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LOGO ET SYMETRIE CENTROLE

Elisabeth GALLOU-DUMIEL Institut Fourier

Universite Joseph Fourier

ABSTRACT. Point symmetry is a transformation taught in the secondary shoot in

France which involves a problem of orientation. A comparison between the construction of

the image of an angle in the case of a point symmetry and in the case of a reflection seems

to be useful. For this we undertook the construction of a learning of point symmetry in the

same LOGO environment than the one we realized before for the learning of reflection. We

explain the choice of the LOGO environment, of the tasks, of the figures and we give the

results of the experimentation in three classes in Grenoble (France).

1-Introduction,problernatique.- La symetrie centrale est une transformation qui

change ('orientation d'un solide dans un espace de dimension 3 et qui, dans un plan

transforme une figure en une figure superposable. La conservation des angles du plan

semble un des points essentiels de cette notion.

II nous .a semble judicieux de construire une sequence d'apprentissage qui par le

choix des taches, des consignes, le dispositif, soil analogue a celle realisee pour la

symetrie orthogonale pour permettre a l'eleve d'etablir des mises en relation de ces deux

notions et pour l'amener a determiner la specificite de chacune d'entre elles. La

determination du symetrique d'un angle nous semble l'activite fondamentale pour la

symetrie centrale comme pour la symetrie orthogonale.

Nous avons donc choisi un dispositif identique a celui de la sequence d'apprentissage

realise pour la symetrie orthogonale: un micro ordinateur avec la lisle restreinte des

commandes LOGO: AV n , RE n , TD n , TG n , ORIGINE , LC , BC , GOMME , FINGOMME

et VE.

En effet ce dispositif realise un "micro-monde" 01.1 la procedure suivante appelee

procedure de trace par segments initialises est favorisee. Cette procedure consiste

tracer une figure formee de segments juxtaposes en indiquant a chaque sommet ('angle
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dont dolt tourner Ia tortue puis la longueur du cote a tracer. Ce "micro-monde" es(

different de cetui de la geometric de la regle et du compas 0C1 sont favorisees les proprietes

d'incidence et les reports de longueurs mais ou la determination des angles est presque

toujours absente et en tous cas 00 our sens n'est jamais precise. Nous avons de plus une

double mediation pour la realisation dune tache le trace se faisant par l'intermediaire des

commandos d'un langage qui n'est pas la langue naturelle (LABORDE 1982).

2. Variables et choix des figures. La sequence a pour objectif de favoriser la

construction chez l'eleve des connaissances necessaires pour:

reconnaitre Ia presence ou l'absence de centre de symetrie dans une figure;

construire la figure symetrique dune figure.

II parait raisonnable de faire l'hypothese que pour acquerir ces connaissances l'eleve dolt

etre capable de differencier les trois termes qui sont mis en relation : la figure objet, le

centre de symetrie et la figure image. Cola nous a conduit a choisir des ti ches de trace de

symetriques de figures.

Les variables de la situation sont de deux types :

les variables des taches qui concernent Ia forme des figures et

('emplacement du centre de symetrie of de Ia tortue,

les variables de modalites qui concernent le dispositif déjà choisi et

('organisation de la classe.

a) variables des (aches of choix des figures.

Trois variables principales apparaissent: la variable figure liee aux seules

propietes de la figure , Ia variable position du centre de symetrie, la variable position

initiate de Ia tortue. Les figures choisies sont des figures fermees constituees de segments

juxtaposes comme pour la symetrie orthogonale. La variable figure nous sembfe donc

caracterisee par le nombre de segments et la variable angle droit qui prend la valour vrai

que si la figure ne comporte que des angles droits.

La variable position du centre de symetrie se partage en trois sous variables

suivant que celui-ci appartient au contour de la figure, lui est interieui ou lui est

exterieur. Dans le cas ou le centre de symetrie appartient au contour nous avons une sous

variable sommet qui prend la valeurvrai si le centre de symetrie est place en un sommet
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de la figure of la sous variable milieu d'un segment qui prend la valeur vrai si le centre

est au milieu dun segment de la figure.

La variable tortue se separe en quatre sous variables qui sont les suivantes:

la variable position du centre de symetrie,

la variable position d'un sommet de la figure,

la variable position du milieu d'un segment de la figuire,

la variable parallels ou perpendiculaire a un segment de la figure qui prend

la valeur vrai si la direction de la tortue est initialement parallele ou perpendiculaire a

un segment de la figure.

Les figures sont choisies de fawn a ce que chaque groupe de variables flees

apparaisse avec des choix de valeurs differentes a cote des autres. Les tableaux suivants

indiquent le choix des figures en fonction des valeurs des variables.

b) choix des consignes.

Le dispositif choisi est ('utilisation d'un micro - ordinateur avec la liste restreinte

des commandes LOGO déjà citees. Les eleves travaillent par paires devant le micro -

ordinateur. Ils regoivent des documents sur lesquels les figures et les centres de symetrie

sont traces. Un des eleves de la paire tape les commandes sur le clavier du micro

ordinateur, l'autre les ecrit sur une feuille de papier. Quand les eleves pensent avoir

terming le trace de la figure symetrique ils appellent la correction. A ce moment on dit

qu'ils terminent un essai. Si leur trace ne coincide pas avec la correction ils doivent faire

un nouvel essai jusqu'a concurrence de trois essais. Si au troisierne essai le trace est

toujours inexact les eleves doivent lire et noter les commandes realisant le trace exact

puis les taper au clavier.

3.Resultats de ('experimentation et bilan. L'experimentation a eu lieu dans trois

classes;

une classe de cinquierne (12-13 ans) ayant realise la sequence sur la symetrie

orthogonale l'annee precedente;

une classe de cinquieme ne l'ayant pas realise ;

une classe de sixierne venant de realiser la sequence sur la symetrie orthogonale.

Le CARREE ne comporte pas d'erreur. Le CARREF comporte I'erreur suivante:
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Celle erreur est analogue aux erreurs realisees pour la symetrie orthogonal° pour

CARREC qui sons es suivantes:

30

10

CARREC

Erreur 1

Pour MAISONF on trouve comme erreur :

Erreur 2 Erreur 3

qui correspond a l'erreur d'orientation. On remarque que pour MAISONH cette erreur ne

se retrouve que faiblement ce qui indique la presence dun apprentissage. La classe oil' on

trouve le plus d'erreurs en debut de sequence est la classe de cinquieme n'ayant pas

realise la sequence sur la symetrie orthogonale precedemment. Les deux autres classes ont

des resultats assez semblables avec cependant plus de rapidite et legerement moins

d'erreurs dans la classe de cinctui6hie ayant realise to sequence sur la symetrie
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orthogonale l'annee procedente. En fin de sequence les realisations des eleves des trois

classes se rapprochent et les evolutions au cours de la sequence sont de mome type en

laissant cependant subsister une difference sensible entre Ia classe n'ayant pas realise la

sequence sur la symetrie orthogonale et les deux autres.

Cela nous montre ('importance de l'elablissement par l'eleve de mises en relation

des deux notions: la symetrie orthogonale et symetrie centrale.

4. Conclusion. Des resultats similaires sont trouves pour le deroulement de la

sequence dans le cas de la symetrie centrale et dans le cas de la symetrie orthogonale. Nous

notons cependant que la meilleure maitrise des notions a lieu chez les eleves ayant

effectue Ia sequence sur la symetrie orthogonale en classe de sixierne puis celle sur la

symetrie centrale en classe de cinquieme .

Le dispositif choisi avec le type de procedure de trace quit induit apparait comme

un outil didactique favorisant l'apprentissage des notions de geometrie ou intervient

('orientation.
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ABOUT CONTINUOUS OPERATOR SUBCONSTRUCT IN RATIONAL
NUMBERS

Joaquim Gimenez
Dept. Educacio i Psicologia. Univ. Barcelona. Spain.

We found the existence of a special subconstruct with /rational numbers in
continuous situation related to A'iereaS studies after adding problems to his
rational thinking test. Factorial analysis confirm the above researches with
Spanish people, and shows different /actors with strerhers and shrinters than

discrete operator problems .

INTRODUCTION

It's well known the discussion about subconstructs in rational number concepts

during the last years . The Kieren's general point of view about intuitional knowledge

(Kieren 1988) accepts four central aspects : quotient, measure, ratio and operator , and

many relations between them (Kieren 1987). Successive modifications of the rational

thinking test (1980-1988) according to this theoretical approach (Rahim-Kieren 1988) .

It seem to be similar to the Vergnaud's and Freudenthal's ideas (Vergnaud 1983,

Freudenthal 1983) ,and also for the Rational Number Project (RNP Behr et. al.1985) seem to

talk the same ideas with little differences. For instance , Freudenthal talks about fracturer

and ratio operator,or transformer (op.cit. pg. 148-149), RNP provides the discrete,

continuous and countable situations (perceptual variability) for the fraction concepts

(op.cit. 101).

OBJECTIVES

Our purposes were to find if some aspects of variability (Dienes 1971, Behr et al.

1983-85) are as different as it seems in a operator context of rational numbers with

graphical presentations. It's a part of vide study about knowledge of fractions.

Questions: I) It is possible to have a distinction between the continuous and discrete

situations of an operator subconstruct ? 2) Can we accept these operator situations as

different subconstructs related the Kieren schemes ?

12
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METHODOLOGY OF RESEARCH

We used the Rational Thinking Test (version Kieren 1981). In this test there are four

parts with 24 general items : ratio situations (mixing xocolat; q.1-6) .quotient problems

(divided pizzas ;q 7-14) .operator discrete problems (input :little bars ,ouput boxes;q.15-18) ,

measure (sharing and drawing surfaces;q.19-24).

We decided to add six more questions about continuous operators bringing the
enlargement idea of stretchers and shrinkers (Dienes 1967.Braunfeld 1975,Streefland 1983)

to test the possible differences . We call these items continuous operator (q25-30) The items

have the same order of difficulties than the used for cognitive levels (Brindley 1980,
Noelting 1982). We ask for order comparison between machine situations

30. Les maquines A i B que veus abaix, allarguen el baste, d'entrada i el
Ian mes gran .

Errercla qulna de les dues maquInes allarga nes ... A Igual B

.Per que ?
Fig. Model of item situations

We also add 3 items about continuous measure situations (30-33) bringing ideas from

Ratsimba-Brousseau (1981) and Filloy ,Figueras at al. (1987)

We administered the tests to 1800 pupils (grade 5 and 8 that are final courses of 2

last periods in Primary Education in Spain ). There are 33 items in 3 hours divided by two

parts . This test was administered before holidays, and represent the acquisition of concepts

at the end of scholarity in each grade.

In each item we consider its wrong if there is no a convincent explanation of the

answer in each case . We assess by exploratory studies (Gimenez 1987) the validity of items.

BEST COPY AVAILABLE
3
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RESULTS

Here we have the significative results of factorial analysis by principal

components. We present the rotated orthonormal varimax solution (8th grade for values a

t .35 ) :

Items Fact. I Fact.2 Fact.3 Fact.4 Fact.5 Fact.6 Fact.7 Fact.8

I .47

2 1

3

4 1

5 1

6 1

7 1

8
9 .39 .34

10

11 .44

12 1

13 1

14 1

15 1

16 1

17
18 1

19 .36

20 .48

21

22 1

23 1

24 .45

25 .38
26
27
28 1

29
30
31

32 1

33

The 8 factors above presented explain 98% of variance and the single contributions

of first to seventh are greater than 10% . The contribution of 8th is 8.3%.

With these results, ive assigned to each children an addition of items corresponding

each subtest . Then we did the factor analysis of the results of the subtest I to 5 (ratio,

quotient, discrete operator,measure,continuous operator), by the same procedure, and we

can see here the plot of the new factors
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Rotated art boreal Plot: Faster I vs. Factor 2
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.453 -.177
.15 .197

-.549 1.06

.112

We found analogous results with 5th grade students , but really lover level. The
only important difference is to present a 9th factor (q. 232526) .

Some other results not commented here shoved that difficulty is related with item-
levels studied by different authors (Noelting 1982, Kieren 1983).

SUMMARY DISCUSSION

The table above presented shows that the items 25-30 ,and 31-33 identify different

factors from the Kieren's test and it seems to be an evidence of the perceptual variability.
We can also reflect the goodness of KT (Rahim-Kieren 1988) and the completed items
(Gimenez 1988 b).

The different factors 6th and 8th seems to be "sharing" and "fractions as quantities"
respectively. The items 1-3 and 4-6 are according to direct or non direct observations on
ratio situations.

The plot-design factor-sum explained above shows an acumulation of factors except
the 4th . It seems to show the measure conceptual items belong to different categories
while the others are more related between them . All this results ask for a new synthetic
scheme of literature about fractions (Gimenez 1988a)

BEST COPY AVAILABLE



14

REFERENCES

BEHR ,M. et al.( 1983) Rational number concepts In Lesh-Landau (ects)Aaxisition of
met/walled/ tyntypts end pram's. Academic Press . New York.

BEHR,M et al. (1985) Main results about Rational Number Project in L.Streefland (ed.)
Pray:3611/7gs of the /X PNE. Utrecht. Hol land.

BRAUNFELD,P et al. (1976) Stretchers enoeshrinkers gcnk 3 The thecryof frxtions Harper &
Row Publishers New York.

BRINDLEY et. al.( 1980) Ca/geryuniar High School Project . Summery Report. Edmonton.

FILLOY-FIGUERAS-ROJANO Albums sign/tin:07s esignats par los nines e mxtio er,7400/0,

trarinn c t /a unieW ONVESTAV del IAN. Mexico.

FREUDENTFiAL ,H (1983) Dicixticel pheenomenology of mathematical structures. Reidel.

Dordrecht.
DIENES,ZP (1967) Frxt ions . OCDL .Paris.
D1ENES,Z.P. ( 1971) guiding up mathematics . Revised ed. London
GIMENEZ,J (1987) [sites erp/oratoris sebre aincepcions Ct. frocc/Cns . Dept. EducaciO i

Psicologia Unpublished paper. Div. VII. Univ.Barcelona.
GIMENEZ (1988 a) Propuesta metodologica para la ensenanza de las fracciones en la education

basica . Paper presented to the ReURI.OflCentroamericene de 0nm/ooze ctmaternal/ex

S.Carlos de Guatemala.
KIEREN,T-SOUTHWELL (1979) Rational numbers as operators. The development of this

construct In children and adolescents Alberle ournal of educzlienal reseerch ,1979

25(4) 234-247.
KIEREN,T( 1986) Personal knowledge of rational numbers Its intuitive and formal development

in Hiebert-Behr (eds) Number ancepts end operating in the mictilegrectsReston. NCTM

,LEA
KIEREN,T( 1988) Personal knowledge of rational numbers .It' s intuitive and formal

development. in Behr&Hiebert (eds) Research ace/7d, Project. Research on number
leerning th m !dile school NCTM. Reston. VA.

KIEREN,T -RAHIM (1988) A preliminary report on the reliability and factorial validity of the
rational number thinking test in the Republic of Trinidad and Tobago. in Behr (ed)
Prxeezfinp; of the PNE-Al4 ,1 14-119. De Kalb. Illinois.

RATSIMBA ,H. (1981) Etude ctux metholiss mesures retibnelles "le commensuration et le
frxtIonement ct //unite; en vce or elaboration ct situations diclectiques. These de

3eme cycle Univ. Bordeaux.
NOELTING,G. (1982) le ctveloppment cairn?'" f et /e meechanisme clew,/ ibretion. Ed. Morin

Quebec.
STREEFLAND ,L( 1983) Aanzet tot een flieUW8 breakendkixtiek volyens Wiskobes . Utrecht.

OW&OC
VERGNAUD,G.( 1983) Multiplicative structures in Lesh-Landau (eds)Acquisition of methematical

concepts end processes Academic Press New York.

16



15

Constructivist Epistemology and Discovery Learning
in Mathematics

GERALD A. GOLDIN
Center for Mathematics, Science, and Computer Education

Rutgers University
New Brunswick, NJ 08903 USA

Many who adopt constructivist approaches to mathematics education base them on
radical constructivist epistemology; but as a foundation for research this leads to
problems. Empiricism, encompassing nonmechanistic models for knowledge
"construction" as well as procedural models for knowledge "transcription," allows
equally well the advocacy of constructive mathematics learning through discovery.
Some invalid inferences sometimes drawn from radical constructivist epistemo-
logy are identified and discussed.

What is the best way to characterize mathematical knowledge and to study mathematics learning?

What classroom activities facilitate meaningful learning, and how can teachers be enabled to foster

them? One set of research perspectives with which I generally concur includes the following main

ideas: 1 Mathematics is invented or was/I-acted by people, not an abstract body of "truths" or

necessary rules. 2 Mathematical meaning is not transmitted by teachers, but constructed by

learners. 3 Guided discovery, meaningful application, and problem solving are more effective

than imitation or rote algorithmic symbol-manipulation. 4 Mathematics learning is better

observed and assessed through qualitative case studies and individual interviews, not just

quantitatively scored skills tests. 5 Effective mathematics teaching does not focus exclusively on

correct responses, but encourages diverse, nonmechanical problem-solving processes. 6 Teacher

development should include reflections on epistemology- -from the historical origins of

mathematics to knowledge construction by individuals. As attention has been given to epistemology

in the psychology of mathematics learning, the philosophical perspective of radical constructivism

has emerged as a justification for views such as these (Cobb, 1981; Confrey, 1986; von

Glasersfeld, 1984; 1987; Steffe et 8/., 1983). Radical constructivists have made important

contributions by challenging the premature conclusions and overgeneralizations sometimes drawn

from "scientific" research, pointing out that in experimental studies surface variables are often

studied because they are easier to make quantitative, while more difficult cognitive variables are

disregarded. They have also sought alternatives to the overly mechanical models sometimes offered

by the artifical intelligence/cognitive science school. Nevertheless this paper raises some issues

in criticism of radical constructivism, arguing for an empiricist approach compatible with the

views above that avoids some of its potentially damaging consequences (Kilpatrick, 1987).
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Epistemological Perspectives Influencing Mathematics Education

Epistemology is the branch of philosophy that examines the underpinnings of knowledge: what it is,

how one acquires it, and the logical (or psychological) bases for ascribing "truth" or validity to it.

Much epistemological reasoning begins by analyzing the sources of what "I" (the reasoning entity)

know. One such source consists of directly accessible sensory experience (sense-data); another is

logical reasoning. Some questions with which epistemologists grapple are: Can I validly infer the

existence of external reality apart from my own experience? If so how? What can I know about

the "real world," and how can I know it? Can I validl y infer the existence of other people's inter-

nal experiences? If so how? What comparisons can be made between their sense-data and mine?

Can I consistently verify the validity of my own reasoning? Are logical and mathematical reason-

ing intrinsically valid, or only systems of human linguistic convention? What does it mean to say

that logical /mathematical statements (seeming to depend on reason) are true, compared to state-

ments in science (seeming to depend on empirical observation)? Is either "truth" objective? Does

psychology differ in this from physical or biological science, because its domain is the mind?"

Answers to such questions have been proposed by exponents of various epistemological schools

(e.g. Turner, 1967). Idealism is the view that all reality is mental, and no physical real world

can be validly inferred. But broadly construed, it may allow the existence of many minds, or even

a universal mind with which individual minds share experience. Solipsism is the more radical

view that the only reality is in my mind. At the other end of the spectrum, causal realism

asserts that an external world exists and ceases my sense experiences. This view falls within the

more general framework of rationalism as it asserts that one can acquire knowledge about the

physical world 1.1.e reason and logical inference. To the rationalist, sense-data are untrustworthy:

they are not the most fundamental reality and may be illusory; one must reason one's way past

them to arrive at knowledge of the external world. Empiricism relies more heavily on sense-

data as elements of a world-as-experienced. Observation and measurement are fundamental empi-

ricist tools, and the predictive value of inferences drawn from patterns in sense-data account for

the validity of knowledge. Many epistemologists distinguish analytic from synthetic truths,

though they do not alway agree on their definitions. Roughly speaking, anal ytic statements (e.g.

All brothers are siblings") are true by virtue of the meanings of the terms involved and cannot be

empirically refuted, while synthetic statements (e.g. ''George Polya was a mathematician") depend

for their truth on empirical evidence. A:..ssoning may nevertheless be required to verify analytic

statements; in one view mathematics consists of a body of analytic knowledge. Logical positiv-

ism is a form of radical empiricism which adopts the "verifiability criterion" of meaning, that

18
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the only meaningful content of a synthetic statement lies in the operational methods for verifying

it in principle (Ayer, 1946). Radical constructivism argues that we can never have access to

a world of reality, only to what we ourselves construct from experience; all knowledge (mathe-

matical or not) is necessarily constructed. Without telepathic perception one has no direct know-

ledge of anyone else's world of experience, and can only construct personal models of the knowledge

and experience of others. Thus one can never conclude that one's own knowledge is "the same as"

another's. Likewise one can only /mat,/ reality, and never conclude that one's knowledge is

actually of the real world. In this view knowledge is never communicated, but of epistemological

necessity constructed (and reconstructed) by unique indiriduals Verbal learning entails know-

ledge construction from in-context experiences of discourse; thus social conventions and interac-

tions rather than "objectivity" often function as the most important determinants of whether a

mathematical or scientific concept to be taught has been "correctly" learned. At times epistemo-

logy has influenced the psychology and practice of mathematics education, but its implications have

not always been correctly drawn. First we discuss logical positivism as a foundation for radical

behaviorist psychology and "behavioral objectives" in education (Skinner, 1953; Mager, 1962;

Sund & Picard, 1972). Then we examine some aspects of the radical constructivist influence.

The idea of mental states knowable through direct experience is compatible with idealism: since all

reality is mental, behaior (or, in a more precisely idealist characterization, mental experiences

classified as behavior), and mind (the full set of mental experiences that I or other human beings

have) are on the same epistemological footing. Alternatively, causal realists can posit the reality

of mental states, treating them as part of a world "out there," knowable in principle by reasoning

from their effects on observers. Thus mentalistic explanations of behavior and characterizations

of learning outcomes are reconcilable with either idealist or causal realist views. The radical

behaviorists, however, rejected mentalistic explanations as meaningless (in the sense of logical

positivism), involving i n- pri nci pl e - u no bse rvable statements. Their exclusive focus on stimuli,

responses, and stimulus- response (S- R) relationships derived explicitly from the fact that these

are directly aeuerKebie and measurable while presumed cognitive (mental) states are not. It was

argued epistemologically that the latter should be excluded a priori from scientific psychology- -

but 5-R models never succeeded well i n describing insightful mathematics learning. Li kewise for

instructional objectives to satisfy the verifiability criterion observable, measurable, and thus

behavioral learning outcomes must be set in advance But strict behavioral objectives in mathe-

matics fostered teaching discrete, disconnected rules over developing meaningful patterns or

insights. Directly testable goals led to the "efficient" procedure of teaching behaviors directly;

accuracy on standardized tests came to dominate instruction; so that teachers now assert with
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near-unanimity that they have no classroom time for mathematical exploration, discovery, or

problem solving. Of course some advocated "back to basics" in mathematics for other reasons:

uncomfortable with diversity, they valued drill-and- practice or performance- based accountabi-

lity. But epriori principles of epistemology or science do not necessitate these goals.

One need not adopt radical constructivism to pinpoint the error in the positivist epistemological

anal ysis. A moderate empiricist can ask that a meaningful synthetic statement have in- princi pl e-

verifiable implications without requiring that it be itself directly verifiable. I would not concede

that the only meaning of such a statement consists in its presently definable consequences. A model

for cognition using unobservable entities (e.g. internal cognitive representations) may succeed in

useft; lly summariri no ono synthesizi ng ota.n.able epents (e.g. behaviors), and may suggestaddi-

tional observations that were not specified in advance. Such a model is scientific if it gives a more

parsimonious description of empirical phenomena than models based on directly observable

entities. The early atomic theory in chemistry made use of atoms and molecules then thought to be

in principle unobservable; it accounted for certain observations, e.g. those fitting the law of mul-

tiple proportions; scientists later found further consequences of the theory, and invented once-

unforeseeable ways to observe atoms and molecules directly. The radical behaviorists' epriori

epistemological reasoning, though wrong, did considerable damage to mathematics education.1

Radical constructivism in contrast not only allows but necessitates psychological models for the

individual's "understandings" or mental processes. But it has other implications for mathematics

education and psychology which should be carefully considered. It's conclusions that all knowledge

is constructed and all learning (including mathematics learning) involves constructive processes,

are not derived from empirical studies which distinguish constructive from non-constructive

learning and observe their conditions of occurrence or degrees of effectiveness. Instead they are

claimed to follow from a priori epistemological considerations: human knowledge is necessarily

"constructed," from a world of experience. Again as epriori epistemological necessities, each

person's world of experience (and, therefore, knowledge) is context-dependent: unique and inac-

cessible to others. Descriptive case studies are not merely a technique in an exploratory stage of

empirical study; they are the best that can be achieved, and must replace controlled experimenta-

tion in mathematics education research because individuals' cognitions are non-comparable. Now

the conception of a "mathematical structure" (e.g. the integers and their properties), natural to a

1 The earl y behaviorists were reacting at least in part against partictiler mentalistic psycho-

logical theories derived largely from introspection, which relied little on systematic empirical
observation. Thus they did sweep away much in psychology that was relatively valueless.
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mathematician, has been central to "structural" goals in mathematics teaching (Dienes, 1963;

Dienes & Jeeves, 1965). The structure of problem representations (search space complexity,

etc.) as external to problem solvers is important in task variable research (Goldin, 1984).

Radical constructivism denies us these as analytical tools apart from the constructed knowledge of

a learner or problem solver, allowing in principle no way to establish that a problem or concept

"has" the same (or similar) structure for two people: not because of empirical evidence of

differences, but due to a prioriepistemology. Radical constructivist influences on mathematics

education have been opposite in direction to that of logical positivism, but both make major claims

based on epistemology rather than empirical research. Though sympathetic to the general

direction of their influence, I still see dangers if the radical constructivist reasoning is unsound:

1 Advocates of constructive learning Vie discovery processes may find that invalid conclusions

from the epistemology are intertwined with otherwise valid perspectives. 2 A valuable and time-

ly set of nonbehavioristic, nonmechanistic ideas in mathematics education may be discredited in

the eyes of those who justifiably seek an empirical, scientific basis for research- -indeed, recent

scholarly debate on issues affecting policy (e.g. variables associated with effective teaching) has

been cast as differences between quantitative empiricism and constructivism (Brophy, 1986;

Confrey, 1986). Thus I stress that one need not accept radical constructivism to model learning

constructively, or to advocate increased classroom emphasis on guided discovery in mathematics?.

Constructive and Nonconstructive Empricial Learning Models

Before returning to the epistemological issue let us consider the difference between constructive

and nonconstructive empirical models for learning. To do so, we define learning" as the acquisi-

tion by s system or entity of a set of in-principle-observable competencies or capabilities. We

contrast two situations where, because the systems involved are not human minds, questions of

epistemology can be deferred: 1 A computer is programmed in a high-level language, e.g. BASIC.

Users (even if familiar with the machine's circuitry) need a helpful model for its competency ac-

quisition, which detailed knowledge of the electronics is not. Therefore we imagine that the com-

puter represents internally, literal "transcription," the procedures and contingencies that in

the program input are expressed in a conventional notational system; and that these are precisely

followed in executing the program. The description does not include bob.' representation occurs as

the program is entered; but there is a useful sense in which no new, important internal systems

2 .. in some [constructivist] writings the implication seems to be drawn that certain teaching
practices and views about instruction presuppose a constructivist view of knowledge. That

implication is false." (Kilpatrick, 1987, pp. 11-12)
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are built. The learning" is non-constructive: new competencies are limited to processes fully

described by the program itself. 2 The body acquires immunity by inoculation, "learning" Pie

infection with a killed or weakened virus to defend itself. This biological process is not adequately

modeled as representation of explicit instructions; scientists may not even know the procedures

the body will acquire. It is more useful to conjecture that in interacting with the vaccine material

the immune system colutructs new capabilities, e.g. to recognize the dangerous virus biochemi-

cally, or to manufacture antibodies in quantity more rapidly, which are complex end not fully

understood. The evidence for a constructive model is obtained ie controlled, empirical research.

