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A MODEL OF UNDERSTANDING TWO-DIGIT
NUMERATION AND COMPUTATION

Ilan lie Murray and Alwyn Olivier
University of Stellenbosch

This paper suggests that a full understanding of /dace value is not a prerequisite
for many powerful, pliable computational strategies; that these strategies arc
formulated and widely used by young students; and that the use of these
computational strategies facilitates a full understanding of place value. Based
on an analysis of the computational strategies employed by young children, a
model is proposed for the development of children's understanding of t wo-digit
numbers. lids model holds serious implications for both when and how to
introduce two-digit numbers, and also for the role assigned to standard written
algorithms in the junior school.

INTRODUCTION

Various models have been proposed to describe the development of young children's un-
derstanding of place value, e.g. Resnick (1983), Kamii (1985), Ross (1985). The general
consensus among these researchers and also authors such as Richards and Carter (1982)
seems to be that a full understanding of place value necessitates the conceptualization of
ten as a new abstracted repeatable (iterable) unit which can be used as a unit to construct
other numbers. It is also clear that this abstraction is quite difficult and that many third
and fourth grade children have not attained this understanding in spite of many years of
intensive teaching about place value.

We have available taped and transcribed protocols of interviews conducted at the start of
the school year in 1987 with all 140 third grade pupils (aged eight to nine) of two fairly
representative white schools. During each interview the student was presented with con-
text-free addition problems involving whole numbers of increasing size, first orally, then
set out horizontally, and finally set out vertically with the digits correctly aligned. The stu-
dent was encouraged to solve each problem in whatever way he chose to, and asked to de-
scribe his solution strategy for every problem. These students had all had at least nine
months' intensive instruction in place value and the standard vertical algorithm for addi-
tion. Analysis of the protocols shows, however, that these children use the taught algo-
rithm infrequently, but rather prefer informal (untaught) computational strategies. The
data also show vast qualitative differences in understanding of two-digit numbers, that is
evidenced by the different types of computational strategies utilized by different students.
The data have led us to postulate four levels of understanding of two-digit numbers, each
level easily identified by the computational strategies employed to perform context-free
computations. The levels that precede a full understanding of place value are probably
more important and far more useful than has been realized before, and function as vital
developmental stepping stones towards the place value concept.
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DIFFERENT RANGES OF NUMBERS

Steffe, Von Glasersfeld, Richards and Cobb (1983) describe children's understanding of

the single-digit numbers as progressing through different levels of abstraction until the

number is constituted as an abstract unit item with a meaning independent of physical ob-

jects or counting acts. This implies acquiring the numerosities ("how-manyness") of the

numbers. Whereas children who have not yet acquired the numerosities of the range of

numbers with which they have to perform computations must necessarily utilize pre-nu-

merical strategies like counting all, children who have acquired the numerosities of the

numbers have the capacity to use numerical strategies like counting on from first, count-

ing on from larger, etc.

One could expect, maybe, that children's use of numerical strategies in computations with

small numbers will transfer to computations with larger numbers. It has, however, fre-

quently been documented that children find problems involving smaller numbers easier

than those involving larger numbers (e.g. Carpenter and Moser, 1982), and that children

change their behaviour when the sizes of the numbers in a given situation change (Cooper,

1984). The following are clear examples from our research showing children regressing

to more primitive strategies or completely senseless juggling of symbols when they have

to compute with larger numbers. (These problems were all presented orally. A summary

of the child's strategy is given next to the problem.)

Elsa a regression to the pre-numerical strategy of counting all

7 + 5 = 12 5 + 6 = 11 and add 1

9 + 2 = 1 1 9 + 1 = 10; + 1 = 11

but

11 + 17 = 27

37 + 5 = 42

draws 11 small circles, then 17 small circles, then counts all

draws 37 small circles, then 5 small circles, then counts all

Marlene a regression to meaningless manipulation of digits

9 + 2 = 11

9 + 6 = 15

but

29 + 4 = 96

23 + 12 = 53

2.5 + 8 = 87

9 + 1 = 10; 9 + 2 = 11

9 + 1 = 10; + 5 = 15

writes 29 + 4, then: 2 + 4 = 6 and puts 9 next to the 6

writes 23 + 12, then: 2 + 3 = 5 and 1 + 2 -= 3

writes 25 + 8, then: 2 + 5 = 7 and puts the8 next to the 7

We argue that this regression is explained by the fact that these numbers are outside the

children's range of constructed numerosities (and in Marlene's case, coupled with a per-

spective of mathematics as meaningless manipulation of meaningless symbols). When a

child has acquired the numerosities of the smaller numbers, e.g. up to nine or twelve, he

has not necessarily acquired the numerosities of the two-digit numbers as well, e.g. it is

clear that Flsa's lack of "feeling" for 37 forces her to recreate 37 by means of circles which

can he counted from the beginning. Although a child may therefore be able to employ nu-

merical strategies within a certain range of numbers, the numerosities ofnumbers beyond

this range have also to be acquiredbefore he is capable of using numerical strategies when

computing in a range of larger numbs.
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DIFFERENT TYPES OF COMPUTATIONAL STRATEGIES

When children work with smaller numbers, their computational strategies fall into two
broad classes: the pre-numerical strategies where the child has to count all beCause he has
not yet acquired the numerosities of the numbers he is using, and the numerical strategies
like counting on or bridging through ten. In computations with two-digit numbers, the
pre-numerical/numerical distinction between strategies ofcourse still exists. We can also
distinguish different types of numerical strategies.

One type of numerical strategy is counting on. Another type, not based on counting, Car-
penter (1980) calls heuristic strategies. Heuristic strategies often involve the decomposi-
tion of one or more of the numbers in a problem in order to transform the given problem
to an easier problem or series of problems, e.g.

36 + 27 = 36 + 4 + 23 = 40 + 23 = 40 + 20 + 3 = 60 + 3.
Peter solves 36 + 27 as: "Three tens and two tens gives fifty, and six and then seven, which
gives 63," whereas Marietjie solves the same problem by saying "Thirty and twenty gives
fifty, then add six and seven." Although seemingly the same strategy, we see the different
naming as manifestation of different understandings of two-digit numeration.

THE MODEL

We hypothesize that there is a relationship between children's understanding of two-digit
numbers and the computational strategies that they use. It is not necessarily a linear re-
lationship, because children do not consistently use their optimal computational
strategies; at best we can say that the use of a certain type of computational strategy
"defines" a certain minimal understanding of number and numeration. Based on our re-
search data and a theoretical conceptual analysis,we have formulated a theoretical model
describing four increasingly abstract levels of types of computational strategies with two-
digit numbers in a given range, each type associated with its prerequisite understanding
of number and numeration.

The first level

At the first level the child has not yet acquired the numerosities of two-digit numbers in
a given range, and can therefore only use the pre-numerical strategy ofcounting all for
computations in this range. The child knows the number names of the two-digit numbers
and their associated numerals, and associates the whole numeral with the number it re-
presents, but assigns no meaning to the individual digits. At this level the symbol group
63 can be regarded as a way of "spelling" the number name. A common error is to inter-
change the digits (e.g. writing 36 for sixty-three), yet often this has no adverse effect on
the child's understanding of the number itself, as evidenced by Johan. To solve 30 + 4
(presented orally) he writes:

and says "thirty plus four is thirty-four." His incorrectuse of the t and e symbols (for "tens"
and "units" in Afrikaans) in no way affects his computation, because the "tens" and "units"
have no meaning for him yet.



Results of previous research support the conclusion that the understanding of the whole

numeral precedes understanding of the individual digits (e.g. Barr, 1978; Kamii, 1986).

The second level

At this level the child has acquired the numerosities of the two-digit numbers in a given

range, which implies that he can utilize numerical computational strategies like counting

on for computations in that range.

Whereas it is sufficient for a child to use only counting on strategies for smaller numbers,

counting on becomes very tedious and also prone to error when used with larger two-digit

addends.

The third level

At this level the child sees a two-digit number as a composite unit, and can decompose or

partition the number into other numbers that are more convenient to compute with, e.g.

to replace 34 with 30 and 4. This provides the child with the conceptual basis to use heur-

istic strategies.

The heuristic strategies used by students in our research are almost always based on de-

cimal decomposition, i.e. a decomposition into a multiple of ten and some units, e.g. 67

as 60 + 7. But the tens are most emphaticallynot treated as "so many tens"; they are called

by their full number names, e.g. sixty-seven becomes "a sixty and a seven", not "six tens

and seven units." Students then use their knowledge of adding multiples of ten to obtain

answers, e.g. Chris does 23 + 12 by saying: "Take the three away, add the twelve to the

twenty, then add the three again", partitioning 23 into twenty and three. Ifboth numbers

are large, he partitions both: 36 + 27 is solved as "take the six and the seven away, thirty

plus twenty is fifty; now add six, then add seven."

We have identified ten different heuristic strategies based on decimal decomposition.

These strategies are very powerful and completely trustworthy: we have not found child-

ren applying them incorrectly. If the answer is incorrect, it has always been because the

child has failed to add the units correctly.

The fourth level

At this level the child is truly able to think of a two-digit number as consisting of groups

of tens and some units, i.e. the child can conceptualize ten as a new iterable unit, without

losing the meaning of the number as a number. Whereas at level 3 the child works with

ten as a number, that is no different than any other number, at level 4 he is able to work

with ten as an iterable unit, a thing that can be counted as a unit, so that e.g. the number

23 is conceptualized as "two tens and three ones." Richards and Carter (1982) make this

distinction clear:

"Seeing ten as iterable is distinct form (sic) being able, say, to add ten and ten

to make twenty. Seeing twenty as built up out of two units of ten is concep-

tually different from simply being able to add ten and ten to get twenty. In this

sense, 'Ten and Ten' are distinct from Two Tens'. The former is not different

from taking any pair of numbers..." (p. 61)

8
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Concerning computation, level 4 understanding of numeration facilitates a progressive
schematization ("shortening") and abstraction of the level 3 heuristic strategies. Here are
some examples of this type of "groups of ten" thinking as opposed to the "tens part as a
complete number" thinking of the previous level: Annemarie solves 26 + 37 (presented
vertically) by saying: "Six plus seven is thirteen. Five tens plus one ten is sixty. Sixty plus
three is sixty-three." For 36 + 27 she says: "Thirty plus two tens, that's fifty. Six plus seven
is thirteen, that's sixty-three." Very few of the children we interviewed use this concep-
tualization of ten as a new "unit"; even Annemarie frequently prefers the level 3 method:

39 + 14 30 + I() = 40; 4 + 9 = 13; 40 + 10 + 3 = 53.
Level 4 understanding of numeration is a prerequisite for the meaningful execution of the
standard written algorithms. A further abstraction allows one to operate on the digits of
numbers e.g. in the number 56, the meaning of the five as fifty or five tens can tempo-
rarily be suspended to work with 5 as a digit for the sake of convenience and the further
progressive schematization of computational strategies.

When executing the standard algorithm has become automatic, it is difficult to deduce
from the child's behaviour his understanding of the procedure and the underlying numer-
ation concepts. However, it is clear from our research that many children seem to think
of "groups of tens" in the correct (meaningful) way, because they talk about tens and units
while they are computing, yet closer examination reveals completely superficial use of the
terms "tens" and "units", with no possible evaluation of the numbers involved and the ac-
ceptability of the answers obtained. Sonja shows a proficiency with the standard algorithm
for vertical addition, which is yet not based on a true understanding of the number sym-
bols. She computes 34 + 17 and even 26 + 37 successfully by means of the standard ver-
tical addition algorithm_, but 5 + 37 (also written vertically with the digits aligned
correctly) as 5 + 3 + 7 = 15, and 5 + 23 becomes 55 (the first 5 becomes the tens of the
answer, and the units of the answer are the sum of 2 and 3). A superficial facility in execu-
ting the standard written algorithms may therefore hide serious deficiencies in the under-
standing of numbers and place value.

We have not come across a single child who operates with level 3 strategies ("the tens part
as a number," e.g. "sixty") showing confusion of the above kind, probably because the
mathematics underlying the level 3 strategies can never be hidden from the child: it is im-
possible to employ a level 3 strategy without understanding what you are doing, but it is
extremely easy to implement a standard written algorithm in rote fashion. When the stand-
ard written algorithm is routinely employed, one operates on the syntactic level, manipu-
lating the symbols directly as 'concrete' objects of thought according to certain rules, totally
removed from their meanings as numbers. The level 3 and 4 heuristic strategies are, how-
ever, on the semantic level: One deals with the symbols by referring back to their meaning,
i.e. in 23 the 2 refers to 20 or two tens. Many students who falter using the standard algo-
rithm either do not have the necessary level 3 semantic knowledge to monitor their syn-
tactic rules, or their syntactic and semantic knowledge appear to co-exist completely
unconnected.

BEST COPY AVAILABLE
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SOME RESULTS

The following table represents a summary of a preliminary analysis of the protocols of a

few selected computations:

Percentage of students using types of strategies" b

Computation
Levels I . 2

Counting strategies
Levels :1 k .1

Heuristic strategies
Standard

algorithm'

25 + 8 (set orally) 39 (65) 41 (81) 9 (16)

21 I 8 (set horizontally) 34 (67) 1-1 (52) 11 (25)

27 + 6 (set. vertically) 31 (81) :36 (92) 22 (16)

34 -1- 21 (set orally) 16 (22) 49 (77) 16 (55)

34 + 23 (set horizontally) 11 (27) 56 (90) 19 (93)

36 -1- 27 (set orally) 10 (7) 42 (73) 22 (19)

26 -1- 37 (set vertically) 4 (17) 34 (87) 21 (31)

°Students not included in this summary either 'did not know*, 'guessed', 'knew', or were not

asked, because they failed or persevered with similar strategies in similar problems.

'Numbers in parenthesis represent the percentage of students who used a particular type of

strategy that solved the problem correctly.

`A student was coded as using the standard algorithm if he gave direct written or verbal evidence

of computing ones and tens separately as digits, from right. to left.

The data clearly show to what extent students prefer heuristic strategies, and the high suc-

cess rate of these strategies. In contrast, the data also show how few students actually em-

ploy the standard taught algorithm, as well as the low success rate in using the algorithm.

The data also show, however, that a large number of students could not cope with the

computations at all (e.g. in the last two categories a maximum of 26% and 41% respec-

tively).

DISCUSSION

If our model provides an accurate description of the development of children's under-

standing of two-digit numeration, and if one believes that instruction should be based on

the developmental sequences observed in children, then the modeland our data have seri-

ous implications for the teaching of two-digit numeration and computation.

We stress that our subjects have had intensive instruction in "tens and units" place value

and in the standard written algorithm for addition. While it is acknowledged that this type

of instruction had contributed to the facility of many students with heuristic strategies

(that were not explicitly taught, and that they preferred to the standard algorithm), this

type of instruction also contributed to some students regressing to primitive (hut to them

meaningful) counting strategies for computing with larger numbers, to students' pool

grasp of the standard algorithm when they chose to use it, and the helplessness of many

others. 1
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The near universal method of introducing two-digit numeration is by quantifying sets of
objects by groupings of tens and ones and learning the numeral and number name asso-
ciated with the sets of tens and ones. This approach is based on an a priori logical analysis
of the concepts and has a great deal of intuitive appeal (to teachers) because of the un-
derstanding that (supposedly) precedes the symbolization. Yet, this approach does not
consider the psychological nature of children's learning: understanding of two-digit num-
bers as groups of tens and ones is at level 4 and can therefore be expected to be too ab-
stract for students who are operating at level 1, 2, or 3. We have ample evidence that it is
not successful to teach children about the tens and ones meaning of the symbols in the
symbol groups before they have become accustomed to a symbol group as representing a
single number (level 1). The child has to work with 63 as a way of writing "sixty-three" for
along time before he becomes ready to understand 63 as 6 tens and 3 ones. Similarly, level
2 and level 3 thinking are necessary prerequisites for children to understand the sophis-
tication of two-digit numeration and computation (cf. Murray, 1988).

There is some evidence that the compositional structure of numbers arises first in the con-
text of oral counting. Kamii (1985, 1986) attributes children's difficulty with place-value
partly to the teaching of standard procedures and outlines a teaching sequence based on
counting, and reading and writing numerals without groups of tens, and on children in-
venting their own procedures to add 2, 3 and 4-digit numbers. In a teaching experiment
Barr (1978) found that kindergarten children who were introduced to two-digit numera-
tion through counting, and reading and writing numerals before grouping exercises de-
signed to provide understanding, did better than those who did the grouping exercises
first.

It it seems that when students' level 1 and 2 counting strategies become too cumbersome
for computation with larger numbers, teachers "help" children by introducing the stan-
dard algorithms as necessary (the only) computational tools. Some teachers may try to
build a conceptual basis for the algorithms (level 4), but such efforts seem ill-fated if level
2 and 3 understandings are bypassed. Other teachers introduce the standard algorithms
at the syntactic level, thereby undermining the development of adequate number con-
cepts and fostering a perspective of mathematics as instrumental understanding. Rather
than trying to discourage counting, teachers should help children to become efficient and
accurate counters, and help develop level 3 understanding of numeration and computa-
tion, i.e. give much more emphasis to the first three levels of understanding. Level 3 un-
derstanding provides sufficiently powerful computational strategies, so that the
introduction of the standard written algorithms may be delayed, if they should be taught
at all.

The influence of computing technology necessitates a re-orientation of goals of elemen-
tary school mathematics, especially regarding the role of pencil-and-paper computation.
There is a call for de-emphasizing standard written algorithms and integrating the calcu-
lator into the curriculum as the primary computational tool, accompanied by an increased
emphasis on mental methods, estimation, understanding of number and algorithmic
thinking as a mathematical process (eg. Olivier, 1988). It seems that the level 1 to 3 un-
derstanding of numbers and computational strategies are exactly those that are necessary
for developing the skills of mental methods, estimation, and flexible computational pro-
cedures and the understanding of number and numeration. It must be stressed that the
heuristic strategies are not necessarily mental methods, because some children prefer to
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record at least some portions of their computations. However, the types ofstrategies for-

mulated by these third graders themselves correspond very closely to the "mental me-
thods" and "street mathematics" described by authors such as Plunkett (1979) and

Carraher (1988).

We have outlined a model describing the development of children's understanding of two-

digit numeration and computation. Such a model should be complemented by a teaching

program to facilitate transition through the different levels of understanding. We are at

present implementing an experimental syllabus based on these ideas in eight schools. We

shall report the results of the experiment in due course.
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THE COMPUTER PRODUCES A SPECIAL GRAPHIC SITUATION OF

LEARNING THE CHANGE OF COORDINATE SYSTEM.

Suzan NADOT

GRECO DIDACTIQUE PARIS

Summary: Articulated by the visual, this research is

situated at the junction of informatic and mathematics. It

takes its roots both in a technical conjuncture where the
picture and the informatic develop a new communication and a

social conjuncture where the didactic comes back to improve the

pedagogy by analysing the knowledge and the rules which run the
transmission of situations. The working on the computer
introduces a real problematic which will make second form pupils
think about the change of coordinate system and the change of
variable.

INTRODUCTION

A lesson of maths about functions also deals with the
outline of a curve so as to illustrate, explain and give a
solution. This drawing, both geometrical and schematic is

distinctly defined as an activity which must occupy an important
place in the different parts of analysis programm, being
specified by its language and its representative process; it's
a real significant which can lead to a direct vision of things.

On the overland, the development of the graphic
possibilities of the computer, must seduce the authors of

didacticiels who conceived automatic graphic treatments: the
imagiciels. As an automatic treatment, the imagiciel gives to
the utilizer a real short .cut in the executive tasks, it gives
the possibility of going beyond the conventionnal and singular
visions thanks to ways of juxtaposition, superposition and
transformation. In a parallel direction, the learning of

informatic language joins the mathematics notions linked to the
functions. The writing of a simple imagiciel, the tracer, is
based already in its conception upon the notion of function and
rises all the questions of coordinate system.

By studing both contraint of nowadays ways of teaching

13:
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in our second form and the possibility offered by the computer,

we've looked for an original situation of learning which also

allowed us to see the procedures developped by the pupils.

TODAY'S WAYS OF TEACHING

After analysing different school books, the graphic

activities have been divided into four categories of aims:

the learning of graphic language where the accent is

put on the e> :plicitation of the translation algebra graphic.

the writing of graphics where the student must give

in a diagramm all the informations he has got by studying the

function.

the reading of graphics, the aim of which is to

verify, conjecture, even solve in extremes cases, that is to say

cases the pupils can't solve in another way. Contrary to the

previous activity, the pupil must sketch what he perceives

visually in an algebric way.

Combined activity where graphics and algebra are

mixed to give and treat information.

'learning I writing I reading 'combined I

I 11% 1 84% I 23% 1 16% I

The main activity is indoubtly the writing of the

curve, the final point of the algorithm of the study from which

it stands as the instrument of coherence. We can also state the

permanence in all the exercices of the "given coordinate

system". The graphic representations refers on a' triple

(coordinate system, function, drawing ), one of the elements

being fixed, we must interpret the relation existing between the

two others:

1st case: given the coordinate system, then we work

on the relation function drawing; it's the normal situation.

2nd case:given the function, we work on the relation

coordinate system drawing, by modifying the system, we can see

different caracters of the function.

3rd case: given the drawing: we work on the

14
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coordinate system function, by modifying the coordinate
system, we represent another function, it's the change of

coordinate system.

THE KNOWLEDGE OF THE PUPILS

Following a double set of questions given to four
second form last february then June, we should know the
abilities of the pupils.

The item c-1 (february) refered to the interpretation
of the graphic; a drawing being given to him, can the pupil
read the adequate pieces of information in it about the function
it represents.

c-1: By using the graphic representation of the g
function below determine by explaining what you do, g(1), then
the values of x as g(x)=2? g(x)<2?

o

The item c-2 (June) resumed the same question.

Parallel to the item c-1 was asked the item c'-1 in

which the same problem was proposed to the pupils in a different
language.

We consider the function f definited by f(x) = x2+ 1.
Compute f(2). Determine x so as f(x)=10 ? f(x) <10 ? Justify
your answer.

% for the pupils who complete this item successfully:

(item 1 f (a) 1 f (b) 1f(Ec,d))1 E I

1c'-1 1 88,37. 1 79,6% 1 6,6% 1 137 I

1c -1 1 26,3% 1 12,47. 1 3,67. 1 137

1c -2 1 56,2% I 48,27.
1

38,77. 1 137 I

The reading of a graphic and its interpretation in

another system .of signs is not completely unterstand by all the
pupils, even of we can see progress all along the school year.

The way of of interpreting graphic informations is
less unterstan than treating them algebrically.

The three questions we asked belong to the same field
of competence, however there's a hierarchy between them which
remains after the familiarisation.

15
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The items b-1 and b-2 refer to the simultaneity of the

coordinate system: a naturel, the one of the squared piece of

paper where the unities are spontaneously related to the square

and so the one of the mathematics universe in which have to be

represented clearly.

b-I and b-2: If you can use a big size small squared

piece of paper to situate the points, the coordinate of which

are given below, how would you choose the units 7 Situate the

points is not asked.

x 1- 671-601- 521- 371-301- 151 0 1 151 30J 37 152 160 1 67 1

y 1-0,71110,71 0,71110 11101110,71 0,71 1 1-0,71

For each of the two items, the percentages give the

right, unfinished, wrong and the missing answers.

1 item

1 b -1

1 b-2

I 1 I I 1

right lunfinish I

i

22,6% 1 13,17. 1

54 % 1 10,27. 1

wrong 1missing1 E

21,27. 1 43,17. 1 137

23,4% 1 12,47. 1 137

I I

The success remains feeble about this activity which

seems elementary. The choice of the unities refers a numeric

problem and a theorical problem: the one of the double

coordinate system. Observations made in other time showed that

the change of coordinate system is a blind point among the

majority of students, it stands in all cases as a senseless

point.

We have chosen among a lot of possibilities to set a

didactic situation to introduce the change of coordinate system.

THE DIDACTIC SITUATION

Our situation being settled on an experimental

approach, the computer created the problem and allowed an

observation of the procedures of individual resolution.

1/Description of the situation

We asked the pupils to set out a part of curve on the

screen of the computer by logo graphic programming. For the

programmation of a setting out the curve, the confrontation of

the two coordinate system is continuous; on one hand the logo

16
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graphic universe set, always the same: the origin is in the
centre of a squaring, the 64000 points of which are coded from

-160 to 159 and from -100 to 99, the instruction point (x,y)

lights a point on the screen having (x,y) as coordinates; On

the other hand the mathematic universe conditioned by the part

of the isnusoid to reproduce on the screen.

2) The population

We have experimented pupils in a second form learning

informatics, for four weeks 1 four times two hours).

c) The development

The pupils had to write a logo programm which drew a

part of a curve representing the cosine function on the
successive intervals: C-160°, 159°]; E-320, 318]; E-60,2597;
1-160, 3187.

The holding of the problem was immediate, the pupils

had a reproduction of the sisusoid settled by them during a
previous work, they had already used imagiciels and therefore

know what a computer could produce. They know the aim to reach
and could control the rightness of the facts all along the
working of the machine-

d) The procedures_

Immediately in the case equality, they have programmed
the algorithm of construction: point (x,cosx) for x which
varies from 1 to 1 between -160 and 159. The reaction was one

of perplexity, waiting was not successfull (d -1), so they came
back to the programm, changed it but failed, then called us and

facing our behaviour, no syntactic mistake, they have tried to

find and they have seen the illegibility of the logo unity after

several simulations., have pointed (x, SOcosx) (d-2).

(d-1)
1 (d-2)

4

1

1

In the case of the zoom, the. first operation being
done was that of change interval of x, modifying -160 into -320

17
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and facing a error message, two procedures emerged:

lrst type: point (/2,00cosx) with varying from

-320 to 318. The procedure which developped itself as soon as

the discovery of the relation of the amplitudes of the intervals

and which proved its rightness by showing the right shape of the

curved.

2nd type: point (x, 80cos2x) with x varying from

-160 to 159.

To solve C-60,259] has been the most difficult case.

The pupils saying: we see what is happening, we can see why it

doesn't work right, but we don't know how demarrage, we

shouldn't find the origin in the middle. At last the two

previous procedures reappeared.

Success of the group (two or three pupils in a group)

among the 7 groups of the form.

'1st week I2nd week 13rd week 14th week 1

1

item
I

I
I I

I

I drawing on I

I

6/7 17/7 I
I

I C-160,159] I

I

85,7% I

1

100% I

1 I

1 equality 1

I I I I

1 drawing on I

I

4/7
I

6/7
I

7/7 I

1

I C-320,318] I

I 57,1% 1 85,7% I 1007. I

i
1

room
1

I 1 1 I

I drawing on 1

I

0/7
I

1/7
I

2/7 I 5/7 I C-60,259] 1

I

0% I 14,37. 1 28,6% I 71,47. I travelling I

I
I I I

I drawing on I

I

0/7
I

1/7 1 2/7 1 3/7 1 C-320,318] 1

I

I 14,3% 1 28,6% I 42,97. I combined I

ABOUT THE OBSERVATIONS

a) From a mathematical point of view, two main

questions have been raised. We have put the accent on different

coordinate system: "we can assert we change of function but we

can also may we change of coordinate system". The change of

variable: the ordered pair (x/2, cosx) and (x, cos2x) are

18
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different and however we get the same graph The answer has

been more undecided, but it's precising numerically, the data in

every cases that the pupils have been convinced that cosx and

cos2x can be the result of the same process of calculus owing to
the change of variables.

b) From a cognitive point of view the problem of the

treatment of change of reference marks revealed itself very

difficult particulary the case of a travelling, the decentring
raises a bigger difficulty, the treatment of the simultaneity

add substract is less under control than that of multiply
divid, and the visual signs which helped to make the extending

are helpness when there is a decentring.

schema

c) From a point of view of the didactic situation, the

decontextualisation is not easy. If the experimental generates

some efficient practises and basic questions, a passage remains
to be accomplished; It remains the passage leading to the

decontextualisation. That's on this particular point we

nowadays continue our work.
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francaises de psychologie 50 - Editions du CNRS 1980
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Epistemological analysis of early multiplication

Nicole Nantais, Universite de Sherbrooke

Nicolas Herscovics, Concordia University

Prior to launching a three-year study on the understanding of early
multiplication in primary schools, an epistemological analysis of this conceptual

scheme is essential. The approach used in this paper relies on criteria identified

in the elaboration of a two-tier model of understanding, the first tier describing

the understanding of preliminary physical concepts, the second tier describing

the understanding of the emerging mathematical concept. At the physical level,

a situation is perceived as being multiplicative when the whole is viewed as

resulting from the repeated iteration of a one-to-one or a one-to-many
correspondence. Three distinct levels of understanding can be identified with

multiplicative situations. The emerging concept of arithmetic multiplication can

also be described in terms of three complementary aspects ofunderstanding.

In the last fifteen years, research on additive structures has been quite extensive and

the results have been rather significant. More recently, several PME and PME-NA

papers have dealt with the concept of multiplication of real numbers. However, hardly

any studies have been concerned with the early beginnings of multiplication of natural

numbers. An investigation of the acquisition of this conceptual scheme by primary

school children will be carried out over a three year period at the University of

Sherbrooke. The objective of the present communication is to open the discussion on

the proposed conceptual framework used in this project.

The different meanings of multiplication in N
If we ask any teacher what is the meaning of multiplication of natural numbers, one

usually gets as a response: "multiplication is repeated addition". The description here

refers essentially to the arithmetic procedure needed to find the answer. Curiously, the

other three arithmetic operations can be identified as the arithmetic reflection and

quantification of physical procedures : addition refers to the quantification of either

Research funded by the Quebec Ministry of Education (FCAR Grant EQ-

2923)
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augmenting a given set or of putting together two given sets; subtraction usually
refers to the quantification of the set remaining after some elements have been taken
away from an initial set; division refers to the quantification of the result of
exhaustive equi-partitioning giving either the number of parts, or the number of
elements per part. But when it comes to multiplication, one is hard put to identify a
physical action corresponding to it.

In a survey of the different meanings used for the introduction of multiplication at the
primary level, Herscovics et al. (1983) found that some textbooks presented it by
counting jumps on the number line, while others referred to the notion of a Cartesian
product ( number of blouses x number of skirts = number of outfits). In their critique of
these different models, Herscovics et al. showed that they involved concept more
advanced than the quantification of discrete sets and thus, that they did not constitute a
good intuitive basis for the initial construction of multiplication. They were unlikely to
tap the natural emergence of the multiplication scheme in the young child.

Piaget and Szeminska (1941/1967) are the ones who came closest to identifying
multiplication with a physical operation when they described it as the iteration of a one-
to-one correspondence between several sets: "From a psychological point of view, this
simply means that setting up a one-to-one correspondence is an implicit multiplication:
hence, such a correspondence established between several collections, and not only
between two of them, will sooner or later lead the subject to become aware of this
multiplication and establish it as an explicit operation" (Piaget &Szeminska,1967,
p.262). In their evaluation of Piaget's model, Herscovics et al.(1983) pointed out that
preliminary results obtained when young children are asked to use a deck of cards to
make four piles of three cards, they are more more likely to achieve this through the
iteration of a one-to-many correspondence than through the more difficult iteration of a
one-to-one correspondence. However, both procedures are possible and hence must
be accepted as actions corresponding to the generation of a multiplicative situation.

That children can generate quite early various multiplicative situations is not too
surprising. But can one claim that by iterating a one-to-one or a one-to-many
correspondence they are actually aware of the situation as being multiplicative? Of
course not. This claim can only be made when they perceive the whole set as resulting
from the iteration of such correspondences. Using this last criterion as a working
definition of multiplication, one is then in a position to perform an epistemological
analysis of this notion. The term 'epistemological analysis' refers to the analysis of a
conceptual scheme along likely patterns of construction by the learner. The particular
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method of analysis that is proposed here is based on criteria developed by Herscovics

& Bergeron (1988) in the elaboration of their Extended Model of Understanding.

An Extended Model of Understanding.

At the last meeting of PME-NA, Herscovics & Bergeron (1988) have suggested that the

construction of some mathematical concepts might be well described within a

framework of a two-tier model of understanding, the first tier describing the

understanding of preliminary physical concepts, and the second tier identifying the

understanding of the emerging mathematical concept. In this model, the
understanding of preliminary physical concepts involves three levels of

understanding:

Intuitive understanding which refers to a global perception of the notion at
hand; it results from a type of thinking based essentially on visual perception; it
provides rough non-numerical approximations;

procedural understanding refers to the acquisition of logico-physical
procedures (dealing with physical objects) which the learners can relate to their
intuitive knowledge and use appropriately;

logico-physical abstraction refers to the construction of logico-physical
invariants, the reversibility and composition of logico-physical transformations
and generalizations about them.

The understanding of the emerging mathematical concept can be described in
terms of three components of understanding:

procedural understanding refers to the acquisition of explicit logico-
mathematical procedures which the learner can relate to the underlying
preliminary physical concepts and use appropriately;

logico-mathematical abstraction refers to the construction of logico-
mathematical invariants together with the relevant logico-physical invariants, the
reversibility and composition of logico-mathematical transformations and
operations, and their generalization;

formalization refers to its usual interpretations, that of axiomatization and
formal proof which at the elementary level could be viewed as the discovery of
axioms and the elaboration of logical mathematical justifications. Two additional
meaning are assigned to formalization: that of enclosing a mathematical notion
into a formal definition, and that of using mathematical symbolization for notions
for which prior procedural understanding or abstraction already exist to some
degree.

This model suggests a distinction between on one hand logico-physical understanding

which results from thinking about procedures applied to physical objects and about
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spatio-physical transformations of these objects, and on the other hand logico-
mathematical understanding which results from thinking applied to procedures and
transformations dealing with mathematical objects. In this framework, one can contend
with reflective abstraction of actions operating in the physical realm without necessarily
describing it as somehow having to be mathematical. We will now use this model to
describe the understanding of early multiplication, that is, products of numbers not
exceeding 9, for any discussion of the larger products would also require
consideration of the multiplication algorithms.

The understanding of preliminary physical concepts.

Let us recall that we are identifying conceptualization at the preliminary physical tier
according to the following criterion: A situation is perceived as being
multiplicative when the whole is viewed as resulting from the repeated
iteration of a one-to-one or a one-to-many correspondence. Using this as a
working definition, one can then attempt to classify various knowledge related to this
conceptual scheme according to the different levels of understanding.

Intuitive understanding. A first criterion of intuitive understanding might be the
ability to perceive visually the difference between a situation that is multiplicative and
a situation that is not . For instance a set consisting of several equal subsets might be
compared to a set consisting of unequal subsets. Since rectangular arrays are so
useful in illustrating multiplicative situations, a second criterion might establish if the
rows or columns can be viewed as equal subsets. A third criterion might involve the
visual comparison of two multiplicative situations in which one of the "factors" is
different. For instance, without knowing the total number of objects present, one could
compare 4 sets of 5 chips with 4 sets of 6 chips or 4 sets of 5 chips with 3 sets of 5
chips and decide where there are more. A fourth task might involve various
configurations of 9 subsets of 7 objects. The total number would be large enough to
discourage enumeration but bring out the fact that if the number of subsets and the
number of elements in the subsets are the same, the whole sets must have the same
cardinality.

Procedural understanding. We are looking here for the generation of multiplicative
situations calling on logico-physical procedures based on the iteration of 1:1 and 1:n
correspondences. A first criterion might the child's ability to transform a additive
situation (in which all the subsets are not equal) into a multiplicative one, by a
redistribution of some of the elements., Another task might involve the covering of a
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rectangle by equal strips which would correspond to either columns or rows. A third

task might verify if the child is able to relate a multiplicative situation generated by a 1 :n

correspondence to a multiplicative situation based on a 1:1 correspondence. A fourth

task might assess the the child's awareness of the fact that some quantities of chips

can be arranged into rectangular arrays of two or more rows whereas some quantities

cannot. This type of activity leads to the eventual notions of prime and composite

numbers.

Logico-physical abstraction. The initial problems we are looking for involve the

invariance of the whole with respect to some irrelevant spatio-physical transformations.

A first criterion of logico-physical abstraction might be the invariance of the whole with

respect to various configuration. For instance, a set of 12 chips can be arranged into

subsets of 2, 3, 4 and 6 elements respectively. A second criterion might involve notion

of commutatitvity. This can easily be established by rotating a rectangular array

through 90°. A third task might aim at verifying the equivalence of certain factors

thrcugh a redistribution of the elements. For instance, a set subdivided into 4 subsets

of 3 might be transformed into 2 subsets of 6. This is somewhat different from the first

activity since it starts from an existing multiplicative configuration. A fourth criterion

might involve the notion of distributivity. For instance, a 4 by 5 array and a 4 by 6 array

both represent two multiplicative situations. However, when they are combined along

the rows, the resulting 4 by 11 array is again a multiplicative situation which illustrates

the distributivity axiom.

The understanding of the emerging mathematical concept

Procedural understanding. By procedural understanding we mean the appropriate use

of explicit arithmetical procedures. Initially, when young children in grade 2 are asked

"How much is three times four?", many will respond by saying that they have not

learned it yet. Some will model the problem by making three sets of four and count

them starting from 1. While simple enumeration provides an answer, it cannot be

considered as a multiplicative procedure since it does not take into account the

existence of the subsets. The most primitive procedure that can be considered as

being somewhat multiplicative must provide such evidence. This is reflected when the

child manages to skip count on a number line: 4,8,...12. If no number line is available,

the child may remember the first part and produce "4 8,9,10,11,12. A more

advanced procedure involves repeated addition: 4 + 4 = 8 and 8 + 4 = 12. Gradually,

by grades 4 and 5, children learn to memorize some number facts which they can use

in deriving larger products as for example the product
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4 x 6 which may be obtained by the smaller product 2 x 6 =12 and then the sum 12+12
= 24.

Logico-mathematical abstraction. Gradually, as the child's procedural knowledge
evolves, the reversibility of the operations and the perception of some mathematical
invariants becomes possible. For instance, the child no longer needs concrete material
to break a number down to its factors. This inevitably leads to the perception of these
factors as also being divisors and thus the operation becomes reversible. Knowledge
of the multiplication table also enables the child to perceive the equivalence of various
products with respect to a given number without having to depend on their different
configurations. in terms of axiomatizations and generalizations, the commutativity of
multiplication becomes self-evident and somewhat later, so does the distributivity of
multiplication over addition.

Formalization. Interpreting formalization in terms of the symbolic representation of
the learner's previously acquired knowledge, children first learn the usual notation for
multiplication and can interpret 4 x 3 as meaning four sets of three objects. They also
can recognize an appropriate additive situation as being multiplicative by expressing
the sum as a product (e.g. 3 + 3 + 3 + 3 = 4 x 3 ). On the other hand, when this
arithmetic equation is read from right to left, it expresses a form of procedural
understanding since it symbolizes repeated addition. Interpreting formalization in terms
of axiomatization, the axioms of commutativity and distributivity can be crystallized in
various notations, a simple one beingx 0 = 0 x1:3 and d (Q+ O) = e xID+ e x 0 .

The use of letters might create some difficulties initially.

By way of conclusion.

It should be noted that the three levels of understanding included in the first tier are
linear. Without prior intuitive understanding, the acquisition of concrete procedures
could hardly qualify as understanding. Similarly, one cannot expect the child to
achieve any logico-physical abstraction without being able to reflect on the procedures
used to generate multiplicative situations. Neveretheless, the model as a whole is not
linear. The aspects of understanding identified in the second tier need not await the
completion of the physical tier. Well before they achieve logico-physical abstraction,
children can start acquiring the various relevant arithmetic procedures by the
quantification of problems introduced in the first tier. The formalization of multiplication
need not await the completion of logico-mathematical abstraction; the formalization of
the arithmetic procedures will occur much earlier than formalization of the axioms. The
following diagram illustrates this non-linearity:
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Understanding of preliminary physical
Intuitive Procedural Logico-physical
understanding understanding abstraction

concepts

Procedural Logico-mathematical
understanding.. abstraction

Formalization

%nderstanding of emerging mathematical concept

This work has some interesting pedagogical implications. It suggests an alternative to

the age-oldt tendency of introducing multiplication merely as repeated addition.

Instead, it suggests that prior to the introduction of this arithmetic operation, one might

present children with didactical situations in which they could recognize and generate

a great variety of multiplicative problems. Indeed, corresponding to the different criteria

used for the different levels of understanding in the first tier, one can develop a broad

sequence of activities. The stress on work at the concrete level should not be

interpreted as an attempt to diminish the importance of the traditional work on explicit

arithmetic procedures. But the prior introduction of multiplicative situationswill provide

some motivation and relevance.
References

Bergeron,J.C. & Herscovics,N., (1983) , Models of multiplication based on the concept
of ratio, in Proceedings of PME-7, Hershkowitz ,R. (ed), The Weizmann
Institute of Science, Rehovot, Israel, 199-204

Herscovics,N., & Bergeron, J.C, (1988), An extended model of understanding, in
Proceedings of PME-NA-10, Behr,M.J, Lacampagne,C.B., & Wheeler, M.M.
(eds), Northern Illinois University, DeKalb, Illinois, 15-22

Herscovics,N., Bergeron,J.C., & Kieran,C., (1983), A critique of Piaget's analysis of
multiplication, in Proceedings of PME-7, Hershkowitz ,R: (ed), The Weizmann
Institute of Science, Rehovot, 193-198

Piaget,J. & Szeminska,A. (1941/1967), La genese du nombre chez I'enfant,
Delachaux & Niestle, Neuchatel, Suisse

26



25

ARE THE VAN HIELE LEVELS APPLICABLE TO TRANSFORMATION GEOMETRY?

Lilian Nasser*

Instituto de Matematica - Universidade Federal de Rio de Janeiro - Brazil

King's College University of London

..lbstract To improve the fawning of 6eometry in Brazil a study has been
started to investika te parable changes This article reports an attempt to analyse
Sri/ON Transformation Geometry Ca ding to the van !bele levels a thinking.
Van Hiele levels were establithed for Transformation Cretlinetry atid a pilot study

was carried out to check their validity as well as the relation between the van
hiele 112 tratlitienal hItchdeati Geometry and 112 Transformation Geometry.

The teaching and learning of Geometry in Brazilian secondary schools is

problematic. It has not changed for many years, having a Euclidean approach,

based on axioms, theorems and proofs. Whenever teacher training courses are
offered, the most popular subject is Geometry, suggesting how insecure teachers
feel about it. On the other hand, the students do not like Geometry, since they

cannot grasp its abstraction and the meaning of the demonstrations.

An overview of the most used textbooks in Brazilian secondary schools shows
that:

the study of Geometry starts with point, line and plane, treated as concepts
that do not admit definitions;

almost no concrete materials are used;

the Geometry content is concentrated in the final parts of the two most

advanced books. As the time is often not enough to completely cover the
books, a great part of the geometry is missed.

This study is part of a Ph A degree at King's College, University of London,

supervised by Professor K Hart.
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A change in the teaching of Geometry is, then, urgent, both in its content and in

the way it is taught. To be effective, this "new" Geometry teaching must be based

on research evidence. But there is a lack of research about the teaching and

learning of Geometry, as pointed out by Bishop (1983). Most of the research

papers on Geometry presented at the lastPME meetings have been about the van

Hiele levels of thinking.

The van Hiele Levels of Thinking:

In the late 50's, Pierre van Hiele and his wife Dina van Hiele-Geldof, worried

about their secondary students' performance in geometry in The Netherlands and

so, dedicated their Ph D studies to this problem. In 1957, P van Hiele presented

his paper: "La pensee de l'enfant et la geometrie" (van Hiele, 1959) at a

Mathematics Education conference in Sevres, France. In this article, van Hiele

established a model of thinking in Geometry based on five levels and on five

phases.

The van Hiele levels are summarized by Hoffer (1981, 1983) as:

Level 0 (Recognition) : students recognize figures by their global appearance,

but they do not explicitly identify their properties;

Level 1 (Analysis) : students analyse properties of figures, but they do not

explicitly interrelate figures or properties;

Level 2 (Ordering) : students relate figures and their properties, but they do not

organize sequences of statements to justify observations;

Level 3 (Deduction) : students develop sequences of statements to deduce one

statement from another, but they do not recognize the need for rigor;

Level 4 (Rigor) : students understand the importance of precision in

demonstrations and analyse various deductive systems.

28



27

To progress from one level to the next, students must experience the following

'phases' : inquiry, direct orientation, explanation, free orientation and integration

(van Hiele, 1959).

The main characteristics of the van Hiele model were summarized by Fuys,

Geddes and Tischler (1988) as follows:

(a) the levels are 'sequential,

(b) each level has its own language, set of symbols and network of relations;

(c) what is implicit at one: level becomes explicit at the: next level;

(d) material taught to students above their level is:subject to a reduction of level;

(e) progress from one level to the next is more .dependent on instructional

experience than on age or maturation; and

(1) one goes through various 'phases' in proceeding from one level to the next.

The British Experience:

An attempt to improve the teaching of Geometry was made in Great Britain in-the

late 60's, replacing Euclidean geometry by Transformation Geometry in the

secondary school syllabus. According to .Kilchemann (1981), the reasons for this
change were:

(a) the fact that Euclidean geometry was not appropriate for the majority of the

students; it was taught in a deductive way and learned by rote;

(b) the hope that students would discover general rules about the combination of

transformations, providing insights into mathematical structure;

(c) the belief that Transformation Geometry would provide a coherent

embodiment of matrix algebra, giving the students an idea of the unity of

Mathematics.

After more than ten years of school use and influenced by the results of the CSMS

project (Hart, 1981), Kdchemann (1980) stated: 'Unfortunately, it has become
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increasingly clear that these aims (of the introduction of Transformation

Geometry) are as inaccessible to many children as was the deductive geometry

that the transformations replaced, and it is doubtful whether their central role in

courses for 11 - 16 year olds can any longer be justified".

This suggests the need for further research to find out whether Transformation

Geometry can really be a solution to the challenge of reforming the teaching of

Geometry.

The Present Research:

In this work, levels corresponding to those established by van Hiele for Euclidean

Geometry are suggested for Transformation Geometry. Further, an investigation

was carried out in order to:

(a) check the validity of these levels, i.e., if they form a hierarchy; and

(b) find out if there is a relation between the levels attained in traditional

Geometry and in Transformation Geometry.

The levels considered for Transformation Geometry are:

Basic level : students recognize and identify the transformations (reflection,

rotation, translation and enlargement);

Level 1 : students identify and analyse the properties of the transformations,

as: mirror-line (reflection), centre and angle of turning (rotation),

scale factor of enlargement;

Level 2 : students recognize combinations and inverses of transformations;

Level 3 : students understand the significance of deduction, the converse of a

theorem and the necessary and sufficient conditions;

Level 4 : students make formal demonstrations of properties and establish

transformations in different systems.
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According to van Hie le, it is very difficult to achieve level 4 in secondary school.

Actually, Usiskin (1982) stated that "level 4 either does not exist or is not

testable". For this reason, this investigation concerns only the levels below level

4. A test on Transformation Geometry was devised, to the same pattern as

Usiskin's van Hie le test for traditional Geometry i.e., sets of multiple-choice

questions, each set corresponding to a van Hie le level. So, five questions were

selected from each set of Usiskin's test (excluding set five), to match with the

five questions in each one of the four sets in the Transformation Geometry test
(corresponding to levels: Basic; 1. 2 and 3).

As a pilot study, both tests were given to 24 15 year old British students from

a comprehensive school. The tests were marked according to the following

criterion: if the student scored three or more in a set of five, s/he was considered

as attaining the corresponding level.

It can be stated that the Transformation Geometry levels form a hierarchy, since

only two students (8.3%) attained a higher level without attaining a lower one

(both of them attained level 2 and not level 1). These two students were

excluded from the sample, as well as another student whose response showed the

same type of discrepancy in the traditional Geometry test.

For the sample of 21 students, the relation between the levels obtained is shown

in Table 1. Table 2 shows the number of students that attained different levels

in the tests.

There is a correspondence between the van Hie le levels in traditional Geometry

and Transformation Geometry, as shown by this small sample. However, it is not

as strong as one might hope. All the children in the sample have learned their
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Geometry mainly through transformations. It is interesting to observe that

Mayberry ( 1(38.0 and Gutierrez & Jaime (1987) have found no correlation

between children's van Hiele levels on different geometric concepts such as

triangles, quadrilaterals, angles, etc.

Level No Of students
Basic n

I 9.

)

1

Table I : Same level in

both tests (57. I%)

Level in
Transformation
Geometry

Level in
Traditional
Geometry

No. of
students

3 2 I

3 1 2

2 1

1 2 1

Table 2: Different levels

Comments

The analysis of the traditional Geometry test (adapted from Usiskin) showed that,

when the question at the Basic Level required that a square be recognized as a

rectangle, all the sample failed. When a similar question was asked at Level 2

only three students out of the six who otherwise attained this level succeeded.

. On the other hand, in the Transformation Geometry test, only one student seemed

to know the meaning of "congruent triangles". In question 2.5, 13 students have

ticked the first and the third options, showing the knowledge of the properties of

translations. Nevertheless, they did not tick the option that mentioned congruent

triangles.

2.5 Tick. which are true for a translation:
The image of a flag is a flag of the same length
The image of a horizontal flag is a vertical flag
The image of a horizontal flag is a horizontal flag
The image of a triangle is a congruent triangle
None of these is true

Question 2.5 Transformation Geometry Test
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From these observations, it can be seen that there is a gap in the knowledge of

some concepts and properties of shapes. One possible reason for this could be the
fact that these children had a Transformation Geometry approach, with no
emphasis on Euclidean Geometry. But this is a point that requires further
research.

The fact that the majority of those shown in Table 2 attained a higher level in
Transformation Geometry can be explained by their greater familiarity with the
terms and pictures in this, rather than with those in traditional Geometry.

The pilot study has demonstrated that it is possible to categorize transformation

geometric concepts according to van Hiele levels and that these levels appear to
be hierarchical.

The continuation of the research will be concerned with the most effective ways
of teaching Geometry in the classroom.
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Intuitive and Formal learning of Ratio Concepts

Pearla Nesher & Michal Sukenik

The University of Haifa

The effect of the formal presentation of blue and yellow color
mixtures as rational numbers on students' ability to solve ratio
problems of comparing these mixtures was examined. Children in
grades 7, 8, and 9 were first given comparison of mixtures
problems with an opportunity to watch the actual outcome and
check their predictions (Task 1). They were then asked to solve
similar problems, after being introduced to the representation of
the mixtures as rational numbers (Task 2), and finally tested
about their ability to reach a general solution to problems of the
same nature (Task 3). Overall results' analysis showed that a
substantial number of students had benefited from both tasks 1
and 2, but the actual contribution of each one of them still
remains to be tested.

The concepts of ratio and proportion and their development and acquisition in children of different

ages have been the target of many research studies. (See Tourniaire and Pulos, 1985 for a partial

review of the literature). Most of these studies have manipulated one or more of the following

variables: The context of the problem (e.g. balance beam, fish and food sugar and water, etc.), the

numerical values appearing in the problems,(e.g. presence ofan integer ratio, presence of 1, etc.), and

the kind of task (comparison or missing value problems). The procedure was usually consisted of

administering a test of ratio problems, (given with or without illustrations, presented either in

written or oral form), and analyzing the subjects' responses in terms of the strategies used to answer

these problems. The results of most of these studies have revealed that a substantial number of

secondary school students did not use proportion successfully to solve even simple ratio tasks. One of

the dominant erroneous strategies used by children of all ages is the additive strategy, that is,

viewing the relationship within the ratios as the difference betweenterms, instead of realizing that it

is a multiplicative one (e.g. Karplus et al., 1974; Hart,1978; Quintero, 1987).

The main focus of the present research was not on the way children solve problems involving

ratios, but on the tension between the intuitive judgement as demonstrated in the experimentation of
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something that calls for ratio and its formal representation in the form of a/b. We were interested in

the question whether children perceive those problems as ones involving ratios atall. If not, then we

were interested in the effect of concrete experiencing with the problems, accompanied by, and

explicitly relating to formal presentation of ratios. Would this experience make the children realize

the need for using correct strategies, and improve their performance on those problems.

This study differs from previous ones in several aspects: (1) The ratios used were intensive

quantities (mixtures of blue and yellow colors that result in a green color shade), which could be

objectively perceived and judged by the students, thus enabling them to make concrete comparisons

between pairs of ratios. (2) The exact numerical values of the ratios were not controlled, however

they were obtained so as to induce either a multiplicative or an additive strategy. (3) In order to see

if the intensive quantities were perceived by the children as ratios, Ss were asked while solving the

problems, to write down the quantities they dealt with. We were interested to find out how many of

the Ss will spontaneously use the ratio formal notation. (4) Subjects were getting immediate feedback

to their responses, by confronting their judgments with actual results, thus giving them the

opportunity to change strategies accordingly. (5) After concrete and intuitive experiencingwith the

intensive quantities, their formal representation was presented to the students prior totheir

judgement. This was done in order to examine the effect of the formal representation on their

strategies. The subjects' ability to generalize their learning, in terms of comparing any pair of

intensive quantities, as a result of the formal representation, was also tested. The major hypothesis

was that formal representation enhances the understandingof ratio and proportion concepts.

