global and local variables, graphics, and the ease of naming and writing

procedures.  Supercalculators offering flexibility of programming such as graphics, procedures,
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lists, symbolic manipulation and recursion can put to rest many arguments. Computer coding on a
supercalculator becomes much more procedure-oriented and seems to encourage those programming
habits most admired by computer scientists and mathematicians. Again, the personalization of the
supercalculator seems to be an important psychological factor. Computer programs are coded and
then executed by a single keystroke. They become a part of the supercalculator capabilities and are
always available. Algorithm design becomes highly personal but also very important for repeated
application by the author. Systematic study of the impact of such availability of authored programs
for use, modification, and refinement is nceded. .

Representational systems have gained deserved attention (e.g., Janvier, 1986) and many
interests of this line of research are directly applicable to supercalculators as supercalculators provide
access to many of the representational systems being studied. One can only endorse continued
efforts in representational systems and encourage their investigation on supercalculators.

Cognitive development research needs to direct some long-term efforts towards study of
fundamental concepts of mathematics, their representations, and their development in children in the
context of supercalculators as a regular tool for exploring mathematics. The advantages for the
supercalculator for such efforts are cost, size, personalizaiion. and generalized mathematical power
provided for subjects.

Initiation. Teaching experiments and clinical studies exploring supercalculator representations
of many important concepts of mathematics rarely studied with young subjects (ages 3-20) are
needed. Research has begun with efforts such as Dick's project to revise and test calculus materials
designed for students using supercalculators building on prior experiences with younger subjects
(Dick & Shaughnessy, 1988) and Michel's year-long teaching cvperiment with 15 year-olds
studying mathematics, physics, and science for 13 hours per week using supercalculators (Michel,
1988). Significant study of generalized variables, complex variables, matrix representations,
differentiation, integration, probability distributions, zeros of functions, Taylor series, computer
arithmetic, and theorems such as those of De Moivre, Bolzano, Galois, Euler, Gauss, Cauchy, and
Godel are called for by some and the concept of proof is consider basic mathematics (Shumway, in
press). Estimation concepts must be developed for algebraic computations as well as numeric
computations. Further identification and exploration of fundamental mathematics is needed.

Elimination. Most analyses of tﬁe i;‘npact of calculators and computers call for a deemphasis of

many traditional computational skills (e.g., Pollak, 1982). Learning research that involves skill
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development associated with graphing, solving simultancous equations, finding roots of functions
(e.g.. factoring or simplifying), polynomial arithmetic, differentiation, integration, matrix arithmetic,
differential equations, characteristic equations of matrices, and hypothesis testing without the use or
knowledge of supercalculators should be terminated. Substantial collections of research efforts have

become moot because of supercalculator capabilities.

Directions for Future Work. Researchers themselves must use supercalculators to do
mathematics. High priorities are the required use of supercalculators for all mathematics, the
treatment of concepts and proofs as basic mathematics, the earlier, deeper treatment of fundamental
conceptual learning, and the deemphasis of many forms of skill learning. Philosophical analyses
leads one to such conclusions. Researchers must raise questions, study the associated implications,

study feasibilities, identify limitations, and agitate for change based on research and best wisdom.

Discussion. Require supercalculators for all mathematics? One could argue there must
certainly be times when one might not want to require the use a supercalculator. Perhaps, but the
more likely error is to use the "when appropriate phrase” to fail to explore less obvious but
appropriate uses. In fact, it may be impossible to find a mathematical situation for which no
supercalculator activity would be appropriate.

Concepts and proofs are basic mathematics because, relieved of the computational burdens,
conceptual understanding and proofs of the correctness of results are the remaining essential
elements of doing mathematics.

Deeper treatment of fundamental conceptual leaming is necessary for effective use of
supercalculators. History suggests, when computational power is increased, mathematical
understandings are ultimately increased as well.

Deemphasis of many forms of skill learning once thought to be essential for mathematical
development seem important and likely. Researchers must test the premise that supercalculator
computations will produce the number sense and symbolic intuitions thought to develop from
computations.

Finally, researchers are obligated to lead, offer evidence, and help make best—evidence

decisions.

O
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HOW & WHEN ATTITUDES TOWARDS MATHEMATICS & INFINITY
'BECOME CONSTITUTED INTO OBSTACLES IN STUDENTS?

Anna Sierpinska, Polish Academy of Sciences

Monika Viwegier, Warsaw University

Summany. 1t wan conjectuned in Stenpinaka (1987 that aounces
of epiatemological vbataclen nelated to Limita can be found
in atudenta’ attitudes towands mathematica and (nfinity. The
aim of the present neseanch ia to undenatand conditions in
which aome children’s conceptionn of infinity and (implicit/
philonrophien of mathematica become conatituted into obatacles
an the childnen develop from the concnete to the {onmal opena-
tional atagea. The nereanch has only juat atanted. In thia
papen we exhibit behavional & conceptual diffenences between
two ginda (Agnea, 10 & Mantha, t4) € we formulate some hypo-
thesea aa to the above mentioned conditiona.

In the sequel we shall use the following abbreviations: "M" - ma thema-
tics, "INF" - infinity, "EO" - epistemological obstacle.
I.- INTRODUCTION

1.— Genesis of research. It was conjectured in Sierpinska (1987)

that sources of EO related to limits in 16-17 years old students may lie
in their attitudes towards M and INF.

2.- Aims of research. We were interested to know when & how, in
the course of their development, students come to construct these obstacles,
i.e. in what conditions students' conceptions of INF and attitudes twrds M
start functioning as EO (cf. Sierpinska, 1989).

3.- General assumptions. We have assumed that this happens sometime

in the transition period from the concrete tv ..o formal operational stages
and taken children between 10 and 14 years of age. We assumed it highly im-
probable that any attitude twrds M as scientific knowledge develops in youn-
ger children. As far as conceptions of INF are concerned, Piaget & Inhelder
(1948) & Fischbein et al. (1979) conclude that at concrete operationél stage
children are unable toqunderstand, e.g. the infinite nature of continuous
divisions of a geometrical figure. This does not mean, however, that they

do not develop some less sophisticated conceptions of INF such as "very

big, undetermined number" (which may well occur in much older students, too:
cf. Sierpinska, 1988). 3

4.- Methods of research. The mathematical context we used in our

interviews is that of equipotent sets: we have studied children's reactions
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to our attempts to make them accept the condition of existance of a 1-1- cor-
respondence between clements of two infinite sets as a criterion of their
having "as many" elements. We did not use the term "equipotent sets”. The
Polish term for it refers to ™counting” and "number". We wantéd to avoid
the suggestion that “therc are as many elements in set A as in set B if num-
bers of their elements are equal". The Polish expression for "as many" (which
is not distinguished from "as much") - "tyle samo" - can better be translatea
with the French expression "autant que".

Why this context of equipotent sets? The 1-1 correspondence criterion
is known for its being used by Galileo to solve the paradox of natural & e-
ven numbers. It was proposed by Bolzano (1851) to deal with infinite sets,
and Dedekind based on it his definition of an infinite set (1888). It further
became the corner stone of Cantor's Mengenlehre. The notions of equipotent
sets and cardinal number have shown to be elegant solutions to many paradoxes
and problems in M. But the choice to extend the notion of number in this
way testifies for the change in mathematicians' attitudes twrds M the XIXth
century was witness of. INF has a rich meaning outside M: it is a part of our
culture, of our beéliefs concerning the structure of matter, size of Universe,
time ... (cf. Sierpinska, 1989). Now, one éannot accept this notion be redu-
ced to the 1-1 - correspondence criterion without coming to think that,
maybe, M is not a discipline describing some kind of reality (be it the
reality of our thoughts). To use this criterion with consequence one has to
be able to reason against one's intuitions, discoursively and formally,
and to accept it.

Certain befiefs about INF and certain attitudes twrds M can, therefore,
function as obstacles against a ready and unproblematic acceptance of the
1-1 - correspondence criterion for comparison of infinite sets.

If the criterion is accepted without difficulty and used consistently
in comparing sets then, of course, it is possible that these obstacles are
overcome. However, this is little probable in 10 or even 14 years old child-
ren: Rather, this may mean that those obstacles have not been constructed yet
and children perform deductive reasoning in much the same way they observe
rules while playing games.

And this is how we come to our working hypothesis: let us observe in
what conditions the 1-1 - correspondence criterion ceases to be acceptable
for children.

We shall study in detail individual histories of children during the

experience, looking for reasons of changes or stagnation in their conceptions

and trying to pick up behavioral as well as conceptual differences hetween
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children of different age.

The rescarch has only just started and all we are able to give here
is presentation of some bchavioral and conceptual differences between two
girls (Agnés, 10 & Martha, 14) and formulation of some hypotheses.

II.- ORGANISATION OF THE EXPERIENCE

There were 4 sessions, each with 4 children of one age group: 10, 11,
12, 14. The 4 children in each group were divided into 2 subgroups of 2 and
there were 2 subsessions in each session.

In the first subsession, one subgroup of 2 children was interviewed by
us; in the second, these two were asked to interview the other two children.

Here are more details on the first subsession. There were several steps
in it:
Step 1. Interviewers suggest the following definition: two sets have as
many elements one as the other if their elements can be paired off, that is,
if every element from the first of these sets has a pair in the second,
and every element from the second has a pair in the first. The suggestion is
made by using collections of green and yellow counters and asking: " how
can we check that there are as many green as yellow counters?". We start
with small collections and go on to larger and larger stopping whenever the
children propose to pair off (cf. Brousseau, 1977). Then we negotiate the
definition.
Step 2. Children are shown a drawing like: 2 , and asked: "would you
agree with us that if two segments are of equal length then there are as
many points in one of them as there are in the other?".
Step 3. "Are there as many points in one as there are in the other of such
two lines?": 2

Step 4. The same question with:

Step 5. The same question with:
Step 6. "Are there as many natural numbers as there are even numbers?"

Step 7. "What do you think INF is? How do you imagine it?"
III.- COMPARISON OF AGNES (10) & MARTHA (14) BEHAVIOUR & CONCEPTIONS

s ©

General reaction to Interviewers' arguments: Agnés: positive; Martha:

1.- Behavioral differences

First answers in steps 2 thru 6: Agnés: "Yes" in

Martha: a conditional "Yes" in one step only: <:>

negative.

Final answers: Agnés: "Yes" in all 5 steps from 2 thru 6. Martha:
, W ~
'Yes" in one step (__) - rather forced by an Interviewer, non-commital

in three steps, negative in one step (. ).

O
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PBelow are some excerpts from Che detailed analysis of differonces
hetween Agnds® and Martha's behaviour.
Step 2. The first reaction to the question ( 2 ), for both girls, con-
sists in saying that there is no univocal answer. The reason given by Agnés
is that the number of points on a segment depends upon its width. Martha's
reason is that it is impossible to "really" check it, one can only do it
‘theoretically" by agreeing upon some unit of measurec as being the size
of a point. Final answers: Agnés explicitely formulates a positive answer
and method of proof. Martha formulates explicitely a method of pairing off
but declares impossibility of actually performing the proceaure (because of
the infinity of points on the segments). She gives an answer in a conditional
form: if, by joining points that correspond one gets lines that are all pa-
rallel then there are as many points on one as there are on the other segment .

Step 4. First reaction to the question (_T__ ) is "Yes" in Agnés who starts

locking for a pairing off procedure. Martha says "No" and starts showing
that there exists an assignment of points which is not one-to-cne. Inter—
viewers intervene with criticism. Martha attempts to refute the arguments
but fails. Finally states that if we admit that there is an INF of points

in a segment and that the notion of next point doesn't make sense then it is
impossible to compare, to assign points to points. She tries to give another
proof refuting the theorem. After Interviewers' criticism of the proof Martha
says: "I give up, because I cannot imagine ...". She criticises proof given
>by.Intérviewers: "but no one can ever draw all the lines, either".

Step 6 (natural and even numbers). Agnés first answer is: "No, because there
are the odd numbers, still". Martha: in theory it is assumed that there is
an infinity of natural as well as even numbers, but, as we imagine these
sets, then we see that there should be more natural numbers. Agneés accepts
Interviewers' arguments. Martha repeats her argument with force, looks

for proofs of the negation of the theorem, refutes arguments given by I.,

says she doubts whether existence of a 1-1 correspondence indeed proves

that there as many natural as there are even numbers. After further interven-

tions, becomes aware of the assumption she has been taking all the time:"I'm
considering only bounded sets of numbers, I see", gives up, says: "all
this is a matter of convention", and doesn't seem pleased with it. V
2.- Conceptual differences
Main problems in steps 2 thru 5 were the notions of segment and point.
Conceptions that we observed in the girls can be described as follows:
S1: a line segment is a pencil stroke; a point is a dot; number of points

in a segment depends upon its width, length and size of points.
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Syp: line segments have no width (or are of the same tiny width that can
be ignored): points are small, it may be convened how big they arce, say, lnu.
S3: seyment is a Line bounded by two points; there are only two points in a
line segment, namely its ends; the line is composed of little sogments
S4: [same as above except for:] the line is composed of small points
S5: line segment is a line composed od very tiny points which arc ordered in
a row [drawing illustrating this idea by Agndg: w—r--e-—- ].
Sg: line scgment is a mental object composed of an infinity of consccutive
points which is represented by a line drawn with the help of a ruler; points
have no dimensions but are represented with dots or little segments that
have dimensions .
S7: [same as above without: "which is represented ... "]
Sg: [same as S7 without "consecutive"]

Diagram below shows the evolution of these conceptions in Agnés and

Martha during steps 2 thru 5.

Conceptions of line segmanf
1
S: o — Agnxs
. S {1 oo Martha
2 5S¢
£
S sal «
gttt > Staps
Cstep1: = 1 & Cepu=1 & o{’exgzriw\ut

Martha's conception of a mathematical object is characterized by a ce
tain duality: on the one hand, there is the ideal mathematical object. abs-
tract, existing only in one's mind, and on the other - there is its more
or less concrete representation: sure, we "assume" that there is an INF of n
tural numbers, but "as we imagine this set" w.: think but of a finite, be it
very large,set of numbers. Agnés does not seem to have problems of this kind
At the beginning she displayed a very "concrete" conception of line segment.
Later she started to make abstraction of the width and points became "inima-
ginably” tiny dots. But she never started thinking of there being something
like the "idea of line segment".

The 1-1 correspondence criterion was conceived of operationally (i.e.
in terms of operations to be actually performed, cf. Bridgman, 1934) by Mart
all along the experience; by Agnés - in steps 2 & 3 only. In further steps
Agnés found it sufficient to give verbally and/or iconically the rule for
pairing off in a proof.JIn Martha, her operational conception of the pairing
off procedure together with her "dual" conceptions of mathematical objects

were constantly sources of mental conflict: it is impossible to actually per
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form the procedure on ideal, mathematical line segments (Sg), these being in-
finite sets of points (and then it is impossible to compare two sets in
this sense); it can only be performed on their concrote representations -
drawvings (where a point is identified with a unit of measure). But then -
there is no 1-1 correspondence between points of two line segments of unequal
length, so there are not as many points on two such line segments.

This kind of operationalism and "dual" character of mathematical con-
cepts may be characteristic of conceptions in the transition period from con-
Crete to formal operational stages.

From step 4 on Agnés is very keen on precise formulations and proofs.
She seems to have now understood what is expected of her and this is how she
interprets the rules of the game. She is quite happy with it.

Martha, in step 3 ( = ), says she hates formalism as being completely
arbitrary, unnecessarily pedantic & contrary to her intuitions. But, in her
attempts to refute Interviewers' arguments, she makes big efforts to use "ma-
thematical proofs" (although her logic is sometimes rather strange; e.g. she
uses something like 3RcA x B (R is not 1-1) as a sufficient condition for:
A is not equipotent with B).

Agnés had accepted the 1-1 correspondence criterion as soon as she un-
derstood that it defines the term "as many as". Martha had understood it so
at the very beqginning but in step 6 she refused this theoretical choice as
being absolutely against "what should be".

" IV.- SOME CONJECTURES '
1. "Concrete" conceptions of mathematical objects do not prevent one from be-
ing able to perform precise deductive reasonings based on assumptions not ne-
cessarily conform to one's intuitions.
2. One reason for this may be that, at the concrete operational stage, these
intuitions are very superficial: they need not touch the deep conceptual dif-
ficulties inherent in a mathematical concept (e.g. problems of density or con-
tinuity had to be discussed with Martha but not with Agnés). Younger children
may not even "see" the difficulty.
3. Another reason can be that these intuitions are not linked with emotions.
A 10 years old child is emotionally open to change of conceptions: she has
only started organising her knowledge and she accepts learning from adults.
In the course of maturation of personality, the child may start identifying
herself with her knowledge. This may become part of her worldview, and an in-
tuition may turn into a conviction or belief. Now linked with strong emotions,
it starts to function as an obstacle. This might explain Martha's resistance

against the proposed theoretical solutions.
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Piaget's theory of intellectual development is not particularly inte-
rested in maturation. "Our thinking doesn't become more intellectual just
because we are getting more mature (Donaldson, 1978)". But there may be a
1ink between maturation of personality & constitution of conceptions into
obstacles.
4. Both Agnés & Martha accepted reasonings in M as being hypothetico-deduc-
tive. The difference between them lies in their attitudes towards the rele-
vance of theories thus obtained. Agnés does not care if these theories are
absurd: M is a game and it is fun to obtain surprising results. Martha's
views are quite opposite: if one of the statements we obtain by deduction is
“false", i.e. contrary to what we think there should be, then Axioms., defini-
tions, criteria assumed beforehand must be changed or the whole theory blown
up. This difference is analoguous to that between points of view of Russel
(formalism) and Lakatos (discoursive empiricism, 1978). However, there seems
to be still another difference (perhaps more serious, even) between Agnés'
and Martha's attitudes: Martha's attitude may be a result of a conscious re-
flection on what scientific knowledge is there for, what is scientific and
what is not (& "why should I learn it???"). Agnés may just be trying to parrot
her Math teacher or the Interviewers. Therefore it may be easy to make her
change her attitude. It has shown to be an impossible task with Martha. This
difference again seems to be linked with maturation of personality.
5. The difficulty to overcome obstacles in Martha can be linked, also, with
her "dqal" conceptions of mathematical objects ("ideas" - representations)
and operational attitude towards mathematics (Bridgman, 1934) which may be
characteristichf the transition period between concrete and formal operational

stages.
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Learning Y-Intercept: Assembling the pieces of an "atomic” concept

Jack Smith, University of California at Berkeley, U.S.A.
Abraham Arcavi, Weizmann Institute of Science, Israel.
Alan H. Schoenfeld, University of California at Berkeley, U.S.A.

In this paper, we report data indicating that some commonly-held assumptions
about teaching and learning may be inaccurate. For example, concepts such
as y-intercept that are taken to be the unproblematic building blocks of higher-
order knowledge of linear functions may be much more complex than they
appear. Our analysis emphasizes that "pieces” of y-intercept can be acquired
without full conceptual understanding and that concept acquisition is a
gradual process, which extends context-bound knowledge to more general
fields of application.

Introduction

There are many core concepts in the secondary school curriculum that are
generally assumed to require very little instructional development. Concepts such
as slope, variable, equality, parabola, and y-intercept are understood to have a
simple internal structure and they are taken to be the "atoms" out of which more
complex concepts such as function are built. We present some compelling
evidence from one student's (named IN) efforts to learn one concept (y-intercept)
that questions the simple, all or nothing, "atomic” nature of these concepts. Our
results suggest that students acquire pieces of the concept (in the case of
y-intercept, graphical and algebraic pieces) before their knowledge becomes
atomic, and that learning even these individual pieces can be a highly
contextualized, gradual process.

Our analysis focuses specifically on 'N's gradual acquisition of the concept of
y-intercept across five distinct graphica: contexts in a computer-based graphing
environment. If a significant proportion of our st."de 5 learn "atomic” concepts in a
similar way (and we will argue that they do), then instruction must do much more to
support the assembling of atomic concepts than is typically the case.

Background to the Analysis

The data for this case study were the result of the pilot-testing of a computer
graphing environment called GRAPHER. IN was a 16 year old high school student
enrolled in a summer calculus class for high school students on the Berkeley
campus who volunteered to experiment with the software. Our initial background
questions revealed that IN was highly motivated and articulate, that she had some
deficits in her basic algebra instruction, and yet had overcome these deficits
successfully enough to succeed in advanced high school mathematics classes.
Her companion in her explorations of GRAPHER was a graduate student, JS. His
function was to provide a loose structure for her activity by explaining the basic

functionality of the software, suggesting tasks, and posing clinical-style questions
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when appropriate. IN liked the system, attending 4 separate sessions averaging
1.5 hours in length. These sessions were videotaped and the entire corpus of 7
hours of interactions was available for analysis. The case study of IN's learning of
y-intercept is part of a larger study of her iearning in this context (Schoenfeld,
Arcavi, & Smith, in preparation). :

GRAPHER consists of three separate microworlds, and was designed to assist
students in learning polynomial functions. One of these microworlds, "Black Blobs*,
is a game patterned after "Green Globs" (Dugdale, 1984), in which students
choose equations to "shoot at" randomly located sets of squares on a Cartesian
graph. The data presented below consists of various situations that IN confronted
in Black Blobs and some of the discussions with JS that resulted. (See Schoenfeld
(in press) for a more detailed description of GRAPHER.)