Such examples illustrate empirical grounds for distinguishing "constructive" from "nonconstruc-

tive" learning: either may occur, in various situations. The hypothesis that immunization (but

not programming) elicits constructive processes is testable, and depends not at all on radical

constructivist epistemology- -i mmunology and computer science are not helped by saying that "the

immune system (computer) has access only to its personal world of experience, not directly

knowable by any other immune system (computer), or scientist." Likewise modeling mathemati-

cal competence acquisition constructively as part of an empirical theory, or hypothesizing that

knowledge construction occurs (e.g., in stages) -is logically indepenoW of radical constructivist

epistemology. Some learning may be constructive, some not, and the two empirically disti ng ui sh-

able. Perhaps constructed knowledge is more widely generalizable and retained longer. The

moderate empiricist can define, study, and advocate discovery processes and open-ended problem

solving in mathematics, and take account of contextual influences and individual differences.

Constructivist and Empiricist Views of Knowledge

To make explicit the disagreement between radical constructivism and the moderate empiricist

position taken here, we return to the question of how "I" (the reasoning entity) acquire knowledge.

The (valid) constructivist statement that I have direct access only to my world of experience

differs from the (invalid) phrasing that ire have direct access only to our worlds of experience,

which tacitly places "me" on the same epistemological footing as other human minds (but pre-

sumably not on the same footing as computers or immune systems). It is valid to sag that I con-

struct (in an epistemological sense) my "knowledge." Doing so I infer (tacitly, and later overtly)

a "real world" to which I relate words and symbols drawn from experience. I then reason about it:

as an empiricist I consider my statements as useful summaries of patterns in sense-data, both

actual and contingent. I infer in the real world entities called "other people," and in another epis-

temological step reason that they too have "worlds of experience." This organizes my experience

of their behavior: people seem to act es if they feel sensations and have thoughts like my own.
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Thus in modeling their cognitions (e.g. to teach mathematics) I begin with my own experiences

and infer a description of their knowledge: informally, or with systematic empirical techniques

such as controlled experimentation. Others' behavior and cognitions are for me on the same

epistemological footing as any other aspect of the real world (such as atoms and molecules).

The fact that I wish to study cognition rather than chemistry has slight effect on the epistemo-

logical underpinnings of my investigative methods. In cognitive (unlike chemical) studies, it may

help to establish and reason from similarities between others' behavior and mine, and corres-

pondences between my behavior and subjective experiences. But such techniques have limitations:

it is apparent that other people differ from me behaviorally in important ways, and there is

empirical evidence that my awareness and recollection of my behavior and subjective experiences

are imperfect. Thus reasoning about others' cognitions by analogy with my own is only a heuristic

tool -it may guide some theorizing and motivate some everyday teaching activity, but it must

yield to more rigorous empirical investigation when the latter is possible. Thus I argue that it is

epistemologically invalid to take as equivalent (a) the "knowledge" of others that I or other re-

searchers model when we study cognition empirically, and (b) the inner "knowledge" that I con-

struct from my personal experience. These th.17 senses of "knowledge" differ : one is a defined,

useful shared construct enabling researchers and teachers to better predict or influence beha-

vior; the other is accessible only to introspection. Whether empirically-defined knowledge

"really" describes inner knowledge-as-constructed is not an issue, because Met is not its intent

Epistemology and the Psychology of Mathematics Education

Mathematics seen logically is a set of assumed conventions for manipulating symbols. Once these

are established, there is a sense (contrary to radical constructivism) in which the system exists

and "has" a structure, apart from the individual. Historically conventions were inpented , and

psychologically they are reinvented by individuals; but their consequences are logically con-

strained. Though a logical formalism is useful, we stress its empirical motivation: e.g. the com-

mutative law of addition, assumed in one formal approach to number theory, can be discopered if

we first interpret addition as a physical procedure. To talk about discovering a pattern or struc-

ture we must view it as existing apart from the individual. One guides a child to "invent" counting,

or "invent" addition by joining sets of objects; having done so the commutative law is not invented

but discovered: it exists in that context apart from the child's cognition. To guide the discovery a

teacher must know of its existence, and foster situations in which it can be found and interpreted.

To encourage meaningful over rote mathematics learning, we must distinguish them empirically.
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One distinction focuses on teaching and learning strategies, which may range from the teacher

stating and exemplifying rules, to the student detecting patterns and verifying conjectures.

Another focuses on the empirically observed capabilities of students who have "learned" an arith-

metic rule: stating the rule, applying it to numerical examples when asked or spontaneously,

identifying presented instances of it, providing exemplars and non-exemplars, are important but

can be acquired pia rote, fairly nonconstructive procedures. Other capabilities, e.g. illustra-

ting the rule physically, justifying it, or setting up a pattern where it can be discovered, suggest

more meaningful learning. The latter go beyond computation to connect numerical with non-

numerical domains, or make explicit reference to reasoning processes. I think it is empirical

fact, not epistemological necessity, that methods based on "transcription" and application of rules

are less successful than those of mathematical discovery and constructive learning. Criticism of

radical constructivism is not support for behaviorism or rule-governed learning in mathematics,

but a call for new empirical models encompassing far more complex capabilities (Goldin, 1987).

References

Ayer, A. J. (1946) Language, Truth, end Logic
(2d ed.), NY: Dover.

Brophy, J. (1986) Jour. for Res. in Math. Ed.
[JRME] 17, 323-346; ibid. 361-368.

Cobb, P. (1981) in C. Comiti & G. Vergnaud
(eds.), Procs. of the 5th tht 7. coat: of PNC,
Vol. 1, Grenoble, 50-55.

Confrey, J. (1986) JRME 17, 347-360.

Dienes, Z. (1963), ,4n experimental study of
methemetics leer/77'w. London: Hutchinson.

Dienes, Z. & Jeeves, M. (1965), Thinking in
structures. London: Hutchinson Educational.

Goldin, G. (1984) in G. Goldin & C. McClintock
(eds.), Task i.ariebles in mathematical prob-
lem solving. Phila.: Franklin Institute Press
[now Hillsdale, NJ: Erlbaum], 103-169.

Goldin, G. (1987) in C. Janvier (ed.), Prob-
lems of representation in the teaching end
kernin of mathemetths. Hillsdale, NJ:
Erlbaum, 125-145.

24

Kilpatrick, J. (1987) in J. Bergeron, N. Hers-
covics, & C. Kieran (eds.), Procs. of the I 1th
int?. con( of PNE, Vol. 1, Montreal, 3-27.

Mager, R. (1962) Preparing instructional
otrjectiies. Palo Alto, CA: Fearon.

Skinner, B. F. (1953) Science end human
bettelor. NY: The Free Press.

Steffe, L., von Glasersfeld, E., Richards, J., &
Cobb, P. (1983) Children :s counting types;
philosophy, theory, and application. NY: Praeger.

Sund, R. and Picard, A. (1972) Behavioral
object/1.es an d evaluational treasures: Science
and mathematics. Columbus, OH: Merrill.

Turner, M. (1967) Philosophy en d the Science
of 5eherior. NY: Appleton-Century-Crofts.

von Glasersfeld, E. (1984) in P. Watzlawick
(ed.), The //neaten' reelity. NY: Norton, 17-40.

von Glasersfeld, E. (1987) in C. Janvier (ed.),
Problems of representation in the teaching and
learning of mathematics. Hillsdale, NJ:
Erlbaum, 3-17 and 215-225.



23

COMPARATIVE ANALYSIS OF TWO ARITHMETIC SITUATIONS

IN SEVEN YEAR OLD CHILDREN
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Summ4rY

A sample of 105 seven-year-old children were subjected to a

test consisting of two semantically similar arithmetic

situations, but different in the amount of information and

structure. The comparison of the responses given by the sub-

jects in the two situations indicated that the modalities of

response varied from situation to situation, even for the same

child. Whoever, in the first situation, had used a con-

solidated and internalised subtractive procedure, in the second

used other modalities which again return to graphic repre-

sentations and a restructuring of the information.

Introduction
The aim of the present work is to study the strategies

used by a group of children, aged seven, in the solution of two

arithmetic situations; addition and subtr'action.

The comparative analysis between the two situations has

the intent of pointing out, within the theoretical framework of

cognitive psycology, how the additive - subtractive procedures

are acquired by children who are at the stage of concrete

operations. Such research is done within the authorised ac-

tivities conducted by the Didactic Research Group (Nucleo di

Ricerca Didattica) of the University of Pavia which proposes to

put into effect, in the elementary schools, a mathematics cur-

riculum which emphasises the critical-formative aspect of the

disciplines. In this regard, the study of the cognitive

strategies used by the children gain particular importance.

Here we will limit ourselves to the presentation of a

strong point of the investigation that we are conducting on the

verbal additive situations.

MethOdoludY

The research was conducted on 105 seven-year-old subjects
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attending the second elementary class.

Our children belonged to six different schools, repre-

senting the social and economic classes of the population of

the city and province of Pavia.

The trials were composed of two arithmetic situations

which the children had to solve on successive days to avoid the

possibility that choice of solution of the first could, accord-

ing to the logic of the "fixity of the task", influence the

solution of the second.

The two arithmetic situations were undertaken by the sub-

jects after about three months from the beginning of the second

year of elementary school when addition and subtraction were

presented in the cultural baggage of the students.

The two situations proposed are the following:

A. There are 18 gifts under the tree on Christmas morning:

Three children enter and take their gifts from under the

tree;

6 gifts remain for their parents;

How many gifts have the children taken?

8. This morning the baker had 30 buns;

He sold 4 of them to Roberta, 2 to Luca, and some to

Mario;

Now he has 18 left;

How many did he sell to Mario?

How many did he sell altogether?

If we use Moser's (1985) semantic classification of the

proposed problems, our situations can both be placed in the

class Transforming/Separating.

The semantic classification of the problems begins from

the situations of action or staticity which the problem

describes for identifying the logical operators like union

and/or separation in situations of transformation, combination,

comparison and equality.

The second problem proposed by us presents, however, a

syntactic and organisational structure of the information which

is different with respect to the first. In fact, the order of

the questions is not one which conforms to the sequentiality of
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the actions described. The text also contains a problem of

combinaticn of the subtractive type. Further, to put into play

the relations which exist between a particular set and three of

its subsets does not indicate any implicit actions and,

therefore, any reference to the strategies of separation and

addition, but it describes the relation which occurs between

the quantities.

Our problem was that of seeing how the same subjects be-

haved in the two situations. Thus, the different subtractive

strategies used to resolve the trials were pointed out.

For the first situation, three strategies were used.

I) 6 + = 18 In this case the modality used by the child

is additive, he begins from the smallest

quantity and builds a larger one by the ad-

dition of objects until reaching the greater

number. The counting of the objects added

gives the result..

II) 18 6 In this case the modality used is that of

"separating up to". The child removes, from

the more numerous set, many units up to the

point when the number remaining equals that

of the smaller given.

III) 18 - 6 = The modality used here is that of "separa-

ting from". The child takes away from the

larger of the given sets the number of units

indicated by the smaller set.

These three subtractive strategies are also represented in the

second situation, even if combined among themselves in a dif-

ferent way. There are, in fact, four modalities which we have

compared.

I) 30 4 2 = 18 In this case the child used the
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modality "separating up to", using

more sets and then those of the

sums between two quantities which

were not directly given by the

text, but which had to be found by

the child.



II) 4 + 2 + 18 =

26

Here the child uses an additive

modality to build the subset of

the objects that he knows; then

using the modality "separating

from to find the unknowns of the

problem.

III) 30 18 = In this case the subtractive moda-

lity "separating from is also

used.

IV) 30 - 4 - 2 18 = In this last case the child unites

6 + 6 = to the modality "separating from

that of the sum between two

quantities.

It is interesting to note, above all in the second situation,

how the children demonstrate a "flexibility" not so much in the

operative modality as in the organisation of the information

that they have at their disposition. In using the same sub-

tractive strategies, the data are used in a different way.

Results
Of our 105 subjects, 68% (71 students) responded correctly

to both trials, 25% got only one trial wrong (8.5% the first

and 16.5% the second) while only 7% got both trials wrong.

Now let's study the modalities used in the two different

situations; examining the correct protocols.

Situation A Correct 83.8% Situation 8 Correct 77.13%

Modality Modality

I 12.38% I 38.09%

II 20.00% II 14.287..

III 51.42% III B.577..

83.80% IV 16.197..

77.13%

2'8
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Of our subjects, 83.8% responded correctly to the first situa-

tion and 77.137. to the second.

In situation A the most used modality (51.427.) was that

known as "separating from". In this case the information was

used in the given order. Only 317. (17 out of 54) of the

children doing the third modality also used the graphic repre-

sentations of the objects. Instead, we observe that 71.4% of

the children who used the modality "separating.up to" made use

of the representations of the objects; representation used by

all the subjects that resort to the first resultive modality,

the additive one.

Therefore, it seems that the children who resort to the

third modality are already able to use an internalised plan of

action which does not need the objects to be activated.

In situation B we encounter the highest percentage (38.09)

of the use of the strategy "separating up to". However, we

must observe that the other three modalities use the strategy

"separating from" which therefore, as a whole, was used by

39.047. of the subjects who responded correctly to the second

situation. Moreover, it should be noted that the use of the

graphic representations was increased. A good BO% of the

children who used the first modality made use of the

representations, 66.6% of those using the second modality and

02.3% using the fourth, while none of the subjects who used the

third modality used them. The comparison of these percentages

allows us to hypothesize that the internalisation of the work

plan of subtraction does not always follow a linear process,

but facing information of.a greater quantity and which is more

difficult to organise, as in the case of situation B, the

children resort to procedures which can still be verified at a

perceptive level following the technique of counting.

In the following table the data of the children who cor-

rectly solved both the first and the second modality are

reported with reference to the modality used.
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MODALITY

5

SITUATION A

I I

12

A I I I 1

I I

O III I 1

N I

IV I 3

B I

10

3

1

16

III

18 I 35

9 I 13

5 1 7

I

13 I 16

45 I 71

Of the 45 subjects who, in the first problem, used the modality

"separating from", 18 did not use it in the second, while 27

used it with different modalities. This would seem to confirm

the initial observation that the 7-year-old children who used

the subtractive strategy "separating from" elaborated an opera-

tive model that, in most cases, no longer resorted to the

object.

We must, however, recognise that only 5 subjects who used

the third strategy in situation 8 effectively demonstrated that

they had internalised the plan of "separating from" , avoiding

both the graphic representation of the objects and the sequen-

tial use of the information in favour of a process of

synthesis.

Moreover, it is interesting to underline the fact that of

the 35 subjects who, in situation 8 made use of the modality

"separating up to", 18 had. used the modality "separating from"

in situation A. These data become clearer by the last analyses

of the protocols from which it results that a good 14 of these

subjects had, however, used graphic representations in situa-

tion A, witnessing to the necessity of still connecting the

thought to the object.
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Conclusions

The results obtained in this research point out how the

internalisation of the subtractive processes are much more com-

plex than they had seemed.

Our subjects, at 7 years of age, having, by all means, un-

derstood the meaning of such processes, present some differen-

tiation from the operative point of view.

Two semantically similar arithmetic situations resulted

from the same subjects according to different modalities of

calculation which vary in relation to the amount of information

and, in general, to the context.

Therefore, it would seem that the acquisition of the sub-

tractive procedure is also subjected to a "cognitive

flexibility" which can re-enter into the capacity of the crea-

tive.thought. Lacking a plan internalised in an adequate way,

the subject resorts to his own abilities of creative thought

trying other solutions.
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Understanding and discussing linear functions in situations.
A developmental study.'

Jean-Luc Gurtner, Universite de Fribourg, Switzerland2

This study is a first attempt to investigate 7th, 9th and I I th graders'

functional reasoning in situations and to understand how and when
general expressions are spontaneously used in such a context.

Results indicate that all the groups had good understanding of key features
of linear functions in the situation, but that only I I th graders understood

that conceptual descriptions may work as answers where lack of informa-
tion does not allow numerical answers. 7th and I I th graders spontaneously

adapted the level of generality of their solutions to the level of constraint of
the problems. 9th graders focused more on the way the different variables
of the situation interacted than on trying to compute specific answers even

in highly constrained problems.

One can accept the first part of the following claim : "Generality is the lifeblood

of mathematics" (Routes to/Roots of Algebra. Open University, Centre for

Mathematics Education, 1985, p.8) without buying its tail "and algebra is the

language of generality". (our emphasis). Potentially an ideal way to learn to deal

with concepts and numbers together, algebra, as taught in the schools, is now

widely charged with "too much meaningless symbol pushing" (Kaput, 1987, p. 345).

Linear functions represent the easiest way to keep expressing generalities

while reintroducing meanings. This is not a new idea and Wheeler and Lee (1987)

see its origin in the 1920s. Well documented studies have shown (Piaget, 1968) that

mastery of the symbolic notational system is not necessary to understand

functio.nal relations, and that the use of situations may successfully trigger

functional reasoning among students (Janvier, 1978). Most school curricula

however delay the study of functions until the introduction of algebra.

'Research done with J. Moore, M. Korpi, J. Green°, G. Pribyl and J. Simon and
supported in part by NSF, Grant BNS-8718918 to J. Green°.
2Currcntly visiting at Stanford University, sponsored by the FNRS Fellowship
81.353.0.86.
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In this study, we have tried to capture in the language of 7th, 9th and 1 I th

graders marks of an understanding of functions beyond the simple statement of

the relations between the variables of the situation, and to analyse its strengths

and weaknesses. We also wanted to take a first look at what makes students

spontaneously decide what level of generality is appropriate for a given situation.

The experimental situation

The data come from the protocols of 9 pairs of subjects, three of 7th, three of

9th and three of 1 1 th graders, with respectively, 0, 1 and 2 years of algebra at

school. They were asked to answer questions and solve problems related to the

functioning of the device shown in Figure 1. Each interview lasted 50 minutes.

27.. '28..4_49.. -30.. 31.. '32.. 33.. '34..

; -

Fig. 1 The device used in the experiment.

Two blocks can be moved up along parallel tracks by turning the wheels

situated at one end of the device. The wheels can be actionned independently or

together. Wheels of different sizes can be put on each crank, allowing the blocks

to move 2, 3, 4 or 6 inches per turn. Different starting positions can also be given

to the blocks. Each track may be seen as embodying a linear function of the form

y=ax+b, in which y represents the ending positions of the blocks, a the sizes of

the wheels, x the number of turns and b the starting positions of the blocks. The

use of two tracks, aside of proving highly motivating by introducing an element

of competition, was decided to allow the discussion of linear functions, beyond one

particular instantiation.
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The first 15 minutes of the sessions served as an open-ended familiarisation

phase. Its aim was to let the subjects become acquainted both with the device and

with questions designed to promote generalisation by offering only part of the

necessary information. "What will happen when you turn the handle?" or "Where

will the blocks be when you stop turning?" arc example of those initial questions.

For the next fifteen minutes, subjects were given problems to solve. These

problems presented various level of constraint. The less constrained problems like

: "How could you make the blue block be at 20 first?", were solvable in many

different ways. More constrained problems, like "Have both blocks be at 24 at the

same time?" accepted fewer solutions. In both cases, the experimenter kept

prompting for other ways, until evidence was received that the subjects had

considered possible action on the three variables involved (i.e number of turns,

sizes of the spools and starting points). In the totally constrained problems,

enough information was introduced into the situation, (for instance by selecting

two spools and two starting positions), that only one solution remained possible.

At the end of the problem phase, another 15 minutes were reserved to ask the

subjects to make Inferences in order to assess their degree of understanding of

some key features of linear functions. As in the totally constrained problems, the

questions concerned particular settings of the device. Given the usual difficulties

raised by problems about ratios, a central question was the understanding that the

ratio of the travelled distances of the two blocks was constant and equivalent to the

ratio of the sizes of the two spools. In the simple case where both blocks started at 0

and had respectively a 3 and a 6 spool, we asked successively: "Will the number

that this block is at (the one with the larger spool) ever be two times the number

that this one is at?" "Will it always be so?" and "Will this number ever be three

times the number of the other block?". Argumentations were always requested.

The sessions ended by a presentation of an abstract situation, in which the

sizes of the spools and the starting positions were only given in a relative way

("Now let's imagine that we have a bigger spool on one side and a smaller one on
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the other. I won't tell you the size of the spools I have in mind, however. The block

pulled by the smaller spool starts ahead, but again I won't tell you how far ahead.).

Questions like: "Can you still say anything about when they arc going to be on the

same line?" were discussed in order to assess the subjects' understanding that
. . _ . . , . .

. . .

general, conceptual answers remained posSible when numerical answers were no

longer to be found.

Results

Problems : subjects were voluntarily left totally free to decide whether and

how much they wanted to use the device in their solutions. The interviewer

accepted specific answers -- solutions involving mention or use of at least one

particular starting position or' nufnber of turns (ex: Put a 6 on chit one), as

well as unspecific solutions -- answers containing only relative descriptions of

those parameters (ex : Have a bigger spool on this one) and no specific values.

For the less constrained problems, all age groups gave predominantly

unspecific, but working solutions, (respectively 60, 74 and 70 % for the 7th, 9th

and 11th graders). This result indicates that unspecificity about the values of the

variables is seen as the appropriate answer to a weakly constrained problem. For

more constrained problems, the proportion of unspecific solutions drops

significantly for the 7th and the 11th graders to respectively 31 and 25 % but stays

high among the 9th graders (75 %. p < .05). This result shows that even the 7th

graders are able to adapt the level of generality of their solutions to the level of

constraint of the problems. The unspecific solutions given by the 9th graders

should not be regarded as weaker performances. They arc indeed often well

formulated (4A: Well, / think you have to use the same size spool, or if you used a

smaller one you'd have to start it ahead.) and can be followed by very accurate

answers on request, as shown in the following interchange.
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Interviewer :

Student 6A :

Interviewer :

Student 6B :

Interviewer :

Student 6A :

Student 6B :

35

All right, suppose you want to make the red end at 24 and the blue end at
8. Can you construct that situation?

At the same time?

Yes, at the same time, a tie, or you know...

If you took, urn, a 6-spool, a 2-spool, and like, you did, um, wait,
oh.

The red's gonna be at 24, and the blue's gonna be at 8.

You can have the 2-spool to the blue, and the 6-spool to the...
I mean the 6-spool to the red...and then have the same number of
turns.

You can crank that one (red) three times as much as this one.

This tendency of the 9th graders to remain unspecific even in the more

constrained problems may be due to a special effort to capture and express how the

variables of the situation can be manipulated and interact to produce the target

event (like a meeting) rather than to try to pursue one specific solution that would

make the target event to happen at the specified location (24). Another finding of

this research offers support for this, interpretation. Use of comparatives

throughout the session (like smaller, faster, etc) is more frequent among the 9th

graders than in any other -group (appearing in 25 % of their general statements

and in only 15 % for the 7th and 11 % for the 11th graders).

Totally constrained problems are generally received with guesses and requests

to use paper or to work them on the device. Correct solutions appear in all age

groups and are usually found by constructing tables and comparing the positions

of the two blocks after each turn. One 11th grader however got the correct answer

to the problem : "Flow many turns will it take for the two blocks to be equal?" by

immediately computing the gain per turn of the bigger spool and comparing it to

the head start of the other. (7B: ! knew that if this was 4 and this was 3, every turn

this would gain I , and they are 5 apart, so 5 turns would put'em together),

attesting that he also understood that the function resulting from the composition

of two linear functions was also linear. Two pairs of 11th graders tried to use

equations to verify their correct solution but failed to set the equations correctly.
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Inferences : Only one pair of subjects (9th graders) accepted that, when

starting both from the 0 mark, blue could eventually later be three times as far as

red after having seen it be two times as far at one particular point. All the othcr

pairs (except for one pair of 11th graders for whom the question was considered

too obvious) explicitly argued that, with a joint start at the 0 mark, the ratio

between the positions of the two blocks would stay constant and equal to the ratio

of the spool sizes. One can hardly be more explicit than this 9th grader : the blue

spool is twice as large as the red spool, so it can't move any faster than twice as far.

Subjects' reactions to the abstract situation show a clear developmental

pattern across levels. In all the 7th grade pairs, subjects proposed to supply the

unspecific information given by introducing values of their own. No other pair

did so. The four 9th graders dealing with the question considered that because of

the unspecific information given about the spool sizes and the starting positions

nothing sensible could be said about whcrc the meeting of the two blocks would

occur. (5A: We don't know, to which 5B added : It all depends on how much bigger

the spool is or 4A: You need to know how many inches it moves per spool ). This

result is somewhat surprising coming from the very same subjects who had

proposed unspecific solutions even for the more constrained problems earlier in

the session. Further investigation is needed to better understand this apparent

paradox. Answers at the level of the variables were given only at the 11th graders'

level who gave answers like: 9A: The red will catch up with the blue at the point at

which it's size advantage can cover the original loss in distance, or 7A: t he

number of turns it takes for blue to catch up with red will depend on the size of

the spool, immediately completed by 713: and the head start.

This result is consistent with another finding of this research showing that if

the use of the variables' names rises remarkably at the 9th graders level already,

those names remains absent of expressions involving words like it depends on or
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a quantifier like twice or half. While 9th graders produced almost only sentences

like : it depends on how big the spool is or it will go twice as far, the 11th graders

used mainly expressions like it depends on the size of the spools (79 % of their

"depend" expressions involved concepts' names,

p<.001). Expressions like it's twice the distance

a highly significant increase,

started to be more than just the

exception among the 11th graders only (33 % of their quantified expressions

involve the variables's names

"Composite" formulas like :

while also attesting of the

expressions, reveals that they

comparatives.

Discussion

against only 11 % among younger subjects).

the smaller size spool , or twice as much distance ,

9th graders effort to integrate concepts into their

arc not yet ready to have the concepts supplant the

This study represents a first attempt to understand how and when 7th, 9th and

11th graders form and use general expressions to characterize functions in

situations. It was shown that, when reasoning about a situation, even 7th graders

had a good enough understanding of linear functions, to correctly answer

questions about the ratios of the images of two linear functions with same

intercept. Only the 11th graders however introduced the variables' names in

expressions involving mention of dependency or mathematical relations,

although the use of those names was frequent among the 9th' graders, in other

types of sentences. Half oflhe 11th graders -understood:1-tha6-expressions in the.

level of the variables could be given as solutions for problems where lack of

specific information made numerical answers impossible.

The 7th and the 11th graders correctly adapted the level of generality of their

solutions to the level of constraint of the problem. The 9th graders, though

generally able to find specific solutions on request, tended to stay at the same level

of generality for the more than for the less constrained problems. In both cases,
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they often focussed more on expressing the possible ways to realize the desired

event (like use a bigger spool, to make a particular block win, or give one a bigger

spool and the other one a head start, to get a tic) than on the specific values that

would make this event happen at a particular location on the device, as also

requested in the problem. Additional data .suggest that this tendency is to be seen

as reflecting how the 9th graders interpreted the interviewer's expectations in

the situation and not as a drop in quality of their reasoning. Interestingly the

interviewer even accepted as a good solution for the problem : "How to make the

blue block be at 20 first?" an answer as ambiguous as : 5A: Put a different spool.

This result shows that subjects do make some hypotheses on the level of precision

they have to go to and the level of understanding they will be credited for, when

they deliver general answers. Very often, this level was determined through

negotiation between the students, making the use of pairs of subjects a very

appropriate technique where the form of the message is as important as its

content. This also shows that, if generality is the lifeblood of mathematics, more

theoretical work has to be done in defining generality for verbal expressions.
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LOW MATHEMATICS ACHIEVERS' TEST ANXIETY
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Abstract

Reactions To Tests questionnaire (Sarason, 1984) was
used to check eighty two low achievers in mathematics in
order to find out their level of test anxiety. Counter to
theoretical expectations, which predicted a high level of
test anxiety, findings show indifference to taking of tests
among these students. Implications for curriculum
indentation are discussed.