Method

60 subjects participated in the experiment, 20 of each grade 7, 8, and 9 selected randomly from a

junior high school in Haifa. They were all individually interviewed for a period of about thirty

minutes each. The subjects were told they are going to take part in an experiment which deals with

children's knowledge about mixing colors. Each session consisted of three main tasks: (1) Ss had to

compare and predict the resulting shade of two mixtures of different paint quantities in terms of
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same or different color-shade, and then observe the result. (2) Ss were introduced to the formal

presentation of the paint quantities as rational numbers (ratios), and then had to compare and predict

as in task one. (3) Ss were given a short written test involving generalizations about mixing colors.

Following is a detailed description of each task:

Task 1: Intuitive Judgement

The experimenter presented two containers filled with blue and yellow colored water, and poured

with a pipette a specified number of blue drops (B1) into a cup (cup 1). The subject was first asked

to predict the shade of color if a specified number of yellow drops (Y1) was added to the same cup.

After observing the results, another empty cup (cup 2) was introduced. The subject was told that a

specified number of blue drops (132) and of yellow drops (Y2) would be added into cup 2 and was

asked to judge whether the color of both cups (cup 1 and cup 2) would be the same or different, He

was also asked to explain his answer. The experimenter then made the mixture of cup 2, and let the

student watch the result, and judge whether his prediction was realized. The color obtained in all

mixtures was demonstrated by dipping a cotton swab into the mixture, so that the judgement of the

color in each cup would not be influenced or biased by the total amount of liquid in it, andso that

the difference or sameness of color in both cups could be clearly seen. if the subject's judgement,

after watching the results, about the actual colors obtained, did not coincide with his former

prediction, he was asked to try to explain the discrepancy. All the above procedure was repeated

seven times with varying values for BI, Yl, B2, and Y2. These values were selected so as to induce

either a multiplicative or additive judgement strategy. For example, the pair B1=7 Y1=2 (in cup 1),

and B2=14 Y2=4 (in cup 2) was assumed to induce a multiplicative strategy, while, on the other hand,

the pair 131=7 Y1=2, and B2=17 Y2=12, would call for an additive strategy. In addition, the quantities

were checked experimentally to make sure that the comparison between the two mixtures' shades

would not be ambiguous. (See appendix A for the exact quantities). All subjects received the same

quantities in the same order, except for the first two pairs of mixtures, in which the order was

interchanged between subjects. The procedure of the last pair did not include the actual mixing, and
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the subjects had only to predict the outcome. Before each prediction of the outcome was given, and

the pair of mixtures was made, the subject was encouraged towrite down the quantities specified by

the experimenter, in any way he wishes to do so, for future comparisons of tryouts.

Task 2: Formal Representation

After predicting and observing the results of seven pairs of color mixtures, the subject was

introduced to a way of representing the specified quantities in the form of rational numbers (or

ratios), i.e. BI /Y1 in cup 1 and B2/Y2 in cup 2. The values of B1, Y I, B2 and Y2 were obtained as

described in task I (See appendix A for the exact quantities). He was then asked to judge whether

the color-shade of both mixtures would be the same or different and to justify his judgement by

supplying reasons. All children were given the same quantities in the same order. In some cases the

experimenter made the actual mixing, but usually this task did not involve observing the outcome.

Each student had to make three to five judgments , depending on his initial responses.

Task 3: Generalization

A short written test was administered at the end of thesession consisted of five items. The subject

was first presented with a given mixture of 2 yellow drops to 3 blue drops presented as 2/3, and

was asked to suggest the number of yellow and blue drops needed in order to get a mixture with

lighter color than the reference, and a mixture with the same color but in larger quantities. Another

question asked for the number of yellow drops needed to get the same color (2/3) if 12 blue drops

were used. Finally, the student had to suggest a general rule that would specify the conditions for

obtaining different mixtures that have the same color. The last item asked whether the whole

experiment reminded the subject of anything related to mathematics.

38

BEST COPY AVAHABLE



37

Results and Discussion.

The Ss' performance in each of the three tasks described above, was analyzed, considering mainly

the strategies used to answer each of the mixture problems, rather than the correctness per se. After

analyzing these strategies, one of the following scores was given: In task 1 (Experience), a plus (+)

indicated the use of correct strategies on all problems, a minus plus.( - +) was given to those who

during the concrete experiencing used both correct and incorrect strategies, and a minus (-)

indicated the use of incorrect strategics on all problems. In tasks 2 and 3 (Formalism and

Generalization), which included less steps, only two scores were given, either a plus (+), when the

formalism was realized and.used correctly by the subject, or a minus (-), when this was not the case.

According to these scores, 12 patterns of performance were possible, as described in table 1:

Table 1: Possible patterns of replies:

Task 1
Concrete Activity

Task 2
Formalism

Task 3
Generalization

1) + + +
2) + +
3) + +
4) +
5) -+ + +
6) -+ + -

7)
-4. +

8) -+
9) + +

10) + -

11) +
12)

The number of children exhibiting each of the above patterns would suggest the answer to the main

question raised in this study. Children falling in the patterns (1) and (12) were not affected by the

experiment. Children falling in category (9) improved their performance as manifested by correct

generalizations, due to the formal presentation. Pattern (5) includes children who had improved in the

middle of the concrete experimentation, supported by the formal tasks. We should emphasize that the
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concrete experimentation had also a formal touch. While working on the mixing colors task, the

children wrote down the numbers involved with each mixture which probably increased their tendency

to reason about the numbers. Ss' performance on patterns (4), and (8) show decrease in the children's

performance due to the formal representation and will contradict the major hypothesis of this study.

Patterns (2) and (6) show no achievement on the more general level. All other patterns would indicate

inconsistent and unreasonable performance, and would require special attention. Each subject was

assigned one of the above patterns, according to his overall performance. Table 2 presents a summary

of the number of subjects of each age level, manifesting the various patterns (The empty patterns

were omitted):

Table 2: Distribution of Ss among the patterns:

Pattern Grade 7 Grade 8 Grade 9 Total

1) + + + 2 5 7 14

5) -+ + + 10 6 10 26

8) 2 2 0 4

9) + + + 0 2 3 5

11)
_

- - + 0 2 0 2

12) - - - 6 3 0 9

20 20 20 60

To summarize these results even further, it can be seen that patterns 1 and 12 which are irrelevant

for the present analysis, include 23 children distributed as expected among the age groups and

demonstrating a developmental trend of learning. As for patterns that support the hypothesis about

the contribution of the formal component, pattern (9) consists of only 5 Ss while pattern (5) which

consists of some learning at the concrete experimentation as well as in the formal task includes 26

Ss. Four children in pattern (8) indicate a situation in which their performance was hindered by the

formal activity. We cannot explain Pattern 11 (2 Ss). In the limitation of the present study we could

not examine the generalization achieved without being exposed to the formal learning (task 2). This

remained to be studied next.

A question raised by our experiment is, how can children know that the mixture of colors is a
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specific application of ratio and proportion? As noted in previous studies many of the children started

with qualitative reasoning about colors and with additive strategy. It was interesting to note that

since the children received immediate feedback they could revise their prior hypotheses,as in the

following protocol: 'It looks as though only if the ratio is in multiplication, then the colors are the

same. That is, if it's twice between the blue and the blue, and the yellow to the yellow is also twice,

then the colors will be the same, but if it is in addition - then it is not" (as he thought before).

The struggle between the intuitions about colors and the relevant formal model, caused in many cases

some tension as evidenced from the following protocol. In this case the student was not convinced by

the formalism. She was given in task 2 both mixtures (a) and (b) in their formal representation:

a = 1/4,13=3/12, and when asked to decide if their color shades were the same or different, she replied:

" B will be darker. (Why?) Oh, no. It will be the same color. Because 3/12 equalsa quarter if we

reduce fractions". The examiner then makes the actual mixtures and the student says: "They look the

same. On second thought, it's not so related, the reducing of the fractions and the drops mixture".

(Why?) "Because here (with the drops) you don't ask to reduce, you simply say there are 3 blue and

12 yellow, and if you will reduce you won't put 1 drop of blue and 3 of yellow. So the reason is

wrong, but the result is right.'

This experiment has demonstrated to some extent the effect of the formal representation of ratio

in an intuitive based experiment. It should be noted, however, that the present experiment did not

enable to control separately and independently the impact of the two variables-- concrete activity

and formal presentation. Therefore it is difficult to infer about the unique influence of each one of

these variables on the final performance.
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Appendix A:

The Quantities of Blue and Yellow Drops Used in Tasks 1 and 2

B1 Y1 B2 Y2

1) 1 3 7 9

2) 1 3 6 18

3) 7 2 17 12

4) 7 2 14 4

5) 2 8 4 16

6) 2 8 10 16

7) 2 5 3 7

8) 1 4 3 12

9) 1 4 4 7

10) 2 5 6 15

11) 2 5 5 8

12) 2 4 3 6

B1 = Number of blue drops in cup 1.
Y1 = Number of yellow drops in cup 1.
132 = Number of blue drops in cup 2.
Y2 = Number of yellow drops in cup 2.
Steps 1-7 were administered in task 1.
Steps 8-12 were administered in task 2.
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EARLY CONCEPTIONS OF SUBTRACTION

Dagmar Neuman

The University of Gothenburg, Department of Education

Abstract
In a phenomenographic study 105 Swedish school starters were interviewed in
order to map out, among other conceptions, the conceptions of how to grasp
the number in the unknown part in subtraction tasks within the number range
1-10. The children were given some easy word problems immedately after
school start, before any teaching in addition and subtraction yet had
started and were observed when they solved the problems, and interviewed
about the ways in which they had done this. It was possible to categorize
even very early conceptions. These are the ones that will be in focus in
this presentation.

BACKGROUND

Phenomenographic investigations aim at mapping out existing

conceptions of different phenomena in the world around us (Marton, 1988). In

a phenomenographic study (Neuman, 1987) 105 7-year-old Swedish school

starters were interviewed in order to find out about their different

conceptions of numbers and of how they get hold of the number asked for in

verbally given problems. One of several intentions with the study was to

find out if there might be some logic in unusual answers to simple addition

and subtraction tasks which had been observed among children in special

education lessons in the first grades. The part of the study which concerned

early conceptions of subtraction ending up in those answers will be

in focus in this presentation.

METHOD

82 of the 105 school starters who were interviewed were all of

the pupils from four classes, while 21 were chosen from five other classes.

13 of these 23 pupils were interviewed because they seemed to have very

rudamental assumptions of how to get hold of the number asked for in

quantitative problems, according to a preliminary test given to all children

before the interviews were carried out. Nearly as many of the pupils in the

four classes where all were interviewed seemed to have as little

understanding of counting as these 13 children.

One of the interview questions was a game, where the child was asked

to put up as many buttons as a figure - 9 written on a card. All the
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pupils were able to do that.
The interviewer then hid the 9 buttons in two

boxes, and asked the child to guess how many of them were hidden in each

box. The pupils were allowed to make five guesses.

Beside the guessing game two
addition tasks and four subtraction tasks

were given. Only two of the latter were given to all pupils. Of these the

first was a missing addend task
and the second a take away task:

Q 1. If you have 3 kronor and you want to buy a comic for 7 kronor,

have you got enough money? -
(No!) - How many more kronor do you need?

Q 2. If you have 10 kronor in your purse and lose 7 of them, how many

have you got left?

These two tasks together with
the guessing game were the ones that best

elucidated the early conceptions of subtraction.

In a phenomenographic study you
first separate the answers from the

individuals who answered, categorizing
the answers per se according to some

characteristic. After that you again relate them to the individuals looking

for if a group of individuals
giving a specific answer to one question gave

an answer illustrating
the same kind of thinking to some of the other

questions. The findings in these two analyses are after that interpreted and

the conceptions they are thought to be expressions of are "labelled" and

described.

In the present study a quantitative evaluation was also carried out in

order to have some idea of the background knowledge existing among children

expressing different conceptions. In this study the following kinds of task

were given: "How far can you count?"; "Can you add one to eight (subtract

one from seven)?"; "Can you count backwards from 10 to 1?"; "How many

fingers do you have altogether on your two hands?". Beside that the pupils

were given some Piaget
inspired problems, e g to put up as many bricks as

the 17 which were placed in a row on the table, to answer the question if

these bricks were more or less or as many as before when the interviewer by

chance had pushed the bricks in one row so they were spread out, and to

seriate 15 sticks of different
lengths. One or more points were given to

each of the tasks (e g two if the pupils could count to 30, 1 if they could
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count to 25, and none if they could not even do that). Beside that one point

was given for any correct answer to the eleven analysed tasks (the guessing

game and the six questions). Together it was possible to obtain 26 points in

this evaluation. The median for the children in the four classes where all

pupils were interviewed was 21.5.

FINDINGS

Five different conceptions, one of them expressed through two

different strategies, were mapped out. The two earliest conceptions of how

to find an answer to a quantitative problem could rarely be viewed as

realated to conceptions of addition, subtraction or even of number.

However, the third conception observed seemed to be a conception of early

ordinal, and the fourth one of early cardinal kind. In the fifth conception

the early ordinal and cardinal qualities of number finally had become

integrated. The five conceptions will be described below.

1. Movements. The most unusual answers to the guessing game were that

there were 9+11, 11+13, 13+18, 10+11 etc buttons in the two boxes. 11 such

answers were given altogether by 6 pupils. These answers were observed only

in the guessing game. One of the children who guessed so three times had no

points in the quantitative study, and the other two who guessed so more than

once had 7 and 9 points respectively. These two children also expressed some

other early conceptions.

The concrete counting which was carried out when the buttons were

placed on the card by these children, at least by the one who had 0 p in the

quantitative evaluation, seemed to have been carried out as a script where

the counting words rather were related to the movements in a movement game

than to the buttons placed on the card. In the guesses she just seemed to

choose a couple of number words by chance. This conception only seemed to be

a conception of "how to behave" in the way the adult expects when the

question "How many" occurs.

2. Fair shares. Another kind of odd guesses were that there "had to be

the half" or "the same" in each box as two of the children explained it. 16

pupils gave altogether 35 answers of this kind. In the guessing game they
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guessed e g "6+6, 9+9, 2+2 or even 1+1, and to q 2 three of them answered

"7". (Only one of the 89 children who did not express this conception in the

guessing game gave this answer to q 2.) These answers seemed to reflect an

experience of "fair sharing" and the belief that the unknown part must be

one of the equal parts. In this conception the counting words seemed to have

been related to the objects counted. The counting words used were within the

number range 1-9. However, the parts were not yet related to the whole. This

is easy to understand if it reflects an experience of fair sharing. The

whole is rarely counted before a fair sharing is carried out (cf Miller,

1984). This conception cannot be viewed as related to a conception of number

since no part-whole relations seem to exist.

The median in the quantitative study for the 8 pupils who expressed

this conception twice or more was 8.

3. Names. In the third conception mapped out the guesses were of the

kind "3+9, 5+9, 7+9 or 1+9". 67 answers of this kind were given by 32

children. The answer to q 1 was "7" (given by 12 children in this group but

only by 2 of the other 73 children) and the answer to q 2 "0" or "1" (given

by 3 children in this group but only by one of the other children). The

median in the quantitative evaluation for the 14 children who had answerd in

this way at least twice was 7. The children who had given such answers might

in some situation, e g in a "fair sharing", have been aware of partly that

each object got its own numerical "name" in the sharing procedure, partly

that the further in the sequence the number name of the last distributed

object is situated, the larger the number of sweets, marbles etc, delivered.

The counting word sequence seemed to have become a kind of "felt" or

imagined "measuring tape" (cf "the mental number line" described by Resnick,

1983). The children seemed to describe the figure on their imagined

"measuring tape" to which the buttons in the boxes reached, if each button

would be related to one of its numerals. The buttons in the last box then

always must end with the button related to the numeral "9". This "limit

name" was used to communicate the number of the last part as well as of the

whole. Here the parts seemed to constitute the whole. In take away tasks, i
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e in q 2, and sometimes in guesses (where the children either could think

of the buttons in the last box as taken away from the whole or as a missing

addend added to the first part) the pupils further seemed to express the

conception that take away tasks should be thought of backwards (cf Carpenter

and Hosers, 1982, findings pointing to that small children use different

strategies for problems they experience as additive and subtractive

respectively). Thus they seemed to set out from ten and to think backwards

down to "7" on their imagined "measuring tape" and after that to think also

of the last part backwards to the last limit name, stating that there were

"0" or "1" left if seven were dropped.

However, there was also another strategy related to this conception, a

strategy where the inner limit names were used to describe the size of the

parts. The children using this strategy guessed e g "2+3, 7+8, 3+4 or 1+2.

Four of them answered "6" to q 2. (Only three children outside this group

gave that answer to q 2.) 24 children have used this strategy 44 times. The

median in the group answering in this way at least twice (n =14) was 15, thus

much higher than the median for the group of children who used the earlier

strategy related to the conception "Names". Also the children who used this

latter strategy seemed to point to figurs on their "minds measuring tape".

And they seemed to experience take away as something which should be carried

out through thinking backwards, exactly as the children answering "0" or "1"

to q 2 had done. It was possible to interpret these strategies e g from the

way in which a couple of pupils enumerated the "names" of the coins in the

"left part" in q 2: "Seven dropped ... then there are six, five, four,

three, two, one ... six left". The coins "named" "10, 9, 8, 7", thus the

coins down to and including "7" on the "measuring tape", seemed to be the

"dropped" ones. One child used this strategy in a very elucidating way in a

following up task where five buttons were hidden in the two boxes. First he

guessed that there were three in one box and two in the other, explaining

that he knew because, as he said, "it can't be four". Vhen the interviewer

pointed out that she of course might have hidden four in that box, and asked
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how many it then could be in the other, he answered: "Well, then there's

three", explaining further:
"I knew ... you just take away one" (fig 1).

"Three and two"

"Four and three" Fig 1.

If the button named "four"
would be the last one thought to be in the

second box, where the buttons were
taken away from the whole, and thought of

backwards, then the "3-button" must have been "taken away" from this box and

moved to the first one, where
it then would have become the last button

thought of forwards. Thus
there had to be three in this box (fig 1).

In these two strategies
the children seemed to use an early ordinal

conception of the counting words only: the limit names, which described

where parts and whole ended, thought of either forwards or backwards. They

seemed to measure the number, not to count the units.

4. Extensions. In the next kind of answers on the other hand, an early

cardinal conception solely seemed to be used and the counting words seemed

to mean "a little", "much/many" or "something inbetween". One child e g

answered q 2 by saying: "Then
I've got four left .. or two .. four or two

... you can't be sure ..". When the
interviewer asked if there couldn't be

eight left the child answered:
"Eight left!? ... if you lost that much, it

can't possibly be that much!" "A little + "rather much" could be "much", but

not "much" + "rather much". However, if all the words "two, three and four"

means just "a little", "you can't be sure" of which one you should use. The

extension covered by a number of units on the "measuring tape" seemed to be

what the children expressing
this conception had in mind when they estimated

the unknown part, while the separate units within this extension did not

seem to be of any interest.

60 children gave together
109 answers of this kind. 13 of these

children gave the answer "3 or 4 or 5" (or only one of the counting words

"2" or "4") to q 1. Only one
child outside this group gave this answer. 7 of
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them gave the answer "2 or 3 or 4" (or only one of the counting words "2" or

"4")) to q 2. Only 2 other children answered so.

The median for the children answering twice in this way was 16.

5. Finger numbers and Counted numbers. First in the last of the early

conceptions the children seemed to divide up the extension into units,

representing them by one finger each or with one counting word each only,

counting e g "1,2 ... 3,4,5,6,7,8,9 ... 7 or 8 missing .." (q 1). Here the

early ordinal and the early cardinal aspects of numbers had become

integrated. Yet, the children still had to estimate the number in the part

which was thought to be added or subtracted if it was larger than three.

However, now it was the number of units which was estimated, not an

"extension" only. When the conception "Extension" was expressed no fingers

were used and no countingwords were enumerated.

Even when "Finger numbers and "Counted numbers" were used it was

possible to observe how the strategies used in q 1 and q 2 were the same as

the ones used in the guessing game and the other questions. 23 children

expressed altogether 38 times the conception that the numbers should be

"Finger numbers" or "Counted numbers", but had not yet developed strategies

allowing them to find the correct number in the added or subtracted part if

it was larger than 3. The median among the children expressing the

conception more than once (n-,9) was 18.

DISCUSSION

One after the other the different aspects of numbers seemed to be

separated from the whole for closer investigation, and after that integrated

again, changing the quality of the conception and making it more and more

functional. In the quantitative evaluation it was possible to see how the

median became higher in the groups of children expressing more developed

conceptions or the more developed strategy within the conception "Names".

The children seemed to express one of these conceptions in many

answers, even if they might "fall back" to earlier conceptions in difficult

situations. This is illustrated by the ways in which the answers to q 1 and

q 2 were related to the guesses and the other questions in the interview.
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The conceptions following
these earlier ones in the map of conceptions

created through the analyses,
revealed the ways in which these early

conceptions gradually changed into more functional ones. The fingers used in

a way where the numbers became simultaneously
ordinal and cardinal "Finger

numbers" seemed to play the most important role in this developmental

process. Used for "keeping track", however, the fingers seemed to obstruct

the way towards abstract arithmetic thinking.

The children who used their fingers in the first way did not divide up

the first hand if one of the parts was five or bigger. Thus they could, solve

a "missing addend" of the kind 2+_.9 by taking away the two last fingers,

and a take away task of the kind 9-7=_ by folding the seven first ones. The

strategy "Choice" (Resnick, 1983) seemed to be concretely created in this

way.

If the two parts were less
than five the thumb - or the thumb and the

forefinger of the first hand - was moved over to the second hand. In this

way a "Transformation" strategy (Neuman, 1987) changing the parts within the

whole (e g 5+2 to 4+3) was concretely created.

The conception that "finger
numbers" could be used in these ways in

order to grasp the unknown part in subtraction tasks, was the most

frequently expressed conception in the study. Gradually these ten "finger

numbers" with their strategies
became visualized, or just "felt" - "body-

anchored". In the end they seemed to become thinking strategies related to

abstract numbers. 9 pupils illustrated in different ways how they "thought

with their hands" and about 1/4 of the 105 pupil used the strategy

"Transformation" and/or "Choice" as thinking strategies.
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COMPUTATIONAL. ESTIMATION PERFORMANCE AND STRATEGIES USED BY

SELECT FIFTH AND EIGHTH GRADE JAPANESE STUDENTS

Nobuhiko NOHDA, J. Ishida, K. Shimizu; University of Tsukuba

Shigeo Yoshikawa, Joetsu University of Education

Robert E. Rays, Barbara J. Reys; University of Missouri-Columbia

(Abstract)

Identification and characterization of the computational estimation skills

and strategies possessed by Japanese students were primary purposes of this

project. Second purpose was to contribute further to the successful development

of a general framework charactering the thinking processes of student's

computational estimation. More specifically, this research was designed to

identify and describe computational estimation processes used by the best

estimators in grade 5 and 8, and to characterize their thinking strategies and

techniques. Twelve different Japanese schools (7 elementary and 5 junior high)

and a total of 279 fifth graders and 187 eighth graders-participated in this

research.

Background

The mathematics curriculum plan released by the Japanse Ministry of

Education identifies estimation as a topic that should be specifically taught

within school mathematics programs (Course of Study, Arithmetic, 1989). The

report issued by the Japanese Ministry of Education is certain to promote change.

in new mathematics textbooks written for Japanese students. Thus some progress

is being made to focus curricular and instructional attention toward

computational estimation.

Computational estimation has not received much attention in Japanese school

mathematics curriculum but it has been included in some of national assessments.

For example, the problem reported in Table 1 was included in a Japanese

a-,..;(":2;mcnt riHmi (Tot:,1 AL;I:ment in Melhcmali.ce, 198'!). This:

assessment was designed to obtain the "calculation"(e.g., method) used by the

students to arrive at their answer in addition to the answer itself.
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Table 1

'Japanese National Assessment # 5-8-7 Item on Estimation of Arithmetic

There is a number which was rounded to an integer after the calculation of

304 X 18.73.

Do rough calculation to find a correct answer, and choose a correct one

from following items; 1. 570 2. 5697 3. 56967

And write how to do rough calculation:

4. 569673

Although 62 percent of students chose the correct answer, only 19 percent

actually estimated. The majority reported calcultating the exact answer then

matching it to the closest corresponding
foil. Although the students were "very

good at solving straight computation
problems", this assessment reported that

they were "rather poor at doing estimation problems".

Previous research has provided the beginning for a theory about how good

estimators in grades 7 through 12 as well as adults actually make estimates

(Reys, Bestgen, Rybolt and Wyatt, 1981). Three global cognitive processes

identified among these good estimators (Reys, et al, 1980) These processes are

translation (changing the equation or mathematical structure of the problem to a

more mentally manageable form); reformulation (changing the numerical data into

a more mentally manageable form); and compensation (adjustments made in the

intial or intermediate estimate to exact answer).

Purpos2.

Identification and characterization of the computational estimation skills

and strategies possessed by Japanese students were primary purposes of this

project. Second purpose was to contribute further toward the development of a

general framework charactering the thinking processes successfully used by

students doing computational. estimation.
More specifically, this research was

dezigned to identify and describe
computational estimation procersen W.30:! by tho

best estimators in grade 5 and 8, and to characterize the thinking strategiez
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and techniques these students used when es1;mating.

Twelve different Japanese schools (7 elementary and 5 junior high) and a

total of 279 fifth graders and 187 eighth graders participated in this research,

The schools were selected to represent a range of school and economic

backgrounds. Eight of the schools were selected within Tsukuba, a city of

approximately 135,000 popuration located about 60 km from Tokyo. In order to

insure a broader representation of schools, four rural schools outside of,

within 50 km to Tzukuba more also involved. One fifth and eighth grade class in

each school was selected by the principal to be tested. The class size ranged

from 33 to t7 students in both the fifth and eighth grade classes. Students in

all classes were heterogeneously grouped as is the traditional custom in

elementary and junior high schools in Japan.

The Screening Test

The 39 open-ended item screening 'test used in this research contained 25

items from the ACE (Assessing Computational Estimation ) test (Reys, Bestgen,

Rybolt and !.yatt, 1.981), Some items from the ACE were modified slightly to make

them appropriate for Japanese students and several other items were added which

the researchers thought might be particularly interesting, such as the 12/13 +

7/3 items from the Third National Assessment of Educational Progress.

Each of the 39 items was produced on a 35-mm slide with the items shown

sequentially using a eorousel slide projector. This format allowed for group

administration and controlled the amount of response times (10-15 seconds) fur

each item. The test included 25 straight computation items (those containing

only numerical data) and 19 application items (those containing numerical data

embedded in a physical context) all deigned to be relevant to Japanese students

and presented in their naitivo language. All four operations were included but

the arAjority ftvelyed the opeP:ttiE;e:: of meltiplif:Aim rind divirjon. A

few items involved fractions and decimals, but the majority involved whole

numbers.
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A standard set of instructions for the screening test worn used in each

school by the test administrator.
Students were told that this was an estimation

test. Since there is not a direct Japanese translation for estimate, the term

"rough calculation" was used in the directions. They wore told that each

problem would be timed, and that they would have between 10 and 15 seconds to

make and record their estimate. The
students were also told "Not to copy the

problem but to do the work in your head".

The interview

An individual interview was done with 21 (10 fifth and 11 eighth eraders) of

the best estimators in an effort to learn what strategies and processes each of

the subjects used in solving
differents estimation problems. Students ware

asked to describe as fully as possible the strategies and thought processes they

used to arrive at their estimates.

Students were available for only a limited time, usually one class period,

so only a few estimation problems could be posed. Since the researchers were

also interested in learning how consistent students were in the estimates

produced on the screening test were also used in the interview. A total for 13

estimation problems, 6 straight computation and 7 applied computation involving

a multistep multiplication and
division problem was used with the eighth grade

students.

To supplement the interview problems, specific probes were developed to

provide consistency among the four Japanese interviewers as well as to focus

core carefully on specific characteristic hypothesized to be common among good

estimators. A summary packet which highlighted these strategies and processes

which students might use, was prepared for each interview problem. Training

sessions were held among the four Japanese researchers doing the interviews.

Following the training, the interviewers practiced doing several interviews

before any reported interviews were conducted.

Screening Test

The 39-item screening test for al6.fiith grade and eighth grade students was
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done respectively. As the results, the scores Were widely distributed, ranging

from 0 to 2U for fifth and 0 to 26 for eighth grade, with 7.11U and 11.16 being

the mean number of acceptable estimates on the screening test for fifth and

eighth grades respectively.

At the conclusion of the screening test, all students were asked "Are you a

good estimator?" and their responses suggest an interesting paradox. Table U

reports that whereas about three-fourths of students at each grade level said

estimation is important, only a few of them (12 percent of fifth and Li percent

of the eighth) rated themselves as a good estimator. It is also interesting that

about two-thirds of the students said they were not a good estimates, and this

self assessment parallels very closely the generally low performance on the

computational estimation test.

Table 2

Japanese Students Self Assessment on two Estimation Statements

Statement Cr. 5 Cr. 8

Number of M. F. Total Number of M F. Total

Are you a good estimator? 150 129 278 96 91 187

Yes 18.0 5.4 12.2 % 7.4 1. 1 4.3 /.

No 57. 3 64.3 60. 6 1. 66.3 73.6 70,1 2

Not Sure 24.7 30.2 27.2 % 26.3 25.3 25.7 %

Do you think estimation is important?

Yes

No

Not Sure

76.7 74.4 75.6 %

6.0 3. 1 4.7 T.

17.3 22.5 19.7 %

72.6 69.2 70.6

13.7 6.6 10.7 %

13.7 24.2 18.7 1

An examination of Table 2 confirms that the screening test produced a wide

range of scores, particularly on the upper end from which the "good estimators"

were selected for the interview. It took a score in the top 5". of students in

their respective grade level and thereby become a candidate for an individual
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interview. Although there was
considerable variability among students within

each of the participating
schools there was at least one student in each school

who scored high enough to be interviewed.

An examination of the screening tests COP the good estimators showed that 2

of the fifth graders and 4 of the eighth graders made an acceptable estimate on

the screening test, whereas Table 7 shows that nearly all of them answered it

correctly during the interview.
Although a majority of the students at each

grade level recognized
"12/13" and "7/8" as being close to one, this observation

was not always immediate.
For example, one fifth grade student first found a

common denominator of 104 and then after one minute observed that each fraction

"was near cne". On the other hand another fifth grader responded in two second

that the sum was about two.
She said, "12/13 is only 1/3 smaller than one and

7/8 is only 1/8 smaller than 1, so their sum is almost 2".

Table 3

Summary of Strategies Used on Exercise Involving

Estimating the Sum of Two Fractions

Exercise 12/13+ 7/8
Frequency

Strategies

.Recognition that each fraction is near one,

so sum is near one

Use of Common Denominator

Gr. 5

5

Gr. 8

8

# 12/13 is about 9/10, 7/8 is about 9/10, so 18/10 1 0

# 12/13 is 24/26, 7/8 is 21/24, so the sum is about

24/25+21/25 or 115/25
1 2

II 12/13 is about 10/10, 7/8 is about 8/10, so 18/10 0 1

II
12/13 is about 12/10, 7/8 is about 7/10, so 19/10 0 1

Computed exact answer using mental algorithm 1 1

An examination of the strategies highlighted in Table 3 shows a heavey
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reliance on algorithms. Most of the students at each level tried to perform a

written algorithm on this problem, and in the process provided some interesting

insights into their thinking. Some students were successful in using

algorithmic techniques to produce an acceptable estimate. For example, one fifth

grade girl was able to perform the exact coputation mentally and produce an

"estimate of 124/114" in less than half a minute. This is another reminder of

the challenge of getting a valid measure of estimation, and it also gives some

indication as to her ability to do mental computation very quickly and

accurately. Another fifth grader produced an acceptable estimate, by reporting

that each fraction is about 9/10 and then added them together and reported an

"estimate of 18/10". However, this student gave no indication that he understood

that his estimate of 18/10 was near 2. Although some students were successful

using the addition algorithm-mentally, other were unsuccessful. For example, a

fifth grade boy added numerators and got 19. He then said "13 X2,26 and 3X8=24,

and the average of 26 and 24 is 25, so my estimate is 19/25".

Discussion

Interviews with the highest scoring students led to the identification of

some specific estimation techniques and strategies. Students at both grade

levels, but the fifth graders in paticular, tended to apply learned

algorithemic computational procedures. Their tendency to use paper/pencil

procedures mentally often tended to interfere with the estimation process and

made it more a mental computation task. Such procedures were not only

inappropriate but inefficient as well.

An area which tended to be a strength with the Japanese sample was their

knowledge and use of place value techniques. Few order-of-magnitude errors were

observed in the interviews when large numbers (i.e. values greater than ten

thousand) were involved. This may be due in part to the Japanese use of the

"mang" (word for 10,000) as a strong reference as oppose to the American

reference of 1,000. It may also reflect the Japanese monitary system which

provides regular opportunities for working with large whole numbers.
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Model building is important. Our hope is that research into how students

estimate will lead to a learning model that not only helps describe the

learning process but can provide direction for the development of appropriate

instructional experiences which help all children their computational

estimation skills. We fell that this research contributes further toward the

development of a general framework which describes the estimation processes used

by good estimators. This study has confirmed that despite the tendency of many

students to mentally apply previously learned paper/pencil algorithmic

teckniques, the earlier hypotheseized cognitive processes of translation,

reformation and compensation were evident among Japanese students. Not all

students used all the processes all the time. However, we found that each of

students used one or more of these processes during the interview. Similarly,

not all of the characteristics of good estimators were evident in any one

student, but each was frequently found among the Japanese students interviewed.
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ASSOCIATIONS AMONG HIGH SCHOOL STUDENTS' INTERACTIONS WITH LOGO AND

MATHEMATICAL THINKING

John Olive

University of Georgia

Even though many claims have been made for the potential of Logo there is still a critical need to demonstrate
what, if any, impact students' interaction with Logo has on their mathematical thinking. Three years ago we began
an investigation to determine such impact. This investigation was based on current models of mathematical
thinking which led to the development of qualitative measurement strategies for assessing students' interactions
with Logo, their geometric understanding and related thought processes. It is evident that an integrated review
of results from each qualitative measurement strategy and from measures of mathematical achievementcan serve
to strengthen knowledge of how students construct their understandings. Therefore, this paper explores the
associations among the models and related data sources.

Design of the Study

A course in Turtle geometry was developed and implemented for ninth grade students in two inner-city high

schools during the 1985-86 academic year. The focus of the course was on informal explorations of topics such

as polygons, circles, and transformations. High school mathematics teachers were trained to implement a Logo

learning environment, based on a guided discovery approach. The Turtle geometry course was taught to one

class each semester (eighteen weeks per dass). Students were enrolled in Algebra I, and were on track to take

geometry in tenth grade. At one school the students were all black, at the other they were evenly distributed,

black and white. Each class was held in a lab setting with fourteen microcomputers, and students generally

worked in pairs. Students' interactions with Logo were recorded in dribble files on disk.

This report documents an analysis of the complexity of students' responses, mode of working, and general

problem solving approaches across a sequence of four tasks given to all students in the second semester Logo

classes held in the Spring of 1986 (n .30). The results of this analysis are then compared with individual

students' math grades. A simple method of hypothesis testing has been employed which enables the

investigator to pose and answer questions concerning relationships among the different measures.

Analyses of Students' Dribble Files

Data on students' interaction with the Logo environment were collected via dribble files on disk and classroom

observation notes. Students' dribble files were analyzed for the following four Logo tasks:

1. CHECKPOINT 2 assessed students' facility with debugging simple shape procedures. This was basically a

Logo programming activity given alter four weeks of work with Logo.

2. MIDTERM was a more complicated debugging task involving the use of super and sub-procedures in a

HOUSE design. This task was also focussed on the programming structure.

3. PARALLELOGRAMS, explorations with a generalized parallelogram procedure, was focussed on the
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geometric properties of parallelograms, especially class inclusion of special parallelograms. Students were also

challenged to create a three-dimensional box structure using the parallelogram procedure.

4. RHOMBUS MADNESS, the final exam project,
required students to create parts of a flower structure using a

generalized rhombus procedure, and then put the parts together to form the flower. This was both a

programming and geometric challenge for the students.

Teacher instructions and student handouts for the tour tasks can be found in the Final Report of the

AtlantaEmory Logo Project (Olive, Lankenau and Scal ly, 1988).

The focus of the dribble file analysis was on
the structural complexity of a student's response to the Logo tasks

and indications of relational or instrumental
understanding of relationships (both Logo and geometric) which may

have emerged from this analysis. The criteria
for this complex analysis procedure was based on a synthesis of the

SOLO taxonomy with Skemp's (1979) model
of mathematical understanding (Olive, 1985 & 1986).

The SOLO Taxonomy (Biggs & Collis, 1982) was designed primarily as a tool for the evaluation of the quality of

student responses to a task. The Taxonomy consists of five levels: Prestructural, Unistructural, Multistructural,

Relating and Extended Abstract which candescribe how a student uses different kinds of Logo objects (primitive

commands, fixed procedures, variable procedures,
etc.) with respect to both the Logo task and the internal

structure of the object itself. The following general guidelines were used for assigning SOLO levels to students'

Logo responses:

Prestructural (P): The Logo object is not used appropriately or the student does not use an available object

when it would be appropriate to do so.

Unistructurat (U): The object is used by itself. Immediate feedback is required on the effects of its use before

any other Logo commands are used (inability to withhold closure).

Multistructural (M): Objects are used in combination with other objects or commands on the same line or within

a procedure (ability to withhold closure), but the objects are not related correctly (with respect to the task).

Relating (R): The objects are related together in order to accomplish the task. The relating operations

(relationships) are dependent on the nature of the task and the structure of the objects. The Logo objects are

used as building blocks.

Extended Abstract (E): Objects are related together to create a new object which is more generalized, more

abstract than its parts; or a generalized procedure is used effectively to create specific objects with which to build

and accomplish a task.

By applying these criteria to the dribble records of each student's work on the fourLogo tasks, patterns emerged

which often determined the quality of learning: instrumental or relational (Skemp, 1976), and which (in some

cases) gave some indication of the student's van Hiele level of thinking (van Hiele, 1986). A student was

assigned "visual" if s/he appeared to make
decisions based on the visual feedback from the screen and was

dependent on the visual feedback, while
ignoring the syntactic structure of the Logo commands. A student was

assigned "descriptive" if s/he appeared to work primarily with the syntactic structure, often not requiring
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immediate visual feedback in order to make programming decisions. It should be noted that one of the attractions

of Logo is its appeal to a visual mode of working and thinking. (A prior report on relationships among students'

van Hie le levels of geometric thinking (determined through clinical interviews) and experience in the Logo

classes has been given by Scatty, 1987.] The detailed results of the dribble file analyses across the four tasks for

each school can be found in the Final Report of the Project (Olive et al, 1988).

The first two Logo tasks (CHECKPOINT 2 and MIDTERM) dealt primarily with facility with Logo programming

concepts (debugging and structured procedures), whereas the last two tasks (PARALLELOGRAMS and

RHOMBUS MADNESS) involved work with geometric concepts as well as some programming facility. A summary

of the dribble analyses was performed based on all four.tasks, but categorized in terms of a student's responses

to Logo PROGRAMMING challenges and the GEOMETRIC CONCEPTS involved in the tasks. This summary

categorized responses in terms of the SOLO taxonomy, van Hiele level of approach to a task (visual or

descriptive) and Skemp's quality of understanding (relational or instrumental).

Relationships Among the Different Measures

The summary data from the dribble analysis were combined in a simple data base with the math grades of all 30

Logo students. These data were used to test hypotheses concerning relationships among the different'

measures. By simply selecting cases on the basis of stated criteria concerning the measures, or simply arranging

the data on the basis of one particular measure, questions concerning these measures could be posed and (in

many cases) answered. No statistical tests were applied to the following hypotheses. The supporting evidence

can be obtained by inspection of selected subsets of the data or by rearranging the data. The Tables generated

from Table 1 for each hypothesis can be found in the Final Report (cited). They have been omitted from this

paper because of lads of space. The data in Table 1 have been arranged by students' grades in their final math

course.

h -rn

1. Most students who approached the geometric tasks with some descriptive level thought (van Hiele contains

d) also approached the programming tasks with some descriptive level thought, but the converse did not appear

to be true.

Most students who achieved Relating SOLO level responses to the geometric tasks also achieved Relating

SOLO level responses to the programming tasks, but the converse did not appear to be true.

These first two results suggest the following hypothesis: sophistication in.Logo programming is necessary but

not sufficient for success in Logo geometric tasks.

3 Lack of Re filing SOLO level responses on geometric tasks corresponds to a visual approach to the

geometric concepts for most of the Logo students (van Hiele = v).
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4. Instrumental understanding of either programming or geometric concepts (Skemp = I) appears to

correspond to visual level thinking (van Hie le = v).

5. Relational understanding of either programming or geometric concepts (Skemp = R) corresponds to

Relating SOLO level responses (SOLO contains R) but not necessarily to decriotive level thinking (van Hie le

contains d).

TABLE 1: SOLO, van Hie le and Skemp categories of response with math grades

LOGO PROGRAMMING GEOMETRIC CONCEPTS GRADES

STUDENT SCH SOLO VAN H SKEMP SOLO VAN H SKEMP ALG11 ALG12 GEOM1 GEOM2

----------------------------------------- --------------------------------
VH 1 U,M,R d R M,R,E d R B A A B

SF 1 U,M,R R M,R R A B B B

OS 1 U,M,R R U,M,R R B B B B

DZ 2 U,M,R v R M v B B B B

DS 1 U,M,R R U,M v B B C B

JY 2 U,M-R v R M-R v R CC C B

CH 2 R v-d R M,R v-d R B B B C

DB 1 U,M,R v-d U,M v I C B B C

TM 1 U,M,R v R U,M,R v R o C B C

KY 1 U,M-R v I M v ICC B C

KR 1 U,M,R R M,R R B C C C

AF 1 M,R M C C C C

SB 2 U-M,M-R, v-d R M-R v-dRCCC C

LO 1 U,M-R v I U,M-R v C C D C

AR 2 U,M m/ed Med need m/ed m/ed nVed C F D C

AD 2 UM v I M v-dICC C D

Mt 1 U,M,R v-d R U,M v C B D D

QA 1 P,U,M v I U,M v I C C D D

JR 2 M(rtVed) m/ed nVed M(nVed) nVed rrVed C C D D

SH 1 U,M,R v U,M v I C F D D

RT 1 U,M U,M C F D D

RG 2 M,R,R-E v-d R M-R v-d R A C F D

---------------------- -----------------------------------
TN 2 M-R v P,U,M v I A A C F

M 2 U,M,R v-d R M v I B B C F

CM 1 U,M v I P,M,R v I C F C F

SC 1 U,M v I P,U,M v I C F F F

SW 2 M,R v I M v I A F N N

LC 1 U,M,R U,M,R C F N N

SL 1 M,R v-d U,M v I C B C W

RM 1 U,M v-d UM C C W W

---------------------------------------------
NOTE: "m/ed" indicates that work in the Logo editor was missing from these dribble files An "N" grade indicates

that the student did not take the course. A V" indicates that the student withdrew from school.
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Relation ships among qualitative measures and math gradesin each course

1. ALG11: Algebra 1. oart 1 (ore -Loco)

Almost all students with grades better than "C" in this pre-Logo course appeared to have Relational

understanding of Logo programming and (to a lesser extent) of the geometric concepts (both SKEMP categories

show "R"). Also, all students with grades of "A" or "B" obtained Relating level SOLO responses on the

programming tasks. Most students with a "C" grade appeared to have only Instrumental understanding of

geometric concepts (SKEMP = I). There appears to be no relationship between Algebra I grades pre Logo and

students preferred van Hiele level of working in Logo.

ALG12: Algebra 1. Pan 2 (concurrent with Logo)

All students with grades better than a "C" in this course obtained Relating level SOLO reponses and appeared to

have Relational understanding of the programming concepts. Also, six out of the eight students who were

assigned a van Hiele level indicated at least a transition towards a descriptive level of working with Logo. It is also

important to note that no student who failed the Algebra course was assessed as having relational understanding

of either programming or geometric concepts, nor working at even a transitional descriptive level.

3. GEOM1: First Semester Geometry

Again, the strongest relationship emerging from the data on this course concerns students' duality of

understanding of both Logo programming and geometric concepts. All except one of the students with grades

better than "C" on first semester geometry were assessed as having relational understanding. Most of the

students with grades lower than a "B" were assessed as having Instrumental understanding of the geometric

concepts on the Logo tasks.

It is interesting to note that one of the students (RG) who failed this course was assessed as having relational

understanding of both programming and geometric concepts, reached a transition towards extended abstract

responses on the programming tasks and relating SOLO levels on the geometric tasks, and appeared to work

somewhat descriptively on both programming and geometric tasks. He also obtained an "Pon the first algebra

course. As can be seen in the Table, RG stayed in the geometry sequence and passed the second semester

course!

4. GEOM2: Second Semester Geome ry

The relationship between relational understanding of both programming and geometric concepts and success in

the geometry course also holds for the second semester course. All students with better than a "C" grade in this

course had relational understanding of programming, and no student was assessed as having instrumental

understanding of geometric concepts; whereas, only one student (RG) with a grade less than "C" was assessed

as having relational understanding of the geometric concepts. No student who failed the course had relational

understanding of the geometric concepts, and only one appeared to have relational understanding of Logo

programming.
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The above comparisons looked at each math course separately. The following three Tables pose questions

concerning students' grades across all three math classes post Logo. They were generated from the data in

Table 1 by spedfying certain selection criteria.

Table 2 indicates that five students obtained
consistently low grades post Logo. All failed algebra at the end of

ninth grade, even though one (SW) obtained an
"A" in the first algebra course. None of these students were

assessed as having relational understanding of either Logo programming or geometric concepts. None

indicated work at even a transition toward
descriptive level thinking on either programming or geometric

concepts. However, three of the five students did obtain relating SOLO levels on programming tasks.

TABLE 2: Which Logo students obtained consistently low grades post Logo?

Selection: ALG12, GEOM1 and GEOM2 are greater than C

LOGO PROGRAMMING GEOMETRIC CONCEPTS GRADES

STUDENT SCH SOLO VAN H SKEMP SOLO VAN H SKEMP ALG11 ALG12 GEOM1 GEOM2

SH 1 U,M,R v U,M v I C F D D

FIT 1 U,M U,M C F 0 0

SC 1 U,M I P,U,M v I C F F F

SW 2 M,R I M v I A F N N

LC 1 U,M,R U,M,R C F N N

TABLE 3: Which Logo students obtained consistently good grades post Logo?

Selection: ALG12, GEOM1 and GEOM2 is less than D

LOGO PROGRAMMING
STUDENT SCH SOLO VAN H SKEMP

GEOMETRIC CONCEPTS

SOLO VAN H SKEMP ALG11

GRADES
ALG12 GEOM1 GEOM2

VH 1 U,M,R d R M,R,E d R B A A B

SF 1 U,M,R R M,R R A B B B

OS 1 U,M,R R U,M,R R B B B B

DZ 2 U,M,R v R M v B B B B

DS 1 U,M,R R U,M v B B C B

JY 2 U,M-R v R M-R v R C C C B

CH 2 R v-d R M,R v-d R B B B C

DB 1 U,M,R v-d U,M v I C B B C

TM 1 U,M,R v R U,M,R v R C C B C

KY 1 U,M-R v I M v I C C B C

KR 1 U,M,R R M,R R B C C C

AF 1 .M,R M C C C C

SB 2 U-M,M-R, v-d R M-R v-d R C CC C

All students in Table 3 obtained at least a transition towards a relating SOLO level on Logo programming. Only

two students were assessed as having instrumental understanding of programming or geometric concepts.

The last Table provides further evidence for the relationship between Relational
Understanding and success in

the math courses which has emerged
from all of the comparisons in this set.
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TABLE 4: Selection: both SKEMP categories contain R

LOGO PROGRAMMING GEOMETRIC CONCEPTS GRADES
STUDENT Sal SOLO VAN H SKEMP SOLO VAN H SKEMP ALG11 ALG12 GEOM1 GEOM2
------------------------------------------------------------------------------------------------------------
VH 1 U,M,R d R M,R,E d R B A A B
SF 1 U,M,R R M,R R A B B B
OS 1 U,M,R R U,M,R R B B B B
JY 2 U,M-R v R M-Ft v R C C C B

CH 2 Ft v-d R M,R v-d Ft B B B C
TM 1 U,M,R v R U,M,R v R C C B C
KR 1 U,M,R R M,R R B C C C
SB 2 UM,M-R, v-d R M-R v-d R C C C C
RG 2 M,R,R-E v-d R M-R v-d R A C F D

With one exception (RG) all students assessed as having relational understanding of both Logo programming

and geometric concepts obtained a grade of "C' or better in all of the math courses.

Conclusions and recommendations

A most important outcome of this study is the refinement and synthesis of the three major theoretical models

which were used as a basis for the design of the study and the analyses of qualitative data. The links established

among students' levels of thinking (van Hiele model), the structural complexity of student responses to Logo

tasks (SOLO taxonomy), and the quality of understanding (Skemp's model), have laid the ground work for an

integrated model of Teaching and Learning. Some initial development of this integrated model has emerged

from two detailed case studies (Olive and Scally, 1987) which looked at the relationship between students'

learning processes in the Logo environment and their progress in geometric thinking as determined via the van

Hiele interviews.

This current report demonstrates that relational understanding of both Logo programming concepts and

geometric concepts is linked to success in math courses. It also suggests that the more successful math

students pre-Logo were more likely to reach that level of understanding within the Logo course.

Although some students did appear to achieve relational understanding while working at a predominantly visual

level of thinking, a transition towards descriptive level thinking appears to be indicative of success in algebra but

not necessarily in geometry courses. Perhaps this result is evidence that the Logo environment can help

students whose predominant level of thinking is visual, to effectively use a visual approach to solving geometric

problems. On the other hand, the ability to use Logo in a purely visual way may have inhibited some students'

movement towards a descriptive level of thinking and working.

The Logo course developed during this project attempted to use Logo programming as a vehicle for
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mathematical exploration. The above results indicate that success in the programming experiences was

necessary in order to grasp the geometric concepts.
However, some students who were successful with the

programming tasks did not appear to grasp the geometric concepts, thus programming success was not

sufficient for understanding the mathematics. This resultstrongly suggests that, for some students, a

non-programming use of Logo may be more beneficial for exploring and constructing mathematical concepts.

The use of Logo microworlds, specifically designed for the exploration of particular mathematical concepts,

integrated into the regular math classes, is a major recommendation of the Project.
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,GRA.PHICCONSTRUCTIONSMITII COMPUTER TO
UEARN3D:REFERENCESYSTEM

. OSTA
Equipe de Didactique des Mathematiques:et de l'Informatique de Grenoble

Can computer help :to :overcome .problems raised by representations of spatial
.configurations, inthe.context.of.3D:.geometry teaching ?.can it contribute.to restate
the-meaning link between spatial and nuymerical frameworks in learning 3D analytic

..geometry ?
Adopting the hypothesis of an interaction between the mastery of graphic
representations and the construction:of 31)geometricknowledge, we constructed a
teaching sequence 'having .the 3D reference system as object, based on the
'production and 'transformation Of plane 'representations of 3D configurations, -by
using .computer (two CAD softwares) as a tool. The dynamic-treatment of graphic

:representations must.use specific geometric knowledge;:it must, also, extend and
make evolve this knowledge.

By observing the school -books and the teaching practice, wecan notice that -the
reference -system notion is introduced,since the complementary.level, as.an established
fact. It isn't constructed as a solution to specific problems necessitating.to.organize and, to
structure physical 'space.

As this notion 'is introduced, pupils are suddenly projected in analytic geometry . A
new language, a new system of symbolic representations are used, fixed.by the teacher, but

.not constructed by the pupils, on the base of 'their geometric knowledge. Algebraic

relations are defined.and usedto replace -geometric relations between the elements of a
spatial configuration. Then,.the geometric.activityis Aransformed into a calculatory activity,
in which theinterpretation.arthe geometric level ismeglected.'With this_modification of the
nature of ':geometric" activity, graphic representations almost disappear. The meaning link
between spatial and algebraic frameworks.risks thento be suddenly broken.

In.-3D geometry , such.a problem is even more accurate: there is a strict separation
between concrete activities of manipulation and observation on one hand, and .activities

using abstractions, theorizations and concepts on the other:One of themain reasons of such

an aggravation is -the difficult access to spatial situations. It can essentially be done through

plane graphic representations; some of the characteristics of the spatial configuration are

then absent or modified; It's necessary to make explicit a code of interpretation and
production of representations. Although it is necessary, such .a code is not sufficient to

overcome difficulties related to coordination of viewpoints or construction of relations
between graphical and physical spaces.
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We suppose that using computer as aid tool permits a new approach of the above

problems. Situated in the frame of a constructivist theory of knowledge, our method is to

construct several "situations" linked to each other, aiming to a learning process, and based

on using graphic softwares. Computer intervenes in these situations as an aid tool in

teaching. Teaching computer science is not our aim, neither is training to use softwares.