A Sketch of IN's Initial Knowledge of Linear Functions

From IN's answers to our preliminary tasks and questions, we concluded that she
knew that linear functions can take the form, "y= mx + b", and that "m" was called
the slope and "b" the y-intercept. She could construct a table of values to generate
the graph of a line. She could also compute the slope from the coordinates of two
points, although her understanding of the concept and its properties was faulty. Her
knowledge of y-intercept was also a mixture of strengths and weaknesses. On the
one hand, she knew that the "b" slot was where the y-intercept was represented in
the equation, and she indicated indirectly that intercepts were locations where the
graph crossed axes. On the other hand, the graphical and the algebraic pieces of
y-intercept were not connected. She did not show any understanding that a "b"
value of "1" meant that the line crossed the axis at (0.1). Our subsequent analysis
indicates that this missing Cartesian connection between the graphical and
algebraié meanings of y-intercept (i.e. that "b" is the“y-intercept because (0,b) is a
solution of y=mx + b and (0.b) lies on the y-axis) was a fundamental part of IN's
struggles to learn y-intercept as a single conceptual atom.

Game situation #1: "Recalling the Graphical Meaning"

Working on her first "Black Blobs" screen (Figure 1 below), IN sought a Iinéar
function that would hit the 2 blobs (P2 and P3) centered at (-0.5, 2.5) and (0.5, 3.5)
respectively. After calculating the slope to be "1", she turned her attention to the
intercepts.

IN: OK, let me see. Do we know what the y-intercept is? The y-intercept is. ..

JS: What is the y-intercept?

IN: The y-intercept is where the point touches y...oh. OK, so then, but then it could
Q wer3s5o0r2s. -
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JS: Well, 3.5 is where the line is on one side of the y-axis, and 2.5 is where it is on
the other.

IN: So which one should | use?

JS: So, if the line passes through this point and this point [points to the two
selected blobs], then where is..., does that give you an idea where the y-intercept 's
gonna be?

IN: [no response]

JS: Ok, is going to be going like this [shows the line with a pen on the screen] so
just knowing that's gonna go like this, can you tell where the y-intercept is

IN: Oh, Oh, Oh!! [gestures with both hands], it's going to be at ...3?

Although she indicated before playing the game that she knew the graphical
meaning of y-intercept, that knowledge was not stable enough to apply in a new
setting. Instead, she suggested to herself the association of the nearby
y-coordinates and y-intercept. This temporary alternative meaning of y-intercept
was strong enough to withstand JS’s mild prompts to focus on the line through P2
and P3 not the blobs themselves. When he was driven to the stronger intervention
of representing the line with a pen, she immediately saw the light and determined
the correct value “3". This game episode affirmed what our earlier assessment of
IN's knowledge had indicated. IN knew pieces of the concept of y-intercept, but
these pieces were highly unstable. From the next episode, it is clear that this
interchange helped IN to stabilize her graphical meaning, but only in a local sense.

a
a
[ a
F"_-Pz
o o |
u 3
a a
-P1 a L .P‘ a
b
Figure 1 Figure 2

Game situation #2: "Local Competence”

Bolstered by her success at hitting P2 and Pz with "y = x + 3", IN turned her
attention to 3 other nearby blobs, P4, Ps, and Pg centered at (-4,8), (-1,6.5) and
‘1,5) respectively (see Figure 2 above). IN correctly calculated the value of the
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slope to be -0.5 and turned to find the y-intercept. Her first estimate of the
y-intercept ("6") was exactly correct. Unfortunately for IN, JS offered her a folded
paper as a means to represent the line and check her estimate. She then changed
her estimate to "5.5", perhaps as a result of the parallax of the computer screen,

and entered the equation "y = -0.5x + 5.5". She was perturbed by the miss that
resulted but proceeded to adjust the value in two steps ("5.75" then "6" again) to hit
all three targets. ]
Her performance in this episode would tend to indicate that she had consolidated
her graphical meaning of y-intercept and would have no more problems with that
issue. In shortt, it looks as if she "has the concept”. As will be apparent from latter
episodes, this assessment was clearly incorrect. The competence that she had
gained was limited to a narrow graphical context: those situations in which blobs
bracketed and were close to the positive y-axis. Game situations that did not fit
those conditions presented new and substantial difficulties. As the data from
Situation #3 and 4 below will show, the extension of the graphical meaning of
y-intercept from the limited context of application of Situations #1 and 2, to other
more general contexts was anything but automatic and effortless.

Game situation #3: "What Should Have Been Easy Was Not"

Six days after what had been an enjoyable first round with GRAPHER, IN returned
for a second round of work. On her first game screen (ilustrated below in Figure 3)
she selected 3 blobs, Py, P2, and P3, centered at (0,7), (-1,5) and (-2,3)
respectively. She spontaneously asserted that they looked like the ones that she
had shot at in her previous session. She then miscalculated the slope to be "-1.5"
(the correct value was "1.5") and declared the y-intercept to be "zero”, typing in the
equation "y = -1.5x + 0". When the resulting line was off-target in slope and location
on the y-axis, IN was quite taken aback. In response, JS put both the slope and the
y-intercept values up for discussion.

JS: OK, did either of them come out the way that you wanted, or is, are they both
wrong?

IN: Well, the y-intercept should be zero, shouldn't it, because that third dot on the
top is zero, isn't it?

JS: This one? [pointing to Py)

IN: Yes.

JS: Ah, well, let's see, it has two coordinates, right, an x and a y ?

IN: Yes.

JS: And one of the coordinates is zero.

IN: Yes, the x, and the y is 1,2, 3, 4, 5, 6, 7, zero 7.
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JS: So if we need to include the y-intercept...

IN: Aha.

JS: Which one of those numbers, zero or 7, is the y-intercept?
IN: Oh, 7! Oh, I didn't know that.

o o
d
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Figure 3 Figure 4

If there was any doubt before, her final comment indicated quite clearly that her
difficulty in this situation was rooted in a matter of substance and was not just in a
slip of the tongue. This collection of blobs would be the easiest of all possible
game situations for someone who understood y-intercept. With a blob located on
the y-axis, the y-intercept of the desired line is the y-coordinate of that blob. But
this "easy" situation was anything but straightforward for IN. She knew the
coordinates of Py but did not know that the y-coordinate of P4 since it was located
on the y-axis was the y-intercept. Instead, she used the salient x-coordinate. We
take this as strong evidence that the graphical and the algebraic meanings of y-
intercept were isolated from each other. She lact . the knowledge that "b" is the
y-intercept value, precisely and necessarily because the ordered pair (0,b) was a
solution to the equation "y= mx + b" and (0,b) lies on the y-axis. In the absence of
this unifying "Cartesian” connection the situation of a blob on the y-axis presented
a new context for IN's limited notion of y-intercept, one that required an extension
of what she had just learned.

Game situation #4: "Success in a New Context”

About 15 minutes later in Session 2, IN decided to shoot at two blobs that were
distant from the y-axis -- P4 &nd Ps centered at (6,-5.5) and (7,-6.5) (see Figure 4
above). After incorrectly calculating the slope to be "1" (the correct value was "-1"),
she turned to JS with a question.

‘N: [writing "y = 1x + "on her scratch paper] How do | find the y-intercept?
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JS: What is the y-intercept?

IN: Yeah, or how do ! find it?

JS: 1 know, ...what can we, what can we remember from just the word, y-intercept?
IN: Where it touches the y-axis.

JS: OK, um...

IN: But it would be far away, see, and so I'd have, I'd probably make a mistake if |
Jjust guessed at it.

JS: Well, let’s be a little experimental. Let's see if we can guess.

IN: Oh. It'd probably be here [tracing a line with the mouse out of the graph window
near (0,10)] if we can guess.

This episode indicated that IN's knowledge of y-intercept had advanced in a
number of ways. First, she was able to successful handle a new situation -- two
blobs which did not straddle the y-axis and were quite distant from it. Secondly, her
difficulties were due to the limitations of her ability to visualize the line and
therefore its y-intercept, not to any difficulty with the graphical meaning itself. In fact,
she was able to give a reasonable graphical definition, despite the use of
language ("touches") that was involved in her previous confusions with y-
coordinate. Finally, her empirical success in estimating the y-intercept had pushed
her to seek a more direct and deterministic method for finding the y-intercept
values for given blobs. (She asked JS for a "shortcut” after bemoaning the vagaries
of "guessing”.) If we measure along these micro-dimensions, IN learned a great
deal in her interactions with GRAPHER. But, as the final episode we present
indicates, there were still definite limitations to her understanding.

" Game situation #5: "A New Kind of Context-Dependence”
On a new game screen later on in Session 2, IN experimented with different stope
values to get lines of different inclination through the same y-intercept, "-2". JS
suggested that she find a linear equation that would hit the blob Ps centered at (-
8.5,-4.5) and went through the same y-intercept she had been using (see Figure 5
below).

IN: This one [pointing to Ps] and what other point? Shouldn’t | have two points
before | can solve it?
JS: ... what | meant was whether you could draw a point through this blob that went
through the y-intercept, -2.
IN: Ok, ah, but what other point would it reach?.... there is no point that | can reach
that would make me go through that ax, through that intercept.
JS: Right, OK, so the problem there is what? We only have one point?
Q
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IN: Ah, yes.

JS: OK, is there anything else on the screen that we could treat as another point?
IN: That would make this, that would be straight here [tracing the line]? No. See.
There's nothing else here.

Ep

Figure S

At this point, JS gave up and told her to use the y-intercept as if it was a blob. She
needed 3 attempts to guess the slope, "-.5", "-.1", and "-.3". and then typed in the
equation, "y = -.3x - 2". Then watching attentively as the line approached the y-axis,
she declared with pride and exhilaration, "Exactly!" £+ the line crossed the y-axis.
We take this final episode to indicate that IN's knowledge of y-intercept was very
dependent on the particular constraints of the game and was not situated in the
ideal Cartesian plane. Her reiteration of the need to start with 2 or more blobs and
her expression of exultation when the line crossed at (0,-2) indicates that she had
failed to abstract that blobs were sloppy approximations of points in the plane. As a
result she failed to see that a y-intercept and a blob were sufficient to determine a
line. When JS asked her to simply treat the y-intercept as a blob, she accepted his
suggestion as simply an amendment to the rules of the game. (We here note that
her requests to find another point were not driven by the need to compute the
slope, as the careful reader hjwight think. In this sequence she was estimating the
values of the slope.) IN had learned as much as she could about y-intercept from
shooting at collections of 2 or 3 blobs in the game. She knew that every collinear
set had an associated y-intercept and became quite skilled at estimating its value.
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Her learning led her toward the deep connection between the value of "b" in the
equation and its graphical meaning, but she never grasped it. Perhaps for this
reason, she failed to abstract her knowledge from the game to the more general
context of the Cartesian plane.

Discussion

We have presented results from a single case study that indicate that learning
simple "atomic” concepts is a much more contextualized and gradual process than
is commonly understood. Despite having learned enough mathematics to get
herself placed in the calculus class for advanced high school students, IN still had
to learn (or relearn) the concept of y-intercept one graphical context at a time. Local
competence (as demonstrated in Situation #2 and then again in Situation #4) did

" not at all imply a general and robust understanding.

This research indicates that some ostensibly simple notions are quite complex and
subtle for students and that the appearance of mastery may hide, in fact, only the
barest understanding. These results have implications for mathematics curricula
whose goal is that students build deep and meaningful understandings of
mathematical concepts rather than the superficial and fragile ability to repeat only
the procedures they have been taught.
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COMPUTERS, VIDEO, BOTH OR NEITHER.
WHICH 1S BETTER FOR TEACHING GEOMETRY T

Nurit Snir and Zemira Mevarech, Bar-1ian University
Nitsa Movshovitz-Hadar, Technion-Israel Institue of Technology

This study was designed to assess the impact of instruction via
computers, video, both or neither on learning processes and achievement in
geometry. A 2XZ (TV by Computer ) factorial design was employed.
Participants were 268 fifth grade students who studied the same contents
for the same duration of time. Results showed that more media does not
necessarily imply better math learning. In fact, the no-media and multi-
media yielded simiiar low learning outcomes, while the video by itself
exerted the highest achievement scores, even higher than those obtained in
the computer environment. A similar pattern of differences were found on
Time On Task.

Five years after Bloom (1984) phrased "the two sigma problem”, the
solution is still far away. Bloom argued that "optimal learning conditions”
can prorote cognitive outcomes by approxirnately two standard deviations
(sigma) above what can be achieved under "conventional conditions™. The
problem, of course, is how to define “optirnal Iéarning conditions”. Bloom
(1976, 1984) raintained that to be effective, educz’ .nal environments must
adequately provide for the four elements of the quality of instruction:
appropriate cues, reinforcement, participation, and feedback-correctives. In
this view, the four elernents are additively related to achievement; if one is
missing, achievement will be lower. Therefore, Bloom (1984) suggested to
combine instructional methods ihat emphasize different elernents of the
quality of instruction.

in the last decade, severaj attempts have been made to explors the
impact of combined rnethods on achievement. For example, tMevarech {1930)
found that combining programs ernphasizing cues with prograrns erphasizing
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feedback-correctives enhanced achievement more than each program by
itseif. Bloom (1984) reviewed a number of studies showing effect-sizes
higher than one standard deviation of combined methods compared to control
groups that did not employ any specific method. Finally, Tenenbaum (1986)
reported strong impact of an instructional method consisted of the four
elernents of the quality of instruction.

what are the implications ‘of Bloom's theory (1984) to technoiogy
assisted instruction? Does the exposure to _two_ingtngctional _media imply
better méth learningv ffuaﬁ-the exposure‘ to oneb or fo nohe? Mdfeover, doeé 'the
use of one medium improve achievement more than "conventional” instruction
with no technology? Undoubtedly, video programs have the potential to
enhance different types of cues including verbal, visual, and vocal. As a
result, the exposure to new video programs has tended to facilitate learning
(Clark, 1983). On the other hand, considerable research has indicated that
computer assisted instruction (CAl) that provides immediate feedback-
correctives yielded significant betfer acadernically oriented achievement
and affective outcomes than learning with no computers (Kulik and Kulik,
1987; Mevarech et. al, 1985a, 1985b, 1987,1988). Based upon Bloom's
theory (1984) and these findings it was hypothesized that instruction aided
by multi-media consisted of computers and TV would promote academically
oriented outcomes more than would be expected on the basis of each rediurn
separately or instruction which is not aided by any technology.

Although the cognitive outcomes arising from CAl and instructional
video programs have been the focus of systematic research, relatively little
research has been directed to other outcomes. In particular, very little is
known on learning processes that take place in computer or TV environments.

Research has indicated that both TV and computers have been viewed as
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having important roles in increasing attention and time-on-task (TOT) (Clark
and Salomon, 1986). Thus, it was hypothesized that instruction via multi-
media (TV and computers) would increase TOT more than each medium by
itself. '
The purpose of this study was to investigate the roles of instruction via
computers, video, both, or neither on learning processes and achievernent in
geometry. To examine the study hypotheses, a 2X2 (TV by Computer) factorial
design was employed. The four resuiting treatments were: multi-media (TV
and computers), TV, Computer, and absence of technological devices. The
research design holds constant quality and content of instruction, as well as
allocated time; the' only differences between the treatments were related to

the different media as will be described below.

METHOD

Participants

Participants were 268 fifth grade students,126 boys and 142 giris, who
studied in eight classrooms in four Israeli elementary schools. Classrooms
were comparable in terms of students’ SES, previous exposure to computers»
and TV educational programs, and teachers' y: o of experience. Intact
ciasses in the four schools were assigned randomly to the four treatments.
As a result, the size of the groups were: multi-media (N=74), TV (N=69),

Computer (N=55), and neither TV nor Computer (N=59).

Treatment Groups
All classrooms studied the same unit in georhetry: Tiles and Corners,
for equal arnount of time (four weeks) with the same geometry book

(Shacham. Shir, and Movshovitz-Hadar, 1987). This unit is a new part of the

O
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israely elernentary school curriculum in geornetry and thus none of the
classes had been exposed to its contents prior to the beginning of the study.
Indeed, know ledge pre-assessment showed an average grade of less than 20%
correct answers. All teachers were told that they were experimenting a new
unit. They received the same training and used the same instructional
method: introducing a new concept or skill to the whole class followed by
individualized practice and application sessions based on the same student
workbook.

The difference among the treatrnent groups was in the exposure to the
media. The "TV group” learned the prerequisites concepts related to the unit
in the first four sessions as described above and then watched a 25-minute
video program called: "Tiles and Corners” of the Dra-Math series produced by
the Israeli Instructional Television (Reiner and Movshovitz-Hadar,1986).
watching was followed by augmented activities designed by the film
designers. At the end of the study, the video program was played once again
to ensure that understanding had been attained. (For more information about
the Dra-Math series, see Movshovitz-Hadar and Reiner, 1983).

The "computer group” used LOGO or BASIC to practice skills and to apply
the concepts introduced during the whole class instruction. At each session,
after the teacher introduced the new concepts, groups of ‘six students
practiced individually at the computers. The rest of the class continued to
practice with the student workbook. Thus, similarly to the TV group, also in
the Computer group, about 25% of the time was spent at the media.

The multi-media group watched the prograrn as did the "TV group” and
they practiced the skills and applied the concepts using LOGO or BASIC as did
the "computer group”. Finally, as was mentioned above, the "no technology”
group spent an equivallent amount of tirme learning with the workbook only.
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Instruments _

Mathematics achievement were assessed by two instruments:
Standardized Mathematics Achievement Test developed by the Israeli
Ministry of Education (Kudar-Richardson reliabitity coefficient = .86) and
geometry achievement test developed by the unit designers (Alpha-Cronbach
reliability coefficient= .79). The geometry test was administered prior to-
and at the end .of the study, the Mathematics Achievement 'Test was
administered prior to the beginning of the study and its results were used as
a covariate in all analyses. In addition, students Time On Task (TOT) was
assessed at the beginning, in the middle, and at the end of the study by a
short guestionnaire designed by us for the purposes of the present study

(Kudar-Richardson reliability coefficient=. 80 ).

RESULTS AND DISCUSSION

To assess the effects of the different media on achievement in
geometry, a one way analysis of covariance (ANCOVA) was ermployed with the
pre measures used as a covariate. A test of the homogeneity of the siopes
indicated that the reqression slopes were equal for- 'l four cells and thus
the usual analysis of covariance model could be applied.

Significant differences were found between treatment groups on the
post geometry test controlling for initial differences in mathematics and
pre-geometry achievement tests (F(3, 262)=35.81, p<001). However, in
contrast to our hypothesis, the multi-media group did not attain the highest
rean scores. Evidently, Duncan comparisons indicated that the "TV group”
attained the highest achievement mean score. Their mean score was
approximately one standard deviation higher than the "Computer group™ which

in turn was approximately half standard deviation higher than the multi-

O
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media and the "no technology” groups; no significant differences were found
between the last two groups.

Analyses of students’ TOT indicated that although no significant
differences were found among the four treatment groups at the beginning of
the study, significant differences among groups were manifested at the
middle and at the end of the study. Generally speaking, TOT daté supported
the results reported above. Duncan comparisons showed that TOT of the “no
technology” group remained stable during the time of the study. The “TV
group™ consistently increased TOT and so did the “Computer group™ In
contrast, however, the multi-media group increased TOT between the first
and the second measures, but than a sharp decrease was manifested.

The results will be discussed at the conference from three perspectives.
First, Bloom's model (1976, 1984) will be applied to illustrate the roles of
the elements of the quality of instruction. Second, theories in metacognition
will be used to explain the small impact of the multi-media on achievement.
Finally, the.implications of the findings to actual classroom teaching wili be

presented: what to do and what not to do.
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VOCATIONAL MATHEMATICS

Teachers' Cognition of Mathematical and Vocational Knowledge

The paper reports on an empirical study of the way, teachers in vocational
colleges perceive the relation of mathematical and vocational knowledge. A
content analysis of 40 interviews shows that the majority of the teachers
think of the relation in terms of examples from both domains. Only few of them
come up with descriptions relating these domains as a whole. When asked about
the purpose of mathematics in their teaching, half of them call mathematics a
helpful tool (and nothing else), whereas a third also mentions the conceptual

help of mathematics for understanding professional situations.

1 Research Question

Research on teacher cognition analyses the concepts and decision processes of
teachers (cf. BROMME & BROPHY 1986, CLARK & PETERSON 1986, HOFER 1986), but
did wnot pay too much attention to the 'professional knowledge' of tecachers -
paken as the mixture of pedagogical, didactical and matter knowledge, routines
and experience including the emotions related to the teaching practice.
Teachers' professional knowledge is based on preservice teacher-training and

develops during the teacher's actual teaching.

Only recently, empirical research in the professional knowledge of teachers
started (cf. SHULMAN 1986) and has to specify the teachers' professional
knowledge against the knowledge of different professions - e.g. managers of a
company or lawyers. The research reported below starts from the assumption
that the professional knowledge of teachers is characterized by an integration
of knowledge from two domains, namely curricular, subject—-matter knowledge and

pedagogical knowledge (cf. BROMME 1987, BROMME to appear).