The Problem and Its Background

Test anxiety has been widely studied (e.g. Helmke,

1988; Hembree, 1988; Sarason, 1984). Evidence of a negative

correlation between test anxiety and performance in
evaluative situations has led to a wide variety of
experiments, aimed at evaluating hypotheses about the
processes that may be involved. (Sarason, 1988).
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We chose to check test anxiety of low ability students

in vocational high schools. The system of vocational high

schools in Israel runs in parallel to the academic high
schools. In vocational high schools students major in

technical fields such as mechanics, constructions,
secretarial work, etc. In the context of evaluating a newly

developed mathematics curriculum for these students, the

problem of achievement evaluation arose. Naturally, it

became apparent that testing for achievements should be

considered as an instrument. In view of the well established

history of failures in mathematics examinations of this

population, and in accordance with Sarason's findings
mentioned above, it was reasonable to expect high level of

test anxiety on the part of these students. Therefore we

decided to check it. Existance of test anxiety certainly

would violate achievement tests' validity. One must,

however, be very careful in concluding the opposite if test

anxiety measure proves that it does not exist. Namely, if

test anxiety is too low, this also may violate the validity

of the results.

The Instrument

Test anxiety was measured using Sarason's (1984)
Reactions To Tests (RTT) questionnaire. As both general and

test anxieties are usually defined as complex states which

include cognitive, emotional, behavioral and bodily
components, Sarason's instrument consists of four factor

analytically derived scales :

T: Tension (e.g. "I feel distressed and uneasy

before tests")

W: Worry (e.g. "During tests I wonder how the other

people are doing")

IT: Test-Irrelevant Thought (e.g. "Irrelevant bits of

information pop into my head during a test")

OS: Bodily Symptoms (e.g. "My heart beats faster when

the test begins")
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Altogether, the )RTT questionnaire consists of 40
statements, each with four alternative reactions. Examinee
is to circle the alternative that best reflects how he or she
reacts to the statement. The four alternatives are:

1 not at all typical of me

2 only somewhat typical of me

3 quite typical of me

4 very typical of me

As there are 40 statements in the questionnaire, ten or
each scale, a student could get a score of between 10 to 40
for each scale, and a score of between 40 and 160 for the
whole questionnaire.

The instrument was validated by Sarason using it for

normal students' population in the United States (1984).
Michaelis et al. (1988) translated it into Hebrew, and
validated the translation applying the test to 54 Tel Aviv
University students, who sought counselling because of their
Suffering from test anxiety.

The Sample

The RTT instrument
was administered to 82 low abilityvocational high school students at average age sixteen, 45boys and 37 girls. Their mathematics achievements, as wellas other achievements

throughout school, were below average,
therefore in high school they were assigned to the lowability vocational stream. A study of their characteristics
(Movshovitz-Hadar, 1987) revealed a low motivation coupledwith a variety of social and learning problems.

Results

The mean questionnaire scores and standard deviationsare presented in rable 1. In that Table we also present, forthe sake of comparison, results obtained by Michaelis et al.(1988) and by Sarason (19811).
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TABLE I: 1111 MEANS AND STANDARD DEVIATIONS

MICHAELIS El AL. STUDY SARASDN'S STUDY

Students in Israel vith

adoitted test anxiety who asked

lot counselling 119881

Norval Students In

the United States

119041

MALE

Mr*

FEMALE

M-.37

10IAL

8,82

MALE

PIS

FEMALE

M=38

10IAL

0.54

MALE

M=144

FEMALE

71.241

TOTAL

71-.385

M SD N SD M SD M SD M SD M SD M SD M SD M SD

I 16 4.6 19 5.1 17 5.1 31 5.9 35 5.4 34 5.7 22 6.6 25 7.6 NO

II 21 5.4 22 4.0 21 4.9 28 5.6 27 5.9 28 5.7 20 5.9 21 6.7 DATA

If 15 5.2 16 6.1 15 5.5 22 1.6 22 7.7 22 7.6 17 6.4 18 7.0

OS 12 3.2 IS 4.8 13 4.2 20 5.8 23 5.9 22 5.9 15 4.1 16 5.7

TOTAL 64 14.9 71 14.9 67 15.4 102 20.3 101 17.5 106 10.4 74 18 80 21

Table 2 presents distribution of results by scales and sub-

groups of scores.

TABLE 2

Anxiety
Scores T w IT BS

Low
(10-20)

Med
(21-30)

High
(31-110)

68 44

12

2

33

68 75

7

5 0 0

46



43

Discussion

Counter to our theoretically based expectations,
results in Table 1 show that students of both sexes in the

low mathematics achievements population have a very low test

anxiety score, compared to that of students of both sexes of

high test anxiety population in Israel, and to that of normal

students' population in the United States.

Table 2 shows that hardly any student received a score

higher than 30 in each of the four scales. To re-examine

this gap between theoretical prediction and our results, we

interviewed the mathematics teachers of these students.
Teachers rejected the theory and were not at all surprised to

hear about their students' low test anxiety. On the
contrary, they said it was consistent with their own
expectations and observations. According to their
experience, they said unanimously these kids are
indifferent to tests, as they do not care any more about
success . They lost every bit of inner motivation to succeed

in mathematics, and hence they could not care less about
tests.

Conclusions

Even though we did not find a high level of test
anxiety as we had theoretically predicted, we cannot
recommend using achievement tests as the basis of curriculum

evaluation for this particular population. As their teachers

suggested, a major problem is that or total lack of success-
drive. A careful study of this population's inner and

external motives to succeed is needed. Meanwhile, innovative

measures ought to be found in order to evaluate new

mathematics curriculum, developed for these students.
Perhaps, a measure of change in test anxiety can serve as an

indicator of change in student's motivation, in case an

increase in.test anxiety is found.
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Abstract

A distinction is made between mathematical proofs that prove and
mathematical proofs that explain: those that explain show not only that a
statement is true, but also why it is true. It is then argued that proofs that
explain should be favoured in mathematics education over those that merely
prove.

In recent years many mathematics educators have actively reassessed the role of

mathematical proof in various parts of the curriculum, and as a result there has been a

trend away from what has often been seen as an over-reliance on formal proofs. In a

desire to take into account the role of proof as a means of communication, and in

recognition of the social processes that play a crucial part in the acceptance by

mathematicians of a new result, educators have come to place greater emphasis on the

concept of proof as "convincing argument."

The trend away from formal proofs in the curriculum, and the resulting search for

alternative ways of demonstrating the validity of mathematical results in the

classroom, have motivated a number of studies dealing with the problem of teaching

proof. Leron (1983), concerned that most of the formal proofs found in textbooks do a

poor job of communicating mathematical ideas, suggested that such mathematical

presentations would be much more comprehensible if the proof were structured into

short autonomous modules, each emphasizing one particular idea.

Deploring the teaching of geometry as narrow and overly concerned with deductive

proof, Volmink (1988) believes that mathematics education would be better served if
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the curriculum were to place greater emphasis on the social criteria for the acceptance

of a mathematical truth, at the expense of the purely formal ones. Movshovitz-Hadar

(1988) elaborates upon six different ways of presenting theorems and six ways of

presenting proofs, in an effort to enhance mathematical understanding through what

she calls the "stimulating responsive method."

Alibert (1988), on the other hand, relies on the method of scientific debate, which

provides students the opportunity to discuss the arguments made by a proof. In an

extensive study of the processes involved in teaching a mathematical proof, Balacheff

(1988) also points to the importance of creating classroom situations in which the

student becomes aware of the complexity of the problem and of the necessity to produce

valid arguments.

These ideas, and others not cited here, have made a substantial contribution to our

understanding of the didactics of proof, and have permitted their authors to offer

specific and interesting new ways of teaching proofs. In these discussions, however, a

proof is viewed primarily as a valid argument, as opposed to an argument that must be

both valid and explanatory. I believe it would be useful to introduce to the discussion an

explicit distinction between proofs that prove and proofs that explain.

In this paper I first address this additional aspect of proof, namely proof as explanation,

and then consider the implications of this view of proof for the handling of proof in the

curriculum, suggesting that we should, whenever possible, seek to present to students

the proofs th/t, explain rather than those that only prove.

Explanation versus Validation

Both proofs that explain and proofs that prove are legitimate proofs. By this I mean

that both fulfill all the requirements of a mathematical proof. Each serves to establish

the validity of a mathematical assertion. Each consists of statements that are either

axioms themselves or follow from previous statements, and thus eventually from

.0
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axioms, as a result of the correct application of rules of inference. Each is recognized by

the mathematical community as a valid proof (though there may be differences of

opinion on the degree of rigour).

There is nevertheless a very important difference between these two kinds of proof. A

proof that proves shows only that a theorem is true; a proof that explains also shows

why it is true. A proof that proves may rely on mathematical induction or even on

syntactic considerations alone. A proof that explains must provide a rationale based

upon the mathematical ideas involved: the mathematical properties that cause the

asserted theorem or other mathematical statement to be true.

The sense in which I use the term explanation is perhaps best clarified in

contradistinction to that of Balacheff. In his analysis of the cognitive and social aspects

of proof, Balacheff (1988) proposed the following distinctions:

We call an explanation the discourse of an individual who aims to establish
for somebody else the validity of a statement. The validity of an
explanation is initially related to the speaker who articulates it.

We call proof an explanation which is accepted by a community at a given
time.

We call mathematical proof a proof accepted by mathematicians. As a
discourse, mathematical proofs have now-a-days a specific structure and
follow well defined rules that have been formalized by logicians (p. 2).

For Balacheff, then, a proof is an explanation by virtue of it being a proof. Yet surely a

proof need have no explanatory power. One can even establish the validity of many

mathematical assertions by purely syntactic means. With such a syntactic proof one

can demonstrate that a statement is true without ever showing what mathematical

property makes it true. Thus I prefer to use the term explain only when the proof

reveals and makes use of the mathematical ideas which motivate it. Following Steiner

(1978), I will say that a proof explains when it shows what "characteristic property"

entails the theorem it purports to prove. As Steiner put it:
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... an explanatory proof makes reference to a characterizing property of an

entity or structure mentioned in the theorem, such that from the proof it is

evident that the results depends on the property. It must be evident, that is,

that if we substitute in the proof a different object of the same domain, the

theorem collapses; more, we should be able to see as we vary the object how

the theorem changes in response (p. 143).

The following example will illustrate the difference between a proof that proves and a

proof that explains:

Prove that the sum of the first n positive integers, S(n), is equal to n(n +1)/2.

A proof that proves

Proof by mathematical induction:

For n=1 the theorem is true.

Assume it is true for an arbitrary k.

Then consider:

S(k +1) = S(k) + (k+1) = n(n +i) /2 + (n+1) = (n +i)(n+2)/2

Therefore the statement is true for k+1 if it is true for k

By the induction theorem, the statement is true for all n.

Now, this is certainly an acceptable proof: it demonstrates that a mathematical

statement is true. What it does not do, however, is show why the sum of the first n

integers is n(n +1)/2 or what characteristic property of the sum of the first n integers

might be responsible for the value n(n+1)12. In general, proofs by mathematical

induction are non-explanatory.

Gauss's proof of the same statement, however, is explanatory, because it uses the

property of symmetry (of the different representations of the sum) to show why the

statement is true. It makes reference to the property of symmetry and it is evident from

the proof that the results depend on this property.

.2
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A proof that explains

Gauss's proof is as follows:

S =

S =

2S =

S =

1 + 2

n + (n-1)

(n+1) + (n+1)

n (n+1) /2 QED.

+ .

+ . .

+ ...

+ n

. + 1

+ (n+1) = n (n+1)

Another explanatory proof of this same statement is, of course, the geometric

representation of the first n integers by an isosceles right triangle of dots; here the

characteristic property is the geometrical pattern that compels the truth of the

statement.

Both Gauss's proof and the geometric representation show that an explanatory

approach to proof in the classroom need not always entail doing away with legitimate

mathematical proofs and relying on intuition only. What is required is the replacement

of one kind of proof, the non-explanatory kind, by another equally legitimate proof

which has explanatory power, the power to bring out the mathematical message in the

theorem. In their paper "Wann ist ern Beweis ern Beweis?" (When is a proof a proof?)

Wittmann and Mueller (1988) refer to these kinds of proof, in fact, as "clear-content

proofs" (inhaltich-anschaulich), and furnish an interesting example. The challenge is

to identify suitable explanatory proofs as alternatives to the many non-explanatory

ones now in use.

One might ask whether an abandonment of non-explanatory proofs would not make the

curriculum less reflective of accepted mathematical practice. It is certainly true that,

far from making the mathematical content clear, many mathematicians have thought it

necessary in constructing a proof to avoid any reference at all to mathematical content,

sometimes through reliance on purely syntactic methods. To ensure the correctness of

their proofs, they have consciously emphasized the deductive mechanism at the

expense of the mathematical ideas.
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As I have argued elsewhere (Hanna, 1983), however, mathematicians, including those

who have recourse to purely syntactic methods, are nevertheless really more interested

in the message behind the proof than in its codification and syntax, and they see the

mechanics of proof as a necessary but ultimately less significant aspect of mathematics.

Furthermore, as 1 have also argued, the significance of what is proved is given more

weight than the very correctness of the proof. Thus there is no infidelity to the practice

of mathematics if in mathematics education we focus as much as possible on good

mathematical explanations (even at the expense of rigour), and highlight for the

students in our proof of a theorem the important mathematical ideas that lead to its

truth.

Implications for Teaching

As mathematics educators it is our mission to make students understand mathematics.

It is my contention that in support of this mission we should give a more prominent

place in the mathematics curriculum to proofs that explain. Such a focus is particularly

important in teaching, because, unlike mathematicians, students of mathematics have

yet to learn the relative importance of different mathematical topics and may easily be

misled by a classroom emphasis on the deductive mechanism.

The first step in promoting understanding through explanatory proofs is, of course, to

recognize that understanding is much more than confirming that all the links in a

chain of deduction are correct, that in fact the completeness of detail in a formal

deduction may obscure rather than enlighten, and that understanding requires some

appeal to previous mathematical experience. In discussing the relationship between

understanding and proof it is useful to keep in mind that mathematical arguments may

have various attributes (such as convincing, precise, formal, explanatory), and that

these attributes are often quite distinct.

5 4
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This paper presents a theoretical framework for and some preliminary results of a study
which aims to further investigate Fischbein's theory on multiplication and division
concepts, with sophomore and senior preservice teachers and elementary school inservice
teachers. The study uses an instrument which controls several confounding variables to
reexamine the impact of number type on problem difficulty and to further investigate the
following aspects: (a) the domain of the number system from which the problem quantities
are derived--fractions versus decimals; (b) the "absorption effect" notion; (c) the
relative robustness of the intuitive rules associated with Fischbein's intuitive models; and
(d) the solution processes used by subjects to solve multiplication and division problems.
It was found that inservice teachers who were highly successful at multiplication and
division problems employ proportional reasoning, others have difficulty translating a
correct problem representation into a correct mathematical sentence, and the rest attend
only to the surface structure of the problem .

In an attempt to understand preservice and inservice teachers' concepts of multiplication and

division, we designed and implemented a study which controls a wide range of confounding variables;

these are the variables of structure (e.g., simple proportion versus multiple proportion, Vergnaud,

1983), text (e.g., mapping rule versus multiplicative compare, Nesher, 1988), context, and syntax

described in Harel, Post, and Behr (1988a). The study consists of three components. The first deals

with the impact of the propositional structure on the problem situation of multiplication and division

problems (see Harel, Behr, and Post, 1988b); the second component reexamines the impact of the

number type (whole number, non-whole number greater than one, and positive number smaller than

one) on the problem solution and further investigates several aspects of Fischbein, Deri, Nello, and

56
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Marino's (1985) theory. The third components aims to reveal teachers' processes of thinking on both

pedagogical and mathematical aspects of multiplication and division concepts. The subjects in this

study are sophomore preservice teachers (N=113), senior preservice teachers (N=63), and

elementary school inservice teachers (N=139). The analysis of the results from this study is

underway; in this paper we will present a theoretical framework of the second component of the study

along with some preliminary results.

Fischbein's intuitive models. According to Fischbein et al. (1985), the model associated with

multiplication problems is repeated addition. This model leads subjects to intuit the rule that a

multiplier must be a whole number and reinforces the misconception that the product must be larger

than the multiplicand, or multiplication makes bigger (Bell Fischbein, and Greer, 1984; Bell, Swan,

and Taylor, 1981; Hart, 1984). For division, Fischbein et al. suggested two intuitive models:

partitive division and quotitive division. Associated with the partitive division model are two

intuitive rules: the divisor must be a whole number and the divisor must be smaller than the dividend.

These rules result in another intuitive rule that the quotient must be smaller than the dividend, or

division makes smaller. The only rule associated with the quotitive division model is that the divisor

must be smaller than the dividend.

pgmain of thg number system. The studies that address the incongruity between these

intuitive models and the formal operations of multiplication and division problems involve only

decimal numbers; the question of whether a similar incongruity exists in multiplication and division

problems with fractions has never been directly addressed. There is a reason to believe, however,

that fractions and decimals do not have the same effect on the difficulty of multiplication and division

problems. A rationale for this is that a fraction, more than a decimal, can be viewed as an operator.

As a result, it might be easier to identify relationships among problem quantities in multiplication and

division problems in which the multipliers and divisors are fraction than in those in which they are

decimals.
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The absorption effect. Fischbein et al. (1985) suggested the notion of the "absorption effect,"

to conjecture that "when the whole part of a decimal is clearly larger than the fractional part, the

pupil may treat it more like a whole number (as though the whole part 'masks' or 'absorbs' the

fractional part)." To support their conjecture, theycompared performance on several problem types:

one with the decimal multiplier 3.25, one with the decimal multiplier 1.25 and four with the decimal

multipliers 0.75 or 0.65. They found that compared to decimals like 0.75, 0.65, or 1.25, a decimal

like 3.25 has a slighter counterintuitive effect when playing the role of multiplier. This finding

raises several questions: (a) What is the conceptual base for the argument that the whole part 3 in the

decimal multiplier 3.25 better "masks" or "absorbs" the fractional part 0.25 than 1 does in the

decimal multiplier 1.25?; (b) does the "absorption effect" apply to decimal multipliers between 2

and 3 (e.g., 2.25)?; (c) are "large" decimals (e.g., 42.35) better conceived as multipliers than small

decimals (e.g., 3.25)? (d) does the relative size between the whole part and the decimal part of a

decimal multiplier play a role in the "absorption effect?" (e) does the "absorption effect" apply to

fractions as well?

Levels of robustness. A clear result from the study by Fischbein et al. and others (e.g.,

Graeber, Tirosh, and Glover, 1989; Mangan, 1986) is that anon-whole-number multiplier

differentially affects the relative difficulty of a multiplication problem depending on whether it is

greater or smaller than one. This suggests that violations of the rule, "multiplier must be a whole

number," are of two types: one is when the multiplier is greater than one and the other is when the

multiplier is smaller than one. Thus, with respect to violation of the intuitive rules associated with

multiplication, there are three classes of multiplication problems:

M(0). Problems which conform to the the multiplication model,

M(1.1). Problems in which the multiplier is a non-whole-number greater than one, these

violate exactly one rule: "multiplier must be a whole number,"

M(1.2, 2). Problems in which the multiplier is a number less than one; these violate exactly

two rules: "multiplier must be a whole number" and "multiplication makes bigger."
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Surprisingly, the impact of the "absorption effect" has not been investigated with respect to

the intuitive partitive division rule, divisor must be a whole number, even though the same argument

made with the multiplier can be made with the divisor. To address this effect we suggest a similar

refinement to that with non-whole number multipliers in order to distinguish between a

non-whole-number divisor greater than one and a positive divisor less than one. As in the

multiplication case, this refinement results in the following classification of partitive division

problems:

P(0). Problems which conform to the the partitive division model,

P(1.1). Problems in which the divisor is a fractional number greater than one; these violate

exactly one rule: "divisor must be a whole number,"

P(2). Problems which violate exactly one rule: "divisor must be smaller than dividend,"

P(1.1, 2). The intersection of the classes P(1.1) and P(2); that is, problems which violate

exactly the two rules: "divisor must be a whole number" and "divisor must be smaller than

the dividend."

P(1.2, 3). Problems in which the divisor is a fractional number smaller than one; these

violate exactly two rules: "divisor must be a whole number" and "division makes smaller,"

P(1.2, 2, 3). The intersection of the classes P(1.2, 3) and P(2); that is, problems which

violate all three rules.

Since quotitive division problems are associated with only one rule, the divisor must be

smaller than the dividend, their classification is:

Q(0). Problems which conform to the the quotitive division model.

0(1). Problems which violate the rule: "divisor is greater than the dividend."

This analysis and a careful examination of results from different studies led us to hypothesize

that the intuitive rules are not equally robust in problem solutions. For example, from the results

reported by Fischbein et al. (1985) we hypothesized that different intuitive rules within the

partitive model may not be equally strong in affecting students' solution of partitive division
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problems: children prefer to cope with the violation of the rule, "divisor must be smaller than the

dividend," than with the violation of the rule divisor must be a whole number (see Harel et al.

1988b).

A first indication of how the intuitive rules associated with the partitive division model

differentially affect the solution performance can be seen from Table 1. Performance on P(2)

problems--those which only violate the rule, "dividend must be greater than divisor"--is higher

than performance on the other categories of problems which violate one or a combination of intuitive

rules. This indicates that the rule, "dividend must be greater than divisor," is the least robust in the

solution of partitive division among other combinations of the intuitive rules. Further indication of

the relative robustness of the intuitive rules associated with the partitive division model will

discussed below.

Another important result from Table 1 is that the "absorption effect" does no' apply to the

divisor in partitive division problems. This can be seen by comparing the performance on P(1.1)

problems (whose divisor is a decimal greater than one) to the performance on two classes of

problems: P(0) (problems whose divisor is a whole number) and P(1.2, 3) (problems whose divisor

is a decimal smaller than one). Table 1 shows a big difference in the first comparison, which suggests

that, unlike a decimal multiplier greater than one, a decimal divisor greater than one is not treated

like a whole number. The second comparison shows no precedence of a decimal divisor greater than

one to a decimal divisor smaller than one, and since performance on both classes is low, both impose a

strong constraint that causes major difficulty in problem solution.

60:
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Table 1

Category Rule violation Operation Correct responses (%)
Preservice Inservice

Sophomore Senior

P(0) No rule violation . 68+17 86.5 92.5 95.5

P(1.1) Divisor must be a whole number 11+2.53 31.5 36 41

P(2) Dividend must be greater than divisor 3+5 62.3 79.7 85

Divisor must be a whole number
P(1.1, 2) AND 12+24.67 19 26.7 41

Dividend must be greater than divisor

Divisor must be a whole number
P(1.2, 3) AND 6+0.67 39.3 52 61

Quotient must be greater than dividend

Divisor must be a whole number
AND

P(1.1, 2, 3) Dividend must be greater than divisor 0.35+0.79 33 43 55
AND

Quotient must be greater than dividend

A further distinction among the intuitive rules described above is that some of the rules are

associated with the problem information, others with the problem solution. In multiplication, the

rule, "multiplier must be a whole number" imposes a constraint on the type of multiplier provided in

the problem information; in contrast, the rule, "multiplication makes bigger" restricts the problem

solution to be a number greater than the multiplicand. Similarly, in partitive division, the rules,

"divisor must be a whole number" and "divisor must be smaller than dividend" are problem

information rules, whereas the rule "quotient must be greater than dividend" is a "problem solution"

rule. Finally, the rule, "divisor must be smaller than dividend" associated with quotitive division is a
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"problem information" rule.

Any problem solution rule is dependent on a problem information rule; therefore, the relative

robustness of these two types of rules cannot be tested independently. However, we hope to get some

information about the role that these two types of rules play in the solution process from the

interview data.

Summary

In this paper we have addressed several aspects of Fischbein et al.'s (1985) theory: (a) the

number type and the domain of the number system from which the problem quantities are

derived--fractions versus decimals; (b) the "absorption effect" notion suggested by Fischbein et al. to

account for differences in subjects' performance on multiplication problems with multiplier greater

than one versus those with multiplier smaller than one; and (c) the relative robustness of the

intuitive rules associated with the intuitive models suggested by Fischbein et al.

The primary results described in this paper are very discouraging: preservice and inservice

teachers have serious misconception in a content domain that is included in their teaching

responsibility. Moreover, in comparing teachers' misconceptions to those possessed by children

(Bell, Fischbein, and Greer, 1984; Bell, Swan, and Taylor, 1981; Fischbein et al: 1985; Hart,

1984; Mangan, 1986), and teachers' solution strategies to those used by children (e.g., Sowder,

1988) we found a striking resemblance. Graeber et al. (1989), who found this same result, indicated

that " efficient strategies are needed for training teachers to monitor and control the impact that

misconceptions and primitive models have on their thinking and their students' thinking" (p. 100).

Graeber et al. suggest such strategies. For example, asking teachers to write about their conception

and misconception, or encourage them to compare their estimated answer with the computed one.

These strategies can be used with children as well. Fischbein et al. (1985) recommended that

teachers (assuming they are competent in the content domain) should "provide learners with efficient

mental strategies that would enable them to control the impact of the primitive models" (p. 16).

Greer (1985) recommended that teachers should "aim to widen the range of models available to the

6 2
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pupils" (p. 74).

Our investigation of the solution-processes used by inservice teachers suggests that the main

difficulty is in the translation - process of the comprehension representation (i.e., the understanding

the relationships between the.problem quantities, see Harel andl3ehr, in.press) into a mathematical

representation*(i.e., a mathematical expression that-represent these relationships).

High- performanceieachers.use the concept of proportion in-employing this translation process by

representing multiplication and division problems as missing value proportion.problems. Intuitive

solution strategies-are.available.to this representation. These:strategies involve determining the

multiplicative relationship between two given quantities and extending thatelationshiplo the other

two quantities to find'the unknown quantity (see Harel and Behr, in press; Vergnaud, .1983). Sellke,

Behr, and Voelker (1988)-show that'this approach results -in improved.performance with

seventh-grade children.
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THEY'RE USEFUL CHILDREN'S VIEW OF CONCRETE MATERIALS

K. Hart and A. Sinkinson

Nuffield Secondary Mathematics, Kings College, London.

The pro vision 01,.? bridge between the use of awacretti materials andformal

mLathematies was tested with 12 taw:tots. Their interpretation of this distinct

3CtiVity iS reportAl

When children are taught ma themattiul rules by appealing to the results of

vii7t9to eperiences their teachers often tell them that the materials are helpful

jr O understanding The pupils later repaat this claim of helpfulness although

they themselves are unable to &Splay SIAAVSS with the materials. Diagrams

appear more useful than rods in the solution of equations but not very useful

. when elilliV3A9llt fractions are taught

This report extends the statement made at PME, 1988 on the research, funded by

Nuffield and carried out at King's College, London, on the connections between the

use of concrete materials and formal mathematics. The particular aspect of using

concrete materials, considered in the research project 'Children's Mathematical

Frameworks- (Hart et al, in press) was one which is very commonly used in

upper primary and early secondary school classes. The pupils are given

structured situations in which they use manipulatives, from the results they are

asked to see patterns which are then formalised in rules, algorithms or formulae.

The research reported here concerned the same type of situation. The emphasis

was however, on the effectiveness of the imposition of a third type of activity

which was neither using concrete material nor formal mathematics but formed a

'bridge' between them. The volunteer teachers were asked to teach two matched

classes. With the second of these the normal progression to the formalisation
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would include a bridge'. The teachers, topics and time spent on them are shown

in Table 1.