Nevertheless, we adopt the hypothesis that there exists a close interaction between the

acquisition by the pupils of the concerned geometric knowledge and their construction of

the functioning mode of used softwares. Our research aims to study, in the context of

resolution of problems with specific softwares, the processes of adaptation and evolution of

pupils' strategies, taking in account their confrontation to the constraints of these

softwares, based on different systems of information treatment.

Teaching sequences have been constructed and realized, in the context of a computer

workshop in a french school, with pupils of the forth complementary class (14-16 years).

pupils work by pairs. During this experience, we recorded the steps of pupils' work (as

computer files); we recorded also their dialogues; we used this data for a clinical analysis

of the evolution of their strategies.

In this paper, we present one of the situations of this teaching sequence (for more

details about the other situations of the sequence, see Osta 1988, chap.I). The problem

consists in constructing the graphic representation of a spatial configuration, by using Mac

Space.

Conceptual analysis of Mac Space :

Mac Space is a conversational graphic editor, it works on Macintosh. It helps user to

construct representations of 3D objects by constructing the three views (top, face and side

views). Treatment is possible in the three windows of orthogonal views; the representation

in perspective appears progressively in the 3D window that is only a control window.

During the treatment, modifications on one of the three views are translated on the other, as

well as on the perspective which translates spatial transformations on the represented

object. In the space of Mac Space, the basic geometric element is the polygonal facet: any

treatment of a representation (creation, elimination or transformation) can only be executed

on facets; its then impossible to trace segments or isolated points.
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Analysis of the sujacent reference system: The space of

the software is controlled by an implicit orthonormal
reference system, composed by three non-materialized

axes, two by two perpendicular: Ox, Oy, Oz. Here's a

simulation, in the 3D windoW, of the three virtual axes of

this system.

In the interface, the coordinates system is apparent in a communication window

where, since the selection of a graphical tool, are displayed the coordinates of the current

point represented by the cursor. The space is represented in all windows. It is considered, in

each one of them, as an addition of a privileged direction, perpendicular to a privileged

plane. It is isomorph in each window to a non-associative product of three unidimensional

spaces: (0x.0y).0z in the window of the top view, Ox.(Oy.Oz) in that of the side view and

(Oz.Ox).Oy in that of the face view.

One point of the space is characterized, in each window, by:

* its coordinate along the privileged direction of this window. At the practical level, this

coordinate is communicated to the machine in a static way, by using the command "3°

coord." of the menu "curseur". In default of such an operation, this coordinate is equal to

zero.

* the coordinates of its projection on the privileged plane of this window. At the practical

level, these coordinates are communicated to the machine in a dynamic way, by moving

the cursor in the window.

When introduced, the

3°coord. with respect to one

window won't be influenced

as the two other coordinates,

by the displacement of the

cursor.

Proposed task and objectives :

At this moment of the teaching sequence, pupils had acquired some aspects of the

reference system controlling the software: the bidimensional system of the privileged plane

in each window. They had, also, constructed correspondances between the displacements of

the cursor along the principal directions of each window on one hand, and the variations of

the coordonates values on the other.

I. I

igmEmi:ti.qrat

I..., g

This task aims to overcome and extend this knowledge, toward the 3D reference

system. In each of the treatment windows, pupils have to construct the functioning mode of
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referring along a 3° dimension; they have also to coordinate it with the bidimensional

reference system in the privileged plane of the corresponding window. Without such a

construction, its impossible to realize the task.

Assignment: By using the software Mac Space, construct the graphic

representation of a surface in steps, having the following
characteristics: the dimensions of one step are 10 and 7 units of

measure; the height of one counter-step is 5 units.

A priori analysis of the task :
To construct a rectangle with Mac Space: The rectangular facet is the fundamental object in

this task. This analysis will only take in account the rectangular facets parallel to the planes

of the rectangular trihedron of Mac Space.

A rectangle constructed with Mac Space is determined,

in the corresponding window, by:

* the value of the "3°coord.", coordinate of the plane of

this rectangle with respect to the privileged plane of the

window; this "reference-value" determinates the
adequate processing level for the facet construction;

* the absolute coordinates of the first validated vertex;

* the dimensions of the rectangle that are relative

coordinates of the 2° validated vertex with respect to the

first one.
At the practical level, the value of the "3° coord."

having been introduced, the rectangle is constructed in

the corresponding window by the validation of two

opposite vertices.

O

As longer as the graphism takes place in one window, the three other views of the

rectangle (between which the perspective one) are reproduced in the other windows. The

displacement of the cursor is accompanied by a dynamic dislay of the coordinates (x,y,z) of

the current point it represents.

Peticular structuration of space: The objects concerned by this situation are sufficiently

known by the pupils; their familiar structure makes possible to the pupils to have for these

objects an internal representation according to the different principal observation

directions. The planes of the component facets are separated by a constant "step" which is

not necessarily the same in the three directions.
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Constructing the reference system of the software: To construct each one of the consecutive

facets, pupils have to communicate to the machine the right values of the parameters

defining this facet. At every operation, they have to re-invest the value of the
corresponding "step" to determine the position of the new component; then, they have to

explicitely.communicate to the machine the numeric value that determines this position, by

using a mode.of representation fixed by the machine.

If the: pupil didn't explicitate this value, he obtains an undesired graphic result; there

is then. awareness that it is necessary to communicate. to the machine an adequate numeric

value, that. of: the "step"' between two successive facets. So, he is engaged in a research

process, searching for a. function or a command that: permits to communicate this value.

SOme results :

In the following, we most present results about the important interaction we elucidated

between. the spatial and-numeric frames. We'care about the two following exigencies of the

task:

* to communicate to the machine the numeric data. of the problem: using which mode of

representation? by affectation to which parameters?....

* to assure, between the component facets of the scale, adequate geometric relations

(especially connexity and relative positions); to construct one peticular facet: what position

parameters have to be determined? with respect. to which other facet? with respect to

which system9

The following results demonstrate the importance of experimentation possibility given by

the computer; they show the retroactions in the pupils' intellectual activity: an undesired

graphic result.incites to a research for the reason of error, this reason can induce an other

representation of the solution, based on other conceptions. The realization of the new

representation infers a new experience and a new graphic result, which consolidates or

devaluates these conceptions... and so on.

During the pupils' activity, we noticed a close interaction between the evolution of their

construction of reference system and that.of the significations they progressively attributed

to the "Ycoord.". The motors of such an evolution are: the exigencies of the task, the

interaction with the reference system of the software, and. the interaction between spatial,

numeric and graphic frames.

The "3 °coord." as "3 °measure ": This signification appeared after the construction of the

first step. Two given numeric values (ro and 7, dimensions of the step) having been
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communicated to the machine, the pupils' main preoccupation was to find a means to

communicate the third given value (5, height of a counter-step): "we've got to tell him that the

height is 5". Such a signification reveals that the aspect "measure" of the "3° coord." is

predominant with regard to the aspect "reference".

The "3 °coord." as a "reference-value" to situate the departure point of the new facet: Some

pupils showed this signification at the moment they wanted to construct the 2° step which,

without any indication, was situated at the same level as the first one.

For them, there is problem "because we've got to 'say' to

the computer where we want to put the step". After

several trials, they found that the "3°coord." is the way to

do it. Such a signification was accompanied by a

dynamic conception of referring. Having obtained a

graphical result as that of this fig., pupils searched for a

means to "push", or to "pull the 2° step.

The "3°coord." as the permanent value of the "displacement step": Such a signification

appeared after the pupils discovered the command "3°coord." as a solution; It's related to a

specific representation of the functionning mode. This signification appeared at the moment

pupils wanted to construct the 3° step: "no, we don't have to type the 3° coord., it's already

there..."
This significcation supposes that the effect of an

affectation of a value to the "3 °coord." stays valid for

every later operation. It seems that the "3°coord." is more

considered as a parameter for the whole problem than a

parameter for the construction of one facet. The fig.

gives the resulting drawing.
The "3°coord." as a temporary value of the "displacement step": The undesired graphic result

destroys the last conception, about the functioning mode of the software: "it returns to the

same place! ". Pupils discover that the value of the "3°coord." returns to zero at the end of

each operation; nevertheless, they don't give up the meaning of "3°coord." as the

"displacement step", between two consecutive parallel facets. Again, they affect the value 5.

O

This signification is related to an internal representation

of the construction as a continuous process, working by

connexity, and based on a principle postulating that: "a

new construction begins where the last one reached".
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The "3 °coord." as a value detemiining the position with respect to the first facet of the same
window: This new signification shows an important evolution in the process of discovering
and constructing the refernce system of the software: at least in the current processing
window, it reveals an awareness of the existence of a inique referential, with respect to
which are referred all the components to construct in this window; this referential is linked to
the object . On the other hand, it consolidates the conception of the "rcoord." as a reference-
value and eliminates all remainers of its conception as a measure-value. With this
signification, pupils overcome the exclusive relation between "3 °coord." and the value 5, by
affecting to it other values.

The "3 °coord." as a value determining the position with respect to a referential independent
from the object: We'll develop the evolution toward this signification by using the example
of the pair O. &S., one of the rare who reached this signification.

After the steps were constructed in the top view window, pupils chose the window of the top
view, for the construction of the counter-steps. With this first window changing, the
exclusive relation pupils constructed between "3 °coord."and the top view window had to be
broken. The exigencies of the task and the constraints of the software occasioned an
evolution of this relation toward its extension. Recognizing this command as a solution to
the same problem into an other window hasn't been automatic. It's been preceded by several
strategies, revealing an opposition to generalize its effect. In this paper, we cannot develop
these strategies (voir Osta 1988).

To construct the first counter-step, pupils tried the value

7 as "3 °coord. ". But the departure point of the first step

had initial coordinates unequal to zero; they,obtained a

non-accepted graphic result. In fact, their trial reveals a

representation of the solution based on the relations:(R1:

vo =7 and R2: vi = vi-1 +7): the first value of "rcoord.

is 7, each one of the following values being obtained by
adding 7 to the previous value.

A conflict is created by the contradiction between this
mental construction and the result of experience; the

graphic result is not compatible with RI, at least. They

decide to approach the right position of the facet by

adequately modifying the value of "rcoord.", at each

trial. To validate their result, their means of control is

perception. After several trials, the value 11.5 assures

the connexity.
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For the pupils, it's the value 7 that gives all their meaning

to relations RI & R2. For them, this value instates, in

fact, a relation between the relations R I & R2. When the

value 7 was devaluated, this relation between R l&R2

stayed valid. It's assured by the value 11.5. The two

relations become:
(v0 = 11.5) & (vi = vi-i + 11.5).

Li08

-
I _J-7

I

So, for the 2° counter-step, value of 3°coord. = 11.5 + 11.5 = 23. The graphic result being

not acceptable, they try again to approach the right position:

S: Let's try 21 & a half, now

0: no, it's clearly less.... you try....18

S: 18 & a half?

After several trials, experience showed that the value

18.5 is the right one.

0: since its 18.5, we had to know that we have to add seven

at each time...

S: oh yes,7... that's obvious, the width is 7.... don't you think it's logical, you?... it will be 7 by 7,

because the width is7.... it grows 7 by 7.

The two relations become: (RI: v0 = 11.5 & R.2: vi = vi-1 + 7). The relation R2 takes

again its meaning as assuring the "displacement step" pupils have to add, at each step, to the

previous value.

Having found this intelligible relation between all the elements implicated in this

problem, pupils have even succeded in interpreting the meaning of the numeric relation RI,

and in linking it to its correspondant in the geometric framework:

0: we've got to look, from the beginning, at the coordinates

S: or simply begin at zero... I think we understand now.... we've got to begin in the corner.., at

zero... so we couldn't have problems

This dialogue reveals the acquisition by the pupils of the whole logic controlling the

functioning of the software for this problem (and for all those of the same type).

Conclusion :

By the pupils' activity, this situation gave us informations that helped us to elucidate

the processes of construction of their knowledge, in the context of the used software. The

pupils' activity (esecially at the end) showed an evolution toward an organization and a

structuration of the software space. Such a structuration is surely based on a non-isotrope

representation of space, considering the construction of one peticular facet, because the

communication to the machine of informations concerning its position cannot be done in the

same way for all these informations. But, from a global point of view, this situation infers an
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isotrope representation of space, which means that a perfectly analogue treatment must be

done in the two windows: that of the top view and that of the face view.

This situation also gave to the analysis some phenomena concerning the evolution of

the construction, by the pupils, of the reference system controlling the space of the software.

The analysis showed an interaction and a concomitancy between such a construction and the
evolution of the signification of "3°coord.". This evolution is related to progressive
abstraction and generalization of the meaning of "rcoord.", and of its status with respect to

the space of each window. From the "3°coord." as a practical method to fix the position of a

facet in a one window, by using peticular values, there is evolution toward the "3°coord." as

a concept, independant from a peticular window, value or direction.

On the other hand, the important interaction that took place between geometric and

numeric frameworks was a guaranty for the construction of the meaning of analytic
knowledge as a link between these two frameworks: pupils constructed correspondances

between successive positions of facets into one window and the numeric values attributed to

"Pcoord.". Even more, we found indicia of construction of correspondances between the

displacements of a facet in one orientation or another and the algebraic operations
(augmentation or diminution of the value of "3°coord.").
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APPLIED PROBLEM SOLVING IN INTUITIVE GEOMETRY

John P. Pace

Essex County College, Rutgers University

A recent study with 67 adult community college

developmental arithmetic students has established a

well-defined model for teaching and learning the basic

concepts of area and perimeter. A pedagogical

perspective, some theoretical background, the research

design and a sketch of the results are described.

If thinking does not imply a purpose or goal,
discovery would be a blind guess, communication
a miracle and a twice told tale the shattered
accents of an echo. (Hook, 1927, p. 56)

In the million year gap between hominid and present human,

the conscious development of abstract ideas that can be

characterized as mathematical in nature is a relatively new

phenomenon. Primoridal man, overburdened by the difficulties of

surviving the harshness of a world marked by irrepressible

scarcity, could ill-afford sustained abstract speculation

concerning shape or quantity. Even in most of the ancient

agrarian civilizations of more recent millenia, we find

mathematic notions so intertwined with a human struggle to

survive as to make them emerge more as an aspect of broader

cultural development than as some separate well-defined

collection of ideas. The ultimate disassociation of

mathematical ideas; their objectification from the broader

cultural context, per se, is an exceedingly modern

interpretation of what is in the nature of mathematical subject

matter. This objectification of mathematics, especially in the

most recent of times, has helped lead to a vast development of

our advanced mathematical knowledge. However, whether in the

name of deductive efficiency or otherwise, the ahistorical

precipitation of mathematical concepts out of any apparent

cultural context can nearly erase any association of mathematics

to human interest and pursuit. Especially to new learners, the

extraction of mathematical concepts from a suitable identifiable

human context can seem to sacrifice all sense of logical purpose

and direction within mathematical studies. Surprisingly, one
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example of a mathematical subject that, from the learners' point
of view, can seem to make such a sacrifice concerns the study of
area and perimeter with simple polygons; work preliminary to the
study of Euclidean geometry.

The edifice of logic that is today's school geometry rests
upon a firm but obscured foundation that has beeen poured by
ages of human experience. In fact, geometry represents an
informed and concisely symbolic casting of one part of mans'
knowledge. To borrow the sense and terminology of John Dewey,
like any subject, geometry is a curricular "reconstruction"
(1966, p. 76) of some various parts of the human experience.
But this reconstruction at which we have arrived; this geometry,
is not only a logical set of axioms and theorems; the
assumptions and the derived rules and regulations by which
deductions may be correctly realized, it is also a formal
product; one devoid of all but the faintest hint of the
centuries of historical process by which, or any of the variety
of intended purposes for which, it came to be created and
developed.

In classes where topics such as area and perimeter; topics
preliminary to the study of Euclidean geometry, are being
developed, there may be little recognition by students of the
possible purposes or ultimate consequences of such studies.
They could not be expected to be aware of the historical context
of the development of such activity, may often question the
intended purposes of their work and, of times, even doubt that
the results of their labors signify anythi.-.., at all.

In an attempt to explicitly address what can be seen as the
purposefulness of such geometric topics, and in conjunction with
what is an axiom that describes humans essentially as creatures
seeking meaning in their actions, we designed an applied problem
solving research study. The purpose of the study was to develop
and realize a well-defined applied problem solving model for
learning and teaching the concepts of area and perimeter by
adult students in an arithmetic class.

Population

The 67 predominately Black and Hispanic adults students who
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participated in this study were enrolled in 4 sections of a

remedial mathematics course, (2 sections during Fall and 2

during Spring of 1987-88) at Essex County College; located in

New Jersey's largest city, Newark.

Design of the Study

Time
Di 2.5 weeks Ti 2.5 weeks

AGT Pretest ,_._
pi Erperinental--ykor --- '4..S3XaMi* ACT Posttest

(Class A) MICH ST Inanity
MCI el

Classroom' ,Incruiry
0 ..,

.. / 11cClel

AM Pretest

O Control --YM.I. -- Arithmetic -4 ,LGT Posttest"'
Ari thmetic

(Class )3)
II3C13 ST Units Units

T2 2. 5 weeks T3 2. 5 weeks-1-4

pi Experimental) AGT Posttest Arl throe tic -+ AGT Delayed ---) video

Z (Class B)
posttest Interviews

0 (continued)
?-1 Aar DelayedO Control --) Posttest ) An thme tic -4 Video -a

(Class A) Interviews

Figure 1. Outline of the experimental design.

The reseach design is given in Figure 1. Briefly, at time

To, students in each of two classes were administered two

assessment tests, the Van Hiele Geometry Test (VHT) (Usiskin,

1982), and the New Jersey College Basic Skills Placement Test

(NJCBSPT); and a content specific pretest, entitled the Applied

Geometry Test (AGT). Following the testing, for a 2 1/2 week

period, the first class (Class A) participated in a classroom

inquiry model; one primarily involving applied geometry problem

solving situations. Meanwhile, the second class (Class B) was

taught basic topics of arithmetic computation; topics unrelated

to geometry. At time T1, the classes were then retested with a

different form of the AGT. During the next 2 1/2.weeks, the

treatments were reversed for each class, and at time T3, a third

form of the AGT was administered. During the next 2 1/2 week

period, both classes were taught arithmetic. At time T4,

videotaped interviews were conducted with randomly selected
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students from Class A, while students in Class B were tested

again with the AGT. Finally, at time T5, randomly selected

students from the Class B were video-interviewed.

Some Theory

Knowledge is constructed when human minds are actively
engaged in some persuit.

The roots of thought must be sought in
action, and operational schemata derive
directly from action schemata.

. .Generally
speaking, logico-mathematical structures are
extracted from the general coordinations of
action. . . (Piaget, 1971, p. 181)

It requires little valor to agree with Jean Piaget.
Nonetheless, in our research, it was still required that we
operationalize that agreement. We had to consider the serious
and thorny problem of just what student "action" would provide
the fertile ground for "the roots of thought". It was action we
sought to incorporate, but not just any action would do.
Activity, in and of itself, is motion; sheer sensory motor
dynamics, and,

"Mere engagement in activities will not facilitate learning,
of course, if those activities are not appropriate to the
students' needs" (Brophy, 1986, p. 327).

And the "needs" that we saw for students were precisely those
which would be met by the kinds of actions would most
likely lead to the "general coordinations" that Piaget describes
above. These actions are typically not so easily specified.
Thus, while Piaget's epistemology of constructivism may provide
a viable model for the genesis of human thought, there yet seems
an unanswered question as to a specified mechanism that will
cause an engagement of the constructive process. For Piaget
(1971), this "engagement" issue may be moot.

"Life is essentially autoregulation" (p. 26), and while the
organism exists, the process of equilibration actively
"compensates against outside perturbations" (p. 25), and "the
organism as a whole preserves its autonomy and, at the same
time, resists entropic decay" (p.13).
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Thus, it seems, for Piaget, "Cogito ergo sum" (I think

therefore I am) is a biconditional statement; i.e., "Sum ergo

cogito", as well. However, while life itself may imply the

autoregulated functioning of thought, it does not necessarily

imply that the content of that thought will be mathematically

rich. Thus, after even so compelling a description fo the

epigenesis of knowledge as 'Piaget demonstrates, for the

mathematics educator, there still must always remain the

question of how to engage students' constructive processes in

mathematically significant concepts. For one answer we turned

to John Dewey (1980).

The weakness of ordinary lessons in
observation, calculated to train the senses,
is that they have no outlet beyond
themselves, and hence no necessary motive.
Now in the natural life of the individual and
the race there is always a reason for
sense-observation. There is always some
need, coming from an end to be reached, that
makes one look about to discover and
discriminate whatever will assist him.
Normal sensations operate as clues, as aids,
as stimuli, in directing activity in what has
to be done; they are not ends in themselves.
Separated from real needs and motives,
sense-training becomes a mere gymnastic and
easily degenerates into acquiring what are
hardly more then knacks or tricks in
observation. . . (p.93)

Dewey's comments imply the notion of purposeful inquiry on

the learner's part. Briefly, it is a subject's actions, on the

basis her/his self-felt purposes, within mathematically and

conceptually rich domains that were the ensembles that this

research sought to promote. One way of providing purpose, or

"necessary motive", is through the use of applied problems

(Lesh, 1981).

Generally and briefly, our model tried to blend to

constructivism of Piaget, the purposeful instrumentalism of

Dewey and the small group applied problem solving of Lesh.

A Treatment Example

During the experimental treatment, students were asked to
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consider a variety of applied problems. These applied problems
(Lesh, 1982) were constructed as lifelike situations in which
mathematics was used as a major element in the resolution of
some difficulty; or might have assisted in making some

evaluative judgement between a variety of alternatives.

lots
already
purchased

North 50

MIEW=M11=1==111=1=11.1111.1

walkway

mmmn
1=IMM111
%TM n
11.=M1=1=WUtIMMO.--n
ma2L
mow.m.=WU
.auuMMIMIR
11.=MMI.
nall%
=1.11111Ma
MMAMMIOLIMMM
aln"
.auu

---
r--.

$20,000
68 $20,500

45

South 40

$20,250

28

(all lot measurements in feet)

You and two other members of this class have pooled your
money and convinced a bank to grant you a significant loan in
order to open a small business in one of Newark's soon-to-be
revitalized downtown commercial neig.,borhoods. You are
presently considering likely locations for your business. In
the figure you see three possible alternati'-q and parcel
selections, labeled North, East and South, and the price of
each. Make a choice for purchase that you all agree on, and
give the reasons why you chose as you did.

Figure 2. 2. The Shopping Mall Problem

One such prototypical problem (see Figure 2) concerned small
groups of students working together to choose a potential
business site from among alternative land parcels. This problem
was one that we felt could potentially be of interest to adult
stwients; especially as we were located within the physical and
social context of contemporary urban redevelopment in the city
of Newark. The task, which was designed as a vehicle for
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developing area and perimeter concepts, sought to actively

involve students in a problem situation where geometrical

concepts were "lurking close by" in a fairly natural and

inescapable manner.

Results Sketched

The full technical results of this research are detailed in a

forthcoming publication (Pace, 1989). However, briefly, through

a number of single and multivariate, stepwise, linear regression

models whose parameters were estimated by the computer program,

Regress II (Madigan & Lawrence, 1983), we established that, by

the measure of geometric achievement utilized, the experimental

program of teaching was susccessful in both short and long term

cases. Summaries of the videotaped interviews supplemented the

quantitative findings with both critical support for and dissent

from the major findings.

It may be neither surprising nor particularly impressive that

students were taught and therefore they demonstrated achievement

and retained growth. After all, this research makes no claim

that this particular experimental model is significantly better

'than other methods of teaching area and perimeter concepts. Any

such claims of pedgogical superiority ultimately require a

discussion of how one defines superiority; in terms of explicit

educational values (Pace, 1988) and goals. On the other hand,

what is claimed is that this research offers a well-defined

model; one theoretically justified and operationalized, one that

exists and can be known as a possible alternative to whatever

other approaches may exist. Following the traditional

methodology of mathematical reseach, this research has

established through its results, the existence of a particular

method. Any demonstrated uniqueness of results of that method;

i.e., in the sense of superiority to other methods, remains to

be shown.
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L'INCIDENCE DE L'ENVIRONNEMENT SUR LA PERCEPTION ET
LA REPRESENTATION D'OBJETS GEOMETRIOUES
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Mongeau, Pierre (1989)*

Centre Interdisciplinaire de Recherche sur l'Apprentissage
et le Developpement en Education (CIRADE), Universite du
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Abstract

First, we discuss the basis of a new typology for classifying the
spatial abilities. Next, we present the results obtained from interviews
with 10- and 11-year-old children, functioning in various types of space.
Some interesting contrasts arise from these findings, allowing us to
question some elements of Piaget's theory and the interventional model
used actually for the teaching of geometry in schools.

La realisation de cet article a ete rendue possible suite a
une recherche appuyee par le FCAR (EQ-3046) et le CRSH
(7410-87-1277).
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Introduction

Apres avoir identifie les facteurs composant l'habilete a percevoir
l'espace et examine divers moyens de la developper, nous nous sommes
interesses a l'apport de renvironnement dans le developpement organise
des habiletes perceptives et representatives d'objets geometriques, situes
dans un micro-espace. A cette fin, nous avons elabore une typologie des
habiletes spatiales, que nous presentons dans les paragrapher qui suivent.

L'objet de l'experimentation relatee ci-apres traite des relations
entre ces habiletes spatiales et les types d'espace qui environne le sujet.
L'interet de cette dernarche est de provoquer eventuellement une
diversification des interventions didactiques dans l'enseignement de la
geometrie et de toutes autres disciplines touchant a la maitrise de
l'environnement, comme les arts graphiques, qui tiendralt compte des
types d'espace qui environne les sujets.

La perception structurale de l'espace

Piaget avast mis en lumiere la necessite de dissocier l'espace
perceptif de l'espace representatif, af In de Wen comprendre l'ordre dans
l'appropriation des proprietes geometriques: la notion de voisinage
intervenant avant les autres axiomes euclidiens, l'intuition des dimensions
fondee sur l'interiorite et l'exteriorite intervenant avant l'abstraction d'un
volume euclidien...' L'espace peut aussi se caracteriser de plusieurs points
de vue: physique, social, geometrique, etc. Notre recherche s'est interessee
a la perception d'un espace geometrique. Cette perception peut enf in
s'examiner sous un angle formel bu structural.
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Alors qu'une perception formelle consiste en l'interiorisation2
quantitative d'un modele spatial par l'analyse et la synthese de ses
proprietes en term es de rapports, de proportions, de mesures et de
coordonnees, la perception structurale considere plutOt l'interiorisation
qualitative d'un modele spatial par l'analyse et la synthese de ses

proprietes topologiques, projectives, affines et metriques. Nous

previlegions dans notre etude cette derniere approche. "La representation
spatiale est une action interiorisee et non pas simplement l'imagination
d'un donne exterieur quelconque."3

La typologie des habiletes spatiales

La typologie que nous avons developpee (Baracs, Pallascio,

Mongeau), est definie sur la base d'un tableau a triple entree. Une de ces
entrées est definie par cinq (5) habiletes hierarchisees, une deuxieme
entree est definie sur les quatre (4) niveaux geometriques, alors qu'une
dernlere entree distingue les deux (2) plans, perceptif et operatoire (ou
representatif). Le tableau contient donc quarante (ou 5 x4 x2)

intersections, correspondant potentiellement a autant de degres d'habilete

spatlale 00 pourrait se situer un indivIdu.

Les habiletes spatiales sont respectivement la transposition, la
structuration, la determination, la classification et la generation. La
transposition est l'habilete a etablir les correspondances, les

equivalences, et a effectuer le passage entre les differents modes de
representation (physique, linguistique, algebrique et geometrique) et
niveaux geometriques. La structuration est l'habilete a identifier les
proprietes et fa combinatoire geometriques dune structure spatiale. La
determination est l'habilete a delimiter les elements ou les parametres
definis par des contraintes geornetriques sur une structure spatiale. La
classification est l'habilete a grouper des structures spatiales selon un
choix de proprietes ou parametres geometriques communs.
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Enfin la generation est l'habilete a produire ou modifier une
structure spatiale de facon a ce que cette structure reponde a certains
criteres geometriques predetermines.

Les niveaux geometriques sont les niveaux topologique, projectif,
aff ine et metrique. Le niveau topologique correspond principalement
l'etude des proprietes d'adjacence et de connexite des structures
spatiales, proprietes qui sont conservees suite a une ou des deformations
continues, telles que l'etirement, le retrecissement, le pliage ou la
torsion. Le niveau projectif correspond principalement a l'etude des
proprietes d'incidence et de platitude, qui sont conservees suite a une
projection centrale. Le niveau affirm correspond princlpalement a l'etude
des proprietes de parallelisme et de convexite, qui sont conservees suite a
une projection parallele. Enfin le niveau metrigue correspond
principalement a l'etude des proprietes de distance et d'angulation.

En derniere analyse, le plan perceptif est constitutif dune
action mentale de reconnaissance des formes, alors que le plan
representatif est constitutif dune action concrete de transformation
des formes.

Les types d'espace

Alors que le micro-espace est le lieu de la manipulation de
petits objets ()Oil est facile pour le sujet de changer de points de vue par
rapport a l'objet, et que le meso-espace est l'espace des deplacements du
sujet dans un domaine contrOle par la vue et qui s'obtient par le
recollement de micro-espaces connexes, le macro-espace est celui qui
necessite une representation implicite des mouvements relatifs de
plusieurs systemes de references, que Ion pourrait imager par un
"recollement de cartes", selon l'expression de Guy Brousseau (1986).
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Nous avons cherche a determiner les relations et les incidences,
Q01 pouvalt y avoir entre un environnement donne et les habiletes
percept Ives et operatolres appliquees a un micro-espace, comme celui des

formes geometrlques utillsees dans un test-entrevue elabore

anterieurement pour valider partlellement notre typologie. Pour ce faire,
nous avons choisi et compare deux groupes de sujets, dont l'environnement
spatial est radicalement different: un groupe d'enfants vivant dans un
environnement rural du sud du Quebec et un groupe du meme age vivant
dans un village Inuit du nord du Quebec.

Au niveau du micro-espace, les enfants du sud, en milieu rural
ou urbain, sont davantage inities au dessin imaginatif ou figuratif, plutOt

qu'au modelage de formes tridimensionnelles, alors que les enfants Inuit
sont inities tres jeunes a la sculpture dans la pierre a savon, tandis que le
papier demeure une denree plus rare (les arbres sont loin!).

Au niveau meso-spatial, l'environnement visuel varie

sensiblement d'un milieu a l'autre. Alors qu'en milieu rural, les habitations
sont des prismes rectangulaires allonges, etendus ou pyramides (fermes,
demeures isolees...) et qu'en milieu urbain les edifices sont

essentiellement des prismes rectangulaires, les habitations

traditlonnelles des Inuit, les Igloo (qui signifie "maison" en inuttitut), que
les enfants apprennent encore a construire lors de sorties familiales pour
la chasse ou la peche, sont formees de pyramides tronquees, 00 le
parallel isme ne domine pas.

Enf in, au niveau macro-spatial, alors que les denivellations sont
variables en milieu rural et fortes en milieu urbain (metro, stationnement
souterrain, edifices a plusieurs etages...), c'est plutOt un espace

bidimensionnel qui s'ouvre a l'horizon de l'Inuit qui doit compter sun des
accidents de terrain Oars pour se reperer dans la toundra.
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La methodologie

Le test utilise, administre par entrevue individuelle, etait
compose dune douzalne de taches ou problemes a resoudre, couvrant
necessairement une partie seulement de la typologie, a savoir sept (7) des
(40) modules, correspondant a l'un ou l'autre des niveaux topologique ou
pro jectif, a Tune ou l'autre des habiletes et dans l'ordre du plan. perceptif,
constitutlf dune action mentale de reconnaissance des formes, ou du plan
operatoire (representatif), constitutif d'un action concrete de
transformation des formes.4

Les deux groupes d'eleves, compares etaient composes de 16
enfants. Un premier groupe (du sud).etalt forme de 8 garcons et 8 f illes,
afors que le second groupe (du nord) etait forme de 12 garcons et 4 filles,
tous et toutes des Inuits, sauf tin jeune Amerindien du peuple Cree. Le test,
limit& a 13 Caches, a ete administre au printemps 1988.

Les resultats

Nous observons que les deux groupes s'opposent radicalement au
niveau des plans perceptif et representatli, au niveau des
proprletes geornetriques, topologiques et projectives, et au niveau des
habiletes perceptives et representatives qui dominaienl, soit les activites
du debut de la typologie, soft celles de la fin. Le sexe des sujets
n'intervient pas, ni a linterleur des groupes, n1 globalement.

Tableau Comparaison globale

Groupe du sud Groupe du nord

Plan perceptif
Reconnaissance des formes
Geometrie topologique
Transposition ,structuration
Debut de la typologie

Plan representatif
Transformation des formes
Geometrie projective
Generation, determination et classification
Fin de la typologie
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Bien sur, les espaces differents qui definissent les

environnements des deux groupes de sujets ne sont probablement pas la

cause unique des differences observees dans la perception et la

representation des objets geometriques micro- spatlaux. Au niveau meso-
spatial, par exemple, certalnes constructions coutumieres chez les Inuit
leur font manipuler des objets aux proprietes davantage projectives
qu'affines (p.e.: les blocs de neige servant a la construction d'un igloo sont
des pyramides quadrilaterales tronquees et disposees en spirale, et non
des parallelipipedes). Mats les relations et les incidences que nous avons
identif lees sont suffisantes pour nous questionner sur la necessite

d'etablir des parcours differenties dans le developpement des habiletes
spatiales, objet de nos prochaines recherches.

Notes

1 La representation de resoace chez l'enfant Piaget, J. et B. I nhelder , PUf, 1948, p. 535.

2 Par inter lor fsat ion , nous enterdons un detachement gradual de la real Ile

permettant aux etats de desyenir des representations de classes

dobjets et permettant aux actions de se transformer en operations mentales.

3 Piaget, J., Id., p. 539.

4 La validation de 1.ensemble de la typologie ( 40 modules) se poursuit actuellement aupres de

groupes de sujets plus nombreux at d"oge divers: env iron 200 sujets, enfants,

adolescents, etudiants universitaires et adultes.
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ANGLES & PIXELS Quelle synergie a 9 ans ?
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RESUME

I'ME 03/89

Nos travaux de recherche sont orient& vers la prise en compte un enseignemeru de la programmation en

LOGO graphique afin if en consorter efficacite lots de transferis et d interactions avec d'autres domaines de con.

naissance. Dans cet article, les resultats obtenus d ('issue de trois Tests rendent compte derevolution des comae-

tences lors de mesures d angles pour deux groves appareilles. Leur analyse apporte des elements sur la structura-

tion du concept dangle grace d la comparaison de deux traitements pethigogiques utilisant des supports de repre-

sentation differems: avec ecran versus sans ecran.

INTRODUCTION

Depuis les intuitions dc S. Papert, de nombrcux travaux ont ate conduits sur les rappons entre Ic concept d'angle

et son approche cn LOGO graphiquc. L'analysc des champs conceptuels men& par A. Rouchier <I>, J. Hillel <2>

ou les recherches concemant la structuration do ccs notions aupres d'oleves mendos par C. Hoyles <3> n'en soot

quc d'excellents exemples. II convient toutcfois, pour comprendrc les resultats presentes d'ajoutcr deux precisions :

- Logo cst un systemc sans unite ou les ordres sont conferes ainsi : AV 30 TD 30. L'elevc dolt assimiler que 'or-

drc comprend en lui menic la notion d'unitd. Le plus petit element goometriquement traitablc sur feuillc cst le point,

sur dcran cost Ic pixel. Les cliffarentes definitions d'ecran daterminentalms Ia valour reclle do l'unito cc qui

constituc un referent complexc pour un Dove, et conduit par exemple a pouvoir etablir ladistinction A priori entre

unc figure rcprdsentant un polygonc do 25 cotes ct un cercic en fonction do la surface et do la qualito de l'dcran.

Lc systemc de mcsurc des angles Logo cst base sur la division du cercle en 360°. II suppose done une certain

representation do Ia division quo Wont pas sous les eleves cn debut do cycle moycn. Enfin, les diets do la primitive

TOURNE peovein se combiner, par operations, dans un systemc dc base 360, dans Icqucl, 0 ct 360 ont un effct

idctitique. Si cello logiquc rappellc cede du cadran horairc, clic constituc loutefois un systeme asset nouveau you

les Doves au debut du cycle moycn.

Pour cede recherche, des oprcuvcs out dud COTIStIllitCS et varifiees aupres d'un echantillon reprasentatif,elles

penucticnt de rendre compte de Petal des competcrices lors du calcul dc perimetres ou dc mesures d'anglcs. Par
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aillcurs, cites verifient revolution de certains pro-requis coneernam raptitude a itemr use suite ou a diseriminer

drone et gauche sur un plan oriente. Enfin, cites avaluent certains .savoir-faire-faire, i en Logo. A la suite dune

premiere passation, deux classes de CM 1 sont resp&rtivement scindees en 2 groupcs rcndus homogenes : A et B.

Its vont alors decouvrir concepts et outils en suivant simultanement deux progressions prealablement definies de

1211. A l'issue de chacune, its repassent les epreuvcs. Les resultats obtenus par 24 'Cleves deeouvrant implicitement

ccrtains concepts grace a rapprentissage dc la programmation en Logo graphiquc, puis explicitemcnt sans ordina-

teur, sont compares a crux des 24 affixes decouvrant ccs mernes concepts dans un ordre inverse scion Ic plan

suivant:

Test 1 entrainment Test 2 entrainemcnt Test 3

groupc A LOGO geometric

groupe B geometric LOGO

La mise en place des progressions s'inscrit darts le cadre general de I'enseignemcnt des mathematiques et plus

paniculierement de la geometric a recolc elementairc. A cc sujct, M. Blanc, <4> ddgage u-ois period& dans rensci-

gnement des mathematiques a recole et au college :

- de 1945 A 1970: Les problem& de mcsurage sont au centre des preoccupations;

- de 1970h 1977 : Mathematiques modcmcs; les angles nc figurent plus au programme;

- depuis 1977: L'idde de situation probleme s'impose. L'angle apparait comme un Clement pertinent dans lacons-

truction de figures et comme un invariant lors de certaines transformations geomelriques.

Resolumcnt axes stir les acquis de noire epoque, les conceptions issues de la troisiemeperiode ont marque

relaboration des progressions construites en equipe afin de s'inscrirc ie cadre scolairc. La progression utilisant

Ic LOGO graphiquc propose apres 2 seances de docouverte des primitives fondamentalcs de faire dessiner sur

recran des figures choisics dans on corpus ordonne scion des difficult& croissantes. L'agencement de celles-ci

pcmtet, ('acquisition de riteration, puis, la definition de procedures. Les figures propose& sont des polygones, des

figures compose:es de polygones, de segments, dangles droits ou non-droits. Des difficult& podagogiques sont

soulcvecs par la misc en oeuvre de cettc progression <5>. La progression de geometric sans ordinatcur, conduit

les dleves a decouvrir Tangle pour rintegrer comme Clement lors de situations de description. Cc descripteur est

alors retenu ct combine a d'autres afin d'olaborcr unc classification des polygones ct figures inscrites au pro-

gramme.

Les resultats obtcnus A l'issuc des trois Tests : T1, 72, T3 font l'objetdc traiternents statistiqucs &lairds ct comple-

tes par ('analyse des justifications apportecs par chaquc elevc. Delaissant momentanernent les resultats conccmant

Ic calcul du perimetre qui ont dept en partic fait robjet de presentations <4.> les resultats rapport& conccmcnt la

193



92

mesure dangles.

EPREUVE DES ANGLES (cr. annexe)

Lors du rodagc des eprcuvcs et des progressions, nous aeons fait passer setts epreuve a 85 eleves, en debut dc

cycle moycn, repartis sur plusicurs classes dont cellos dcs enscignanls qui ont participe a l'experiencePaull&

suivantc. A deux exceptions pres les olevcs n'ont ricn reimndu, Dc cc fait setts epreuvc n'a pas die pass& au T1

les resultats nuls Clam consider& comae acquis.

A l'issue du T2

Proalablement a toutc constatation mutant des resultats, l'obscrvation dcs reactions des eleves lors dc la passation

dc setts eprcuve est riche d'cnscigncmcnts. Ells mulct de rernarqucr quc plusicurs individus du groupc A

dcmandent 5 allcr chcrcher cur regle alors quc curtains du groupc 13 reclamcnt cur raprxmcur. Poursuivant setts

piste, nous constatons a Ia lecture des resultats que 8 Cleves du groupc A fournisscnt toutcs (curs reponses sans

unite. Sculs 2 dleves du grciupc B reagissent ainsi. Ces differences rclevees pcuvent en panic s'cxpliquer par le

statut déjà mentions qu'occupc l'unite dans la geometric LOGO. L'absence de referent cxplicitc et d'unite discri-

minants en geometric LOGO nc permet pas, aussi facilement que pour la progression non-Logo, a l'eleve debutant,

de dissocier l'assimilation souvcnt constatde entre longucur et Ccartcment des cotes.

Sur le tableau suivant ou sont successivemcnt represents en ligne : la somme (SX) dcs reponses justcs obtenucs

puts Ia movenne (MOY) pour chacun des groupcs A ct B, la valcur calculee au .T de Studentn pour Ia cornparaison

des ccs deux moyennes, enftn lc scuil de signification de celle-ci en considerant 46 d.d.l. ct nc retenant comme si-

gnificatives quc les valeurs inferieurcs a .10. En colons, chaquc item est represents par Ia reponse attendue, et Ia

dcmiere colonnc representee par un «Tn est le resultat en ligne sous items confondus.

AN.T2 90° 180 60° 320 45° 45° 60° 30° 60° 120 T

SX 37 36 29 22 16 13 6 2 2 1 164

MOY A 0,79 0,54 0,50 0,42 0,42 0,42 0,25 3,50

MOY B 0,75 0,95 0,70 0,50 0,25 0,12 3,33

t cal ),33 3,72 1,47 0,56 1,21 2,35 2,76 0,25

SEUIL. N.S. <.01 <.10 N.S. N.S. <.05 <.01 N.S.

On obtiest 164 reponses justcs sur 480 attendues soil 34 % dc bonnes reponses. Ces reponscs sont egalement

reparlies sur les deux groupcs donnant des presquc idcnliques. On pent déjà considercr quc du point



93

do vuc des angles, Ics eleves du Groups Ii 010 appris quclquc chose, on pouvait s'y attendremiaisceux du Groupe

A ont egalement progresse... ct ailleurs qu'cit LOGO. Item par item la comparaison des ntoycnncs pcnnct de savoir

si un groupc progresse plus quc l'autrc.

II n'y a pas de difference significative entre Ics dcux groupes pour ['item concern= l' angle de 90°. Cest ['item In

mieux rCussit alors quc l'angle de 90° cst ici integre dans unc figure problems. Ccci montrc en outrc quc les dleves

ont pu lire, rester attcntifs jusqu'au 5° item ct reperer dans setts situation unc connaissancc acquisc.

Lc groupe B reussit micux les items 2 et 3 (180 et 60 °). L'addition danglespour obtenir 180° cst l'item qui marque

Ic plus la difference entre les dcux groupes. Les eleves du groupc B justificnt les rdsultats obtcnus a l'itcm 180 par

unc addition de meme 3 l'item 60° ils utilisent souvent la soustraction : 180 120 = 60. S'il y a unc recite influence de

la methods sur ccs deux items, cc qu'il nc sera possible de verifier qu'au T3, alors unc recherche des causes sera

entreprisc afin de justifier cc constat.

Pour l'item 1 de 320° (complement a 360° de 40°) la difference entre les deux groupes cst non-significative.

Toutefois cet item est mois bien reussi quc crux concernant ['angle plat. Onpeut penser quc la disposition des items

sur la feuillc induit quelques bonncs reponscs en serie pour les items 2 et 3. II convicnt toutefois dc remarquer quc

le concept dangle semble se construire a partir de ['angle de 90° pour s'elargir a ['angle de 180° puis a l'angle de

360°. II s'agit pour des Cleves nc maitrisant pas encore In mCcanisme operatoire de la division dune approche par

fraction (moitie, quart). Cettc observation, sera &millet par ('analyse du protocole de Farid.

L'observation des rdsultats obtcnus aux items 5-A et 5-B des deux angles de 45° du demi-carre motive, quc sous

les Cleves du Groups A reussissant un item reussissent ramie. II en nest pas de manic pour le groupe B : trois

Cleves reussissent un item et pas l'autrc. Pour eux ens deux items nc son .uentiqucs. II s'agit la d'un mauvais re-

pdrage des invariants lors de la constitution dc la representation dune classe d'equivalcnce.

Les Cleves du groupc A rdussissant aux trois items du rectangle 6 ne sont capables de justifier de lcur reponse ni

A l'ecrit A I'aidc dune operation, ni manic a ('oral.

L'anglc dc ('hexagons de l'item 4 est pour ('ensemble des dleves encore inaccessible. Aucun transfert ne se fait

pour Ic groupe A It partir du ttTheoreinc du Trajet Total de la Tortucy (<1>).

La mcsurc dc la dispersion s'intpose cnsuitc. Ells peruict d'ohtcnir une valour de 2,64 pour l'ecart type du

Groupc A contre 1,62 pour cello du groupe B. Lc groupc A cst done bcaucoup plus disperse. II y a unc influence

dc la methods sur cct indict. Toutefois, it convicndra d'affincr et eventucllement dc continuer cc constat dune part

grace 9 des observations similaircs menecs A ['issue du T3 d'autre part en analysant Is repartition des homes
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r6ponscs suivant Ics endividus.

!'actin, quelqucs explications rcicvdes panni ccIles foumies par des Cleves corroborent ccnaincs observations:

- Farid (groupc A) justifie toutcs scs tonnes rdponscs par des affirmations utilisant des fractions connucs : Ic quart

ou la moitid. Ainsi 5 l'item 3 il propose : PARCE QUE : 5120 est les trois quart de 180i, ct a l'itcm 5-B conccmant un

angle dc 45°: FARCE QUE : ,r45° cst Ic dcmi quart dc 360°0. Ccttc logiquc basde sur des fractions connucs nc lui

permet alors d'accddcr ni a l'hexagone ni au rectangle de l'itcm 6. Ellc montre toutcfois comment un Cleve encore

incapable de poser WIC division a rclie =lc operation au concept dangle. L'utilisation dc la division lors de

conjectures sur les angles devrait permeate a Farid de passer dc Tangle droit, uaitable, comic it Ic fait, par Ics frac-

tions de quart ct de moitie a l'anglc de 90°. II pourrait, en integrant toutcs Ics divisions du ccrcle de 360°, ameliorcr

scs performances.

Tagati (groupe B) justific sa bonne reponse dc 90° au 5-A ainsi : FARCE QUE : .c'est un angle droit alors l'anglc

droit mcsurc 90°0. La liaison logiquc etablit par ('utilisation dc «alorsrt montrc quc la correlation cntrc une

classe d'equivalence et son signifie nest pas encore etablie de fawn tres logiquc et sure.

Si Ion rapprochc les conclusions de setts observation de mile du protocols precedent alors on constatc quc

l'association : angle droit, angle de 90° se construit et 5 une signification. Elle marque Ic passage dune representa-

tion rcndue fonctionnelle par ('utilisation dc fractions a une representation devalue fonctionnclle ct operationnali-

sable.

A l'issuc du T3

Les resultats obtcnus soot prescntes sur Ic tableau suivant dont la presentation est identiquc au precedent.

AN.T3 90° 180 60° 320 45° 45° 60° 30° 60° 120 T

SX 40 44 33 37 27 25 4 5 1 4 221

MOY A 0,83 0,88 0,67 0,79 0,54 0,46 0,04 0,08 0,00 0,04 4,38

MOY B 0,83 0,96 0,71 0,75 0,58 0,58 0,13 0,13 0,04 0,13 4,83

t cal 0,00 1,03 0,38 0,36 0,38 0,19 0,15 0,32 1,00 0,15 0,73

SEUIL N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S N.S.

Tout d'abord, 221 reponses cxactes, soit 46 % dc bonncs reponscs, soot obtesucs. Ccla correspond a unc

progression de 12 points par rapport au pourcentage obtenu au T2 (36 %). Cc progres est moins important quc

cclui constate entre le TI et Ic T2. Ccla semble logiquc si Ion cstinic quc les notions les plus faciles d'acces sont

acquiscs en prioritd.
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Les deux groupes n'etalcut plus liontogenes apres le T2. Lour permutation a ell ixitir consequence de niveler

les differences reveldes par les rdsultats. La repetition des effets vient done, continuer les hypotheses presentees A

I'issuc du '12. La plus generale dtait issue de )'observation des deans types. Au 1-3 on releve tine valcur de 2,00

pour Pecan type du groupc A et dc 2,25 pour mile du groupc B. Compte tenu qu'il y a progression et rattrapage

des differences apres inversion des traitemcnts pddagogiques, on cst maintenant en mcsurc d'affirmer quc du point

de vuc des rdsultats obtenus a l'eprcuve des angles, la geometric LOGO idle qu'cllc a eta pratiquec engendre

plus crecart entre les elevcs. L'analysc des flux entre les deux Tests permet meme de montrcr quc Ia geometric

non-LOGO miss en place est plus democratisante. II convient A nouveau de conduire )'analyse item par item.

Pour l'anglc de 90°11 n'y a aucunc difference significative entre les deux groupes. Mais, l'ordrc des rdussiten

s'est modifid : Les droves, au T3, reussissent micux Pitem 3 concernant l'addition des valeurs pour arriver A 180°, quc

cclui de 90°. Additionner des valcurs representant des angles est devenu plus simple qu'idcntifier un angle de 90° .

sur one figure.

Aux items ISO et 60° uric difference significative entre les deux grouper a tissue du T-2 a eteconstatee. Puisquc

ewe difference nest plus significative apres ('inversion des traitcments pedagogiques,, on pout conclurc a un

meillcur cffet dc la progression non-LOGO pour ces deux items. Les eleves doivent, pour rdussir ces deux items

developper des conjectures utilisant Ia supplementarito. sont tides dans un cas a l'addition dans l'autre A la

soustraction. L'acquisition de ces mecanismes cn LOGO a OP did etudide par D. Mendelson <7>. Par la progres-

sion non-Logo la decouverte de la compldmentaritd Cl de Ia suppldmentaritd avail ate abordee par l'obseration de

plans symbolisant des ouvcrtures de pones dans la lignc des travaux proposes par ERMEL concemant les fausscs

Flumes et faux compas <8>. Les situations evoquecs par les pones correspondent tres exactement a ccs deux

items. La mcilleurc efficacite d'une progression s'cxpliquc alors par la nature de la mataphore employee qui perrnet

plus facilcment le transfers des competences opdratoires.

Pour les deux angles dc 45°, on constate a nouveau ('inversion des =dances decrites, conccmant la repartition

des rdsultats entre les deux grouper a l'issue du T2. Mainlenant, tous les elevcs du Groupe B repondant juste a l'un

des items concernant l'anglc de 45° repondcnt juste a l'autre. Deux eleves du groupc A presentent un pattern dc

reponse different pour ccs deux items. Lc travail en LOGO favorise la constitution des invariants necessaircs A Is

formation de classes d'dquivalence pour les angles.

Pour les items 6, la difference entre les gropes cm non- significative. A l'issue du T2 elle n'avait pu etre test&

puisqu'aucun ele.ve du groupe B tic repondait a ces items. Toutcfois ('observation des distributions par groupe des

erreurs avait conduit a constater quc les eleves du groupc A cssayaicnt plus facilcmcnt ccs items. Ccttc temlanec

s'invcrsc a nouveau.