The professional knowledge of teachers is analysed in a specific setting -
namely technical and vocational colleges in the FR Germany. This is a part-
time classroom-type education of normally two days per week complemented by
three days vocational training in companies (the west-German 'dual system' of
vocational training, for a detailed description c¢f. STRASSER 1985). This typ'e
E \I‘IC\I vocational training would last three years and offers a vocational

191



190

VOC. MATHS R.Stréasser—R.Bromme IDM Biclefeld

certificate as qualified worker ('Facharbeiter') to the successful student. In
the college part of the. training, the 'Berufsschule’, mathematics would be
taught for two or three hours per week with the aim of a numerical foundation
and interpretation of vocational phenomena, underpinning vocational knowledge
by numerical analysis ("zahlenmipige Deutung und Durchdring ... von berufli-
chen Erscheinungen”, "Untermauerung der Fachkunde durch rechnerische Durch-
dringung”, cf. GRONER 1955, p. 477, and WOLFF 1958). The use of metaphors in
the widely accepted descriptions of goals of the mathematics teaching may be
taken as a hint that there is no explicitly consented didactics for this

teaching and only little research in vocational mathematics education.

Analysing the professional knowledge of teachers in vocational colleges, these
teachers' curricular knowledge should be additionally subdivided into mathema-
tical knowledge and knowledge related to the vocation they train the students
for ('vocational knowledge'). From the point of view of the related discipli-
nes (mathematics, pedagogy and e.g. engineering), the three domains of
kowledge differ widely and may be even taken as different cultures (cf. SNOW
1959). The research reported below concentrates on a pair of the triple
pedagogical-vocational-mathematical knowledge and analyses the way teachers
think of the relation between mathematical and vocational knowledge {(for an
empirical analysis of the relation of curricular and pedagogical knowledge in
general education cf. BROMME & JUHL 1988). The relation of mathematical and
vocational knowledge here is a particular revealing case of an integration of
different domains of knowledge because of the <p ific task these teachers

have to fulfil. -
2 Methodology

Professional knowledge is not directly accessible. and differences occur
between the knowledge used and the knowledge which is talked about - even in
professions which need use of speech when being practiced (cf. ARGYRIS & SCHON
1974). For an empirical analysis, one should generate occasions to observe the
use of professional knowledge - e.g. ask for a description of lessons in

mathematics recently taught.

In 1981 and 1983, 40 teachers of vocational colleges were interviewed to learn
about the teachers' concepts on the relation of mathematics and the correspon-—

) . R
]: TC; vocational domain. The teachers were trained in the vocational domain
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(e.g. metalwork or business) and trained teachers, not trained mathematicians,
who had to teach vocational mathematics In "Berufsschule”. At the beglnning of
the interview. They were asked to relate their answer to a specific course
they had taught last year. The interview started with a detailed description
of this course (number of students/distribution of sexes/school leaving
certificates etc.) in order to secure a relatively narrow relation to the
teaching reality of the interviewee. They were also asked to_describe
difficulties the students had with mathematics, the topics taught to the
course, their teaching methodology and the manuals used. At the end of the
interview, data on the biography of the interviewee (age, type of vocational
training, academic training, teacher training, years of active teaching etc.)

were gathered.

In the 1981 and 1983, in total 40 teachers from a whole range of vocations
(from business-administration to electricity and tailoring) were interviewed.
The interviews lasted from 1 to 2 hours. A comparison of data on the courses
and teachers interviewed with data available on vocational teachers and
classes in the FR Germany shows that average full-time vocational teachers
were in the sample, teaching courses with relatively good school leaving
certificates and the usual competencies (for details cf. STRASSER 1982, p.
60ff).

The teachers' perception of the relation of mathematical and vocational
knowledge was reconstructed by a content analysis relying on categories
modelling the two-domain-approach (mathematical vs. vocational knowledge). Two
independent raters had to search the interview-parts on the topics and
methodology of teaching in order to identify those sentences directly speaking
of the function mathematics has in the vocational training of the students.
These passages were classified into mathematics (1) for communication purpo-
ses, (2) as operative help for vocational problems, as tool, (3) as
description of a vocational situation and (4) mathematics in other functions.
In a second step, the raters identified passages directly speaking on the
relation of mathematical and vocational knowledge, analysing these passages as
binary relatlons (mathematical/vocational topic) by classifying their degree
of abstractness (example vs. whole discipline/subject for both carriers of the
relation) and the way, mathematical and vocational knowledge are described to
act upon each other (e.g.: related mathematics taught before vs. taught after

- -Q-‘*ted vocational knowledge).
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3 Results

The 6 female and 34 male teachers (with average age of 42 when interviewed)
had all (except two) gone through a preservice teacher training. 16 of them
mentioned special studies in mathematics during their teacher training. As a
mean, they had seven years of active teaching. They had been teaching courses
in business/administration (14 teachers), technical domains (22 teachers) and
others (4 teachers, e.g. courses for future florists) with higher school
leaving certificates and more female students in the business/administration
courses than in the other courses (business/administration: 66.5 % average
female students against 21.8 % average female students in the technical

courses).

only half of the teachers remembered teaching mathematics more than four
consecutive lessons in isolation from vocational contexts. Less than half of
the topics of mathematics lessons can clearly be labelled mathematics. The
teachers gave examples like "rule of three" and "equations" as well as "torque
and power" and "calculating investment" as topics of their lessons. Most of
the teachers described their teaching method in the following way: A lesson
would begin with a description of a situation or a technical or scientific
experiment specifically prepared for teaching vocational mathematics. Having
developed a solution in terms of a formula or a calculation rule, the teachers
seem to underestimate the re-—interpretation of the mathematical solution in
terms of the vocational contexts (for details cf. STRASSER 1985a, for a
description of this teaching method cf. BLUM 19¢

To learn about the three domains in the professional knowledge of the
teachers, they were asked to distribute 100 points to three descriptions of
themselves: "educator/"specialist in mathematics"/"specialist in the vocatio-
nal domain they trained for". 37 teachers answered with the distribution shown
in the graph (see next page). As can be seen from the answers, the teachers'
self-concept was rather being an educator or a specialist in the vocational

domain, not in mathematics.

As for the function(s) of mathematics, half of the teachers call mathematics a
helpful tool for vocational contexts (and nothing else). A third also mentions
the help of mathematics for understanding vocational situations (see table 1
 xt page; both raters had only a 50-%-agreement on both the identification
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Table 1: Functions of Mathematics for Vocational Contexts

none ONLY | ONLY under| tool AND other
tool standing underst.

nunber of teachers 8 16 ki 3 6

and classification of interview—parts). "Other" functions of teaching mathema-

tics were e.g. 'fostering logical thinking', and 'general education’.

The detalled analysis of passages relating mathematics and vocational contexts
is summarized in table 2 (see next page; both raters show an accordance of .78
for both the identification and classification of the relation). Obviously,
the majority of the teachers think of the relation between these two domains
in terms of examples from both domains, only few of them come up with

descriptions relating these domains as a whole.
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Table 2: Relations of Mathematics and Vocational Contexts

IDM Bielefeld

Ccontents of Relation
Degree of maths helps | voc. knowl. mutual
Abstract- vocational helpful for | help other
ness knowledge maths
ONLY
examples 18 0 1 1 20
maths ONLY
as disci- 5 0 1 3 9
pline
other 4 2 1 3 10
27 2 3 7 39

Statistical tests show no connection between the self-description of the
teachers and the function of mathematics for vocational contexts or the
relation between rﬁathematlcal and vocational knowiedge. Teachers with mathema-
tical studies tend to give signlficantly more points for the "specialist in
mathematics” than the others. Teachers having more years of active teaching
seem to put more stress on the ‘understanding'-function than those with less
teaching experience. There is no correlation between age, mathematical
studies, characteristics of the courses and their cognition of the function of
mathematlcs or the relation mathematical/vocational knowledge (for details see

BROMME & STRASSER In press),
4 Interpretation

An interpretation of the results presented should start with the fact that the
‘communication'-functions of mathematics for vocational contexts is not at all
mentioned by the teachers. The teachers only percelve the 'tool'- and the
‘understanding'-function, which may be taken as a redefinition of the
descriptive function. This more or less pragmailc view on mathematics comes up
also in the widespread use of examples rather than whole disciplines/subjects
when the relation of mathematical and vocational knowledge is mentioned in the
interviews. Mathematics has its fundamental purpose in helping with vocational
tool. It s ;

contexts and has nearly no role in itself (cf. the few teachers

problems., serving as an operative taught Integrated with

vocational
mentioning the underpinning of mathematlcs by vocational knowledge). The most
Q -iking result is the overall agreement on the relation of mathematical and
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vocational knowledge in the interviews. A majority of interviewees only
mentions the ‘'tool'~function of mathematics. An ‘objective’ interpretation
could take this perception as so dominant and widespread that different views
can only rarely be found in the wvocational colleges. A ‘'measurement’
interpretation could take this as an indication for the inappropriateness of
interviews to empirically analyse such cognitive structures. Interviews and
content analysis might be not sensitive enough to really mirror delicate
differences. A ‘'subjective’ interpretation could mention the difficulties to
speak about the relation of mathematical and vocational knowledge. Even within
mathematics education as an emerging discipline, there is an obvious concep-
tual deficit on the way in which mathematics and domains of its application
relate to each other. A decision which interpretation should be favoured has

to wait for additional empirical and conceptual work in the field.
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TRAINING ELEMENTARY TEACHERS IN PROBLEM SOLVING
STRATEGIES: IMPACT ON THEIR STUDENTS’ PERFORMANCE
Jerry K. Stonewater
Department of Mathematics and Statistics
Miami University, Oxford, OH

This paper descibes a course in mathematical problem

solving strategies for elementary school teachers and the

results of this training on the teachers’ students’
performance on select problem solving items from the
fourth National Assessment of Educational Progress in
mathematics. Overall, students of teachers participating
in the course outperformed the students whose teachers

did not take the course.

Results from the Fourth National Assessment of Educational
Progress document that the mathematical performance of
elementary and middle school students in this country is
alarmingly poor (Dossey, et al, 1988). For example, NAEP
results indicate that over seventy percent of third graders
cannot correctly solve a problem involving two or more steps,
or that over one-half of the seventh grade students have
difficulty with problems involving logical reasoning based on
simple syllogisms. oOther research in teacher knowledge of
mathematics makes a strong case that efforts to improve
children’s mathematics learning might first begin with
enhancing teachers’ knowledge about mathematics. Ball (1988)
points out, for example, that only twenty percent of a group of
pre-serivce teachers could definitely say that the statement,
"as the perimeter of a closed figure increases, the area also
increases," was incorrect. Others have found that a group of
pre-service teachers could answer correctly only slightly more
than one-half of a set of problems that could be solved using a

variety of strategies (Oprea and Stonewater, 1988).

anding for this research is sponsored by Title II of the
Education for Economic Security Act and administered by the
Ohio Board of Regents.

O . o

ERIC 138

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

198

Yet the question of whether or not direct inservice
training of teachers is an effective means of improving their
students’ learning is still open. Wheately (1983) found
substantial student gains in subtest scores on the Iowa Test
of Basic Skills after their teachers received training.
Szetela and Super (1987) found gains in student performance
due to teacher training on only two of five problem solving
tests. It appears that the effects of inservice teacher
training on subseguent student performance are unclear, at
least with respect to mathematical problem solving ability.

Partly in response to these research findings, The Ohio
Problem Solving Consortium has received funding to form a
cooperative venture between public school teachers and
university personnel. (Stonewater and Kullman, 1985;
Stonewater and Oprea, 1988). The Consortium trains elementary
and middle school teachers in problem solving strategies and
assists the teachers in using their newly-learned knowledge of
problem solving as a basis for redesigning their own
instruction to improve children’s problem solving abilities.
The purpose of this article is to describe a problem solving
course and to report the results of i = Jvements in the problem
solving abilities of the teachers’ students as measured by
select problem solving items from the fourth National
Assessment for Educational Progréss in mathematics.

Methodology To assess the effectiveness of the course on
the participating teachers’ students, Consortium teachers and
six teachers not involved in the project administered select

items from the NAEP in’October and again six months later.
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Eight items were chosen from the fourth mathematics assessment

and were selected to represent problems which could be solved
using at least one of the strategies learned by the teachers.
A total of 516 experimental students and 122 control students
completed all testing. Data were analyzed using a multiple
analysis of covariance, with pre-test scores as the covariate.
A Wilks’ Criterion F-value was computed, as well as adjusted
post-test scores, providing a post-test statistic that could be
used to compare groups with possible pre-test differences
controlled. For a statistically significant F-value, post-hoc
analyses of variance were computed for each of the eight test
items separately.

Problem Solving Course Teachers were expected to learn

and be able to use seven different problem solving strategies:
Guess and Check; Patterns; Simpler Problem; Elimination;
Working Backwards; and Simulation. Project data indicate
that elementary school students do fairly poorly applying
these problem solving strategies (Stonewater, 1988).

Teachers were also exprected to reorient their own teaching to
include units on each of the problem solving strategies.

A typical class began with a review of assigned problems and a
discussion of the teachers’ experiences applying the strategy
to their own teaching, followed by a short lecture introducing
the next strategy. Once an example problem was worked by the
professor, the class worked a problem in groups of four to
five teachers. After solutions and solution methods were
discussed with the entire class, homework was assigned for the
next week. The problem solving course was designed on the

basis of the Instructional Model for Problem Solving

O
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(Stonewater, Stonewater, & Perry, 1988), a model grounded in
cognitive developmental theory and intended to key in to the
teachers’ cognitive developmental levels as a means of
ehnhancing understanding. The model includes three categories
of instructional approaches which, on the one hand provide
support for the learner to engage in complex and difficult
learning tasks, and, on the other, create what Piaget (1952)
termed disequilibrium, or an upsetting of how teachers
traditionally think about problem solving so that new and more
sophisticated ways can be accommodated. These catagories are
structure, direct experience, and diversity.

Structure -- The IMPS model suggests that in order to
enable students to attend to difficult and complex problem
solving, the course should provide a high degree of structure
as a support for engaging in difficult learning tasks. One
method used to provide structure was to develop a task analysis
or a list of heuristics and guidelines that described how to
carry out the strategy. For example, a task analysis was
written for the Working Backwards strategy and includes a
sequence of steps that the teacher or student could use in
applying the strategy.

Direct Experience -- The IMPS model also suggests that
activities which engage teachers in direct application of what
they are learning will enhance learning. A number of methods
were used to do this. First, in conjunction with the local
public broadcasting television station, a series of four video
tapes, entitled Problem Solving in the Middle School, were

developed as examples of what "master teachers" do when

ERIC 202

Aruitoxt provided by Eic:



201
teaching problem solving. These were viewed by the class. One

particular uselul portion ol Lhe Lapes shows middle school
teachers actually using various problem s&lving strategies in
their classes and.teachers could often relate their own
students’ reactions and problems to what they saw on the tape.

As another direct experience method, teachers were asked
fo apply each of the strategies in their own classes and to
keep a journal of their experiences. While this activity did
not engage the teachers directly in actual problem solving, it
helped them build confidence in their abilities to teach
broblem solving. As one junior high teacher commented, "I can
give a class a problem now without making sure I ‘know’ the
answer first. What I do know is that I’11 figure out the
problem by day’s end!" Teachers also.saw in their own
students’ problem solving many of their own difficulties with
mathematical problem solving.

Diversity -- Another approach used in the IMPS model is
that students must realistically engage in the complexities of
what is to be learned in order for them to experience
disequilibrium. Presenting diverse situation for the
teachers to engage with is a method of doing this. Thus,
problems that required the teachers to generalize beyond their
current levels of mathematical knowledge and thinking ability
were presented. For example, teachers rarely had difficulty
with pattern problems like predicting the next term in the
sequence 1/(1%*2), 1/(2*3), 1/(3*4),.... But in order to
challenge fhem and create the required disequilibrium, we
introduced a second level of pattern problems that required

generalization beyond the mathematics they knew.. Such a

O
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problem extension would be to predict the sum of the series,
1/(1%2) + 1/(2%3) + ... + l/(n*(n+l]). This variation was
much mére difficult, but after some struggling, most teachers
began the process of making generalizations. Thus, in addition
to learning the basics of each strategy, the teachers went
beyond what they might need to teach elementary or middle
school into important mathematical thinking skills.

Another method of introducing diversity was to show the
teachers that more than one strategy or approach to a ﬁroblem
was often appropriate. By using diverse problem solving
approaches, teachers had to confront the often-held belief
that there is "only one solution to a mathematics problem".

Results Results of this study indicate that the students
of particiating teachers performed significantly better on the
post-test than did the students of control teachers (F(8,621)
= 3.82; p< .0002). Adjusted post-test scores for the
experimental group were 5.20 items out of 8 correct (65%),
compared to 4.56 items out of 8 correct for the control group
(57%) . In addition, the experimental group’s adjusted post-
test means for each of the eight items separately were higher
than the control group’s adjusted post-test means. Of these
differences, five of the eight items were statistically
significant in favor of the experimental group. These data
are reported in Table 1.

The five items in which the experimental students
outperformed the control students were catagorized as problems
that could be solved using silulation, elimination, patterns,

3

or guess and check. Note that in every case, the experimental
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students gains are substantially greater than those of the

control group. For example, the increase from pre- to post-
test in the percent of students in the control group who
answered one of the guess and check items correctly was only
2.5%, while it was almost 15% for the experimental students.
Discussion The results of the NAEP study utilized in
conjunction with the problem solving course as well as the
feedback received from teachers indicate that the major
objective of enhancing children’s problem solving abilities by
way of training their teachers was accomplished. Teachers’
self-reports indicate they felt more confident at doing as well
as teaching mathematical problem solving. 1In general, it
appears that efforts by universities to offer subject matter
coursework to teachers can be an effective catalyst for
bringing about changes in curricular content in the schools and

for positively influencing children’s learning.
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Table1
Percent Correct and F—Values on NAEP Items
ITEM PRE POST Percent Gain Adjusted F p<
: Pre to Post Post
1. Guess & Check E 324 40.7 8.3 40.8
C 336 352 1.6 35.0 1.45 .23
2. Simulation E 547 754 20.7 74.8
C 459 59.8 13.9 62.3 9.19 .01
3. Elimination E 413 605 19.2 59.4
C 262 410 14.8 45.6 893 .01
4. Patterns E 419 558 13.9 55.7
C 371.7 40.2 2.5 40.7 9.20 .01
5. Elimination E 866 95.0 8.4 94.8
C 820 85.2 3.2 85.8 13.23 .01
6. Elimination E 66.3 179.8 13.5 79.4
C 508 721 21.3 73.9 1.83 .18
7. Guess & Check E 589 69.2 10.3 68.8
C 418 615 19.7 62.9 1.56 21
8. Guess & Check E 355 500 14.5 49.6
C 270 295 2.5 31.1 14.57 .01
TOTAL TEST E 522 658 13.6 64.9 3.82 .01
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DEVELOPING ALGEBRAIC UNDERSTANDING: THE POTENTIAL OF A
COMPUTER BASED ENVIRONMENT

Rosamund Sutherland
Institute of Education University of London

This paper will discuss the potential of a Logo environment for developing pupils’
algebraic understanding. Results from a three year longitudinal study of pupils
(aged 11-14) programming in Logo indicate that Logo experience does enhance
pupils' understanding of variable in an algebra context, but the links which pupils
make between variable in Logo and variable in algebra depend very much on the
nature and extent of their Logo experience. The algebraic understandings which
pupils are likely to develop are described and related to categories of variable use
outlined in the paper. Although the focus of the paper is predominantly on Logo
there will be discussion within the presentation of preliminary resuits from pupils'
work with a spreadsheet (Excel). Studies with Logo and with spreadsheets indicate
that for some pupils interaction with the computer plays a crucial role in their
developing understanding of a general method.

BACKGROUND

This paper will discuss the potential of a computer-based environment for
developing pupils' algebraic understanding. The focus in the paper will be
predominanily on Logo programming, although there will be some discussion in
the presentation of preliminary results from pupils' work with a spreadsheet (Excel).
The paper derives mainly from a "Longitudinal Study of Pupils’ Algebraic Thinking
in a Logo Environment" (Appendix 1). The ideas and results presented are also
informed by an ongoing study “The Role of Peer Group Discussion in a Computer
Environment” (Appendix 2).

Algebra as a mathematical language has developed over the centuries from its
first infroduction as a tool to solve equations in which a letter or symbol
represented a particular but unknown number, to classical generalised arithmetic
in which symbols were used to represent relationships between variables to what
we now know as modern algebra. Modern algebra can be thought of as a
language which enables the similarities in structure between different mathematical
systems to be made explicit. Algebra has played a central role in school
mathematics for many years and although more recently the teaching of algebra
has been given less emphasis Byers and Erlwanger stress that "we can no more
dispense with teaching algebraic symbolism than teaching place-value notation.
Symbolic expressions are transformed more easily than their verbal conterparts so
that they not only save time and labour but they also aid the understanding of
content” (Byers & Erlwanger, 1984, p.265). Vygotsky believed that "the new higher
concepts in turn transform their meaning of the lower. The adolescent who has
mastered algebraic concepts has gained a vantage from which he sees arithmetic
corﬁeots in a broader perspective” (Vygotsky, 1934, p.115).
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We must also recognise that "school algbera” is not a uniform practice. In Britain
there exists a wide range of mathematics curriculae, all reflecting differing
emphases on “school algebra”. Pupils are now introduced to- algebraic ideas with
more caution and in some curricula {for example SMILE!) there are many pupils
who are no longer introduced to algebra within school mathematics. We are now
approaching a new era in Britain with the introduction of a national curriculum for
mathematics and here again the emphasis on "school algebra” is likely to change.