Table 1
Topics. teaching time and bridge' activities

Teacher Topic Time spent on
teaching scheme

Bridge Activity

A Equations 10 hours Diagrams
B Equations 6 hours 40 minutes Child discussion
C Equations 7 hours Child discussion
D Volume 2 hours 55 minutes Child discussion
E Volume 2 hours 55 minutes Table
F Volume 2 hours 55 minutes Table
G Volume 2 hours 55 minutes Graphs
H Volume 4 hours Table
Ia Equivalent Fractions Child discussion
J Equivalent Fractions 6 hours Table
K Equivalent Fractions 4 hours Table
L Area of a rectangle 5 hours Table

a Data provided by this teacher were incomplete and insufficient for analysis

The Bridge

In the research, the bridge' was described as an activity which was distinctly

different from both the concrete materials and the formalisation but was seen to

connect the two. The plans of the 12 teachers were examined and the following

were thought to embody the 'bridge' criteria.

a) Child discussion - the emphasis being on the pupils expressing themselves and

not simply answering questions posed by the teacher. Such a discussion could

also include ideas on examples counter to the formalisation.

b) Tables - the concrete experiences often gave rise to results which could be put

in a table, the pattern emphasised and the generalisation ensue.

c) Graphs similar to tabulation was graphing, in which results were recorded on

squared paper, a pattern sought and a relationship expressed.
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d) Diagrams - this was possibly the activity closest to the use of concrete

materials since it was essentially to represent the manipulatives and what

was done with them, through diagrams.

After the first class had been taught the researchers discussed which bridge'

could be used for the second class, with the teacher, who then planned the

activity, as shown in Table 1.

The Teaching

The effectiveness of two teaching sequences was under investigation. They were

designed to be identical as far as the concrete material and formalisation phases

were concerned. Only one lesson in each sequence was observed by a researcher

who took notes of blackboard displays etc., and tape-recorded the statements of

the teacher. No teacher explained to the class that a method of solution which

was generalisable to many situations was a very powerful mathematical tool

although two said it would be quicker to use than the concrete material.

Having chosen which style of bridge' was to be used, the teacher designed the

content of it.

'Child Discussion was used by two of the teachers who were concerned with the

solution of algebraic equations. In both cases, however, it came after the

formalisation so was a discussion of the method rather than a verbalisation of the

connection between materials and method.

Diagrams of algebraic equations were used as a 'bridge' by one teacher and in this

case they proved to be a greater prop to the children than the actual materials.

There were two reasons for this, one being the fact that it is easier to draw a

diagram freehand (and inaccurately) than to find bricks to line up. Secondly and
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possibly more important is the fact that diagrams can represent lengths of any

size and are not restricted to the preordained lengths of Cuisenaire rods or Colour

Factor. To show for example 3x + 5 = 17, the fact that there is no rod of length

17cm, is immaterial, one draws a long rectangle and simply labels it 17, as shown

here.

5

i7

Tabulation seemed to be a natural way of recording results from concrete

experiences in finding a) the volume of a cuboid or b) equivalent fractions. In

each case the patterns of numbers were meant to suggest a rule. Three teachers

chose this bridge for Volume', two chose it for 'Equivalent Fractions' and one

used it in the teaching of the Area of a Rectangle. In no class, however, were the

tables emphasised, discussed at length, put forward as a good way of presenting

information or indeed explained as a way of connecting the blocks (in Volume)

and the formula. In three cases the tables were presented on worksheets and not

subsequently mentioned in the lesson.

In only one case were the results graphed. This was by a teacher of the Volume

formula. There is a drawback to its use here - one is only able to draw a graph of

the relationship between two variables and in V = L x B x H we have four, so we

are restricted to a fixed situation (such as a layer of constant area) rather than

illustrating the general case.
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The time spent on the setting-up, exploitation of the bridge and in linking it to

both concrete situation and formalisation was in the case of 'tables' and 'graphs'

very short. Six teachers spent ten minutes or less on this linking activity, see

Table 2.

Table 2
Time spent on 'connecting' activity in formalisation and 'bridge' lessons

Teacher Formalisation lesson 'Bridge' lesson

A 60 60 minutes
B 35 35
C 20 60
D 40 30
E 8 35
F 5 1

G 10 5
H 40 2

J 30 10

K 6 4

L 10 8

Child Interviews

The teachers were asked to interview six children from each group, just after the

teaching, in order to obtain further information on their understanding and to

illuminate the post-test scores. The researchers interviewed the same children

three months after the teaching. The questions were intended to provide

information on (0 the methods used by the children to solve problems (the

formalisation or something else), (ii) their attitude to and use of the concrete

materials (iii) their memory of how the formalisation was arrived at and (iv)

their appreciation of the connection between the two (or three) phases of

teaching.

The immediate post tests showed very little difference in performance between

the two groups in each topic see Fig.1 for some typical examples.

6S
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Similarly the interviews produced no vastly different response from the 'bridge'

children than from the others. Over half the number of children interviewed

stated that the materials were helpful. Asked about the rods used in the solution

of equations children responded:--

When using the rods you can actually see what you're doing and actually take

them away and move them. (Bethan)

Well using the rods is easier if you're got big numbers of x's or something.

(Bethan again)

It's a lot easier to begin with, it's a lot easier with bricks (Ross)

It's easier to do with blocks (John)

Oh bricks, it's easier to understand. I suppose that those make it easy to explain

what you're doing here. (Helen)

Well it's just that's on paper and that's kind of real, you can see it, you can move

it about and it helps you more. (Giles)

To explain to people I'd use bricks because you can actually see what is

happening, you can see what you're taking away. (David)

BEST COPY AVAILABLE 6-3
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These same children, however never chose to demonstrate the solution of

equations with rods and were unable to do so when asked. Three (out of 12)

could set up the equation.

One teacher of equations had introduced the use of diagrams alongside the bricks

to both her classes whilst another teacher had diagrams as the bridge'. Fifteen

(out of 18) of these users thought diagrams were helpful and eight of these could

set up the equation with diagrams and make an attempt at solution. Diagrams

seem to provide a better support than the bricks themselves.

The embodiment used by the two teachers dealing with equivalent fractions was

the diagram of a region. On the three month interview 17 pupils were asked to

show 3/4 = 6/8 using diagrams. Seven of them could do so, although all the

diagrams were inaccurate. Only two chose to use diagrams to demonstrate the

equivalence. Indeed, only half of those asked, said that a diagram would be

helpful.

Further Research

There appears to be evidence that children do not use the concrete embodiment,

on which the teaching was based, after the formalisation has been taught. This

does not mean that the formula or algorithm is necessarily available to them,

often neither experience has provided a usable skill. Those interviewed however,

avowed that the concrete materials were useful.

7 0
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CHILDREN'S INDIVIDUALITY IN SOLVING FRACTION PROBLEMS

Klaus Hasemann

University of Hannover

In interviews, 24 pupils (aged 11 to 13) solved fraction
problems; in addition, the technique of "concept mapping"
was used to find out which individual fraction concepts
had been constructed by the children. Some examples of
pupils' solutions and concept maps are given.

To interpret the results, the problem solving processes
are regarded from three points of view: pupil's problem
representation, cognitive style, and "conceptual world".
Each aspect is indicated by contrasting prototypes which
are used to characterize different kinds of behaviour,
and to explain the great variety in individuals' problem
solving behaviour.

Fractions are regarded as a rather difficult subject in mathe-

matics teaching. In our country, pupils do not have formal in-

stuctions on fractions until they are in grade 5 or 6, then

from the beginning on a rather abstract level. It is, of cour-

se, intended that the children get "relational understanding"

of fractions (cf. Skemp, 1979). A problem is how to check whe-

ther they have reached this goal or not.

In interviews, we gave (word) problems to the pupils and, in

addition, we used the technique of "concept mapping" (see be-

low). This paper is to show how differently - and how idiosyn-

craticly the pupils proceeded when they solved fraction pro-

blems, and to explain why there is such a big variety in the

pupils' problem solving behaviour.

After they had had formal instructions on fractions, 24 pupils

(of grade 6, aged 11 to 13) were interviewed. They were asked

to solve three problems on the addition of fractions (the pu-

pils was given the choice of item 1 or 1*, resp.):

1. At first, shade in of the rectangle

then shade in of the rectangle as

well.

What fraction of the whole rectangle

did you shade in altogether?
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1.* At first, mark 4 of the straight line. Then mark of the

straight line as well. When you put these two parts of the

line together: what fraction of the whole line form these
two parts altogether?

2. Calculate:
3

+
4 6

3. Mother wants to divide out 4 apples to her 4 children. Un-
fortunately, one apple has a bad patch.
So mother gives at first 3 apples to the 4 children; after
that each child gets one sixth of the fourth apple.
What fraction of an apple does each child get altogether?

Obviously, these items are equal in content: one has to add

3 1
and (some children, however, did not realize this fact).

From an adults point of view, item 1 seems to be a very easy

one as the rectangle is already divided in 12 equal parts (the

straight line has a length of 12 cm). The calculation in item

2, in fact, turned out to be rather easy for this sample of

pupils, whereas the problem in item 3 consciously was worded a

little complicatedly as it is well-known that in word problems

a pupil's selection of arithmetical operations mainly depends

from the kind in which he or she constructs a mental image of

Li! :;iLnoLion du:;crihud in Lhu problum c.q., I 1::chhuln

et al., 1985, or Greer, 1987).

The technique of concept mapping (see Novak et al., 1983) was

used to find out which individual fraction concepts had been

constructed by the pupils; it was used, however, different from

the way it was described by Novak et al.: Twelve small cards

with concept names like "fraction", "rational number", "numera-

tor", "denominator", 1-'", "4", "one sixth", "apple", "rectang-

le" (or "straight line"), "to divide out", etc. (see fig. 2

and 4) were given to the children, and they were asked to dis-

tribute these cards on a sheet of paper in such a way that con-

cepts which are related were put together closely whereas tho-

se concepts which are not related were separated on the sheet.

In a second step, the children were asked to find a generic

term for the chunks of concepts and/or to mark and to name re-

lationshipsbetweentheconcepts on the sheet.

72
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Examples for pupils' solutions (the children's solutions are

indicated by hand-writing):

Till:

ad 1:

/7 47 7

e

ad 3:

12.

fig. 1

3 4 *- I

T I I K 3

3 1 % 2ad 2: 4 + 6 I2. 4- li I

4

I = 1
-1- b 2-

From Angela's solution just her concept map will _be presented;

this map obviously is very much influenced by the problems she

had solved before:

6

one sixth

one twelfth

rat Chott NN+.11,+.1

a maft4.1-ini floidcw,

Q you.to of ntwntous

wf e

BEST COPY AVAILABLE

rational number

numerator

fraction

denominator

-rod-Zon.1 '^44.1614"

to divide out

apple

rectangle
1 3

fig. 2



enumerator denominator)

rational number)

70

Andreas took the straight-line-version of item 1; he marked
33 cm for w and 2 cm for

6 6
of the line. His answer "2

1
-" refers

to the whole line: The whole line is twice as much as the new

line (2 x 5 cm) plus a remainder of 2 cm (=

After he had done item 2, Andreas realized his mistake:

2

ad 2:
3 1

+ =
IV 4 2 1 (

IT! 19- 24 IZ

- 1I cm
iz

fig. 3

ad 3: Andreas emphasized that he had constructed a mental ima-

ge of the apples. In this way, he had "seen" that this problem

was already solved by the calculation in item 2.

In the concept mapping experiment, however, Andreas did not at

all refer to the problems: He put together all concepts rela-

ted to the fraction concept, but he separated the other con-

cepts and claimed that, for instance, "to divide out apples be-

longs to (the subject) German".

(one sixth
61

(one twelfth fraction

2_

boti, Ore CI-%01r

1
4 nwmtilf

Lt-

straight line to divide out

6 apple
fig. 4

From Nils and Nike just the answers to item 1 will be given:

74
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3 If

12_

fig. 5
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Nike:

FAIN1
EMI

3

6

11

11

C

fig. 6

For an analysis of pupils' solutions it would be appropriate

to describe each pupil's individual "fraction frame" (cf. Da-

vis, 1984, or Hasemann, 1986a,b) in more detail. Andreas, for

instance, when solving the word problem in item 3 linked to-

gether the "subunit-frame" (see Hasemann, 1986a, p. 135, or

1986b, p. 63) with a correct interpretation of 1 of the line"

in a rather strange way.

However interesting pupils' individual frames are, in the fol-

lowing to explain children's individuality some prototypes of

problem solvers will be discussed. To give characteristics of

these prototypes, we shall look at the problem solving proces-

ses mentioned above from three different points of view:

(i) The kind of problem representation in a pupil's mind,

(ii) a pupil's cognitive style, and

(iii) the kind of a pupil's "conceptual world"

(whereas (i) and (ii) refer to an actual problem solving pro-

sess, (iii) names a more general disposition; ad (i) and (iii)

see also Cohors-Fresenborg & Kaune, 1984, and Schwank, 1986).

ad (i): When actually solving a problem there are two types of

pupils: Type A sees the problem and its solution; type B cal-

culates the result.

"To see" means here: to construct a mental image of the situ-

ation described in the problem. In item 1, for instance, this

can be done in a rather natural way as the fraction that is

asked for can be identified just by looking at the the rectang-

le (Nike's solution is a very nice example for this kind of

behaviour, see fig. 6). On the other hand, there were pupils

who calculated; Heike, in the staight-line-version (item 1*),

for instance, did like this:
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r
c

2 >Hi 5

e( ( 2- 1.^1 = ( 2. = = cJ cm

= 5
-q t TT- c411

Pupils of type A or B, resp., can also be identified with the

word problem in item 3: Andreas (see above) is an example for

type A. Type B - pupils, on the other hand, try to find out

what they can do with the figures which are given in the pro-

blem (as an example see Till).

Regarding these examples, the characteristics of types A and B

can also be described als follows: Type A pupils are mainly

interested in the problem itself, i.e. in the situation given

in the problem and/or in its conceptual structure. Type B - pu-

pils, in comparison, are mainly interested in acting: Which

arithmetical operations or procedures match the situation (or

even just the figures) given in the problem?

ad (ii): When observing the pupils' problem solving processes,

Kogan's differentiation of reflexive and impulsive children

(see Kogan et al., 1966) obviously makes a lot of sense (for

example, look at Nils' and Nike's solutions in item 1).

ad (iii): A Pupil's problem solving behaviour seems to be high-

ly influenced by the way he or she thinks about mathematical

concepts: Some children seem to ignore the situation given in

a problem, but right from the beginning they relate the pro-

blem to the conceptual framework they have (already) in mind

(we call them concept-orientated pupils). Some others prefere

to think about situations; they relate concepts to situations

they have in mind (we call them context- or task-orientated).

The former pupils are easily to recognize by their concept

maps: All concepts related to the concept of fractions are

grouped together, but concepts like "rectangle" or "apple" are

excluded (see Andreas in fig. 4). The latter pupils try to con-

struct mental images of the situations described in the pro-

blems, and their concept maps are representations of these men-

tal images (see Angela in fig. 2).
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(It should be remarked that the contrasting of concept- vs.

context-orientated children does not refer to the fact that an

individual's interpretation of e mathematical concept always

depends from his or her "domain of subjective experience" (see

Bauersfeld, 1983, Kilpatrick, 1985, p. 19f, or Masemann, 1988,

p. 12.8f). It should also be remarked th'atachild's view of the

(mathematical) world seems not to depend from age or mathemati-

cal ability.)

Obviously, the prototypes and categories mentioned above do

not match each child's individual problem solving process. It

. was, however, possible to illustrate the contrasting types by

some characteristics and examples. If it is accepted that the

contrasts which were given make sense, and that the aspects (i)

to (iii) are - more or less in'dependend, then there are at

least 2 x 2 x 2 = 8 different kinds of problem solving beha-

viour that explain the big variety in this behaviour. But
much more important is the fact that each child in his or her

problem solving 'behaviour is an individual who has a right to

be accepted as such, and to be treated adequatedly.

'Regarding aspect for example, in our experiment most pu-

pils turned out to be concept-orientated. When these children
have difficulties with a word 'problem it makes not much sense

to get them to look at the problem again and again, and to ask

them to construct a mental image of the situation which is des-

cribed in the problem that's not the world they feel at 'home

in. Instead, the teacher should try to enable these children

to relate the problem to the conceptual framework they have al-

ready constructed, or to check whether their results are rea-

sonable or 'not, i.e whether the results can be accepted consi-

dering the conceptual framework which was used to solve the

problem. If, for instance, a fraction is asked for and an inte-

ger figures out one should became suspicious..

Anyhow, we as researchers and teachers have to accept that

there are individuals who are concept-orientated and mho try

to ignore the context of a task. We should try to find out whe-

ther there are aspects in out teaching that have caused this

fact or whether these preference is independent from the kind

of teaching. The technique of concept,4mapping seems to be ra-
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ther effective to elucidate a child's conceptual world; in ad-

dition, concept maps are a very useful tool to become aware of

children's alternative conceptual framework.
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ASPECTS OF DECLARATIVE KNOWLEDGE ON CONTROL STRUCTURES

Kristina Haussmann & Matthias Reiss
Padagogische Hochschule Karlsruhe & Universitat Mainz

Knowledge has procedural aspects as well as declarative aspects, which
means, that there is a knowledge of concepts as well as a knowledge of
rules applied while working with a specific concept. In particular, computer
programming presupposes a knowledge of declarative and procedural
aspects of control structures. In order to assess declarative knowledge on
control structures, we used the method of concept mapping (NovAic
GOWIN, & JOHANSEN, 1983) with students of lower secondary level after
some months of programming instruction. It was applied to concepts repre-
senting knowledge on iteration and recursion.

Procedural and declarative knowledge

Knowledge diagnosis and knowledge representation have become central problems of

cognitive science researchers and computer scientists as well. There is an intensive

discussion of these topics in both disciplines. For computer scientists, the main task is

representing expert knowledge in a machine adapted way. In particular, knowledge

representation is a problem of defining and accessing data structures (SHAPIRo, 1987). A

symbolic representation system has to be designed which fits into the specific pieces of

knowledge and allows a mapping of its structure in a machine. However, it is not only

the technological prerequisites of this research which have to be taken into account.

Obviously, in behalf of computer developments, there has been tremendous effort and

success in recent years. In contrast to these encouraging results concerning the hardware

equipment, work on the problem of diagnosing knowledge (TERGAN, 1988) is still in its

beginnings. Research in cognitive psychology is mainly concerned with modelling cogni-

tive processes, and, in particular, with modelling components of memory (TACK, 1987).

Applications for these research results may be found in the development of intelligent

tutoring systems. Such systems are aiming at an acquisition of expert knowledge in a

specific domain with the help of an interactive computer program. They take into

consideration the student's success while working with the program and so show need

for a separate component of knowledge diagnosis. Having diagnosed the knowledge, the
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difference between the goal of a learning process and the actual state of the learner

causes execution of a specific part of the learning program (LEscoLD, 1988).

With respect to a discussion in computer sciences (WINOGRAD, 1975) and to

ANDERSON (1983) and his theory of thought, procedural and declarative aspects of

knowledge may be differentiated. Crucial concepts in this respect are the working

memory and the long term memory. The working memory consists of elements which

are directly accessible at a certain instant. These elements are knowledge structures of

temporary importance as well as activated particles of the long term memory. Moreover,

there is a possibility for conclusions provided in the working memory. In particular,

ANDERSON presumes that working memory and short term memory are not identical,

which is contrary to older theories of thought (cf. MILLER, 1956). The working memory

interacts with both the short term memory and long term memory. For our purposes, the

interaction with the long term memory is of special importance. This part of the memory

includes procedural as well as declarative elements. Procedural elements or productions

indicate which action has to ensue from a specific condition. Thus, productions are

sometimes referred to as condition action pairs. Applying knowledge in this framwork

usually means sequencing a number of productions, and so representing knowledge may

be performed by constructing a production system which consists of all the independent

rules leading to the solution of a problem. In this process, not only procedural aspects

but also declarative components of knowledge are involved. Establishing a condition for

a possible action includes asking for certain properties of a piece of information. These

properties are part of the declarative knowledge which is also situated in long term

memory. They are organised in such a way that classes and subclasses may be distin-

guished. So every concept is connected with certain specific properties, but it is also

connected with properties which are true for a whole class of concepts. This way of

storage has economical advantages, because every property is stored only once in

connection with the most general subclass a concept belongs to (ANDERSON, 1983).

So, declarative knowledge includes not only specific concepts but also connections

between those concepts. According to ANDERSON (1983) declarative knowledge may be

represented as sequences in time, images in space, abstract propositions, or a
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combination of these elements. In the following, we are primarily interested in abstract

propositions. Their objects are concepts and their relations are semantic relations

between the concepts. Giving a representation of an abstract proposition might lead to a

semantic network. A semantic network is a graph consisting of nodes which are

connected by directed edges. The nodes stand for concepts, the edges represent relations

between these concepts, the direction gives the distinction between the subject and the

object of the proposition (WENDER, 1988).

Assessing declarative knowledge

Different methods of representing declarative knowledge in a semantic network which

will be described shortly in the following text have been established. We will present the

methods of NOVAK, GowiN, & JOHANSEN (1983), BALLSTAEDT & MANDL (1985), SCHEELE

& GROEBEN (1984), and FELDMANN (1979).

NOVAK, GOW1N, & JOHANSEN (1983) presented a method they refer to as concept

mapping. They aimed at investigating declarative knowledge in physics, and presented a

certain number of concepts concerning this subject written on small cards to their

students. The students were supposed to group the cards so that similar concepts were

close to each other. Moreover, the subjects were asked to give a verbal description of

relations they realized between different concepts. The work results in a concept map

representing declarative knowledge as a complex network of concepts. A very similar

method was worked out by BALLSTAEDT & MANDL (1985). In contrast to NOVAK &

BALLSTAEDT & MANDL do not use a fixed number of concepts. Their subjects are not

only supposed to find relations between presented cards, but were asked to add new

concepts to their map as well. The number of concepts involved in a map gives evidence

for its quality, because experts in a specific domain use a wider range of concepts than

novices. The design of SCHEELE & GROEBEN (1984) is also based on a varying number of

concepts. But the student is supposed to use only certain relations and so match

concepts with respect to these relations. FELDMANN (1979) does not pay attention to the

semantics of a relation but only to the number of connections between concepts. The
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only criterion for assessing knowledge is the existence and direction or the non-existence

of an edge between two nodes.

Because we were interested in assessing knowledge in the domain of control struc-

tures with two students who had attended a Loco course for some months, we decided

to use the concept mapping method of NOVAK & AL. (1983), which had proved to be

appropriate for mathematics related concepts (REISS, 1987). We were primarily inter-

ested in the way students looked at concepts related to iteration or recursion. Our hypo-

theses was that their understanding of these concepts differed significantly from the

intended goals of the course. So we presented a fixed number of concepts, but asked

them to verbalize the relations between the concepts. We had in mind that misconcep-

tions might be revealed thus. Moreover, we were interested in the number of relations

between different concepts, because it may be regarded as a measure of importance for

a student. Nonetheless, we had to assess every defined relation. We determined not only

whether it was true or false, but also whether it was a proposition with general or specif-

ic contents. The following concepts were used:

program, input, repetition, call, condition, loop, recursion, name of a
program, stop condition, program line.

running a program, repeat, subprogram, if...then, a procedure calls
itself, nesting.

The concepts may be divided into four groups, and every concept belongs to at least one

of them. We will here present our classification, which was a basis for the choice of

objects.

There are concepts which are used by students and teachers during progamming

instruction and which may be referred to as part of the fundamental vocabulary. These

concepts are program, program line, name of a program, nmning a program, subprogram.

In a second group we included concepts which reflect structural aspects expressed in

natural language (but not necessarily colloquial language). These concepts are repetition,

loop, nesting, recursion, condition. Another four concepts may be classified as indicating

actions with respect to a given program. These concepts are input, call, a procedure calls
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itself and (at least in some respect) stop condition. The last group includes the

programming language commands repeat and if..then.

The concepts were presented to a seventh grader and to an eighth grader after six

months of Loco programming instruction. The subjects were JAN, aged 14, a boy who

was pretty successful in programming but lacked extra access to a computer, and Tont,

also aged 14, a student who performed on a medium level during the course, but was

able to work on a computer of his own. The assessment of declarative knowledge was

only part of a number of interviews, which also included the assessment of procedural

knowledge. In this respect, JAN may be regarded as problem solver using recursive

strategies, whereas Tom prefers iterative solutions (HAussmANN, 1987; HAUSSMANN &

Reiss, 1989). The following table shows the number of the established relations.

Table I: Individual declarative knowledge of two students

CONCEPT IS OBJECT OF
A PROPOSITION

Tom JAN

IS SUBJECT OF
A PROPOSITION

Tom JAN

TOTAL

Tom JAN

PROGRAM 4 4 3 5 7 9
INPUT 4 2 4 7 8 9
REPETITION 6 3 1 6 7 9
CALL 9 3 1 1 10 4
CONDITION 4 3 1 2 5 5
LOOP 4 2 3 3 7 5
RECURSION - 1 i 2
NAME OF A PROGRAM 2 2 4 1 6 3
STOP CONDITION 3 2 2 2 5 4
PROGRAM LINE 2 9 4 1 6 10
RUNNING A PROGRAM 0 2 5 1 5 3
REPEAT 0 1 5 1 5 2
SUBPROGRAM 0 3 5 2 5 5
1F...THEN 0 1 1

A PROCEDURE CALLS
ITSELF 4 2 0 1 4 3

NESTING 1 1 5 3 6 4

Results

Tom regards call as the most central concept, that is the node with the maximum

number of ten connections. There are nine edges with direction to call so this concept is

used as an object of a proposition in order to clarify others. But actually the propositions
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show that call is regarded on a very general level. It is connected to other concepts only

by relations like is, may be, or may include. During the Loco course we used call when a

procedure was initiated by another. Tom's understanding of the concept includes this

point of view as well as a number of vague or even faulty conceptions.

Tom's concept of "call"
repeat is a call
call may be repetition
nesting is a call
stop condition is a call
input may be a call
in program line may he included a call
name of a program is input for the call of a program
subprogram may he call
program is call for a computer so that it knows what to do
condition is call at the same time

The interpretation on a very general level is also true for JAN'S main concept program

line. There are ten relations defined to other concepts but most of these connections use

program line as an object. The propositions use has, may be, and needs as verbs.

JAN's concept of "program line"
a procedure calls itself has program line
nesting has a program line of its own
subprogram has program line
program line may he loop
program needs program line
a repeat loop has two program lines
stop condition has program line
condition has program line
input has program line
input may be program line

Another important concept for Tont is input which is, as is call, a concept indicating a

possible action. This concept is used as subject and as object of a proposition four times

each. But once more Tom's relations express only vague connections using verbs like

may be or is. So he states that input Imo: be a program, input may be a condition, or input

may be a call. The examples show that TOM'S concept of input is not that of an input to a

procedure but rather a concept which stands for touching a key on the keyboard.

Tom's concept of "input"
input may be program
input may be condition
input may be call
nesting needs input for reaching the goal
input may be loop
name of a program is input
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subprogram is input
running a program needs input

Looking at JAN'S concept of input, there are similar findings. The meaning of input is not

restricted to an input to a procedure.

JAN'S concept of "input"
input may be name of a program
ifa procedure calls itself by the name of the program there is an input
input may be subprogram
different inputsmay be represented in a nesting
input has program line
input may be program line
loop needs input
program needs input
input may be call

The concept map of JAN reveals repetition as another important concept with respect to

the number of relations. This concept belongs to those describing structural aspects in

natural language. The concept map indicates that Jan has a pretty elaborated

understanding of the structural aspect of repetition. It is contrasted with Tom's concept

of repetition.