BEST COPY AVAILABLE 9 7



96

I. 'angle de rhesagime West plus le plus dillicile 3 reussir. 2 eleves ayant (Caine. par le LOGO sont (mixt-

bles do repondre,

CONCLUSIONS

La premiere conclusion qui s'impose concenie refficacita do l'epreuve construitc qui pennet unc discrimination

asscz finc des dlevcs en enregistrant tout dc meme des effcts plafonds (90°) et planchers (rectangle). II manquc

toutcfois a cc corpus quelques items conduisant a comparcr dcs angles. Par un plan expdrimental adapt& Its resul-

tats obtcnus 3 l'issuc do traitements pedagogiques differents montrent quo les dlCvcs ayant utilise LOGO ont non

sculemcnt appris cc langagc mais qu'ils ont egalcment acquis dcs connaissances sur les objets manipulds. Cc constat

n'autorise toutcfois pas a plaidoycr cn favcur dc l'apprentissagc do la programmation a Peco lc sans qu'une rd-

flexion pedagogique soit cntrcprisc a partir dc l'enscmblc dcs conclusions. En cffet, Its representations du concept

d'angte etablics 3 partir do la progression LOGO sont moins Gables quc cellos otablics a partir do la progression

non-Logo. Par ailleurs, si Logo a developpe un esprit d'analysc parfois performant pour dcs figures complexes, sa

portee, experimentec cn dchors de tout cadre conccptucl a did mstreinte lorsqu'unc conceptualisation modelisantc

a did cntreprisc a posteriori. Enfin et surtout, la progression utilisant LOGO, introduite sans distinction aupres do

sous Ion elevcs do deux classes do CM 1, compardc a partir do critares institutionncls a unc progression n'cmployant

pas cot outil, a cu, sur cettc roussite, des effcts elitistes.
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Summary: This paper is a report and analysis of an experience
which is an instance from one year of experimentation with a
class of 12-13 years old pupils. The general object of study
is the development of thought in solving "open-ended genera-
ting problems" and the corresponding interaction between
solvers. In the experience reported here there was a problem
given, where it was asked from the pupils to compare the num-
bers of trees planted in three different ways in rectangular
fields of same dimensions. In analysing the results of this
experimentation, we discuss the role of a socio-cognitive
conflict during the development of the process of solving the
above problem in the classroom, in a situation of open discus-
sion and debate.

1. The general context of the research

The experience that follows is only an instance in one

year of experimentation with a class of 30 young pupils of

12-13 years of age. The general object of study is the deve-

lopment of thought in solving "open-ended generating problems"

and the corresponding interaction, between the solvers, in a

situation of open discussion in the classroom.

By an open-ended generating problem we mean a problem,

formulated not in the usual mathematical language, but in a

natural language familiar to the solvers, which leads poten-

tially to some specific mathematical concepts (or models),

provided that, either these concepts or the way of their ap-
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plication to the solution of the problem are not known in

advance to the solvers.

By open discussion in the classroom we mean any discus-

sion on some problem and/or the process of the problem's

solution, the formulation, the models used etc., provided

that in this discussion the following conditions are satisfied:

every student (or pupil) has already obtain some autonomy

of action, and he (she) keeps this autonomy;

any point of view, any ideas or conceptions are respectable

and can be expressed in the discussion;

- there are several intentions in the discussion, but none of

them (in particular neither those of the teacher) is

considered as dominant a priori.

Interaction by open discussion may give rise to psycho-

logical and conceptual (socio-cognitive)conflicts which are

important for tho construction and elaboration of mathematical

concepts and ideas,-but it corresponds to a "didactical con-

tract" in the sense of G. BROUSSEAU (1986) which, in

general, cannot be easily realized in practice (see for exam-

ple M. LEGRAND and his group (1987) ' an organization of

"scientific debate" in classes at the university level).

Although situations leading to interaction by open discussion

and "scientific debate" in the classroom can be provoked and

stimulated by suitable (open-ended) geherating problems,

actually the larger part of such a discussion is spontaneous

and the whole process cannot be predicted in advance, neither

it can be evaluated.by tests etc.

Starting from these remarks, we adopted the following

organization of the discussion and method of observation:

The class is divided into small groups, with 3-6 pupils in
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each one of them. Discussion of a problem in these groups,

developing of an idea (or plan) and carrying it out constitute

the first phase of the process of interaction. The second phase

comprises communication of results, open discussion and criticism

in the classroom. In case of a lasting debate (as the one re-

ported below) there is also a third phase, in which representa-

tives from "opponent" groups are called to form a new group

where the discussion continues. During all these phases each

member of our research group undertakes a role of participant

observer in one of the groups of the pupils and gives a report

at the end of each meeting. Meanwhile all discussions have been

tape-recorded; the tapes are compared to the children's notes

or drawings and to the "local" reports of the observers, so that

an analysis from a "global" viewpoint becomes possible.

2. The experience and its analysis

A problem was given in the form of a dialogue between a

father-farmer and his three sons, as follows.

FATHER: Boys, I have to go to the city this morning.
I've just started planting those olive trees
in the three fields you saw yesterday. You
-must continue now; each of you will take care
of one field...

SON A : I'll get the smallest one!
FATHER: But they are all the same, you know that.

Come and see them once more!
SON B : (Seeing the fields and the trees already

planted-Fig.1): The three fields may be the
same, but as you have put the trees in each-
one of them, father, it seems to me that
there are more trees to be planted in one
of the fields and less in the others.

SON C : Oh, we have to check this by paper and
pencil...

Son A : Okey...(whispering:) Anyway, I'll plant
the fewest trees'myself!...

It was asked from the pupils to continue this dialogue and help

the three brothers in their trouble.
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During the first phase (interaction in small groups) and

also for a long time during the next phases, a group of 6

pupils - which from now on will be called "Group A" was try-

ing to apply the formula of the area of a rectangle

Area = Base x Altitude

to the given figures, in order to evaluate from this the total

number of trees that would finally exist in each rectangular

field. The same approach has been followed also for a while

by some isolated pupils outside of Group A. But these pupils

were soon discouraged by tilt.: reaction of the rest members of

their groups.

Meanwhile, the rest of the class (about the 4/5 of it,

as it results from the children's own notes and drawings) had

proceeded in a more direct and natural way: In each field there

would be a final number of trees equal to

8 rows x 11 trees/row = 88 trees.

Subtracting the number of trees already planted (which is com-

mon for the three fields: 24) one gets 64 trees that have to be

planted in each field. We shall consider the pupils who fol-

lowed this approach as belonging to "Group B.

On the other hand, the result obtained by some of the
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pupils of Group A at the beginning of their efforts was dif-

ferent.: The final number of tree:: in each field was evaluated

as 7 x 10 instead of 8 x 11. This result follows from a con-

ception of the problem according to a scheme that appeared in

the drawings of Group A (Fig. 2a). According to this scheme,

the external rows of trees form a rectangle (with 4 trees at

its vertices); if the distance between two consecutive trees in

a row is, say, 2 units, then the area of the rectangle is

(7 x 2) x (10 x 2) area units.

Let us call this scheme "Scheme Al. " Later this scheme

changed and developed into "Scheme AII" (Fig. 2b).

Fig. 2a

3-2 3 U 5 1

Fig. 2b.

In the second phase of interaction (open discussion in

the classroom) there was a strong opposition between Groups A

and B, but in fact only a part of Group B was engaged in this

debate (unfortunately most of the girls were not). The criti-

cism of Group B was directed mainly against the method used by

Group A. The main argument against this method was the fol-

lowing, as expressed by a boy of Group B:

"How much is the distance between two trees?
Is it lm? It cannot be so, for if we have
an area of, say, 284m2, then we need not have

284 trees! For the same reason the distance
cannot be 2m or 3m..."
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In replying to this argument, the members of Group A

produced their answer according to Scheme AII, which they

defended by the following words:

Each tree corresponds to a unit of area. If the
distance between two (consecutive) trees was bigger,
then this area unit would be bigger too. The
distance of trees determines the unit of area."

"Let x be the distance between two consecutive trees
in a row. I take this as a unit of length and I call
it "tree-unit" (!). Then the area of the rectangular
field will be equal to

(8 x) (11 x). "

But then a new objection was raised:

"The distance between two consecutive trees need not
be the same with the distance of extreme trees from
the edge of the field (Fig. 1). So the true area of
the field is different from that you are talking
about."
(The boy was addressed to Group A.)

As it has already been mentioned in the introduction,

there was also a third phase in this experience. Some represen-

tatives of the two opponent "parties" were called to form a new

group and continue the discussion. In this last phase a boy

from Group A explained his point of view with the following

words:

"Look here...in order to unde__,and of what I am
talking about: May be the area is not convenient,
but I have used it in order to make things easier
for me and for you ...because the area of the field
and the number of the trees which will be planted
in it may be related a little: the field contains
as many trees as much is its surface area, and vice-
versa; finally it's the same thing."

In replying to this, the children of Group B repeated

their arguments, without anything new.

For an analysis and an interpretation of the results

exposed above we took into consideration the views of social

genetic psychology and epistemology, according to which the
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socio-cognitive conflict is a conflict of communication rather

than an internal conflict of the individual; it is by the inte-

raction and common activity of partners that the subject is led

to the construction (or co-elaboration with some partner) of new

operational schemes during the cognitive development (F.CARUGATI

and G. MUGNY, 1985). On the other hand, according to G. BROUS-

SEAU (1988), in a situation of cognitive conflict the subject

has either to choose among two alternative schemes of action or

models of formulation that are (or appear to the subject to be)

incompatible, or to make these two alternatives compatible by

modifying one of them.

In our case the formula for the area of a rectangle,

which was known to subjects of Group A from the elementary

school, offered to them a mathematical context, a model of for-

mulation (in the sense of G. BROUSSEAU) for the solution of the

problem. However, at the beginning this model was not well

adapted to the problem itself.

In the present experience, as well as in many other ins-

tances of our experimentation, this kind of behavior was typical:

In solving a problem, some pupils tend to apply those mathema-

tical methods and tools (familiar to them from the previous

"successful" mathematical school experience) which apparently

"fit" the situation. Usually these pupils do not examine

whether their method is relevant to the given problem. Under

the conditions of the usual didactical contract, this behavior

becomes easily stereotyped and it is generally accepted without

any comments or reaction from the teacher and the other pupils.

But in a situation of open discussion there is some reaction,

which may be expressed in several ways. In our case this reac-

tion was expressed at the cognitive level, on the mathematical
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content and method used; thus it took the form of a "scientific

debate".

This debate is not superficial. The initial approach of

Group A to the given problem evoked a conflict, which has two

principal, complementary aspects:

(i) It is an "internallconflictforthesubjectsof

Group A: The model they used being not well adapted to the pro-

blem, the solution initially obtained does not agree with that

expected from experience (Scheme AI).

(ii) (Social aspect of the conflict:) The rest of the

pupils of the class, having solved the problem in a more direct

and natural way, do not accept the method used by Group A and

some of them produce arguments against it. This situation has

an immediate effect on the subjects of Group A, because these

subjects are now led to justify their approach; but in doing so,

they need to revise and reorganize it according to a new scheme

(besides, this was necessary from (i), since their solution did

not agree with empirical facts).

From this debate emerged a new formulation of the problem

by a suitable modification of the initial scheme. The crucial

step was to establish a natural col...,.spondence between trees and

units of area (Scheme AII).
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FORMAL AND INFORMAL SOURCES OF MENTAL MODELS
FOR NEGATIVE NUMBERS

Int Pe led', Swapna Mukhopadhyay, and Lauren B. Resnick

Learning Research and Development Center
University of Pittsburgh, USA

Summary

Interviews with children prior to instruction on negative numbers reveal a progression
from a model of number without negatives to models in which all of the integers, positive
and negative, are ordered in a "mental number line." In the Divided Number Line model,
two symmetric strings of numbers are joined at zero; children compute in terms of moves
toward and away from zero, using special partitioning procedures to cross zero. In the
more mathematically coherent Continuous Number Line model, they compute as if the
number line were continuous, going "up" for addition and "down" for subtraction. These
models are abstract and do not refer to practical situations such as debts and assets. They
appear to be elaborations of children's knowledge of positive integers, which have become
mental objects in their own right, without necessary external reference.

Introduction

Children's concepts of the positive integers can be shown to develop out of their

early experience with the ways in which the physical material of the world composes and

decomposes, together with their mastery of the formalism of counting (Resnick, in press).

From the fact that physical material adds in systematic ways, and from their experience in

quantifying amounts of material through counting, children arrive at a basic mathematical

principle of additive composition of number. This, in turn, entails properties such as

commutativity of addition and complementarity of addition and subtraction.

Beyond the positive integers, it is not so clear that mathematical knowledge can be

directly rooted in physical experience. When negative numbers are added to the integer

system, for example, there is no way that children can experience the quantification (e.g.,

through counting) of a "negative set." Does this mean that negative numbers can be
learned only as a formal system? Or do children develop intuitions prior to formal instruction

that they can use in understanding the formal system, much as younger children use their

intuitions about physical quantity as they learn about the integer number system? Put

another way, what mental models of negative numbers and of operations on them do

children have prior to formal instruction?

'Now at School of Education, Haifa University, Israel.
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Method

To address this question, we studied children in a private girls' school. In this school,
negative numbers were first formally introduced in Grades six and seven. Children in first,
third, fifth, seventh, and ninth grades were given a written test of negative number
knowledge. Following this, six children in each grade were interviewed using a clinical
interview method that probed for their explanations and justifications of problems.

Summary of Test Results
Results of the test showed a clear effect of both age and instruction. First graders were

totally unable to do arithmetic on signed numbers. For example, only one of them
recognized that -4 is a larger number than -6. In third and fifth grades, up to half of the
children were able to solve many of the operation problems, and almost all fifth graders
knew that -4 is larger than -6, suggesting that they had constructed a mental number line
that included negative numbers. By seventh grade, a year after instruction on the negative
number system began, almost all students could do all of the problems; and by ninth grade,
performance was perfect. Typical errors on the arithmetic operations problems among the
first graders suggested that they had no conception that negative numbers might exist. Their
answers were always positive integers. To arrive at these answers, they inverted numbers
freely (e.g., 5 7 was treated as 7 5) or ignored signs (e.g., -5 +8 was treated as 5 + 8).
Several made it clear that they thought there were no negative numbers by saying that a
small number minus a larger one (e.g., 5 - 7) yielded zero. Third and fifth graders were
more likely to generate negative numbers as answers, showing that they believed in their
existence. However, they applied idiosyncratic rules that did not respect-the conventions of
negative number notation. For example, they treated -5+8 as if it were -(5+8), yielding -13
as an answer.

Interview Re..
Mental Models of Negative Number

Interview results provide a view of the mental models underlying the children's test
performances. Generally, we saw a progression from a model of number in which negative
numbers (numbers falling below zero) essentially do not exist to a model in which all of the
integers, positive and negative, are ordered in a "mental number line" with a symmetrical
organization of numbers around zero. Based on their number ordering performances,
several first and third graders could be seen to have no representation of negatives as
falling below zero. They either placed negatives next to the corresponding positives or
treated them as all equivalent to zero. At the next level of development, one first grader
knew that negatives fell "on the other side" of zero, but did not represent the symmetry of
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the numbers around zero. Most third graders and all fifth graders did represent this

symmetry and showed an ordering consonant with the number line.

Studying the children's responses to the general question of what they knew about

negative numbers and their responses to the operations problems reveals that thorn are two

forms of number line representation. In the most advanced .(the Continuous Number Line or

CNL model),. children represent the numbers as ordered along a single continuum from

smaller (the negatives) to larger (the positives):
Larger

-3 -2 -1 0 +1 +2 +3

Children with this CNL model need no special rules for "counting across" zero. Children

with this model might mention a division of the number line at zero, but they mostly

computed as if the number tine were continuous, going "up" for addition and "down" for

subtraction.

A less mathematically coherent number line model joins two symmetric strings of

numhern at zero and stresses movements toward and away from zero rather than just up

and down. We call this a Divided N11111b01 Line (or DNL) model:

Smaller Larger

-3 -2 -1 0 +1 +2 +3

This model requires special rules for crossing zero, usually in the form of a partition of the

number to be added or subtracted. The typical child using this model would partition the

number to be added or subtracted into the amount needed to reach zero and then continue

counting off "the rest" on the other side of zero. It is characteristic of children using a DNL

model that, on problems in which it is not necessary to cross zero, they talked of doing

addition or subtraction "on the negative side."

Constructing this mental number line model is not an all-or-none or an all-at-once

matter for children. Several children could describe number line models but not use them

effectively. Interwoven with problems of constructing a coherent mental model that includes

negative numbers is, the problem children face of learning the conventions of signed number

notation. Several errors in the protocols seem to derive from not knowing how to encode

certain notations. This occurs especially when plus signs are understood but not shown. It

also occurs, however, when a child's mental model cannot handle a problem that is

presented. This is the case when a negative number must be subtracted from a positive

number (e.g., [ +4]-(-2]). Neither the CNL nor the .DNL model can coherently represent this

problem. A typical response is either to mentally delete one of the minus signs (yielding

the answer [ +2] to our example problem) or to mentally exchange the positions of the plus

sign and the negative operator sign (converting the problem to [-41)+(-21 and yielding the
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answer (-61).

Conclusion
This study, although only exploratory in nature, provides clear evidence that many

children construct mental models that include negative numbers before school instruction on
this topic is offered. Some become quite facile in doing arithmetic operations on the basis of
this model, clearly drawing on their models of the positive numbers to do this. This is most
apparent in the partitioning strategies (go to zero, then finish the rest on the other side) that
children with the DNL model use.

It is striking that the two number line models that our subjects developed were quite
abstract. We had expected to find them thinking about debts and assets--having numbers of
things and owing amounts to others. A few children mentioned such conceptions: for
example, one child said she had seen her mother's budget sheets at work and knew that
negative numbers stood for how many more hours someone had to work to get paid;
another said negative numbers were "bad marks" that balanced good ones. Debts and
assets are thought to have played a role in the historical introduction of negative numbers
in Western mathematics; negatives were needed for the bookkeeping systems that
developed as commerce expanded in the Renaissance. Yet, although they mentioned them,
none of our children actually used debts and assets in their reasoning. 'If they could reason
about negative numbers at all, they did so in terms of the mental number line models we
have described.

What are the possible origins of the mental number line model? First of all, there is
good evidence that a mental number line for he positive numbers is established by most
children even before school entry (Resnick, 1983). They initially use this representation to
compare the relative sizes of numbers. It is. reasonable to a 'ppose that over the first years
of school they gradually relate this number line representation to the operations of addition
and subtraction. Children's general experience with symmetry (some even mentioned mirrors
in discussing what negative numbers might be) is a likely source of the divided number line
idea, once the existence of numbers with minus signs have been noticed and thought
about. What would remain would be to find a means of crossing the zero when doing
calculations on the mental number line. Here it seems that children were applying well-
developed ideas of additive composition (cf. Resnick, 1986) to produce the partitioning
strategy that we observed among many children. In sum, children seem able to develop
pre-instructional intuitions about purely mathematical entities (the negative numbers) by
elaborating previously developed ideas about number (additive composition and partitioning)
that were originally rooted in physical experience but have, through practice, become so
familiar as to become intuitions in their own right.
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INVERSE PROCEDURES. THE INFLUENCE OF A DIDACTIC PROPOSAL ON
PUPILS' STRATEGIES

Angela Pesci, Dept. of Mathematics, University of Pavia, Italy

SUMMARY

With this research we intend to study the influence of a didac-
tic proposal for the ages 11-12 on pupils' strategies to solve
problems with inverse procedures.

The didactic proposal includes the concepts of relation between
two sets, inverse relation, composition of relation and inverse
of a composite relation; both in and out of mathematical con-
texts and with the aid of visualisation with arrows.
The proposal was presented to an experimental group of 33
pupils. The experimental group and another of control ( 21
pupils) were tested by 3 questionnaires, the results of which
are described.

1. Introduction

One of the principle aims of mathematics teaching to stu-
dents 12-14 years old is the acquisition of proportional
reasoning. But, every teacher notes that such acquisition is
still very unstable in students of upper secondary schools.
Moreover, I would also say that for many adults, lacking the
help of scholastic habits, the solution, for example, of in-
verse multiplicative problems still constitutes an insurmount-
able obstacle.

This justifies the vast amount of literature on the theme
in question.

In particular, referring to inverse procedures, it has
been observed by Mariotti et al. (see Ref. 7) that errors can
be due to the fact that, in common didactic practice, addition
and subtraction, but even moreso multiplication and division,
are not considered as two aspects of the same structure
(additive and multiplicative respectively).

At the first presentation of these operations, at the

(*) This research supported by the C.N.R. and the M.P.I.
(40%).

( *) The psycologist M.G. Grossi collaborated in this research.
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elementary level, the difference of meaning between addition

and subtraction and respectively
multiplication and division is

underlined. But, after, the unified vision of these operations

is not given.

In this perspective it seems important to us to build the

more general idea of relation and inverse relation between two

numerical sets.

Again in agreement with them, we, maintain that, in

reference to difficulties linked to the dimensional aspect, it

is important to progressively lead the students to "free" them-

selves from the chain of dimension, so that they can work, more

easily, with pure numbers. It is therefore essential to under-

line the structural analogies of the various situations.

The most favourable period for working towards these goals

seems to be from 11 to 14 years old. With these premises we

elaborated a didactic proposal for the ages 11-12 and we are

studying its influence on the strategies used by the same stu-

dents to face problems with inverse procedures.

2. The Didactic Proposal

The didactic plan, discussed with the teachers of our

group, has the following order:

examples suitable to emphasize the concept of relation

(with expressions like "...was born in the month of...",

..is a fan of...", "...is preceded by...", "...is the

double of...");
discussion of the various types of representation of a

relation (tables, graphs, list of pairs, etc.);

the four arithmetic operations as relations;

the importance of the order between two elements linked by

a relation (ordered pair) and the concept of inverse

relation;

the choice of the language of arrows as the most powerful;

the operations addition and subtraction (and respectively

multiplication and division) as inverse relations of each

other;

the composition of relations in real situations ("...is

the son of the son of...", "...is the son of the daughter

of...") and in arithmetic type situations ("add 2 and mul-

tiply by.3", "add 1 and subtract 7", etc.) with the aid of
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the language of arrows;
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position of two or more arithmetic operations: the inver-

sion of the composition of relations.

The main objective is to use the concept and the visualisation

of relation and inverse relation for facing the usual inverse

problems in arithmetic, geometry and daily life.

3. The Que5tionnaires

The first questionnaire with 8 problems (4 direct as

"distracters" and 4 inverse) was presented in three classes
(pupils aged 11-12). Two of these classes are experimental (S,
and Se) in the sense that, after the first questionnaire, the

didactic proposal described above was presented. The third
class ( C ) is a control group.

The problems on the questionnaires are the following:

1 A pencil, which is 14.5cm long, measures 2.4cm less than

another. How long is the second pencil?

2. Consider the following game.

A number is chosen and then 8 is subtracted, the result is

divided by 5 and to that result 18 is added. Alessandra's
answer was 30. With which number did she begin?

3. lm of fabric costs fit 15000. How much does 0.65m cost?
4. A TV program lasts 90 minutes and 1/5 of it is publicity.

How much time is dedicated to the program?

5. Marco calculates 3/4 of a number, then he adds 54 to the

result and his answer is 144.

With which number did he begin?

6. In an art book of 630 pages, 2/5 are illustrated; 1/3 of

these are in colour.

How many illustrated pages are in colour?

7. With a calculator I did 2/5 of a number and then I multi-

plied the result by 7, getting 266.

With which number did I begin?

B. On a chessboard there are two pieces, and , that can
be moved only in the following ways:

the move of : 2 squares up ( I ) and then 1 square to

the right ( )

the move of : 1 square down ( ) and 3 squares to the
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right (

Look at the following situation:

1111111MOMMOMMEM11111
INIIMOMMIIMMMOMMII
MEMEMMEMMIIMMIOMM
MMINOMMOMIIMMEMEM
MEMMIMMUMECOMMO
MMINIMMMUMMEMEMM
MINIMMUMWOMMEMUMM
MMEMEMMUMMEINOM
MMEMOIMMEMOMMMEM
MEMMOMMEMMOMMMO
MMOMMEMMOMMEMEM
MMEMMEMUMEMMEMM
MOMMEMMOMMMENMMOOMMEMMOMME

You know that the pieces and HAVE ALREADY DONE three

moves each.

Trace their routes till you find where they began.

Problems 1, 3, 4 and 6 are direct. Problems 1 and 3 were

selected from those given in the experience described.by Deri

et al.(see Ref.4). Moreover, problem 3 turned out to,be dif-

ficult enough not only for the ages 11-12 but for the ages 14-

15, too.

Inverse problems 2, 5 and 7 deal with the inversion of the

composition of two or three arithmetic operations. Inverse

problem 8, which turned out to be the most difficult, requires

the successive application of the inverse of a composite

i-elation.

It must be noticed that the problematic situations in 2, 5

and .n. ,:imil.ii lo Moo, In r ,unlid I), III,. llidi_li,' in th-

didactic activity. But, the context is different.

As far as problem 8 is concerned, it deals with the more

complex situation described above, which has never been

presented in the class. But, also the context is unusual. The

results of this questionnaire are in section 4.

After the administration of the first questionnaire, the

teacher developed the established didactic proposal (for a to-

tal of 12-13 hours per class) in each of the two experimental

classes S, and Se. The developing of the work was recorded, by

hand, by two final-year undergraduates in Mathematics (one in

each class).

Just after the conclusion of the didactic unit previously

f
described, another nnaire was proposed in the three
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classes S., S. and C. It also consists of 8 problems, almost

identical to those of the first one, however, problem 8 is

identical. This second test gives the initial indications of

the influence of the proposed activity.

The results and the comparison to those of the first ques-

tionnaire are in section 4.

The plan for classes S. and S. included the recalling of

the concepts and the resolving strategies; not systematically,

but when it is necessary. So we want to consolidate and

develop what has been giVen in the didactic plan.

A final questionnaire (with the same B problems as the

first one) will be proposed, in the three classes, at the con-

clusion of the scholastic year. We think it could be indica-

tive of the consolidation reached.

4. The Results

The experimental classes S. and S. are composed of 16 and

17 pupils respectively. The control class C has 21 pupils.

The questionnaire was evaluated attributing 0 points for every

wrong or omitted problem and 1 point for correct problems. The

calculation errors were not considered.

In Table 1 the percentages of the correct inverse problems

and the average scores obtained, for all three classes, in the

first and second questionnaires respectively are reported.

In Table 3 there are the percentage variations of the

average scores of the second questionnaire with respect to the

first for all three classes. These ar '-.lative to the direct

and inverse problems.

Table 1

S =.S. + S. Inverse Problems

2 I 5 I 7 I 8 I Average Score

1st G. I S 136% I le% I 18% I 0 I 0.73

I C 140% 124% 133'% I 0 I 1.05

2nd O. I S I 51% I 30% I 30% I 9% I 1.18

I C I 48% I 28% I 33% I 5% I 1.14
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Table 2 Direct Problems

II3I416IAveracie Score
1st Q. I S I 51% I 36% I 54% I 39% I 1.82

I C 1 71% I 71% I 52% I 48% I 2.43

2nd Q. I S I 54% I 24% I 57% I 39% I 1.79

I C I 52% t 57% 1 57% I 62% t 2.28

Table 3 I Direct Prob. I Inverse Prob.

S I -2% I +62%

C I -6% I +9%

It is interesting to analyse the protocols and to examine

the typology of the errors in the incorrect problems. But,

here we will limit ourselves to some general observations.

It seems to us that the numerical data, especially in

Table 3, show the positive influence of the didactic unit on

the solution of the proposed inverse problems. On the other

hand, as already observed, problems 2, 5 and 7 repropose

problematic situations encountered in the didactic proposal.

Problem 8 merits a separate discussion. As Table 1 shows,

this problem was revealed to be the most difficult. First of

all, we recall that its context, of a non-arithmetic type, was

not presented during the didactic activity. Moreover, it not

only requires that the procedure of inversion of a composite

operation is known but also that such procedure is applied

three times in a consecutive way. If the procedure of inver-

sion is not internalised, the successive application becomes

difficult. To internalise a procedure means not only to under-

stand its significance but, also to have placed its formal and

generalisable scheme into long-term memory (see Pef.3).

In this sense we maintain that problem 8 can be considered

indicative of the effective internalisation of the proposed in-

verse procedures.

n. Final Observations

First of all, it should be noted that the results obtained
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are to be held only as indicative, taking account of the

scarce number of pupils tested.

The most significant contexts for the inverse procedures

(proportionality in problems of similitude, percentages,

etc.) cannot yet be proposed to pupils aged 11-12 because

they are not included in the Government Programs.

It should be said that the teachers were presenting the

didactic unit for the first time. For that reason, their

didactic procedure was not very well consolidated or

efficacious.
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THROUGH THE RECURSIVE EYE: MATHEMATICAL
UNDERSTANDING AS A DYNAMIC PHENOMENON

Susan Pirie, University of Warwick
Tom Kieren, University of Alberta

ABSTRACT

Over the last couple of decades, attempts have been made
to categorize different kinds of understanding. Rather
than considering understanding as a single (or multiple)
acquisition we offer here an overview of a new theory of
understanding as a complex, dynamic process. It can be
characterised as a levelled but non-linear, recursive
phenomenon, each level being self-referencing but not the
same as the preceeding level. This view of understanding
as TRANCENDENT RECURSION allows us to see the way in which
any given level is both dependent on the previous level
for its initiating conditions and constrained by the
nature of the succeeding level. Clearly this has
implications for the teaching of mathematics.

"Everything said is said by an observer", Maturana,1980

The experiencing organism now turns into a builder of
cognitive structures intended to solve such problems as
the organism perceives or conceives.. among which is the
never ending problem of consistent organization (of such
structures) that we call understanding.
von Glasersfeld, 1987.

Over the past 20 years or so there has been a

continuing dialog, much of it through PME, on what it
means for a person to understand mathematics. One of the
features of this dialogue has been the theoretical

identification of different kinds of understanding

principally instrumental and relational understanding but

also concrete, procedural, symbolic and formal

understanding. Pirie (1988) has suggested that thus

describing different kinds of understanding is inadequate

as a means of differentiating children's performances

exhibiting mathematical understanding. She claims, and

illustrates from extensive taped interactions of children

doing mathematics, that mathematical understanding is a

complex phenomenon for the child doing it. A single
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category does not well describe it nor do such categories

capture understanding as a process rather than as a single

acquisition. What is needed is an incisive way of viewing

the whole process of gaining understanding.

There have indeed been recent efforts to go beyond a

cataloging of kinds of understanding or thinking of

mathematical understanding as a singular acquisition.

Ohlsson (1988) performed a detailed mathematical and

applicational analysis of fraction-related concepts.

From this elaborated example, he suggests that

mathematical understanding entails three things; knowledge

of the mathematical construct and related theory; the

class of situations to which this theory can be applied;

and a referential mapping between the theory and the

situations. He does not however, suggest how this mapping

is developed or grows. He infers but does not give a

process model.
Herscovics and Bergeron (1988) give a two tiered

model of understanding and illustrate it using the

understanding of number and pre-number in young children.

The first tier involves three levels of physical

understanding: intuitive, (perceptual awareness),

procedural (e.g. 1-1 correspondence) and logico-physical

abstraction (e.g. physical invariance). The second tier

is non-levelled and entails as components of understanding

the use of mathematical procedures (e.g. counting) to make

mathematical abstractions reflected through the use of a

notational system.

Both of these models of understanding above involve

levels or components which appear to have predicate

quality - they define complexes of components in unique

categorical terms. In that sense they give a picture of

the components which might be involved in the process of

understanding. Von Glasersfeld (1987), however sees
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understanding as a CONTINUING PROBLEM-SOLVING PROCESS of

consistently organizing one's mathematical structures.

Let us consider the following example drawn from a

study of 7-9 year old working in groups doing fraction

comparison tasks (Wales,1984; Kieren & Pirie,

forthcoming). In the task children were asked to compare
the amount of pizza a person A would get if sharing 3
pizzas among 7 persons with the amount person B would
get sharing 1 pizza among 3 persons. Here is

commentary by Hanne working with 2 friends (all aged 7).

Hanne A is hard - let's skip it.

Hanne B is easy, you 'Y' it

(Draws 'Y' and explains her process to her

friends).

Hanne (I) Let's use 'Ys' on A.

(Action 1, draws:

i.e., Hanne cuts the three pizzas

into "fair shares" in order to give one

third each).

(II) (Action 2,

i.e., she cuts the remaining two thirds

into seven smaller pieces).

Hanne (III) Oh, I see! A gets a third and a bite.
A gets more.

ee 4Te

What has happened here? Hanne starts by not
understanding how to divide 3 among 7. It is clear
from the complete tape that she can divide 1 among n
for n small and in particular has formalized this act
for 1 t- 3 ('Y it'). In I and II we see her now
successfully divide 3 among 7 using the result of 3
replicates of dividing 1 among 3. At 'III' she marks
the fact that she realizes that she has a successful new
organization of sharipg or division.
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This leads us to ask what does Hanne's understanding

entail? How is it a growing process? Our answer can be

summarized as follows:

Mathematical understanding can be characterised as a

levelled but non-linear. It is a recursive

phenomenon and recursion is seen to occur as thinking

moves between levels of sophistication (as'Irith Hanna

above). Indeed each level of understanding is

contained with in succeeding levels. Any particular

level is dependent on the forms and processes within

and, further, is constrained by those without.

While it is beyond the scope of this paper to

completely delineate this theory of mathematical

understanding which we call TRANSCENDENT RECURSION, or to

fully connect it to data on children's mathematical

behaviour gathered in England and Canada, some major

tenets of the theory are highlighted below. Of course it

should be understood that we are not saying that the

observed action sequence above exhibits these tenets per

se. It is the underlying consistent organization or

personal mathematical understanding, which we are trying

to typify.

In saying that mathematical understanding is levelled

and recursive we are trying to observe it as a complex

levelled phenomenon defined by Vitale (1988) which is

recursive if each level is in some way defined in terms of

itself (self referenced, self similar), yet each level is

not the same as the previous level (level-stepping). To

this definition we have added an idea taken from

Margenau's (1987) notion of growth of scientific

constructs. New constructs transcend but are compatible

with old ones (they are not simple extensions).
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In trying to use recursion to describe understanding

we also use the concept of thinking drawn from Maturana

and Tomm (1986). Thinking is seen to be a recursive

phenomenon - a distinction among distinctions of

languaging and languaging is itself recursive. It entails

the consensual coordination of consensual coordination of

actions. Thus thinking, means having a consistent

levelled structure leading back to, or calling, processes

from lower levels potentially all the way back to action.

Growth of this structure, however, can occur in a

non-linear fashion. This view of recursion is useful in

considering the personal 'transfer' of understanding.

`Transfer' to a new situation means using ones current

understanding to reconstruct or reformulate ones knowledge

to accommodate the new situation. Thus, recursion can be

used as a tool to "see" the organization underlying this

reconstruction. This recursive reconstruction,

organization or understanding is seen as Hanne above

`calls' the form of her previous level of dividing

knowledge as a basis for her new understanding of dividing

up.

What are inter-relationships among levels? If one

focuses on any one particular level then understanding at

this level depends upon the level below to provide

necessary initiating conditions, and on the level above to

provide the environmental constraints 1,,ich "call out"

forms or processes at the focus level [Salthe, 1985]. For

example, Hanne's '1/3 understanding' level provides an

initiating condition for her '3/7 dividing process.' As

argued below a recursive, dynamic notion of understanding

can provide a description of personal mathematical

knowledge building. While it is beyond the scope of this

brief paper, this theory can also provide an account of

mathematical problem solving.
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To illustrate one aspect of our theory in less

general terms, we turn to the example of fractions, and

focus on fractional knowledge about and built through

symbolic manipulation. Such knowledge can play several

roles in the recursive structure of understanding

fractions or rational numbers. It can be called as a

particular example while building, validating or

reconstructing knowledge at the "higher" level of quotient

groups or fields. On the other hand work on a symbolic

task should be able to "call" intuitive knowledge of

fractions as quotients or even the action of dividing up

equally as a basis to reconstruct or to validate symbolic

level activity. Rational number understanding is seen as

a dynamic growing whole consisting of sub-levels which are

self similar in that they are about fractional knowledge.

These levels are not reducible to one another however:

knowledge of quotient fields is distinct from

computational knowledge of fractions which it organizes,

which in turn is distinct from the intuitive knowledge

below it.
Nonetheless, these levels of knowing are

inter-dependent. One can look at the fractions as

quotients and the act of dividing up equally as providing

initiating conditions for knowledge gained through

symbolically multiplying or dividing fractions. The level

above, 'rationals as a multiplicative group' constrains

such symbolic knowing. This constraint is environmental;

the mathematics itself "calls out" certain symbolic acts

as correct. Thus a person's symbolic understanding is

environmentally constrained by the normal structure of

that domain of mathematical knowledge, in this case that

of the rational numbers.

No mention has yet been made as to the relevance of

this model of the process of understanding to the teaching

of mathematics. We offer here a brief glimpse of how

1 6



125

schooling can affect the environmental levels surrounding
symbolic fractional understanding. In this case knowing
may be constrained by what the teacher considers to be
mathematics. The teacher may see computations as a set of
procedures to be learned, which would call forth certain
behaviors in a child. The level below subsumed by

symbolic knowing under such circumstances, might then
provide as initiating conditions all strategies the
student has found successful for survival in school or
with that teacher, such as the blind memorization of
algorithms. Thus a child's understanding of school
mathematics can be environmentally constrained by the
teacher's (or text's) mathematics and might call as
initiating conditions non-mathematical structures or
behaviours.

Summary and Concluding Remarks

This viewing of mathematical understanding as a
dynamic process allows us to see a person's current state
as containing other levels which are different, but
compatible, ways of understanding the mathematics,
which allow the person to validate upper level knowledge
or provide a basis for facing unknown but related
mathematics.

Considering mathematical understanding as a recursive
phenomenon is not meant to replace tlp contemporary views
of understanding suggested by Ohlb.,,,n or Herscovics and
Bergeron. It is meant to provide insight into how such
understanding grows and how the elements these authors
describe are integrated into a whole. As such the theory
sketched above should allow for the dynamic levelled
analysis of mathematical understanding. In particular, it
should allow one to see the self similarity but

transcendence in the levels, to see the process of
validation of personal knowledge and to comprehend
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transfer as recursive reconstruction. It enables one to

identify the roles of form (language, symbolism) and

process both at any level and in the growth between

levels.
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COGNITIVE ASPECTS OF THE LEARNING OF MATHEMATICS

IN A MULTICULTURAL SCHOOL

Norma Presmeg and Anita Frank

University of Durban-Westville

Research results are reported which indicate that when

language-related learning difficulties are discounted,

cognitive differences between pupils from three different

cultural groups learning mathematics together in the

same school are far less evident than are differences

between pupils in different achievement groups or in

different years. This research suggests that it is

viable to use a common curriculum when pupils from differ-

ent cultural groups learn mathematics together in the

same classrooms.

The full title of the project on which this paper is based is

as follows: "An investigation of the role of culturally

conditioned thinking in the learning of mathematics by pupils

in multicultural and in culturally segregated schools: a

longitudinal study". The research carried out in 1988 at

Uthongathi, a multicultural school in Kwazulu/Natal, addressed

the first part of this title. The projeL_ is ongoing and in

1989 it will be possible to compare the Uthongathi data with

data collected similarly in schools in three culturally seg-

regated school systems. It is possible, in fact likely, that

the findings in these schools will be different. This paper

deals only with the cognitive aspects of the interview and

test data collected at Uthongathi. A second paper, by Manjul.

Beharie and Yanum Naidoo, reports on the affective aspects of

the Uthongathi research. In both papers illustrations are

drawn from the data of all four researchers.
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Theoretical framework and rationale for the methodology

Evidence of the cultural basis of mathematics which has trad-

itionally been considered culture-free has been drawn from

countries as diverse as China, U.S.A., Jordan, Mozambique and

Australia (Bishop, 1988). Uthongathi, the first of the New Era

Schools Trust (NEST) schools in South Africa, with its policy

of nonracial education and balance of numbers, is a natural

laboratory in which to study, firstly, the effects (if any) of

family cultural background and home language on the learning

of mathematics, and secondly, any modification to these

effects which may result from prolonged multicultural school-

ing. Hence the study is longitudinal, and a qualitative,

hermeneutic research methodology 4.nvolving audiotaped inter-

views was considered appropriate to the exploratory nature of

the research.

The pupils

The three mathematics teachers at Uthongathi were given the

task of selecting pupils who were paradigm cases inasmuch as

they represented the following categories in a "3-dimensional"

model: in each of standards 5, 6 and 7 (i.e., grades 7, 8 and

9), pupils of the Indian , Black and White race groups were

chosen such that each of three achievement levels was repre-

sented, viz., high, medium and low. In view of the complex

elements involved in the choice of suitable pupils, it was

considered that their mathematics teachers, who had known them

for periods ranging from three to fifteen months, would be

more competent than the researchers to make the selection. In

practice 25 pupils were selected rather than the 27 required

in the model, because there were only 30 std 5 pupils at the
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school and no pupils could be found to fill the categories

high achievement Black and low achievement White in this year.

All other categories were filled without difficulty. For

interviews, these pupils were allocated to researchers as

follows:

Norma std 5 pupils (7 pupils)

Manjul high achievers in std 6 and 7 (6 pupils)

Anita medium achievers, std 6 and 7 (6 pupils)

Yanum low achievers in std 6 and 7 (6 pupils).

The "cognitive" interviews

Three of the six interviews with each pupil were concerned

largely with cognitive aspects of the pupil's learning of

mathematics. These interviews were based on the following

tasks.

(1) "Matchsticks". Three series of mathematical problems
involving matchsticks were solved by .all pupils in the
project. The understanding of these problems required
minimal verbal input, and all solutions were obtainable
using spatial ability and logic.

(2) "Verbal problems". Section A (6 prop' s) from Presmeg's
(1985) test for mathematical visuality was given to pupils
to solve aloud. Pupils had the choice of reading the
problems in Zulu or English or both languages.

(3) "School problems". Pupils solved aloud problems from
their school mathematics textbooks.

Language

The data from these three interviews revealed that where

differences in the probleM solving performances of pupils from

the three cultural groups were evident in a particular standard

and achievement group, these differences were largely attribu-

table to language. The 17 Indian and White pupils all 'named
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English, the medium of instruction at Uthongathi, as their

home language (even if Hindi, Tamil or Gujarati were also

spoken at home).. In contrast, of the 8 Black pupils, only two

named English as their home language, although a further two

indicated that English was a second language (after Zulu)

spoken at home. Even when problems were understood and solved,

some pupils (and especially those new to the school) could not

explain their thought processes in English. Some evidence was

found that there are two types of language-related learning

difficulties in school mathematics (Berry's 1985 types A and B),

but the type A (fluency) difficulties were largely masking the

subtler type B (culturally determined) difficulties in the

present research. The following protocols are illustrative.

NOMBU (std 7, home language Zulu/English): "We are doing word

problems and I'm not enjoying it."

INTERVIEWER: "Why not?"

NOMBU: "I don't understand what the sentence means. Sometimes

I mix it up or misunderstand the sentence." (Anita's .data.)

NONHLANHLA (std 5, home language Zulu): "Yes but I don't

understand this thing" (after reading word problem in

English, then its Zulu translation). Only three of the

six word problems were attempted, and each of these three

required extensive explanation by the researcher.

(Norma's data.)

XOLANI (std 5, home language Zulu), read word problem A-1 for

four minutes in English and in Zulu, then pointed out that

the Zulu wording did not mean exactly the same as the

English: "John miss one day, then go, misses one, then go.

Peter misses two days, and then go, two days then go.

After four days .... no." Then he speaks in Zulu.

(Norma's data.)

The problem, in English, reads, "One day John an Peter visit a

library together. After that, John visits the library regularly

every two days, at noon. Peter visits the library every three
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days, also at noon. If the library is open every day, how many

days after the first visit will it be before they are, once

again, in the library together?"

Xolani shows here the possible type B difficulties which under-

lie even the translation of mathematical problems into Zulu.

Phyllis Zungu (lecturer in the Zulu Department, University of

Durban-Westville), who did the translation, confirmed this

difficulty, pointing out that it was necessary sometimes to

"talk around" English mathematical terms when translating them

into Zulu, either because a direct translation was not possible

or because the Zulu terms were not well known even to Zulu

speakers.

One encouraging finding in the Uthongathi research was that

prolonged schooling at Uthongathi tended to reduce the

differences between English home language pupils and those for

whom. English is. not a mother tongue. Manjul,-whose interviewees

were of above average achievement, reported as follows:

All participants were fluent in English, and could understand

the language and terms of mathematics ._essed through

English medium). The Black students who have problems with

English attend extra English tutorial classes. The two Black

pupils in my group sometimes had problems in expressing

themselves but they basically understood the various concepts

and terminology in mathematics.

THAMI (std 7) found that learning was more 'enjoyable, because
last year I learned my English background' (meaning the
language), 'and this year I understand the teachers
better.'

TABO (std 6) also pointed out that 'Mr B
, especially, tends

to emphasise on Black students reading books every day so
that they become fluent with the English language, but I
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think this is also good.'"

Manjul pointed out that "these pupils are socialised in part

with a western culture (i.e., they are exposed to the fruits of

technology - calculators, computers, T.V., scientific and mathe-

matical toys and puzzles, chemistry sets and so on). In addition

their parents take a positive interest in their children's

learning, especially in mathematics."

By way of contrast, Yanum also found little difference between

cultural groups amongst her below average pupils (std 6 and 7)

because these pupils all experienced difficulty at times in

understanding the language and concepts of mathematics.

CINDY (std 6, White) made the following comment about her text-

book: "It's okay if you want to learn from it; it's a bit

difficult to understand. They got the writing saying how

to do it, how to explain it ... but I can't ... I can't

properly understand it."

She indicated that it was the language that she "can't properly

understand".

Matchsticks

The problems in the "matchsticks" interview were as follows.

1. Make the following numbers of identical squares, using all

24 matchsticks each time: 1; 2; 3; 6; 7; 8; 9.

2. How many squares?

(a)[] (b) m (c) (d) Predict for 4 X 4.

(e) Predict for 5 X 5.

3.

"LE]
(a) Move 2 matches to make five squares.

(b) Move 3 matches to make five squares.

(c) Move 4 matches to make five squares.

After analysing pupils' protocols, all four researchers reported

that there were far greater differences in the performances of

pupils from different achievement levels and }-ear groups than
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there were between pupils from the different cultural groups. In

fact we had to conclude that no culturally determined differen-

ces were evident for these tasks. The second series of problems

("How many squares?") was of particular interest in this regard

because it allowed for a possible generalisation to the nxn

case. In std 5 no interviewee was able to generalise and only

the two high achievers correctly predicted the 5x5 case (Norma's

data). Manjul found that only one std 6 pupil (Tebo, Black) in

her high-achieving group correctly predicted the solution for

the 100 X 100 case, in which task all of her std 7 interviewees

succeeded. Only Marc (std 7, Indian) gave an intuitive generali-

sation to the nxn case by pointing out the pattern involved

(i.e., 12+22+32+....+n2). None of Anita's pupils went beyond

the 5x5 case, which was solved only by Natasha (std 6, Indian),

Nombu (std 7, Black) and Zarina (std 7, Indian). Even the 4x4

case was solved by only one of Yanum's low achievers (Lisa, std

7, White), and no pupil, in her group attempted the 5x5 case.

Visualisation.

Section B (12 problems) of Presmeg's (1'
, test for mathematic-

al visual.ity was adMinistered in group mode to all mathematics

pupils in standards 5, 6 and 7 at Uthongathi. The reasons for

examining mathematical visualisation were twofold:

(1) visualisation may provide a possible bridge to understanding

when language difficulties exist;

(2) it was possible that cultural differences would be found in

the need for visualisgtion in mathematics.

Analysis of the test scores of the 136 pupils who wrote section

B revealed no significant differences between the three race

groups in terms of their median scores or frequency distribution
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graphs. (All pupils were given the choice of reading the prob-

lems in Zulu or in English.) It was concluded that there were

no cultural differences in need for visualisation in mathematics

among these Uthongathi pupils.

Conclusion

Lawton (1975, p.5) wrote, "One view is that a common curriculum

must be derived from a common culture. But this in turn raises

other difficult issues. What is meant by a common culture? Is

it meaningful to talk of a common culture in a pluralistic

society?" The Uthongathi research suggests that a shared school

experience provides sufficient elements of a common culture to

make it possible to use a common mathematics curriculum under

these circumstances.
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QUALITATIVE AND QUANTITATIVE PREDICTIONS AS
DETERMINANTS OF SYSTEM CONTROL

Matthias Reiss
Johannes Gutenberg-Universithi, Mainz, W. Germany

Summary: We investigated the influence of qualitative and quantitative predictions for the
effectiveness of system control using a simulation of a biological system, the fishing pond. In an
experimental paradigm one group of subjects had to give numerical predictions for the optimum of
the propagation function, another group had to apply qualitative reasoning by answering a
qualitative question. The control group had none of these tasks, but simply played the fishing
conflict game. The qualitative group did not perform better than the control group, but the
quantitative group was more successful than the other two groups. Explanations are given regarding
the function concept for each of the three groups.

1 The role of qualitative reasoning in problem solving

It is obvious that quantitative reasoning seems to be helpful in solving numerical

problems. But qualitative predictions can be useful for the solution of quantita-

tive tasks, too (DEKLEER & BROWN, 1984; BOBROW, 1984; HRON, 1988). The authors

use the term qualitative reasoning in tasks where one is asked to predict the

direction of a quantitative change rather than its absolute value. In such tasks one

has to indicate whether the predicted value is going to stay constant, to become

greater, or less than the current value.

In our study we investigated the influence of qualitative and quantitative predic-

tions on the effectiveness of control of a biolc a system. Inferences which

merely predict the direction of change shall be called qualitative reasoning; those

which result in a numerical value shall be called quantitative reasoning. In some

studies qualitative reasoning has been particularly efficient. The authors investi-

gated experts and novices in order to distinguish efficient and non-efficient cog-

nitive processes. A number of studies about processes of qualitative reasoning

while solving mathematics or science problems (BEHR, REISS, HARREL, POST &

LESH, 1986; BRIARS & LARK IN,I1984; GREENO, 1983; LARKIN, 1983; REISS, BEHR,

POST & LESH, 1987- SIMON & PAIGE, 1979) deal with the question of how experts

(persons with a developed schema for a given task) and novices (persons with a
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schema lacking components and relations between components) can be distin-

guished. CHI & GLASER (1982) report that experts classified problems according to

structural relations within the text. They first dealt with the problem components

and its relations in a qualitative manner and then tried to describe the compo-

nents and their relations in quantitative terms. Their knowledge about structural

relations enabled them to choose adequate procedures for a given task. In con-

trast, novices seemed to associate the solution with surface properties of the

problem. Often they concentrated on irrelevant properties which took additional

time or did not lead to the solution. Experts started on a top level and worked

down to the procedures (top-down approach). Novices started at a low level of

the problem and worked to the top by using known procedures until the solution

was found (bottom-up approach).

Thus experts and novices could be distinguished according to their starting point

and according to the direction of search for a solution. Experts as well as novices

used some kind of qualitative reasoning but experts used structural components

as a basis for qualitative reasoning, whereas novices used surface properties

which were chosen randomly. All the studies emphasize that experts have better

problem representation because they make intensive use of qualitative reasoning

about problem components and their relations (CHI, FELTOVICH & GLASER, 1981;

CHI & GLASER, 1982; CHI, GLASER & REES, 1983). The problem representation en-

ables the expert to determine when qualitative reasoning is adequate and when

quantitative reasoning is necessary. Novices, on the other hand, seem to search

for formulas, procedures, and equations in an algorithmic manner. They do not

take a long time to consider when certain formal structures are useful and which

results can be anticipated by using them.

Most of the studies cited deal with physics problems. We want to study the

effectiveness of qualitative reasoning within the context of a biological system.

SPADA, OPWIS & DONNEN (1985) have developed the fishing conflict game

(SPADA, OPWIS, DONNEN & ERNST, 1985; ERNST, 1988). This is a simulation of a

135



137

fishing pond. When a fisherman harvests fish from the pool the number of fish

decreases. But at the same time the number of fish increases again because of nat-

ural propagation. The fisherman is faced with a dilemma: He wants to catch as

many fish as possible but in order to be able to have fish on a long term basis he

has to refrain from fishing too much.

The propagation can be described by a nonlinear function (cf. the theoretical

function in table 2). If the fisherman does.-not extract too many the increase of fish

by propagation is greater than the amount harvested. Therefore, the result is an

increase of fish in the pool. If the fisherman catches more than the natural in-

crease of fish within' a given period of time then the number of fish in the pool

decreases. There is also a point of equilibrium where harvest and propagation are

the same. In this case the number of fish in the pool stays constant-. This propa-

gation function has to be recognized by the subjects in order to reach the ecologi-

cal equilibrium. Qualitative reasoning should help in understanding' the propa-
gation function.

The fishing-conflict game has been used for a number of different questions: The

social psychological influence in- a- game' with a number of participants. (KNAPP,

1987a, 1988; REISS; 1988), the effect of- a time lag' of propagation in reaction to

harvesting (KNAPP, 19871). hi the current. study wealso used: this experimental'

paradigm and focussed on the effect of experiment induced quantitative and

qualitative reasoning on the effectiveness of system control' (control of the
harvest condition in the pool). It was hypothesized that the qualitative
experimental group would be most successful because it had to store only a
limited number of values in memory and could concentrate on the direction of
change (ELLIS & ASHBROOK, 1987; NEUMANN, 1985). It was expected that this

group had the clearest understanding for the propagation function (the increase
of fish depending on the number of fish in the pool). To a smaller extent we
should also find this kind of function concept in the quantitative experimental

group and less so in the control group.
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2 Method used in the study

The fishing conflict game was given to 79 university students. They took part in

the experiment to earn some money, performed the experiment as single per-

sons, started with 120 tons of fish in the pool, and had to indicate how many tons

of fish they wanted to withdraw from the pool. The experimenter then reported

how many tons of fish was in the pool the next season and the subjects again had

to indicate how many tons of fish they would fish. This went on for 25 trials.