Despite these differences one general trend is that pupils’ first introduction to
algebra is now more likely to be in the context of generalising mathematical
relationships resulting from practical or psuedo practical activity. Previously pupils’
first introduction to algebra was more likely to be in the context of manipulating
algebraic symbols derived from generalised arithmetic.

PREVIOUS RESEARCH ON PUPILS" UNDERSTANDING OF ALGEBRA

Before considering the computer context, it is important to take into account
previous research related to pupils’ understanding of algebra. One important
research finding is that there is a gap between arithmetical and algebraic thinking
which relates to pupils’ use of informal methods in arithmetic (Booth, 1984). This
means for example that pupils might find it difficult to express the area of a
rectangle in the form A = W x L (where A, L and W are the respective area, length
and width of the rectangle) because their informal method for solving area of
rectangle problems in arithmetic is counting the number of squares in a rectangle.

There has also been considerable research identifying pupils' misconceptions
when dealing with algebraic objects, focussing mainly on pupils' use and
understanding of variable (Collis, 1974; Boot.1, 1984; Kichemann, 1981; Wagner,
1981). This research suggests that many pupils lack -.«erstanding that a letter can
represent a range of values (Collis, 1974; Booth, 1984; Klchemann,1981) and lack
understanding that different letters can represent the same- value (Wagner, 1981).
They. find it difficult to accept an “unclosed” expression in algebra (for example a +
6) which relates to their difficulty in operating on these expressions (Booth, 1984;
Collis, 1974). They also find it difficult to understand that a systematic relationship
exists between two variable dependent expressions (Kiichemann, 1981).

There is also considerable literature related to pupils’ difficulties with the
manipulation of algebraic objects, but our research has not yet addressed these
issues within a computer contexti

Q, condary Mathematics Individualised Learning Experiment
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FRAMEWORK FOR CATEGORISING PUPILS' USE OF VARIABLE IN
LOGO

By carrying out an ongoing analysis of the situations in which pupils use
variable to define a general procedure in Logo categories of variable use have
been identified (Sutherland, 1988a). We use them to provide a framework for
analysing pupils' understanding of algebra related ideas.

(I) One variable input to a procedure. When pupils use one variable input
they are using variable as a place holder for a range of numbers.

(S) variable as scale factor. In this situation the variable input is used to
scale all the distance commands in a turtle graphics procedure. This type of
variable input can be used by pupils as a way of generalising a fixed procedure
(Fig 1a) without making explicit the geometrical relationships within the procedure.

(N) More than one variable input to a procedure. This category is
concerned with situations in which pupils use more than one variable input to their
procedure often as a means of avoiding expressing a general relationship
between variables within a procedure ( Fig. 1.b).

(O) Variable input operated on within a procedure. In this category any
general relationship between variables within a procedure is made explicit by
operating on one or more variable inputs within the procedure (Fig 1c).

TO TOM :SCALE TOKITE YT :HT TO SQUAN :NUM
LT 90 AT 45 LT 135

PU FD YT REPEAT 4 [FD :NUM RT 90]
BK :SCALE * 60 AT 90 LT 135

PD FD YT FD :NUM*3

FD :SCALE * 60 AT 90 END

LT 45 FO YT

FD :SCALE * 20 AT 90

AT 90 FO YT

FD :SCALE * 20 BK YT

AT 90 AT 90

FD :SCALE *20 FD YT

AT 90 AT 45

FD :SCALE * 20 FD HT

END END

Fig.1 a) Variable as Scale Factor b) More than One Input ¢ ) Variable Operated On

(F) Variable input to define a mathematical function in Logo. In this
category variable is input to a procedure, which acts like a mathematical function,
that is it is operated on within the procedufe and the result is output from the
procedure to be used by another Logo function or command
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TO FUNC X : equivalentto  F(x)= X +4
OUTPUT X +4
END

FRAMEWORK FOR ANALYSING ALGEBRAIC UNDERSTANDING
Our work has primarily been concerned with investigating pupils’

1) Use of a formal language to represent a generalisation
2) Understandings associated with the use of variable

These understandings have been categorised as follows, with reference to the
previously discussed literature:

- Understanding that a variable name can represent a range of numbers

« Understanding that any variable name can be used

« Understanding that different variable names can represent the same value

« Acceptance of "lack of closure" in a variable dependent expression

« Understanding the nature of the second order relationship between two
variable dependent expressions

Using this framework we will now discuss the potential of a computer based
environment on pupils’ developing algebraic understanding.

1) Use of a Formal Language to Represent a Generalisation

The review of literature suggests that pupils often use informal methods which
cannot easily be generalised and formalised. "If children do not have that structure
available in the arithmetic case, they are unlikely to produce (or understand) it in
the algebra case” (Booth, 1984, p.102). In the Logo environment pupils are able
to interact with the computer and negotiate with ==\, peers so that their intuitive
understanding of pattern and structure is developed to the point where they can
make a generalisation and formalise this generalisation in Logo. There is evidence
that in many cases pupils could not do this without both "hands on® interaction with
the computer and discussion with their peers (Sutherland, 1988b).

Our studies indicate that pupils’ ability to use Logo to represent a general method
is linked to their experience of using variable in the category of "(O) Variable
operated on". It is suggested that it is only when pupils are able to use variable in
this category that they have made the break from arithmetical to algebraic thought
(Filloy and Rojano, 1987). Wotk with pupils who have had no previous eéxperience
of "paper and pencil" algebra suggests that these pupils can use variable in
category (O) but that they are unlikely to do so without specific teaching
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sequences directed- at this. idea. In our more recent work with 12-13 year olds
(Appendix 2) we. have presented pupils with problems which specifically need
variable- in"the category (O) as part of their first experience of variable in.Logo.
These pupils are-more confidently able to use variable in this category than pupils
of a similar age group who were part of our previous study. (The: Logo Maths
Project) and who were not subject to such extensive direction.

Our'more recent work with spreadsheets.(Healy & Sutherland; 1988) suggests that
this computer environment provides another context for expressing a
generalisation, but one which appears to be substantially different from the Logo
programming: context. Naming and. declaring the: variable is no longer a.focus and
within a. "mouse. driven" spreadsheet' environment: the generalisation can be
encapsulated without reference to a formal language.

Expressing, a generalisation in either a spreadsheet or Logo language helps to
convince pupils of the validity. of-their generalisation.. We.now-need to study. more-
carefully- what would: constitute a proof for pupils that this computer generated
generalisation is valid and.the-related.implications:for the learning of Mathematics.

2) Understandings Associated With the Use of Variable

Perhaps. the: most important resuit from our studies is that the algebraic.
understandings which pupils develop are closely related to the particular computer
environment and the types of problem situations with which the-pupils have been
engaging. This means that the role of the teacher is crucial in both provoking
pupils to work on problems for-which the use of variable is an essential problem
solving tool and in" providing pupils with information about the constraints on using
variable. within the relevant programming context. Within this section- we will
discuss the. variable related. understandings which pupils derive from working with
Logo.

Understanding that a variable name can be used to represent a range
of numbers. Pupils who have used variable in the category of "(!) One variable
input to a procedure” are likely to have developed an understanding that a variable
can:represent a range of numbers. However pupils understanding of "range of
numbers” is likely to be restricted to positive whole numbers unless. they have
worked on problems in which it is necessary to. use both decimal and negative
numbers. We-have found that when pupils use variable in the category of *(S)
Variable as scale factor" they are provoked to use decimal numbers as input.
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Understanding that any variable name can be used. In a computer
programming context pupils are often introduced to variables with meaningful
variable names (e.g. SIDE or SCALE). Our Logo studies indicate that when pupils
are first introduced to variables they attach too much significance to these
meaningful names and think for example that the name SIDE for the length of a
square conveys some meaning to the computer. We have found that if pupils are
encouraged to use a range of variable names, including "nonsense” names (which
they know have no meaning) and abstract and single letter names (which they will
use in their algebra work) they come to understand that any name can be used.

Understanding that Different Variable Names Can Represent the Same
Value. Pupils overinterpret the constraints on the variable name itself. Algebra
research has shown that pupils do not understand that different variable names can
represent the same value (Kichemann, 1981). Our studies indicate that if pupils
have within their Logo programming experience, defined a procedure with at least
two variables (using variable in the category of “(N) More than one variable input”)
and then in the context of using this procedure assigned both inputs the same
value they are likely to develop an understanding that different variable names can
represent the same value in Logo.

Acceptance of "Lack of closure” in a Variable Dependent Expression.
Our studies indicate that pupils who have used "unclosed” expressions in Logo
either within the context of defining simple functions (see Fig. 2), or within the
context of operaing on a variable have no difficiulty in accepting "lack of closure”
in variable dependent expressions.

Understanding the nature of the second Or< *: Relationship Between
two variable dependent expressions. None of the eight 13-14 year old
pupils who were part of the Logo Maths Project (Hoyles & Sutherland, 1989)
developed an understanding of the nature of the second order relationship
between two variable dependent expressions. Analysis of their Logo experience
indicates that they had never used this idea in Logo. Subsequently a. task was
developed for a group of five 10-11 year old pre-algebra pupils (Appendix 1) in
which they were specifically confronted with this idea. Three of these pupils
showed, by their response to Logo structured interview questions (identical to
those given to the 13-14 year olds) that they had developed an understanding of
this idea. This suggests that it is possible for pupils, if they use this idea during
their "hands on" Logo programming sessions, to develop a related understanding.

O
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This provides evidence that a crucial factor in learning is first the use of an idea
within a problem solving situation.

LINKS WITH "PAPER AND PENCIL" ALGEBRA

As part of the "Longitudinal Study of the Development of Pupils' Algebraic
Thinking in a Logo Environment" (Appendix 1) eight case study pupils worked on
materials which were aimed at helping them make links between their Logo work
and “paper and pencil” algebra. These materials were based on the similarity
between using variable to define a function in Logo and on using variable to define
a function in algebra. These pupils were présented with items from the C.S.M.S2
study in the form of a structured interview in order to probe whether or not they had
made any links to a "paper and pencil* algebra context. The results of these
interviews indicate that pupils can make links betwen the two contexts, but the links
which they make are as much related to their particular experiences in Logo as to
the specifically designed linking materials. More research needs to be carried out
in this area with specific attempts made to integrate the computer based and the
"paper and pencil" algebra curriculum.

CONCLUSION

Our studies indicate that within a computer-based environment there does not
have to be a gap between pupils' informal methods and the formal representation
of this method. Pupils, through ihteracting with the computer and discussion with
their peers are able to develop their intuitive understanding of pattern and structure
to the point where they can make a generalisation and formalise this generalisation
in Logb. For some p'upils in particular the interaction with the computer appears to
play a crucial role in their developing understanding of a general method.

We have found that Logo experience does enhance pupils' understanding of
variable in an algebra context, but the links which pupils make between variable in
Logo and variable in algebra depend very much on the nature and extent of their
Logo experience.This suggests that it is the using of an idea which is the crucial
factor influencing understanding. We need to carry out more research both to
understand more about the mathematical processes in which the pupils are
engaged when working in a computer-based environment and to discover how
best to integrate pupils' computer based experiences with a developing
mathematics curriculum.

2 As part of the research programme “Concepts in Secondary mathematics and Science” just under
@ s aged 14+ were tested on their understanding of algebra (kiich: rnann, 1981).
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Appendix 1: A Longitudinal Study of Pupils’ Algebraic Thinking in a Logo
Environment

This research was carried out by the author for her Phd thesis (Sutheriand, 1988).
it was both part of and an extension of the Logo Maths Project (Hoyles &
Sutherland, 1989). The research consisted predominantly of a three year
jongitudinal case study of four pairs of pupils programming in Logo during their
"normal” mathematics lessons. The data collected consisted of video recordings of
all their Logo sessions. In addition pupils were individually presented with
structured Logo programming tasks and individually interviewed to probe their
developing understanding in both a Logo and a "paper and pencil” algebra
context. A subsidiary one year study was carried out with a group of eight pre-
algebra 10-11 year old primary school pupils.

Appendix 2: The Role of Peer Group Discussion in a Computer Environment
(1988-1989)

This is an ongoing project funded by the Leverhulme Trust and carried out by the
author in conjunction with Lulu Healy and Celia Hoyles. One of the aims of the
project is to investige the relationship between pupils’ negotiation of a
generalisation in natural language and their formal representation of this
generalisation.  Pupils (aged 12-13) work in Logo, a spreadsheet and a "paper
and pencil” mathematics environment. The data collected consists of video tapes
of four pairs of pupils working in all three environments.
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Verbal Evidence for Versatile Understanding of Variables

in a Computer Environment

Michael Thomas & David Tall
University of Warwick
U.K.

We -have previously reported (Fhomas and Tall, 1986, 1988) on experiments
demonstrating the value of a computer-based pre-algebra module of work in.aiding
11 and 12 year-old pupils to reach a higher.level of understanding of .the use of
letters in algebra than that found in a more traditional approach. We have also put
Jorward the hypothesis ‘that one reason for this success is the way “cognitive
integration” (Thomas 1988) of the child’s globaliholistic and serialistianalytic
cognitive abilities leads to versatile thinking. Furiher, this may be actively promoted
‘using the “enhanced Socratic mode” of teaching (Tall 1986) using the computer as a
rresource for teacher demonstration, pupil exploration and discussion to develop
appropriate concept imagery. This paper considers evidence in support of the theory
from interviews with the students involved, taken six months after the computer
‘treatment.

“Some Theoretical Considerations

When:algebra isperceived, and hence taught, as an essentially logical, serialist activity with
little or no recourse.to-either its-inherent structure or its underlying concepts -.such as the use of
letters.as generalized numbers or variables - one would expect this-view of algebra‘to prevail
among pupils. ‘A substantial body of research points to just such a lack of understanding as
contributing to poor ‘performance in algebra throughout secondary schoo! ‘and beyond
(e.g.Rosnick and Clement 1980, Matz 1980, Kiichemann 1981, Wagner, Rachlin and Jensen
1984). The results of our work have suggested differential effects-between the computer-based
approach .to algebra, with_its emphasis on letters as generalized numibers and the traditional
skill-based type of module with its emphasis on acquiring'manipulative skills. It seems that.the
computer 'work promoted a deep.conceptual understanding ‘better, while the other work, as
expected, initially facilitated better surface skills. However, when the computer module was
combined ‘with the skill-based one then it led to a superior overall performance without
detrimental effect on skills. It is our view that the computer is providing an-environment in
which pupils acquire a global/holistic view of algebraic concepts - relating the symbols on paper

to meaningful ideas such as the mental picture of a letter representing a variable number-- -in

ERIC 215

r e
Full Tt Provided by ERIC.



214

contrast to the more serialist/analytic view nurtured by emphasizing the operation on symbols.
An illustration of this is the following type of question, with which many will be familiar:

Factorize (2x + 1)2 - 3x(2x + 1).

Many pupils faced with this type of question seem locked into a sequential/operational mode of
working where they “multiply out the brackets”,“collect together like terms” and factorize the
resulting quadratic function. Few are able to apply the versatility of thought to switch from an
analytical approach to a global/holistic one which “chunks” together the symbols 2x+1 as a
single conceptual entity, allowing them to move more directly to the answer. We believe that the
activities carried out in the computer context encourages flexible mental constructs more likely

to lead to this global/holistic view.

Evidence For Versatility and Conceptual Understanding

Conceptual understanding in algebra is not evidenced by test performance alone. Correct
answers to routine problems may be produced by incorrect understanding and incorrect
responses to non-routine problems may have a sensible foundation. In order to examine pupil’s
understanding of algebra beyond the test performances indicated in Tall and Thomas (1988), we
conducted a number of interviews with selected students and administered a broadly based
questionnaire to see if certain phenomena which occurred in the interviews were replicated on a
wider scale.

The Intérviews

The teaching experiment (Tall & Thomas 1988) had comprised two groups of 13 year-old
secondary-school children taken from six mixed ability fomm  .ranged into 57 matched pairs.
The experimental group used the computers for three weeks, following a module of
investigational activities, while the controls followed their traditional algebra course. Six
months later, all the pupils were given the same traditional module for a two week period, the
controls as revision, the others for the first time.

After the post-test in this experiment a cross-section of 11 experimental and 7 control pupils (of
comparable performance on the post-test), were given a ser;\i-stmctumd interview lasting about
twenty minutes. During the interviews, which were recorded, the pupils were required to
attempt certain key questions and to explain their thinking and strategies. The following
examples taken from the transcripts of the interviews show a marked difference between the
experimental pupils, who often attempted to give a relational explanation for their reasoning,
and control pupils, who were more likely to be concerned simply with carrying out routine
algebraic processes.
O
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Question : Solve 2p - 1 = 5.

The following response from a control pupil illustrates the confusion that may arise from
mechanically carrying out routine processes:
Pupil 11 : 2p minus 1 equals 5. If you add the 1 to the 5 that's 6 so, because there's no
other minus p, | forget the p and do the 2p minus 1 equais. iIf you add the 1 o the 5
which is 6 and then you take 1 fromthe 6... No, | don't get that. | know I've done it but...
Interviewer : What would the value of p be did you say?

pupil 11 : Six.

Here the explanation is solely in terms of the operations with no reasons for their use being
cited. This may be compared with the following reasoning from one of the experimental group

pupils :

Pupil 2 : Well find out what minus 1 so you would add 1 1o that so you get rid of the 1,
so that would be 6 and then its obvious that 2 times 3 equals 6, so p would be 3.

The pupils in the interviews were also asked to compare the above equation with
25-1=5.

This was in order to see if they were able to conserve equation (Wagner 1977) under a change
of variable. A distinct difference in the type of comment between the two groups shows the

superior understanding in this area of those pupils who had used the computer.

Control group :
Those uﬁsure of the relationship :
Pupil 10 : s could be 3 as weli.
Pupil 12 : So s could be 3 as well.
Pupil 13 : They could both equal 4.
Those who needed to solve both equations:
Pupil 11 : Well what | have put is 2p equals 6 and 2s equals 6.

Pupil 14 : 2s...add the 1 and 5, 6 er 2 and 2, 6, 3times, so s is 3 as well.
Experimental (computer) group :

Pupil 1 :1 can say that p and s have the same value...it's the same sum.
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Pupil 2 : Well they are both the same...Yes, because they are both the same but
different letters.

Pupil 3 : They are both...p and s both equal 3.
Pupil 4 : It's just a different letter but it would have to be 2 times 3 minus 1equaito5.
Pupil 5 : The same. Just using a different letter.

Pupil 8 : It is 3 the p and s...because they are basically the same sum, but are different
letters.

Pupil 9 : They are both the same. It's the same apart from the letters,exactly the same
except the letters.

These pupils offer verbal evidence of a global/holistic view of the equations enabling them to
develop the understanding of conservation of equation by seeing the common structure of the
equations. This concept of conservation of equation under a change of variable was further
tested with several of the children by the use of an extension to the first question above to :

Solve 2(p + 1) -1=5.

The insight of the computer group pupils is shown by -their comments:

Pupil 1 : Yes, p equals 2.
Interviewer : How did you work that out then?
Pupil 1 : Well its the same, but its plus 1, so minus 1 add 3.

Pupil 2 : Oh it would be 2.
Interviewer : Can you tell me why?

Pupil 2 : Because p plus 1 if that's 3 its the same as the last one only the p is less
because you've got to add 1 to the sum.

Deep and powerful insights such as these, which are facilitated by a global/holistic view leading
to the structure of the equations was not matched by the conuuis. Instead we have:

Pupil 15 : Say p plus 1, there is already 1 plus p plus another one, I'd say that was 2p,
and then outside plus another 2 that is 4 minus 1 is 3 | would say.

Interviewer : So what is the answer?
Pupil 15 : p equals 1 | would say.

Extension of algebraic ideas

Research has indicated that the type of algebraic equation where there are variables on both
sides of the equation is considerably more difficult, since it involves algebraic manipulation (of
variables) rather than arithmetic (e.g. Herscovics and Kieran 1980). Neither experimental or
control pupils in the the experiment had been taught to solve this type of equation. It was
hypothésized that the relational understanding of the experimental pupils would lead to their
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greater ability in handling such equations. Several interviewees were asked to tackle the

question:

Solve 3x -5 =2x + 1.

The replies again gave evidence of superior understanding on the part of those who had used

the computer.

Controls :
Pupil 15 : I'd say it was minus 2x and here you've got 3x, 2x plus 1x,s0 I'd put that as 1x
[Writes 3x -5 =2x + 1 = 1x]
Interviewer : And is that the answer?
Pupil 15 : Yes

Hence, although the surface operation of subtracting 2x is carried out it does not seem to be in
the context of any understanding of an overall purpose in the question, and no reasons for the
operation are given. One of the pupils in this group had lost sight of the objective altogether:

Pupil 12 ; I'm trying to work out how you could take 5 from that to leave that.
Interviewer : Can you see any way of doing it?
Pupil 12 : You would have o find the value of x before you could start.

In contrast, the experimental group pupils given this question responded more purposefully :

Pupil 1 : Well the value of x must be the same because it's in the same sum... I'm
thinking that maybe take x some number away from both sides. That wouldn't leave
anything in there to go on. You'd have nothing there it you take 2x away and 1x minus
5-equals plus 1.