JAN'S concept of "repetition"
repetition with program name loop causes a procedure calls itself
repeat and repetition are identical
repetition is condition that program needs loop
a repetition loop has two program tines
loop may be repetition
repetition and recursion are identical
an infinite repetition loop needs a stop co- '

Tom's concept of "repetition"
repeat is repetition
in a subprogram there may be a repetition
running a program may cause a repetition
repetition causes a procedure calls itself after input
nestingmay cause repetition
loop is a repetition
call may be repetition

The concept of repetition shows important differences between Tom and JAN. Whereas

Tom's propositions use mostly. vague verbs like is or may be, JAN'S understanding of

repetition is meaningful and initiates concrete operations. Nonetheless, the proposition

repetition and recursion are identical reveals that there are still misconceptions.

85



82

Conclusions

Concept mapping may be regarded as a means for assessing declarative knowledge. In

particular, in our study we were able to identify misconceptions and partial

misconceptions with respect to knowledge on control structures. The results indicate

that even after some months of LOGO instruction relevant fundamental concepts may

not be learned in an appropriate way. In the classroom, it might he necessary to clarify

the use of a specific concept prior to the solution of a programming problem. Moreover,

the results indicate that the number of defined relations cannot he a measure for

concept understanding. But they show as well that concept mapping might be an

adequate instrument for diagnosing concepts and misconceptions. Every student has a

subjective theory about the domain taught in classroom which may reflect either an

intense knowledge or only a vague idea about the subject. Concept maps are helpful for

understanding the students misconceptions in the domain in order to optimize

instruction quality.
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A CONCEPTUAL ANALYSIS OF THE NOTION OF LENGTH
AND ITS MEASURE

Bernard Heraud, Universito de Sherbrooke, Quebec

The objective of this study is to establish a descriptive framework for
the constuction of the notion of length and its measure by children in
primary school. This is achieved by using a two-tier model of
understanding. The first one involves three levels of understanding of
the concept of length, length being perceived here in a global sense,
as an unmeasured physical entity. The second tier describes three
components of understanding of the emerging mathematical concept,
that of the measure of length. Length is then viewed numerically, in
terms of quantification. These different aspects of understanding are
described through situations that correspond to appropriate criteria.

The notion of measure in one and two dimensions is presently the subject of a
research projet carried out at the Universite de Sherbrooke (Heraud,1987). The
objective of the present paper is to present for discussion the conceptual analysis
which is the theoretical basis of an investigation of the child's construction of the
concept of length and its measure.

In the last ten years, several researchers have studied the problems encountered
by children in the learning of measurement in general and more particularly, the
measurement of length. Based on the results of the second assessment of the
National Assessment of Educational Progress (NAEP), Carpenter et al. (1980) have
pointed out that, at the end of primary school, many children had but a very
superficial understanding of the basic measue ,opts. For instance, regarding
the use of a ruler, if the measuring segment started at 1 and not at 0 on the ruler,
only 19% of the 9-year-olds were then able to provide a correct answer. Hart (1981)
has shown that even in secondary school, there were many students who still had
problems with the conservation of length with respect to a simple displacement due
to the fact that they were focusing on the end points of the segments and not on
their length. Bessot and Eberhard (1983) have tried, with children aged 7 and 8, to
get a closer assessment of the difficulties involved in measuring length, such as
those found in identifying the proper ruler marks to determine the length of an object
when the initial end point is not lined up with 0.

Research funded by the Quebec Ministry of Education (F.C.A.R. Grant EQ-2923)
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Other problems related to the learning of measurement have been investigated. In a

study of first graders, Hiebert (1984) has brought out the difficulties related to the
use of units of different size. In general, children were unable to recognize the
inverse relation between the size of the units and the resulting measurement
number. In comparing measures, they only took into account the number of units
used but not their relative size. Thus, it seems that an understanding of the notion of

unit is at the heart of the problem of understanding the notion of measure.

More recently, Boulton-Lewis (1987) has tried to assess the development of the
concept of the measure of length by determining a hierarchy of the tasks handled by

children aged from 3 to 7 years. The present study has the same orientation. Its aim
is not only to find all the difficulties related to the learning of the measure of length,

but also to order them in a sequence that may enable us to get a better grasp of the

child's construction of this concept.

MODEL USED IN THE ANALYSIS

In order to achieve our objectives, we plan to perform a conceptual analysis of the
notion of length and its associated measure that will enable us to determine the
main steps in the construction processes used by the learners. To achieve this, we

will use a model developed by Herscovics & Bergeron (1988) which suggests that
the construction of some mathematical concepts can be described within a
framework of a two-tier model of understanding, the first tier describing the
understanding of preliminary physical concepts, and the second tier identifying the

understanding of the emerging mathematical concept.

In this model, the understanding of preliminary physical concepts involves
three levels of understanding:

intuitive understanding which refers to a global perception of the notion
at hand; it results from a type of thinking based essentially on visual
perception; it provides rough non-numerical approximations;

procedural understanding refers to the acquisition of logico-physical
procedures (dealing with physical objects) which the learners can relate to
their-intuitive knowledge and use appropriately;

logico-physical abstraction refers to the construction of logico-physical
invariants, the reversibility and composition of logico-physical
transformations and generalizations about them.

The understanding of the emerging mathematical concept can be described in
terms of three components of understanding:

$8
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procedural understanding refers to the acquisition of explicit logico-
mathematical procedures which the learner can relate to the underlying
preliminary physical concepts and use appropriately;

logico-mathematical abstraction refers to the construction of logico-
mathematical invariants together with the relevant logico-physical invariants,
the reversibility and composition of logico-mathematical transformations and
operations, and their generalization;

formalization refers to its usual interpretations, that of axiomatization and
formal proof which at the elementary level could be viewed as the discovery
of axioms and the elaboration of logical mathematical justifications. Two
additional meanings are assigned to formalization: that of enclosing a
mathematical notion into a formal definition, and that of using mathematical
symbolization for notions for which prior procedural understanding or
abstraction already exist to some degree.

This model suggests a distinction between on one hand, logico-physical
understanding which results from thinking about procedures applied to physical
objects and about spatio-physical transformations of these objects, and on the other
hand, logico-mathematical understanding which results from thinking about
procedures and transformations dealing with mathematical objects. We will now
use this model to describe the primary schoolchildren's understanding of length
and of its measure.

THE UNDERSTANDING OF PRELIMINARY PHYSICAL CONCEPTS

This first classification leads us to distinguish between length and its measure. At
this first tier, we consider length as a still unmeasured one-dimensional physical
magnitude. We now examine the different levels of understanding that can be
determined according to the above model by specifying appropriate criteria.

Intuitive understanding. At this initial level -ilildren's judgments are based
on a visual frame of reference. They can thus state that a given object is long or
short according to their visual perception of it. This distinction is closely linked to
their knowledge of "little" or "a lot" and related to concrete situations of their daily
life. For instance, this is how they will judge the amount in a strip of licorice they
have, as a function of the length associated with this quantity.

At this intuitive level children are also capable of estimating the respective lengths
of two objects by simple visual estimation. They can thus perform direct
comparisons of the type "This object is longer (or shorter) than that one", without
having to pick up the objects and putting them side by side: they rely on their visual
perception.
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Procedural understanding. Moving beyond visual estimation, the children will
feel the need to use a logico-physical procedure that will guarantee the accuracy of
their prior judgment, especially when the difference between the lengths is very
small. The simplest procedure consists in aligning side by side the two objects to be
compared and verifying which one extends beyond the other. It should be noted
that in this procedure there is no need for any quantification. We remain at a logico-
physical level where the children are using what might be called a comparative
measure in the sense that they use one object to compare it with another one in

order to estimate their relative lengths.

This primitive procedure for direct comparison between two objects of different
lengths can then be generalized to the seriation of a whole set of objects. For
instance, one could envisage a situation in which the children are given a set of

rods of different lengths but already ordered, and from which one of the rods has
been removed. They would then have to replace this rod by direct comparison with
those already laid out. A more difficult task would consist in giving them a whole
unordered set of rods of different lengths and asking them to arrange them in an
appropriate order. To do this, they could of course proceed by visual estimation for
the obvious cases; but, if the difference in length between some rods is very small,

they then have to compare them two at a time to order them relatively to each other.

Logico-physical abstraction. To identify abstraction in the logico-physical
sense, we can use as criterion the perception that children may have of the

invariance of the length of an object with respect to various figural transformations. If

they can overcome the disequilibrium induced by the erroneous information
received from their visual perception, this can then be taken as evidence of a
certain degree of abstraction.

It is at this level that one can use some well-known tasks developed by Piaget et al.
(1948/1973) on the conservation of length, such as the one on the invariance of
length with respect to unidirectional displacement. For instance, one can place
two identical straws one below the other and then perform a very slight translation

on one of them: do the two straws have the same length? A variation of this task

might verify if children believe the straws are still the same length when they are
placed next to each other, and part of one being hidden in front of them. In this case,

one could call it the invariance with respect to the visibility of the object.

Other forms of invariance can be envisaged such as the invariance with respect to-
the orientation of an object. Thus, taking the two identical straws and placing one
perpendicular or oblique to the other, one could verify how it affects the child's

.0
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perception of length. Has it remained the same or has it changed? Another form of
invariance is related to the fragmentation of the object. For instance, if a straw is
cut up into several parts, is its length conserved by the child? Even a more complex
task can be designed that might involve both the disposition and the fragmentation
of the object. Given two rods, one of them having been split up, the parts can be
arranged along a non-rectilinear "path".

UNDERSTANDING THE EMERGING MATHEMATICAL CONCEPTS

At this second tier, we extricate length from its purely physical aspect in order to
consider it under its quantifiable, numerical aspect, that is, in the context of its
measure. The Herscovics and Bergeron model (1988) described before, enables us
to identify three components, and these will now be examined in greater detail.

Procedural understanding. As soon as measuring length is involved, one must
necessarily bring in the notion of unit. A simple way of measuring the length of an
object is to proceed by the iteration of the unit. But while this might appear to be a
very simple task, the children are faced with many problems. For instance, can one
use indiscriminately several kinds of units or must they all be the same length? How
should they then be arranged: can they be partially overlapping or can there be
gaps between them? Must one have as many units as needed to cover the length of
the object to be measured or can one do with fewer units or even just one unit? All
these questions are non trivial for the children and the answers they find will lead
them to discover the meaning of unit and will also bring them to use progressively
more involved procedures. Initially, they become aware of the importance of using

identical units which they then learn to place carefully one after the other in order
to find the length of an object. Then, in a more sophisticated procedure, they learn
to use increasingly fewer units. Finally, they pr: ..ed by genuine Iteration using
one single unit that serves as a measuring standard.

Logico-mathematical abstraction. One of the first ways to identify some logico-
mathematical abstraction of the measure of length is to examine whether or not
children are capable of judging the invariance of this measure with respect to
different figural transformations, in situations where a measuring standard is
known and used. In this sense, the various tasks used to evaluate the invariance of
length at the first tier, at the level of logico-physical abstraction, can now be
repeated here, but by adding to them this new dimension provided by units.

Moreover, at this level, the child should be able to grasp the links between
apparently contradictory aspects of length and its associated measure. For
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instance, children can find themselves in the following conflictual situations: on one
hand, the length of an object taken as a physical entity is invariant; on the other
hand, its measure can be expressed in different ways depending on the choice of

the measuring standard! Thus, the child must discover that regardless of the unit

chosen, the size of the object remains the same, even if its measure varies. The
resolution of this conflict is at the very heart of the processes involved in

understanding measure.

Another important relation that the child must establish is that of the inverse relation

existing between the numerical measure and the size of the unit: the smaller the
unit, the larger the numerical measure of the object. Another problem related to the

notion of approximation and stemming from it, concerns non-integral measures. In

this case, the child must be able to choose an appropriate unit in terms of the
desired degree of accuracy.

Formalization. This last component of understanding can cover many different

aspects. For instance, it may involve the computation of a measure using
conventional units and the use of their symbolic representation. It is only at this
level that their utilization acquires its true meaning, when the child can use them
appropriately and understands ratios existing between the different units.

It is also at this level that one can include the problems related to the introduction of
the ruler as a measuring instrument; its use involves the formalization of notions
acquired prevLusly. The rational use of such an instrument is not as simple as one

may believe and it requires the prior resolution of several problems by the child.

Among these, one can mention the need to discover the link between the various
marks appearing on the ruler and the units associated with them. Another example
is the distinction that must be made between the coordinates of the extremities of an

object on a scale and the real length of the object.

CONCLUSIONS

The use of Herscovics and Bergeron's Extended Model of Understanding (1988)
has enabled us to establish a conceptual framework allowing for a better grasp of
the various stages that can lead to the children's construction of the concept of
length and its measure. One of the great advantages of this model is that it indicates

how a mathematical concept rests on the understanding of preliminary physical
concepts. Thus, in the present case, it enables us to distinguish clearly between the

concept of length, which is part of the logico-physical domain, and the measure of

length, which is part of the logico-mathematical domain. It is not a distinction that
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relates to the mental processes, but rather to the objects to which these processes
are applied. This model should not be perceived as linear, for it allows the
overlapping of components of the second tier with those of the first tier (e.g., a child
may be using some measuring processes without having reached the level of
logico-physical abstraction). It has also the merit of establishing a classification
involving two tiers that enable us to easily identify different stakes in the
construction of a conceptual scheme and to get a better grasp of its various stages.

It also allows us to get a better overview of the difficulties children encounter in such

a construction. They a problems acquire a new meaning in the sense that, with this
model, one cLn get a better grasp of their root causes and thus provide a better
explanation. For instance, the difficulties that children face in learning to use a ruler
might be reduced if they were not asked to utilize such an instrument prematurely.

As can be seen, the interest in this model is not just theoretical. For instance, at the
pedagogical level, it strongly suggests that thelearning of length should be based
on concrete activities related to the child's physical environment as a basis for the
mathematization process. Moreover, it enables us to conceive many
complementary tasks related to the construction of this concept. When these
activities are develcped in correspondence with the different aspects of
understanding that we have identified, they should allow us to establish a
progression in the construction of length and its measure, progression that would
have a better basis and be more pertinent than the one found with a traditional
approach.
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THE KINDERGARTNERS' UNDERSTANDING
OF CARDINAL NUMBER: AN INTERNATIONAL STUDY

Nicolas Herscovics, Concordia University
Jacques C. Bergeron, Universite de Montreal

This paper reports the results of an international study on the
kindergartners' understanding of cardinal number. This
understanding has been investigated through various tasks
determining if the children perceive the uniqueness of the cardinality
of a set, and also its invariance with respect to the direction used in
counting a row of objects. Four other tasks were used to assess the
child's perception of the invariance of the plurality of a set as well as
the invariance of the quotity of the set under various irrelevant spatio-
physical transformations. Data on samples of kindergartners
interviewed in Montreal, Paris, and Cambridge, Mass. are reported in
this communication.

The kindergartners numerical knowledge is of prime interest to both teacher and
researcher. On one hand, teachers have to know the extent and depth of the
cognitive baggage the children bring with them to primary school in order to
establish some cognitive continuity between their experience and the planned
arithmetic instruction. On the other hand, for researchers this age group is of
particular interest since they can literally witness a cognitive explosion taking
place under their own eyes.

Our investigation of the kindergartners' numerical knowledge is now in its fifth year
and _our results reflect new approaches both at the theoretical level and at the
methodological level. At the theoretical level, our research has started with an
epistemological analysis of the number concept. This provided us with an overview
enabling us to perceive number as a conceptual scheme, that is as a network of
related knowledge together with the "problem-situations" in which it can be used.
Regarding our methodology, we have adoptd the approach used in case
studies but have tried to go beyond a few individual cases by using larger samples,
averaging thirty odd children, in order to identify likely patterns of thinking.

The term 'epistemological analysis' refers to the analysis of a conceptual scheme
along likely patterns of construction by the learner. In our work we have performed
such conceptual analyses by applying a two-tiered model of understanding
(Herscovics & Bergeron, 1988a) , the first tier describing the understanding of the
preliminary physical concepts, and the second tier identifying the understanding of
the emerging mathematical concept.

Applying this model to the number concept we have identified the notion of
plurality , that is, the distinction between one and many, and the notion of
position of an element in an ordered set as two preliminary physical concepts

Research funded by the Quebec Ministry of Education (FCAR Grant-EQ 2923)
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(Bergeron & Herscovics,1988, Herscovics & Berge. 38b). Defining number as

a measure of plurality and also as a measure of position, we could identify
these as the emerging numerical concepts.

Using the above analysis we have developed a sequence of about forty tasks
aimed at uncovering the child's numerical knowledge in about three or four
interviews lasting on average 30 minutes each. These interviews were carried out

in each of three cities (Montreal, Paris & Cambridge, Mass.) with 30 average
children selected by the school authorities. The choice of cities was based on our

desire to compare samples with language affinities (Montreal & Paris) and samples

with cultural affinities (Montreal & Cambridge).

Among the four Montreal schools two were located in higher socio-economic
suburbs whereas the other two were in a lower socio-economic neighborhoods
(lower middle-class & working class). The Martin Luther King Jr Elementary School
in Cambridge provided us with children in four different classes, two of these being

considered as regular kindergarten classes, the other two following an activity-

based mathematics program for early childhood education based on Mary Baratta-

Lonon's Mathematics Their Way (198?). Both samples from Paris and Cambridge
originated from schools located in lower socio-economic neighborhoods.

Two other variables beyond our control were the age difference between the
samples and the date of the interviews: The 29 Parisian children had an average

age of 5:8 and were interviewed between the last week of February and the first
week of April 1988; the 30 Cambridge kindergartners had an average age of 5:10

and were interviewed between the end of April and the beginning of June 1988;
the 32 Montreal children had an average age of 6:2 and were interviewed between

the end of April and the beginning of June 1988.

The present paper will cover the logico-mathematical abstraction of cardinal
number. A companion paper in these Proceedings deals with the the abstraction of

ordinal number (Bergeron & Hersovics, The kindergartners' understanding of

ordinal number).

In view of the first part of our definition of number as a measure of plurality , the

logico-mathematical abstraction of number must reflect both the invariance of
plurality and the invariance of its measure with respect to irrelevant spatio-

physical transformations, leading to the abstraction of cardinal number. We now

describe the various tasks designed to assess the children's understanding of

these notions.

Uniqueness of the cardinality of a set. Ginsburg (1977) has pointed out that

some young children can enumerate a given set several times and obtain different

results without necessarily developing any sense of contradiction. The

kindergartners' perception of the uniqueness of the cardinality of a set, as
measured by their enumeration, was evaluated by asking each child how many

cubes were in a given set (12). After these had been counted, the interviewer told

the following story: "When I asked another little friend how many cubes there were

here, he told me there were eleven. Do you think that you are right, or that he is

right, or that both of you are right?". In each of the three cities, only one child in each
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sample (n=29;30;32) thought that both answers could be right. This indicates that
by the time children finish kindergartnen, they are aware of the uniqueness of the
cardinality of a set. Most of the children in Montreal and Cambridge went about
counting the cubes a second time and then immediately affirmed that they were
right and the friend was wrong. It is interesting to note that many Parisian children
interviewed first responded by claiming that both answers were right. However,
further questioning revealed that they did not really believe the answer .they had
given for they too ended up recounting the cubes and claiming their answer as the
right one. A discussion with their teachers indicates that their initial response could
be explained by the emphasis of "getting along" that is stressed in French
kindergartens.

Invariance of cardinality with respect to the direction of the count .

Another aspect of the cardinality of a set is its invariance with respect to the order of
enumeration of the objects (Piaget,1973; Gelman & Gallistel,1978). A simpler
problem involves the invariance of the cardinality with respect to the direction used
in counting up a row of cubes. Earlier research had shown that 77% of
kindergartners were aware of this invariance (Herscovics et al.1986). The results
obtained in the present study were somewhat better. The children's perception was
ascertained by aligning in a row 12 identical cubes in front of a child who then had
to find how many there were. Following the enumeration, the subject was asked "If
you start counting from here (indicating the end point of the initial count), how many
will you find?". In case the child counted the row a second time the interviewer
asked "Did you need to count them that way? (indicating the second direction)?".
Notwithstanding the given answer, another set of 10 cubes was aligned and the
task was repeated in order to verify if the the child would count again in the second
direction. The reason for repeating the task was that for many students the words
"How many?" trigger a counting response and for others their second count is not
so much used to verify the number of elements but more as a demonstration
intended for the interviewer. The following table shows the results obtained:

City Succeeded
on first try

ied
c.. .cond try

Did not
succeed

Cambridge
Regular classes (n=14) 12 1 1

Lorton classes (n=16) 14 2 0
Totals 26 (86.7%) 3 (10 %) 1(3.3%)

Paris (n=29) 20 (69.0%) 5 (17.2%) 4 (13.8%)
Montreal
Higher socio-econ (n=16) 13 3 0
Lower socio-econ (n=16) 9 4 3
Totals 22 (68.8%) 7 (21.8%) 3 (9.4%)

It should be noted that the overall success rate is fairly high in the three samples
(96.7%, 86.2%, and 90.6% respectively). The Parisian and Montreal children seem
to have very similar success rates whereas the Cambridge sample indicates that all
but one child perceive this invariance.
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INVARIANCE OF PLURALITY AND INVARIANCE OF QUOTITY

Over twenty years ago, Piaget's collaborators Greco (1962) felt the need to
distinguish between the children's conception of plurality and the meaning they
attach to enumeration. They modified the original conservation task involving two
equal rows of chips by asking the children to count one of the rows before
stretching the other one; they then asked how many chips were in the elongated
row while screening it from view. Those who could answer the question were said
to conserve quotity. Greco found that many five-year-olds claimed that there
were seven chips in each row but that the elongated row had more. Thus, these
subjects conserved quotity without conserving plurality. For these children,

to conserve quotity simply meant that they could maintain the numerical label
associated with the elongated row, but their count was not yet a measure of

plurality, since they thought that the plurality had changed. It is only when both
plurality and quotity are conserved, when both invariances are perceived, that
number can become a measure of plurality. At that stage, one can claim that the

child has achieved a logico-mathematical abstraction of cardinal number. Of
course, the Piaget and the Greco tasks are not the only ones which can be used to
assess abstraction of cardinal number. We have theirs and designed three other

tasks for our assessment.

Invariance with respect to the elongation of a row. During the first interview

each child was presented with a row of 11 identical cubes and was told : "Here is a

row of cubes. Look, I'm going to stretch it out....Now, do you think that there are
more cubes...les cubes... or the same number as before I stretched the row?". In the
third interview the child was presented with the same row of cubes, but this time

was asked right at the beginning "Can you tell me how many cubes we have?".
After the count, the row was stretched out and the interviewer asked: "Now, without

counting, can you tell me how many cubes are in the row?" (while screening off the

row from the child's view with a forearm or two hands to prevent any counting). The

following table provides the data for these tasks:

City Invariance
of plurality

Invariance
of quotity

Invariance
of both

Cambridge
Regular classes (n=14) 13 (92.9%) 11 (78.6%) 10 (71.4%)
Lorton classes (n=16) 16 (100%) 15 (93.8%) 15 (93.8%)

Totals 29 (96.7%) 26 (86.7%) 25 (83.3%)

Paris (n=29) 16 (55.2%) 24 (82.8%) 14 (48.3%)

Montreal
Higher socio-econ (n =16) 14 (87.5%) 14 (87.5%) 13 (81.3%)
Lower socio-econ (n=16) 12 (75.0%) 16 (100%) 12 (75.0%)

Totals 26 (81.3%) 30 (93.8%) 25 (78.1%)

The data indicate that on the conservation of quotity there is a remarkably high rate

of success in the three samples. On the invariance of plurality , the average for the

Parisian children is much lower than for the other two groups. The fact that they
were 2 months younger than the Cambridge children and 4 months younger than
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the Montreal ones may account for some of this difference, as well as the fact that
they were interviewed two months earlier in the school year.
Invariance with respect to the dispersion of a set. Tasks analogous to the
preceding ones were used to assess the children's perception of the invariance of a
set of 9 identical cubes laid out randomly and then spread out in front of them. The
following table shows the results obtained:

City Invariance
of plurality

Invariance
of quotity

Invariance
of both

Cambridge
Regular classes (n=14) 11 (78.6%) 10 (71.4%) 8 (57.1%)
Lorton classes (n=16) 15 (93.8%) 16 (100%) 15 (93.8%)
Totals 26 (86.7%) 26 (86.7%) 23 (76.7%)

Paris (n=29) 19 (65.5%) 25 (86.2%) 19 (65.5%)
Montreal
Higher socio-econ (n=16) 14 (87.5%) 16 (100%) 14 (87.5%)
Lower socio-econ (n=16) 11 (68.8%) 13 (81.3%) 10 (62.5%)
Totals 25 (78.1%) 29 (90.6%) 24 (75.0%)

As in the previous set of tasks the success rate on the invariance of quotity is high
for the three groups. All but one child from the two Lorton classes have also
acquired the invariance of plurality. What is strikingly similar is the result obtained
on plurality in the regular Cambridge classes, the Parisian children, and the
Montreal classes in lower socio-economic neighborhoods (78.6%,65.5%, and
68.8% respectively).

Piagetian tasks. The third set of tasks used to assess the invariance of cardinality
were the classical Piagetian test on the conservation of plurality and the Greco
modification mentioned earlier. The following table shows the results obtained:

City Invariance
of plurality

Invariance
of quotity

Invariance
of both

Cambridge
Regular classes (n=14) 8 (57.1%) 12 (8 7%) 8 (57.1%)
Lorton classes (n=16) 16 (100%) 1 L. 0 00%) 16 (100%)
Totals 24 (80.0%) 28 (93.3%) 24 (80.0%)

Paris (n=29) 7 (24.1%) 21 (72.4%) 7 (24.1%)
Montreal
Higher socio-econ (n=16) 13 (81.3%) 14 (87.5%) 12 (75.0%)
Lower socio-econ (n=16) 8 (50.0%) 12 (75.0%) 7 (43.8%)
Totals 21 (65.6%) 26 (81.3%) 19 (59.4%)

Results indicate a maximal rate of success among the children following the
Barrata-Lorton program. On the invariance of plurality, the sample from the regular
Cambridge classes compares with the sample from the two Montreal lower socio-
economic neighborhoods. The sample of Parisian children achieves a much lower
rate (24.1%). Again, this can bd attributed in part to their younger age. However,
this result is fairly consistent with their earlier performance on the elongation of a
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single row, for their success rate there was 20% lower than the lowest results
obtained in Montreal (55.2% vs 75.0%).

Invariance with respect to the visibility of the objects. In this last set of
tasks on the invariance of cardinality, children were given in the first interview a
row of 11 chips glued on a piece of cardboard. They were told: "Here is a large
cardboard with little chips glued to it. Look, I'm putting the cardboard in a bag (the
interviewer inserting the cardboard in a transparent bag). Good, are all the chips
in the bag?". Following confirmation: "Look, I'm putting a plastic strip in the bag
(the interviewer inserting a platic strip with an opaque part large enough to cover
three chips). And now, are there more chips in the bag, less chips, or the same
number as before?".Usually in the second interview, this task was repeated but the
children were asked to count up the number of chips before they were inserted in
the bag. The following table shows the results obtained:

City Invariance
of plurality

Invariance
of quotity

Invariance
of both

Cambridge
Regular classes (n=14) 1 ( 7.1%) 10 (71.4%) 1 ( 7.1%)
Lorton classes (n=16) 5 (31.3%) 14 (87.5%) 5 (31.3%)

Totals 6 (20.0%) 24 (80.0%) 6 (20.0%)

Paris (n=29) 8 (27.6%) 6 (20.7%) 1 (3.4%)
Montreal
Higher socio-econ (n=16) 3 (18.8%) 13 (81.3%) 2 (12.5%)
Lower socio-econ (n=16) 8 (50.0%) 12 (75.0%) 0

Totals 3 (9.4%) 25 (78.1%) 2 (6.3%)

Whereas the results on the invariance of quotity are similar in Cambridge and in
Montreal, their discrepancy with those obtained in Paris is hard to explain. But it is
the uniformly low results on the invariance of plurality that are most astonishing.
They indicate that among most kindergartners, including those in the Lorton
program, the visibility of the objects is still primordial. As pointed out by Hermine
Sinclair (personal communication), this is not a question of the permanence of the
objects which is acquired well before the age of five. Nor is it a question of the
enumerability of the partially hidden set as evidenced by the invariance of quotity.
Visibility of the objects affects these children's perception of plurality.