In order to investigate our hypotheses experimentally we had to induce the two

kinds of reasoning. One experimental group had to focus its attention on qualita-

tive reasoning: On three different occasions during the game we presented the

following sentence:

"The less I take from the pool (1) the less the number of fish in the pool decreases

(2) the more the number of fish in the pool increases (3) neither of the two."

Our subjects had to indicate which of the three choices was correct. It was not

important for us which of the three choices was preferred by the subjects, but the

fact that qualitative reasoning was induced by this question. In fact, none of the

three answers alone is correct. Depending on the subject's behavior in previous

trials both of the first two answers are simultaneously correct. It was our aim to

initiate qualitative reasoning by presenting this question.

The other experimental group received a text during the same three occasions in

the game, too:

With how many tons of fish in the pools does the biggest increase occur?

With tons of fish in the pool.

How many tons of increase are there?

tons of increase.

Our procedure was guided by the following theoretical considerations (REISS,

1988): Quantitative predictions lead to the storage of previous predictions in

memory. Memory capacity is used to its limits. The memory load prevents am
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optimal performance in the game. There was a third group of subjects, the control

group, which took part in the game without any additional questions.

The three groups can be distinguished in respect to their performance in the fish-

ing conflict dilemma. More specifically, one could say that the group under the

qualitative condition is going to keep a greater amount of fish in the pool and to

harvest more. And the group under the quantitative condition is going to have

greater success than the control group.

3 Results

One can draw a graph for the two experimental and for the control group indicat-

ing how successful the subjects were in the game. Success was measured by the

sum of harvest and resource (tons of fish in the pool). In contrast to our hypothe-

sis the qualitative experimental group did not perform much different from the

other two groups. On the contrary, the quantitative experimental group per-

formed much better, there is a significant effect of this kind of inductiOn.
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Table 1: Success in the fishing game (sum of harvest and resource) per trial
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There was definitely a difference in the function concept between the quantitative

and the other two groups. In order to analyze more clearly where this difference

comes from after the game we asked the subjects about the expected increase for a

given resource (propagation without interference by a fisherman). The results can

be seen in table 2.
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o .- control group

0- qualitative group
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CI- employed
theoretical function
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25 50 75 100

resource in tons

125 150

Table 2: Propagation function as used in the game (theoretical function) and as estimated by

the three groups

It is evident that the control group and the qualitative experimental group con-

sidered the propagation function as a monotonically increasing function, i.e. they

thought the number of fish would not stop increasing the more fish there were

in the pool. In contrast, the quantitative experimental group estimated a propa-

gation function similar to the one underlying the game (the theoretical function).

The highest increase was at 100 tons but the increase did not reach 0 tons as soon

as expected.
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4 Discussion

Our hypothesis that the qualitative experimental group would perform most

successfully in the fishing conflict game could not be verified. The qualitative

experimental condition had no effect. The studies cited deal with qualitative

reasoning in physics or mathematics problems. GREENO (1973) emphasizes the

domain specificity of problem solving. This may have been one factor

influencing the results of our study. One could also argue that the experimental

condition was too weak; the subjects had to respond to one simple sentence. But

this argument would also apply to the quantitative experimental condition.

These subjects had to react to one simple sentence, too. But this sentence had its

effect. The qualitative condition might also not have been successful because the

sentence did not induce this kind of reasoning, whereas the quantitative condi-

tion fostered the understanding of the propagation function. It may have been

that the task was too easy to overload memory by storing numbers, so thatsquan-

titative reasoning in this case was superior but not in general. Another experi-

ment is planned to test the influence of qualitative reasoning with another task.
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TRANSFER BETWEEN FUNCTION REPRESENTATIONS:
A COMPUTATIONAL MODEL

Baruch Schwarz and Tommy Dreyfus*
Weizmann Institute of Science, Rellovot, Israel

This paper describes a framework within which it is possible to build
computational models for problem solving processes in a function
curriculum. One such model is described in detail. It serves to measure
transfer of information between function representations during a problem
solving process. The model has been used in a study with ninth graders
who were taught a function curriculum specifically designed to encourage
the use of methods from different representations in an integrated
manner. While it was found that the computational model does reflect
the cognitive aspects of transfer of information, it carries the risk of
isolating transfer from other, parallel cognitive processes.

Are computational models an appropriate research tool for investigating cognitive
processes in mathematics education? Although this methodological question is

legitimate, not enough experience has been accumulated to date in order to discuss it
in full generality. Relevant work has been done by Anderson and his group (Anderson,
Boyle & Yost, 1985). They combined computer modelling and cognitive psychology in
order to design and construct intelligent tutoring systems. The aim of this paper is to
further contribute to the discussion of the above question by reporting on the use of a
computational model for studying transfer between t .aeon representations. In line

with this aim, the relationship between the methodological and the cognitive aspects
has been stressed rather than the actual cognitive results of the study.

Function representations

The concept of function is usually introduced in several settings, either
simultaneously or in short succession. The same function is represented by different
means in each of these settings. The question then naturally arises whether students
establish appropriate links between the different representations of the same function.

Permanent address: Center for "Technological Education, IIo Ion, Israel
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In a study with average ability ninth graders Markovits, Eylon and Bruck heinter

(1989) found that after studying the relevant part of the curriculum, students had
difficulties to find the algebraic rule for a functions given in Cartesian graph form and

vice versa. (Algebra-to-graph was easier when the function was familiar, both

directions were equally difficult when it was unfamiliar.) Typically, less than a third

of the students in the study were able to find the algebraic form of a linear function

given in Cartesian graph form.

Smith (1972) studied ninth graders with high aptitude in mathematics and high

mental ability, who were taught functions in arrow diagram and in algebraic rule

setting. I le investigated whether they were able to solve standard exercises, on which

they had shown competence in these settings, also in ordered pairs and Cartesian graph

settings. lie found that they performed well, better in the ordered pairs than in the

Cartesian graph setting.

Transfer

Both of these studies use the term "transfer" for students' passage between

representations. According to CagnE (1970), horizontal transfer is the process of taking

a concept from one setting and applying the same concept in a different setting.

Although both discussed studies arc concerned with the link between function

representations and both provide relevant and valuable results on students' learning of

functions, neither study clearly defines what the transferred concepts are. (Similar

claims can be made for other 'studies of transfer between function representations.)

Smith checks what is usually called transfer of learning: Does performance in one

setting imply performance in the other setting? In order for this to happen, something

must be transferred; it could be a mechanism, copied by analogy. Markovits et al.

look at the ability to translate, rather than transfer. In translation, it is even less

clear what exactly is transferred. The method of observation used in the two studies,

was to compare student performances; this method is too coarse to allow a refined

study of what is transferred between function representations.

We propose to give a more restrictive, but precise definition of transfer. This

definition applies. specifically to transfer between function representations during a

problem solving process. Suppose that while solving a given problem, a student works

successively in the representations R1, 12.9, Rk, . The work of the

student in R.k will be called stage k of his solution process and we will say that this

student used transfer at the transition from stage k to stage k +1 if his work

throughout stage k+1 takes into account all the information gathered during his work

in stages 1 through k. \Ve stress that this definition is extremely restrictive since the

student will only be considered to have used transfer into representation Rk if he takes

into account all the information gathered during all his previous work on the problem

and if he does this at all times throughout his work in R.k. \Ve also stress that

transfer is here considered du rrng a problem solving process. Thi: is a significant type
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of transfer because it occurs during a natural process. It is also content related: The
student who uses transfer knows how to interpret information gleaned from previous
representations in the present representation.

We will now turn to the description of a framework which makes it possible to
measure in which representation a student works at any time, what information is
available to him from previous stages of his work, and whether he uses this
information.

The triple representation model

The triple representation model (TRM) is a computer environment which has been
designed as the core of a problem based functions curriculum (Schwarz Bruckheimer,
1986). Work with TRM is possible in one of three modes: T(able), G(raph) or
A(Igebra); each mode corresponds to a functional representation. The link between the
representations is realized by operations named Read Read A(Igebra), Read G(raph),
and Read T(able) which allow the student to consult results previously obtained in
one mode while working in another.

The work within any mode is operational; that is, it is organized in operations
that the student has to perform. The most important operations are Search, Compute,
Draw, Plot, and Findimage. For the purpose of this paper, we will assume that a
function has been defined algebraically. The Search operation (Algebraic mode, AS)
then enables the student to check algebraic conditions for a large number of
equidistant values such as in

From a to b step 6: If f(x)>C then print (I)
where the student has to fix the lower bound a and the upper bound b of the search,
the step 6, the type of comparison (>, <, = or and the goal value C. The
Search operation prints on the screen the values of x for which (1) is satisfied; the
values of f(x) can be printed as an option. The Compute operation (Algebraic mode,
AC) enables the student to compute automatically the value of a function for any
given element of the domain. The Draw operation (Graphical mode, GD) enables the
student to draw, magnify, stretch or shrink the graph of a function defined
algebraically. The Plot operation (Graphical mode, GP) allows the student to put the
cursor on any given point of the graph and read its coordinates. The Findimage
operation (Tabular mode, TF) enables the student to obtain the value of f(x) in a
table by specifying the value of x. These operations will be denoted by their
abbreviations AS, AC, GD, GP, and TF.

The TRM has been designed with the intent to stress parallels between the
operations in the three representations, e.g. AC, GP, and TF. It enables the student
to use methods from different representations in conjunction during problem solving,
because they have been integrated to a large extent. A problem typically solved with
TRM is the Open Box problem:
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An open box is constructed by removing a small square from each corner
of a square tin sheet (20cm x 20cm) and folding up the sides. What is
the largest possible volume of such a box (to an accuracy of 10-4)?

For the solution of this problem the student is forced to use the algebraic

representation since the maximal accuracy in the tabular representation is 10-2 and the
maximal accuracy in the graphical representation is 10-3. Therefore, if he ever uses

another representation, he has to carry out at least one passage between representations
during the solution process.

The computational model for transfer

Although the computational model is conceivable within a much wider framework,
it will be described here within the solution process of the Open I3ox problem with
TRM. The aim of the computational model is to formalize the analysis needed to
decide whether a student has used transfer at the passage from stage k to stage k+1.

This analysis will be based on the notion of solution domain. The solution domain
of a student at a given moment of the solution process is the interval within which an
expert would locate the solution, given that all information collected by the student
previously was available to the expert. The information available will be in form of a
set of number pairs (x,f(x)) which are known to belong to the function. These number

pairs may have been obtained directly through use of the AC, CP or TF operation or
they may have been printed by running an AS operation or they may have been read
from a graph obtained via Cll. In the latter case, only pairs whose x-value is marked
on the scale or the x-axis will be taken into account. The solution domain can now
be computed formally as follows: Assume that n such number pairs are available, and
that after ordering them according to increasing value of x they are (xi ,f(xi)),

(x2,f(x2)), (xk,f(xk)), (xn,f(xn)). Assume further that the index m gives the

maximum among these points, i.e. f(xk)<f(xm) for all k, 1 <k <n. Then the solution

domain will be the interval P=--(xm_ ,xm+i). Slight an.1 .ther obvious modifications

have to be made to this definition in some special cases: E. g., if m =1 or one

of the end-points of P will be infinite. Since the set of ordered pairs available after a
given operation includes the set available before that operation the solution domain will
never increase during a solution process.

For determining whether transfer occurred at the passage from stage k to stage

k +1 the solution domain after the last operation of stage k is relevant, because it.

contains all the information about the solution collected up to and including stage k.
Assume that this solution domain is the interval P= (a,b). Each operation at stage

k +1 will now be assigned a transfer index + or = as follows: The operations AC,

GP, and TF use a single value of the index will be + if this value of x is in P,
otherwise. For the operations AS and CD, the student needs to specify an entire

interval (the interval to be searched for AS and the domain to be graphed for CD); if,
for a given operation, this intelaliiigart of P, the transfer index of this operation
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will be 4-, otherwise . We will say that a student has used transfer from stage k to
stage k+1 if the transfer indices of all his operations at stage k+1 are positive.

As an example consider a student who first defined a function algebraically, in the
domain 0<x<10, then drew its graph in the same domain, built a table of values for
some values of x, and finally used the Search operation to find a sufficiently precise
value of the maximum. 1.Iis work is illustrated in the following figure:

3 3.5 3.1

580.00

FROM 2

591.50 590.36

TO 5 STEP 0.1

IF f(X) > 530

X =
x=

3.30
3.40
3.50

X= 3.50 f(X)= 591.50
GOAL= 590.00

The details of this student's operations are given in the following table:

Operation Solution
Domain

Transfer
Index

1 AD f(x):==x(20 2x)2, 0<x<10 (0,10)

2 CD 0<x<10, 0<y<1000 (2,4) +

3 TF 43)=-588 (2,4) +
4 TF f(3.5)=-591.50 (3,4) +
5 'IT 43.1)=500.36 (3.1,4) +

fi AS From 2 to 5 step 0.1, if f(x)> 590 (3.2,3.4)
7 AS From 3.3 to 3.9 step 0.001, if f(x)>592 (3.332,3.334) +
S AS From 3.332 to 3.334 step 0.0001, if f(x)>592.5025 (3.3332,3.3334) +

The student's work thus comprised four stages:
Stage 0 (operation I): Algebraic mode: Definition of the function.
Stage 1 (operation 2): Graphical mode: Graphing the function.
Stage 2 (operations 3, 4, 5): Tabular mode: Tabulating some values.
Stage 3 (operations 6, 7, 8): Algebraic mode: Searching.
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Thu solution domains in the table were computed, according to the above rule, from
the information the student received as a result of his actions. For example after
operation 5 (Tr at 3.1) the following values were available: The values at 1(0), 1(1),

1(2), f(3), f(4), f(5), f(6), 47), f(8), f(9), and f(10) from the graph and 1(3), 1(3.5), and

1(3.1) from the table of the function. Among these, 1(3.5) is the largest. The solution
domain is now (3.1,4) because an expert can conclude that the maximum of the

function lies between the two known neighbors of 3.5: 3.1 and 4. (Note that when
drawing this conclusion, the expert makes some assumptions about the shape of the
curve; these assumptions may be justified on the basis of the geometry of the problem
or on the basis of the algebraic form of the function). Similarly, operation 7 prints on
the screen all those among the 101 pairs (x,f(x)), x=3.300, 3.301, 3.302, ..., 3.390,

3.400, for which f(x)>592. The maximal one among these is f(3.333)= 592.5925.. .

Thus the solution domain after operation 7 is (3.332,3.334), the interval between the
two closest known neighbors of xm=3.333.

All but one of the student's transfer indices are positive. For example, in

operation 5, which is part of stage 2, the student asks for tabulation of x=3.5, which
is in the interval P=(2,4), the final solution domain of stage 1. Similarly, the interval
3.332<x<3.334 of operation 7 (stage 3) is a sub-interval of P= (3.1,4), the final

solution domain of stage 2. The interval 2 < x <5 of operation 6, however, is not

contained in P=(3.1,4); therefore the transfer index of operation 6 is negative.

According to the given definition of transfer, the example student used transfer at the
transition from stage 0 to stage 1 and at the transition from stage 1 to stage 2. He
did not use transfer at the transition form stage 2 to stage 3.

Remark: The model which was actually used in the research is somewhat more

complicated than the one described here. The main reason for this is that a student
using AS or CD in an interval that is slightly larger than P may well be using
transfer, because the choice of the interval is determined by cognitive style as well as
knowledge; for instance, if our example student had the interval 3<x<4 in
operation 6, this operation would have been assigned a positive transfer index.

Experiment

The research reported here is part of a larger project for which three ninth grade
classes have been taught the TRM curriculum for about four months. The computer

environment was an integral part of the classroom activity; there was no separation
between work with or without computer. Activity with the environment was

-minantly problem solving. Usually such activity was followed towards the end of
the class period by a teacher-led discussion.

At the end of the instructional period all students (N=55) were given the box

problem, and their solution path was recorded in dribble files. Fifteen of the students

solved the problem in an interview situation with an experimenter present. Their
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activity was also recorded by the computer; in addition they were asked questions
which assessed why they used a particular operation, especially when this operation was
used just after a passage to a new representation.

Results and discussion

All of the interviewed students solved the problem in either a single stage
(algebraic mode) or in four or five stages. We classified them into four categories:

1. Single stage students.

2. Students who used transfer at all transitions.
3. Students who used transfer at all Im 1, one transitions.
1. Other students.

The model thus enabled us to classify students into those who used transfer of
information, and those who did not. This does not, however, imply any thing about the
cognitive validity of the model. This cognitive validity was checked in two
independent ways. First, three experts were asked to classify several students on the
basis of a summary version of the dribble files, in to those who use transfer always,
often or not often. Second, students' cognitive behavior was further investigated with
respect to their problem solving tactics. This was done by another index, the quality
index. This index was also based on the solution domain and expressed the rate at
which the solution domain decreased. Strong correlations were found between students
who used transfer and those who had a high quality index, even if in some cases the
rapid convergence did not occur at the passage between representations but during
work within one representation. The interpretation of the results showed that transfer
of information alone is not, very valuable in a problem_ solving situation.- The
combination of both indices, however, was very useful in the assessments of students'
cognitive behavior. For instance, students who transferred well but showed moderate
convergence behavior were interpreted as using representations at a level of significants
and not at a level of signifiers. More specifically, these students, when solving a
problem, do not see or use the representation of a function as a link to the unified
meaning of a function (in the sense of 'unifying the meaning its different
representations). In addition, interesting observations were obtained from the
interaction between the two indices: there were students whose quality index improved
as a result of making successful transfer between representations. The cognitive
interpretation adopted in this case is that such students see the unified meaning of
function through the lens of its different representations.

The detailed cognitive results obtained from the
presented elsewhere. Briefly stated, it was possible
understanding of the function concept by examining
successive indices during the problem solving sessions.
found its expression in the consistency of the indices.
not mastered TIM as a tool had unstable indices and
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he interpreted. In summary, the discriminating poWer of the computational model was
prom inent in the analysis of the interviews and led to insight about students' cognitive
processes when solving problems about functions.

Conclusion
The computational model was found to reflect the cognitive aspects of transfer of
information. This may partly be due to the fact that building the model forced us to
think through the cognitive processes at a level of detail usually not attended to.

There are also disadvantages to computational models for cognitive processes. They are
connected to the same reasons as the ad vantages, namely to the level of detail

necessary. This level of detail leads to a separation of component cognitive processes
which in reality are closely connected. Models that describe such interconnections have

to be very sophisticated. Building computational models for cognitive processes may be
one way to make mathematics education a more scientific discipline, but we are still at
the very beginning of this undertaking.
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TRANSITION FROM OPERATIONAL TO STRUCTURAL CONCEPTION:.

THE NOTION OF FUNCTION REVISITED

Anna Sfard

The Hebrew University of Jerusalem

The study reported in this paper is a continuation of ourresearch on the role of alaorithms in formation of mathematical
concepts (C5), [6]). In [51 we sugaested that many mathematical
notions can be conceived both oper'ationally (as processes) and
structurally (as abstract objects). and that in most cases the
operational conception is the first to develop. In the present
paper we take a closer look at the phenomenon of reification
converting.a process into abstract object. Our theoFi-fiTalc7 -iims
are illustrated by experimental findings reaarding secondary-
school students' understanding_ of the concept of function. The
most important conclusion from the case study is that reification
is an intricate and difficult process which, at certain levels.
can be practically out of reach for some students.

When analyzing the process of learning mathematics, one should be aware

of the crucial role played by such epistemological issues as students'

implicit beliefs about the nature of mathematics on the whole, and of

mathematical entities in particular.

In 15] and [6) it was sugoested that the majority of mathematical notions
can be conceived in two fundamentally different ways: as static constructs

(structural conception) or as processes (operational conception). For

example, functions can be regarded structurally as aggregates of ordered

pairs, or operationally -- as certain computational procedures. These two

approaches, ostensibly incOmpatible (how can anything be a process and an

object at the same time?) are in fact complementary. The idea of

complementarity is not new: in physics, entities at subatomic level must be

regarded both as particles and as waves to enable a full description and

explanation of observed phenomena (see also Ee)). Similarly, the ability of

seeing a function or a number both as a process and as an object seems to be

indispensable for solving advanced mathematical problems.

In the process of concept formation, the operational conception is
often the first to develop. Out of it, the structural approach would

aradually evolve. In [5l we araued that these claims apply to historical

development as well as to individual learning. Indeed. certain parts of

mathematics can be regarded as a kind of hierarchy, in which what is

conceived purely operationally at one level should be conceived structurally
at.a higher level. In another words. processes have to be converted into

compact static wholes, or reified, to become basic units of a higher-level

theory.

Two important didactic principles can be inferred from the above claims.
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PRINCIPLE I: The proposed model of concept formation implies that it

would be of little or no avail to introduce a new mathematical notion by

means of its structural description. The structural approach is much more

abstract than the operational: in order to speak about mathematical objects

one must be able to focus on input-output relations ignoring the intervening

transformations. Thus, to expect that the student would understand a

structural definition without some previous experience with underlying

processes seems as unreasonable as hoping that he or she would comprehend

the two-dimensional scheme of cube without being acquainted with its "real

life" 3-D model. In the classroom, therefore, the operational approach

should precede the structural. Some well-known difficulties observed in

secondary-schools may be due to the common practice of reversing this order.

PRINCIPLE II: Structural approach should not be assumed until] an actual

step was made toward a higher-level theory, for which this approach is

indispensable. Indeed, to put up with the "existence" of a new kind of

intangible mathematical objects, the student must be highly motivated. The

required effort of mind would probably not be made until the operational

approach proves insufficient and reification of the given process becomes a

necessary condition for further learning. Such a situation arises only when

some higher -level processes are Performed on the concept in question. For

example, as long as the notion of function appears nowhere but in the

context of basic calculus, the student can do quite well with operational

conception of function alone. Converting computational processes reaarded as

functions into objects becomes necessary only when the person comes across

problems in which several functions have to be manipulated simultaneously,

so that each one of them must be treated as self-contained static whole.

Such treatment of functions is peculiar to many branches of modern

mathematics, functional analysis. topology, and fors logic among them.

The above two reauirements should be understood as necessary conditions

for reification (which means that if they are not fulfilled, the reification

is rather unlikely). Whether they are also sufficient, namely, whether they

actually help in transition from operational to structural conception, was

the main question addressed in the study which will be reported now. In this

research we revisited the concept of function, our first investigation of

which was presented in [5].

The present study was carried out in the Centre for Pre-academic Studies

(Hebrew University), among 22-25 years old participants of a regular

course on elementary mathematic"s (secondary-school level). Our first step

was to collect as much information as possible about the conceptions which

develop in students when principles I and II are not observed. In this
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report, our own findings. coming from classroom observations and from a

special questionnaire on functions. will be combined with the results

obtained by several other researchers. At the second stage of the study, the

concept of function was taught to a group of students by an experimental

method based on our two principles. The results obtained in the experimental

group were then compared to the background findings.

WHAT HAPPENS WHEN THE CONCEPT OF FUNCTION IS TAUGHT STRUCTURALLY

Being one of the central ideas of modern mathematics. the concept of

function is given much attention all across the secondarv-school curricula.

In most cases. however. the way it is taught contradicts our model of

concept acquisition. Indeed, to put it into Malik's words ([4]. 0.189).

"function course Cis usually] laced with set-theoretic notations" (which

almost always means that our first principle is not observed). while the

necessity of teaching the modern definition of function at school level is

not at all obvious" (so the second principle is violated either). It is in

line with our former claims. therefore, that the general agreement about the

importance of the concept of function is accompanied by another consensus

([1], [3], [4]. [5], [67. [7]. [9]): in a class. the exact meaning of this

ostensibly innocent notion invariably turns out to be surprisingly elusive

and problematic.

1. Our former studies ([5], [6]) showed that in spite of the "obiect-

oriented" way of teaching, the fully fledged structural conception of

function is rather rare in high-school students. In our Present investiga-

tion some new findings reinforced this conclusion. Firstly, in response to
the first item in the questionnaire presented in the box below, only 19% of
the pupils (see "control group") agreed that funct' is a static construct

composed of (infinitely many) parts. Secondly, the student's inability to

consolidate multitude of ordered pairs into one entity could be responsible

for the difficulties observed in the classroom when problems involving sets

of functions were dealt with. For example, when faced with functional

equations (such as f(x+y) = f(x) +f(y)1. the students usually were confused

as to the nature and the number of the solutions. It is also worth

mentioning that the pupils had some serious difficulty with the set-

theoretic notions underling the structural version of the concept of

function. The student's conception of abstract entities such as domain,

range, image and pre-image was'usually so fuzzy, that general confusion was

the most common reaction to problems requiring identification of the

different components of a given function. Several phenomena presented in

BEST COPY AVAILABLE 15



154

other papers (e.g. students' inattention to domain when comparing two

functions, (4). or some persistent mistakes in symbolic representation of

sets. (7)) indicate the same problem: they show that very often the learner

can not distinguish between sets and their members. It is probably the

student's inability of "seeing" even these basic entities as fully fledged

objects, which makes such distinctions quite meaningless.

2. We shall argue now that the main difficulty with the structural

definition of function stems not so much from what is actually included in

it, as from what is missing. Indeed, in spite of the fact that in the

definition no mathematical operations are mentioned, the responses to our

first Question (see box) indicate that overwhelming majority of pupils (817.)

associate functions with computational processes. We can conclude.

therefore, that contrary to the curricula designers' intentions the

student's conception of function is closer to operational than to

structural. Other studies abound in additional evidence. Vinner and Dreyfus,

[9], emphasize the importance of the operational aspect by saying that

according to the student: "one has to do something to x in order to obtain

the corresponding y". In our own former investigation (C67), some students

refused to apply the adjectives "equal" and "the same" to a couple of

functions which assumed identical values but were defined by different

computational processes. "General difficulty ... with the constant function"

([4]. p.24: [7]) may be interpreted as an evidence for the pupil's implicit

belief that in order to speak about function, a change in the independent

variable must be followed by a change in the dependent variable. It is

interesting to note that the dynamical dimension of the concept was

emphasized in a similar way by Euler: according to him, "a quantity" should

be called function only if it depends on other quantity "in such a way that

if the latter is changed the former undergoes changes itself" (1755, [27).

The historical analogy will go even further if we analyze students'

beliefs about the nature of the computational processes falling into the

category of functions. In the response to our second question (see box), 94%

of the Pupils evaluated as true at least one of the following statements:

"Every function expresses certain regularity". "Every function can be

expressed by a certain computational formula". For all their fuzziness,

these descriptions come strikingly close to the (equally inaccurate)

"definitions" of function used by mathematicians for nearly a century (since

Euler and his "analytical expression" (1748) until Dirichlet's rebellion

against the "algorithmic" approach (1837): see [2]). Moreover, the student's

responses to the item A in Question 3 (see also (47, C7), [9]) show that,

like many mathematicians before them. the today's students can not out uo
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THE QUESTIONNAIRE
I. Which one of the following sentences is, in your opinion, a better

description of the concept of function?
A. Function is a computational process which produces some value of

one variable (V) from any given value of another variable (x).
B. Function is a kind of (possibly infinite) table in which to each

value of one variable corresponds a certain value of another var.2. True or false?
A. Every function expresses a certain regularity (the values of x

and y can not be matched in a completely arbitrary manner).
B. Every function can be expressed by a certain computational

formula (e.g. y=2x+1 or v=3sin(n+x)).
3. Which of the following propositions describe functions?

(x and v are natural numbers)
A. If x is an even number then v = 2x+5:

Otherwise (x is an odd number) v = I-3x.
E. If x=0 then y=3.

If 00 then to find the corresponding value of v we add 2 to the
the value of v corresponding to x-I.

C. For every value of x we choose the corresponding value of v in an
arbitrary way (e.g. by throwing a dice).

RESULTS

1.

control I exper.
N=48 I N=28

I.
I. perc. of s's who chose item A 81 50perc. of s's who chose item 19 50
2. perc. of s's whose ans to A & B were

Yes. yes 46 36
yes. no 26 18
no. ves 21 3
no. no 6 43

3. perc. of s's who said it was function
item A 50 93
item B 73 93
item C 17 50

1

with the so called "split domain" functions. This attitude is reminiscent of
the opinion expressed by d'Alembert in his response to the Euler's idea of

"discontinuous" function (by "discontinuous" Euler meant a function given by
different analytic expression in various parts of its domain). Finally, our

respondents' almost univocal rejection of the "arbitrarily" defined function
(item C) brings to mind the long and heated historical dispute over the

Dirichlet's definition ([2], [3]).

3. In the light of our own findings combined with those of other

researchers, the pupil's tendency to associate functions with algebraic

formulae seems to be strong and common enough to deserve special attention.
Although this tendency can be indicative of operational conception (the

student may perceive a formula as a short description of a computational

algorithm) as well as of a structural (the formula may be interoreted as a
static relation between ordered pairs). sometimes it is probably neither

this nor that. Such tendency may signalize a "mutilated". quasi-structural

conception, the deficiency of which would come to light in many different

contexts. Indeed, unlike Euler, for whom the "analytic expression" was one
of two possible manifestations of an independent abstract entity (a curve

was the other one), the today's student often seems to regard a formula as a

thing in itself. not standing for anything else. This appears to be the most
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plausible explanation for such well-known phenomena as the students'

inability to build 'a reasonable bridge between algebraic and graphic

representations of functions (Cl]) , or the common tendency to interpret

functional equalities as nothing but a product of symbol manipulations

(CIA).

Both operational and quasi-structural conceptions are deviations from the

official "structural" approach. But while the former is a healthy, natural

stage in concept development, the latter should be regarded as

unsatisfactory and potentially harmful. It seems, however, that the

quasi-structural conceptions can hardly be avoided within the usual

structural way of teaching. The data summarized above confirm that the idea

of the set of ordered pairs, when introduced too early. is doomed to remain

beyond the comprehension of many students. In such case, the object-oriented

language used by the teacher forces the pupil to look for a more tangible

entity which may serve as a reasonable substitute. Being the most natural

choice, an algebraic expression turns into the thing it was only meant to

symbolize (in a different context the same would happen to a graph. [91).

... AND WHAT HAPPENS WHEN THE OPERATIONAL APPROACH IS APPLIED

In the experiment performed at the second stage of our study, the concept

of function was taught to a croup of students as a part of a course on

algorithms and computability. This time the approach was operational, namely

the principles I and II were faithfully observed. The space limitations

prevent us from giving the full description of the teaching material, so we

shall confine ourselves to some general remarks.

The course (60 teaching hours) was devoted to the idea of algorithm and

the concept of function was introduced as a - a for dealing with the

semantics of alghorithmic languages. At that time the notion was almost

completely new to all our students.

According to principle I, the operational approach was the first to be

applied. Initially, the term "function" was used almost synonymously with

algorithm, and then explained as being a name for "the product" of an

algorithm. Although it was described also in structural terms (as the set

of all input-output pairs"), our first structural definition only emphasized

the connection between functions and computational processes.

Principle II was implemented as well: the structural approach had not

been aiven much attention until it became truly necessary. The first attempt

at separating functions from algorithms was made only after the set of the

already known algorithms and the resulting set of functions were broadened
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several times, to include recursive and "split domain" calculations. among

others. Different methods of constructing functions from other functions (by

composition, by recursion or by minimization) were discussed, thus the view

of function as a self-contained entity which can serve as a building block

for other entities was gradually promoted. For representing functions, the

usual algebraic notation was used and the students exercised translating

explicit and recursive expressions into computer programs, and vice versa.

The "input-output" description of function was replaced by the abstract

Bourbaki's definition only after a long period during which the student's

attention was focused on the static "products" of different algorithms

rather than on the algorithms themselves. This final generalization led to

the Question of existence of a noncomputable (not "algorithmic") function.

This last problem was expected to be the ultimate trigger for reification.

Indeed, without the fully fledged structural conception, the problem was

doomed to remain meaningless (to a person who identifies functions with

algorithmic processes, the idea of noncomnutable function must be as absurd,

as the notion of a circle which is not round).

Classroom observations were carried out during the entire course.

Initially, almost all the phenomena described in the former section as

indicative of operational conception could be witnessed again (not

surprisingly so, since at the early stages of learning the operational

conception was deliberately fostered). The first attempts at transition to

the structural approach were met with resistance and lack of understanding:

many students could not cope either with sets of functions or with general

definitions of operations performed on functions. The difficulty diminished

with time but it did not disappeared completely. When the students were

asked to describe the set of the recursive functions (the definition of

which had been taught and discussed before), almost half of the group gave

faulty answers, indicating a difficulty with treating functions as building

blocks for other functions. Not surprisingly, the idea of noncomoutable

function, when mentioned explicitly, evoked astonishment and opposition.

Our Questionnaire on function was administered to the participants at the
end of the course. Although many answers still indicated operational rather
then structural conception, the results (see box, "experimental group") did

show a substantial progress toward the latter, at least in comparison to the
control group. Moreover, even though the structural approach was not fully

adopted by the students, we have good reasons to believe that the danger of
"mutilated" conceptions considerably diminished. Indeed, judging from the
answers to the third question, there were only few students left who would

still regard a term "function" as synonymous with "formula" or "eouation".
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DISCUSSION AND CONCLUSIONS

Judging from our results. operational approach does stimulate

reification, at least to some degree. Special attention should be given,

however, to the fact that for all the progress made by the students, our

attempt to promote the structural conception can not be regarded as fully

successful. This result may be much more significant than all the others.

One may claim, of course. that it was some deficiency of the teaching

method which interfered with our objectives. thus limiting our success. Even

if partially true, this explanation does not seem to tell all the story. The

gap between the efforts invested and the progress made is so big, it prompts

us to risk another conjecture, according to which reification is inherently

so difficult that there may be students for whom the structural conception

will remain practically out of reach whatever the teaching method.

Apart from the ample empirical evidence, there are some theoretical

considerations pointing in this direction. Closer look at the process of

reification reveals that it may lead to a psychological vicious circle an

obstacle which seems almost unavoidable. and for many people would remain

insurmountable. Indeed, according to our former argumentation (principle

II), reification of a concept would not occur until some higher -level

operations to be performed at this concept are introduced: on the other

hind, conceiving a concept as an object seems to be prerequisite for dealing

(meaningfully) with such higher-level operations. To cope with these

apparently incompatible requirements. one must be able to orchestrate the

lower-level reification with the higher -level manipulations in a subtle,

painless manner. Judging from our results, this ability seems to be rather

rare. Such historical examples as the turbulent -tore of the concept of

function and the three century long dispute the elusive notions of

negative and complex numbers show that breaking the vicious circle of

reification can be quite difficult even for mathematicians.

* * *
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Supercalculators and Research on Learning

Richard Shumway

Ohio State University, Columbus, OH

Centro de Investigacion en Maternatieas, Guanajuato, Mexico

The new technology of handheld graphics computers with symbol
manipulation capabilities (supercalculators) can have a significant impact on
the learning research in:mathematics education. Technological impacts on
curricula often take 10 years (Burkhardt, 1986). However, mathematics
learning researchers can respond more quickly to the capabilities of
supercalculators. The purpose is to a) describe the capabilities of handheld
graphics computers; b) argue for the expansion, initiation, and elimination of
various research areas; and, c) suggest directions for possiblefuture efforts.
The remarks, although founded in research on learning, are inductive,
speculative, and invite conunent and debate.

Capabilities. Reading reports regarding machines such as the Hewlett Packard HP-28S

(e.g., Hewlett Packard, 1988; Michel, 1987, 1988; Nievergeldt, 1987; Tucker, 1987,.1988; Wicks,

1988), or supercalculators (A la Tucker, 1988), lead one to conclude enormous changes in both

fundamental school mathematics topics and fundamental ways of doing mathematics are upon us.

Before examining the impact such changes may have on learning research, consider a few

examples of the capabilities of the supercalculators. Some singlekeystroke capabilities of a
"personalized" machine include: a) two dimensional graphs and zooms; b) vector and matrix

computations; c) numerical equation solving; d) symbolic manipulation commands and tests; and e)

structured programs in RPL (Reverse Polish Lisp) or FORTH, PASCAL, BASIC, or LISPlike
languages.

With the help of a few references, singlekeystroke capabilities of a "personalized" machine

also include: f) symbolic differentiation and simplification (Wicks, 1988); g) keys labeled, say

SARX, that, given a function and an interval, return the proper integral for surface area of the solid

of revolution about the xaxis set up in symbolic form, together with the numerical value for the

surface area to the nearest 0.01; h) keys labeled PD /V or PROOT that give, respectively, the

symbolic result of the division of two polynomials or the algebraically computed real and complex

roots of up to a fourth degree polynomial (Hewlett Packard, 1988); i) CEQN gives the characteristic

equation of a matrix (Wicks, 1988); or j) symbolic and numeric solutions to classes of differential
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equations and curve lining routines (I lewlett Packard, 1988).

Mathematics texts that place major emphasis on numeric or symbolic computations with, say,

numbers (including complex numbers), graphs, polynomials, vectors, matrices, derivatives,

integrals, Taylor series, trigonometric identities, or zeros of functions, are essentially measures of

supercalulator capabilities, not student learning. Random samples of exercises from textbooks used

for K-14 mathematics in the United States reveal few exercises that should remain with

supercalculators in the hands of teachers and students. Perhaps as much as 90% of the exercises and

explanations should be removed.

Since the early 1950s, numerical computations, structured programming, and symbolic

manipulations have been available on computers (Hamming, 1980). Mathematicians have called for

mathematical programming (Kemeny, 1966) and computer mathematics systems (Birkhoff, 1972) in

mathematics courses for some time. Today, the addition of userfriendly, graphics capabilities and

the psychological impact of a handheld, personal carrier of mathematical ideas (a supercalculator)

make curricular changes mandatory (Steen, 1988).

Changes in Learning Research. Past learning research has made progress in many areas.

Research based in concepts and problem solving may be the most robust with regard to technological

advances such a supercalculators. One may be tempted to conclude research on learning with

computers would be some of the most useful research for drawing inferences about learning

mathematics with supercalculators. However, there is an order of magnitude difference between

former uses of computers and the new supercalculators.

Supercalculators are designed and ready to carry out computations with a single keystroke,

whereas, former uses of computers required significant exchanges of data and coding for similar

computations. Supercalculators are designed to be personal tools to be used regularly and in almost

any setting, whereas, former uses of computers required infrequent, shared use in special settings.

Supercalculators are designed to allow special tailoring of key commands for personal mathematical

needs, whereas, former uses of computers involved general procedures and programs designed for

general use by many users. Supercalculators are designed to be symbolic, personal carriers of

mathematics, whereas former uses of computers, while capable of dramatic symbol manipulation

(e.g., MACSYMA), were, neverthelegs, designed for general mathematics users, and not as

individual, personal carriers of mathematics. The supercalculator represents a substantial extension
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of human capabilities in mathematics.

Few mathematics learning researchers would consider conducting research with subjects

without devices for recording mathematical communications. In the past, these devices have

involved written symbolic communication, verbal (and nonverbal) communication, spatial

communication, and the manipulation of devices in which mathematical ideas have been embedded.

The supercalculator enhances all of these forms of communication.

Pollak, in prophetic articles about calculators and computers (Pollak, 1977, 1982), noted

substantial changes were needed in two partial orderings of the curriculum (i.e., those based on

mathematical prerequisites and those based on social importance) and that fundamental changes were

needed in the curriculum. Learning research must face equally dramatic: a) expansion of certain

research areas, b) initiation of new research areas, and c) the elimination or deemphasis of other

research areas.

Expansion. Learning research which can be expanded and modified to reflect supercalculators

centers about the use and meaning of variables, computer coding to define and relate mathematical

concepts and principles, representational systems, and cognitive development.

Significant work has been done on the meaning of variable (e.g., Chornsky. 1988; Clement,

Lockhead, & Soloway, 1982; Dubinsky, Elterman, & Gong, 1988; Kiichemann, 1981; Krutetskii,

1976; Oprea, 1988; Shumway, 1989; Wagner, 1981) with children ranging from age 5 to age 20.

However promising this work has been, we need to extend the universe of the concept of variable to

include variables defined over objects such as: real numbers, complex numbers, strings, vectors, real

arrays, complex arrays, lists, global names, local names, programs, algebraic objects, and binary

integer numbers. Supercalculators take a unified approach to these objects; calculator operations

apply whenever meaningful, and all such objects can be inputs to programs, including programs

themselves. Consequently there are dramatic, mathematical generalizations of the meaning of variable

available on supercalculators. Systematically exploration of the development of such generalized

concepts of variable is needed.

Computer coding and its impact on mathematics learning has been studied and seems to be most

related to concept development and problem solving (e.g., Blume & Schoen, 1988; Suydam, 1986).

Arguments regarding relative merits of computer languages are often made on the basis of structured

programming, recursion, global and local variables, graphics, and the ease of naming and writing

procedures. Supercalculators offering flexibility of programming such as graphics, procedures,
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lists, symbolic manipulation and recursion can put to rest many arguments. Computer coding on a

supercalculator becomes much more procedureoriented and seems to encourage those programming

habits most admired by computer scientists and mathematicians. Again, the personalization of the

supercalculator seems to be an important psychological factor. Computer programs are coded and

then executed by a single keystroke. They become a part of the supercalculator capabilities and are

always available. Algorithm design becomes highly personal but also very important for repeated

application by the author. Systematic study of the impact of such availability of authored programs

for use, modification, and refinement is needed.

Representational systems have gained deserved attention (e.g., Janvier, 1986) and many

interests of this line of research are directly applicable to supercalculators as supercalculators provide

access to many of the representational systems being studied. One can only endorse continued

efforts in representational systems and encourage their investigation on supercalculators.

Cognitive development research needs to direct some longterm efforts towards study of

fundamental concepts of mathematics, their representations, and their development in children in the

context of supercalculators as a regular tool for exploring mathematics. The advantages for the

supercalculator for such efforts are cost, size, personalization, and generalized mathematical power

provided for subjects.

Initiation. Teaching experiments and clinical studies exploring supercalculator representations

of many important concepts of mathematics rarely studied with young subjects (ages 3-20) are

needed. Research has begun with efforts such as Dick's project to revise and test calculus materials

designed for students using supercalculators building on prior experiences with younger subjects

(Dick & Shaughnessy, 1988) and Michel's yearlong teaching experiment with 15 yearolds

studying mathematics, physics, and science for 13 hours per week using supercalculators (Michel,

1988). Significant study of generalized variables, complex variables, matrix representations,

differentiation, integration, probability distributions, zeros of functions, Taylor series, computer

arithmetic, and theorems such as those of De Moivre, Bolzano, Galois, Euler, Gauss, Cauchy, and

Godel are called for by some and the concept of proof is consider basic mathematics (Shumway, in

press). Estimation concepts must be developed for algebraic computations as well as numeric

computations. Further identification and exploration of fundamental mathematics is needed.

Elimination. Most analyses of the impact of calculators and computers call for a deemphasis of

many traditional computational skills (e.g., Pollak, 1982). Learning research that involves skill
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development associated with graphing, solving simultaneous equations, finding roots of functions

(e.g., factoring or simplifying), polynomial arithmetic, differentiation, integration, matrix arithmetic,

differential equations, characteristic equations of matrices, and hypothesis testing without the use or

knowledge of supercalculators should be terminated. Substantial collections of research efforts have

become moot because of supercalculator capabilities.

Directions for Future Work. Researchers themselves must use supercalculators to do

mathematics. High priorities are the required use of supercalculators for all mathematics, the

treatment of concepts and proofs as basic mathematics, the earlier, deeper treatment of fundamental

conceptual learning, and the deemphasis of many forms of skill learning. Philosophical analyses

leads one to such conclusions. Researchers must raise questions, study the associated implications,

study feasibilities, identify limitations, and agitate for change based on research and best wisdom.

Discussion. Require supercalculators for all mathematics? One could argue there must

certainly be times when one might not want to require the use a supercalculator. Perhaps, but the

more likely error is to use the "when appropriate phrase" to fail to explore less obvious but

appropriate uses. In fact, it may be impossible to find a mathematical situation for which no

supercalculator activity would be appropriate.

Concepts and proofs are basic mathematics because, relieved of the computational burdens,

conceptual understanding and proofs of the correctness of results are the remaining essential

elements of doing mathematics.

Deeper treatment of fundamental conceptual learning is necessary for effective use of

supercalculators. History suggests, when computational power is increased, mathematical

understandings are ultimately increased as well.

Deemphasis of many forms of skill learning once thought to be essential for mathematical

development seem important and likely. Researchers must test the premise that supercalculator

computations will produce the number sense and symbolic intuitions thought to develop from

computations.

Finally, researchers are obligated to lead, offer evidence, and help make bestevidence
decisions.
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HOW & WHEN ATTITUDES 'INWARDS MATHEMATICS & INFINITY

BECOME CONSTITUTED INTO OBSTACLES IN STUDENTS?

Anna Sierpinska, Polish Academy of Sciences

Monika Viwegier, Warsaw University

_Tammany. It waa conjectuoed <In SLeopincha I/98?l that 40U4Ceh
of eplIctemologLcal oo4facLe4 nelated to lLmac can Ge found

<In ctudentc attaudec towandc mafAemaf<:c4 and ink:Ally. The

aim of the pnecent oeceaoch 44 to andeactand cond<Iblonc in
which come chadnen'c conceptions of LnfLntty and (LmplLcal
phaocoplulec of mathematLcc become conctauted info obcfaclec
cc the chadnen develop /nom the concrete to.the foomal openo-

tLonal ctagec. The neceanch hoc on4 juct ctanted. In lhin
papen we exhi_ba behavLonal cf conceptual Affenencec between

two giA24. ItIgnec, /0 S &Atha, S we /coma-late come hypo-

theaec as to fAe above mentioned condatIonc.

In the sequel we shall use the following abbreviations: "M" - mathema-

tics, "INF" - infinity, "EO" epistemological obstacle.

I.- INTRODUCTION

1.- Genesis of research. It was conjectured in Sierpinska (1987)

that sources of EO related to limits in 16-17 years old students may lie

in their attitudes towards M and INF.

2.- Aims of research. We were interested to know when & how, in

the course of their development, students come to construct these obstacles,

i.e. in what conditions students' conceptions of INF and attitudes twrds M

start functioning as EO (cf. Sierpinska, 1989).

3.- General assumptions. We have assumed that this happens sometime

in the transition period from the concrete t -e formal operational stages

and taken children between 10 and 14 years of age. We assumed it highly im-

probable that any attitude twrds M as scientific knowledge develops in youn-

ger children. As far as conceptions of INF are concerned, Piaget & Inhelder

(1948) & Fischbein et al. (1979) conclude that at concrete operational stage

children are unable toaunderstand, e.g. the infinite nature of continuous

divisions of a geometrical figure. This does not mean, however, that they

do not develop some less sophisticated conceptions of INF such as "very

big, undetermined number" (which may well occur in much older students,too;

cf. Sierpinska, 1988).

4.- Methods of research. The mathematical context we used in our

interviews is that of equipotent sets: we have studied children's reactions
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to our attempts to make them accept the condition of existence of a 1-1- cor-

respondence between elements of two infinite sets as a criterion of their

having "as many" elements. We did not use the term "equipotent sets". The

Polish term for it refers to "counting" and "number". We wanted to avoid

the suggestion that "there are as many elements in set A as in set B if num-

bers of their elements are equal". The Polish expression for "as many" (which

is not distinguished from "as much") - "tyle samo" - can better be translated

with the French expression "autant que".

Why this context of equipotent sets? The 1-1 correspondence criterion

is known for its being used by Galileo to solve the paradox of natural & e-

ven numbers. It was proposed by Bolzano (1851) to deal with infinite sets,

and Dedekind based on it his definition of an infinite set (1888). It further

became the corner stone of Cantor's Mengenlehre. The notions of equipotent

sets and cardinal number have shown to be elegant solutions to many paradoxes

and problems in M. But the choice to extend the notion of number in this

way testifies for the change in mathematicians' attitudes twrds M the XIXth

century was witness of. INF has a rich meaning outside M: it is a part of our

culture, of our beliefs concerning the structure of matter, size of Universe,

time ... (cf. Sierpinska, 1989). Now, one cannot accept this notion be redu-

ced to the 1-1 - correspondence criterion without coming to think that,

maybe, M is not a discipline describing some kind of reality (be it the

reality of our thoughts). To use this criterion with consequence one has to

be able to reason against one's intuitions, discoursively and formally,

and to accept it.

Certain befiefs about IMF and certain attitudes twrds M can, therefore,

function as obstacles against a ready and unproblematic acceptance of the

1-1 - correspondence criterion for comparison of infinite sets.

If the criterion is accepted without difficulty and used consistently

in comparing sets then, of course, it is possible that these obstacles are

overcome. However, this is little probable in 10 or even 14 years old child-

ren: Rather, this may mean that those obstacles have not been constructed yet

and children perform deductive reasoning in much the same way they observe

rules while playing games.

And this is how we come to our working hypothesis: let us observe in

what conditions the 1-1 correspondence criterion ceases to be acceptable

for children.

We shall study in detail individual histories of children during the

experience, looking for reasons of changes or stagnation in their conceptions

and trying to pick up behavioral as well as conceptual differences between
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children of different age.

'the research has only just started and all we are able to give here

is presentation of some behavioral and conceptual differences between two

girls (Agnes 10 & Martha, 14) and formulation of some hypotheses.

II.- ORGANISATION OF THE EXPERIENCE

There were 4 sessions, each with 4 children of one age group: 10, 11,

12, 14. The 4 children in each group were divided into 2 subgroups of 2 and

there were 2 subsessions in each session.

In the first subsession, one subgroup of 2 children was interviewed by

us; in the second, these two were asked to interview the other two children.

Here are more details on the first subsession. There were several steps

in it:

Step 1. Interviewers suggest the following definition: two sets have as

many elements one as the other if their elements can be paired off, that is,

if every element from the first of these sets has a pair in the second,

and every element from the second has a pair in the first. The suggestion is

made by using collections of green and yellow counters and asking: " how

can we check that there are as many green as yellow counters?". We start

with small collections and go on to larger and larger stopping whenever the

children propose to pair off (cf. Brousseau, 1977). Then we negotiate the

definition.

Step 2. Children are shown a drawing like: , and asked: "would you

agree with us that if two segments are of equal length then there are as

many points in one of them as there are in the other?".

Step 3. "Are there as many points in one as there are in the other of such

two lines?":

Step 4. The same question with:

Step 5. The same question with:

Step 6. "Are there as many natural numbers as there are even numbers?"

Step 7. "What do you think INF is? How do you imagine it?"

III.- COMPARISON OF AGNES (10) & MARTHA (14) BEHAVIOUR & CONCEPTIONS

1.- Behavioral differences

First answers in steps 2 thru 6:. Agnes: "Yes" in &

Martha: a conditional "Yes" in one step only:

General reaction to Interviewers' arguments: Agnes: positive; Martha:

negative.

Final answers: Agnes: "Yes" in all 5 steps from 2 thru 6. Martha:

"Yes" in one step (2_) - rather forced by an Interviewer, non-commital

in three steps, negative in one step (_:=1_ )
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1,low aro sum,' excerpts from Lho del".ailod analysis of differentia

b,!Lween Agnis2s. and Martha's behaviour.

Step 2. The first reaction to the question
( ), for both girls, con-

sists in saying that there is no univocal answer. The reason given by Agnes

is that the number of points on a segment depends upon its width. Martha's

reason is that it is impossible to "really" check it, one can only do it

'theoretically" by agreeing upon some unit of measure as being the size

of a point. Final answers: Agnes explicitely formulates a positive answer

and method of proof. Martha formulates explicitely a method of pairing off

but declares impossibility of actually performing the procedure (because of

the infinity of points on the segments). She gives an answer in a conditional

form: if, by joining points that correspond one gets lines that are all pa-

rallel then there are as many points on one as there are on the other segment.

Step 4. First reaction to the question '( ) is "Yes" in Agnes who starts

looking for a pairing off procedure. Martha says "No" and starts showing

that there exists an assignment of points which is not one-to-one. Inter-

viewers intervene with criticism. Martha attempts to refute the arguments

but fails. Finally states that if we admit that there is an INF of points

in a segment and that the notion of next point doesn't make sense then it is

impossible to compare, to assign points to points. She tries to give another

proof refuting the theorem. After Interviewers' criticism of the proof Martha

says: give up, because I cannot imagine ...". She criticises proof given

by Interviewers: "but no one can ever draw all the lines, either".