[writes x - 5 = +1]
Interviewer : So how might you do it now?

Pupil 1 : | was thinking maybe get rid of this and forget about that 4 by putting, adding
5 to both sides - that should do it - so it would be 3x equals 2x plus 6...try to take x
away.

[Writes 3x = 2x + 6]

Shortly after this he solved the equation.

Pupil 2 : You would add 5 to that to get rid of the minus 5 and then that plus 6 so it
would be 3x equals 2x plus 6....Well that plus 6 has got a bigger x because 2x plus 6
equals 3x, that means another 6 would be equal (o x, 50 make that 3x as well.. Well x
equals 6.

We can see that this pupil starts off with a serialist/analytical approach, but accompanied by
clear reasons for the steps taken. However, in the middle of the question the pupil is versatile
enough to change viewpoint to a global/holistic one and see the equation-in terms of its

balancing structure, enabling the equating of an extra x with 6.
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The Questionnaire

A questionnaire given to 147 pupils, whilst not giving the opportunity to follow up answers as
in an interview, gave evidence of a wider dispersal of the phenomena found in the interviews. It
included three types of questions; one where they were required to explain, with reasons,
whether two algebraic expressions were equal or not; one where they had to explain to an
imaginary visitor from Mars the meaning of some algebraic notation and the third where harder
algebraic questions, beyond the level they had studied, were to be attempted.

Experimental| Control

Question Proportion | Proportion z P
Correct Correct

Isg the same as 6+7-? 0.76 0.44 3.38 <0.0005
Is 2+3c the same as 5¢ ? 0.41 0.31 1.24 n.s.

Is 2(a+b) the same as2a+2 ?  0.57 0.31 2.69 <0.0005
Solve 13-y=2y+7 0.43 0.27 1.83 | <0.05
Simplify 5h-(3g+2h) 0.24 0.08 216 | <0.025
Solve 17-3e>2 0.31 0.13 2.37 <0.01

Table 1-A corﬁparison of some questionnaire facilities

Experimental| Control

Error Proportion | Proportion z p
Making Error | Making Error
3+m=3m 0.09 0.27 2.54 <0.01
ab=a+b 0.06 0.13 1.77 <0.05
b-2xc=(b-2)c 0.09 0.23 1.77 <0.05
3+2m=5m 0.04 0.13 1.57 n.s.

Table 2 - A comparison of some questionnaire errors

The results in tables 1 and 2 from selected, and the fact that the controls did not perform
significantly better than the experimental group on any question, support the hypothesis that the
experimental students have a better understanding of algebraic notation. Moreover, it also seems
that one of the main failings of the controls is that the traditional skill-based module has
encouraged a predominantly left-to-right sequential method of processing algebraic notation. In
contrast to this, the computer group, seem to have a better, more global, view of the notation
which in turn has reduced the occurrence of some of the more common notational errors such as
conjoining in addition and the wrong use of brackets. An interesting example of this, although
arithmetic rather than algebraic, is the first question in table 1, where many of the controls did
not consider the two notations as the equivalent because

573- is afraction, 6+7 is a sum".

This is a good example of a response which is based on sound conceptual reasoning, but one
that is limited because it implies the inability to encapsulate the process 6+7, as a single
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conceptual entity. The encapsulation occurred far more often amongst the computer group,
again underlying what we believe is a more flexible global view.

The difficulties that pupils had with the question

Is 2(a+b) the same as 2a+2b ?

again revealed the difference between the symbols representing a process and the result of that
process as a conceptual entity. So firmly had it been ingrained in them that “calculations inside
brackets must be done first” that the symbol 2(a+b) is read as “first add a and b, then multiply
by 2 whilst 2a+2b requires both multiplications to be carried out before the addition, that they
saw the processes as being different rather than the results being the same. Even so, the
experimental group were once again more likely to attempt to surmount this conceptual obstacle,
one student proposing an interesting way out of his dilemma:

Pupil 1 : Well its brackets, so you've got to add these two numbers before you times it

(]

Interviewer : You can't see any way round that problem?

Pupil 1 : I know there is one, but | can't find i. [...] Unless you went along and put a+b
equals ¢ and then put 2 times ¢, but that's a long way round.

Conclusions and further research

Through interviews it is manifestly clear that the students involved in the enhanced Socratic
approach had developed a more versatile understanding of the concept of variable, .in which .
they were able to encapsulate the algebraic processes as objects and to chunk information in
expressions in a way which enabled them to take a more versatile approach to solving algebraic
problems. However, it should be noted that it has not proved possible to follow up the initial
three week algebra module with further algebraic experiences using the computer and,
subsequently, the classes have been reorganized in a way which has led to a variety of different
experiences for pupils matched in pairs during the experiment. Some eighteen months after the
delayed post-test, a similar test has revealed that the difference between the experimental and
control groups is no longer statistically significant. We have still to administer interviews to see
if there remain differences detectable by these means. This suggests that, although cbmputer
experiences may be able provoke different kinds of understanding in the short and medium
term, if these experiences are not continued then their effect may wane in the face of the

overwhelming influence of more recent experiences.

O
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CONCEPTUAL ADJUSTMENTS IN PROGRESSING

FROM REAL TO COMPLEX NUMBERS

Dina Tirosh Nava Almog
Tel-Aviv University Beit Berl College
and Kibbutzim College

This study assesses the difficulties that high school students experience when
progressing from real to complex numbers. It was found that students are reluctant
to accept complex numbers as numbers, and that students incorrectly attribute to
complex numbers the ordering relation which holds for real numbers. The paper
presents some sources of these difficulties and suggests ways to help students

overcome them.

One of the main concepts in mathematics is that of number. Students learn various num-
ber systems starting with the natural numbers, and progressing through integers, rational,
real and complex numbers.

The transition from one realm of numbers to an extended one requires a major adjust-
ment in each student’s concept of number. One major difficulty for students is realizing that
the new elements in the extended domains are numbers even though these numbers often
differ in appearance and propertieé from those in the less-extended domains. Another
problem for students is their tendency to incorrectly attribute properties of the less-extended
domains to the more general ones.

The difficulties that children and adolescents encounter when progressing from natural
to rational numbers have been extensively investigated. Researchers found that many stu-
dents do not accept rational numbers as numbers (Kerslake, 1986); also, students tend to in-
correctly attribute properties of operations with natural numbers (such as that multiplication
never makes smaller) to all rational numbers (Bell, 1982; Hart, 1981; Fischbein, Deri, Nello,
& Marino, 1985). These attributions influence the students’ beliefs about numbers and arith-
metic operations, and thereby limit their ability to solve certain kinds of word problems involv-
ing rational numbers.

However, the difficulties that students encounter in other extensions of the number sys-
tem are rarely discussed in the research literature. We found only one study (Vinner, 1988)

that deals with the extension from real to complex numbers. Vinner's study shows that many

erlc 223

Aruitoxt provided by Eic:



222
students find it extremely difficult to accept complex numbers, such as the non-digit number

i, as numbers. The present study explores this issue. The two principal questions addressed
are:
1. Do students accept complex numbers as numbers?

2.Do théy incorrectly attribute properties of the real number system to the complex one?

r METHOD

Subjects: Seventy-eight eleventh-grade students from three high schools in Israel par-
ticipated in this study. The students had just finished eight lessons on complex numbers, and
completed a summative test which included calculation examples and equations involving
complex variables. Ninety-six percent of them passed, getting at least 60% of the answers
correct.

The three mathematics teachers introduced complex numbers as an extension of the
field of real numbers. The solution’of the equation x2=-1 was denoted by the imaginary num-
beri, and other imaginary nurﬁbers were obtained by multiplying i by real numbers. Complex
numbers were shown in the general form a+bi, where a and b are real numbers. Equality of
two complex numbers and arithmetical operations with complex numbers were defined. The
geometrical representation of complex numbers in the Gauss plane was introduced. Most of
the class time was spent on practicing the operations and solving equations involving com-
plex variables.

Instruments: Post-test and delayed post-testquestionnaires were developed to examine
the students’ perceptions of complex numbers. The post-test questionnaire included the fol-
lowing four items:

1. Circle the numbers in the following list:

20 3 0 025 V-3 -0.434334333
N4 a+b 34  3+2i 023 53
2. Solve the following equations:
a. x24x+2=0 b. x2+9=0.
3. Answer "true"” or "false” and explain your choice of answer:

For every two given numbers p and g, one of the following relationships holds:

p<q p>q p=q
4. For each of the following pairs of numbers, write >, <, or = (only if possible):
23 2 0.3 0333 -0.16  -0.166 i 4+

The delayed post-test included similar items. For example, the equation X242x46=0 in

the delayed post-test is similar to equation 2a above.
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Interviews: Semi-structured individual interviews of about an hour each were conducted
with 14 of the students in order to obtain more information about their concepts of complex
numbers. Students were encouraged to explain their answers to the questionnaire, and to
answer other related questions such as: "When you key V-3 into a calculator, you getan error
message. Why?" The interviewees were asked for their criteria for determining whether a
given entity is a number, and for their opinions on the existence of ordering relation among
numbers.

Procedure: The post-test questionnaire was administered to the students at their regular
classesimmediately after they had finished their studies of complex numbers. A delayed post-
test was given two months later. The individual interviews were conducted a few days after
the students had responded to the delayed post-test. The interviews were tape recorded and
transcribed. Systematic data on the taped interviews are not presented here; excerpts il-

lustrating the students’ reasoning are included.

RESULTS

1. Identifying complex numbers as numbers

Table 1 shows that immediately after instruction, most students recognized complex
numbers of the form a+bi (a=0, b=0) as numbers. They were less willing to accept pure im-
aginary numbers as numbers. Two months later, there was a significant decrease in the num-

ber of students who responded that complex numbers and pure imaginary numbers are

numbers.
Table 1: Recognition of complex numbers as numbers (%)
ltem Post-test Delayed post-test
Yes No Yes No
ls V-3 anumber? 69 3t 50 50
Is V-4 anumber? 69 31 49 51
Is 3+2i a number? 87 13 65 35

The students’ solutions to quadratic equations with negative discriminants (item 2) also
showed a significant decrease in correct responses from post-test to delayed post-test; Im-
mediately after instruction, 84% of the students solved the quadratic equations correctly, 4%
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of them correctly claimed that there is no real solution, 6% argued that these equations have

no solution, and 6% did not respond. Two months later, however, only 17% of the students
solved these equations correctly. Most of them (83%) claimed that quadratic equations with
negative discriminants have no solutions.

Students’ decisions on whether complex numbers are numbers stem from their concepts
of what numbers are. Those who perceived complex numbers as numbers described a num-
ber as an entity that one can do mat_hematics with (calculate, solve equations, etc.) or as an
entity that is represented by a point on a real line or on a plane.

Students who did not perceive complex numbers as numbers claimed that numbers are
entities which are written with numerical digits, entities which are represented by points on
the real line, or entities which describe positive or negative quantities. Some of these stu-
dents viewed complex numbers as operations rather than as numbers. These students ar-
gued that the expressions 3+2i and V-3 describe operations that still need to be executed.

Other arguments used by students to counteract the statement that complex numbers
are numbers reflect their uneasiness about the non-digit number i, and their confusion over
the terms real, imaginary and complex numbers. Some of them claimed thati was a variable
and not a number. Others volunteered that the term “imaginary numbers” implies something
that does not exist, is not real, is something strange, is not a number. They reasoned that
complex numbers are composed from a real part, which is a number, and an imaginary part
which is not a number -- hence complex numbers are not numbers.

The error sign displayed by a calculator when numbers such as V=3 are keyed in was a
source of support to the claim that imaginary numbers are not numbers. Students argued that
since the error was the same as for 2/0, which is not a number, it followed that V-3isnota

number either.

2. Understanding that the ordering relation "less than" does not hold for the complex num-

ber system.

The students were taught that the ordering relation "less than,” which holds for the real
number system, does not hold for the complex number system. However, only a small per-
centage of the students realized that some unequal complex numbers are incomparable ac-
cording to the ordering relation “less than" (see Table 2).

Some students explained that the geometrical representation of complex numbers as
points on a plane illustrates that it is impossible to determine which of two given unequal com-
plex numbers is greater than the other. Others claimed that complex numbers do not describe

quantities and therefore are incomparable.
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Table 2: Responses to the statement: “For every two glven numbers p and q,

one of the following relationships exists: p=q; p>q; p<q" (%)

Post-test Delayed post-test
True 88 95
False 12 5

Most students argued that the ordering relation "less than" holds for all numbers. Com-
mon justifications were that the three conditions p > q, p < q. and p=q described the entire
range of possibilities; and that numbers describe quantities, so any given number must be
equal to, greater than, or smaller than any other given number.

The information in Table 3 is consistent with that in Table 2. Few students understood
that the given numbers are incomparable by “iess than". Students who claimed that i<i+4 per-
ceived the symbol "+“ as signifying addition in its usual sense, and argued that when a posi-
tive numberis added to another number, the sum is greater than the first number. Those who
claimed that 2-3i>2 said that i is a negative number because it is related to -1, so -3iis a posi-

tive number.

Table 3: Responses to the Item: Write <, >, or = whenever possible (%)

i 4+i 23i___ 2
Post-test Delayed posHest Poét—test Delayed post-teét

iandi+4 are 2-3iand 2 are

incomparable 4 4 incomparable 8 5
i> 4+ 0 0 2-3i>2 12 12
i<d+i 95 96 2-3i<2 ) 78 82
i=4+i 0 0 2-3i=2 1 1
i#4+ 1 0 2-3i#2 1 0

O
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CONCLUSIONS AND IMPLICATIONS

This study pointed out two major difficulties that students encounter when progressing
from real to complex numbers: reluctance to accept complex numbers as numbers, and a ten-
dency to incorrectly attribute to complex numbers the ordering relation "less than" which holds
for real numbers.

These are due largely to the students’ perceptions of numbers as (1) entities which are
written with numerical digits, (2) entities which are represented as points on the real line, or
(3) entities which describe quantities. These perceptions are anchored in the students' rela-
tively long experience with numbers; therefore, the students find it difficult to assimilate imagi-
nary and complex numbers into their scheme of number.

Another major cause for these problems is that some students view complex numbers
as operations that need to be executed. The fact that a calculator does not differentiate be-
tween complex numbers and expressions which are not numbers contributes to the students'
reluctance to integrate these numbers.

Mathematics educators should be aware that complex numbers do not fit readily into
their students’ notion of what a number is. They should attempt to help the students over-
come this obstacle. Some ways of increasing the students' acquaintance with complex num-
bers are:

(1) Relate the extension of the real number system to previous extensions of the con-
cept of number, starting with the natural numbers ahd progressing through integers, rational
and real numbers.

(2) Debate the gains and losses which accompany each of these extensions (e.g., gain-
ing closure under subtraction and losing the existence of the smallest number when progress-
ing from natural numbers to integers; gaining the ability to solve every polynomial equation
and losing the ordering relation when progressing from real to complex numbers).

(3) Encourage students to reflect on the development of their own concepts of numbers.

(4) Represent other views of complex numbers (e.g., as ordered pairs of real numbers).

(5) Demoﬁstrate practical uses of complex numbers in mathematics and in otherdomains
such as electronics.

The difficulties that students face when progressing from real to complex numbers are
similar to those found during extensions of other number systems. Therefore, beyond the
issue of complex numbers, we suggest that teachers use the concept of extended systems
as a formal mathematical tool at the middle and high-school levels. This concept may help
students grasp the idea of complex number by taking entities which look different and group-

ing them under a single handle: "number".
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When discussing this concept with students, it can also be beneficial to describe the dif-
ficulties that mathematicians had experienced when extending number systems. Such en-
lightment may help students develop a perception of mathematics as a man-made domain
(see Kleiners' paper, 1988).

A final comment, not directly connected to the main theme of this paper: some students
interpret a calculator’s error sign, which appears when imaginary numbers are keyed in, as
an indicator that these entities are not numbers. It is important to discuss the limitations of
calculators, and to explain that there are numbers that calculators cannot represent. It should
be stressed that a calculator does not determine whether a certain entity is a number; that

decision is a theoretical, purely mathematical one.
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DOES THE SEMANTIC STRUCTURE OF WORD PROBLEMS AFFECT
SECOND GRADERS' EYE-MOVEMENTS?
L. Verschaffel (1), E. De Corte and A. Pauwéls
Center for Instructional Psychology

University of Leuven, Belgium

In the present study eye-movement registration was used to examine the
influence of the semantic structure of one-step addition and
subtraction word problems (simple versus” complex) on the eye-fixation
patterns of high-ability and low-ability second graders. Semantic
complexity had a significant effect on the partition of the total
fixation time over the words and the numbers in the problem: the
proportion of time spent on the words was higher for complex problems
than for simple ones. This result provides additional support for the
hypothesis that semantic processing is a crucial component in a
skilled solution process. On the other hand, the effect of the pupils’
ability level was not significant. Those findings are interpreted
taking into account the available theory on word problem solving.
INTRODUCTION

During the past decade children's solution processes for one-step
addition and subtraction word problems have been extensively
investigated wusing techniques such as paper-and-pencil tests,
individual interviews, and computer simulation. Recently, we started to
apply eye-movement registration as a new data-gathering technique. In a
first exploratory eye-movement study we analyzed the eye-movement
behavior of nine high-ability and eleven low-ability first graders
while reading and solving a series of eleven elementary addition and
subtraction word problems (De Corte & Verschaffel, 1987). while the
main goal of that pioneering study was to explore the usefulness and
the limitations of eye-movement data as access to young children's
solutions of word problems, it yielded already some remarkable
empirical findings. First, it was found that the high-ability children
looked more and longer at the non-numerical elements in the problem

text than the low-ability children. Second, our data supported the

frequently heard statement that errors on word problems are due to
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inattentively reading the problem; in fact, pupils sometimes answered
without even casting a glance at some crucial parts of the problem
text. Due to several technical and methodological problems encountered
during the gathering and the analysis of the eye-movement data, the
results of that pioneering study could not be considered as strong
evidence in favor of those conclusions; however, these findings
suggested hypotheses for further study. Therefore, the main goal of the
present investigation was to test several hypotheses concerning the
processes underlying skilled and unskilled word problem solving in a

more controlled and systematic way.
THEORETICAL FRAMEWORK
Solving one-step arithmetic word problems

In the late seventies, Greeno and his associates introduced a
theoretical model of skill in solving elementary arithmetic word
problems (Riley, Greeno & Heller, 1983). Two basic assumptions
underlied theirr approach: (1) word problems that require the. same
formal arithmetic operation can be described in terms of different
semantic structures underlying the problem, and (2) the construction of
an appropriate representation of that semantic structure is a crucial
aspect of a skilled solution process.

Concerning the first assumption, Greeno c.s. constructed a
classification scheme for elementary addition and subtraction word
problems based on their underlying semantic relations. They
distinguished three main categories of problems (Change, Combine, and
Compare), and within each of the three problem types, further
distinctions are made depending on the identity of the unknown
quantity. Furthermore, Change and Compare problems are also subdivided
depending on the direction of the event (increase or decrease) or

tionship (more or less) respectively.
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Referring to the second assumption, Greeno c.s. developed a
theoretical model in which semantic processing is considered to be the
most important component of a skilled solution process. According to
that model, one first constructs a global, internal representation of
the problem in terms of sets and set relations using semantic problem
schemata. On the basis of this internal representation, the problem
solver then selects and executes an arithmetic operation to find the
unknown quantity in the problem.

Furthermore, Greeno c.s. (1983) identified three different levels
of problem-solving skill, each associated with a distinct pattern of
correct answers and errors on the problem t.ypes within the three main
categories. They also developed computer models that simulate these
levels of performance. The main difference between those levels relates
to the way in which problem information is represented. Models with
more detailed semantic knowledge refer to more advanced levels of
problem-solving skill, and therefore, they can solve more problems of a
certain categorié. ‘

It is important to remark that according to Greeno c.s., the main
difference between good and poor préblems solvers does not lie in the
presence or the absence of semantic processing respectively; poor
problem solvers try to construct a semantic problem representation too,
but due to their less-developed schemata, they do not succeed in
building an appropriate one. This view contrasts with another possible
explanation for the errors of poor problem solvers, namely that they
are mainly due to the absence of a semantic processing stage. According
to this latter view those children apply a rash and impulsive style of
responding, in which the selection of the arithmetic operation is not
based on a careful reading and a thorough analysis of the semantic
relations between the known and the unknown elements of the problem,

but on superficial strategies such as always adding the two given
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numbers or looking for keywords in the problem text (see e.q.

Goodstein, Cawley, Gordon & Helfgott, 1971).
Eye-movements and cognitive processes

The use .of -eye-movement registration to unravel children's internal
processes when solving math problems, is a recent development. In .our
research we took as a starting point the two fundamental .assumptions
formulated by Just and Carpenter (1987) as a result of their work in
the area of reading, namely the immediacy and the eye-mind hypothesis.
In terms of ch%ldren's word problem solving, the immediacy hypothesis
implies that a pupil does not postpone the interpretaﬁion of .a word or
a sentence until he has read the whole problem, but instead tends to
process -each .element from ‘the first time when the cognitive system has
access to it. The eye-mind assumption implies for example that when a
pupil is fixating words we assume that he is mentally processing them,
and that when he is fixating the numbers, he is 'doing' something with

those numbers (e.g. calculating).
METHOD AND HYPOTHESES
Subjects, tasks and procedure

Twenty second graders (10 high and 10 low-ability pupils) participated,
in our‘study. These children were selected among the whole sample of
second graders of a local school, on the basis of their scores on a
paper-and-pencil test consisting of a series of one-step addition and
subtraction word problems. They were .also administered test for
technical reading and computational skills.