BY WAY OF CONCLUSION

In order to have an overview of the children's understanding of cardinal number,
the results (in percents) obtained on the various tasks are summarized in the
following table, invariance of cardinality signifying the invariance of both plurality
and quotity:
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Invariance Cambridge Paris Montreal
Lorton Regular Lower Higher
classes classes income income

Uniqueness of card. 93.8 100 96.6 100 93.8
Inv.wrt direction of count 100. 92.9 86.2 81.3 100
Inv.wrt elongation of row 93.8 71.4 48.3 75.0 81.3
Inv.wrt dispersion of set 93.8 57.1 65.5 62.5 87.5
Inv.wrt Piagetian tests 100 57.1 24.1 43.8 75.0
Inv.wrt visibility of objects 31.3 7.1 3.4 0 12.5

What is most striking about this table is that apart from the Parisian results obtained
on tasks involving the elongation of a set, the basic hierarchy is similar in the three
samples. By and large, the uniqueness of the cardinality of a set and the invariance
with respect to the direction of the count seem to be achieved in this age group. The
Cambridge and Montreal results on the elongation of a row and on the dispersion
of a set are similar in the two regular classes and the two lower income classes.
The Piagetian tests are more difficult for both Parisian and Montreal children. The
invariance with respect to the visibility of the objects has the lowest rate of success
in all groups.

Equally striking is the overall success rate obtained by the children following the
Baratta-Lorton program. Clearly, the type of activities that enable the child to reflect
about the various properties of number can have a strong impact even at this early
age.

Also remarkable is a comparison of the success rates in the three middle columns.
Again, if the odd results obtained in Paris on the elongations tasks are ignored,
very similar rates are found among the Cambridge children from the_ regular
classes, the Parisian children (who also come from a lower middle class and
working class area), and the two Montreal classes situated in comparable
neighborhoods.
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LEARNING ABOUT ISOSCELES TRIANGLES

J.Hillel
Department of mathematics and Statistics
Concordia University, Montreal, Canada.

c9 part of a cornputer based geometry environment. a
procedure for en isosceles triangle Quantified by Pose
and Ilese angle. was given as an &Vert to investigate The
paper looks at the evolution of the childrenS understanding
of this geometric object end of the .relationships 51770178
its components

The activities involving isosceles triangles were part of a year long computer-

based geometry project. The project was conducted with an entire grade-6 class

(12-13 year olds) of average ability, in an elementary school in Montreal. Its

general objectives were to provide children with experiences of basic geometric

shapes, of their quantifiable components and of the geometrical-numerical

relationships that arise out of some geometrical configurations.

The Learning Environment

The sessions spanned 26 weeks and were part of the children's normal school

activities. The class split into two groups of 13 children, and each group came to

the school's computer lab for a 45-minute session while the other group stayed

in the classroom. There were enough computers in the lab for each child to work

on a separate machine.

The available programming tools consisted of three geometric objects:

Rectangles, Circles and (isosceles) Triangles which were given as pre-defined

Logo procedures, RECT, CIRCLE and TRI. The procedure RECT needed two positive

inputs representing the base and height of the rectangle. CIRCLE's single
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positive input stood for the diameter. TRI's first Input was a positive number

representing the base and the second input was a number representing the base

angle of the isosceles triangle. (An invalid input for the base angle resulted in

the error message the base angle of an isosceles triangle has to be between 0

and 90".)

Each procedure produced a figure on the screen which was placed in a

particular position and orientation relative to the turtle, i.e. a circle with the

turtle at its center a rectangle and a triangle with the turtle at the mid-point of

the base and with its heading perpendicular to the baseline. Once the children

became familiar with the shapes, the placement of the turtle was changed to a

simple marker, as shown in Fiqurel.

Figure I

There were three commands to manipulate the turtle in the plane: MOVE,

SLIDE and TURN, each of which required a single input which could be either

negative or positive. MOVE displaced the turtle along the line of its heading, in

the same direction if the input was positive and in the opposite direction, if the

input was negative. SLIDE displaced the turtle along a line perpendicular to its

heading, to its right, if the input was positive, and to its left otherwise (see

Figure2). TURN led to a rotation, the input indicating the number of degrees and

positive input resulting in a clockwise rotation.

MOVE 50

104

SLIDE 50

Figure2
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Finally, two special numerical procedures were available in conjunction

with the isosceles triangle. ALT gave the altitude from the base of the triangle

and SIDE gave the length of its equal sides. both needed the same inputs as TRI,

e.g. ALT 100 70 yielded 137, which is the altitude of an isosceles triangle with

base 100 and base angle of 70°.

This particular environment resulted in a geometry with transformational

and quantitative aspects. The turtle commands of MOVE, SLIDE and TURN,

measured in terms of turtle-steps and degrees, allowed for translation and

rotation of geometric shapes. The three basic geometric figures were also given

as objects with attached measures.

The Isosceles Triangle

The isosceles triangle was introduced in Session 10 (S 10). This was not a very

familiar object for the children and their notion of angular measure and base

angles was almost non-existent. Our choice of parametrizing the isosceles

triangle by its base angle rather than its base and side (which are the obvious

visible components of the triangle) or base and altitude, was in order to bring

the concept of angle into the environment. Furthermore, the base angle serves as

a nice example of an invariant of a family of figures , i.e. of similar isosceles

triangles. We expected that the children would have difficulties making sense

out the second input to the TRI procedure and that their spontaneous conception

would be that the second input controlt, in some way, the height of the triangle.

Many of the tasks that we gave the children were meant to create conflicts with

such conception . Also this kind of parametrization conflicted with children's

general underlying assumption that if figure A is embedded in figure 5, then all

the corresponding inputs are larger for figure 13 (true, for example, if the
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triangle was parametrized by its base and height).

The numerical procedures ALT and SIDE were introduced by 516. 5y then,

most of the children were aware of the different attributes of an isosceles

triangle and of the need to have different kinds of measures in order to solve

some of the given tasks in a more analytical way.

Understanding Isosceles Triangles

We examine the children's progressive understanding of the procedure TRI by

looking at the work of one child, Jay. His work was rather typical of the

behaviour shown by at least 15 children (21 children stayed for the duration of

the project).

After the procedure TRI was introduced (and the children were told in an

explicit way what the two inputs to TRI signify, though we did not expect that

they would make immediate sense of the term 'base angle'), Jay worked on

several tasks involving (isoceles) triangles. Among the first was Figure3

involving three similar triangles;

Figure3

In going from the smallest to the largest triangle, Jay initially incremented both

the base and the base angle by 10 and after receiving feedback from the screen,

he continued by making several adjustments to the second Input of TRI..

In SI 1, Jay worked on Figure4. Again his spontaneous choice was to vary

both inputs. After several trial-and-adjustment moves, he did end up with a

fixed second input for the three triangles.

10
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His experiences at the end of 911 carried over to S 12, and Jay kept a fixed

second input of 60 for the two triangles in Figure5:

Figure 5

However, when he was asked what the 60 stood for, Jay replied "it is the height

of the triangle".

It seems that at this point, after three sessions of work on triangles, Jay

was entertaining two conflicting ideas. He retained his initial spontaneous

conception that the second input to TRI represented height. At the same time he

began to recognize that certain configurations involving triangles of different

heights involved the same second input. When Jay was confronted with the

inconsistency, he once more talked of height, but then corrected himself "no, it

[the second input] is angle". Further probing by the observer indicated that though

he used the term 'angle', he was not sure which angle was being referred to, and

he received some explicit help.

Later in the same session, Jay kept the second input of TRI invariant for the

two triangles in Figure6:

F mr-e6

On the next task (Figure?), he referred to the second input of for triangle ABC by

tracing with his hand the angle at A end saying "it has to be some kind of a low

number, less than 65".
A

C

S13 started with a blackboard activity and a class discussion. When Figure8

was drawn on the blackboard and a question about the size of the angle was

asked, Jay offered 60. He justified his response by drawing a 90-degree angle on

Figure?
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the blackboard, then tracing a 30-degree line (Figure9):

Figure8 Figure9

His explanation was: -suppose this is 90. then this 30 is one third, and 60 is

twice that". He also was among the pupils who argued that extending the arms of

the angle would not change the size of the angle.

Jay had shown that, at that stage, he had a good grasp of the notion of angle

and of its measure in degrees. His work at the end of 512 also suggested that he

began to understand how angle was related to the procedure TRI. Yet, in 514,

working once more on a task involving similar triangles (see Figures), he ended

up with inputs of 70 and 65 for the larger and smaller triangles, respectively.

Furthermore, 65 was arrived at after several trial-and-adjustments increments,

which he carried until the (left) sides of the triangles looked parallel to him.

Jay continued with his conception of TRI even after the numerical prOcedure

ALT to calculate the altitude of a triangle was introduced to the class. For

Figure10 C

E Figure10

A

Jay started with a 100x50 rectangle (A6 100, AD 50) and chose

TRI 50 100 for triangle AED, consistent with his interpretation of the second

input as height. Since the error message alerted him that the input must be less

than 90, he decremented the input by successive trials till he arrived at

TRI 50 76, which led to a correct-looking figure. When asked what 76 stood for,

Jay replied the height of the triangle". Once more, he saw no contradiction

between his initial (correct) assessment that the altitude of triangle AED must
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be 100 and his subsequent conclusion that the height was 76.

After another discussion with the observer about the procedures TRI and

ALT, Jay returned to Figure 10, this time starting with triangle AED, then

evaluating its altitude and using this value for the dimension of AB.

His deliberate use of the procedure ALT on the previous task finally allowed

Jay to disentagle the two related notion of height and base angle. From S18

onwards, Jay's work pointed to a consistent interpretation of TRI in terms of

base angles, though he experienced some perceptual difficulties in separating

similar amd non-similar triangles. He started to work on tasks which involved

relationships such as complementary base angles and complementary and

supplementary (turtle) rotations relative to a base angle. His solutions to these

tasks showed a definite progression from 'visual' to 'analytical' solution schema

(see Hillel & Kieran, 1987). For example, in S 18 he worked on Figurell

Figure! I

After starting with TRI 80 37 for the lower triangle, he figured out correctly

that the base of the second triangle is twice the altitude of the first. However,

he estimated the second base angle as 40 rather than using complementarity. On

the other hand, for Figure 12 in S23, he began by choosing 50 and 25 for the base

angles of T1 and T2. Asked what he would choose for T3, he answered 1 am going

to find out how much angle I have used, and take it away from 90"

F lgure l2
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All the pupils in the study were interviewed at the end. The interview

included six questions on the procedure TRI and on related concepts. Jay's

responses to these questions (524) were precise and correct.

Conclusion

As we have mentioned above, the way Jay's understanding of the procedure TRI

evolved was typical of most of the children in the study (Four children hanged on

to their initial conception that the second input to TRI parametrized the side of

the triangle; see Kieran and Hillel (1989), for the complete discussion of the

results of the study). From a pedagogical perspective, Jay's behaviour illustrates

the persistence of pupils' initial conceptualizations and their abilty to

accommodate conflictual situations prior to resolving them. What is interesting

here is that such 'classical' learning behaviour took place in a very flexible

learning environment which allowed ample opportunity to experiment and which

provided constant feedback. This reminds us, once more, that pupils need lots of

time and experiences before they arrive at an operational understanding of a new

concept.
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Abstract:

The intuitive knowledge with which an individual tackles a

problem in mathematics acts in two ways. It may act as a

stimulus to progress; or it may be an "anchor" or obstacle.

which cannot be changed or removed by means of simple
exercises and explanations. It can also lead to a

contradictory situation for an individual attempting to solve

a mathematical problem and lacking the right tools or

strategies to overcome the obstacle. From this perspective,

the behaviour of a number of mathematics teachers is analysed

by means of a questionnaire on the concept of function and

this behaviour is related to the historical development of a

mathematical idea. One finding is that the notions of function

and continuous function are intuitively assimilated as the

single concept "function-continuity".

INTRODUCTION

In what follows we shall be concerned with contradiction
and proof. The construction of functions is the vehicle

whereby I hope to analyse contradiction and processes in

mathematical proof.

It is difficult for an observer or researcher to interpret

the intuitive knowledge with which an individual approaches a

problem. In some cases, however, it can prove helpful, in

interpreting the situation which individuals may find

themselves faced with, the study how a mathematical idea has

developed over time.

With the foregoing considerations in mind, I undertook a
study into the concept of function, both from the historical

viewpoint and also from the point of view of a mathematics
teacher. For the study I asked 29 mathematics teachers to
answer a questionnaire containing 25 questions, all of which

were related to the concept of function. The results showed

that teachers who gave correct answers generally showed a
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strong tendency to construct continuous functions, even when

the question only specified a function of some kind.

Question 4: Construction of functions.

Construct two functions f and f
z
with the domain R and rank R

also, such that

f(-5, = 2 f(0) = 1 f(5) = 6

The results were as follows:

Question No answer Incorrect
answer

Correct
answer
continuous
function

Correct
answer
disconti-
nuous
function

to it 9 10 9

4b 14 9 3 2

Of the ten who gave correct answers by constructing continuous

functions, seven teachers constructed parabolas for the first

function and three made compositions of two semi - straight

lines. Of the ten subjects who constructed continuous

functions only three were able to construct another continuous

function. The remaining seven reached the limit of their

ability to construct continuous functions.

The mathematics teachers who took part in the study knew

about discontinuous functions. However, their intuitive grasp

of the function- continuity concept was an 'anchor' which

proved stronger than their awareness of function on its own.

The teachers, in other words, had assimilated the concept of

function-continuity and could use it when called upon to do so

in a natural way; but to make them produce their own ideas and

isolate the concept of function, it would have been necessary

to say something on the lines of: 'Construct two functions,

which need not be continuous, with the following

characteristics...'. The history of the concept of function

shows us that Euler behaved in a similar way.

Consider another task which the teachers were asked

Question 23:Constructing functions with special properties.

23.Oiven the property Cf°f3<x) = f(f(x)) = 1 for any xdR.
Construct two examples, either by means of a graph
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CONSTRUCTION OF FUNCTIONS, CONTRADICTION AND PROOF.

Fernando Hitt..
SecciOn de Maternatica Educativa del CINVESTAV, PNFAPM, Mexico.

Institute of Education, University of London. U.K.

Abstract:
The intuitive knowledge with which an individual tackles a
problem in mathematics acts in two ways. It may act as a
stimulus to progress; or it may be an "anchor" or obstacle.
which cannot be changed or removed by means of simple
exercises and explanations. It can also lead to a
contradictory situation for an individual attempting to solve
a mathematical problem and lacking the right tools or
strategies to overcome the obstacle. From this perspective.
the behaviour of a number of mathematics teachers is analysed
by means of a questionnaire on the concept of function and
this behaviour is related to the historical development of a
mathematical idea. One finding is that the notions of function
and continuous function are intuitively assimilated as the
single concept "function-continuity".

INTRODUCTION

In what follows we shall be concerned with contradiction
and proof. The construction of functions is the vehicle
whereby I hope to analyse contradiction and processes in
mathematical proof.

It is difficult for an observer or researcher to interpret
the intuitive knowledge with which an individual approaches a
problem. In some cases, however, it can prove helpful, in
interpreting the situation which individuals may find
themselves faced with, the study how a mathematical idea has
developed over time.

With the foregoing considerations in mind, I undertook a
study into the concept of function, both from the historical
viewpoint and also from the point of view of a mathematics
teacher. For the study I asked 29 mathematics teachers to
answer a questionnaire containing 25 questions, all of which
were related to the concept of function. The results showed
that teachers who gave correct 117 generally showed a
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strong tendency to construct continuous functions, even when

the question only specified a function of some kind.

Question 4: Construction of functions.

Construct two functions ft and f
z
with the domain R and rank CR

also, such that

f(-5) = 2 fC0) = 1

The results were as follows:

f(5) = 6

Question No answer Incorrect
answer

Correct
answer
continuous
function

Correct
answer
disconti-
nuous
function

4n 11 El 10 3

4b 14 9 3 2

Of the ten who gave correct answers by constructing continuous

functions, seven teachers constructed parabolas for the first

function and three made compositions of two send-straight

lines. Of the ten subjects who constructed continuous

functions only three were able to construct another continuous

function. The remaining seven reached the limit of their

ability to construct continuous functions.

The mathematics teachers who took part in the study knew

about discontinuous functions. However, their intuitive grasp

of the function-continuity concept was an 'anchor' which

proved stronger than their awareness of function on its own.

The teachers, in other words, had assimilated the concept of

function-continuity and could use it when called upon to do so

in a natural way; but to make them produce their own ideas and

isolate the concept of function, it would have been necessary

to say something on the lines of: 'Construct two functions,

which need not be continuous, with the following

characteristics...'. The history of the concept of function

shows us that Euler behaved in a similar way.

Consider another task which the teachers were asked

Question Za:constructing functions with special properties.

23.Oiven the property Cf.f)(x) = fCfCx)) = it for any xenZ.

Construct two differlintolramples, either by means of a graph

4.
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or by making the function explicit, which have this property.

The results of this question were as follows:

Question No
answer

Incorrect
answer to
let item

Correct
answer to
let item

Incorrect
answer to
2nd item

Correct.
answer to
2nd item

29
Making
function
explicit

4 16 7 2

Graph 4 6 17 2 2

This example shows to what extent intuition can have an

'anchor' effect. The effect here was that the teachers, having

solved the first part of the question, were prevented from

going on to solve the second. The most frequently chosen

answer was f(x) =1, for any xaLR. Only two teachers were able to

break the 'anchor' and separate the intuitive knowledge of

function-continuity from the notion of function per se.

would suggest, again, that if the teachers had been told that

it did not matter whether the function they produced was

continuous or not, the number of correct responses to the

second part of the question would have been higher.

In the light of this evidence, we would agree with

Fischbein (1973), page 223, when 1 assures us that

'intuition cannot be created, eliminated or modified by

either explanations or short learning exercises...'. In

Fischbein (1982), page 17-18, we find an example related to

the theorem in Euclidean Geometry according to which 'the sum

of the angles of a triangle is equal to two right angles'. He

suggests an intuitive proof of the theorem, and states that

'this representation can be translated directly into a formal

proof. The formal proof and the intuitive interpretation are

perfectly congruent. Here, intuition is seen as having a

direct effect on learning. On the other hand, what we have

called the 'anchor' of intuition, which may be related to the

notion of 'epistemological obstacle' (Brousseau, 1983), far

from being a stimulus to the learning of notions,

representations, etc., may actually prevent learning from

taking place.

1 115 BEST COPY AVAILABLE



110

The history of mathematical ideas is a rich source of
examples of this process in action. One such can be found in
J. Fourier's 'Theorie analytique de is chaleur', Chapter 3

<1812) p.157, in which he assures us that

En general. to limite de la serie est alternativement
positive et negative: au reste. La convergence nest
point as.sez rapide pour procurer une approximation
facile. mais elle .suffit pour La verite de l'equation.
L'equation

y = cos x - - COS 3x + - COS 5x - - COS 7x+...
7

appartient A une ligne qui, ayant x pour abs-cisse et y
pour ordonnee, est compos6e de droites separees dont
chacune est parallele A l'axe et egale A La
demi-circon ference. Ces paralleles sont ptacees
crlternativement au-dessus et au-dessous de raze, A La
distance nrs, et jointes per des perpendiculaires qui
font elles-memes pantie de to ligne. Pour se former une
idle exacte de ta nature de cette ligne, ii faut
supposer gale le nombre des termer de La fonction

COS x - - COS 3x + - COS
3 5

recOit d'abord une valor determinee.'

Fourier considered that hence the limiting function was

continuous. But, in fact, Fourier's statement does not
represent the graph of any function Cet jointes par des
per pendiculaires'). However, if we consider the intuitive
ideas of Fourier, he must have thought that the infinite sum
of continuous functions was continuous. His comment on the
convergence of the series that 'the convergence is not
sufficiently rapid to produce an easy approximation, but it
suffices for the truth of the equation' suggests something of
the intuitive ideas that Fourier had in relation to this
concept.

In Fourier's work, a 'statement in action', to adapt
Vergnaud's (1982) expression, can be seen to exist: 'If the
terms in the series u ,uz ,u3 are functions of
a single variable x, which is continuous with respect to this
variable in the vicinity of a particular value in which the
series is convergent, the sum S of the series, is also, in the
vicinity of this particular value, a continuous function of x'

The statement.. ealse in the Weierstrass' continuum.
-
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Indeed, until the work of Robinson [1966] (related with Non

Standard Analysis), everybody thougt that the above statement
was wrong, and Fourier's function was a counter example. But,

the statement is a theorem in Non Standard Analysis.

Augustin-Louis Cauchy must surely have been influenced by
Fourier's ideas, and it is possible he perceived this
'statement in action' and developed it as a theorem [1821]. In

other words, intuition played an important role by generating
an argument which led to a false theorem (in Weierstrass'
continuum). Cauchy [1853] modified the statement adding

another hypothesis to the functions. Did Cauchy think his

theorem was wrong ?. Indeed, he wrote (idem p. 31-32> 'Au

reste, il est facile de voir comment on doit modifier l'enonce
du theorem, pour qu'il n'y ait plus lieu A aucune exception.
C'est ce que je vai.s expiiquer en peu de mots.'

Abel N. H., in his article (1826> on binomial series, makes
the following statement: 'It seems to me that there are
exceptions to Cauchy's theorem' and proposes, as a counter
example:

sin 0 - lz sin 20 + 1 sin a0 -

In the Weierstrass' continuum context, 'Abel tried to
answer the question: What is the safe domain of Cauchy's.
theorem?' <Lakatos [1976]). 'It was _rie mathematician Seidel
(1847) who found the error and from this the concept of
Uniform Convergence in a predetermined neighborhood of a
point was born' (ideal>.

Returning to the experiment with 29 teachers in regard to
the subject of proof, the results of two other questions in
the test were revealing. These two questions had features
which were not commonly found in the daily teaching activities
of the subjects. In both questions teachers were asked first
to say whether a proposition was true or false; if it was

true, they were asked to give a proof, and if it was false, to
give a counterexample. The questions were intended to 'remove,
in the teacher, the classical picture of mathematical
development as a steady accumulation of established truths'.
iiAs it happened, both propositions stions 20 and 21 were
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false, and what was therefore required in each case was either

a proof of falsity or a counter-example.

Question 20:

20.Let f and g be two functions of fR in R.

Let Cf(x)) + (g0(33 = 0 for any xe(R.

Does this implie that fCx, = 0 and g(x) = 0 for any x.dR ?
Yes

I

No

Explain your answer either by giving an argument in favour of

the implication or giving an example of two functions f and g

which meet the first. condition but where f -and g are not
, -

functions which annul each other out in any xdR.

Explanation:

Question 21:

21.Let f a function of R in R.

Let (1-,f3Cx) = f(f(x)) = 0 for any x,zR.

Does this implie that fCx) = 0 and g(x) = 0 for any xdR ?

Yes No F-1

Explain your answer either by giving an argument in favour of

the implication or giving an example of a function f which

meet the first condition but where f is not the function zero

in ER.

Explanation:

RESULTS QUESTIONS 20 AND 21
Question
20

No.
21

No, and gave a counterexample I 1

No, and gave an erroneous argument 2 0

No, and constructed an 'example', but
not a counterexample

0 a

No, and failed to give an explanation 0 I

Totally failed to answer the question 9 16

Yes, and attempted to prove the propo-
sition with unsuitable arguments

17 0

Yes, and gave an unsuitable argument 2 0

Tee, and failed to give an explanation 4 0

Only one teacher solved both questions correctly. In question

21, three teachers constructed a function for which the

statement was true as a particular instance, although they

said that the proposition was not generally true, their answer

1-8



was 'f(x) =

17 teachers

equals zero,

argument

1 1 3

O for any xdR'. The argument most favoured by the

shown in the table was: 'If either of the two

let COO = 0 V x.d.BW or, in other case, though the

same: 'The product of two realis fundamentally the

numbers is

zero'.

zero, if and only if one or both factors equals

The fact that so many subjects failed to provide any answer

to question 21 is significant. The eight teachers who tried to

prove the proposition made use of arguments such as: 'Let

fCx> .> 0 for any x, then fCfCx>> > 0 for that value of x,

similarly for another case'.

The teachers were undoubtedly able to carry out a

mathematical proof, but the results show that they had

difficulty in applying the general notions of a proof when the

proposition was not immersed in the context of direct

implication <A a B).

In questions 20 and 21, there was a strong tendency to use

the direct proof method which made it difficult for subjects

to imagine that the proposition might be false and therefore

to prove its falsity or to construct a counterexample. All

other methods, and even the possibility of a false

proposition, were obscured by this prevalence of the direct

proof method.

is
as

he

We know that awareness of the presence of a contradiction

not a simple matter <Hitt, 19793. A contradiction may even,

Balacheff <1987) assures us, be an aid to progress, though

points out that there are conditions:

'Nous retiendrons les conditions suivantes comme

nece.ssaires A La prise de conscience d'une contradiction:

i) existence d'un attendu;

ii> possibiUte de construire Vaffirmation associee

A cet attendu et sa negation.'

In the studies I have mencioned, 'L'existence d'un attendue'

Was brought about in a variety of ways. But the main problem

arises in 'La possibilite de construire l'affirmation associee

A cet attendu et se negation'. It is precisely in constructing

11;9
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the negation that the obstacle arises. In this study on the
concept of function, show that the concepts of
counterexample and proof by reductio ad absurdum have not been
assimilated by the mathematics teachers who took part in the
experiment and deserve greater attention than they have
hitherto received in the teaching of mathematics. We can see
the same problem in the history of a mathematical idea related
with the subject above explained.
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11.5

A LOGO-BASED MICROWORLD FOR RATIO AND
PROPORTION

Celia Hoy les, Richard Noss and Rosamund Sutherland
Institute of Education, University of London

We report the results of the first part of a study to design, implement and evaluate a Logo-
based microworld for ratio and proportion. The microworld provided pupils with pre-written
Logo tools which could be used and explored in terms of their internal and external
relationships; pupils were given opportunities to create and explore their own programs. The
microworld was implemented in a class of 24 children with the researchers acting as teachers.
Evaluation took the form of i. written pre and delayed post-tests; ii. audio recorded interviews
(pre and post) with 9 pupils; iii. process dataluring the microworld implementation.

We begin with some attempt to identify the essential components of a

computer-based microworld. In general, this will require identification of pupil

initial conceptions so these can be worked with during the activity, carefully
planned pedagogical intervention to 'impose' a mathematical perspective on
the activity and some consideration of the range of contextual factors which are
crucial to the learning process (see Hoy les and Noss, 1987). Also, such
learning environments need to strike a delicate balance between exploration
and structure; between allowing the child sufficient time and space to nudge up
against the ideas embedded within the environment, and the attempt to
maximise her chances of doing so. We have already experimented in well-
defined and restricted mathematical domains with a small number of children;

(see for example, Noss and Hoy les, 1988; Sutherland, 1987). The construction
and investigation of children's interaction in such environments is problematic
largely because any mathematical concept is part of an intricate network of

concepts so addressing one inevitably necocsitates calling upon
understandings of a whole range of other mathen..cal ideas. The ongoing
work reported here describes in more detail than in our past studies the pupil
perspective prior to engagement in the microworld and the pedagogical
sequence as well as computer-based tasks. In addition it represents our first

effort in microworld activity with a whole class rather than in an experimental

situation with small groups.
We have chosen ratio and proportion as the conceptual domain. One

reason for doing so is the considerable research effort which has been centred
on this issue resulting in a comprehensive picture of the range of pupil
responses to ratio questions to be expected in a non-computational

...,;erwi,prent (see for example tournaire and fulos 1985, Hart (1984). Finally

our own 'research .has indicated that, under the appropriate conditions, the
computer makes a qualitative difference to what pupils can do (for example,
in 'seeing the general in the particular') as well as influencing the strategies
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they choose to adopt and the skills they exhibit (Hoy les and Sutherland 1989,

Hoy les and Noss 1989).
Our general aims were to utilise the power of the computer and the feedback

it can provide, to provoke children:
to use and get to know graphical 'objects' built according to proportional

rules ( which were initially not made explicit to the pupils)
to engage in proportion-based situations and to construct figures in

proportion on the computer.
to come up against visual conflict if the 'ruled' of proportionality are broken.