Step 6 (natural and even numbers). Agnes first answer is: "No, because there

are the odd numbers, still". Martha: in theory it is assumed that there is

an infinity of natural as well as even numbers, but, as we imagine these

sets, than we see that there should be more natural numbers. Agnes accepts

Interviewers' arguments. Martha repeats her argument with force, looks

for proofs of the negation of the theorem, refutes arguments given by I.,

says she doubts whether existence of a 1-1 correspondence indeed proves

that there as many natural as there are even numbers. After further interven-

tionsobecomes aware of the assumption she has been taking all the time:"I'm

considering only bounded sets of numbers, I see", gives up, says: "all

this is a matter of convention", and doesn't seem pleased with it.

2.- Conceptual differences

Main problems in steps 2 thru 5 were the notions of segment and point.

Conceptions that we observed in the girls can be described as follows:

SI, a line segment is a pencil stroke; a point is a dot; number of points

in a segment depends
upon its width, length and size of points.
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S2: line segments have no width (or are of the s,ime tiny width that can

be ignored); points are small, it may convened how big they aro, say,

S3: segment is a line bounded by two points; there are only two points in a

line segment, namely its ends; the line is composed of little segments

S4: [same as above except ford the line is composed of small points

S5: line segment is a line composed od very tiny points which are ordered in

a row [drawing illustrating this idea by Agnes: ].

S6: line segment is a mental object composed of an infinity of consecutive

points which is represented by a line drawn with the help of a ruler; points

have no dimensions but are represented with dots or little segments that

have dimensions .

S7: [same as above without: "which is represented ... o]

Sg: [same as S7 without "consecutive"]

Diagram below shows the evolution of these conceptions in Agnes and

Martha during steps 2 thru 5.

Conceptions of line segment

S8

s,
s,

5

e s,

S10

"0-0
7 I

\ \\ I
I I

11

Aynas
colloytka

Ste/32.7 Star Li. NO experimentoferiment
Martha's conception of a mathematical object is characterized by a ce;

tain duality: on the one hand, there is the ideal mathematical object, abs-

tract, existing only in one's mind, and on the other - there is its more

or less concrete representation: sure, we "assume" that there is an INF of n.

tural numbers, but "as we imagine this set" ; think but of a finite, be it

very large,set of numbers. Agnes does not seem to have problems of this kind

At the beginning she displayed a very "concrete" conception of line segment.

Later she started to make abstraction of the width and points became "inima-

ginably" tiny dots. But she never started thinking of there being something

like the "idea of line segment".

The 1-1 correspondence criterion was conceived of operationally (i.e.

in terms of operations to be actually performed, cf. Bridgman, 1934) by Mart

all along the experience; by Agnes - in steps 2 & 3 only. In further steps

Agnes found it sufficient to give verbally and/or iconically the rule for

pairing off in a proof.'"In Martha, her operational conception of the pairing

off procedure together with her "dual" conceptions of mathematical objects

were constantly sources of mental conflict: it is impossible to actually per
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lean the procedure on ideal, mathematical line segments (S6), these being in-

finite sets of points (and then it is impossible to compare two sets in

this sense); it can only be performed on their concrete representations -

drawings (where a point is identified with a unit of measure). But then

there is no 1-1 correspondence between points of two line segments of unequal

Length, so there are not as many points on two such line segments.

This kind of operationalism and "dual" character of mathematical con-

cepts may be characteristic of conceptions in the transition period from con-

crete to formal operational stages.

From step 4 on Agnes is very keen on precise formulations and proofs.

She seems to have now understood what is expected of her and this is how she

interprets the rules of the game. She is quite happy with it.

Martha, in step 3 ( ), says she hates formalism as being completely

arbitrary, unnecessarily pedantic & contrary to her intuitions. But, in her

attempts to refute Interviewers' arguments, she makes big efforts to use "ma-

thematical proofs" (although her logic is sometimes rather strange; e.g. she

uses something like :312cA x B (R is not 1-1) as a sufficient condition for:

A is not equipotent with B).

Agnes had accepted the 1-1 correspondence criterion as soon as she un-

derstood that it defines the term "as many as". Martha had understood it so

at the very beginning but in step 6 she refused this theoretical choice as

being absolutely against "what should be".

IV.- SOME CONJECTURES

1. "Concrete" conceptions of mathematical objects do not prevent one from be-

ing able to perform precise deductive reasonings based on assumptions not ne-

cessarily conform to one's intuitions.

2. One reason for this may be that, at the concrete operational stage, these

intuitions are very superficial: they need not touch the deep conceptual dif-

ficulties inherent in a mathematical concept (e.g. problems of density or con-

tinuity had to be discussed with Martha but not with Agnes). Younger children

may not even "see" the difficulty.

3. Another reason can be that these intuitions are not linked with emotions.

A 10 years old child is emotionally open to change of conceptions: she has

only started organising her knowledge and she accepts learning from adults.

In the course of maturation of personality, the child may start identifying

herself with her knowledge. This may become part of her worldview, and an in-

tuition may turn into a conviction or belief. Now linked with strong emotions,

it starts to function as an obstacle. This might explain Martha's resistance
against the proposed theoretical solutions.
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Piaget's theory of intellectual development is not particularly inte-

rested in maturation. "Our thinking doesn't become more intellectual just

because we are getting more mature (Donaldson, 1978)". Rut there may be a

link between maturation of personality & constitution of conceptions into

obstacles.

4. Both Agnes & Martha accepted reasonings in M as being hypothetico-deduc-

tive. The difference between them lies in their attitudes towards the rele-

vance of theories thus obtained. Agnes does not care if these theories are

absurd: M is a game and it is fun to obtain surprising results. Martha's

views are quite opposite: if one of the statements we obtain by deduction is

"false", i.e. contrary to what we think there should be, then Axioms, defini-

tions, criteria assumed beforehand must be changed or the whole theory blown

up. This difference is analoguous to that between points of view of Russel

(formalism) and Lakatos (discoursive empiricism, 1978). However, there seems

to be still another difference (perhaps more serious, even) between Agnes'

and Martha's attitudes: Martha's attitude may be a result of a conscious re-

flection on what scientific knowledge is there for, what is scientific and

what is not (& "why should I learn it???"). Agnes may just be trying to parrot

her Math teacher or the Interviewers. Therefore it may be easy to make her

change her attitude. It has shown to be an impossible task with Martha. This

difference again seems to be linked with maturation of personality.

5. The difficulty to overcome obstacles in Martha can be linked, also, with

her "dual" conceptions of mathematical objects ("ideas" representations)

and operational attitude towards mathematics (Bridgman, 1934) which may be

characteristiqhf the transition period between concrete and formal operational

stages.
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Learning Y-Intercept: Assembling the pieces of an "atomic" concept

Jack Smith, University of California at Berkeley, U.S.A.
Abraham Arcavi, Weizmann Institute of Science, Israel.

Alan H. Schoenfeld, University of California at Berkeley, U.S.A.

In this paper, we report data indicating that some commonly-held assumptions
about teaching and learning may be inaccurate. For example, concepts such
as y-intercept that are taken to be the unproblematic building blocks of higher-
order knowledge of linear functions may be much more complex than they
appear. Our analysis emphasizes that "pieces" of y-intercept can be acquired
without full conceptual understanding and that concept acquisition is a
gradual process, which extends context-bound knowledge to more general
fields of application.

Introduction
There are many core concepts in the secondary school curriculum that are
generally assumed to require very little instructional development. Concepts such
as slope, variable, equality, parabola, and y-intercept are understood to have a
simple internal structure and they are taken to be the "atoms" out of which more
complex concepts such as function are built. We present some compelling
evidence from one student's (named IN) efforts to learn one concept (y-intercept)

that questions the simple, all or nothing, "atomic" nature of these concepts. Our
results suggest that students acquire pieces of the concept (in the case of
y-intercept, graphical and algebraic pieces) before their knowledge becomes
atomic, and that learning even these individual pieces can be a highly
contextualized, gradual process.
Our analysis focuses specifically on 'N's gradual acquisition of the concept of
y-intercept across five distinct graphica contexts in a computer-based graphing
environment. If a significant proportion of our st..dc s learn "atomic" concepts in a

similar way (and we will argue that they do), then instruction must do much more to

support the assembling of atomic concepts than is typically the case.

Background to the Analysis
The data for this case study were the result of the pilot-testing of a computer
graphing environment called GRAPHER. IN was a 16 year old high school student
enrolled in a summer calculus class for high school students on the Berkeley
campus who volunteered to experiment with the software. Our initial background
questions revealed that IN was highly motivated and articulate, that she had some

deficits in her basic algebia instruction, and yet had overcome these deficits
successfully enough to succeed in advanced high school mathematics classes.
Her companion in her explorations of GRAPHER was a graduate student, JS. His

function was to provide a loose structure for her activity by explaining the basic
functionality of the software, suggesting tasks, and posing clinical-style questions
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when appropriate. IN liked the system, attending 4 separate sessions averaging
1.5 hours in length. These sessions were videotaped and the entire corpus of 7
hours of interactions was available for analysis. The case study of IN's learning of
y-intercept is part of a larger study of her learning in this context (Schoenfeld,
Arcavi, & Smith, in preparation).

GRAPHER consists of three separate microworlds, and was designed to assist
students in learning polynomial functions. One of these microworlds, "Black Blobs",
is a game patterned after "Green Globs" (Dugdale, 1984), in which students
choose equations to "shoot at" randomly located sets of squares on a Cartesian
graph. The data presented below consists of various situations that IN confronted
in Black Blobs and some of the discussions with JS that resulted. (See Schoenfeld
(in press) for a more detailed description of GRAPHER.)

A Sketch of IN's Initial Knowledge of Linear Functions
From IN's answers to our preliminary tasks and questions, we concluded that she
knew that linear functions can take the form, "y= mx + b", and that "m" was called
the slope and "b" the y-intercept. She could construct a table of values to generate
the graph of a line. She could also compute the slope from the coordinates of two
points, although her understanding of the concept and its properties was faulty. Her
knowledge of y-intercept was also a mixture of strengths and weaknesses. On the
one hand, she knew that the "b" slot was where the y-intercept was represented in
the equation, and she indicated indirectly that intercepts were locations where the
graph crossed axes. On the other hand, the graphical and the algebraic pieces of
y-intercept were not connected. She did not show any understanding that a "b"
value of "1" meant that the line crossed the axis at (0,1). Our subsequent analysis
indicates that this missing Cartesian connection between the graphical and
algebraic meanings of y-intercept (i.e. that "b" is they-intercept because (0,b) is a
solution of y=mx + b and (0,b) lies on the y-axis) was a fundamental part of IN's
struggles to learn y-intercept as a single conceptual atom.

Game situation #1: "Recalling the Graphical Meaning"
Working on her first "Black Blobs" screen (Figure 1 below), IN sought a linear
function that would hit the 2 blobs (P2 and P3) centered at (-0.5, 2.5) and (0.5, 3.5)
respectively. After calculating the slope to be "1", she turned her attention to the
intercepts.

IN: OK, let me see. Do we know what the y-intercept is? The y-intercept is...
JS: What is the y-intercept?

IN: The y-intercept is where the point touches y...oh. OK, so then, but then it could
be either 3.5 or 2.5.
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JS: Well, 3.5 is where the line is on one side of the y-axis, and 2.5 is where it is on

the other.

IN: So which one should I use?
JS: So, if the line passes through this point and this point [points to the two
selected blobs], then where is..., does that give you an idea where the y-intercept 's

gonna be?
IN: [no response]

JS: Ok, is going to be going like this [shows the line with a pen on the screen] so
just knowing that's gonna go like this, can you tell where the y-intercept is

IN: Oh, Oh, Oh!! [gestures with both hands], it's going to be at ...3?

Although she indicated before playing the game that she knew the graphical
meaning of y-intercept, that knowledge was not stable enough to apply in a new
setting. Instead, she suggested to herself the association of the nearby
y-coordinates and y-intercept. This temporary alternative meaning of y-intercept
was strong enough to withstand JS's mild prompts to focus on the line through P2
and P3 not the blobs themselves. When he was driven to the stronger intervention
of representing the line with a pen, she immediately saw the light and determined
the correct value "3". This game episode affirmed what our earlier assessment of
IN's knowledge had indicated. IN knew pieces of the concept of y-intercept, but
these pieces were highly unstable. From the next episode, it is clear that this
interchange helped IN to stabilize her graphical meaning, but only in a local sense.

Figure 1 Figure 2

Game situation #2: "Local Competence"
Bolstered by her success at hitting P2 and P3 with "y = x + 3", IN turned her
attention to 3 other nearby blobs, P4, P5, and P6 centered at (-4,8), (-1,6.5) and
(3,5) respectively (see Figure 2 above). IN correctly calculated the value of the
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slope to be -0.5 and turned to find the y-intercept. Her first estimate of the
y-intercept ("6") was exactly correct. Unfortunately for IN, JS offered her a folded
paper as a means to represent the line and check her estimate. She then changed
her estimate to "5.5", perhaps as a result of the parallax of the computer screen,
and entered the equation "y = -0.5x + 5.5". She was perturbed by the miss that
resulted but proceeded to adjust the value in two steps ("5.75" then "6" again) to hit
all three targets.

Her performance in this episode would tend to indicate that she had consolidated
her graphical meaning of y-intercept and would have no more problems with that
issue. In short, it looks as if she "has the concept". As will be apparent from latter
episodes, this assessment was clearly incorrect. The competence that she had
gained was limited to a narrow graphical context: those situations in which blobs
bracketed and were close to the positive y-axis. Game situations that did not fit
those conditions presented new and substantial difficulties. As the data from
Situation #3 and 4 below will show, the extension of the graphical meaning of
y-intercept from the limited context of application of Situations #1 and 2, to other
more general contexts was anything but automatic and effortless.

Game situation #3: "What Should Have Been Easy Was Not"
Six days after what had been an enjoyable first round with GRAPHER, IN returned
for a second round of work. On her first game screen (illustrated below in Figure 3)
she selected 3 blobs, P1, P2, and P3, centered at (0,7), (-1,5) and (-2,3)
respectively. She spontaneously asserted that they looked like the ones that she
had shot at in her previous session. She then miscalculated the slope to be "-1.5"
(the correct value was "1.5") and declared the y-intercept to be "zero", typing in the
equation "y = -1.5x + 0". When the resulting line was off-target in slope and location
on the y-axis, IN was quite taken aback. In response, JS put both the slope and the
y-intercept values up for discussion.

JS: OK, did either of them come out the way that you wanted, or is, are they both
wrong?

IN: Well, the y-intercept should be zero, shouldn't it, because that third dot on the
top is zero, isn't it?

JS: This one? [pointing to P1]
IN: Yes.

JS: Ah, well, let's see, it has two coordinates, right, an x and a y?
IN: Yes.

JS: And one of the coordinates is zero.

IN: Yes, the x, and the y is 1,2, 3, 4, 5, 6, 7, zero 7.
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JS: So if we need to include the y-intercept...

IN: Aha.

JS: Which one of those numbers, zero or 7, is the y-intercept?

IN: Oh, 7! Oh, I didn't know that.

Pi

P2

111 p3

Figure 3 Figure 4

If there was any doubt before, her final comment indicated quite clearly that her
difficulty in this situation was rooted in a matter of substance and was not just in a
slip of the tongue. This collection of blobs would be the easiest of all possible
game situations for someone who understood y-intercept. With a blob located on
the y-axis, the y-intercept of the desired line is the y-coordinate of that blob. But

this "easy" situation was anything but straightforward for IN. She knew the
coordinates of P1 but did not know that the y-coordinate of P1 since it was located
on the y-axis was the y-intercept. Instead, she used the salient x-coordinate. We
take this as strong evidence that the graphical and the algebraic meanings of y-
intercept were isolated from each other. She tact- a the knowledge that "b" is the
y-intercept value, precisely and necessarily because the ordered pair (0,b) was a
solution to the equation "y= mx + b" and (0,b) lies on the y-axis. In the absence of

this unifying "Cartesian" connection the situation of a blob on the y-axis presented
a new context for IN's limited notion of y-intercept, one that required an extension
of what she had just learned.

Game situation #4: "Success in a New Context"
About 15 minutes later in Session 2, IN decided to shoot at two blobs that were
distant from the y-axis P4 bnd P5 centered at (6,-5.5) and (7,-6.5) (see Figure 4

above). After incorrectly calculating the slope to be "1" (the correct value was "-1"),

she turned to JS with a question.

IN: [writing "y = 1 x + on her scratch paper] How do I find the y-intercept?
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JS: What is the y-intercept?
IN: Yeah, or how do I find it?

JS: I know, ...what can we, what can we remember from just the word, y-intercept?
IN: Where it touches the y-axis.

JS: OK, um...

IN: But it would be far away, see, and so I'd have, I'd probably make a mistake if I
just guessed at it.

JS: Well, let's be a little experimental. Let's see if we can guess.
IN: Oh. It'd probably be here [tracing a line with the mouse out of the graph window
near (0,1011 if we can guess.

This episode indicated that IN's knowledge of y-intercept had advanced in a
number of ways. First, she was able to successful handle a new situation two
blobs which did not straddle the y-axis and were quite distant from it. Secondly, her
difficulties were due to the limitations of her ability to visualize the line and
therefore its y-intercept, not to any difficulty with the graphical meaning itself. In fact,
she was able to give a reasonable graphical definition, despite the use of
language ("touches") that was involved in her previous confusions with y-
coordinate. Finally, her empirical success in estimating the y-intercept had pushed
her to seek a more direct and deterministic method for finding the y-intercept
values for given blobs. (She asked JS for a "shortcut" after bemoaning the vagaries
of "guessing".) If we measure along these micro-dimensions, IN learned a great
deal in her interactions with GRAPHER. But, as the final episode we present
indicates, there were still definite limitations to her understanding.

Game situation #5: "A New Kind of Context-Dependence"
On a new game screen later on in Session 2, IN experimented with different slope
values to get lines of different inclination through the same y-intercept, "-2". JS
suggested that she find a linear equation that would hit the blob P5 centered at (-
8.5,-4.5) and went through the same y-intercept she had been using (see Figure 5
below).

IN: This one [pointing to P5] and what other point? Shouldn't I have two points
before I can solve it?

JS: ... what I meant was whether you could drawa point through this blob that went
through the y-intercept, -2.

IN: Ok, ah, but what other point would it reach?.... there is no point that I can reach
that would make me go through that ax, through that intercept.

JS: Right, OK, so the problem there is what? We only have one point?
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IN: Ah, yes.

JS: OK, is there anything else on the screen that we could treat as another point?
IN: That would make this, that would be straight here [tracing the line]? No. See.
There's nothing else here.

Figure 5

At this point, JS gave up and told her to use the y-intercept as if it was a blob. She
needed 3 attempts to guess the slope, "-.5", "-.1", and "-.3". and then typed in the
equation, "y = -.3x - 2". Then watching attentively as the line approached the y-axis,

she declared with pride and exhilaration, "Exactly!" FT, the line crossed the y-axis.
We take this final episode to indicate that IN's knowledge of y-intercept was very
dependent on the particular constraints of the game and was not situated in the
ideal Cartesian plane. Her reiteration of the need to start with 2 or more blobs and

her expression of exultation when the line crossed at (0,-2) indicates that she had
failed to abstract that blobs were sloppy approximations of points in the plane. As a

result she failed to see that a y-intercept and a blob were sufficient to determine a
line. When JS asked her to simply treat the y-intercept as a blob, she accepted his

suggestion as simply an amendment to the rules of the game. (We here note that

her requests to find another, point were not driven by the need to compute the
slope, as the careful reader might think. In this sequence she was estimating the
values of the slope.) IN had learned as much as she could about y-intercept from
shooting at collections of 2 or 3 blobs in the game. She knew that every collinear
set had an associated y-intercept and became quite skilled at estimating its value.
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Her learning led her toward the deep connection between the value of "b" in the
equation and its graphical meaning, but she never grasped it. Perhaps for this
reason, she failed to abstract her knowledge from the game to the more general
context of the Cartesian .plane:

Discussion
We have presented results from a single case study that indicate that learning
simple "atomic" concepts is a much more contextualized and gradual process than
is commonly understood. Despite having learned enough mathematics to get
herself placed in the calculus class for advanced high school students, IN still had
to learn (or relearn) the concept of y-intercept one graphical context at a time. Local
competence (as demonstrated in Situation #2 and then again in Situation #4) did
not at all imply a general and robust understanding.

This research indicates that some ostensibly simple notions are quite complex and
subtle for students and that the appearance of mastery may hide, in fact, only the
barest understanding. These results have implications for mathematics curricula
whose goal is that students build deep and meaningful understandings of
mathematical concepts rather than the superficial and fragile ability to repeat only
the procedures they have been taught.
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COMPUTERS, VIDEO, BOTH OR NEITHER.

WHICH IS BETTER FOR TEACHING GEOMETRY?

Nurit Snir and Zemira Mevarech, Bar-Ilan University
Nitsa Movshovitz-Hadar, Technion-Israel Institue of Technology

This study was designed to assess the impact of instruction via
computers, video, both or neither on learning processes and achievement in
geometry. A 2X2 (TV by Computer ) factorial design was employed.
Participants were 268 fifth grade students who studied the same contents
for the same duration of time. Results showed that more media does not
necessarily imply better math learning. In fact, the no-media and multi-
media yielded similar low learning outcomes, while the video by itself
exerted the highest achievement scores, even higher than those obtained in
the computer environment. A similar pattern of differences were found on
Time On Task.

Five years after Bloom (1984) phrased the two sigma problem", the

solution is still far away. Bloom argued that "optimal learning conditions"

can promote cognitive outcomes by approximately two standard deviations

(sigma) above what can be achieved under "conventional conditions". The

problem, of course, is how to define "optimal learning conditions". Bloom

(1976, 1984) maintained that to be effective, educz.": .,vial environments must

adequately provide for the four elements of the quality of instruction:

appropriate cues, reinforcement, participation, and feedback-correctives. In

this view, the four elements are additively related to achievement; if one is

missing, achievement will be lower. Therefore, Bloom (1984) suggested to

combine instructional methods that emphasize different elements of the

quality of instruction.

In the last decade, several attempts have been made to explore the

impact of combined methods on achievement. For example, Mevarech ( 1980)

found that combining programs emphasizing cues with programs emphasizing
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feedback-correctives enhanced achievement more than each program by

itself, Bloom (1984) reviewed a number of studies showing effect-sizes

higher than one standard deviation of combined methods compared to control

groups that did not employ any specific method. Finally, Tenenbaum (1986)

reported strong impact of an instructional method consisted of the four

elements of the quality of instruction.

What are the implications of Bloom's theory (1984) to technology

assisted instruction? Does the exposure to two instructional media imply

better math learning than the exposure to one or to none? Moreover, does the

use of one medium improve achievement more than "conventional" instruction

with no technology? Undoubtedly, video programs have the potential to

enhance different types of cues including verbal, visual, and vocal. As a

result, the exposure to new video programs has tended to facilitate learning

(Clark, 1983). On the other hand, considerable research has indicated that

computer assisted instruction (CAI) that provides immediate feedback-

correctives yielded significant better academically oriented achievement

and affective outcomes than learning with no computers (Kulik and Kulik,

1987; Mevarech et. al., I 985a, 1985b, 1987,1988). Based upon Bloom's

theory (1984) and these findings it was hypothesized that instruction aided

by multi-media consisted of computers and TV would promote academically

oriented outcomes more than would be expected on the basis of each medium

separately or instruction which is not aided by any technology.

Although the cognitive outcomes arising from CA.I and instructional

video programs have been the focus of systematic research, relatively little
research has been directed to other outcomes. In particular, very little is

known on learning processes that take place in computer or TV environments.

Research has indicated that both TV and computers have been viewed as
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having important roles in increasing attention and time-on-task (TOT) (Clark

and Salomon,' 986). Thus, it was hypothesized that instruction via multi-

media (TV and computers) would increase TOT more than each medium by

itself.

The purpose of this study was to investigate the roles of instruction via

computers, video, both, or neither on learning processes and achievement in

geometry. To examine the study hypotheses, a 2X2 (TV by Computer) factorial

design was employed. The four resulting treatments were: multi-media (TV

and computers), TV, Computer, and absence of technological devices. The

research design holds constant quality and content of instruction, as well as

allocated time; the only differences between the treatments were related to

the different media as will be described below.

METHOD

Participants

Participants were 268 fifth grade students,126 boys and 142 girls, who

studied in eight classrooms in four Israeli elementary schools. Classrooms

were comparable in terms of students' 5E5, previous exposure to computers

and TV educational programs, and teachers' y of experience. Intact

classes in the four schools were assigned randomly to the four treatments.

As a result, the size of the groups were: multi-media (N=74), TV (N=69),

Computer (N=55), and neither TV nor Computer (N=59).

Treatment Groups

All classrooms studied the same unit in geometry: Ti les and Corners,

for equal amount of time (fc)ur weeks) with the same geometry book

(Shoehorn, Snir, and Movshovitz-Hadar, 1987). This unit is a new part of the
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Israeli elementary school curriculum in geometry and thus none of the

classes had been exposed to its contents prior to the beginning of the study.

Indeed, knowledge pre-assessment showed an average grade of less than 20%

correct answers. All teachers were told that they were experimenting a new

unit. They received the same training and used the same instructional

method: introducing a new concept or skill to the whole class followed by

individualized practice and application sessions based on the same student

workbook.

The difference among the treatment groups was in the exposure to the

media. The "TV group" learned the prerequisites concepts related to the unit

in the first four sessions as described above and then watched a 25-minute

video program called: "Tiles and Corners" of the Dra-Math series produced by

the Israeli Instructional Television (Reiner and Movshovitz-Hadar, I 986).

Watching was followed by augmented activities designed by the film

designers. At the end of the study, the video program was played once again

to ensure that understanding had been attained. (For more information about

the Dra-Math series, see Movshovitz-Hadar and Reiner, 983).

The "computer group" used LOGO or BASIC to practice skills and to apply

the concepts introduced during the whole class instruction. At each session,

after the teacher introduced the new concepts, groups of six students

practiced individually at the computers. The rest of the class continued to

practice with the student workbook. Thus, similarly to the TV group, also in

the Computer group, about 25% of the time was spent at the media.

The multi-media group watched the program as did the "TV group" and

they practiced the skills and applied the concepts using LOGO or BASIC as did

the "computer group". Finally, as was mentioned above, the "no technology"

group spent an equival lent amount of time learning with the workbook only.
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Instruments

Mathematics achievement were assessed by two instruments:

Standardized Mathematics Achievement Test developed by the Israeli

Ministry of Education (Kudar-Richardson reliability coefficient = .86) and

geometry achievement test developed by the unit designers (Alpha-Cronbach

reliability coefficient= .79). The geometry test was administered prior to-

and at the end of the study; the Mathematics Achievement Test was

administered prior to the beginning of the study and its results were used as

a covariate in all analyses. In addition, students Time On Task (TOT) was

assessed at the beginning, in the middle, and at the end of the study by a

short questionnaire designed by us for the purposes of the present study

(Kudar-Richardson reliability coefficient =. 80 ).

RESULTS AND DISCUSSION

To assess the effects of the different media on achievement in

geometry, a one way analysis of covariance (ANCOVA) was employed with the

pre measures used as a covariate. A test of the homogeneity of the slopes

indicated that the rPcirPcs,inn ,lopes wprp Pq ial for all four cells and thus,

the usual analysis of covariance model could be applied.

Significant differences were found between treatment groups on the

post geometry test controlling for initial differences in mathematics and

pre-geometry achievement tests (F(3, 262)=35.81, p<.001). However, in

contrast to our hypothesis, the multi-media group did not attain the highest

mean scores. Evidently, Duncan comparisons indicated that the "TV group"

attained the highest achievement mean score. Their mean score was

approximately one standard deviation higher than the "Computer group" which

in turn was approximately half standard deviation higher than the multi-
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media and the "no technology" groups; no significant differences were found

between the last two groups.

Analyses of students' TOT indicated that although no significant

differences were found among the four treatment groups at the beginning of

the study, significant differences among groups were manifested at the

middle and at the end of the study. Generally speaking, TOT data supported

the results reported above. Duncan comparisons showed that TOT of the "no

technology" group remained stable during the time of the study. The "TV

group" consistently increased TOT and so did the "Computer group". In

contrast, however, the multi-media group increased TOT between the first

and the second measures, but than a sharp decrease was manifested.

The results will be discussed at the conference from three.perspectives.

First, Bloom's model (1976, 1984) will be applied to illustrate the roles of

the elements of the quality of instruction. Second, theories in metacognition

will be used to explain the small impact of the multi-media on achievement.

Finally, the implications of the findings to actual classroom teaching will be

presented: what to do and what not to do.
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VOCATIONAL MATHEMATICS

Teachers' Cognition of Mathematical and Vocational Knowledge

The paper reports on an empirical study of the way, teachers in vocational
colleges perceive the relation of mathematical and vocational knowledge. A
content analysis of 40 interviews shows that the majority of the teachers
think of the relation in terms of examples from both domains. Only few of them
come up with descriptions relating these domains as a whole. When asked about
the purpose of mathematics in their teaching, half of them call mathematics a
helpful tool (and nothing else), whereas a third also mentions the conceptual
help of mathematics for understanding professional situations.

1 Research Question

Research on teacher cognition analyses the concepts and decision processes of
teachers (cf. BROMME & BROPHY 1986, CLARK & PETERSON 1986, HOFER 1986), but
did not pay too much attention to the 'professional knowledge' of teachers
taken as the mixture of pedagogical, didactical and matter knowledge, routines
and experience including the emotions related to the teaching practice.
Teachers' professional knowledge is based on preservice teacher-training and
develops during the teacher's actual teaching.

Only recently, empirical research in the professional knowledge of teachers
started (cf. SHULMAN 1986) and has to specify the teachers' professional
knowledge against the knowledge of different professions e.g. managers of a
company or lawyers. The research reported below starts from the assumption
that the professional knowledge of teachers is characterized by an integration
of knowledge from two domains, namely curricular, subject-matter knowledge and
pedagogical knowledge (cf. BROMME 1987, BROMME to appear).

The professional knowledge of teachers is analysed in a specific setting
namely technical and vocational colleges in the FR Germany. This is a part-
time classroom-type education of normally two days per week complemented by
three days vocational training in companies (the west-German 'dual system' of
vocational training, for a detailed description cf. STRASSER 1985). This type
of initial vocational training would last three years and offers a vocational
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certificate as qualified worker ('Facharbeiter') to the successful student. In

the college part of the training, the 'Berufsschule', mathematics would be

taught for two or three hours per week with the aim of a numerical foundation

and interpretation of vocational phenomena, underpinning vocational knowledge

by numerical analysis ("zahlenma(lige Deutung and Durchdring ... von berufli-

chen Erscheinungen", "Untermauerung der Fachkunde durch rechnerische Durch-

dringung", cf. GRONER 1955, p. 477, and WOLFF 1958). The use of metaphors in

the widely accepted descriptions of goals of the mathematics teaching may be

taken as a hint that there is no explicitly consented didactics for this

teaching and only little research in vocational mathematics education.

Analysing the professional knowledge of teachers in vocational colleges, these
teachers' curricular knowledge should be additionally subdivided into mathema-

tical knowledge and knowledge related to the vocation they train the students

for ('vocational knowledge'). From the point of view of the related discipli-

nes (mathematics, pedagogy and e.g. engineering), the three domains of

kowledge differ widely and may be even taken as different cultures (cf. SNOW

1959). The research reported below concentrates on a pair of the triple
pedagogical-vocational-mathematical knowledge and analyses the way teachers
think of the relation between mathematical and vocational knowledge (for an

empirical analysis of the relation of curricular and pedagogical knowledge in
general education cf. BROMME & JUHL 1988). The relation of mathematical and

vocational knowledge here is a particular revealing case of an integration of
different domains of knowledge because of thri p 'fie task these teachers
have to fulfil.

2 Methodology

Professional knowledge is not directly accessible. and differences occur

between the knowledge used and the knowledge which is talked about even in

professions which need use of speech when being practiced (cf. ARGYRIS & SCHON

1974). For an empirical analysis, one should generate occasions to observe the
use of professional knowledge e.g. ask for a description of lessons in

mathematics recently taught.

In 1981 and 1983, 40 teachers of vocational colleges were interviewed to learn
about the teachers' concepts on the relation of mathematics and the correspon-
ding vocational domain. The teachers were trained in the vocational domain
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(e.g. metalwork or business) and trained teachers, not trained mathematicians,
who had to teach vocational mathematics In "Berufsschule". At the beginning of
the interview. They were asked to relate their answer to a specific course
they had taught last year. The interview started with a detailed description
of this course (number of students/distribution of sexes/school leaving
certificates etc.) in order to secure a relatively narrow relation to the
teaching reality of the interviewee. They were also asked to describe
difficulties the students had with mathematics, the topics taught to the
course, their teaching methodology and the manuals used. At the end of the
interview, data on the biography of the interviewee (age, type of vocational
training, academic training, teacher training, years of active teaching etc.)
were gathered.

In the 1981 and 1983, in total 40 teachers from a whole range of vocations
(from businessadministration to electricity and tailoring) were interviewed.
The interviews lasted from 1 to 2 hours. A comparison of data on the courses
and teachers interviewed with data available on vocational teachers and
classes in the FR Germany shows that average fulltime vocational teachers
were in the sample, teaching courses with relatively good school leaving
certificates and the usual competencies (for details cf. STRASSER 1982, p.

60ff).

The teachers' perception of the relation of mathematical and vocational
knowledge was reconstructed by a content analysis relying on categories
modelling the twodomainapproach (mathematical vs. vocational knowledge). Two
independent raters had to search the interviewparts on the topics and
methodology of teaching in order to identify those sentences directly speaking
of the function mathematics has in the vocational training of the students.
These passages were classified into mathematics (I) for communication purpo
ses, (2) as operative help for vocational problems, as tool, (3) as
description of a vocational situation and (4) mathematics in other functions.
In a second step, the raters identified passages directly speaking on the
relation of mathematical and vocational knowledge, analysing these passages as
binary relations (mathematical/vocational topic) by classifying their degree
of abstractness (example vs. whole discipline/subject for both carriers of the
relation) and the way, mathematical and vocational knowledge are described to
act upon each other (e.g.: related mathematics taught before vs. taught after
the related vocational knowledge).
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The 6 female and 34 male teachers (with average age of 42 when interviewed)

had all (except two) gone through a preservice teacher training. 16 of them

mentioned special studies in mathematics during their teacher training. As a

mean, they had seven years of active teaching. They had been teaching courses

In business/administration (14 teachers), technical domains (22 teachers) and

others (4 teachers, e.g. courses for future florists) with higher school

leaving certificates and more female students in the business/administration

courses than in the other courses (business/administration: 66.5 % average

female students against 21.8 % average female students in the technical

courses).

Only half of the teachers remembered teaching mathematics more than four

consecutive lessons in isolation from vocational contexts. Less than half of

the topics of mathematics lessons can clearly be labelled mathematics. The

teachers gave examples like "rule of three" and "equations" as well as "torque

and power" and "calculating investment" as topics of their lessons. Most of

the teachers described their teaching method in the following way: A lesson

would begin with a description of a situation or a technical or scientific

experiment specifically prepared for teaching vocational mathematics. Having

developed a solution in terms of a formula or a calculation rule, the teachers

seem to underestimate the reinterpretation of the mathematical solution in

terms of the vocational contexts (for details cf. STRASSER 1985a, for a

description of this teaching method cf. BLUM 19°

To learn about the three domains in the professional knowledge of the

teachers, they were asked to distribute 100 points to three descriptions of

themselves: "educator"/"specialist in mathematics"/"specialist in the vocatio
nal domain they trained for". 37 teachers answered with the distribution shown

in the graph (see next page). As can be seen from the answers, the teachers'

selfconcept was rather being an educator or a specialist in the vocational

domain, not in mathematics.

As for the function(s) of mathematics, half of the teachers call mathematics a

helpful tool for vocational contexts (and nothing else). A third also mentions

the help of mathematics for understanding vocational situations (see table 1

next page: both raters had only a 50%agreement on both the identification
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Graph: Teachers' Self-Description
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Table 1: Functions of Mathematics for Vocational Contexts

none ONLY

tool

number of teachers 8 16

ONLY under
standing

7

tool AND
underst.

other

3 6

and classification of interview-parts). "Other" functions of teaching mathema-
tics were e.g. 'fostering logical thinking', and 'general education'.

The detailed analysis of passages relating mathematics and vocational contexts
is summarized in table 2 (see next page; both raters show an accordance of .78
for both the identification and classification of the relation). Obviously,
the majority of the teachers think of the relation between these two domains
in terms of examples from both domains, only few of them come up with
descriptions relating these domains as a whole.
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Table 2: Relations of Mathematics and Vocational Contexts

Degree of
Abstract-
ness

Contents
maths helps
vocational
knowledge

of Relation
voc. knowl.
helpful for
maths

mutual
help other

ONLY
examples 18 0 1 1 20

maths ONLY
as disci-
pline

5 0 1 3 9

other 4 2 1 3 10

27 2 3 7 39

Statistical tests show no connection between the self-description of the

teachers and the function of mathematics for vocational contexts or the

relation between mathematical and vocational knowledge. Teachers with mathema-

tical studies tend to give significantly more points for the "specialist in
mathematics" than the others. Teachers having more years of active teaching

seem to put more stress on the 'understanding'-function than those with less

teaching experience. There is no correlation between age, mathematical

studies, characteristics of the courses and their cognition of the function of

mathematics or the relation mathematical/vocational knowledge (for details see

BROMME & STRASSER in press).

4 Interpretation

An interpretation of the results presented should start with the fact that the
'communication'-functions of mathematics for vocational contexts Is not at all

mentioned by the teachers. The teachers only perceive the 'tool'- and the

'understanding'-function, which may be taken as a redefinition of the

descriptive function. This more or less pragmatic view on mathematics comes up

also in the widespread use of examples rather than whole disciplines/subjects

when the relation of mathematical and vocational knowledge is mentioned in the

interviews. Mathematics has It's fundamental purpose in helping with vocational

problems, serving as an operative tool. It is taught Integrated with

vocational contexts and has nearly no role In itself (cf. the few teachers

mentioning the underpinning of mathematics by vocational knowledge). The most

striking result is the overall agreement on the relation of mathematical and
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vocational knowledge in the interviews. A majority of interviewees only

mentions the 'tool'-function of mathematics. An 'objective' interpretation
could take this perception as so dominant and widespread that different views
can only rarely be found In the vocational colleges. A 'measurement'
Interpretation could take this as an indication for the inappropriateness of
interviews to empirically analyse such cognitive structures. Interviews and
content analysis might be not sensitive enough to really mirror delicate
differences. A 'subjective' interpretation could mention the difficulties to

speak about the relation of mathematical and vocational knowledge. Even within
mathematics education as an emerging discipline, there is an obvious concep-
tual deficit on the way in which mathematics and domains of its application
relate to each other. A decision which interpretation should be favoured has
to wait for additional empirical and conceptual work in the field.

References

Argyris, Ch. & Schon, D. (1974). Theory in practice: Increasing professio-
nal effectiveness. San Francisco: Jossey-Bass.

Blum, W. (1985). Methodik. In Hardy, P. & Blum, W. & Braun, H.-G. (Eds.),
Mathematik in der Berufsschule Analysen und Vorschlage zum Fachrechen-
unterricht (pp. 64-71). Essen: Girardet.

Bromme, R. (1987). Zur empirischen Analyse beruflichen Wissens von Lehrern
FachWissen ist meter als Stoff- und Menschenkenntnis. In Schonwalder, R.H.
(Ed.), Lehrerarbeit (pp.37-68). Freiburg: Dreisam.

Bromme, R. (to appear). Der Lehrer als Experte Miiglichkeiten und Probleme
psychologischer Expertenstudien.

Bromme, R. & Brophy, J. (1986). Teachers' cognitive activities. In Christian-
sen, B., Howson, G. & Otte, M. (Eds.), Perspectives on mathematics education
(p.99-139). Dordrecht: Reidel.

Bromme, R. & Juhl, K. (1988). How teachers construe pupil understanding of
tasks in mathematics: Relating the content to cognitive processes of the
learner. Journal of Curriculum Studies, 20, 269-275

BEST COPY AVAILABLE 19-7



1 9 6

VOC. MATHS R.StrasserR.Bromme IDM Bielefeld

Bromme, R. & Strasser,R. (in press). Mathematik im Beruf: Die Beziehung ver
schiedener Typen des Wissens im Denken von Berufsschullehrern. In: Alisch,

L.M. & Baumert, J. (Eds.), Professionswissen und Professionalisierung.

Beiheft 1 of 'Empirische Padagogik'.

Clark, Ch. & Peterson, P. (1986). Teachers' thought processes. In Wittrock, M.

(Ed.), Handbook of Research on Teaching Third Edition (pp. 255-296).

New York: McMillan.

GrUner, G. (1955). Kritische Untersuchung des Bildungsgehaltes des Fachrech
nens an Hand seiner Entwicklung. Die berufsbildende Schule, 7, 474-484.

Hofer, M. (1986). Sozialpsychologie erzieherischen Handelns. Gottingen: Hogrefe.

Shulman, L. (1986). Paradigms and research programs in the study of teaching:
A contemporary perspective. In M. Wittrock (Ed.), Handbook of research ontea
ching. Third edition (pp. 3-36). New York: McMillan.

Snow, C.P. (1961). The two cultures and the scientific revolution. Cambridge:

University Press.

Strasser, R. (1982). LehrerInterviews zum mathematischen Unterricht in der

Berufsschule erste Ergebnisse. In StriOer, R. (Ed.), Mathematischer Unter

richt in Berufsschulen Analysen und Daten. (IDM Materialien und Studien

Bd. 28, pp. 53-77). Bielefeld: Universitat Bielefel-1.

Strasser, R. (1985). Mathematics in technical and vocational education in the
Federal Republic of Germany (FRG). (Occasional Paper No. 62 of IDM) Bielefeld:

Universitat, IDM.

Strasser, R. (1985a). Anwendung der Mathematik Ergebnisse von Lehrer

Interviews. Mathematica didactics, 8, 167-178.

Wolff, F.W. (1967). Ziel, Stoff und Weg im Fachrechnen der Gewerblichen

Berufsschule. In Drenckhahn F. (Ed.), Der mathematische Unterricht far die
sechs bis fanfzehnjahrige Jugend in der Bundesrepublik Deutschland.
Gottingen: Vandenhoek & Rupprecht.

198



197
TRAINING ELEMENTARY TEACHERS IN PROBLEM SOLVING

STRATEGIES: IMPACT ON THEIR STUDENTS' PERFORMANCE
Jerry K. Stonewater

Department of Mathematics and Statistics
Miami University, Oxford, OH

This paper descibes a course in mathematical problem
solving strategies for elementary school teachers and the
results of this training on the teachers' students'
performance on select problem solving items from the
fourth National Assessment of Educational Progress in
mathematics. Overall, students of teachers participating
in the course outperformed the students whose teachers
did not take the course.

Results from the Fourth National Assessment of Educational

Progress document that the mathematical performance of

elementary and middle school students in this country is

alarmingly poor (Dossey, et al, 1988). For example, NAEP

results indicate that over seventy percent of third graders

cannot correctly solve a problem involving two or more steps,

or that over one-half of the seventh grade students have

difficulty with problems involving logical reasoning based on

simple syllogisms. Other research in teacher knowledge of

mathematics makes a strong case that efforts to improve

children's mathematics learning might first begin with

enhancing teachers' knowledge about mathematics. Ball (1988)

points out, for example, that only twenty percent of a group of

pre-serivce teachers could definitely say that the statement,

"as the perimeter of a closed figure increases, the area also

increases," was incorrect. Others have found that a group of

pre-service teachers could answer correctly only slightly more

than one-half of a set of problems that could be solved using a

variety of strategies (Oprea and Stonewater, 1988).

Funding for this research is sponsored by Title II of the
Education for Economic Security Act and administered by the
Ohio Board of Regents.
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Yet the question of whether or not direct inservice

training of teachers is an effective means of improving their

students' learning is still open. Wheately (1983) found

substantial student gains in subtest scores on the Iowa Test

of Basic Skills after their teachers received training.

Szetela and Super (1987) found gains in student performance

due to teacher training on only two of five problem solving

tests. It appears that the effects of inservice teacher

training on subsequent student performance are unclear, at

least with respect to mathematical prbblem solving ability.

Partly in response to these research findings, The Ohio

Problem Solving Consortium has received funding to form a

cooperative venture between public school teachers end

university personnel. (Stonewater and Kullman, 1985;

Stonewater and Oprea, 1988). The Consortium trains elementary

and middle school teachers in problem solving strategies and

assists the teachers in using their newly-learned knowledge of

problem solving as a basis for redesigning their own

instruction to improve children's problem solving abilities.

The purpose of this article is to describe a problem solving

course and to report the results of i Jvements in the problem

solving abilities of the teachers' students as measured by

select problem solving items from the fourth National

Assessment for Educational Progress in mathematics.

Methodology To assess the effectiveness of the course on

the participating teachers' students, Consortium teachers and

six teachers not involved in the project administered select

items from the NAEP in'October and again six months later.
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Eight items were chosen from the fourth mathematics assessment

and were selected to represent problems which could be solved

using at least one of the strategies learned by the teachers.

A total of 516 experimental students and 122 control students

completed all testing. Data were analyzed using a multiple

analysis of covariance, with pre-test scores as the covariate.

A Wilks' Criterion F-value was computed, as well as adjusted

post-test scores, providing a post-test statistic that could be

used to compare groups with possible pre-test differences

controlled. For a statistically significant F-value, post-hoc

analyses of variance were computed for each of the eight test

items separately.

Problem Solving Course Teachers were expected to learn

and be able to use seven different problem solving strategies:

Guess and Check; Patterns; Simpler Problem; Elimination;

Working Backwards; and Simulation. Project data indicate

that elementary school students do fairly poorly applying

these problem solving strategies (Stonewater, 1988).

Teachers were also exprected to reorient their own teaching to

include units on each of the problem solving strategies.

A typical class began with a review of assigned problems and a

discussion of the teachers' experiences applying the strategy

to their own teaching, followed by a short lecture introducing

the next strategy. Once an example problem was worked by the

professor, the class worked a problem in groups of four to

five teachers. After solutions and solution methods were

discussed with the entire class, homework was assigned for the

next week. The problem solving course was designed on the

basis of the Instructional Model for Problem Solving
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(Stonewater, Stonewater, & Perry, 1988), a model grounded in

cognitive developmental theory and intended to key in to the

teachers' cognitive developmental levels as a means of

ehnhancing understanding. The model includes three categories

of instructional approaches which, on the one hand provide

support for the learner to engage in complex and difficult

learning tasks, and, on the other, create what Piaget (1952)

termed disequilibrium, or an upsetting of how teachers

traditionally think about problem solving so that new and more

sophisticated ways can be accommodated. These catagories are

structure, direct experience, and diversity.

Structure The IMPS model suggests that in order to

enable students to attend to difficult and complex problem

solving, the course should provide a high degree of structure

as a support for engaging in difficult learning tasks. One

method used to provide structure was to develop a task analysis

or a list of heuristics and guidelines that described how to

carry out the strategy. For example, a task analysis was

written for the Working Backwards strategy and includes a

sequence of steps that the teacher or student could use in

applying the strategy.

Direct Experience -- The IMPS model also suggests that

activities which engage teachers in direct application of what

they are learning will enhance learning. A number of methods

were used to do this. First, in conjunction with the local

public broadcasting television station, a series of four video

tapes, entitled Problem Solving in the Middle School, were

developed as examples of mhat "master teachers" do when
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teaching problem solving. These were viewed by the class. One

patLi(ulat puiLion ul Lilo LapeL; L;huwL; middle bLhu.il

teachers actually using various problem solving strategies in

their classes and teachers could often relate their own

students' reactions and problems to what they saw on the tape.

As another direct experience method, teachers were asked

to apply each of the strategies in their own classes and to

keep a journal of their experiences. While this activity did

not engage the teachers directly in actual problem solving, it

helped them build confidence in their abilities to teach

problem solving. As one junior high teacher commented, "I can

give a class a problem now without making sure I 'know' the

answer first. What I do know is that I'll figure out the

problem by day's end!" Teachers also saw in their own

students' problem solving many of their own difficulties with

mathematical problem solving.

Diversity Another approach used in the IMPS model is

that students must realistically engage in the complexities of

what is to be learned in order for them to experience

disequilibrium. Presenting diverse situation for the

teachers to engage with is a method of doing this. Thus,

problems that required the teachers to generalize beyond their

current levels of mathematical knowledge and thinking ability

were presented. For example, teachers rarely had difficulty

with pattern problems like predicting the next term in the

sequence 1/(1*2), 1/(2*3), 1/(3*4),.... But in order to

challenge them and create the required disequilibrium, we

introduced a second level of pattern problems that required

generalization beyond the mathematics they knew. Such a
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problem extension would be to predict the sum of the series,

1/(1*2) + 1/(2*3) + + 1/(n*(n+1]). This variation was

much more difficult, but after some struggling, most teachers

began the process of making generalizations. Thus, in addition

to learning the basics of each strategy, the teachers went

beyond what they might need to teach elementary or middle

school into important mathematical thinking skills.

Another method of introducing diversity was to show the

teachers that more than one strategy or approach to a problem

was often appropriate. By using diverse problem solving

approaches, teachers had to confront the often-held belief

that there is "only one solution to a mathematics problem".

Results Results of this study indicate that the students

of particiating teachers performed significantly better on the

post-test than did the students of control teachers (F(8,621)

= 3.82; p< .0002). Adjusted post-test scores for the

experimental group were 5.20 items out of 8 correct (65%),

compared to 4.56 items out of 8 correct for the control group

(57%). In addition, the experimental group's adjusted post-

test means for each of the eight items separately were higher

than the control group's adjusted post-test means. Of these

differences, five of the eight items were statistically

significant in favor of the experimental group. These data

are reported in Table 1.

The five items in which the experimental students

outperformed the control students were categorized as problems

that could be solved using silulation, elimination, patterns,

or guess and check. Note that in every case, the experimental
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students gains are substantially greater than those of the

control group. For example, the increase from pre- to post-

test in the percent of students in the control group who

answered one of the guess and check items correctly was only

2.5%, while it was almost 15% for the experimental students.

Discussion The results of the NAEP study utilized in

conjunction with the problem solving course as well as the

feedback received from teachers indicate that the major

objective of enhancing children's problem solving abilities by

way of training their teachers was accomplished. Teachers'

self-reports indicate they felt more confident at doing as well

as teaching mathematical problem solving. In general, it

appears that efforts by universities to offer subject matter

coursework to teachers can be an effective catalyst for

bringing about changes in curricular content in the schools and

for positively influencing children's learning.
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Table 1

Percent Correct and F- Values on NAEP Items

ITEM PRE POST Percent Gain
Pre to Post

Adjusted
Post

F p <

1. Guess & Check E 32.4 40.7 8.3 40.8
C 33.6 35.2 1.6 35.0 1.45 .23

2. Simulation E 54.7 75.4 20.7 74.8
C 45.9 59.8 13.9 62.3 9.19 .01

3. Elimination E 41.3 60.5 19.2 59.4
C 26.2 41.0 14.8 45.6 8.93 .01

4. Patterns E 41.9 55.8 13.9 55.7
C 37.7 40.2 2.5 40.7 9.20 .01

5. Elimination E 86.6 95.0 8.4 94.8
C 82.0 85.2 3.2 85.8 13.23 .01

6. Elimination E 66.3 79.8 13.5 79.4
C 50.8 72.1 21.3 73.9 1.83 .18

7. Guess & Check E 58.9 69.2 10.3 68.8
C 41.8 61.5 19.7 62.9 1.56 .21

8. Guess & Check E 35.5 50.0 14.5 49.6
C 27.0 29.5 2.5 31.1 14.57 .01

TOTAL TEST E 52.2 65.8 13.6 64.9 3.82 .01
C 43.1 53.1 10.0 56.8
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DEVELOPING ALGEBRAIC UNDERSTANDING: THE POTENTIAL OF A
COMPUTER BASED ENVIRONMENT

Rosamund Sutherland
Institute of Education University of London

This paper will discuss the potential of a Logo environment for developing pupils'
algebraic understanding. Results from a three year longitudinal study of pupils
(aged 11-14) programming in Logo indicate that Logo experience does enhance
pupils' understanding of variable in an algebra context, but the links which pupils
make between variable in Logo and variable in algebra depend very much on the
nature and extent of their Logo experience. The algebraic understandings which
pupils are likely to develop are described and related to categories of variable use
outlined in the paper. Although the focus of the paper is predominantly on Logo
there will be discussion within the presentation of preliminary results from pupils'
work with a spreadsheet (Excel). Studies with Logo and with spreadsheets indicate
that for some pupils interaction with the computer plays a crucial role in their
developing understanding of a general method.

BACKGROUND
This paper will discuss the potential of a computer-based environment for

developing pupils' algebraic understanding. The focus in the paper will be
predominantly on Logo programming, although there will be some discussion in
the presentation of preliminary results from pupils' work with a spreadsheet (Excel).
The paper derives mainly from a "Longitudinal Study of Pupils' Algebraic Thinking
in a Logo Environment" (Appendix 1). The ideas and results presented are also
informed by an ongoing study "The Role of Peer Group Discussion in a Computer
Environment" (Appendix 2).