During the eye-movement session each child had to solve 16 one-
step addition and subtraction word problems: half of thg problems had a
simple semantic structure; the other half a complex one. The simple

\) “lems were Change 2 or Combine 1 problems; the complex tasks had a
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Change 5 or a Compare 6 structure (Riley e.a., 1983). These 16 items
were formulated and presented in a way that allowed us to control for
all possible task wvariables that were not central to the present
investigation, such as the amount of sentences, words and characters in
the problem, the complexity of the grammatical structures, the
technical reading difficulty of the names of the persons and the
objects in the problem, and the size of the given numbers.

The word problems were presented on a tv-screen. while the pupils
read and solved the problems, their eye-movements were registered with
DEBIC 80, a system that uses the "pupil center-corneal réflection"
method as its measurement principle. Every 20 milliseconds the system
registrates the X- and Y-coordinates of the subject's point of regard.
This 4raw material was subjected to a reduction program, that
transforms these data into a series of consecutive fixations with a
particular duration and location. These fixation data were the basis
for calculating the dependent variables, the most important ones being
the proportion of the total fixation time spent on the words and on the
numbers in the problem, and on those parts of the visual field that did
not contain any problem information. However, as the fixation time
spent on those "empty" fields was less than 5% of the total fixation
time, we will neglect those fixations. Consequently, we will describe
our hypotheses and our results as if the total fixation time was the
sum of the fixations on the words and on the numbers, the latter being

the complement of the former.

Hypotheses

The first hypothesis was that problems with a complex semantic

structure will elicit a larger proportion of the total fixation time

on words than simple problems. The argumentation underlying this

hypothesis can be summarized as follows: problems with a more complex
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semantic structure elicit more complex understanding and reasoning
processes before the computational activities with the given numbers;
this is reflected in more and longer fixations on the non-numerical
elements of the problem text.

Second, we expected that high-ability children will spend a larger

proportion of their total fixation time on words than their low-ability

peers. The basic assumption underlying this hypothesis is that
constructing and manipulating a global problem representation is a
major characteristic of a skillful solution process; low-ability
children, on the other hand, will immediatly jump into calculations
without trying to really understand the problem situation, or even
without reading the whole problem. This latter assumption is based on
the available literature on children's use of superficial solution
strategies on the one hand.(see e.g. Goodstein et al., 1971) and on the
results of our own exploratory study on the other (De Corte &
verschaffel, 1987). As said before, this hypothesis is incongruent with
Riley et al.'s (1983) theoretical analysis of skilled and unskilled
word-problem solving.

Finally, we also expected an interaction between problem
complexity and problem-solving ability. More precisely, it was

predicted that the difference between the simple and the complex

problems_in the proportion of the total fixation time on words, will be

greater in the high-ability than in the low-ability group. This

interaction hypothesis is argued as follows. As high-ability children's

"semantic" in nature, the complexity of the

solutions are assumed to be
semantic structure will strongly determine the speed at which they
succeed in building an appropriate problem representation. If low-
ability children's choices of an arithmetic operation are based on

stereotyped, superficial strategies that do not take into account the

cTmntic structure of the problem, their eye-movement patterns for
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simple and complex problems will be much more alike.

To test the hypotheses mentioned above, the dependent variable was
subjected to an analysis of variance with the semantic complexity of
the problem and the pupil's problem-solving ability as independent
variables (2%2 split-plot design). Because significant correlations
were found between the pupils' scores on the word-problem-solving
pretest on the one hand and their reading ability (r=0.46, p>0.05) and
computational ability (r=0.67, p»>0.01) on the other, we also carried
out analyses of covariance with reading or computational scores as

covariates.
RESULTS

First, analysis of variance revealed a significant effect of problem
structure on the proportion of fixation time on words (F(1,18)=5.35,
p<0.05). While .56 % of the fixation time was spent on.the words in
simple problems, this percentage increased till 61% for complex ones.
This is in accordance with our hypothesis.

Second, high-ability pupils tended to look proportionally more at
the words (61%) in the problems than their low-ability peers (56%).
Although these percentages were in line with our second hypothesis,
the effect of problem-solving ability did not reach the 5% significance
level, neither with reading scores, nor with computational scores as

covariate. Finally, we did not find an interaction effect.
CONCLUSIONS

The hypotheses of our study were only partially confirmed. Problem
complexity had a significant effect on the proportion of fixation time
on words. Since the simple and the complex problems in our study
differed only with respect to their semantic structure this finding

provides additional support for the hypothesis that the construction of
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an appropriate problem representation is a crucial component of skilled
word problem solving. On the other hand, we did not find a significant
effect of problem-solving ability. This finding is incongruent with the
frequently heard statement that low-ability children's bad performances
on word problems are mainly due to the application of. superficial
strategies, such as always adding the given numbers or looking for
particular keywords. An alternative explanation that fits better with
the present eye-movement data, is that the low-ability children's
failures are not the result of the absence of a semantic processing
stage,. but of their faulty semantic analys;s, which in turn can
probably be attributed to a lack of sophistit?ated conceptual knowledge
such as semantic problem schemata. This latter explanation is in
accordance with the theoretical analysis of skill in word problem

solving by Riley et al. (1983).
NOTE

(1) L. Verschaffel is a Research Associate of the Nat:.onal Fund for
Scientific Research, Belgium
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The lesson - A preconceptional Stage

Shlomo Vinner
Israel Science Teaching Center

Hebrew University, Jerusalem -

The notions of preconceptional and conceptional stages are discussed.
It is claimed that many students while learning mathematics are in a
preconceptional stage. Namely, it is not that they have wrong ideas
about the mathematical notions. They have no idea at all. In spite of
that, they have to perform on mathematical tasks and to react to
their teachers' questions. Thus, they are involved in a meaningless
communication. This common behavior gets almost no attention in the
mathematical education research which focuses mainly on
misconceptions. The preconceptional stage deserves research efforts.
Before clearing the misconceptions, which are part of the
conceptional stage, we should clarify to ourselves what makes the
transition from the preconceptional stage to the conceptional stage
possible.

On February 20th, 1951, a lesson was given to a young girl by a
middle aged professor. The lesson ended with a homocide. The teacﬁer
assassinated the student. This was unavoidable. The quality of
communication between the teacher and the student was unbearable. The

only way to save the profession of teaching was to kill the student.

Fortunately enough, this happened only on the stage of the pocket
theater in a play by Eugene Ionesco. However, the phenomena of that
lesson occur every day, in every school in almost every mathematics
class. Teachers and students are engaged in a meaningless

communication.
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There are several ways to explain why communication is so bad. Of
course, there is Ionesco's view that meaningful communication between
human beings is impossible. Mathematics educators, as such, cannot
accept this. They believe that meaningful communicaton, at least at
the domain of mathematics, is pbssible and if it does not occur then
there are reasons for it. The reasons that mathematics educators
point at in order to explain communication failures are of two kinds:
1. Misconceptions. 2. Unappropriate mathematical level of the
student. .
The last approach can be considered as the level theory (See for
instance van Hiele, 1987). As to misconceptions, the assumption is
that the student handles meaningfully the mathematical tasks imposed
on him. By "meaningful" we mean that the student associates certain
meaning to the mathematical notions involved in the task. This
meaning is not necessarily the correct meaning but can be considered
as reasonable if you are tolerant and sensitive enough. This is
contrary to the situation where the student does not associate any
meaning to the notions involved. On the other hand, he does not
refrain himself from reacting to the task. This we call a meaningless
behavior. When misconceptions are involved, the student associates to
the mathematical notions a meaning which is different from the
meaning associated to them by the mathematical community. Thus, the
task of the mathematics educator is to explore the misconceptions, to
understand why they were formed and to suggest ways to overcome them.
Comparing now the misconception theory to the level theory, it is not
clear how they are related. Assume a student at the k-th level of a
certain mathematical domain performing on a k+j-th level task (j>0).
The level theory predicts that a success at such a situation can be
only incidental. But how should we interpret the students' behavior?
Is it a meaningful behaviour resulting from misconceptions or is it a
meaningless behaviour determined by unknown factors which should be
investigated? We are not sure that level theory has made itself
clear about this point. Our impression is that both meaningful and
meaningless behaviors can occur when you aée not at the appropriate
mathematical level of the task. For instance, assume that a student
is at the first level in geometry according to van Hiele theory (van
Hiele, 1987) and he has to deal with rectangles. For him the concept

of the rectangle is a collection of pictures that he saw in the past.
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These are usually pictures of quadrilaterals that have four right
angles and their adjacent sides are not congruent. At the second or
third level of van Hiele theory, a rectangle is by definition a
parallelogram with a right angle. From the first level student's
point of view, a square is not a rectangle. From the teachers point
of view, a square is a rectangle. The meaning the teacher assigns to
"rectangle" is different from the meaning the student assigns to it.
Hence, this is a misconception. On the other hand, if a student is
in the first van Hiele level in geometry and he has to prove a
certain geometric claim then his behavior will probably be

meaningless.

The general impression is that the main focus of the psychological
research in mathematics education is on misconceptions and not on
meaningless behavior. This is quite natural. First, misconceptions
explaim many of the students' mistakes and difficulties. Second, the
stage of misconceptions is a stage where there is a good chance of
learning. The fact that you understand your student's behavior, that
you can discuss it with him and that you know what modifications in
his thought are needed in order to reach the correct concept, all
this is a good starting point for learning. On the other hand, when
somebody is in the meaningless stage, the situation is much harder.
You see somebody who acts in a meaningless way, but you cannot tell
what makes him act the way he acts. In addition to that, you do not
know what to do in order to make him understand the notions involved.
Usually, you repeat almost the same words you uttered to him earlier,
perhaps more slowly. Nevertheless, it is impossible to ignore the
meaningless stage. Let us consider as one the stage of misconceptions
and the correct conceptions and call it the conceptional stage (or
the meaningful stage). The other stage will be called the
preconceptional stage (or the meaningless stage). Our question is
the following: at a given moment of a common mathematics lesson, what
percentage of the students is in the conceptional stage and what
percentage of them is in the pt?conceptional stage? For a mathematics
teacher the answer to this question is critical. It is an invaluable
information. Unfortunatelly, there is no satisfactory method to
answer this question. Of course, one can use quizzes. But quizzes
show knowledge or lack of knowledge about a certain restricted topic.
From common quizzes it is very hard to tell whether a student is or

is not at the conceptional stage.
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Interviews are a very effective means, but you cannot intrview the
entire class. Thus, the above information is usually non-available,
especially in big classes where the teacher talks most of the time
and after that the students are asked to solve problems similar to
those which were solved on the blackboard. It seems that many
teachers believe that a good percentage of their students is in the
conceptional stage. Otherwise, how can they teach?

However, the moment you start interviewing the students you realize
how many of them are not in the conceptional stage. In this paper we
would like to illustrate this. As we explained above, this cannot be
proved statistically. Qur claim is that the quality of communication
we have in the following interview is typical to many mathematics
lessons and many teacher-student  interactions.

We have documented and analysed over twenty long interviews with
college students but finally we decided that fiction is more
convincing than reality. Fiction has all the elements of reality but
in a clear concentrated form. Thus, we have chosen Ionesco's lesson
mentioned above and we will use it in order to characterize the
teacher—-student communication the way we see it. We are using
Hatson's translation (Ionesco, 1958) where we replaced "pupil" by
"student”. The teacher is a middle‘aged professor and the student is
an eighteen year old girl. After posing some addition exercises to
the student which were solved correctly, the teacher assumes that she
is ready for the subtraction exercises. (p.11 - p.12).

Professor: Let's try subtraction. Just tell me, that if you are not
too tired, what is left when you take three from four? Student: Three
from four?...three from four? Professor:Yes, that's it. I mean to
say, what is four minus three? Student: That makes...Seven?
Professor: I am extremely sorry to have to contradict you, but three
from four does not make seven. You're muddling it up. Three plus four
makes seven, take three away from four and that makes?...It's not a
question of adding up, now you have to subtract. Student: (struggling
to understand) Yes...I see... Professor: Three from four, that
makes...How many...how many? Student: Four? Professor: No,
Mademoiselle. That's not the answer. Student: Three then? Professor:
That is not right either, Mademoiselle...I really do beg your
pardon...It does not make three...I am terribly sorry...Student: Four
minus three...three away from four...four minus three? I suppose it

wouldn't make ten?
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Professor: Oh, dear me, no Mademoiselle. But you mustn't rely on
guesswork. You must reason it out...
The above dialogue might sound absurd to the common ear but a
mathematics educator can see here some typical elements. The student
has no idea about subtraction. For her, "to take three from four" is
a meaningless expression. However, she must react to the question. A
common reaction is an attempt to gain time by repeating the question.
By this, she might gain also some hints. The professor realizes this
and he is ready to give such a hint. His method is rephrasing the
question. The result is quite typical: a phrase which is harder to
understand than the original question. This is because it uses a new
notion ("minus") which is unfamiliar to the student. At this stage,
although the question is still meaningless for her, the student has
no alternative but answering the question. A common way of doing it
in such a situation is regressing to a previous familiar situation in
which she was successful, to ignore the differences and to act as if
the presént situation were the previous situation. This can be,
undoubtedly, considered as a preconceptional stage. The teacher is
quite sensible to the student's behavior. He explains to her what
caused her mistake and hopes that this will help. But of course, it
doesn't because the question is still meaningless for the student. At
the same time, the pressure to answer does'not stop and therefore the
only alternative now is guessing (note that to this student it never
occurs that she could have said "I do not know". She is not the only
one it never occurs to her). Guessing is very common practice in
mathematics learning and it is typical to the preconceptional stage.
Guessing has its own rules and it deserves a special study in
mathematics education research.
Here, for instance, the student is trying first to repeat one of the
numbers mentioned in the question. When this fails she tries the
second one. Only after that she tries a wild guess ("ten") and then
she is stopped by the teacher. Note that the strategy of repeating
the numbers mentioned in the question could have been successful if
the question were: which number is the greater? three or four? (a
question which is posed to the student a little bit later, on p. ‘12).
OQur professor, being aware of the student's guessing, tries to
construct in her some meaning for subtraction. In order to do that,
he invites her to perform some mental acts. Elsewhere these were

called imagination acts (see Vinner & Tall, 1982). Here another major
problem is involved.
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The éeacher believes that the student is capable of performing these
imagination acfs, but this is not necessarily the case. In geometry,
for instance, we very often say "continue this segment infinitely to
both sides in your mind" or "think of a point which has no width and
no length". How do we check whether our students can do it? There is
a good chance.that our student won't be able to do it as illustrated
by the following dialogue

(p.14 - p.15).

Professor: ...If you had two noses and I'd plucked one off, how many
would you have left? Student: None. Professor: What do you mean,
none? Student: Well, it's just because you haven't plucked me off
that I've still got one now. If you had plucked it off, it wouldn't
be there any more. Professor: You did not quite understand my
example. Suppose you had only one ear. Student: Yes, and then?
Professor: I stick on another one, how many would you have? Student:
two. Professor: Good. I stick yet another one on. How many would you
have? Student: Three ears. Professor: I take one of them away...how
many ears...do you have left? Student: two. Professor: Good. I take
another one away. How many do you have left? Student: Two.
Professor: No. You have two ears. I take away one. I nibble one off.

How many do you have left? Student: Two. Professor: I nibble one of

them off. One of them...Student: Two. Professor: One! Student: Two!
Professor: One!! Student: Two!! Professor: One!! Student: Two!!
Professor: One!! Student: Two!! .

As we said above, the student is asked here to perform some
imagination acts. In some of them she succeeds and in some of them
she fails. It is even hard to characterize those in which she fails
versus those in which she succeeds.

It seems that she specially fails to imagine strong counter reality
situations. She cannot imagine herself with two noses. Therefore, she
fails to answer the question about the two noses and the one being
plucked off. On the other hand, she is able to imagine herself with
one ear, sticking on another one and another one. But she is
uncapable of performing in her mind the inverse procedure. This looks
strange but mathematics teachers are familiar with the phenomena. The
inability to perform imagination acts is another characteritic of the
preconceptional stage. This is related somehow to hypothetical
thinking required very often from mathematics students, an impossible
mission in many cases (Professor:...You have ten fingers. Student:

Yes, Sir. Professor: How many would you have if you had five of them?
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Student: Ten, Sir. (p.15))

All the above examples can be considered as examples from the
preconceptional stage. Ionesco's lesson does not lack interesting
examples that can be considered as examples from the misconceptional
stage. Because of space problem, we will not discuss them here. We
would only like to note that not always there is a clear distinction
between the preconceptional stage and the misconceptional stage
(which is part of the conceptional stage). This fact does not have to
be a reason to reject the distinction. There are many distinctions
that do not have clear cuts, like the distinction between good and
bad, clever and stupid etc., yet they are very useful distinctions in

most of the cases.

The fact that a student is in a preconceptional or misconceptional
stage does not enable him or her a meaningful learning. The only
alternative left to him is rote learning. This is illustrated by the
following (p.17 — p.18): Professor:...How much is three billion,
seven hundred and fifty five million, nine hundred and ninety-eight
thousand two hundred and fifty one, multiplied by five billion, one
hundred and sixty—two million, three hundred thousand, five hundred
and eight? Student: (very rapidly) That makes nineteen quintillion,
three hundred and ninety quadrillion, two billion, eight hundred and
forty-four billion, two hundred and nineteen million, a hundred and
sixty-four thousand, five hundred and eight...

Professor: (astonished) No. I don't think so. That must make

‘nineteen quintillion, three hundred and ninety quadrillion, two

O
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trillion, eight hundred and forty-four billion, two hundred and
nineteen million, a hundred and sixty-four thousand, five hundred and
nine...Student: No...five hundred and eight...Professor: (growing
more and more astonished and calculating in the head) Yes...you are
right, by Jove...Yours is the correct product...(Muttering
unintelligibly) ...quintillion, quadrillion, trillion, billion,
million...(distinctly)...a hundrad and sixty-four thousand five
hundred and eight...(stupefied) but how did you arrive at that, if
you don't understand the principles of arithmetical calculation?
Student: Oh, it is quite easy, really. As I can't depend on reasoning

out, I learnt of by heart all the possible combinations in
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Student: I .managed to do it, anyway.

As we claimed above, Ionesco's fictious lesson is almost an accurate
mirror image of a great deal of the practice in mathematics
.education. We know very little about the preconceptional stage.
Therefore, we also know very little about the methods of carrying
forward our students from the preconceptional stage to the
conceptional stage. On the other hand, we do not believe in miracles.
The current 'situations in mathematics teaching is not only a result
of bad pedagogy. It is also a result of posing too many mathematical
topics which are beyond the mathematical abilities of great
percentage of the students., Being more aware of the preconceptional
stage and of the fact that so many students are stuck there might

have some influence on the curriculum as well,
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AN ANALYSIS OF THE EMOTIONAL ACTS OF YOUNG CHILDREN
WHILE LEARNING MATHEMATICS

Erna Yackel Paul Cobb, Terry Wood
Purdue University Calumet Purdue University

Emotion acts of children as they engage in mathematical
activity are analyzed in terms of the children’s cognitive
appraisals of situations which, in turn, are based on the
classroom social norms. In the classroom we observed, the
teacher and children mutually constructed social norms that
fostered generally favorable emotional acts which, in turn,
sustained and perpetuated the operative social norms.
Examples from the classroom illustrate the relationship
between the social norms and the children's emotion acts.

Introduction

During a teaching experiment in a second grade
mathematics classroom we observed an unusually positive
emotional tone which seemed to contribute substantially to the
children’s learning of mathematics. Since doing mathematics
is thought by many, including many mathematics educators, to
be associated with negative emotion (McLeod, 1985), we set out
to analyze our observations. The discrepancy between our
observations and the commonly expressed view 1is heightened
since negative emotion is associated especially with those
mathematical activities that involve problem solving (MclLeod,
1985) and in the project classroom our approach, which was
based on the constructivist theory of learning, was that all
mathematics, including the so-called basics such as
arithmetical computation, was taught through problem solving.
The primary instructional strategies used in the project
classroom were small group problem solving and whole class
discussion. (For a clarification of what we mean by problem

solving see Cobb, Wood, and Yackel, in press, and Cobb,

Yackel, and Wood, in press.)
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Our analysis focuses on that aspect of emotional
experience which involves cognitive appraisal of a situation,
emotional act, as opposed to the physiological arousal,
emotional state. Since they involve cognitive appraisal,
emotional acts have an underlying rationale which, in turn, is
based on the social order within which the mathematical
activity takes place. Accordingly, our analysis necessarily
includes an analysis of the social norms that were operative
in the classroom and how they were mutually constructed by the
children and the teacher. We argue that it was because the
teacher and children established social norms that constrast
sharply with those of typical classrooms that we observed
generally desirable emotional acts.