Our objectives were to:
uncover and then build upon children's underlying intuitions and ideas

about ratio and proportion rather than focussing on their ability to manipulate.

design a sequence of computer-based activities in which children would first

use proportional ideas with the hypothesis that such functional use (with

appropriate structure) would lay the foundation for discrimination and

generalisation given an environment which facilitates the linkages between

intuitive actions, graphical outcomes and symbolic descriptions (Hoy les 1986).

plan pedagogical interventions to promote these links, assist in computer-

use and build in pupil discussion in order to provoke children to articulate their

methods in natural language. Thus spoken and written natural language would

act as a bridge between vague intuitions and the formal specifications needed

to write a computer program or conversely be the means by which pupils could

make sense of (discriminate) the meanings of the computer formalism.
strike a balance between our own agenda and the children's own activities.

We thus planned that the computer would provide assistance with arithmetic

operations; more importantly, it could offer cognitive scaffolding for making

sense of the mathematical meanings of ratio and proportion. We particularly

wanted to devise activities that would produce visual feedback to stand in

conflict with common initial strategies (such as 'adding').
The microworld consisted of a set of activities Logo-based and paper and

pencil, with some well-defined pedagogical agendas around which we
focussed the children's activities. In thinking about design issues in

computational environments, it is important to address a number of peripheral

(to the specific intended mathematical learning) but important issues
concerning the pupil/computer interface; such as familiarity with the computer,

the creation and editing of Logo procedures, the syntax and meaning of

variable, acquaintance with Logo's arithmetic operations and flow of control. We

similarly recognise that turtle orientation is sometimes a source of confusion for
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children with limited Logo experience. We deliberately avoided having to
address this explicitly in the activities whilst still working within the turtle
graphics subset of Logo.

Methodology
The work which is reported here forms a component of a larger research

study the Microworlds Projects. The work reported here represents the results

of the pilot study2. This took place in a single comprehensive school with a
class of 24 children aged between 12 and 13 years. The class teacher had
been a participant in the Microworlds project. All the teaching and organisation

in the pilot study was however undertaken by the three researchers. The
teaching experiment consisted of 6 sessions of 70 minutes duration in the
school computer room (11 computers); children worked in pairs or exceptionally

in groups of three. The children had very limited previous Logo experience (0-2
hours). The methodology to be adopted was:

pre, post3 and delayed post tests for a whole year group the same test to

be administered on each occasion.
audio-recorded interviews of 9 of the 24 pupils in the experimental class in

order to probe their answers: the choice of the nine was on the basis of their
answers to the pre-test (to obtain a spread of apparent misconceptions),
distribution of girls and boys (to represent the distribution within the year-group)

and spread of attainment (as judged by the mathematics teacher).

process data on microworld implementation consisting of: observational

notes on the 9 pupils to assist the interpretation of the post-test results in terms

of the activities undertaken during the micr..v 'd;marked homework
assignments administered after each session;hard copies of the procedures
written by all the pupils within the class.

The pre and post written tests were designed to probe children's intuitions
and understandings about proportion from as wide a range of viewpoints as

possible. We set out to investigate:

The Microworlds project is co-directed by the authors and funded by the Education and Social
Research Council in UK. (1986-9). The aim of the research is to assess ways of using the
computer to provoke mathematics teachers to reflect upon, and if necessary change, their
practice. The project consists of the evaluation of an in-service course for teachers in terms of
attitude change and implementation together with microworld design.
2 The main study will have a similar methodology but consist of two strands: teaching of the
microworld (suitably modified as a result of the pilot) by the researchers to one class of 30 pupils
aged between 13 and 14 years; teaching of the microworld to 3 classes: a class of 25 pupils
aged 12 to 13; a class of 10 pupils aged 15 to 16; a class of 20 11-12 year olds (all of these
classes are normally taught by teachers who attended the Microworlds course).
3 No immediate post-test was given due to administrative problems.
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the influence of different contexts; that is to see how context might be used

(or not) by the pupils in deciding upon their strategies and assessing the

'correctness' of their answers. Questions were set in three different contexts

designed to be realistic for the pupils and thought to carry with them intuitions of

enlarging or shrinking in proportion. The first question was a 'recognition' task

involving the identification of a range of given rectangles which could be
different sized plans of a swimming pool of given dimensions; the second

question consisted of a set of paint-mixing problems; and the third a set of

questions involving photographic enlargements (an example of this latter

category is given in Figure 1).
the effects of different mathematical structures; that is the distinction between

scalar and functional relations (Vergnaud 1983), integral and fractional scale

factors, and non-integral answers.
the possible differential effects of the essentially graphical microworld on

numerical problems (paint-mixing) and visual problems (photographic

enlargements of rugs).
We also deliberately excluded questions where a simple 'doubling' strategy

was appropriate. In the pilot tests, no calculators were available.

You collect photographs of rugs. You have just received a new set of photographs to add to your
collection. You need to enlarge or shrink them to fit into the spaces in your catalogue. One of the

'new' lengths is unknown. Find the missing lengths (marked "?") on each diagram.

3

15

:t;t4;tfttt:ttt:St:ttt:ttt:tt;.
It:tlgtftt:Ntatettt:ttettg

Figure 1: A Rug Task: Integ al Functional Multiplication: Question 3(l.)

The Microworld
Two computational 'objects' formed the basis of exploration in the computer

based activities. These tools were designed in order that by their use and

examination the pupils could become aware of the important ideas behind ratio

and proportion. One was a figure LESLI made up of variable parts as

shown in Figure 2. The second was a fixed closed shape HOUSE using

FD BK RT LT. The overall objective of the activities was for pupils to use and

then discriminate the nature of the functional relations (i.e. multiplicative) within

LESLI in order that 'families' of LESLI's would be in proportion; to recognise the

nature of the scalar relationships needed (ie multiplicative) to achieve different

sized proportional HOUSEs and to recognise through visual t.)edback the
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conflicting situations which would arise when non-multiplicative relations were
employed in either context.

TO LESLI :SIZE
JUMP :SIZE
SHAPE1 SIZE
LINE :SIZE. 0.4
SHAPE2 SIZE. 1.5
LINE :SIZE. 0.6
SHAPE3 :SIZE. 2
END

Figure 2: Procedure and picture of LESLI

We provide below a resume of the six sessions. Each session was followed

by written homework which provided researchers and pupils with ongoing
feedback and formative evaluation.

Session 1: Pupils were given the constituent components of LESLI
(SHAPE1, SHAPE2 etc.) and invited to use these to make patterns of their own
choosing. Pattern generation was facilitated by the provision of procedures
JUMP and STEP which respectively moved the turtle (without drawing) up and
across the screen. The use of these procedures avoided the problematic
issues of interfacing procedures and turtle orientation. The main pedagogical
interventions for this session were to provoke pupils to use a wide a range of
inputs (including negative and decimal); to give help on the technical issues of
procedure definition and editing and to encourage collaboration and sharing.

Session 2: This session began with al introduction to the idea of using
Logo's arithmetic operations to perform calcukitions. Pupils constructed LESLI
as a whole by putting together the component p.e . Our aim was to focus
pupils' attention on the components of LESLI and the inter-relations between
these components.The relationships within LESLI were all multiplicative so sets
of LESLIs produced by using different inputs were necessarily in proportion.
Pupils were then invited to explore with LESLI and create their own designs
using different inputs. They were also asked to predict the size of the
component parts of LESLI for specific values of the input.

Session 3: The aim was to encourage pupils to reflect on the way the
procedure LESLI worked and to discriminate the necessary nature of the
functional relationships between LESLI's constituent subprocedures in order to
obtain sets of LESLIs all in propOrtion. First LESLI 83 was 'played out' away
from the computer using the 'little people metaphor' as a class activity.
Calculations were undertaken on the computer and leaving an 'open' answer
encouraged leaving the calculation as 83 1.6. Pencil-and-paper tasks were
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given in order to encourage reflection on the relationships between visual
image,its formalisation (its procedure name) and its numerical 'size'. Pupils

were asked to modify LESLI so that it had a large head, long arms etc. Our

intention was to focus attention on the idea that only multiplicative
modifications would produce classes of figures that were in proportion since
strong visual images drew attention to the non-proportionality of figures

constructed using different rules.
Session 4: A class discussion was held to consider how to make LESLI's

arms shorter. Attention was focussed on how to label the lengths of the
constituent parts of LESLI on a paper and pencil diagram and make explicit the

multiplicative solution. Finally, a LESLI with a small head, PINHEAD, was
given where the small head was generated by using a subtraction strategy; thus

small input values would produce "upside down" heads, and focus pupils'
attention on the non- proportionality of the resulting figures.

Session 5: Pupils were given a procedure for a closed shape HOUSE

using FD BK RT LT . Pupils were asked to make bigger and smaller HOUSEs
all in proportion. It was anticipated that attention would be drawn to the
necessity of multiplicative scalar relationships since cognitive conflict would be
generated on the adoption of non-multiplicative strategies (production of non-

closed shapes or overlaps). Figure 3 illustrates computer feedback on the
adoption of an additive strategy results and the obvious mismatch between the

intended and actual outcomes.

TO HOUSE
HT
FD 50
RT 60
FD 70
RT 60 50

FD 70
RT 60
FD 50
RT 90
FD 121
RT 90
END

70

121
2

TO BIGHOUSE
HT
FD 125
RT 60
FD 145

50 RT 60
FD 145 125
RT 60
FD 125
RT 90
FD 196
RT 90
END

145 45

196

Figure 3: a1HOUSE b) BIGHOUSE adopting an additive strategy.

125

Session 6: We organised group tasks to work on differently sized HOUSEs

of the pupils' choosing, in order to make the method explicit. The session

started with a game in which pairs of pupils produced 'enormous' houses in

proportion to the original HOUSE and challenged another pair to find how it
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had been generated given one length. The aim was that the pupils would:
construct similar shapes where their scale factors was not obvious (in order to
present a challenge for the opposite team); be forced by the rules of the game
to negotiate their methods in pairs and make their methods explicit; devise
methods to generate the rule of the 'opposite' pair given the original HOUSE
and one length in the final HOUSE and finally compare their numerical results
across pairs and defend their decisions. During the process of 'finding the rule'
we encouraged pupils to work out the scaling factor iteratively using the
computer; that is, in order to find the number to multiply 30 by to give 50, guess
a number, try it and improve the guess.

Findings
The results of the pre and delayed post tests for the integral rug and paint

questions are presented in Table 14 . Although these results are not spectacular
the difference between the pre and the delayed post test results for questions 3b
(see Fig. 1) and 3c is significant at the 5% level.

Question No. Type of Question Pre-Test
% Correct (n=24)

Delayed Post-Test
% Correct (n=25)

Ratio

PAINT 2a INTEGRAL Functional (x) 16.7 34.8 3:9 = 2:?
2b INTEGRAL Scalar (x) 16.7 13.0 3:7 = 12:?
2c INTEGRAL Scalar (/) 8.3 17.4 10:15 = 2:?
2d INTEGRAL Functional /) 25.0 30.4 8:2 = 20:?

RUG 3a INTEGRAL Scalar (x) 33.3 47.8 9:? = 4:12
3b INTEGRAL Functional (/) 0.0 30.4' 15:? = 3:7
3c INTEGRAL Scalar (/) 16.7 52.2' 18:? = 24:4
3d INTEGRAL Functional (/) 29.2 13.0 28:8 = 7:?

Table 1: Pre- and delayed post-test results for Integral Paint and Rug
Questions (* denotes significant at th ' ro level)

More interesting than these overview statistics were the results of the
interviews with the nine individual pupils. Of these nine pupils, six exhibited

quite a major shift in the ways they attempted to approach the questionss .

These shifts can be characterised as follows: a) from a perceptual to a more
analytic strategy; b)towards a consistent strategy, and b) towards a
multiplicative strategy. Analysis of these shifts will form the focus of our
continuing work.

4 Almost all the pupils were unable to ailswer the non-integral rug and paint questions so this data
is not presented below.
5 Affective considerations: The remaining three pupils interviewed could all characterised by an
attitude which appeared to be unconcerned by whether their solutions were correct. They still
persisted in using mathematically inconsistent strategies. It was noticeable that all three were not
involved at any deep level in the microworld activities.
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Conclusions
Our data has led us to propose a number of substantial changes in the

design of the microworld in terms of sequence but also in terms of making

our definitions and methods more explicit. We also now see that in order to

exploit the visual feedback and understanding conflicting evidence during
computer activity, an understanding of the mathematical meaning of proportion

and a recognition of the need for consistency is necessary. We also intend to:

stress the equivalence of comparing similar figures in a scalar and in functional

ways and that both ways give the same 'result'; build on (rather than avoid)

intuitive doubling and deliberately try to forge the link between doubling and

'times by 2'; specify the use of calculators in the pre , post and delayed tests, for

all questions involving non -integral scale factors and specify that a calculator

should not be used for integral questions (rather than leaving the decision

open).
Our tentative conclusions from the pilot study are that our microworld

achieved some limited success. We are reasonably confident that, given the
modifications above, the main study will be able to generate an appreciation of
the meaning of proportion and its formalisation in terms of multiplicative

operations. In the work undertaken already for the main study we anticipate

further interesting shifts for example, from random number pattern spotting to

searching for the ratio pattern, from senseless answers to appreciating the

context of the questions. Results of the main study will be presented at the

conference.

References

HART, K.M., (1984), Ratio : Children's Strategies and Errors, Windsor: NFER-Nelson.
HOYLES, C., & NOSS, R., (1987), Children working in a Structured Logo Environment: From

Doing to Understanding, Recherches en Didactique de Mathematique, Vol.8.,1.2, p.131-174.
HOYLES, C., & NOSS, R., (1987), Synthesising Mathematical Conceptions and their formalisation

through the Construction of a Logo-based School Maths Curriculum, International Journal of
Mathematical Education in Science and Technology, 18, 4, July/August, p.581-595.

HOYLES, C., & SUTHERLAND, R., (1989), Logo Mathematics in the Classroom, Routledge.
HOYLES, C., (1986), Scaling a Mountain - a study of the use, discrimination and generalisation of

some mathematical concepts in a Logo environment, European Journal of Psychology of
Education, 1, 2, p. 111-126.

NOSS, R., & HOYLES, C., (1988), The Computer as a Mediating Influence in the Development of
Pupils' Conception of Variable, European Journal of Psychology of Education, 111,3, p.271-286.

SUTHERLAND, R., (1987), What are the Links between Variable in Logo and Variable in
Algebra?, Recherches en Didactiques de Mathematiques, 8.

TOURNAIRE, F., & PULOS, S., (1985), Proportional Reasoning: A Review of the Literature,
Educational Studies in Mathematics, 16, 181-204.

VERGNAUD, G., (1983), Multiplicative Structures, in LESH, R., & LANDAU, M., (Eds.), Acquisition
of Mathematics Concepts and Processes, Academic Press, NY.

ACKNOWLEDGEMENT. We would like to thank the following teachers who have collaborated
with us on the development of the microworld and will be Malting it in their schools: Jackie Collins,
Jane Harris, Adelaide Lister and Veronica Peters.

128



1 23
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IN SOLVING ALGEBRA SPEED PROBLEMS: REAL OR IMAGINARY?
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The instruction of how to solve mathematics problems uses several auxiliaries,
including the table form. We tested the effects of using table forms on the solution of

speed problems. The results refute the common belief that table forms facilitate

problem solution: Half of all the solutions that were based on a table form were

incorrect, and when students used table forms in 1, 2, or 3 problems, only 9.9%,

12.5%, and 17.1% of them were successful, respectively. The examination of the

table forms revealed that most of them were faulty. The results of no facilitating

effects is attributed to the inherent drawback of table forms, which comprise

Nondirect Relations but neither hint nor provide for their prerequisite inference by
the INFER schemas.

INTRODUCTION

The analysis of algebra speed problems (Harel and Hoz, forthcoming) identified

three kinds of relation that may be found in problems dealing with rectilinear)

motion: Basic, Direct, and Nondirect. The Basic relations indicate whether

elementary temporal and spatial attributes (such as starting times, terminal points,

and direction of motion) of the moving objects are same or different. To solve a

speed problem its representation must incorporate the -41-.,ions it includes. To

achieve this it is not enough though to use basic relations, and other relations have

to be represented as well. Of these, some can be encoded into the representation

directly, while those which are implicit in the problem statement have to be first

inferred from the basic relations. This inference is a prerequisite for the solution of

many a type of speed problems and it may be relatively complex and difficult to

achieve. The relations other than the basic ones are classified as either direct or

nondirect. Direct relations can be derived directly from the problem statement and

represented without using basic relations. Nondirect relations cannot be derived

this way but rather inferred from basic relations to be represented. All three types of
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relation pertain to the concepts distance and time, but only the Direct pertains for

the concept of speed. For example, "Car 1 was on its way 3 hours more than car 2"

is a direct relation, since it can be encoded directly with no need to infer by how

much one duration is larger than the other. "Car 1 started from city A 5 hours before

car 2, which arrived to city B 3 hours after car 1" is a nondirect relation, since the

same relation ("car 1 was on its way 3 hours more than car 2") has to be inferred

from the stated basic relations.

Cognitive analysis illustrated the importance of structure variables in problem

solving (e.g., Goldin, 1984) and ours (Harel and Hoz, forthcoming) has identified the

INFER DURATIONS RELATION and INFER DISTANCES RELATION schemas as

the mental inference mechanism for nondirect relations. The latter are similar to the

Part-Whole schema (Riley, Greeno and Heller's, 1983, and Nesher, Greeno and

Riley's 1982), and can accounted for the difficulty of speed problems that students

have at all educational levels, in both formal school algebra and nonmetric tasks

(e.g., Siegler and Richards, 1979; Wilkening, 1982; Mayer, Larkin, and Kadane,

1984; Reed, 1984; Gorodetsky, Hoz, and Vinner, 1986; Goldenberg, 1989).

The observed difficulties that many students have in solving mathematical

problems inspired mathematics educators and psychologists to propose auxiliary

means and models. Most of these concentrate on parsing the problem statement

into its components that correspond to the problem's elements and translating each

into an equation. From both the theoretical and practical aspects Polya is the most

salient proponent of such means. He proposed (Polya, 1957) the use of a table form

and highly recommended to use it to present the relations between the values of

one variable (stated as the "givens"), and to facilitate obtaining the relation between

the values of a second variable (stated as the "condition"). The latter, when

expressed as an equation models the problem (an example is presented in the

Discussion part).

Table forms are very popular and used by many mathematics teachers, who

believe them to be helpful in deriving the equation(s). This may be eslynially true
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for the weak students who cannot understand let alone solve most algebra

problems, but seem capable of coming out with some equation as a result of using

a table form. There are though teachers who reject the use of table forms. They view

the teachers primary role as developing student thinking and problem solving

ability, and do not believe in an easy life in mathematics classes. They want their

students to think hard" and discover the solution on their own, and they contend

that table filling involves none of these, being a technical and automatic way of

problem solving of bypassing the important functions of "understanding" or

"thinking".

Within the framework of the research on the solution of speed problems

(Goldenberg, 1989; Harel and Hoz, forthcoming; Hoz and Harel, 1988) we

addressed the question whether table forms can facilitate the solution of speed

problems. It emerged when table forms were examined in light of the central role

that the INFER schemas play in the solution of problems. It became evident that

Polya's proposal does not take cognizance of the INFER schemas, and his

treatment lacks in three respects which may render the application of table form

useless. (a) The columns of a table form do not represent the Basic but only the

Direct and Nondirect relations. (b) He had not distinguished the recognition of basic

relations (that he considered one of the "givens") from the inference of the nondirect

relations from them. (c) He never mentioned nor elaborated on how this inference is

to be made. The hypothesis tested was that this type of auxiliary is not helpful in the

solution of speed problems as it was designed and is claimed to be.

METHOD

The subjects were 178 students enrolled in three 9th, seven 10th, and three

11th grades in a comprehensive high school in Beer-Sheva. The tests were

administered to whole classes, and the instructions required only to set the

equation(s) but not to solve them. The students were neither told nor hinted as to

what auxiliaries to use, but were required to provide full explanations to their
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answers. Enough time (up to one class period) allowed all the students to complete

the test.

To test the research hypothesis we used five variables. The independent

variable was the nature of Time Basic Relations from which Time Nondirect

Relations had to be inferred (explained later). Three variables were measured for

each solution: (i) whether it included a table form, (ii) whether it had congruent table

and equation(s), and (iii) whether it was correct (i.e., had a correct equation(s)).

Three dependent variables were derived, which record the number of solutions in

each test (0, 1, 2, or 3) with each of the features: (A) including table forms, (B)

having congruent table and equation, and (C) having a correctequations. Ordered

in this way, each of them characterizes a more progressive phase in the solution if

the test had at least one table form.

The test problem involves two cars, each going at a different speed from one

place to another: "Two cars go from city A to city B, a km apart. Car 1 leaves city A b

hours after car 2. Car 1 arrives at city B d hours before car 2. Car 1 is ckm/h faster

than car 2. Find the speed of each car." This is the simplest problem type possible

for two cars, in which (1) the Distance Nondirect Relation can be easily inferred, (2)

the same Distance Speed Relation is that one car is faster than the other, (3) only

one Time Nondirect Relation has to be inferred from two pairs of Time Basic

Relations that pertain to the starting and arriving times. The city names and the

values of a, b, c, and dwere specified, and the latter as well as the phrases before

and afterwere different in each problem, to provide for the experimental design.

The three possible time basic relations are: the cars started (arrived) together, car 1

started (arrived) first, and car 2 started (arrived) first. These yield 9 different

combinations, three of which were represented in each of the four test forms that

were distributed equally among the students in each class.
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RESULTS

To test the hypothesis the tests were classified into the following two-way table.

In theory the three dependent variables are unrelated to each other, but in practice

they were, as the table shows: the more advanced phase in the solution a feature

represents, the smaller the number of solutions that have it.

FEATURE NUMBER OFSOLUTIONS IN TEST
OF SOLUTION 0 1 2 3

TOTAL NUMBER OF
TESTS SOLUTIONS

A Has table form 11 8 0 70 89 218

B Has congruent 15
table and equation

13 22 39 74 174

C Has correct 15
equation

20 27 12 59 110

These figures show that when a table form was used, the chance is .83

(174/210) that equation and table form are congruent, and the chance is .63

(110/174) that the equation is correct. Hence, the overall chance to obtain a

solution is about .50.

The first observation In regard to students Is that only half of them (89 out of

178) attempted to construct table forms (and 11 of these did not manage to write

any equation). The majority (89.7%) of those who corr-trtr'ed table forms, did so

consistently for all three problems (70/89). 01 these, 17.1% (12f70) obtained three

correct equations, 37.1 % (26 out of 70) obtained two correct equations, and 27.1%

(19/70) obtained one correct solution. The rest (18.7%) did not get any correct

equation. Therefore, despite the success of most students in basing their equations

on the tables, the large percentage of incorrect equations reflects the general failure

to construct table forms that reflect the Time Nondirect Relation.

Of the students who constructed table forms for all problems, only 9.5% could

derive 3 correct equations. Of those that had three congruent tables and equations,

only 30.8% (12/39) wrote correct equations. Further analysis revealed a positive

linear relation between the number of table forms In the test and the number of
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correct solutions (the more table forms constructed the higher the success rate):

When 1, 2, and 3 table forms were constructed, 9.9%, 12.5%, and 17.1% of the

solutions were correct, respectively. Also, in 83.1% (74/89) of the tests at least one

equation was congruent with the table, and in 79.7% (59/74) of these at least one

equation was correct. Therefore, of all the students who attempted table forms

(typically in 3 solutions), 66.3% got a correct solution to at least one solution.

DISCUSSION

The results of this research clearly support the hypothesis that table forms do

not facilitate the solution of the simplest type of speed problems. Using table forms,

the chance of a student to obtain at least one correct solution for three identical

problems depends on the number of table forms constructed, and lies between .10

and .17. The chance of a solution to be correct when it is based on a table form are

about .50. These estimates can at best be the upper limit for these probabilities,

since only half of the students used table forms. Extrapolating from their results to

those who (for unknown reasons) preferred not to use table forms, it seems

plausible to estimate that 3/4 of the latter would not construct appropriate table

forms.

The reason why table forms, despite being consistently used by half of the

students, were found unhelpful lies in the nature of the INFER DURATION schema

and its role and function in the solution. We argue that if table forms were designed

to aid students glean the meaning of the problem by arranging the relations in an

orderly (and expectedly) helpful manner, then it is not the case that our students

used table forms ineffectively. Students failed to solve the problems because the

relations were not appropriately represented in the table form. Those students could

not be helped by table forms, that neither hint at nor provide for the instantiation of

the INFER schema for the inference of the Time Nondirect Relation (or Distance

Nondirect Relation in other problems). The following table form for our test problems

illustrates this argument.
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VARIABLE
distance speed time

car 1 a a/x
car 2 a a/(x+b+d) x+b+d
EQUATION a/x=a/(x+b+d)4-c

This table form includes the Time Nondirect Relation but not any Time Basic

Relation. The values in the speed column prove that the inference of the former

relation is a prerequisite, that cannot be bypassed, for the derivation of the Speed

Direct Relation. Table forms are useless for students who lack the INFER

DURATION schema in their knowledge base. This example clearly indicates that

the construction of table forms is not a matter of automatically filling in the variable

values, nor is it a warranty for correct problem solution (even to isomorphic

problems, one of which was successfully solved).

The conclusion to be drawn from the results of this research is that if auxiliaries

are to be of any help in problem solving they must be based on theoretical cognitive

analysis of the solution processes (and therefore may be domain-specific) in the

first place. They also have to address specific factors and processes that were

identified by cognitive analysis or empirical findings as needing help.

REFERENCES

Goldin, G.A. (1984). Structure variables in problem solving. In G.A. Goldin (ed.)
Task variables in mathematical problem solving. Philo, '..tiia, PA.: Franklin Institute
Press.

Goldenberg, E. (1989). The development in the ages 13-15 of the three-concept
relationship between speed time and distance. Unpublished Masters thesis. Beer-
Sheva: Ben-Gurion University of the Negev.

Gorodetsky, M., Hoz, R., and Vinner, S. (1986). Hierarchical solution models at
speed problems. Science Education, 70, 565-582.

Greeno, G.J., Riley, M.S., and Heller, J. (1983). Development of children's
problem solving ability in arithmetic. In H.P. Ginsburg (ed.) The development of
mathematical thinking. New York: Academic Press.

Harel, G., and Hoz, R. (forthcciming). Structural analysis and isomorphism of
speed problems. TheJournal of Structural Learning.

BEST COPY AVAILABLE

135



130

Mayer, R.E., Larkin, J.H., and Kadane, J.B. (1984). A cognitive analysis of
mathematical problem solving ability. In R.J. Sternberg (ed.) Advances in the
psychology of intelligence. Hillsdale, N.J.: Erlbaum.

Nesher, P., Greeno, J.G., and Riley, M.S. (1982). The development of semantic
categories for addition and subtraction. Educational Studies in Mathematics, 13

373-394.

Reed, S.K. (1984). Estimating answers to algebra word problems. Journal of
Experimental Psychology: Learning. Memory and Cognition. 10(4), 778-790.

Polya, G. (1957) How to solve it. New York: Basic Books.