Algebra as a mathematical language has developed over the centuries from its
first introduction as a tool to solve equations in which a letter or symbol
represented a particular but unknown number, to classical generalised arithmetic
in which symbols were used to represent relationships between variables to what
we now know as modern algebra. Modern algebra can be thought of as a
language which enables the similarities in structure between different mathematical
systems to be made explicit. Algebra has played a central role in school
mathematics for many years and although more recently the teaching of algebra
has been given less emphasis Byers and Erlwanger stress that "we can no more
dispense with teaching algebraic symbolism than teaching place-value notation.
Symbolic expressions are transformed more easily than their verbal conterparts so
that they not only save time and labour but they also aid the understanding of
content" (Byers & Erlwanger, 1984, p.265). Vygotsky believed that "the new higher
concepts in turn transform their meaning of the lower. The adolescent who has
mastered algebraic concepts has gained a vantage from which he sees arithmetic
concepts in a broader perspective" (Vygotsky, 1934, p.115).
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We must also recognise that "school algbera" is not a uniform practice. In Britain

there exists a wide range of mathematics curriculae, all reflecting differing

emphases on "school algebra". Pupils are now introduced to algebraic ideas with

more caution and in some curricula (for example SMILE1) there are many pupils

who are no longer introduced to algebra within school mathematics. We are now

approaching a new era in Britain with the introduction of a national curriculum for

mathematics and here again the emphasis on "school algebra" is likely to change.

Despite these differences one general trend is that pupils' first introduction to

algebra is now more likely to be in the context of generalising mathematical

relationships resulting from practical or psuedo practical activity. Previously pupils'

first introduction to algebra was more likely to be in the context of manipulating

algebraic symbols derived from generalised arithmetic.

PREVIOUS RESEARCH ON PUPILS" UNDERSTANDING OF ALGEBRA
Before considering the computer context, it is important to take into account

previous research related to pupils' understanding of algebra. One important

research finding is that there is a gap between arithmetical and algebraic thinking

which relates to pupils' use of informal methods in arithmetic (Booth, 1984). This

means for example that pupils might find it difficult to express the area of a
rectangle in the form A = W x L (where A, L and W are the respective area, length

and width of the rectangle) because their informal method for solving area of

rectangle problems in arithmetic is counting the number of squares in a rectangle.

There has also been considerable research identifying pupils' misconceptions
when dealing with algebraic objects, focussing mainly on pupils' use and
understanding of variable (Collis, 1974; Boo1.1, 1984; KOchemann, 1981; Wagner,

1981). This research suggests that many pupils lac', derstanding that a letter can

represent a range of values (Collis, 1974; Booth, 1984; KOchemann,1981) and lack

understanding that different letters can represent the same. value (Wagner, 1981).

They find it difficult to accept an "unclosed" expression in algebra (for example a +
6) which relates to their difficulty in operating on these expressions (Booth, 1984;
Collis, 1974). They also find it difficult to understand that a systematic relationship

exists between two variable dependent expressions (KOchemann, 1981).
There is also considerable literature related to pupils' difficulties with the

manipulation of algebraic objects, but our research has not yet addressed these

issues within a computer context;

1 Secondary Mathematics Individualised Learning Experiment

208.
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FRAMEWORK FOR CATEGORISING PUPILS' USE OF VARIABLE IN
LOGO

By carrying out an ongoing analysis of the situations in which pupils use
variable to define a general procedure in Logo categories of variable use have
been identified (Sutherland, 1988a). We use them to provide a framework for
analysing pupils' understanding of algebra related ideas.

(I) One variable input to a procedure. When pupils use one variable input
they are using variable as a place holder for a range of numbers.

(S) Variable as scale factor. In this situation the variable input is used to
scale all the distance commands in a turtle graphics procedure. This type of
variable input can be used by pupils as a way of generalising a fixed procedure
(Fig la) without making explicit the geometrical relationships within the procedure.

(N) More than one variable input to a procedure. This category is
concerned with situations in which pupils use more than one variable input to their
procedure often as a means of avoiding expressing a general relationship
between variables within a procedure ( Fig. 1.b).

(0) Variable input operated on within a procedure. In this category any
general relationship between variables within a procedure is made explicit by
operating on one or more variable inputs within the procedure (Fig 1c).

TO TOM SCALE TO KITE :YT :HT TO SQUAN :NUM
LT 90 RT 45 LT 135
PU FD :YT REPEAT 4 (FD :NUM RT 901
BK SCALE 60 RT 90 LT 135
PD FD :YT FD :NUM 3
FD SCALE 60 RT 90 END
LT 45 FD :YT
FD :SCALE 20 RT 90
RT 90 FD :YT
FD :SCALE 20 BK :VT
RT 90 RT 90
FD SCALE 20 FD :YT
RT 90 RT 45
FD SCALE 20 FD :HT
END END

F ig .1 a) Variable as Scale Factor b) More than One Input c) Variable Operated On

(F) Variable input to define a mathematical function in Logo. In this
category variable is input to a procedure, which acts like a mathematical function,
that is it is operated on within the procedure and the result is output from the
procedure to be used by another Logo function or command
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TO FUNC :X
OUTPUT :X + 4
END

208

equivalent to F(x) = X + 4

FRAMEWORK FOR ANALYSING ALGEBRAIC UNDERSTANDING
Our work has primarily been concerned with investigating pupils'

1) Use of a formal language to represent a generalisation
2) Understandings associated with the use of variable

These understandings have been categorised as follows, with reference to the

previously discussed literature:

Understanding that a variable name can represent a range of numbers

Understanding that any variable name can be used
Understanding that different variable names can represent the same value

Acceptance of "lack of closure in a variable dependent expression
Understanding the nature of the second order relationship between two

variable dependent expressions

Using this framework we will now discuss the potential of a computer based
environment on pupils' developing algebraic understanding.

1) Use of a Formal Language to Represent a Generalisation
The review of literature suggests that pupils often use informal methods which

cannot easily be generalised and formalised. "If children do not have that structure

available in the arithmetic case, they are unlikely to produce (or understand) it in

the algebra case" (Booth, 1984, p.102). In the Logo environment pupils are able

to interact with the computer and negotiate with peers so that their intuitive

understanding of pattern and structure is developed to the point where they can
make a generalisation and formalise this generalisation in Logo. There is evidence

that in many cases pupils could not do this without both "hands on" interaction with

the computer and discussion with their peers (Sutherland, 1988b).

Our studies indicate that pupils' ability to use Logo to represent a general method

is linked to their experience of using variable in the category of "(0) Variable

operated on". It is suggested that it is only when pupils are able to use variable in

this category that they have made the break from arithmetical to algebraic thought

(Filloy and Rojano, 1987). Wok with pupils who have had no previous experience
of "paper and pencil" algebra suggests that these pupils can use variable in

category (0) but that they are unlikely to do so without specific teaching
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sequences directed at this. idea. In our more recent work with 12-1.3 year olds
(Appendix 2) we. have presented pupils with problems which specifically need
variable in the category (0) as part of their first experience of variable in Logp.
These pupils are more confidently able to use variable in this category than pupils
of a similar age group who were part of- our previous study (The, Logo Maths
Project) and who were not subject to such extensive direction.

Ourmore recent work with spreadsheets.(Healy & Sutherland; 1988) suggests that
this computer environment provides- another context for expressing a
generalisation, but one which appears to be substantially different from the Logo
programming:context. Naming and declaring the: variable is no longer a. focus and
within a. "mouse, driven" spreadsheet' environment. the generalisation can be
encapsulated without reference to a formal language.

Expressing. a generalisation in either a spreadsheet or Logo language helps to
convince pupils of the validity, of-their generalisation. We now need-to study- more

carefully what would:constitute a proof for pupils that this computer generated
generalisation is valid and.the-related.implications.for the learning of Mathematics.

2) Understandings' Associated' With the Use of Variable
Perhaps. the: most important result from our studies is that the algebraic
understandings which pupils develop are closely related to the particular computer
environment and the types of problem situations with which the, pupils have been
engaging. This means that the role of the teacher is crucial in both' provoking
pupils to work on problems for which the use of variable is an essential problem
solving tool and in. providing pupils with information about the constraints on using

variable'. within- the relevant programming context. Within this section we will
discuss the variable related:understandings which pupils derive from workihg with
Logo.

Understanding that a variable name can be' used to represent a range
of numbers. Pupils who have used variable in the category of "(I) One variable
input to a procedure" are likely to have developed an understanding that a variable
can: represent a range of numbers. However pupils understanding of "range of
numbers" is likely to be restricted to positive whole numbers unless they have
worked on problems in which it is necessary to use both decimal and negative
numbers. We- have found that when pupils use variable in the category of "(S)
Variable as scale factor" they are provoked to use decimal numbers as input.
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Understanding that any variable name can be used. In a computer
programming context pupils are often introduced to variables with meaningful
variable names (e.g. SIDE or SCALE). Our Logo studies indicate that when pupils
are first introduced to variables they attach too much significance to these

meaningful names and think for example that the name SIDE for the length of a
square conveys some meaning to the computer. We have found that if pupils are
encouraged to use a range of variable names, including "nonsense" names (which
they know have no meaning) and abstract and single letter names (which they will
use in their algebra work) they come to understand that any name can be used.

Understanding that Different Variable Names Can Represent the Same
Value. Pupils overinterpret the constraints on the variable name itself. Algebra

research has shown that pupils do not understand that different variable names can

represent the same value (Kuchemann, 1981). Our studies indicate that if pupils

have within their Logo programming experience, defined a procedure with at least

two variables (using variable in the category of "(N) More than one variable input")

and then in the context of using this procedure assigned both inputs the same
value they are likely to develop an understanding that different variable names can

represent the same value in Logo.

Acceptance of "Lack of closure" in a Variable Dependent Expression.
Our studies indicate that pupils who have used "unclosed" expressions in Logo
either within the context of defining simple functions (see Fig. 2), or within the

context of operaing on a variable have no difficiulty in accepting "lack of closure"
in variable dependent expressions.

Understanding the nature of the second Or, Relationship Between
two variable dependent expressions. None of the eight 13-14 year old
pupils who were part of the Logo Maths Project (Hoy les & Sutherland, 1989)
developed an understanding of the nature of the second order relationship
between two variable dependent expressions. Analysis of their Logo experience

indicates that they had never used this idea in Logo. Subsequently a task was
developed for a group of five 10-11 year old pre-algebra pupils (Appendix 1) in
which they were specifically confronted with this idea. Three of these pupils
showed, by their response to Logo structured interview questions (identical to
those given to the 13-14 year olds) that they had developed an understanding of
this idea. This suggests that it is possible for pupils, if they use this idea during
their "hands on" Logo programming sessions, to develop a related understanding.
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This provides evidence that a crucial factor in learning is first the use of an idea
within a problem solving situation.

LINKS WITH "PAPER AND PENCIL" ALGEBRA
As part of the "Longitudinal Study of the Development of Pupils' Algebraic

Thinking in a Logo Environment" (Appendix 1) eight case study pupils worked on
materials which were aimed at helping them make links between their Logo work
and "paper and pencil" algebra. These materials were based on the similarity
between using variable to define a function in Logo and on using variable to define
a function in algebra. These pupils were presented with items from the C.S.M.S2
study in the form of a structured interview in order to probe whether or not they had
made any links to a "paper and pencil" algebra context. The results of these
interviews indicate that pupils can make links betwen the two contexts, but the links
which they make are as much related to their particular experiences in Logo as to
the specifically designed linking materials. More research needs to be carried out
in this area with specific attempts made to integrate the computer based and the
"paper and pencil" algebra curriculum.

CONCLUSION
Our studies indicate that within a computer-based environment there does not

have to be a gap between pupils' informal methods and the formal representation
of this method. Pupils, through interacting with the computer and discussion with
their peers are able to develop their intuitive understanding of pattern and structure
to the point where they can make a generalisation and formalise this generalisation
in Logo. For some p.upils in particular the interaction with the computer appears to
play a crucial role in their developing understanding of a general method.

We have found that Logo experience does enhance pupils' understanding of
variable in an algebra context, but the links which pupils make between variable in
Logo and variable in algebra depend very much on the nature and extent of their
Logo experience.This suggests that it is the using of an idea which is the crucial
factor influencing understanding. We need to carry out more research both to
understand more about the mathematical processes in which the pupils are
engaged when working in a computer-based environment and to discover how
best to integrate pupils' computer based experiences with a developing
mathematics curriculum.

2 As part of the research programme "Concepts in Secondary mathematics and'Science" just under
1000 pupils aged 14+ were tested on their understanding of algebra (ktich( mann, 1981).
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Appendix 1: A Longitudinal Study of Pupils' Algebraic Thinking in a Logo

Environment
This research was carried out by the author for her Phd thesis (Sutherland, 1988).

It was both part of and an extension of the Logo Maths Project (Hoy les &

Sutherland, 1989). The research consisted predominantly of a three year

longitudinal case study of four pairs of pupils programming in Logo during their

"normal" mathematics lessons. The data collected consisted of video recordings of

all their Logo sessions. In addition pupils were individually presented with

structured Logo programming tasks and individually interviewed to probe their

developing understanding in both a Logo and a "paper and pencil" algebra

context. A subsidiary one year study was carried out with a group of eight pre-

algebra 10-11 year old primary school pupils.

Appendix 2: The Role of Peer Group Discussion in a Computer Environment

(1988-1989)
This is an ongoing project funded by the Leverhulme Trust and carried out by the

author in conjunction with Lulu Healy and Celia Hoy les. One of the aims of the

project is to investige the relationship between pupils' negotiation of a

generalisation in natural language and their formal representation of this

generalisation. Pupils (aged 12-13) work in Logo, a spreadsheet and a "paper

and pencil" mathematics environment. The data collected consists of video tapes

of four pairs of pupils working in all three environments.
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Verbal Evidence ifor Versatile Understanding of Variables

in a Computer Environment

Michael Thomas & David Tall
University of Warwick

U.K.

We have previously reported (Thomas and Tall, 1986, 1988) on experiments

demonstrating the value of a computer-based pre-algebra module of work in aiding

11 and 12 year-old pupils to reach a higher-level of understanding of the use of

letters in algebra than that found in a more traditional approach. We have also put

forward the hypothesis that one reason for this success is the way "cognitive

integratton" (Thorhas 1988) of the child's global /holistic and serialist/analytic
cognitive abilities leads to versatile thinking. Further, this may be actively promoted

'using the "enhanced Socratic mode" of teaching (Tall 1986) using the computer as a

'resource for .teacher demonstration, pupil exploration and discussion to 'develop

appropriate concept imagery. This paper considers evidence in support of the theory

from interviews with the students involved, taken six months after the computer
'treatment.

Some Theoretical Considerations

When.algebra is-perceived, and hence taught, as an essentially logical, serialist activity with
little or no recourse.to either its-inherent structure or its underlying concepts such as the use of
letters.as generalized numbers or variables one would expect this-view of algebra to prevail
among pupils. A substantial body ofresearch points to just such arlack of understanding as
contributing to poor performance in algebra throughout secondary school and beyond
(e.g.Rosnick and Clement 1980, Matz 1980, Ktichemann 1981, Wagner, Rachlin and Jensen
1984). The.results of our work have suggested differential effects'between the computer-based

approach .to algebra, with its emphasis on 'letters as generalized numbers and the traditional

skill-based type of module with its emphasis on acquiring-manipulative skills. It seems that the
computer-work promoted a deep conceptual understanding better, while the other work, as
expected, initially facilitated better surface skills. However, when the computer module was
combined with the skill-based one then it led to a superior overall performance without
detrimental effect on skills. It is our view that the computer is providing an environment in
which pupils acquire a global/holistic view of algebraic concepts - relating the symbols on paper
to meaningful ideas such as the mental picture of a letter representing a variable number - in
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contrast to the more serialist/analytic view nurtured by emphasizing the operation on symbols.

An illustration of this is the following type of question, with which many will be familiar:

Factorize (2x + 1)2 3x(2x + 1).

Many pupils faced with this type of question seem locked into a sequential/operational mode of

working where they "multiply out the brackets","collect together like terms" and factorize the

resulting quadratic function. Few are able to apply the versatility of thought to switch from an

analytical approach to a global/holistic one which "chunks" together the symbols 2x+1 as a

single conceptual entity, allowing them to move more directly to the answer. We believe that the

activities carried out in the computer context encourages flexible mental constructs more likely

to lead to this global/holistic view.

Evidence For Versatility and Conceptual Understanding

Conceptual understanding in algebra is not evidenced by test performance alone. Correct

answers to routine problems may be produced by incorrect understanding and incorrect

responses to non-routine problems may have a sensible foundation. In order to examine pupil's

understanding of algebra beyond the test performances indicated in Tall and Thomas (1988), we

conducted a number of interviews with selected students and administered a broadly based

questionnaire to see if certain phenomena which occurred in the interviews were replicated on a

wider scale.

The Interviews

The teaching experiment (Tall & Thomas 1988) had comprised two groups of 13 year-old

secondary-school children taken from six mixed abilit) fora .ranged into 57 matched pairs.

The experimental group used the computers for three weeks, following a module of
investigational activities, while the controls followed their traditional algebra course. Six

months later, all the pupils were given the same traditional module for a two week period, the

controls as revision, the others for the first time.

After the post-test in this experiment a cross-section of 11 experimental and 7 control pupils (of

comparable performance on the post-test), were given a semi-structured interview lasting about

twenty minutes. During the interviews, which were recorded, the pupils were required to

attempt certain key questions and to explain their thinking and strategies. The following

examples taken from the transcripts of the interviews show a marked difference between the

experimental pupils, who often attempted to give a relational explanation for their reasoning,

and control pupils, who were more likely to be concerned simply with carrying out routine

algebraic processes.

2 6
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Question : Solve 2p 1 = 5.

The following response from a control pupil illustrates the confusion that may arise from
mechanically carrying out routine processes:

Pupil 11 : 2p minus 1 equals 5. If you add the 1 to the 5 that's 6 so, because there's no
other minus p, I forget the p and do the 2p minus 1 equals. If you add the 1 to the 5
which is 6 and then you take 1 from the 6... No, I don't get that. I know I've done it but...

Interviewer : What would the value of p be did you say?

pupil 11 : Six.

Here the explanation is solely in terms of the operations with no reasons for their use being
cited. This may be compared with the following reasoning from one of the experimental group
pupils :

Pupil 2 : Well find out what minus 1 so you would add 1 to that so you get rid of the 1,

so that would be 6 and then its obvious that 2 times 3 equals 6, so p would be 3.

The pupils in the interviews were also asked to compare the above equation with

2s - 1 = 5.

This was in order to see if they were able to conserve equation (Wagner 1977) under a change
of variable. A distinct difference in the type of comment between the two groups shows the
superior understanding in this area of those pupils who had used the computer.

Control group :

Those unsure of the relationship :

Pupil 10 : 5 could be 3 as well.

Pupil 12 : So s could be 3 as well.

Pupil 13 : They could both equal 4.

Those who needed to solve both equations:

Pupil 11 : Well what I have put is 2p equals 6 and 2s equals 6.

Pupil 14 : 2s...add the 1 and 5, 6 er 2 and 2, 6, 3 times, so s is 3 as well.

Experimental (computer) group :

Pupil 1 : I can say that p and s have the same value...it's the same sum.
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Pupil 2 : Well they are both the same...Yes, because they are both the same but
different letters.

Pupil 3 : They are both...p and s both equal 3.

Pupil 4 : It's just a different letter but it would have to be 2 times 3 minus 1 equal to 5.

Pupil 5 : The same. Just using a different letter.

Pupil 8 : It is 3 the p and s...because they are basically the same sum, but are different
letters.

Pupil 9 : They are both the same. It's the same apart from the letters,exactly the same
except the letters.

These pupils offer verbal evidence of a global/holistic view of the equations enabling them to

develop the understanding of conservation of equation by seeing the common structure of the

equations. This concept of conservation of equation under a change of variable was further

tested with several of the children by the use of an extension to the first question above to :

Solve 2(p + 1) - 1 =5.

The insight of the computer group pupils is shown by their comments:

Pupil 1 : Yes, p equals 2.

Interviewer : How did you work that out then?

Pupil 1 : Well its the same, but its plus 1, so minus 1 add 3.

Pupil 2 : Oh it would be 2.

Interviewer : Can you tell me why?

Pupil 2 : Because p plus 1 if that's 3 its the same as the last one only the p is less
because you've got to add 1 to the sum.

Deep and powerful insights such as these, which are facilitated by a global/holistic view leading

to the structure of the equations was not matched by the colu.ots. Instead we have:

Pupil 15 : Say p plus 1, there is already 1 plus p plus another one, I'd say that was 2p,
and then outside plus another 2 that is 4 minus 1 is 3 I would say.

Interviewer : So what is the answer?

Pupil 15 : p equals 1 I would say.

Extension of algebraic ideas

Research has indicated that the type of algebraic equation where there are variables on both

sides of the equation is considerably more difficult, since it involves algebraic manipulation (of

variables) rather than arithmetic (e.g. Herscovics and Kieran 1980). Neither experimental or

control pupils in the the experiment had been taught to solve this type of equation. It was

hypothesized that the relational understanding of the experimental pupils would lead to their
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greater ability in handling such equations. Several interviewees were asked to tackle the
question:

Solve 3x 5 = 2x + 1.

The replies again gave evidence of superior understanding on the part of those who had used
the computer.

Controls :

Pupil 15 : I'd say ft was minus 2x and here you've got 3x, 2x plus 1x,so I'd put that as 1 x

[Writes 3x - 5 = 2x + 1 = lx]

Interviewer : And is that the answer?

Pupil 15 : Yes

Hence, although the surface operation of subtracting 2x is carried out it does not seem to be in
the context of any understanding of an overall purpose in the question, and no reasons for the
operation are given. One of the pupils in this group had lost sight of the objective altogether:

Pupil 12 : I'm trying to work out how you could take 5 from that to leave that.

Interviewer : Can you see any way of doing it?

Pupil 12 : You would have to find the value of x before you could start.

In contrast, the experimental group pupils given this question responded more purposefully :

Pupil 1 : Well the value of x must be the same because its in the same sum... I'm
thinking that maybe take x some number away from both sides. That wouldn't leave
anything in there to go on. You'd have nothing there if you take 2x away and1x minus
5- equals plus 1.

[Writes x - 5 = +1]

Interviewer : So how might you do it now?

Pupil 1 : I was thinking maybe get rid of this and forget about that 4 by putting, adding
5 to both sides that should do it - so it would be 3x equals 2x plus 6...try to take x
away.

[Writes 3x = 2x + 6]

Shortly after this he solved the equation.

Pupil 2 : You would add 5 to that to get rid of the minus 5 and then that plus 6 so it
would be 3x equals 2x plus 6....Well that plus 6 has got a bigger x because 2x plus 6
equals 3x, that means another 6 would be equal to x, so make that 3x as well...Well x
equals 6.

We can see that this pupil starts off with a serialist/analytical approach, but accompanied by
clear reasons for the steps taken. However, in the middle of the question the pupil is versatile
enough to change viewpoint to a global/holistic one and see the equation in terms of its
balancing structure, enabling the equating of an extra x with 6.
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The Questionnaire

A questionnaire given to 147 pupils, whilst not giving the opportunity to follow up answers as

in an interview, gave evidence of a wider dispersal of the phenomena found in the interviews. It

included three types of questions; one where they were required to explain, with reasons,

whether two algebraic expressions were equal or not; one where they had to explain to an
imaginary visitor from Mars the meaning of some algebraic notation and the third where harder

algebraic questions, beyond the level they had studied, were to be attempted.

Question
Experimental
Proportion

Correct

Control
Proportion

Correct
z p

6
Is the same as 6+7-? 0.76 0.44 3.38 <0.0005

Is 2+3c the same as 5c ? 0.41 0.31 1.24 n.s.
Is 2(a+b) the same as 2a+2t ? 0.57 0.31 2.69 <0.0005
Solve 13-y,2y+7 0.43 0.27 1.83 <0.05
Simplify 5h-(3g+2h) 0.24 0.08 2.16 <0.025
Solve 17-3e>2 0.31 0.13 2.37 <0.01

Table 1 A comparison of some questionnaire facilities

Error
Experimental

Proportion
Making Error

Control
Proportion

Making Error
z p

3+m=3m 0.09 0.27 2.54 <0.01
ab=a+b 0.06 0.13 1.77 <0.05
b- 2xc= (b -2)c 0.09 0.23 1.77 <0.05
3 +2m = 5m 0.04 0.13 1.57 n.s.

Table 2 - A comparison of some questionnaire errors

The results in tables 1 and 2 from selected, and the fact that the controls did not perform
significantly better than the experimental group on any question, support the hypothesis that the

experimental students have a better understanding of algebraic notation. Moreover, it also seems

that one of the main failings of the controls is that the traditional skill-based module has

encouraged a predominantly left-to-right sequential method of processing algebraic notation. In

contrast to this, the computer group, seem to have a better, more global, view of the notation

which in turn has reduced the occurrence of some of the more common notational errors such as

conjoining in addition and the wrong use of brackets. An interesting example of this, although

arithmetic rather than algebraic, is the first question in table 1, where many of the controls did

not consider the two notations as the equivalent because

. 6 is a fraction, 6+7 is a sum".

This is a good example of a response which is based on sound conceptual reasoning, but one
that is limited because it implies the inability to encapsulate the process 6+7, as a single
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conceptual entity. The encapsulation occurred far more often amongst the computer group,
again underlying what we believe is a more flexible global view.

The difficulties that pupils had with the question

Is 2(a+b) the same as 2a+2b ?

again revealed the difference between the symbols representing a process and the result of that
process as a conceptual entity. So firmly had it been ingrained in them that "calculations inside
brackets must be done first" that the symbol 2(a+b) is read as "first add a and b, then multiply
by 2" whilst 2a+2b requires both multiplications to be carried out before the addition, that they
saw the processes as being different rather than the results being the same. Even so, the
experimental group were once again more likely to attempt to surmount this conceptual obstacle,
one student proposing an interesting way out of his dilemma:

Pupil 1 : Well its brackets, so you've got to add these two numbers before you times it

Interviewer : You can't see any way round that problem?

Pupil 1 : I know there is one, but I can't find it. 1..1 Unless you went along and put a+b
equals c and then put 2 times c, but that's a long way round.

Conclusions and further research

Through interviews it is manifestly clear that the students involved in the enhanced Socratic
approach had developed a more versatile understanding of the concept of variable,_in which
they were able to encapsulate the algebraicprocesses as objects and to chunk information in
expressions in a way which enabled them to take a more versatile approach to solving algebraic
problems. However, it should be noted that it has not proved possible to follow up the initial
three week algebra module with further algebraic experiences using the computer and,
subsequently, the classes have been reorganized ina way which has led to a variety of different
experiences for pupils matched in pairs during the experiment. Some eighteen months after the
delayed post-test, a similar test has revealed that the difference between the experimental and
control groups is no longer statistically significant. We have still to administer interviews to see
if there remain differences detectable by these means. This suggests that, although computer
experiences may be able provoke different kinds of understanding in the short and medium
term, if these experiences are not continued then their effect may wane in the face of the
overwhelming influence of more recent experiences.
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CONCEPTUAL ADJUSTMENTS IN PROGRESSING

FROM REAL TO COMPLEX NUMBERS

Dina Tirosh Nava Almog

Tel-Aviv University Beit Bed College

and Kibbutzim College

This study assesses the difficulties that high school students experience when

progressing from real to complex numbers. It was found that students are reluctant

to accept complex numbers as numbers, and that students incorrectly attribute to

complex numbers the ordering relation which holds for real numbers. The paper

presents some sources of these difficulties and suggests ways to help students

overcome them.

One of the main concepts in mathematics is that of number. Students learn various num-

ber systems starting with the natural numbers, and progressing through integers, rational,

real and complex numbers.

The transition from one realm of numbers to an extended one requires a major adjust-

ment in each student's concept of number. One major difficulty for students is realizing that

the new elements in the extended domains are numbers even though these numbers often

differ in appearance and properties from those in the less-extended domains. Another

problem for students is their tendency to incorrectly attribute properties of the less-extended

domains to the more general ones.

The difficulties that children and adolescents encounter when progressing from natural

to rational numbers have been extensively investigated. Researchers found that many stu-

dents do not accept rational numbers as numbers (Kerslake, 1986); also, students tend to in-

correctly attribute properties of operations with natural numbers (such as that multiplication

never makes smaller) to all rational numbers (Bell, 1982; Hart, 1981; Fischbein, Deri, Nel lo,

& Marino, 1985). These attributions influence the students' beliefs about numbers and arith-

metic operations, and thereby limit their ability to solve certain kinds of word problems involv-

ing rational numbers.

However, the difficulties that students encounter in other extensions of the number sys-

tem are rarely discussed in the research literature. We found only one study (Vinner, 1988)

that deals with the extension from real to complex numbers. Vinner's study shows that many
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students find it extremely difficult to accept complex numbers, such as the non-digit number

i, as numbers. The present study explores this issue. The two principal questions addressed

are:

1. Do students accept complex numbers as numbers?

2. Do they incorrectly attribute properties of the real number system to the complex one?

METHOD

Subjects: Seventy-eight eleventh-grade students from three high schools in Israel par-

ticipated in this study. The students had just finished eight lessons on complex numbers, and

completed a summative test which included calculation examples and equations involving

complex variables. Ninety-six percent of them passed, getting at least 60% of the answers

correct.

The three mathematics teachers introduced complex numbers as an extension of the

field of real numbers. The solution'of the equation x2=-1 was denoted by the imaginary num-

ber i, and other imaginary numbers were obtained by multiplying i by real numbers. Complex

numbers were shown in the general form a+bi, where a and b are real numbers. Equality of

two complex numbers and arithmetical operations with complex numbers were defined. The

geometrical representation of complex numbers in the Gauss plane was introduced. Most of

the class time was spent on practicing the operations and solving equations involving com-

plex variables.

Instruments: Post-test and delayed post-test questionnaires were developed to examine

the students' perceptions of complex numbers. The post-test questionnaire included the fol-

lowing four items:

1. Circle the numbers in the following list:

2/0 3 0 0.25 -0.434334333

a+b 3/4 3+2i 0.23 54T.

2. Solve the following equations:

a. x2+x+2=0 b. x2+9=0

3. Answer "true" or "false" and explain your choice of answer:

For every two given numbers p and q, one of the following relationships holds:

p q p > q p q

4. For each of the following pairs of numbers, write >, <, or = (only if possible):

2-3i 2 0.3 0.333 -0.16 -0.166 i 4+i

The delayed post-test included similar items. For example, the equation x2+2x+6=0 in

the delayed post-test is similar to equation 2a above.
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Interviews: Semi structured individual interviews of about an hour each were conducted

with 14 of the students in order to obtain more information about their concepts of complex

numbers. Students were encouraged to explain their answers to the questionnaire, and to

answer other related questions such as: When you key .1:75 into a calculator, you get an error

message. Why?" The interviewees were asked for their criteria for determining whether a

given entity is a number, and for their opinions on the existence of ordering relation among

numbers.

Procedure: The post-test questionnaire was administered to the students at their regular

classes immediately after they had finished their studies of complex numbers. A delayed post-

test was given two months later. The individual interviews were conducted a few days after

the students had responded to the delayed post-test. The interviews were tape recorded and

transcribed. Systematic data on the taped interviews are not presented here; excerpts il-

lustrating the students' reasoning are included.

RESULTS

1. Identifying complex numbers as numbers

Table 1 shows that immediately after instruction, most students recognized complex

numbers of the form a+bi (a#0, b#0) as numbers. They were less willing to accept pure im-

aginary numbers as numbers. Two months later, there was a significant decrease in the num-

ber of students who responded that complex numbers and pure imaginary numbers are
numbers.

Table 1: Recognition of complex numbers as numbers (%)

Item Post-test Delayed post-test

Yes No Yes No

Is 4-.5 a number? 69 31 50 50

Is -471 a number? 69 31 49 51

Is 3+2i a number? 87 13 65 35

The students' solutions to quadratic equations with negative discriminants (item 2) also

showed a significant decrease in correct responses from post-test to delayed post-test; Im-

mediately after instruction, 84% of the students solved the quadratic equations correctly, 4%
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of them correctly claimed that there is no real solution, 6% argued that these equations have

no solution, and 6% did not respond. Two months later, however, only 17% of the students

solved these equations correctly. Most of them (83%) claimed that quadratic equations with

negative discriminants have no solutions.

Students' decisions on whether complex numbers are numbers stem from their concepts

of what numbers are. Those who perceived complex numbers as numbers described a num-

ber as an entity that one can do mathematics with (calculate, solve equations, etc.) or as an

entity that is represented by a point on a real line or on a plane.

Students who did not perceive complex numbers as numbers claimed that numbers are

entities which are written with numerical digits, entities which are represented by points on

the real line, or entities which describe positive or negative quantities. Some of these stu-

dents viewed complex numbers as operations rather than as numbers. These students ar-

gued that the expressions 3+2i and .1:5 describe operations that still need to be executed.

Other arguments used by students to counteract the statement that complex numbers

are numbers reflect their uneasiness about the non-digit number i, and their confusion over

the terms real, imaginary and complex numbers. Some of them claimed that i was a variable

and not a number. Others volunteered that the term "imaginary numbers" implies something

that does not exist, is not real, is something strange, is not a number. They reasoned that

complex numbers are composed from a real part, which is a number, and an imaginary part

which is not a number hence complex numbers are not numbers.

The error sign displayed by a calculator when numbers such as .sr:Tare keyed in was a

source of support to the claim that imaginary numbers are not numbers. Students argued that

since the error was the same as for 2/0, which is not a number, it followed that Nr:S is not a

number either.

2. Understanding that the ordering relation "less than" does not hold for the complex num-

ber system.

The students were taught that the ordering relation "less than," which holds for the real

number system, does not hold for the complex number system. However, only a small per-

centage of the students realized that some unequal complex numbers are incomparable ac-

cording to the ordering relation "less than" (see Table 2).

Some students explained that the geometrical representation of complex numbers as

points on a plane illustrates that it is impossible to determine which of two given unequal com-

plex numbers is greater than the other. Others claimed that complex numbers do not describe

quantities and therefore are incomparable.
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Table 2: Responses to the statement: For every two given numbers p and q,

one of the following relationships exists: p = q; p > q; p < q" (%)

Post-test Delayed post-test

True

False

88 95

12 5

Most students argued that the ordering relation less than" holds for all numbers. Com-

mon justifications were that the three conditions p > q, p < q, and p=q described the entire

range of possibilities; and that numbers describe quantities, so any given number must be

equal to, greater than, or smaller than any other given number.

The information in Table 3 is consistent with that in Table 2. Few students understood

that the given numbers are incomparable by "less than". Students who claimed that i<i+4 per-

ceived the symbol "+" as signifying addition in its usual sense, and argued that when a posi-

tive number is added to another number, the sum is greater than the first number. Those who

claimed that 2-3i>2 said that i is a negative number because it is related to -1, so -3i is a posi-

tive number.

Table 3: Responses to the Item: Write <, >, or = whenever possible (%)

i 4+i 2-3i 2

Post-test Delayed post-test Post-test Delayed post-test

i and i+4 are 2-3i and 2 are

incomparable 4

i> 4+i 0

i < 4+i 95

i= 4+i 0

i # 4+i 1

4 incomparable 8 5

0 2-3i > 2 12 12

96 2-3i < 2 78 82

0 2-3i = 2 1 1

0 2-3i x 2 1 0
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CONCLUSIONS AND IMPLICATIONS

This study pointed out two major difficulties that students encounter when progressing

from real to complex numbers: reluctance to accept complex numbers as numbers, and a ten-

dency to incorrectly attribute to complex numbers the ordering relation "less than which holds

for real numbers.

These are due largely to the students' perceptions of numbers as (1) entities which are

written with numerical digits, (2) entities which are represented as points on the real line, or

(3) entities which describe quantities. These perceptions are anchored in the students' rela-

tively long experience with numbers; therefore, the students find it difficult to assimilate imagi-

nary and complex numbers into their scheme of number.

Another major cause for these problems is that some students view complex number's

as operations that need to be executed. The fact that a calculator does not differentiate be-

tween complex numbers and expressions which are not numbers contributes to the students'

reluctance to integrate these numbers.

Mathematics educators should be aware that complex numbers do not fit readily into

their students' notion of what a number is. They should attempt to help the students over-

come this obstacle. Some ways of increasing the students' acquaintance with complex num-

bers are:

(1) Relate the extension of the real number system to previous extensions of the con-

cept of number, starting with the natural numbers and progressing through integers, rational

and real numbers.

(2) Debate the gains and losses which accompany each of these extensions (e.g., gain-

ing closure under subtraction and losing the existence of the smallest number when progress-

ing from natural numbers to integers; gaining the ability to solve every polynomial equation

and losing the ordering relation when progressing from real to complex numbers).

(3) Encourage students to reflect on the development of their own concepts of numbers.

(4) Represent other views of complex numbers (e.g., as ordered pairs of real numbers).

(5) Demonstrate practical uses of complex numbers in mathematics and in otherdomains

such as electronics.

The difficulties that students face when progressing from real to complex numbers are

similar to those found during extensions of other number systems. Therefore, beyond the

issue of complex numbers, we suggest that teachers use the concept of extended systems

as a formal mathematical tool at the middle and high-school levels. This concept may help

students grasp the idea of complex number by taking entities which look different and group-

ing them under a single handle: "number".
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When discussing this concept with students, it can also be beneficial to describe the dif-

ficulties that mathematicians had experienced when extending number systems. Such en-

lightment may help students develop a perception of mathematics as a man-made domain

(see Kleiners' paper, 1988).

A final comment, not directly connected to the main theme of this paper: some students

interpret a calculator's error sign, which appears when imaginary numbers are keyed in, as

an indicator that these entities are not numbers. It is important to discuss the limitations of

calculators, and to explain that there are numbers that calculators cannot represent. It should

be stressed that a calculator does not determine whether a certain entity is a number; that

decision is a theoretical, purely mathematical one.
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DOES THE SEMANTIC STRUCTURE OF WORD PROBLEMS AFFECT

SECOND GRADERS' EYE-MOVEMENTS?

L. Verschaffel (1), E. De Corte and A. Pauwels

Center for Instructional Psychology

University of Leuven, Belgium

In the present study eye-movement registration was used to examine the
influence of the semantic structure of one-step addition and
subtraction word problems (simple versus' complex) on the eye-fixation
patterns of high-ability and low-ability second graders. Semantic
complexity had a significant effect on the partition of the total
fixation time over the words and the numbers in the problem: the
proportion of time spent on the words was higher for complex problems
than for simple ones. This result provides additional support for the
hypothesis that semantic processing is a crucial component in a

skilled solution process. On the other hand, the effect of the pupils'
ability level was not significant. Those findings are interpreted
taking into account the available theory on word problem solving.

INTRODUCTION

During the past decade children's solution processes for one-step

addition and subtraction word problems have been extensively

investigated using techniques such as paper-and-pencil tests,

individual interviews, and computer simulation. Recently, we started to

apply eye-movement registration as a new data-gathering technique. In a

first exploratory eye-movement study we analyzed the eye-movement

behavior of nine high-ability and eleven low-ability first graders

while reading and solving a series of eleven elementary addition and

subtraction word problems (De Corte & Verschaffel, 1987). While the

main goal of that pioneering study was to explore the usefulness and

the limitations of eye-movement data as access to young children's

solutions of word problems, it yielded already some remarkable

empirical findings. First, it was found that the high-ability children

looked more and longer at the non-numerical elements in the problem

text than the low-ability children. Second, our data supported the

frequently heard statement that errors on word problems are due to
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inattentively reading the problem; in fact, pupils sometimes answered

without even casting a glance at some crucial parts of the problem

text. Due to several technical and methodological problems encountered

during the gathering and the analysis of the eye-movement data, the

results of that pioneering study could not be considered as strong

evidence in favor of those conclusions; however, these findings

suggested hypotheses for further study. Therefore, the main goal of the

present investigation was to test several hypotheses concerning the

processes underlying skilled and unskilled word problem solving in a

more controlled and systematic way.

THEORETICAL FRAMEWORK

Solving one-step arithmetic word problems

In the late seventies, Greeno and his associates introduced a

theoretical model of skill in solving elementary arithmetic word

problems (Riley, Greeno & Heller, 1983). Two basic assumptions

underlied their approach: (1) word problems that require the same

formal arithmetic operation can be described in terms of different

semantic structures underlying the problem, and (2) the construction of

an appropriate representation of that semantic structure is a crucial

aspect of a skilled solution process.

Concerning the first assumption, Greeno c.s. constructed a

classification scheme for elementary addition and subtraction word

problems based on their underlying semantic relations. They

distinguished three main categories of problems (Change, Combine, and

Compare), and within each of the three problem types, further

distinctions are made depending on the identity of the unknown

quantity. Furthermore, Change and Compare problems are also subdivided

depending on the direction of the event (increase or decrease) or

relationship (more or less) respectively.
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Referring to the second assumption, Greeno c.s. developed a

theoretical model in which semantic processing is considered to be the

most important component of a skilled solution process. According to

that model, one first constructs a global, internal representation of

the problem in terms of sets and set relations using semantic problem

schemata. On the basis of this internal representation, the problem

solver then selects and executes an arithmetic operation to find the

unknown quantity in the problem.

Furthermore, Greeno c.s. (1983) identified three different levels

of problem-solving skill, each associated with a distinct pattern of

correct answers and errors on the problem types within the three main

categories. They also developed computer models that simulate these

levels of performance. The main difference between those levels relates

to the way in which problem information is represented. Models with

more detailed semantic knowledge refer to more advanced levels of

problem-solving skill, and therefore, they can solve more problems of a

certain categorie.

It is important to remark that according to Greeno c.s., the main

difference between good and poor problems solvers does not lie in the

presence or the absence of semantic processing respectively; poor

problem solvers try to construct a semantic problem representation too,

but due to their less-developed schemata, they do not succeed in

building an appropriate one. This view contrasts with another possible

explanation for the errors of poor problem solvers, namely that they

are mainly due to the absence of a semantic processing stage. According

to this latter view those children apply a rash and impulsive style of

responding, in which the selection of the arithmetic operation is not

based on a careful reading and a thorough analysis of the semantic

relations between the known and the unknown elements of the problem,

but on superficial strategies such as always adding the two given
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numbers or looking for keywords in the problem text (see e.g.

Goodstein, Cawley, Gordon & Helfgott, 1971).

Eye-movements and cognitive processes

The use of eye-movement registration to unravel children's internal

processes when solving math problems, is a recent development. In our

research we took as a starting point the two fundamental assumptions

formulated by Just and Carpenter (1987) as a result of their work in

the area of reading, namely the immediacy and the eye-mind hypothesis.

In terms of children's word problem solving, the immediacy hypothesis

implies that a pupil does not postpone the interpretation of .a word or

a sentence until he has read the whole problem, but instead tends to

process each element from the first time when the cognitive system has

access to it. The eye-mind assumption implies for example that when a

pupil is fixating words we assume that he is mentally processing them,

and that when he is fixating the numbers, he is 'doing' something with

those numbers (e.g. calculating).

METHOD AND HYPOTHESES

Subjects, tasks and procedure

Twenty second graders (10 high and 10 low-ability pupils) participated,

in our study. These children were selected among the whole sample of

second graders of a local school, on the basis of their scores on a

paper-and-pencil test consisting of a series of one-step addition and

subtraction word problems. They were also administered test for

technical reading and computational skills.

During the eye-movement session each child had to solve 16 one-

step addition and subtraction word problems: half of the problems had a

simple semantic structure; the other half a complex one. The simple

problems were Change 2 or Combine 1 problems; the complex tasks had a
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Change 5 or a Compare 6 structure (Riley e.a., 1983). These 16 items

were formulated and presented in a way that allowed us to control for

all possible task variables that were not central to the present

investigation, such as the amount of sentences, words and characters in

the problem, the complexity of the grammatical structures, the

technical reading difficulty of the names of the persons and the

objects in the problem, and the size of the given numbers.

The word problems were presented on a tv-screen. While the pupils

read and solved the problems, their eye-movements were registered with

DEBIC 80, a system that uses the "pupil center-corneal reflection"

method as its measurement principle. Every 20 milliseconds the system

registrates the X- and Y-coordinates of the subject's point of regard.

This raw material was subjected to a reduction program, that

transforms these data into a series of consecutive fixations with a

particular duration and location. These fixation data were the basis

for calculating the dependent variables, the most important ones being

the proportion of the total fixation time spent on the words and on the

numbers in the problem, and on those parts of the visual field that did

not contain any problem information. However, as the fixation time

spent on those "empty" fields was less than 5% of the total fixation

time, we will neglect those fixations. Consequently, we will describe

our hypotheses and our results as if the total fixation time was the

sum of the fixations on the words and on the numbers, the latter being

the complement of the former.

Hypotheses

The first hypothesis was that problems with a complex semantic

structure will elicit a larger proportion of the total fixation time

on words than simple problems. The argumentation underlying this

hypothesis can be summarized as follows: problems with a more complex
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semantic structure elicit more complex understanding and reasoning

processes before the computational activities with the given numbers;

this is reflected in more and longer fixations on the non-numerical

elements of the problem text.

Second, we expected that high-ability children will spend a larger

proportion of their total fixation time on words than their low-ability

peers. The basic assumption underlying this hypothesis is that

constructing and manipulating a global problem representation is a

major characteristic of a skillful solution process; low-ability

children, on the other hand, will immediatly jump into calculations

without trying to really understand the problem situation, or even

without reading the whole problem. This latter assumption is based on

the available literature on children's use of superficial solution

strategies on the one hand (see e.g. Goodstein et al., 1971) and on the

results of our own exploratory study on the other (De Corte &

Verschaffel, 1987). As said before, this hypothesis is incongruent with

Riley et al.'s (1983) theoretical analysis of skilled and unskilled

word-problem solving.

Finally, we also expected an interaction between problem

complexity and problem-solving ability. More precisely, it was

predicted that the difference between the simple and the complex

problems in the proportion of the total fixation time on words, will be

greater in the high-ability than in the low-ability group. This

interaction hypothesis is argued as follows. As high-ability children's

solutions are assumed to be "semantic" in nature, the complexity of the

semantic structure will strongly determine the speed at which they

succeed in building an appropriate problem representation. If low-

ability children's choices of an arithmetic operation are based on

stereotyped, superficial strategies that do not take into account the

semantic structure of the problem, their eye-movement patterns for
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simple and complex problems will be much more alike.

To test the hypotheses mentioned above, the dependent variable was

subjected to an analysis of variance with the semantic complexity of

the problem and the pupil's problem-solving ability as independent

variables (2*2 split-plot design). Because significant correlations

were found between the pupils' scores on the word-problem-solving

pretest on the one hand and their reading ability (r=0.46, p>0.05) and

computational ability (r=0.67, p>0.01) on the other, we also carried

out analyses of covariance with reading or computational scores as

covariates.

RESULTS

First, analysis of variance revealed a significant effect of problem

structure on the proportion of fixation time on words (F(1,18)=5.35,

p<0.05). While .56 % of the fixation time was spent on the words in

simple problems, this percentage increased till 61% for complex ones.

This is in accordance with our hypothesis.

Second, high-ability pupils tended to look proportionally more at

the words (61%) in the problems than their low-ability peers (56%).

Although these percentages were in line with our second hypothesis,

the effect of problem-solving ability did not reach the 5% significance

level, neither with reading scores, nor with computational scores as

covariate. Finally, we did not find an interaction effect.

CONCLUSIONS

The hypotheses of our study were only partially confirmed. Problem

complexity had a significant effect on the proportion of fixation time

on words. Since the simple and the complex problems in our study

differed only with respect to their semantic structure this finding

provides additional support for the hypothesis that the construction of
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an appropriate problem representation is a crucial component of skilled

word problem solving. On the other hand, we did not find a significant

effect of problem-solving ability. This finding is incongruent with the

frequently heard statement that low-ability children's bad performances

on word problems are mainly due to the application of superficial

strategies, such as always adding the given numbers or looking for

particular keywords. An alternative explanation that fits better with

the present eye-movement data, is that the low-ability children's

failures are not the result of the absence of a semantic processing

stage,. but of their faulty semantic analysis, which in turn can

probably be attributed to a lack of sophisticated conceptual knowledge

such as semantic problem schemata. This latter explanation is in

accordance with the theoretical analysis of skill in word problem

solving by Riley et al: (1983).

NOTE

(1) L. Verschaffel is a Research Associate of the National Fund for
Scientific Research, Belgium
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The lesson A preconceptional Stage

Shlomo Vinner

Israel Science Teaching Center

Hebrew University, Jerusalem

The notions of preconceptional and conceptional stages are discussed.
It is claimed that many students while learning mathematics are in a
preconceptional stage. Namely, it is not that they have wrong ideas
about the mathematical notions. They have no idea at all. In spite of
that, they have to perform on mathematical tasks and to react to
their teachers' questions. Thus, they are involved in a meaningless
communication. This common behavior gets almost no attention in the
mathematical education research which focuses mainly on
misconceptions. The preconceptional stage deserves research efforts.
Before clearing the misconceptions, which are part of the
conceptional stage, we should clarify to ourselves what makes the
transition from the preconceptional stage to the conceptional stage

possible.

On February 20th, 1951, a lesson was given to a young girl by a

middle aged professor. The lesson ended with a homocide. The teacher

assassinated the student. This was unavoidable. The quality of

communication between the teacher and the student was unbearable. The

only way to save the profession of teaching was to kill the student.

Fortunately enough, this happened only on the stage of the pocket

theater in a play by Eugene Ionesco. However, the phenomena of that

lesson occur every day, in every school in almost every mathematics

class. Teachers and students are engaged in a meaningless

communication.
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There are several ways to explain why communication is so bad. Of

course, there is Ionesco's view that meaningful communication between

human beings is impossible. Mathematics educators, as such, cannot

accept this. They believe that meaningful communicaton, at least at

the domain of mathematics, is possible and if it does not occur then

there are reasons for it. The reasons that mathematics educators

point at in order to explain communication failures are of two kinds:

1. Misconceptions. 2. Unappropriate mathematical level of the

student.

The last approach can be considered as the level theory (See for

instance van Hiele, 1987). As to misconceptions, the assumption is

that the student handles meaningfully the mathematical tasks imposed

on him. By "meaningful" we mean that the student associates certain

meaning to the mathematical notions involved in the task. This

meaning is not necessarily the correct meaning but can be considered

as reasonable if you are tolerant and sensitive enough. This is

contrary to the situation where the student does not associate any

meaning to the notions involved. On the other hand, he does not

refrain himself from reacting to the task. This we call a meaningless

behavior. When misconceptions are involved, the student associates to

the mathematical notions a meaning which is different from the

meaning associated to them by the mathematical community. Thus, the

task of the mathematics educator is to explore the misconceptions, to

understand why they were formed and to suggest ways to overcome them.

Comparing now the misconception theory to the level theory, it is not

clear how they are related. Assume a student at the k-th level of a

certain mathematical domain performing on a k+j-th level task (j>0).

The level theory predicts that a success at such a situation can be

only incidental. But how should we interpret the students' behavior?

Is it a meaningful behaviour resulting from misconceptions or is it a

meaningless behaviour determined by unknown factors which should be

investigated? We are not sure that level theory has made itself

clear about this point. Our impression is that both meaningful and

meaningless behaviors can occur when you are not at the appropriate

mathematical level of the task. For instance, assume that a student

is at the first level in geometry according to van Hiele theory (van

Hiele, 1987) and he has to deal with rectangles. For him the concept

of the rectangle is a collection of pictures that he saw in the past.
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These are usually pictures of quadrilaterals that have four right

angles and their adjacent sides are not congruent. At the second or

third level of van Hiele theory, a rectangle is by definition a

parallelogram with a right angle. From the first level student's

point of view, a square is not a rectangle. From the teachers point

of view, a square is a rectangle. The meaning the teacher assigns to

"rectangle" is different from the meaning the student assigns to it.

Hence, this is a misconception. On the other hand, if a student is

in the first van Hiele level in geometry and he has to prove a

certain geometric claim then his behavior will probably be

meaningless.

The general impression is that the main focus of the psychological

research in mathematics education is on misconceptions and not on

meaningless behavior. This is quite natural. First, misconceptions

explain) many of the students' mistakes and difficulties. Second, the

stage of misconceptions is a stage where there is a good chance of

learning. The fact that you understand your student's behavior, that

you can discuss it with him and that you know what modifications in

his thought are needed in order to reach the correct concept, all

this is a good starting point for learning. On the other hand, when

somebody is in the meaningless stage, the situation is much harder.

You see somebody who acts in a meaningless way, but you cannot tell

what makes him act the way he acts. In addition to that, you do not

know what to do in order to make him understand the notions involved.