Theoretical Framework

The theoretical framework that forms the basis for ou;
analysis is that of the constructivist approach to emotion.
According to this approach emotions are viewed as
“socioculturally constituted* (Armon-Jones, 1986a) and involve
cognitive appraisal or interpretation (Bedford, 1986; Armon-
Jones, 1986a). In this approach attention is not focused on
physiological states of the individual(s) involved but on the
interpretation the individual gives to the situation that
causes him/her to judge it as desirable or undesirable. In
this sense emotion acts involve cognitive appraisal *"in that
they depend upon the agent’'s knowledge and his capacity to
judge and compare® (Armon-Jones, 1986a, p. 42). The cognitive
appraisal, in turn, is based on what is and is not acceptable
or appropriate 1in the given culture. From this perspective

“our capacity to experience certain emotions is contingent
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upon learning to make certain kinds of appraisals and
evaluations ... [I]Jt 1is learning to interpret and appraise
matters in terms of norms, standards, principles and ends or
goals judged desirable or undesirable* (Pritchard, 1976,
p.219). For example, for an individual to feel embarrassment
he/she must interpret the situation as one in which he/she has
failed to act in accordance with the expectations of the local
social order. Specifically, if, in a classroom it is expected
that when a child responds to a question the only acceptable
responce is a correct answer to the question posed, then it is
appropriate for a child to feel embarrassed when he/she gives
an incorrect answer. In contrast, if incorrect answers are
routinely given and discussed along with correct answers, it
is not appropriate for a child to feel embarrassed when he/she
given an incorrect answer. As this example illustrates, the
emotion acts of children while engaged in learning mathematics
are influenced by the social norms that are operative in the
classroom.

This is not to say that children enter a classroom that
has a ready-made, pre-existing set of established social
norms. Social norms are not static prescriptions or rules to
be followed but are instead regularities in the process of
social interaction (Voigt, 1985). These regularities are
mutually constructed by the participants in the course of
their interaction. In this view, meaning is negotiated by the
teacher and the students in the course of their social
interactions. In this regard we follow Blumer (1969) when he
said that " ... human beings act toward things on the basis of

the meanings that the things have for them. ... the meaning of
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such things is-derivad from, or arises out of, the social
interactions that one has with one's fellows" (Blumer, 1969,
p.5). The norms are, from the observer's perspective,
continually reconstructed in concrete situations and do not
exist apart from the interactions that give rise to them. As
in any collective body “there is one group or individual who
is empowered to assess the operating situation and map out a
line of action” (Blumer, 1969, p.56). In our case it was the
classroom teacher who guided and directed the construction of
the norms.

From the psychological perspective, the norms come into
being through the expectations that the teacher and children
have for each other and the largely implicit obligations that
they have for themselves in specific situations (Voigt, 1985).
Emotion acts, because they involve interpretations based on
the social norms, serve the function, therefore, of sustaining
and aqdorsing the norms from which they derive (Armon-Jones,
1986b). Conversely, socially inappropriate emotional acts
indicate either that the student has misconstrued the
situation or that the student’'s beliefs are incompatible with
social 'norms that are acceptable to the teacher and other
students. Because emotion acts are cognition~based these acts
are open to criticism by reference to the norms. Further,
there does not have to be eavidence of a specific emotion
before that emotion can be ascribed (Armon-Jones, 1986b). For
example, a student can be told that he *ought to" feel a
certain way in a given situation, such as, that he ought to
feel pleased when he has persisted in solving a challenging
probiam. In this way interpretations that are deemed
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appropriate in light of the social norms can be brought to the
attention of participants in the local society and can serve
to sustain the norms as well as to endorse certain emotion
acts as appropriate.

Children's beliefs about the nature of mathematics, and
their own and the teacher’s role also influence their
interpretations of situations and hence their emotion acts.
These are, in turn, influenced by the social norms. For a
detailed discussion of the relationship of beliefs to emotion
acts and social norms see Cobb, Yackel, and Wood, in press.

Examples of the Relationship of
Children's Emotional Acts to Social Norms

In the project classroom social norms included that
students cooperate to solve problems, that meaningful activity
was valued over correct answers, that persistence on a
personally challenging problem was more important than
completing a large number of activities, and that while
working in pairs students should reach consensus as they
completed the instructional activities. The mutual
construction of the meaning of each of these through
interaction of the children with each other and of the
children with the teacher served at the same time to indicate
whether or not an emotion act was appropriate. As an
illustration consider the following example.

The following episode occurred at the beginning of a
class discussion that followed small group work. One pair of
children volunteered that they had spent the entire twenty
minutes allocated to group wrok on a single problem.

Kara and Julie: Because at first we didn't understand.
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Teacher: How did you feel when you finally got your
solution?

Kara and Julie: Good. \

Kara and Julie's excitement at having solved the problem was
indicated by the way in which they jumped up and down as they
talked with the teacher. By calling the attention of the
entire class to this incident the teacher endorsed the girls’
consfrual of the situation as one warranting excitement and
simultaneously perpetuated the social norm that persistence on
a personally challenging problem is more important than
completing a large number of activities.

In the same way, when one child displayed anger because a
child from a neighboring group told him the answer to a
problem he was trying to figure out for himself, the teacher
affirmed the rationale for his anger. In this way she
indicated that his interpretation of the situation was
warranted and in doing so simultaneously reaffirmed that in
this classroom meaningful activity was valued over correct
answers.

In the first few weeks of the school year children often
interpréted situations in ways that were consistent with their
prior school experience but were not compatible with the
teacher's expectations for the children's activity in this
classroom. She then initiated a conversation in which she
talked with the children about her expectations and how she as
a specially empowered member of the group (Blumer, 1969)
assessed the situation. For example, during one lesson at the
beginning of the school year Peter went to the front of the
class to explain his solution to a problem. In the course of

Q
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his explanation he realized that his answer was wrong, looked
down at the floor and then quickly returned to his seat. The
teacher, realizing that peter construed this as a situation
that warranted embarrassment said, *“That'’s okay Peter. It’s
all right. Boys and girls even if your answer is not correct,
I am most interested in having you Athink; That's the
important part. We are not always going to get answers right,
but we want to try." By telling the children how she
interpreted the situation the teacher expressed her
expectations for the children. Simultaneously she expressed
her belief that it was more important in this class to think
about mathematics than to get correct answers.

We have presented examples which illustrate how emotions
are socially constituted through interpretations of situations
and how they funcfgon to sustain and perpetuate the local
sbcial order, in particular the social norms that operated in
the project classroom. The social norms that were established
in the project classroom differ sharply from those of typical
classrooms. It was for this>reason that children were able to
interpret situations when they were engaged in mathematical
activity in ways fhat made positive emotion acts the standard
rather than the exception.

The implication of this work is that teachers can promote
positive emotional experiences for children when they engage
in mathematical activity by guiding the construction of
classroom social norms which are conducive to mathematical
problems solving.
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THE USE OF GRAPHS AS VISUAL INTERACTIVE
FEEDBACK WHILE CARRYING OUT ALGERRAIC
TRANSFORMATIONS

Michal Yerushalmy
The University of laifa

Errors in performance of algebraic transformations by algebra beginners
are a comon phenomenon. Anong many reasons for the difficulties there
is one wiich had been investigated and described’in this work: the
absence of meaningful feedback mechanism that could not only immediate-
ly identify a mistaken process but could also reflect the algebraic
situation and the student's action. The RESOLVER, a computer environ-
ment had been used with algbera beginners of different ability to
identify the impact of visual linked multiple representations while
procedurally performing algebraic simplifications and transformations.
The article concentrates on the effect of a feedback mechanism, on the
effect of the visualization of algebraic expressions on the performance
and on the ways in which students analyze their own mistakes.

A major part of the learning of algebra for beginners is devoted to the learming of techniques to

transform expressions. The literature reports on difficulties in carrying out algebraic transfor-
mtion; difficulties that are rooted in the misinterpretation of the major essences of alpebra
(Booth, Davis et. al 1978, Matz 1982, Thompson 1987). An obstacle blockding the way to carry
transformations is the lack of checking mechanism to use as a feedback while simplifying. The
only available mechanism is the numerical checking; students may substitute numbers and campare
the values of transformed expressions (Lee & Wheeler 1985). Most students even do not bother to
do that. The introduction of computers into the secondary school algebra curriculum could affect
the learning to transform expressions in several ways. A Computer's uses range from a tutor which
helps students to carry the right simplification (Brown 1985), through computerized tools which
direct students to understand the deep structure of algebraic expressions (Thompson 1987) to the
use of programs that could carry symbolic transformations for the user such as MuMath (Fey
1984, Heid 1988). In parallel, several studies have been carried out to observe the impact of
computers on another topic in the algebra curriculum: the investigation of functions. As part of
a recent study (Yerwdvdmy in prep.), we studiad the effect of linked miltiple representation
software on students' performance including their technical performuice within th? traditional
Algebra 1 curriculum, Gne of the results suggests Ut students preseuted a rich repertoire of
visual argurents, but they did not link them to parallel results reached by symbolic and numeri-—
cal procedures. The picture one can draw from the studies mentioned above and others is that
ERIC 54
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multiple representation tools could adequately and successfully serve algebra students and help
them understand major concepts;: however, methods of using such tools to enforce procediral alge-
braic understanding and performance are yet to be established. The questions investigated in
this work were (1) How do learners handle immediate identification of a false or correct step by
the camputer, while transforming algebraic expressions? Do they need the Judgmental feedback to
verify their action or do they use the computerized feedback to try and understand why they sot
the truth or the false action? (2) What are possible roles of graphs serving as an automtic
display of qualitative feedback while transforming algebraic expressions?

USING THE RESOLVER: HOW DOES THE SOFTWARE. WORK? '

The RESOLVER, the software wsed in the experiment is an enviroment that procotes students'
experimentation and verification while transforming algebraic expressions. The program allows'
the user to carry out a process of transformations berween two expressions and allows the user
to indicate the effect of each transformation on the expression. The RESOLVER (designed by
Schwartz and Yerushalmy) is mainly an algebraic notepad which allows the input of any expres-
sion whose syntax is acceptable in algebra. It provides in parallel three graphs for each
transformtion: one graph displays the original expression, one displays the current trans-
formed expression and one presents the difference berween the two expressions. Since any
legivinate operation of transformed expressions does not affect the araph of the expression,
the graph of differences provides qualitative and quantitative information about the correct-

ness of each step. Here is an example of two transformations: one is correct and the other is

incorrect.
GIVEN: 13-2(x-2)5-3(x-2) . 104,
13-2(x-2)5-3(x-2)
13-18(x-2)-3(x~2)
¥ 13-10x+28-3x+6
-) ] \
. A R N
-5.008 3.008
164, r
R . ~
TRRGLT: AxtE I !
ne-. Af- AD- AC-cli Ly = AR A
O
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GIVEN: 2(5(x-2(x-3))+4@) 119
US(x-2(x-3))+40)
2(9x-2x-3) +40
9-)7x(5x-2x-3) +48 '
-210.4——— —t
-20.00 20.99
119
[\
> -210. o A
TARGET: Ax+H aire 0

fG-araph AE-ed AD-de] AS-<lide A7-zp0m AR Al t4 N-new -823

There are multiple geals to the difference graph. First it allows an easier diagnosis of the
comparison between the two graphs; second, and more important, the graph of the difference is an
indicator of possible terms that are not correct. For example: a parabola in the difference
window points to a mistake in at least the X"2 term.

SAMPLE AND METHOD »

Seven students participated in an experiment, each received about five hours of work. The partic-
ipants were: A seventh grader of average ability in mathematics who had recently first learned to
transform and simplify expressions; four eighth graders, average and above average ability, who
had concluded the topic of functions and graphs using the Function Analyzer (Schwartz & Yeru-
shalmy 1988); two ninth graders from thé very low track in their school. All students volunteered
to participate and to stay after school hours for the experiment. Fach of the three different
populations worked separately with a researcher. During each of the meetings students were asked
to transform a file of expressions, either on paper or using the RESOLVER. Each file included
expressions fram various levels of camplexity. The level of difficulty had been matched to the
previous lcwwiedge of each group and each file included transformations which had been leamed in
the classroams (such as canputations and grouping) and others which were assumed be new (such as
multiplication of binanials and factoring). The experiment did not include -teaching interventicn
of any kind. Each session was audiotaped and all the algebraic actions were recorded on paper.
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THE IMPACT OF QUALITATIVE FEEDBACK

The data gathered from the experiment were amalyzed with three aspects: the use of feedback of
any kind while transforming expressions; the visualization of the expression using the graph, and
the linkage between the analysis of tie differences between graphs and between the expressions.
Here are a few descriptions from this work.

The case of S: an experiment with a seventh grader.

S had learned graphic. representation of numerical information ‘in an introductory chapter to
statistics. i/ith the RESOLVER, there are two options to check the correctness of shmﬁfied
form. First, by comparing the result to the target expression and second by using the interactive
feedback to each step of the transformation process. S did not use the tarset feedback to check
his answers. In all cases he was very careful to try and correct each error immediately and was
not bothered at all to reach the certain format specified as a target. However, the existence of
an automatic constant feedback that-informs of mistakes affected S, both positively and nega—
tively. Since he was so anxious to get the "zood" feedback at each step he frequently gave up on
sol.ving while he could not get rid of mistakes. On the other hand, the existence of an interac-
tive irnmediate feecbeck encouraged S to conjecture and experinent while simplifying. Facing a
problen he often said:"I'1l write what T think is true and then we will see". On anotiler occasion

S evaluated the dimension of his mistake by an evaluation of the nunerical values.

EXPRESSION DIFFERENCE GRAPH
84.9
4-8(x+3)2
’
-236.
-19.99
84.0 18.90

<

-80. 9!
diff :
-240.
S+ T houa done an awful mistake. .. .the nunbers on the difference graph are so large!
Q 3
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4-3x+0

-236.




He then tried another transfonmtion: -2%.d

-10.80 18.09
84,84

4-8x-30 .

AN

-236 L\\

S: That is better, the numbers are smaller now. Gite 80.31'\
-80.04 \

At otier times he used the zraph to analyze his next step and ‘here are two examples. In the first

instance S was able to correct a mistake, caused by an incorrect multiplication, by the amalysis

of the direction of the graph.
EXPRESSION CURRENT EXPRESSION'S GRAPH

3-7(9-2x)-5 | m‘ﬁ\

’

-285.4
-19.80 18.09

3-63-14x-5 s
L

-283.

S: T watched the graphs and they looked as in the opposite directions. It reninds me that when
you open parenthesis with a negative sign the expression gets the oppposite signs so I changed
the expression to: 3-03+14x-5.

In the following case, S made a technical error again and was able to locate it by observing the
difference zrash. In all cases, S evaluated the difference window as an entity and not as a
product of difference between the two jraphs. For hiz, it was an independent entity and, despite

all his enthusias. to understand the graphs, he never asked how exactly the difference graph is

connected to the two main graphs.

(1) 3(2x-8) - (3x-1)4 + 5(x42)
(2) 6x - 24 - 12x + 1 +5x + 10
3 (=) + (-13)

O
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S simplified the expression on paper and then checked his answer using the RESOLVIR:

EXPRESSTION DIFFERENCE GRAPH
3. =

N\

(-x) + 3 i

i :
\K ,
-25.08 ,L \
3. Gﬂu\ — - 13.0
S: I know that I have to add 3 but where does it come from? I \f\
B — N l
An experiment with experienced eighth graders. '

The special purpose of the work with that group was to study if and how the previous experi-
ence vith functions and graphs affected the performance in algebraic transformmmtion. Also it
was necessary to explore if above-average students have any need to get feedback on their
technical performance or whether such feedback is a waste for advanced studéents. The main
difference in the work between this group and the other three students was that this aroup
made ex;ensive use of the graphs of all kinds; most of the excerpts include both: diagnosis of
the property of the graph itself and diagnosis of differerme;. 'Ihey analyzed the difference
graph geometricaliy (a§ opposed to S who nainly paid attention to the numerical data). Here is
a description of their attempts to simplify an expression (organized chronologically):

(1) The given is a cubic expression.

They expanded the expression while performing two raistakes
(2) The difference graph is a paravola. Should we try (-0)?
They got rid of one mistake; the difference graph shows a constant difference.

(4) It locks better now, but the difference graph is —30. The inteception is
abovedmex—a:cisa.ndithastobebélowtlwa)cis.
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They observed the complexity of tiwe given task by the shape of the graph. They assumed that
the more canplex the graph, the rore difficult the transformation. A similar reaction had been
already observed while working with S. However, the graphic display did not help them to
identify a mistake caused by a repeated false strategy. In such cases, students made many
attempts that brought them closer to the answer, but they could not reach the requested target
expression. The feedback motivated them to define criteria of the quality of estimation of an
algebraic result.
CONCLUSIONS
The results confirm the hypothesis that students do not usually develop and use any strategies
to evaluate their algebraic transformations and that the camputer could be of help. Errors of
different types appeared in the work of all participants, at all levels of ability, but they
did not expect any feedback while simplifying expressions. The work with the RESOLVER de-
veloped a need for feedback; this need, however, varied with ability and knowledge of graphs
and functions. Weaker students were looking more for judgmental feedback; they tended to use
the difference graph as an indicator of right or wrorg answers.
wedwad watched an increasing tendency of all particizants to spend time in conjecturing about
B K ) ‘
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the process instead of aiming for "the single right answer". Several occurrences led us to
this conclusion; they did not hesitate to write a transformmation even if they suspected that
samething might be wrong. Students usually did not use the Target answer, they were concerned
nore about the process and less about the exact format of the answer. We are able to show that
there are advantages that even beginners could benefit with the integration of visual under-
standing and amalysis of graphs with the procedural action of transforming. Beginners have
developed estimation processes to evaluate the camplexity of the task by the shape of the
graph, used the grmph inér'frcnpl:ims to evaluate factors at the given expressions and they wre
able to identify the type of their error, even if they could not find the reason.
During the last few months we carried a continuous study of a group of seventh graders, using
graph feedback as well as other types of feedback. The full data had not been amalyzed yet,
however, we find clear evidence about the willingness of students to correct their mistakes
once they find that they are able to reflect on their own actions.
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IMAGES OF GEOMETRICAL TRANSFORMATIONS :
FROM EUCLID TO THE TURTLE AND BACK

Rina Zazkis and Uri Leron
Department of Science Education
Technion - Israel Institute of Technology
Haifa 32 000, Israel

Abstract. The relationship belween turtle geomeairy and fu-
clidean geamelry 15 mvestigated thraugh thelr groups of lrans-
rormations.  /n spite or a strong intuitive kinship between the twa
geomeiries, thay are still difterent enough for each to ilfuminate non-
trivial aspects ol the other. From a psychological and educalional
perspectives, the comparison belween the tweo geamelries allaws an
examinaltion of the mental images associated wilh each and, in par-
ticular, @ comparison al” difterent levels’ of thinking sbout iransior-
mations. as moving a physical alyect, a point, a pariicular shape in
the plane, or the whole plane.

Introduction.  Ever since Klein's Erlanger Program, which
described the various geometries through their transformation
groups, there have been attempts to use transformations in the
teaching of geometry (e.g. Coxford 73). Formally, geometrical
transformations are defined as maps of the whole plane. This,
however, is hard for novices to visualize, especially when
composition” of transformations is involved. Hence the effect of
transformations is sometime introduced by its effect on a single
point. But a single point is not enough to determine the
transformation: By a well-known theorem, three non-collinear points
(that is, a triangle) will be required. We can thus visualize
transformations by considering their effect on a fixed triangle.
Furthermore, we can represent the group operations of composition
and inverse of transformations by their composite effect on the
triangle.

The device of representing a transformation by its effect on a
triangle, helps in bridging the gap between the rigorous mathematical
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definition of transformations as maps of the whole plane, and their
more intuitive representation as operations on a physical (or mental)
object.

The motions of the triangle in the plane under the various
transformations bring to mind the motions of the Logo turtle on the
computer screen (e.g. Abelson and diSessa 81). Most of the people we
have asked in an informal survey to relate turtle operations to
Euclidean plane transformations, tended to identify FORWARD with
translations and RIGHT with rotations. While these intuitions are
quite natural, they are not, as we shall see, entirely correct.

Even though the precise nature of the relationship between
turtle geometry and Euclidean geometry has not been hitherto
°articulated, there are quite a few projects and ‘microworlds’ in
transformation geometry, based on this relation (e.g. Thompson 85,
Goldstein 86, Edwards 88). The research reported in this article
attempts to put the relations between these two geometries on sound
foundations by comparing their groups of transformations. In
particular, it will be shown that the group of turtie operations is
isomorphic to the group of dairect isometries (i.e. translations and
rotations but no reflections). The intriguing question of what in the
turtle world corresponds lo reffections will also be discussed. Some
of the psychological and educational implications of these results
will be considered.

The Group of the Turtle. Intuitively, the elements of the
turtle group are the turtie operations FORWARD (FD) and RIGHT (RT)
with all possible inputs, and sequences thereof. For example, the
sequence [FD SO RT 90 FD 36 RT 14 FD -70 RT -56] is such an
element. The group operation is composition of functions. Note that
the turtle operations LEFT and BACK are also included via FD and RT
with negative inputs. In this intuitive view, turtle operations are just
that - physical (or computational, or mental) actions on a physical
(computational, mental) object - the turtle, and their mathematical
nature is unspecified. To make this intuitive approach more rigorous,
we need several changes in the way we view turtle operations. First,
we need to view FORWARD and RIGHT as operating on the turtie stzte
rather than the turtle itself. Second, we need to view these
O
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operations as acting on the whole (infinite) sef of turtle states
rather than on a single state.

The turtfe stale then, consists of the turtle's position and
heading. Analytically, we define the turtle state to be the triple (v 40/
), where (v, }-) are the coordinates of the turtle's position in a
Cartesian system, and # is its heading, measured in degrees
clockwise from the north. We denote by $ the set of all turtle states
and call it the lurtle plans Given real numbers # and 4 RT 7 and FD &
are transformations of the turtle plane, defined for all (w,p,A)in &
as follows.

RT 7. (w,0.A) > (&, 1 h+3)

FD &: (x,}48) => (w +4sin b, ) +bcosh)

Fig. 1: FD # as &z state-change operator

As mentioned above, the turtle group consists of all finite
sequences of FDs and RTs. Having formally defined FD and RT as
transformations of the turtle plane, we now define the furé/se group
to be the group of transformations of the turtle plane generated by
the set {FD #,RT & | 2,4 real numbers). We shall denote the turtle
group by 6.

From the definition of the turtle group, it follows that the group
operation is the composition of'maps, the unit element is the identity
transformation, the inverse of FD # is BK # (which is the same as FD
-) and the inverse of RT £ is LT & (which is the same as RT -4).
Two elements /and ¢ of 6 are considered equal if they are equal as
functions, ie. if /15)= g(s) for all turtlie states s in &

The Two Geometries Compared. We now proceed to
e.f““@‘ the fundamental correspondence between the two
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geometries; namely, we construct an isomorphism (a one-to-one
structure-preserving map) from the turtle group onto the group of
direct isometries of the Euclidean plane.

The intuitive idea is simple: We correspond to the turtle a
particular isosceles triangle in the Euclidean plane, and to turtle
motions triangle motions. However, to make this idea precise we
need to move from the correspondence between motions to a
correspondence between transformations. This we do with the aid of
the following two theorems:

(a) Given two turtle states, there is a unique element in the
turtle group carrying one to the other. '

(b) given two congruent triangles with corresponding vertices,
there is a unique plane isometry carrying one to the other (Coxeter
61). (What we shall actually need is a variant of this last theorem,
namely that given two congruent Jsosceles  triangles, there is a
unique direct isometry that does the job.)

we can now describe the correspondence as consisting of three
steps, the middie of which is the intuitive idea mentioned above.
First, we fix an arbitrary turtle state, say the HOME state (0,0.0), and
view elements of the turtle group as acting on a smgle turtle (in its
HOME state) via theorem (a). Second, we view turtle motions as
motions of the corresponding isosceles triangle as described above.
Third, we view motions of the isosceles triangle as plane isometries
by theorem (b). Inverting this three-step process, we can find turtle
operations corresponding to each translation and rotation. Thus our
map is one-to-one and eonfe.

Note: For a more formal definition of this map and a proof that
it is indeed an isomorphism between the two groups, see (Zazkis 89).

A Turtle View on Plane Isometries. we now apply the ‘
above scheme to find explicit interpretations of plane translations
and rotations in turtle terms, and vice versa. For a start, we work out
the plane isometry corresponding to the element FD 50 of the turtle
group. First we view the effect of FD SO on the turtle in its HOME
position. Second, we view the same picture as a motion of a triangle
in the Euclidean plane.
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Fig. 2: Viewing FD SO as a translation of the plane.

Finally, we determine the plane isometry that performs this motion.
In this case, the resulting isometry is the translation of S0 units
along the (positive) y-axis. Thus, the above isomorphism, carries FD
S0 to this plane translation. Similarly, we see that the isomorphism
maps all turtle operations of the form FD s onto the translations
along the y-axis.

Applying next the same scheme to RT 90, we find that the
isomorphism carries it to a 90-degree rotation about the origin.
Similarly, the isomorphism carries all the operations of the form RT &
onto the rotations of the plane about the origin.

Since the elements of the form [FD #] and RT ¢ generate the
turtle group, we are now in the position to easily calculate the plane
isometry corresponding to each element of the turtle group. However,
it is not yet clear what the rewerse correspondence is. In particuiar,
what turtle operation corresponds to an arbitrary translation? To
answer, we look at a particular translation, say the SO-unit
translation in the direction of 45 degrees clockwise from the positive
y—axis, and consider its effect on our chosen triangle.

As can be seen from fig. 3 below, the turtle operation that
accomplishes the same effect on the turtle is [ RT 45 FD SO LT 45 ).
Since translation shifts the triangle parallel to itself, we can
expect the same from the corresponding turtle operation. In turtie
terms this means that the transformation should be reaading
preserving, ie. the initial and final headings should be the same.
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Fig. 3: (a) A plane translation (b) Translation as turtie oper‘.ation

In general, there is a one-to-one correspondence between
translations and heading-preserving turtle transformations. Since the
turtle can only move in the direction it is facing, in order to execute a
heading preserving transformations, it needs to first furn towards
its destination, then maowe there and, finally, turn back the same
amount (to keep the heading invariant). Thus, these transformations
are characterized by their special form [RT 4 FD £ LT 2).

while the equivalence between these two definitions of heading
preserving transformations is obvious in turtle terms, interpreting it
back in" the group of isometries yields an interesting insight, namely,
that every translation can be obtained by conjugating a translation
along the y-axis by an appropriate rotation. (Recall that the conjugale
of & by A is the transformation A£4 -1 As can be seen from this
example, this is a formal way to express the intuitive notion of “doing
the same thing in a different place” (Leron 86).)

By a similar line of reasoning, one can show that the turtle
analog of a general/ rotation (not necessarily about the origin), is a
cojugate of a RIGHT by a suitable heading preserving operation.
Interpreting this back in the Euclidean plane yields a decomposition of
a general rotation as conjugate of a rotation about the origin by a
transiation.

This is a typical demonstration of how such isomorphism can be
us%fulz Properties which are quite obvious in one system, can yield
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interesting insights when interpreted through the isomorphism in the
other System

Turtie Reflections. We have now found (through the
isomorphism) turtle interpretations for two of the fundamental types
of plane isometries - translations and rotations. A natural gquestion at
this point is, what in the turtle world corresponds to ref7ections?
More formally we ask, how can we extend the turtle group to a group
isomorphic to the enf/re group of plane isometries?

In search for an answer, we turn back to our isosceles triangle -
the Euclidean object analogous of the turtle - and consider the effect
of a reflection on the triangle. A natural mental image of this
operation is that of physically lifting the triangle out of the plane,
inverting it, then putting it back into the plane. Since this operation
interchanges left and right, it is called an arrect isometry. But the
above physical description of the triangle under reflection, lends
itself easily to formulation in turtle terms. We call the corresponding
new turtle operation FLIP. Intuitively, FLIP can be described as
“turning the turtle on its back™ or, equivalently, switching its right
and left. Formally, we extend the turtle state to include a fourth.
component - the flip-state - which can take on two values: face-down
and face-up. The FLIP operation switches the values of the flip-state,
leaving all other components of the state invariant. A closer look
shows that FLIP actually corresponds to reflection in the y-axis, and
all other reflections can be obtained from it by appropriate
conjugations. We conclude that the exfended turtle group, the one
generated by FDs, RTs and FLIP, is isomorphic to the entire group, of
plane isometries. :

Conclusion. This article gives a fresh outlook on Euclidean
geometry in two ways. Mathematically, turtle geometry can be
considered to give an /mirmsic view of Euclidean geometry (Abelson
and diSessa 81, p. 13). Psychologically, turtle geometry gives us new
mental images with which to view plane isometries. Viewing
isometries as turtle operations (through the isomorphism) brings back
and legitimates our originatl intuitions of acting on a physical object,
intuitions that are all but lost when working with transformations of

Q plane. In the Logo literature turtle geometry is often
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onsidered as alternative to Euclidean geometry. Qur discussion of the
somorphism between the two groups establishes a different
elationship between the two geometries: Turtle geometry as adding
inother, perhaps more intuitive view of Euclidean geometry, rather
han replacing it. The words of Abelson and diSessa (81, p.185) are
ppropriate here:

“... whenever we have two different representations of the same
hing we can learn a great deal by comparing representations and
ranslating descriptions from one representation into the other.
Shifting descriptions back and forth between representations can
ften lead to insights that are not inherent in either of the
-epresentations alone.”
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A knowledge-base of student reasoning about

characteristics of functions

NURIT ZEHAVI and BARUCH SCHWARZ

Weizmann Institute of Science, Israel

The present paper describes an incorporation of ezperience in mathematics teaching,
cognitive research, and logic programming techniques. It involves abstract high level
actiuities in secondary mathematics in relation to representation systems of functions.
The paper presents an approach to the development of a computerized component which
will be the core of the “knowledge model” and the “student model” of an intelligent

_tu.ton'ng system. DBased on data gathered from nearly “perfect students® and “actual
students’, a two part ezpert system was constructed. The algebraic ezpert can derive the
properties of a function and ezhibit the inference chains of perfect students. It attempts
to try to analyze student reasoning by matching the actual and perfect answers. The
graphical ezpert takes into account student visual thinking in graphical presentation of

functions by software.

The general shift in the area of curriculum development towards the emphasis of cogni-
tive issues in the process of developing instructional systems, is the general background
for the dream of intelligent tutoring systems (ITS) which have diagnostic/predictive
bossibilitics. ITS should in prinéiple,r er;able a better intcractic;n between student and
system and lead to better instruction. The first attempts in this direction are described
in Sleeman and Brown (1982) and discussed in many papers and reviews. Among the
strengths of these systems are the well-articulated curriculum embodied in the domain
expertise and an explicit theory of instruction represented by its tutoring strategies.
The weaknesses against these strengths, are inadequate models of what the student
knows and how the student learns new knowledge (Wenger, 1987; Lawler and Yazdani,
1987). It seems that for several years researchers and developers have been reflecting
on the first attempts. At the same time advanced techniques and theories (Kearsley,
1987; Holland, 1987) were developed, and more recently a second generation of systems

is being designed and investigated with focus on the student model.
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Methodology

A starting point of research and development of an intelligent computer tutor is the
choice of a pedagogical problem which is suited for a computational diagnostic model.
Based on experience in mathematics teaching, educational studies, and research and
development of instructional software, we identified three main criteria for choosing

such an appropriate problem:

{a) The solution of the problem requires ﬁrocesses of an inferential nature rather
than associations. The cognitivg behavior can be hypothesized to be a knowledge-
based process that is built of simple inferential processes.

{b) The required cognitive processes are not dealt explicitly by the curriculum. They
involve aspects of reflective abstraction (Piaget’s notion) such as generalization,
interiorization, encapsulation and coordination {Ayers et al., 1988).

{c) - The problem should be interesting and comprehensive, but at the same time its
manageability must be ensured. ’

These criteria are found in the basic tutorial activities that we investigate. The
tutorial activity we started with reflects our belief of effective pedagogy, and is as
follows. The student is presented with a certain algebraic expression of a function and
the graph of another function of the same type. For example, the algebraic expression
is y = 1 — /= — 1 and the graph is:

The student has to propose and justify a function characteristic which proves the non-
equivalence of the graph and the algebraically presented function. The characteristics
which we introduced are: ’

e intersection points with the axes;
o quadrants through which the graph passes;
¢ maximum possible domain of the function;

, * renge (image-set) of the function.
LS
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In the example both algebraic rule and graph have the same intersection point with
the axes (2,0), same domain z > 1, and pass through quadrants 1 and 4. They differ in
their range. {There may be more than one distinguishing characteristic.)

Dealing with such problems inv9kea some “mathematical maturity” and we believe
that tﬁe development of transfer skills between the two representations can enhance the
learning process. In order to develop a prototype of a computerized component which
will be the core of the “knowledge model” and the “student model” we decided to gather
data from nearly “perfect students” and from “actual students”. A questionnaire was
applied to 12th grade students (n=26) at the top level of 5 credit points in mathematics,
and to 10th grade students (n=32) at the level of 4 credit points. 4

Knowledge Representation: Perfect Student

Intx:oduction
The questionnaire was designed to examine how students handle problems of find-
ing characteristics of functions given in each of the two representations, algebraic and
graphical. The specific choice of items was intended to provide information on the in-
trinsic difficulties of students within each representation and on the role of the type of
function and the complexity of a particular function relative to its type. As expected we
found, for example, that the concept image-set causes difficulties across representation
and type of function, and that the greatest-integer function which is constant piecewise
is “pathologic” regarding all four characteristics.
The analysis of students’ responses to the questionnaire gave much more than that.
It stressed some salient conclusions:
e Students’ reasoning is generally logie, that is, students can generally explain their
actions by a succession of rules.
e Students’ knowledge tends to be consistent, that is, it is possible to carry out a
cross-examination of the various answers and to understand student behavior.
e Students’ answers reveal a partly hierarchical system of levels in relation to char-
acteristics of functions.
These conclusions will be illustrated by means of one example taken from the ques-
tionnaire. In the algebraic part of the questionnaire, the students have to justify their
answers and we will see how some of their explanations (which were clarified during in-

terviews) constituted the basis of the algebraic perfect-student-ezpert. For example when

O
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asked about the range of the function y = ~v/4 — z — 2, student A (a high achiever in
Grade 12) gave the following argument:

1. There is a square root, and I know that the square root function of z has always

positive values.

2. So the square root of everything is always positive,

3. There is a sign “.” before the square root, so the term —,/o is negative,

4. —,/v is negative, so the term —,/o — 2 is less than -2.

Student B (another “perfect” student) answered the same problem as follows:

1. asabove,

2. as above,

3. So +,/o+2is greater or lesser than 2,

4. ,So —/o — 2 is less than —2.

Thel results of the analysis of the questionnaire led us to construct an ezpert system
as a first approximation of the knowledge-base of students in the realm of the four
characteristics of functvions. This expert system will be referred to as “The Perfect
Student Expert”. The currently developed expert is divided into two parts: an algebraic

expert and a graphical expert. Each part can be considered as a separate student

modeling implementation.

The Algebraic Expert

The algebraic expert deals with families of functions +f(+z + a) £ b where f(z) is
1/z,4/z, or [z]. Our main concern in the construction of the algebraic expert, was to
build a system preserving the cognitive structures revealed by the questionnaire. To
achieve this, we represented the functions in symbolic list structures which reflect the
syntactics of the expression as observed by the student:

[E1,0P, L, E2, B] (or some permutation of this list).

OP is one of the operators: division_sign, square_sign, integer_sign.

L is a list [E3, z, E4, A] (or some permutation of this list).

Ef are variables, whose values are %1, related to unary or binary plus and minus.

A, B take the values of the parameters of the function.
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For the previous example, y = —\/1 —z—2, the algebraic expert records the function
in its list form: [—1,sqr,[1,4,-1, 2|, —1,2}. The rules formulated for deciding the char-
acteristics translate easily into Prolog clauses. The interpreter can be used directly for
deriving the propertics of a function. A user-interface presents the output of the expert
as illustrated in the following for ﬁ;nding the image-set of y = ~\/4 — z — 2.

Please enter a function F > [-1,sqr,[1,4,—1,2],—1,2].
Enter a characteristic (d(omain), r(ange), i(ntersection), q(uadrants), hielp))> r.
Ezpert answer:
(1) [ sqr, ...z, .} applies range VT 15 [0,in f(inity)]
“(2) |-sqr, (-~ 3], ] implies range JEz £ A is [0,inf]

() [-1,sqr,[., -, ., 2], -, .] implies range (—\/:HZ) 18 [inf,0]

(4) [-1,sqr,| -, -, 2], E¢, B] implies range (—VEZTEA+E + B) islinf,E * B|
or

(1) |- sqr,...z,_,| applies range \/z is [0,in f(inity)]

(2) [ sqr]-, -, - ], ., | implies range /Ez £ A is [0,inf]

(3) - sqr,|- -, -, ), -, B) implies range (tvEz £ A% B) is [£B,inf] or [inf, + B]

(4) [-1,sqr,|, _, ., 2|, E,, B] implics range (—VEzEA+E + B) 13 [inf,E, * B|.

This output exhibits precisely the inference chains of the “perfect” students A and
B. Applies stands for “I know” and implies stands for “so”. After instanciation of the
variables the expert’s response is [inf, —2|.

The expert can do more than that: it locates students’ answers relative to the perfect
student by matching the actual and perfect answers. For example, if a student answers
that the range of the function is y < 0, the expert will try to match the answer and

present the following output for the student’s answer:
(1) [sqr,...z,_,_] applies range \/z is [0,inf]
(2) [-,sqr,[= s - ), -, -] implies range \/Ez £ A is [0,inf]
(8) [-1,sqr,|4 -, -, 7}, -, -] implies range (—vVEz £°4) is [inf,0]
or
(3) [ -1,sqr|., ., .z}, 1, ] implies range (-Viz A~ ) is [inf,0]
The expert provides two alternative explanations: Rule 4 is missing or an incorrect rule
(“The range of the term ~,/8 — B is y < 0 because of the two “." signs)_was applied.

How could the expert produce such a rule? A system of meta-rules which reflects some
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most common errors of students has been inserted to the expert. The analysis of student
reasoning, such as scarching for missing or incorrect rules, can be done using techniques
of meta-programmming. Prolog is especially suited for meta-programming since Prolog

clauses are themselves terms in Prolog.

The Graphical Expert

The development process of this expert was based on the application of the question-
naire to the 10th grade class. The aim of the graphical expert is to restore the four
characteristics of a function given in its graphical representation.
) The nature of the processes needed for this task is very different from the processes
involved in the algebraic representation: the students “see” the “graphing” and have
only to translate it in a formal way. Thus, in the questionnaire, we could not ask for
explanations of the visual answers. This fact influenced the construction of the graphical
ex;;ert; while the algebraic expert has been based on the explanations of perfect students,
the graphical expert has been based on classification of actual students’ answers.

Let us clarify this point by means of an example taken from the questionnaire. The
student is presented with the following graph (without being told that the graph belongs

to a square-root function):

A typical answer for the domain and the range of the function is:
-8<z< -1, —2<y < 1. Students who gave this answer did not process the visual
information they received; they just answered what they saw. It is difficult here to say
that the students were wrong, but of course we hope that they will implicitly translate
the visual information to: z < —1, y < 1. The answer y < 1 is associated with some
familiarity with the graph of a square-root function.

Another source of problems is connected with the limitations of the resolution of the
computer screen. Some students gave the following result to the intersection with the

z-axis: (z,0) where —22 <z < —18. Here again, there exists a gap between the

O
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implicit information and the visible; the student grasps the visible. It is also found that
many students do not cope successfully with reading points when non-integer coordi-
nates occur. Based on the actual students’ answers to the graphical tasks the following
aspects in the solving process were identified:

(a) Objective mathematical skills for interpreting graphs (e.g., linking “range” with

the y-axis). -

(b) ~Association with familiar graphs.

() Linking the visible “graphing™ with the implicit graph.

(d) Concern with the accuracy of the graphics, and reading points on a graph.

We illustrate how the graphical expert acts in the last example. The “graphing”

presented to the student is symbolized by the list:
[features ([—8,—1],[~2,1]), inter ([—2.2,—1.8],none), quads ([nore, 2, 3, none|})]
Legend;
features ([—8,—1],[—2,1]): the visible part of the graph is constituted by the z part
—8< z< —1and by they part —2<y<1.

inter ({—2.2,—1.8],none): The intersection point with the z-axis is “spread” over the

interval [—2.2, —1.8|; there is no intersection of the graph with the y-axis.
quads ([none, 2, 3, none|): The graph passes through quadrants 2 and 3.
Note: while the “inter” and “quads” functors have the same format for all these types
of functions in the system, the “features” ft;r;nat, features (A[Lz,Ly])', is different for
the three types. The length of the sublists Lz, Ly is determined by the “graphing” of
Vz,1/z and [z]. '

The expert finds the characteristics by applying hierarchic .| rules expressed as logic
clauses. For example, the rules for deciding the range of the current example are:
1. length Ly = 2 implies that the range is |-, ]
2. length Ly =2 applies the range is [_,inf] or [inf, ]
8. Lz = [—8,—1] and Ly = [—2,1] implies that the range is [inf,1].
The user interface exhibits the inference chain of the expert and the matching of correct
rules when an actual student answer is entered. Asfor the algebraic expert the inference
chains enable to capture actual student knowledge (i.e., failure in rules 1, 2, 3 reflect

difficultics related to aspect (a), (b), (c) respectively).

O
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Next Steps

We started the construction of the “student model” by gathering information from
perfect and actual students. Empirical data and clinical observations contributed
rescarcher-defined rules that simulate student reasoning. In the present paper, we have
not described the tutorial component. Roughly, it chooses a triplet: algebraic rep-
resentation, graph, and characteristics, and asks whether the the given characteristic
discriminates between the two presented functions. The Perfect Student Expert (the do-
main expertise) simulates students’ correct responses and determines the level required

for solution. The process can be reversed by logical programming techniques, i.e. a

certain level can ‘determine’ possible tasks. Data collected by the questionnaire and

O

analyzed by the student model provide diagnostic information about students’ knowl-
edge. The tutorial nceds to select tasks at the level of the student in order to generate
learning. Experiments with the pilot version of the tutorial showed that the tasks may
provide sufficient challenge for lecarning and progress. In case it is not sufficient, the
expert may present the “rules” invoked for the situation. The tutorial is designed to be

used not only for treatment and evaluation, but also to sharpen the diagnosis.
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