Usually, you repeat almost the same words you uttered to him earlier,

perhaps more slowly. Nevertheless, it is impossible to ignore the

meaningless stage. Let us consider as one the stage of misconceptions

and the correct conceptions and call it the conceptional stage (or

the meaningful stage). The other stage will be called the

preconceptional stage (or the meaningless stage). Our question is

the following: at a given moment of a common mathematics lesson, what

percentage of the students is in the conceptional stage and what

percentage of them is in the preconceptional stage? For a mathematics

teacher the answer to this question is critical. It is an invaluable

information. Unfortunatelly, there is no satisfactory method to

answer this question. Of course, one can use quizzes. But quizzes

show knowledge or lack of knowledge about a certain restricted topic.

From common quizzes it is very hard to tell whether a student is or

is not at the conceptional stage.
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Interviews are a very effective means, but you cannot intrview the

entire class. Thus, the above information is usually non-available,

especially in big classes where the teacher talks most of the time

and after that the students are asked to solve problems similar to

those which were solved on the blackboard. It seems that many

teachers believe that a good percentage of their students is in the

conceptional stage. Otherwise, how can they teach?

However, the moment you start interviewing the students you realize

how many of them are not in the conceptional stage. In this paper we

would like to illustrate this. As we explained above, this cannot be

proved statistically. Our claim is that the quality of communication

we have in the following interview is typical to many mathematics

lessons and many teacher student interactions.

We have documented and analysed over twenty long interviews with

college students but finally we decided that fiction is more

convincing than reality. Fiction has all the elements of reality but

in a clear concentrated form. Thus, we have chosen Ionesco's lesson

mentioned above and we will use it in order to characterize the

teacher-student communication the way we see it. We are using

Watson's translation (Ionesco, 1958) where we replaced "pupil" by

"student". The teacher is a middle aged professor and the student is

an eighteen year old girl. After posing some addition exercises to

the student which were solved correctly, the teacher assumes that she

is ready for the subtraction exercises. (p.11 p.12).

Professor: Let's try subtraction. Just tell me, that if you are not

too tired, what is left when you take three from four? Student: Three

from four?...three from four? Professor:Yes, that's it. I mean to

say, what is four minus three? Student: That makes...Seven?

Professor: I am extremely sorry to have to contradict you, but three

from four does not make seven. You're muddling it up. Three plus four

makes seven, take three away from four and that makes?...It's not a

question of adding up, now you have to subtract. Student: (struggling

to understand) Yes...I see... Professor: Three from four, that

makes...How many...how many? Student: Four? Professor: No,

Mademoiselle. That's not the answer. Student: Three then? Professor:

That is not right either, Mademoiselle...I really do beg your

pardon...It does not make three...I am terribly sorry...Student: Four

minus three...three away from four...four minus three? I suppose it

wouldn't make ten?
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Professor: Oh, dear me, no Mademoiselle. But you mustn't rely on

guesswork. You must reason it out...

The above dialogue might sound absurd to the common ear but a

mathematics educator can see here some typical elements. The student

has no idea about subtraction. For her, "to take three from four" is

a meaningless expression. However, she must react to the question. A

common reaction is an attempt to gain time by repeating the question.

By this, she might gain also some hints. The professor realizes this

and he is ready to give such a hint. His method is rephrasing the

question. The result is quite typical: a phrase which is harder to

understand than the original question. This is because it uses a new

notion ("minus") which is unfamiliar to the student. At this stage,

although the question is still meaningless for her, the student has

no alternative but answering the question. A common way of doing it

in such a situation is regressing to a previous familiar situation in

which she was successful, to ignore the differences and to act as if

the present situation were the previous situation. This can be,

undoubtedly, considered as a preconceptional stage. The teacher is

quite sensible to the student's behavior. He explains to her what

caused her mistake and hopes that this will help. But of course, it

doesn't because the question is still meaningless for the student. At

the same time, the pressure to answer does not stop and therefore the

only alternative now is guessing (note that to this student it never

occurs that she could have said "I do not know". She is not the only

one it never occurs to her). Guessing is very common practice in

mathematics learning and it is typical to the preconceptional stage.

Guessing has its own rules and it deserves a special study in

mathematics education research.

Here, for instance, the student is trying first to repeat one of the

numbers mentioned in the question. When this fails she tries the

second one. Only after that she tries a wild guess ("ten") and then

she is stopped by the teacher. Note that the strategy of repeating

the numbers mentioned in the question could have been successful if

the question were: which number is the greater? three or four? (a

question which is posed to the student a little bit later, on p. 12).

Our professor, being aware of the student's guessing, tries to

construct in her some meaning for subtraction. In order to do that,

he invites her to perform some mental acts. Elsewhere these were

called imagination acts (see Vinner & Tall, 1982). Here another major

problem is involved.
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The teacher believes that the student is capable of performing these

imagination acts, but this is not necessarily the case. In geometry,

for instance, we very often say "continue this segment infinitely to

both sides in your mind" or "think of a point which has no width and

no length". How do we check whether our students can do it? There is

a good chance that our student won't be able to do it as illustrated

by the following dialogue

(p.14 p.15).

Professor: ...If you had two noses and I'd plucked one off, how many

would you have left? Student: None. Professor: What do you mean,

none? Student: Well, it's just because you haven't plucked me off

that I've still got one now. If you had plucked it off, it wouldn't

be there any more. Professor: You did not quite understand my

example. Suppose you had only one ear. Student: Yes, and then?

Professor: I stick on another one, how many would you have? Student:

two. Professor: Good. I stick yet another one on. How many would you

have? Student: Three ears. Professor: I take one of them away...how

many ears...do you have left? Student: two. Professor: Good. I take

another one away. How many do you have left? Student: Two.

Professor: No. You have two ears. I take away one. I nibble one off.

How many do you have left? Student: Two. Professor: I nibble one of

them off. One of them...Student: Two. Professor: One! Student: Two!

Professor: One!! Student: Two!! Professor: One!! Student: Two!!

Professor: One!! Student: Two!!

As we said above, the student is asked here to perform some

imagination acts. In some of them she succeeds and in some of them

she fails. It is even hard to characterize those in which she fails

versus those in which she succeeds.

It seems that she specially fails to imagine strong counter reality

situations. She cannot imagine herself with two noses. Therefore, she

fails to answer the question about the two noses and the one being

plucked off. On the other hand, she is able to imagine herself with

one ear, sticking on another one and another one. But she is

uncapable of performing in her mind the inverse procedure. This looks

strange but mathematics teachers are familiar with the phenomena. The

inability to perform imagination acts is another characteritic of the

preconceptional stage. This is related somehow to hypothetical

thinking required very often from mathematics students, an impossible

mission in many cases (Professor:...You have ten fingers. Student:

Yes, Sir. Professor: How many would you have if you had five of them?
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Student: Ten, Sir. (p.15))

All the above examples can be considered as examples from the

preconceptional stage. Ionesco's lesson does not lack interesting

examples that can be considered as examples from the misconceptional

stage. Because of space problem, we will not discuss them here. We

would only like to note that not always there is a clear distinction

between the preconceptional stage and the misconceptional stage

(which is part of the conceptional stage). This fact does not have to

be a reason to reject the distinction. There are many distinctions

that do not have clear cuts, like the distinction between good and

bad, clever and stupid etc., yet they are very useful distinctions in

most of the cases.

The fact that a student is in a preconceptional or misconceptional

stage does not enable him or her a meaningful learning. The only

alternative left to him is rote learning. This is illustrated by the

following (p.17 p.18): Professor:...How much is three billion,

seven hundred and fifty five million, nine hundred and ninety-eight

thousand two hundred and fifty one, multiplied by five billion, one

hundred and sixty-two million, three hundred thousand, five hundred

and eight? Student: (very rapidly) That makes nineteen quintillion,

three hundred and ninety quadrillion, two billion, eight hundred and

forty-four billion, two hundred and nineteen million, a hundred and

sixty-four thousand, five hundred and eight...

Professor: (astonished) No. I don't think so. That must make

nineteen quintillion, three hundred and ninety quadrillion, two

trillion, eight hundred and forty-four billion, two hundred and

nineteen million, a hundred and sixty-four thousand, five hundred and

nine...Student: No...five hundred and eight...Professor: (growing

more and more astonished and calculating in the head) Yes...you are

right, by Jove...Yours is the correct product...(Muttering

unintelligibly)...quintillion, quadrillion, trillion, billion,

million...(distinctly)...a hundrad and sixty-four thousand five

hundred and eight...(stupefied) but how did you arrive at that, if

you don't understand the principles of arithmetical calculation?

Student: Oh, it is quite easy, really. As I can't depend on reasoning

out, I learnt of by heart all the possible combinations in

multiplication. Professor: But the conbinations are infinite.
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Student: I managed to do it, anyway.

As we claimed above, Ionesco's fictious lesson is almost an accurate

mirror image of a great deal of the practice in mathematics

education. We know very little about the preconceptional stage.

Therefore, we also know very little about the methods of carrying

forward ,our students from the preconceptional stage to the

conceptional stage. On the other hand, we do not believe in miracles.

The current situations in mathematics teaching is not only a result

of bad pedagogy. It is also a result of posing too many mathematical

topics which are beyond the mathematical abilities of great

percentage of the students. Being more aware of the preconceptional

stage and of the fact that so many students are stuck there might

have some influence on the curriculum as well.

References:

Ionesco, E., 1958, Plays, vol. I, translated by D. 'Watson, John

Calder, Iondon,

Van Hiele, P.M.,1986, Structure and Insight, Academic -Press, Harcourt

Brace Jovanovich.

Vinner,S. & Tall,D.,1982, Existence Statements and-Constructions in

Mathematics and Some Consequences to Mathematics Teaching, American

Mathematical Monthly, 89, 751-756.

245



244

AN ANALYSIS OF THE EMOTIONAL ACTS OF YOUNG CHILDREN
WHILE LEARNING MATHEMATICS

Erna Yackel Paul Cobb, Terry Wood
Purdue University Calumet Purdue University

Emotion acts of children as they engage in mathematical
activity are analyzed in terms of the children's cognitive
appraisals of situations which, in turn, are based on the
classroom social norms. In the classroom we observed, the
teacher and children mutually constructed social norms that
fostered generally favorable emotional acts which, in turn,
sustained and perpetuated the operative social norms.
Examples from the classroom illustrate the relationship
between the social norms and the children's emotion acts.

Introduction

During a teaching experiment in a second grade

mathematics classroom we observed an unusually positive

emotional tone which seemed to contribute substantially to the

children's learning of mathematics. Since doing mathematics

is thought by many, including many mathematics educators, to

be associated with negative emotion (McLeod, 1985), we set out

to analyze our observations. The discrepancy between our

observations and the commonly expressed view is heightened

since negative emotion is associated especially with those

mathematical activities that involve problem solving (McLeod,

1985) and in the project classroom our approach, which was

based on the constructivist theory of learning, was that all

mathematics, including the so-called basics such as

arithmetical computation, was taught through problem solving.

The primary instructional strategies used in the project

classroom were small group problem solving and whole class

discussion. (For a clarification of what we mean by problem

solving see Cobb, Wood, and Yackel, in press, and Cobb,

Yackel, and Wood, in press.)
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Our analysis focuses on that aspect of emotional

experience which involves cognitive appraisal of a situation,

emotional act, as opposed to the physiological arousal,

emotional state. Since they involve cognitive appraisal,

emotional acts have an underlying rationale which, in turn, is

based on the social order within which the mathematical

activity takes place. Accordingly, our analysis necessarily

includes an analysis of the social norms that were operative

in the classroom and how they were mutually constructed by the

children and the teacher. We argue that it was because the

teacher and children established social norms that constrast

sharply with those of typical classrooms that we observed

generally desirable emotional acts.

Theoretical Framework

The theoretical framework that forms the basis for our

analysis is that of the constructivist approach to emotion.

According to this approach emotions are viewed as

'socioculturally constituted" (Amon-Jones, 1986a) and involve

cognitive appraisal or interpretation (Bedford, 1986; Amon-

Jones, 1986a). In this approach attention is not focused on

physiological states of the individual(s) involved but on the

interpretation the individual gives to the situation that

causes him/her to judge it as desirable or undesirable. In

this sense emotion acts involve cognitive appraisal "in that

they depend upon the agent's knowledge and his capacity to

judge and compare' (Amon-Jones, 1986a. p. 42). The cognitive

appraisal, in turn, is based on what is and is not acceptable

or appropriate in the given culture. From this perspective

"our capacity to experience certain emotions is contingent
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upon learning to make certain kinds of appraisals and

evaluations ... (lit is learning to interpret and appraise

matters in terms of norms, standards, principles and ends or

goals judged desirable or undesirable' (Pritchard, 1976,

p.219). For example, for an individual to feel embarrassment

he/she must interpret the situation as one in which he/she has

failed to act in accordance with the expectations of the local

social order. Specifically, if, in a classroom it is expected

that when a child responds to a question the only acceptable

responce is a correct answer to the question posed, then it is

appropriate for a child to feel embarrassed when he/she gives

an incorrect answer. In contrast, if incorrect answers are

routinely given and discussed along with correct answers, it

is not appropriate for a child to feel embarrassed when he/she

given an incorrect answer. As this example illustrates, the

emotion acts of children while engaged in learning mathematics

are influenced by the social norms that are operative in the

classroom.

This is not to say that children enter a classroom that

has a ready-made, pre-existing set of established social

norms. Social norms are not static prescriptions or rules to

be followed but are instead regularities in the process of

social interaction (Voigt, 1985). These regularities are

mutually constructed by the participants in the course of

their interaction. In this view, meaning is negotiated by the

teacher and the students in the course of their social

interactions. In this regard we follow Blumer (1969) when he

said that ' ... human beings act toward things on the basis of

the meanings that the things have for them. ... the meaning of
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such things is derived from, or arises out of. the social

interactions that one has with one's fellows" (Blumer. 1969,

p.5). The norms are, from the observer's perspective.

continually reconstructed in concrete situations and do not

exist apart from the interactions that give rise to them. As

in any collective body "there is one group or individual who

is empowered to assess the operating situation and map out a

line of action" (Blumer, 1969. p.56). In our case it was the

classroom teacher who guided and directed the construction of

the norms.

From the psychological perspective, the norms come into

being through the expectations that the teacher and children

have for each other and the largely

they have for themselves in

Emotion acts, because they

the social norms, serve the

specific

involve

implicit obligations that

situations (Voigt, 1985).

interpretations based on

function, therefore, of sustaining

and endorsing the norms from which they derive (Armon-Jones,

1986b). Conversely, socially inappropriate emotional acts

indicate either that the student has misconstrued the

situation or that the student's beliefs are incompatible with

social norms that are acceptable to the teacher and other

students. Because emotion acts are cognition-based these acts

are open to criticism by reference to the norms. Further.

there does not have to be evidence of a specific emotion

before that emotion can be ascribed (Armon-Jones, 1986b). For

example, a student can be told that he "ought to" feel a

certain way in a given situation, such as. that he ought to

feel pleased when he has persisted in solving a challenging

problem. In this way interpretations that are deemed
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appropriate in light of the social norms can be brought to the

attention of participants in the local society and can serve

to sustain the norms as well as to endorse certain emotion

acts as appropriate.

Children's beliefs about the nature of mathematics, and

their own and the teacher's role also influence their

interpretations of situations and hence their emotion acts.

These are, in turn, influenced by the social norms. For a

detailed discussion of the relationship of beliefs to emotion

acts and social norms see Cobb, Yackel. and Wood, in press.

Examples of the Relationship of

Children's Emotional Acts to Social Norms

In the project classroom social norms included that

students cooperate to solve problems, that meaningful activity

was valued over correct answers, that persistence on a

personally challenging problem was more important than

completing a large number of activities, and that while

working in pairs students should reach consensus as they

completed the instructional activities. The mutual

construction of the meaning of each of these through

interaction of the children with each other and of the

children with the teacher served at the same time to indicate

whether or not an emotion act was appropriate. As an

illustration consider the following example.

The following episode occurred at the beginning of a

class discussion that followed small group work. One pair of

children volunteered that they had spent the entire twenty

minutes allocated to group wrok on a single problem.

Kara and Julie: Because at first we didn't understand.
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Teacher: How did you feel when you finally got your

solution?

Kara and Julie: Good.

Kara and Julie's excitement at having solved the problem was

indicated by the way in which they jumped up and down as they

talked with the teacher. By calling the attention of the

entire class to this incident the teacher endorsed the girls'

construal of the situation as one warranting excitement and

simultaneously perpetuated the social norm that persistence on

a personally challenging problem is more important than

completing a large number of activities.

In the same way, when one child displayed anger because a

child from a neighboring group told him the answer to a

problem he was trying to figure out for himself, the teacher

affirmed the rationale for his anger. In this way she

indicated that his interpretation of the situation was

warranted and in doing so simultaneously reaffirmed that in

this classroom meaningful activity was valued over correct

answers.

In the first few weeks of the school year children often

interpreted situations in ways that were consistent with their

prior school experience but were not compatible with the

teacher's expectations for the children's activity in this

classroom. She then initiated a conversation in which she

talked with the children about her expectations and how she as

a specially empowered member of the group (Blumer, 1969)

assessed the situation. For example, during one lesson at the

beginning of the school year Peter went to the front of the

class to explain his solution to a problem. In the course of
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his explanation he realized that his answer was wrong, looked

down at the floor and then quickly returned to his seat. The

teacher, realizing that peter construed this as a situation

that warranted embarrassment said, "That's okay Peter. It's

all right. Boys and girls even if your answer is not correct,

I am most interested in having you think: That's the

important part. We are not always going to get answers right,

but we want to try.' By telling the children how she

interpreted the situation the teacher expressed her

expectations for the children. Simultaneously she expressed

her belief that it was more important in this class to think

about mathematics than to get correct answers.

We have presented examples which illustrate how emotions

are socially constituted through interpretations of situations

and how they function to sustain and perpetuate the local

social order, in particular the social norms that operated in

the project classroom. The social norms that were established

in the project classroom differ sharply from those of typical

classrooms. It was for this reason that children were able to

interpret situations when they were engaged in mathematical

activity in ways that made positive emotion acts the standard

rather than the exception.

The implication of this work is that teachers can promote

positive emotional experiences for children when they engage

in mathematical activity by guiding the construction of

classroom social norms which are conducive to mathematical

problems solving.
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THE USE OF GRAPHS AS VISUAL INTERACTIVE

FEEDBACK WHILE CARRYING OUT ALGEBRAIC

TRANSFORMATIONS

Michal Yerushalmy

The University of Haifa

Errors in perfonnince of algebraic transfornotions by algebra beginners

are a canna phencinemin. Among many reasons for the difficulties there

is one which had been investigated and described'in this work: the

absence of meaningful feedback meclimism that could not only immediate-

ly identify a mistaken process but could also reflect the algebraic

situation and the student's action. The RESOLVER, a ccmputer environ-

ment had been used with algbera beginners of different ability to

identify the impact of visual linked multiple representations while

procedurally performing algebraic simplifications and transformations.

The article concentrates on the effect of a feedback mechanise, on the

effect of the visualization of algebraic expressions on the performance

and on the ways in which students analyze their own mistakes.

A major part of the learning of algebra for beginners is devoted to the learning of techniques to

transform expressions. The literature reports on difficulties in carrying out algebraic tiansfor-

motion; difficulties that are rooted in the misinterpretation of the major essences of algebra

(Booth, Davis et. al 1978, Matz 1982, Ihampson 1987). An obstacle blocking the way to carry

transformations is the lack of checkingmechairisn to use as a feedback while simplifying. The

only available mechanism is the numerical checking; students may substitute numbers and compare

the values of transfoniad expressions (Lee & Wheeler 1985). Most students even do not bother to

do that. 1112 introduction of ccmputers into the secondary school algebra curriculum could affect

the learning to transform expressions in several ways. A Computer's uses range fran a tutor which

helps students to carry the right simplification (Brown 1985), through computerized tools which

direct students to understand the deep structure of algebraic expressions (Tlempson 1987) to the

use of programs that could carry symbolic transformations for the ncPr such as Mdlath (Fey

1984, Heid 1988). In parallel, several studies have been carried out to observe the impact of

computers on another topic in the algebra curriculum: the investigation of functions. As part of

a recent study (Yertinhahny in prop.), we studio' the effect of linluAl multiple representation

software on students' perfornance including their technical perforrnxice within the traditional

Algebra I curriculum. Une of the results suggests that students presented a rich repertoire of

visual arguments, but they did not link than to parallel results reached by symbolic and nuneri-

cal procedures. The picture one can draw from the studies motioned above and others is that
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multiple representation tools could adequately and successfully serve algebra students and help

than understand major concepts; however, methods of using such tools to enforce procedimal alge-

braic understanding and performance are yet to be established. The questions investigated in

this work were (1) How do learners handle inirediate identification of a falqe or correct step by

the computer, while transforming algebraic expressions? He they need the judgaental feedback to

verify their action or do they use the computerized feedback to try and understand why they got

the truth or the false action? (2) What are possible roles of graphs serving as an automatic

display of qualitative feedback while transforming algebraic expressions?

USING THE RESOLVER: 110W DOES THE SOFTWARE, WORK?

The RESLEM, the software usd in the experiment is an environment that prunkes students'

experimentation and verification while transforming algebraic expressions. The program allows

the user to carry out a process of transformations between two expressions and allows the user

to indicate the effect of each transformation on the expression. The RESOLVER (designed by

Schwartz and YerushalmT) is mainly an algebraic notepad which allows the input of any expres-

sion whose syntax is acceptable in algebra. It provides in parallel three graphs for each

transformation: one graph displays the original expression, one displays the current trans-

fo rm, expression and one presents the difference between the two expressions. Since any

legitimate operation of transformed expressions does not affect the graph of the expression,.

the graph of differences provides qualitative and quantitative information about the correct-

ness of each step. Here is an example of two transformations: one is correct and the other is

incorrect.

CHIEN: 13-2(x-2)5-3(x-2) 104.

13-2(x-2)5-3(x-2)
13-10(x-2)-3(x-2)

1 13-1020-306
-)

. ; I . ;

-26.00

164,

-5. en 5.800

26.00
dirt
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LIVEN; 7(5(x-2(x-3))+40)

7(5(x-2(x-3))+40)
7(5x-2x-3)+40

1-)7x(5x-2x-3)+40
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119

-210.

-20.00
119

k

20.00

There are multiple goals to the difference graph. First it allows an easier diagnosis of the

canparison between the two graphs; second, and more important, the graph of the difference is an

indicator of possible terms that are not correct. For example: a parabola in the difference

window points to a mistake in at least the r2 term.

SAMPLE AND METHOD

Seven students participated in an experiment, each received about five hours of work. The partic-

ipants wore: A seventh grader of average ability in mathematics who had recently first learned to

transform and simplify expressions; four eighth graders, average and above average ability, who

had concluded the topic of functions and graphs using the Function Analyzer (Schwartz & Yeru-

shalmy 1988); two ninth graders from the very low track in their school. All students volunteered

to participate and to stay after school hours for the experiment. Each of the three different

populations worked separately with a researcher. During Pesch of the meetings students were asked

to transform a file of expressions, either on paper or using the RESOLVER. Each file included

expressions from various levels of complexity. The level of difficulty had been matched to the

previous knowledge of each group and each file included transformations which had been learned in

the classrooms (such as canputations and grouping) and others which were assured be new (such as

multiplication of biamrials and factoring). The experiment did not include teaching intervention

of any kind. Etch session was audlotaped and all tie algebraic actions were recorded on paper.
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THE IMPACT OF QUALITATIVE FEEDBACK

The data gathered frail the experiment were analyzed with three aspects: the use of feedback. of

any kind while transforming expressions; the visualization of the expression using the graph, and

the Linkage between the analysis of the differences between graphs and between the expressions.

Here are a few descriptions from this work.

The case of S: an experiment with a seventh grader.

S had learned graphic representation of numerical information 'in an introductory chapter to

statistics. With the RESOLVER, there are two options to check the correctness of simplified

fond. First, by comparing the result to the target expression and second by using the interactive

feedback to each step of the transformation process. S did not use the target feedherk to check

his answers. In all cases he was very careful to try and correct each error immediately and was

not bothered at all to reach the certain format specified as a target. However, the existence of

an automatic constant feedback thatinforms of mistakes affected S, both positively and nega-

tively. Since he was so anxious to get the "good" feedback at each step he frequently gave up on

solving while he could not get rid of mistakes. On the other hand, the existence of an interac-

tive ir,nediate feedback encouraged S to conjecture and experiment while simplifying. Facing a

problea he often said: "I'll write what I think is true and then we will see". On another occasion

S evaluated the dimension of his mistake by an evaluation of the numerical values.

EXRESSION

4-8(x+5)2

84.0

DIFFERBU, GRAPH

S: I have done an awful mistake.... the numbers on the difference graph are so large!
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He then tried another transformation:

4-8x-a)

84.

19.99

-236.

JiffS: That is better, the numbers are smaller now.
mo

-NN'N.89

At other times he used the graph to analyze his next step and'here are two examples. In the first

instance S was able to correct a mistake, caused by an incorrect multiplication, by the analysis

of the direction of the graph.

EXPRESSION

3-7(9-2x)-5

3-63-14x-5

CURRENT EXPRESSION'S GRAPH

75.

-285.

-19.80
75.81

295.

19.89

z z

S: I watched the graphs and they looked as in the opposite directions. It reminds an that when

you open parenthesis with a negative sign the expression gets the oppposite signs so I changed

the expression to: 3-63+14x-5.

In the following rap, S made a technical error again and was able to locate it by observing the

difference graph. In all cases, S evaluated the difference window as an entity and not as a

product of difference between the two graphs. For hip, it was an independent entity and, despite

all his enthusiasa to understand the graphs, he never asked hoe exactly the difference graph is

connected to the two main graphs.

(1) 3(2x-8) (3x-1)4 + 5(x+2)

(2) Gx - 24 12x + 1 +5x + 10

(3) (-x) + (-13)
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S simplified the expression on paper and then checked his answer using the RESCUER:

EXPRESSION DIFFERENCE GRAPH

5.0047

S: I know that I have to add 3 but there does it come from?

-25.00

-15.CA 15.00
5.000's

-25.00

menAn experit with experienced eighth graders.
iitt

3

The special purpose of the work with that group was to study if and how the previous experi-

ence with functions and graphs affected the performance in algebraic transformation. Also it

was necessary to explore if above-average students have any need to get feedback on their

technical performance or whether such feedback is a waste for advanced students. The main

difference in the work between this group and the other three students was that this group

made extensive use of the graphs of all kinds; most of the excerpts include both: diagnosis of

the property of the graph itself and diagnosis of differences. They analyzed the difference

graph geometrically (as opposed to S who mainly paid attention to the numerical data). Here is

a description of their attempts to simplify an expression (organized chronologically):

(1) The given is a cubic expression.

They expanded the expression while performing two mistakes

(2) The difference graph is a paravola. Should we try (-6)?

They got rid of one mistake; the difference graph shows a constant difference.

(4) It looks better now, but the difference graph is -30. The inteception is

above the x-axis and it has to be below the axis.

BEST COPY AVAILABLE 259
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1 2 3 4 5

9xx(x+3)-4(xx+2)3 9xxx+27-12xx+6 9xxx+27-12xx-6 9xxx+27xx-12xx+6 9)=4-27).x-11a-24

They observed the ccoplexity of the given task by the shape of the graph. They assumed that

the more complex the graph, the more difficult the transformation. A similar reaction had been

already observed while working with S. However, the graphic display did not help then to

identify a mistake caused by a repeated false strategy. In such cases, students made many

attempts that brought them closer to the answer, but they could not reach the requested target

expression. The feedback motivated them to define criteria of the quality of estimation of an

algebraic result.

CONCLUSIONS

The results confirm the hypothesis that students do not n<atally develop and use any strategies

to evaluate their algebraic transformations and that the computer could be of help. Errors of

different types appeared in the work of all participants, at all levels of ability, but they

did not expect any feedback while simplifying expressions. The work with the REOLVM de-

veloped a need for feedback; this need, however, varied with ability and knowledge of graphs

and functions. Weaker students were looking sore for judgpental feedback; they tended to use

the difference graph as an indicator of right or wrong answers.

We had watched an increasing tendency of all participants to spend tine in conjecturing about
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the process instead of aiming for "the single right answer". Several occurrences led us to

this conclusion; they did not hesitate to write a transformation even if they suspected that

something might be wrong. Students isantly did not use the Target answer, they were concerned

more about the process and less about the exact fahriat of the answer. We are able to show that

there are advantages that even beginners could benefit with the integration of visual under-

standing and analysis of graphs with the procedural action of transforming. Beginners have

developed estimation processes to evaluate the complexity of the task by the shape of the

graph, wval the graph intercepthxy; to evaluate factors at the given expressions and they .,ere

able to identify the type of their error, even if they could not find the reason.

During the last few months we carried a continuous study of a group of seventh graders, using

graph feedback as well as other types of feedback. The full data had not been analyzed yet,

however, we find clear evidence about the willingness of students to correct their adstakes

once they find that they are able to reflect on their own actions.
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IMAGES OF GEOMETRICAL TRANSFORMATIONS :
FROM EUCLID TO THE TURTLE AND BACK

Rina Zazkis and Uri Leron
Department of Science Education

Technion Israel Institute of Technology
Haifa 32 000, Israel

Abstract. The relationship between turtle geometry and Eu-
clidean geometry i5 invest /paled through their groups of trans-
formations. in spite of a strong intuitive kinship bet the Iwo
geometries, they are still different e/101/0 for each to illuminate non-
trivial aspects of the other. From a psychological and educations/
perspectiws, the comparison between the two oeometries al/Ows
examination of the mental images associated with each anc' In par-
tic-Cll.:7r, a comparison of difThrent levels" of thinking about transfor-
mations; as moving a physical object, a point, a particular shape in
the plane, or the whole plane.

Introduction, EVer since Klein's Erlanger Program, which
described the various geometries through their transformation
groups, there have been attempts to use transformations in the
teaching of geometry (e.g. Coxford 73). Formally, geometrical
transformations are defined as maps of the whole plane. This,
however, is hard for novices to visualize, especially when
composition' of transformations is involved. Hence the effect of
transformations is sometime introduced by its effect on a single
point. But a single point is not enough to determine the
transformation: By a well-known theorem, three non-collinear points
(that is, a triangle) will be required. We can thus visualize
transformations by considering their effect on a fixed triangle.
Furthermore, we can represent the group operations of composition
and inverse of transformations by their composite effect on the
triangle.

The device of representing a transformation by its effect on a
triangle, helps in bridging the gap between the rigorous mathematical
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definition of transformations as maps of the whole plane, and their

more intuitive representation as operations on a physical (or mental)

object.
The motions of the triangle in the plane under the various

transformations bring to mind the motions of the Logo turtle on the

computer screen (e.g. Abelson and diSessa 81). Most of the people we

have asked in an informal survey to relate turtle operations to

Euclidean plane transformations, tended to identify FORWARD with

translations and RIGHT with rotations. While these intuitions are

quite natural, they are not, as we shall see, entirely correct.

Even though the precise nature of the relationship between

turtle geometry and Euclidean geometry has not been hitherto

articulated, there are quite a few projects and 'microworlds' in
transformation geometry, based on this relation (e.g. Thompson 85,

Goldstein 86, Edwards 88). The research reported in this article

attempts to put the relations between these two geometries on sound

foundations by comparing their groups of transformations. In
particular, it will be shown that the group of turtle operations is

isomorphic to the group of direct isometries (i.e. translations and

rotations but no reflections). The intriguing question of what in the

turtle World corresponds to reflections will also be discussed. Some

of the psychological and educational implications of these results

will be considered.
The Group of the Turtle. Intuitively, the elements of the

turtle group are the turtle operations FORWARD (FD) and RIGHT (RT)

with all possible inputs, and sequences thereof. For example, the

sequence [FD 50 RT 90 FD 36 RT 14 FD -70 RT -56] is such an

element. The group operation is composition of functions. Note that

the turtle operations LEFT and BACK are also included via FD and RT

with negative inputs. In this intuitive view, turtle operations are just

that physical (or computational, or mental) actions on a physical

(computational, mental) object the turtle, and their mathematical

nature is unspecified. To make this intuitive approach more rigorous,

we need several changes in the way we view turtle operations. First,

we need to view FORWARD and RIGHT as operating on the turtle state

rather than the turtle itself. Second, we need to view these

264



263

operations as acting on the whole (infinite) set of turtle states
rather than on a single state.

The turtle stale, then, consists of the turtle's position and
heading. Analytically, we define the turtle state to be the triple
) , where (x; y) are the coordinates of the turtle's position in a
Cartesian system, and h is its heading, measured in degrees
clockwise from the north. We denote by S the set of all turtle states
and call it the turtle plane. Given real numbers a and Z7, RT a and FD h
are transformations of the turtle plane, defined for all in S
as follows.

RT a: , ,/7) -> (.Y,,y,h+a)
FD +bsin /5, ..P:+bcosh)

Fig. 1: FD t, as a statechange operator

As mentioned above, the turtle group consists of all finite
sequences of FDs and RTs. Having formally defined FD and RT as

transformations of the turtle plane, we now define the turtle group
to be the group of transformations of the turtle plane generated by
the set {FD a, RT h I 8,b real numbers). We shall denote the turtle
group by 6.

From the definition of the turtle group, it follows that the group
operation is the composition of maps, the unit element is the identity
transformation, the inverse of FD a is f3K a (which is the same as FD
3) and the inverse of RT Li is LT b (which is the same as RT b).
Two elements I and g of 6 are considered equal if they are equal as
functions, i.e. if f(5)= u(s) for all turtle states s in S

The Two Geometries Compared. We now proceed to
establish the fundamental correspondence between the two

BEST COPY AVAILABLE
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geometries; namely, we construct an isomorphism (a one-to-one
structure-preserving map) from the turtle group onto the group of

direct isometries of the Euclidean plane.
The intuitive idea is simple: We correspond to the turtle a

particular isosceles triangle in the Euclidean plane, and to turtle

motions triangle motions. However, to make this idea precise we

need to move from the correspondence between motions to a

correspondence between transformations. This we do with the aid of

the following two theorems:
(a) Given two turtle states, there is a unique element in the

turtle group carrying one to the other.
(b) given two congruent triangles with corresponding vertices,

there is a unique plane isometry carrying one to the other (Coxeter

61). (What we shall actually need is a variant of this last theorem,

namely that given two congruent isosce/es triangles, there is a

unique direct isometry that does the job.)
We can now describe the correspondence as consisting of three

steps, the middle of which is the intuitive idea mentioned above.

First, we fix an arbitrary turtle state, say the HOME state (0,0,0), and

view elements of the turtle group as acting on a single turtle (in its

HOME state) via theorem (a). Second, we view turtle motions as

motions of the corresponding isosceles triangle as described above.

Third, we view motions of the isosceles triangle as plane isometries

by theorem (b). Inverting this three-step process, we can find turtle

operations corresponding to each translation and rotation. Thus our

map is one-to-one and on/a .
Note: For a more formal definition of this map and a proof that

it is indeed an isomorphism between the two groups, see (Zazkis 89).

A Turtle View on Plane Isometries. We now apply the

above scheme to find explicit interpretations of plane translations

and rotations in turtle terms, and vice versa. For a start, we work out

the plane isometry corresponding to the element FD 50 of the turtle

group. First we view the effect of FD 50 on the turtle in its HOME

position. Second, we view the same picture as a motion of a triangle

in the Euclidean plane.
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A
4

A

Fig. 2: Viewing FD 50 as a translation of the plane.

Finally, we determine the plane isometry that performs this motion.
In this case, the resulting isometry is the translation of 50 units
along the (positive) y-axis. Thus, the above isomorphism, carries FD
50 to this plane translation. Similarly, we see that the isomorphism
maps all turtle operations of the form FD a onto the translations
along the y-axis.

Applying next the same scheme to RT 90, we find that the
isomorphism carries it to a 90-degree rotation about the origin.
Similarly, the isomorphism carries all the operations of the form RT a
onto the rotations of the plane about the origin.

Since the elements of the form [FD a] and RT h generate the
turtle group, we are now in the position to easily calculate the plane
isometry corresponding to each element of the turtle group. However,
it is not yet clear what the reverse correspondence is. In particular,
what turtle operation corresponds to an arbitrary translation? To
answer, we look at a particular translation, say the 50-unit
translation in the direction of 45 degrees clockwise from the positive
y-axis, and consider its effect on our chosen triangle.

As can be seen from fig. 3 below, the turtle operation that
accomplishes the same effect on the turtle is RT 45 FD 50 LT 45 1.
Since translation shifts the triangle parallel to itself, we can
expect the same from the corresponding turtle operation. In turtle
terms this means that the transformation should be heading
preserving, i.e. the initial and final headings should be the same.
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Fig. 3: (a) A plane translation (b) Translation as turtle operation

In general, there is a one-to-one correspondence between

translations and heading-preserving turtle transformations. Since the

turtle can only move in the direction it is facing, in order to execute a

heading preserving transformations, it needs to first turn towards
its destination, then move there and, finally, turn bock the same

amount (to keep the heading invariant). Thus, these transformations

are characterized by their special form [RT a FD b LT a].
While the equivalence between these two definitions of heading

preserving transformations is obvious in turtle terms, interpreting it

back in' the group of isometries yields an interesting insight, namely,

that every translation can be obtained by conjugating a translation

along the y-axis by an appropriate rotation. (Recall that the conjugate

of 5 by .4 is the transformation ABA . As can be seen from this

example, this is a formal way to express the intuitive notion of "doing

the same thing in a different place" (Leron 86). )
By a similar line of reasoning, one can show that the turtle

analog of a geners/ rotation (not necessarily about the origin), is a

cojugate of a RIGHT by a suitable heading preserving operation.

Interpreting this back in the Euclidean plane yields a decomposition of

a general rotation as conjugate of a rotation about the origin by a

translation.
This is a typical demonstration of how such isomorphism can be

useful: Properties which are quite obvious in one system, can yield
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interesting insights when interpreted through the isomorphism in the
other system.

Turtle Reflections. We have now found (through the
isomorphism) turtle interpretations for two of the fundamental types
of plane isometries translations and rotations. A natural question at
this point is, what in the turtle world corresponds to reflections?
More formally we ask, how can we extend the turtle group to a group
isomorphic to the entire group of plane isometries?

In search for an answer, we turn back to our isosceles triangle
the Euclidean object analogous of the turtle and consider the effect
of a reflection on the triangle. A natural mental image of this
operation is that of physically lifting the triangle out of the plane,
inverting it, then putting it back into the plane. Since this operation
interchanges left and right, it is called an indirect isometry. But the
above physical description of the triangle under reflection, lends
itself easily to formulation in turtle terms. We call the corresponding .

new turtle operation FLIP. Intuitively, FLIP can be described as
"turning the turtle on its back" or, equivalently, switching its right
and left. Formally, we extend the turtle state to include a fourth
component the flip-state which can take on two values: face-down
and face-up. The FLIP operation switches the values of the flip-state,
leaving all other components of the state invariant. A closer look
shows that FLIP actually corresponds to reflection in the y-axis, and
all other reflections can be obtained from it by appropriate
conjugations. We conclude that the extended turtle group, the one
generated by FDs, RTs and FLIP, is isomorphic to the entire group, of
plane isometries.

Conclusion. This article gives a fresh outlook on Euclidean
geometry in two ways. Mathematically, turtle geometry can be
considered to give an intrinsic view of Euclidean geometry (Abelson
and diSessa 51, p. 13). Psychologically, turtle geometry gives us new
mental images with which to view plane isometries. Viewing
isometries as turtle operations (through the isomorphism) brings back
and legitimates our original intuitions of acting on a physical object,
intuitions that are all but lost when working with transformations of
the whole plane. In the Logo literature turtle geometry is often

269
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:onsidered as alternative to Euclidean geometry. Our discussion of the
somorphism between the two groups establishes a different
elationship between the two geometries: Turtle geometry as adding
mother, perhaps more intuitive view of Euclidean geometry, rather
.han replacing it. The words of Abelson and diSessa (81, 0.185) are
)ppropriate here:

"... whenever we have two different representations of the same
,hing we can learn a great deal by comparing representations and
,ranslating descriptions from one representation into the other.
shifting descriptions back and forth between representations can
)ften lead to insights that are not inherent in either of the
-epresentations alone."
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A knowledge-base of student reasoning about
characteristics of functions

NURIT ZEHAVI and BARUCH SCHWARZ

Weizmann.Institute of Science, Israel

The present paper describes an incorporation of experience in mathematics teaching,

cognitive research, and logic programming techniques. It involves abstract high level

activities in secondary mathematics in relation to representation systems of functions.

The paper presents an approach to the development of a computerized component which

will be the core of the "knowledge model" and the 'student model" of an intelligent
tutoring system. Based on data gathered from nearly "perfect students' and "actual
students", a two part expert system was constructed. The algebraic expert can derive the

properties of a function and exhibit the inference chains of perfect students. It attempts

to try to analyze student reasoning by matching the actual and perfect answers. The

graphical expert takes into account student visual thinking in graphical presentation of

-functions by software.

The general shift in the area of curriculum development towards the emphasis of cogni-

tive issues in the process of developing instructional systems, is the general background

for the dream of intelligent tutoring systems (ITS) which have diagnostic/predictive

possibilities. ITS should in principle, enable a better interaction between student and

system and lead to better instruction. The first attempts in this direction are described

in Sleeman and Brown (1982) and discussed in many papers and reviews. Among the

strengths of these systems are the well-articulated curriculum embodied in the domain

expertise and an explicit theory of instruction represented by its tutoring strategies.

The weaknesses against these strengths, are inadequate models of what the student

knows and how the student learns new knowledge (Wenger, 1987; Lawler and Yazdani,

1987). It seems that for several years researchers and developers have been reflecting

on the first attempts. At the same time advanced techniques and theories (Kearsley,

1987; Holland, 1987) were developed, and more recently a second generation of systems

is being designed and investigated with focus on the student model.
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Methodology
A starting point of research and development of an intelligent computer tutor is the

choice of a pedagogical problem which is suited for a computational diagnostic model.

Based on experience in mathematics teaching, educational studies, and research and

development of instructional software, we identified three main criteria for choosing

such an appropriate problem:

(a) The solution of the problem requires processes of an inferential nature rather

than associations. The cognitive behavior can be hypothesized to be a knowledge-

based process that is built of simple inferential processes.

(b) The required cognitive processes are not dealt explicitly by the curriculum. They

involve aspects of reflective abstraction (Piaget's notion) such as generalization,

interiorization, encapsulation and coordination (Ayers et al., 1988).

(c) The problem should be interesting and comprehensive, but at the same time its

manageability must be ensured.

These criteria are found in the basic tutorial activities that we investigate. The

tutorial activity we started with reflects our belief of effective pedagogy, and is as

follows. The student is presented with a certain algebraic expression of a function and

the graph of another function of the same type. For example, the algebraic expression

is y = 1 and the graph is:

-z
-1

The student has to propose and justify a function characteristic which proves the non-

equivalence of the graph and the algebraically presented function. The characteristics

which we introduced are:

intersection points with the axes;

o quadrants through which the graph passes;

maximum possible domain of the function;

range (image-set) of the function.
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In the example both algebraic rule and graph have the same intersection point with

the axes (2,0), same domain x > 1, and pass through quadrants 1 and 4. They differ in

their range. (There may be more than one distinguishing characteristic.)

Dealing with such problems invokes some "mathematical maturity" and we believe

that the development of transfer skills between the two representations can enhance the

learning process. In order to develop a prototype of a computerized component which

will be the core of the "knowledge model" and the "student model" we decided to gather

data from nearly "perfect students" and from "actual students ". A questionnaire was

applied to 12th grade students (n=26) at the top level of 5 credit points in mathematics,

and to 10th grade students (n=32) at the level of 4 credit points.

Knowledge Representation: Perfect Student

Introduction

The questionnaire was designed to examine how students handle problems of find-

ing characteristics of functions given in each of the two representations, algebraic and

graphical. The specific choice of items was intended to provide information on the in-

trinsic difficulties of students within each representation and on the role of the type of

function and the complexity of a particular function relative to its type. As expected we

found, for example, that the concept image-set causes difficulties across representation

and type of function, and that the greatest-integer function which is constant piecewise

is "pathologic" regarding all four characteristics.

The analysis of students' responses to the questionnaire gave much more than that.

It stressed some salient conclusions:

Students' reasoning is generally logic, that is, students can generally explain their

actions by a succession of rules.

Students' knowledge tends to be consistent, that is, it is possible to carry out a

cross-examination of the various answers and to understand student behavior.

Students' answers reveal a partly hierarchical system of levels in relation to char-

acteristics of functions.

These conclusions will be illustrated by means of one example taken from the ques-

tionnaire. In the algebraic part of the questionnaire, the students have to justify their

answers and we will see how some of their explanations (which were clarified during in-

terviews) constituted the basis of the algebraic perfect-student-expert. For example when
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asked about the range of the function y = 2, student A (a high achiever in

Grade 12) gave the following argument:

1. There is a square root, and I know that the square root function of x has always

positive values.

2. So the square root of everything is always positive,

3. There is a sign ".." before the square root, so the term --,b3 is negative,

4. Vi; is negative, so the term I 2 is less than 2.

Student B (another "perfect" student) answered the same problem as follows:

1. as above,

2. as above,

3. So ±Nro- ± 2 is greater or lesser than ±2,

4. So V-13 2 is less than 2.

The results of the analysis of the questionnaire led us to construct an expert system

as a first approximation of the knowledge-base of students in the realm of the four

characteristics of functions. This expert system will be referred to as "The Perfect

Student Expert". The currently developed expert is divided into two parts: an algebraic

expert and a graphical expert. Each part can be considered as a separate student

modeling implementation.

The Algebraic Expert
The algebraic expert deals with families of functions ±f (±x ± a) ± b where f (x) is

11x,f, or [x]. Our main concern in the construction of the algebraic expert, was to

build a system preserving the cognitive structures revealed by the questionnaire. To

achieve this, we represented the functions in symbolic list structures which reflect the

syntactics of the expression as observed by the student:

1E1, OP, L, E2, B1 (or some permutation of this list).

OP is one of the operators: division .sign, square sign, integer.sign.

L is a list 1E3, x, E4, A] (or some permutation of this list).

Ei are variables, whose values are ±1, related to unary or binary plus and minus.

A, B take the values of the parameters of the function.
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For the previous example, y = z 2, the algebraic expert records the function
in its list form: 1-1, sgr,I1,4, 1, xj, 1,2j. The rules formulated for deciding the char-
acteristics translate easily into Prolog clauses. The interpreter can be used directly for
deriving the properties of a function. A user-interface presents the output of the expert
as illustrated in the following for finding the image-set of y = x 2.

Please enter a function 1",' 2> [I, sqr, 11,4,-1,x), 1,21.

Enter a characteristic (d(omain), r(ange), i(ntersection), q(uadrants), h(elp))>> r.
Expert answer:

(1) 1, sqr, . . . x, _I applies range Vi is [0, in f (inity)1

(2) 1_, sqr, 1_, implies range 1,/±x± A is [0, in f]

(3)1-1,sqr,1_,,_,x1, implies range (V±x± A) is [in!, 0]

(4) [-1, sqr, E4,13) implies range (V±x ± A + E4 * B) islinf, E4 * B]
or

x, .1 applies range Vi is [0, in f (laity)]

(2)1_,sqr1_, _,xl, implies range ,f±x ± A is (0, inf.)

(3)1_,sqr,1_,_,_,x1,,B1 implies range (±../±x± A ± B) is 1±B,inf1 or [in f, ±BI
(4) [ 1, sqr, [ _, x], E., B) implies range ( ../±x ± A + E4 * B) is [in!, E4 * B].

This output exhibits precisely the inference chains of the "perfect" students A and
B. Applies stands for "I know" and implies stands for "so ". After instanciation of the
variables the expert's response is (in!, 2).

The expert can do more than that: it locates students' answers relative to the perfect
student by matching the actual and perfect answers. For example, if a student answers
that the range of the function is y < 0, the expert will try to match the answer and
present the following output for the student's answer:

(1)[_, sqr, . . . x, _[ applies range Vi is [0, inf.)

(2) [, sqr,1_,_,,x1,,..] implies range 1/±x ± A is [0, infl

(8)1-1,sqr,1_,,_,x), _1 implies range (-1,/±x± A) is [inf,0]
or

(3) [ I ,sgrl , xi, I implies range (-- Vizx :I: A B) is lin f 01

The expert provides two alternative explanations: Rule 4is missing or an incorrect rule
("The range of the term B is y < 0 because of the two "_" signs)_was applied.

flow could the expert produce such a rule? A system of meta-rules which reflects some
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most common errors of students has been inserted to the expert. The analysis of student

reasoning, such as searching for missing or incorrect rules, can be done using techniques

of meta-programming. Prolog is especially suited for meta-programming since Prolog

clauses are themselves terms in Prolog.

The Graphical Expert
The development process of this expert was based on the application of the question-

naire to the 10th grade class. The aim of the graphical expert is to restore the four

characteristics of a function given in its graphical representation.

The nature of the processes needed for this task is very different from the processes

involved in the algebraic representation: the students "see" the "graphing" and have

only to translate it in a formal way. Thus, in the questionnaire, we could not ask for

explanations of the visual answers. This fact influenced the construction of the graphical

expert; while the algebraic expert has been based on the explanations of perfect students,

the graphical expert has been based on classification of actual students' answers.

Let us clarify this point by means of an example taken from the questionnaire. The

student is presented with the following graph (without being told that the graph belongs

to a square-root function):

A

v

A typical answer for the domain and the range of the function is:

8 < z < 1, 2 < y < 1. Students who gave this answer did not process the visual

information they received; they just answered what they saw. It is difficult here to say

that the students were wrong, but of course we hope thatthey will implicitly translate

the visual information to: x < 1, y < 1. The answer y < 1 is associated with some

familiarity with the graph of a square-root function.

Another source of problems is connected with the limitations of the resolution of the

computer screen. Some students gave the following result to the intersection with the

x-axis: (x, 0) where 2.2 < x < 1.8. here again, there exists a gap between the
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implicit information and the visible; the student grasps the visible. It is also found that

many students do not cope successfully with reading points when non-integer coordi-

nates occur. Based on the actual students' answers to the graphical tasks the following

aspects in the solving process were identified:

(a) Objective mathematical skills for interpreting graphs (e.g., linking "range" with

the y-axis).

(b) Association with familiar graphs.

(c) Linking the visible "graphing" with the implicit graph.

(d) Concern with the accuracy of the graphics, and reading points on a graph.

We illustrate how the graphical expert acts in the last example. The "graphing"
presented to the student is symbolized by the list:

[features ([ -8, 1], [-2, 1I), inter ([ -2.2, 1.8], none), quads ([none, 2, 3, none])]

Legend;

features ,([-8, 1], [-2,1]): the visible part of the graph is constituted by the x part
8 < x < 1 and by the y part 2 < y < 1.
inter ([-2.2, 1.8], none): The intersection point with the x-axis is "spread" over the

interval [ -2.2, 1.81; there is no intersection of the graph with the y-axis.

quads anone,2,3,nonep: The graph passes through quadrants 2 and 3.

Note: while the "inter" and "quads" functors have the same format for all these types

of functions in the system, the "features" format, features ([Lx, Ly[), is different for

the three types. The length of the sublists Lx, Ly is determined by the "graphing" of

N/Y,1/x and [x].

The expert finds the characteristics by applying hierarchic ..l rules expressed as logic

clauses. For example, the rules for deciding the range of the current example are:

1. length Ly = 2 implies that the range is 1_, _1

2. length Ly = 2 applies the range is [_, in)] or [inf, _]

5. Lx =1-8,-11 and Ly = [-2,11 implies that the range is [in j,1].

The user interface exhibits the inference chain of the expert and the matching of correct

rules when an actual student answer is entered. As for the algebraic expert the inference

chains enable to capture actual student knowledge (i.e., failure in rules 1, 2, 3 reflect

difficulties related to aspect (a), (b), (c) respectively).
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Next Steps
We started the construction of the "student model" by gathering information from

perfect and actual students. Empirical data and clinical observations contributed

researcher-defined rules that simulate student reasoning. In the present paper, we have

not described the tutorial component. Roughly, it chooses a triplet: algebraic rep-

resentation, graph, and characteristics, and asks whether the the given characteristic

discriminates between the two presented functions. The Perfect Student Expert (the do-

main expertise) simulates students' correct responses and determines the level required

for solution. The process can be reversed by logical programming techniques, i.e. a

certain level can 'determine' possible tasks. Data collected by the questionnaire and

analyzed by the student model provide diagnostic information about students' knowl-

edge. The tutorial needs to select tasks at the level of the student in order to generate

learning. Experiments with the pilot version of the tutorial showed that the tasks may

provide sufficient challenge for learning and progress. In case it is not sufficient, the

expert may present the "rules" invoked for the situation. The tutorial is designed to be

used not only for treatment and evaluation, but also to sharpen the diagnosis.
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