Riley, M.S., Greeno, J.G., and Heller, J.I. (1983). Development of children's
problem solving ability in arithmetic. In H.P. Ginsburg (ed.) The development of
mathematical thinking. New York: Academic Press.

Siegler, R., and Richards, D.D. (1979). Development of time, speed, and
distance concepts. Development Psychology 15, 288-296.

Wilkening, F. (1982). Children's knowledge about time, distance, and velocity.
In W.J. Friedman (ed.) The developmental psychology of time. New York: Academic
Press.

X36



131

THE LEARNING OF PLANE ISOMETRIES FROM THE VIEWPOINT OF

THE VAN HIELE MODEL
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Abstract

The aim of this communication is to suggest a new application of the Van

Hie le model of reasoning We present a description of the Van Hie le levels for

the /earning of plane isometrics, and some examples of activities for each

level We nave obtained this theoretical description of the Van Hie/e levels from

experiments in school settings carried out with primary school students and

with nre-service primar.v scnool teacher
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Introduction

The Van Hiele model-of reasoning claims that there exist several levels of

reasoning for the students; one of its main claims is that, for successful

teaching, it is necessary to take into account the students' current level.

Therefore, one of the main aims of the Van Hiele r.-._ _ I, is to analyze each area

of geometry (or of mathematics in general) and to characterize each level of

reasoning using elements belonging to a given area, in order to develop teaching

units for the classroom In the existing literature there are general descriptors

(see Usiskin (1982), Burger & Shaughnessy (1986), Hoffer (1983), and Fuys,

Geddes & Tischler (1985)) and also specific descriptors and teaching units

focused on several areas of plane geometry, such as polygons, angles or

surfaces (see Fuys, Geddes & Tischler (1985) and Scally (1987)). But there are

other important topics which h.4ve not yet been investigated; one such topic is

geometric transformations and, in particular, plane isometrics; although Hoffer'

(1983) and Alsina, Burgues & Fortuny (1987) do present descriptions of the

levels in terms of plane isometrics, they are simply 'theoretical statements
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lacking any further practical application. In our current research we have

continued the study of the Van Hie le model that we began some time ago, with

relation to measurement and spatial geometry (see Gutierrez e Jaime (1987a)

and Gutierrez, Fortuny &Jaime (1988)) by working on plane isometries.

The results that we show here have been obtained from our work over

several years on teaching plane isometries to primary school pupils and to

future teachers in Valencia (see Gutierrez &Jaime (1987b and 1988)). Our wish

to provide pupils with activities according to their reasoning abilities has led

us to use the Van Hie le model. Therefore, we have first determined the

characteristics of translations, rotations and symmetries for each Van Hie le

level and, within each level, those corresponding to the learning phases which

allow access to the higher level. Secondly, we have designed teaching units for

each isometry, taking into account these characteristics.

Now we shall present the general characteristics of each level, related to

plane isometries. As we think that it will be clearer if we give examples of

just one isometry instead of using all three symmetries for different examples,

we will confine ourselves to the translations in the examples.

Of the various opinions on the number of levels of the Van Hie le model, we

assume (see Gutierrez & Jaime (1987a)) the existence of four levels of

reasoning, namely, (1) recognition, (2) analysis, (3) classification and (4)

deduction. Table 1 shows a summary of the Van Hie le levels of reasoning for

plane isometries.

Now we shall make a detailed description of the characteristics of the

four levels and the most significant results of our experiments. The activities

on plane isometries that we propose to the students include, in general, the use

of cut-outs, to promote active learning and to avoid difficulties caused by the

children's lack of drawing ability.
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Table 1: The Van Hiele reasoning levels in plane isometries

Level I Visual identification of translations, rotations and symmetries.
Static recognition. Identification of isometric figures.

Dynamic recognition: The movements are carried out automat ically.

Level 2 Experimental discovery of the elements and basic properties of the
isometries.
The isometries are made and identified by means of their elements
and basic properties.

Level 3 Experimental deduction of relations and properties of the

isometries.

Justification of properties and relations already known.

Formal definition of translation, rotation and symmetry.

Products and decompositions of isometries are determined.

Level 4 Global insight of plane isometries: Properties are proved formally;
the structure of group is taken into account; the relations existing
between the isometries are generalized; ...

LEVEL 1 There are two ways to beginning to discover the plane

isometries: static and dynamic. The static approach consists of the visual

recognition of figures which correspond to each . ler under an isometry; this

recognition includes the use of figures arranged in non-standard positions. In

the dynamic approach, the students move the figures physically; in the early

phases of this level they use some devices (rulers, discs, mirrors, computers,

folding, ...), and in the later phases the students can begin to perform the

movements without those tools, by remembering what they have done before.

Some types of activities for translations on level 1 are:

Giving examples and non,- examples of translations.

Moving figures or objets along a ruler or a straight line.

Asking pupils to talk about the differences between translated and

non-translated figures; to do so, they can use a ruler and make the

movements physically or tell by lookirigiat the figures.

139 nrevr nnnv Al/All ADI C



134

Asking the students for some examples of translations from his

environment.

Translating a figure so that one of its segments maps onto another given

segment.

It is evident that when students use visual recognition (a behaviour

characteristic of the first level), they use the elements of isometries (directed

segment, center, reflection line) and some of their basic properties, but they

will only become conscious of them when they have reached the level 2.

LEVEL 2 The work with the students at this level begins with the

discovery of the basic elements and characteristics of each isometry: Directed

segment and parallelism (translations), center, directed angle and movement

along circumferences (rotations), reflection line, equidistance, perpendicularity

and inversion (symmetries). When identifying which figures correspond to each

other under an isometry, at this level the students do not base their reasoning

only on visual recognition, but they also verify the presence of the basic

properties of the identified isometry; this allows the students to use ruler,

compass and protractor to move points of the figures.

However, the students do not relate the properties to each other, that is,

they have not yet built up the network of relations; consequently, they are not

able to determine minimal sets of properties that characterize an isometry and,

theren, they cannot properly define isometries.

One typical piece of behaviour

observed in the early phases of level 2 is to

expect different images after moving a

figure under the same translation when the

origin of the arrow has been placed on

different points of the figure (see figure 1).
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After experimentation they realize that the result will be the same, but they

do not understand why.

The absence of the network of

relations can also be seen in the way

students manipulate two figures to check

if they correspond under a specific

isometry. Moreover, the students do not

realize that they can locate the whole

figure image under a given isometry when

they know the image of two points of the

figure (see figure 2).

At level 2, the students learn to distinguish and to use the characteristics

of translations (length, slope and direction); they also discover by

experimentation other basic properties, such as parallelism between the

corresponding figures. When working with squared paper, students can also

discover the coordinates of the arrow defining a translation, and they can

describe them by means of whole numbers qualified by words such as right/left

up/down (if students already know the negative numbers, they can use them).

They can find products of translations and deduce from experimentation some

properties, such as commutativity.

With respect to rotations, some of the facts that the students will

discover at level 2 are equidistance from the center, variation of slope

(according to the rotation angle) of the rotated figure, the importance of angle

direction and the existence of equivalent rotations. The students can also

handle products of rotations with the same center and discover some algebraic

properties.

As for symmetries, the students will discover equidistance and

perpendicularity with respect to the reflection line of two symmetric points.

They also recognize other properties such as the parallelism between the
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segments that join several points and their respective images under a

symmetry, the inversion of figures, the fact that the position of the image of a

line varies according to its position relative to the reflection line, etc.

There are some examples of different types of level 2 activities for

translations:

Performing a translation given its directed segment.

Performing a translation on squared paper, given the coordinates of its

directed segment (for instance, 3 squares to the right, 5 squares down).

Completing several frieze patterns from the same figure, by means of

translations whose arrows differ only in slope, length or direction.

Comparing the results and discussing the differences.

Checking whether two figures correspond to each other after a translation

and, if they do, finding its arrow.

Obtaining products of translations and observing the results.

LEVEL 3 At this level the students have already acquired the ability to

relate the properties they already know and to discover new properties by

experimentation and informal deductive reasoning. They give definitions for

each isometry, that is, they identify minimal sets of sufficient conditions to

characterize an isometry. They can give informal proofs for properties

discovered at level 2.

The students now know the minimal number of point-images of a figure

needed to locate the whole image, and can justify this.

With respect to the product of isometries, students can deduce the result

of products of two symmetries or two rotations. This will allow them to begin

to build up a network of relations between various isometries in the later

phases of level 3 (because they can find products which include different kinds

of isometries) and to acquire a global understanding of isometries when they

reach level 4. It is also possible at this level to work with glide reflections and
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to discover or deduce some of their properties from the knowledge they already

have of translations and symmetries.

In the later phases of level 3 the students can handle the general

decomposition of isometries and, in several cases, obtain all the possible

solutions (infinite: sometimes).

As for rotations, the students can deduce that the perpendicular bisector

of a segment is the set of the centers of all the possible rotations which map

one endpoint of the segment onto the other; in this way, they will be able to

discover the centers of rotation and will understand the meaning of the usual

algorithm to discover the center of a circle.

There are some. types of level 3 activities about translations:

Finding products of several translations and. discovering, from the

coordinates of their directed segments, the coordinates of the resulting

directed segment. Generalizing and. justifying the result.

Decomposing a. translation into several products of translations (and

justifying-that there are infinite possibilities).

Decomposing a translation into two symmetries, a) when one reflection

line has been fixed, b) when no reflection line has. been fixed. Discovering

and comparing, the number of possible solution, each case:

Predicting and justifying. the result of the product of a translation and a
rotation.

LEVELA The main activity which students develop at this level is

formal and consists in deducing and proving complex properties and theorems

which in the previous levels were out. of the students' reach.

These are some of the facts which must be used in the activities belonging

to level 4, because they help to acquirea global insight of isometries:

The group structure of the plane isometries as a basic tool.
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The Classification Theorem of the Plane Isometries (every isometry is

equivalent to a product of at most three symmetries)

Equivalent movements, decompositions and products.

Given the characteristics of several isometries, identify the movement

which results from their product
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Representation and Contextualization
by Claude Janvier

Universite du Quebec a Montreal

Summary. This paper presents a theoritical framework on how engineers and
technicians make an efficient use of mathematics. Inspired from several cases
reported on arithmetics, it introduces the notion of contextualised
mathematics. Application and contextualization are contrasted from
examples. The role of representations will be examined in this conjunction.
This paper is basically theoritical in the sense that it determines new research
avenues on the fondamental issue of professional training in mathematics
and try to define some of the major factors concerned.
Introduction a remark on the notion of contextualization.

The notion of representation will be understood as it is defined in Janvier
(1987) [see the papers of Kaput, Mason and Goldin]. As for the notion of
contextualization, the aim of this paper is precisely to make it explicit and to
relate it to the notion of representation.

The context is often interpreted as the set of conditions or of propositions
that at some point in time "organize the meaning of a concept. According to
such a definition of the notion of context, the development of a concept (and
its learning) is necessarily associated with a double process involving de-
contextualization and re-contextualization in which a notion gains meaning
through a series of more and more refined settings. I do not deny the validity
of such an approach but the issue at stake in this paper leads us to depart from
this interpretation.

In fact, the notion of context to which I refer in this paper, brings us
outside of mathematics. Context will be synonymous to situation. It will be
regarded as the "concrete" support from which a mathematical concepts is
derived. It basically presupposes that many basic mathematical ideas are
abstracted form the real world. The process involves mental images that are
close to the reality, close to the observed objects or relations.
The aim of the paper.

This paper will present the rationale behind a research that I have just
strarted on how engineers and technicians make use of mathematics. Inspired
from several cases reported on arithmetics, I will try to make explicit what
could be meant by contextualised mathematics. This will lead me to question
the notion of application. Finally, some experimental details will be provided.
This paper is basically theoritical in the sense that it determines new research
avenues on the fondamental issue of professional training in mathematics
and try to define some of the major factors concerned.
The case of arithmetic.

Terezinha N. Carraher, Analucia D. Schliemann, Jean Lave and others (see
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references) have studied arithmetic "users" such as supermarket shoppers,
young market merchants in developing countries, illiterate carpenters, book-
keepers, warehouse workers, lottery ticket sellers.. is order to discover to what
extent arithmetic is used, the way it is used and how successfully?

These research projects has adopted a combination of observation
techniques and interview procedures that do not rely on the users'
impressions or beliefs. Their conclusions converge. As Lave, Murtaugh & de
la Rocha (1984) puts it: "There are evidence that workers make calculations
which are arithmetically more advanced than they had the opportunity to
learn at school."

These calculations are made almost error-free. However, what appears to
me as more important, is that the algorithms and the procedures used are
different from the ones introduced in school. First of all, the exists a tacit
rule:"no pencil, no paper". Mental arithmetic is predominant. This explains
that computation methods turn out to be "primitive". But, since being
dismissed can be the consequence of a mistake, there exists a form of
"priority" for using methods which will ensure success and with which one
will feel confident.

Let us examine what is meant by primitive. For instance, multiplication is
performed as a repeated addition. Three coconuts at 800 each will cost: 80, 160,
240: $2.40. For calculating how much are 12 melons at 50 cruzeiros, the
youngster more or less mentally takes them "two by two" and counts: 100,
200, 300, 400, 500, 600. Sometimes, the procedure is more tricky: 10 times 35
will be carried out in the head as: (3 +3 +3) times 35 plus 1 time 35 which is
equivalent to 105 (3 times 35) + 105 +105 (315) +35... 350. The technique of
adding a "0" seems to be suspicious. As it has just been pointed out
"primitive" does not necessarily mean simple. It may turn out to be
associated with a certain degree of complexity.

In ratio and proportion problems, going back to the value of a unit is quite
rare. Let us give an example. If 3 melons costs $6.00, how much are 9. In that
case, the value of 1 melon ($2.00) will not be evaluated. "Users" will consider
that they have three times more melons and that consequently they will pay
three times more: $9.00. Some combinations of numbers will make such a
procedure often difficult but it is by far prefered to the other one that consists
in finding the rate, in other words, the price for a unit or the unity. This was
already pointed out by Freudenthal(1983), Vergnaud (1979) and others.

This research orientation seems very inspiring because a form of arith-
metic seems to be constructed on the basis of particular needs. There seems to
exist a school arithmetics and a contextualized one It is possible to analyse
further the differences between both but I will restrict myself to only one
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element: the problem solving dimension of the tasks must not be
overlooked. In fact, we cannot imagine contextualization without problem
solving whether the problem is solved on the spot or a known technique is
being re-utilized with adequate adjustements. The problem solving
"environment" seems to induce the"informal ways" of doing mathematical
calculations "which have little to do with the procedures taught in
school...and that are more effective"[Carraher et al.(1985)].
The notion of contextualization.

However correct the explanations we find in the litterature may be, it
seems to me that the fact that the computations are contextualized is not
sufficiently emphasized In other words, the descriptions of the users'
performance do not take enough into account the inter-actions between the
context and the calculations. In fact, calculations are not made with abstract
numbers but rather on quantities, magnitudes or measures. More precisely,
numbers are processed in the operations without loosing their situational
connotations. This equally means that the context plays an active role. A
multiplication problem becomes an addition problem as the melons (either
actual as a mental images) are used as support for the reasoning. The
question: "How much for one?" is avoided since combining the units (to
obtain a rate) cannot be supported by a contextual entity which would be
derived from the combination of observed numerical entities.
Contextualized mathematics

If the-man-in-the-street uses arithmetic his own way or contextually, is it
possible that scientists, engineers or technicians do the same with
mathematics in solving efficiently their problems whether when they solve
equations or when they make use of functions, integrals, derivatives...? This
is precisely the question the current research will address.

Trying to ask this question brought me back "in spirit" to my university
years. Indeed, I have remembered how much I was frustrated by a Professor
teaching electronics and who could amazingly juggle with trigonometry and
complex numbers. I had the conviction that he was appplying mathematics
when carrying out his circuits analyses. However, either this was not my
mathematics or we were not applying it the same way. That is probably these
memories that led me to check with electrical circuits and people around
me.working on them.

BEST COPY AVAILABLE 14 7



142
REPRESENTATION AND CONTEXTUALIZATION

Solution of an electricity circuit.

V

1 2 OV

R2
Figure 1

In the sort of easy problem presented in figure 1 and that is found at the
end of all chapters on elementary electricity, the students are asked to find the
resistance of resistor R3, given that the current is 3 amps and the battery
voltage 120 volts. The internal resistance of the battery is negligible.

In the traditional way to solve such a problem., the students are expected
to set up the equations. To start with, it needs little inspiration to write down

V = V1 + V 2.
And then, they can write: V= R i and V= RI i + Ri. The last equation

can be derived in many ways. The main goal to reach is the substitution of
values in it to get:

120 = 3 10 + 3R2

R -30n

And solving:
120 30 = 3R2
R2= 90 /3 = 30

The point to emphasize here is that a lot of equation handlings are
performed without resorting to the circuit diagram. It would be very
interesting to know more precisely what is the real contribution of this
diagram in solving the problem. But, at any rate, the vast majority of physics
teachers would not write down equations when it comes to solve such a
simple electricity exercise. The equations would be replaced by the diagram"
itself which will be used to combine the quantitative relations between the
variables involved. The context here can be considered as a mixture of the
well known basic current laws and the diagram which guides and supports
the reasoning. The equations implicitly used by them (and having a strong
schematic content) will differ from those of the students that are mostly
"mathematically inspired" in the sense that they are totally dependent on the
allowed algebraic transformations: to put the unknown on one side...
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In constrast, when our laboratory technician inspected the circuit, a total
resistance came to his mind going with a voltage drop in two steps. Indeed, 3
amps for a voltage drop of 120 volts "requires" 40 f2. The split 30 f2 and 10 f2
(which gives 40 CI) appears quite clearly on the diagram. In short, the
fundamental relations that are conveyed by the equation are readily visible
on the diagram. In this sense, the diagram replaced the equation and was
most likely used as the mental images or the concrete objects which help the
young market merchants.

I am inclined to believe that each solution on the diagram (or without
equation) should be examined in order to discover how the fundamental
relations between voltage, resistance and current are articulated in
conjonction with the diagram. For instance, you should scrutinize the way
you or your friends would solve the above circuit. While in the arithmetic
examples, standard computations that would bring the users too far from the
context were avoided for reasons of certainty, here the equations are
dispensed with because they appear extraneous to the reasoning. Can
equations in such cases always be avoided? With more complex circuits, I
imagine that some equations would be partially written down and a fair
amount of work towards the solution would be carried at the diagram level.
However, the last statement is only a hypothesis suggested by the skillful
reasoning of my electronic professor. From the few readings I made on the
topic (reasoning in electricity) the issue as to how the diagram comes into
play is overlooked: an interesting research orientation. Let us clarify further
the notion of contextualisation.
Contextualization

Applying mathematics is generally associated with setting up equations or
formulae and solving them. At a more basic level, only a simple arithmetic
operation or a proportionality relation will be set up. Nevertheless, and this
is what I consider as being most important, there exists an epistemological
tradition implicitly accepted by the scientific community which assigns to
mathematics a precise role that it plays with respect to science in general.
According to this conception, mathematics is at first learnt in the
mathematics lessons and then applied in the science lessons. In fact,
mathematics is as every science a generalizable knowledge. Always according
to this conception, the domain in which mathematics is meaningful and in
which it can be used do not change the basic mental operation performed
when problems are solved. It is moreover considered that mathematics
points towards the genuine solution, the others being regarded as partial or
inadequate. This has brought about a very well defined scenario: applications
take place in the solutions of the end-of-chapter problems.They conduce to
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the "writing down" of a few equations which are then solved more or less
successfully. Too often, the modelisation by which the equations are at first
associated to a phenomenon belong to the teacher exposition. The initial
model is reduced to the one mathematics can treat. The underlying analysis
through which contextual elements are associated to mathematical relations
is rarely assumed or realized by the students. Thus, by solving equations, one
"applies" mathematics which is regarded as an abstract system. The content or
the situation are at first absent and they are expected to arise through
applications. In other words, the contextual richness or depth will be added to
the mathematical concepts with the application exercises. Mathematical
notions (more today than in the past) are mainly determined by a kind of
inter-conceptual organization. For instance, the notion of variable has
become a special sort of cartesian product. The science teachers as
the"appliers" or the utilizers make use of notions that are, so to speak,
bestowed by the mathematics teachers. However, even though this
epistemological perspective is never challenged, the day-to-day "life" in
schools is not so simple. It frequently happens, for instance, that science
teachers express concerns because mathematics teachers have not quite
"prepared" the "right" object. It is well known that students complain that
they have to deal with the functions of their mathematics teachers and that of
their science instructors. This is also too often the case for vectors or
logarithmic functions.

Several examples of contextualized mathematics can be provided. The
reader may refer to Janvier (1989). They all allow us to re-examine the notion
of application.
Application versus Contextualization or Modelization Revisited.

It is worth comparing "applying mathematics" with the process of
modeling in science. Both start from the phenonenon which is at first
examined in order to find out patterns, relations already known to be
extended...This first stage leads to the formulation of a mathematical
equivalent counter-part of the situation, which is called a model, and that
will stand for the situation as the analysis will be carried on. In fact, the
model belongs to another level or mode of representation and imply
necessarily a selective reduction of the factors involved as more fully
expounded in Janvier (1980). This is what makes it abstract. In the case of
application, the real elaboration of an abstract model consists much more in a
selection of the right equations or relations. But, as the figure 2a illustrates it,
the dramatic similarity between application and modeling is that at some
point the entire work is assumed to be carried out within the model or

150



1 4 5

REPRESENTATION AND CONTEXTUALIZATION

within the mathematical domain. The interpretation process in modelization
is aimed at checking the domain of validity of the model and eventually
brings about a new "formulation-interpretation" cycle yielding a more
refined model. For applications, going back to the context enables one to
detect calculation mistakes or inappropriate selection or processing of
equations. The article challenges the fact that always, at some point, work is
exclusively achieved in the mathematics domain. For some efficient users,
the context remains present and this fact entails particular abilities.

formulate

interpretate
measures:

objects of contextualized
mathematics

figure 2a. figure 2b.
In applications, the work is done Contextualization provides an over-

in the "mathematics domain" lap as "working space".

This position is suggested by the research whose results were exposed above
and several examples I have analyzed. The notion of contextualization has been
introduced to convey the idea that the context is kept into play even though the
appearance would allude to processes being achieved solely in the mathematics
domain. The modes through which the context exerts its influence are diverse:
diagrams, graphs, verbal descriptions, mental images; imagined or actual
actions. Their role in the process of contextualization is to bring closer the
situation and the "mathematics domain" (see figure 2b.). The overlap being
produced becomes the "working space" of contextualized mathematics whose
objects are quantities, measures or magnitudes..They consist in mathematical
ideas that have kept some concrete connotations or in other words of
mathematical entities not entirely stripped of their situational content. The
cognitive status of those "quantities" have clearly to be examined further
mainly in their subtle and implicit support for the reasoning in problem
solving settings.
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The consequences for research.
The project we are about to start makes the assumption that day-to-day usage

by ingeneers and technician induces particular procedures. On the one hand,
there exist particular mathematical procedures that are used; but on the other
hand, they are context related in the sense that the mathematical notions need,
in order to be mentally worked on ,the interventions of some features
borrowed from the context. It is aimed at verifying the nature of the
contextualized mathematics some electrical engineers and technicians resort to
while solving circuit problems.

In fact, the way they use mathematics will be described as a form of
coordination between representations as mentionded in Kaput, Goldin Lesh
and Janvier. In other words, it will be envisaged as a form of translation that
does not simply imply going from one source to another, but also coordinating
both sources taking into account the fact that the connotations attached to the
concepts are present. Consequenly, the notions of primitive conception
(Janvier), phenomenological primitive (diSessa), mental models (Gentner),
spontaneous reasoning (Viennot) will be fondamental for our analysis in that
they contain, I believe, the basic ingredients of contextualized mathematics. The
notion of theorem-in-action of Vergnaud seems to be equally inspiring. A
major step in the research will be to search deeper into the work of Joshua
(1982), Closset (1983) and others to find the basic electricity models from which
the ones observed will be related.

As for the observation techniques, we shall make use of a scheme in which
the subjects will have to inter-act two by two on a rich set of situations
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TO INCULCATE VERSUS TO ELICIT KNOWLEDGE

Barbara Jaworski Open University England

"The teacher's dilemma is to have to inculcate knowledge while apparently eliciting it." [Edwards
and Mercer 1987]
It is usual that a mathematics teacher is required by some syllabus, scheme of
work, or curriculum to teach stated mathematical concepts to pupils. As a result of
the teaching I learning situation pupils acquire certain knowledge. A
constructivist view of learning suggests that pupils learn as a result of their own
construal affecting their own experiential world, which implies that any
inculcation of knowledge can only be successful if it contacts the experience of the
learner. The dilemma for the teacher is ,"I've got to get them to construe x"

This report concerns teaching approaches which seek to encourage effective
construal by the learner of required mathematical concepts. It includes extracts
from a case study of one classroom where there has been evidence of success in
methods used to elicit knowledge rather than a dependence oninculcating it.

Successful teaching of mathematics involves a teacher in intentionally and effectively
assisting pupils to construe, or make sense of mathematical topics. There are many words
and metaphors used to describe the process by which a teacher teaches and pupils, as a result,
gain knowledge. A familiar one is that of inculcation, of giving or handing over knowledge.
The giving of a good explanation carries with it a sense of one person (the teacher) successfully

transmitting to another person (the pupil) some item of knowledge. Although some teachers

and pupils still see successful teaching in terms of such transmission, there is a movement
towards belief that in and of itself this is not enough. The literature which relates a
constructivist view of learning to classroom teaching of mathematics suggests that teaching
has to take into account individual construal and its relation to and modification of
individual experience in the learner (see for example von Glasersfeld (1983), Kilpatrick
(1987), Cobb (1988), Jaworski (1988)). The view of knowledge and of learning which this
philosophy promotes may seem at variance with the requirements which society places on its
educational system, often through legislation, in terms of learning being measured by the
ability to reproduce certain predefined items of knowledge on demand. This paper seeks to
highlight some of the issues in teaching for effective learning, particularly with regard to
such requirements, and reports on the work of one teacher who aims to meet the requirements
while working in a way he believes to be most fruitful in providing opportunity for pupils to
make sense of mathematics.

Teaching aonroaches

In a desire to make teaching more relevant to the learner, the phrase 'learning from
experience' has gained some currency, and this, like the transmission metaphor, has proved
inadequate in describing a basis for effective learning. In their book Common Knowledge,
Edwards and Mercer (1987) report on a number of lessons on 'pendulums' which were taught
by a teacher who, it was reported, believed in the importance ofexperiential learning. Briefly,
this suggests that pupils can best learn a concept when they have experienced for themselves

manifestations of that concept. Thus the teacher took care to provide opportunity for pupils to

experience aspects of pendulums, and;to explore some of their properties. Implicit here seemed
to be the idea that experience leads to learning. The teacher in providing the experience is
therefore promoting learning.
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Driver (1983) comments, of such experimental work in science teaching,

'Activity by itself is not enough. It is the sense that is made of it that matters.'

She claimed, of science lessons, that often a lesson ends with the clearing up after practical
work is finished, so that opportunity for discussion of how experiences relate to new ideas is
missed. Paul Cobb, who has worked extensively with teachers on the implications of a
constructivist philosophy for the mathematics classroom, was asked how he would reply to the

question from a teacher,

If I leave pupils to construct for themselves, how can I be sure that they will construct what I want them

to construct?"

He said (Paul Cobb 1988) ,

The idea that we give the children some blocks or some materials and we leave them alone, and we come
back in fifteen years' time and expect them to have invented calculus just makes absolutely no sense
whatsoever. The teacher is still very much an authority in the classroom. The teacher still teaches.

Edwards and Mercer's pendulums teacher did not leave pupils just to come to their own

conclusions as a result of their experimentation with the pendulums apparatus. She engaged
with them in extensive discussion about the principles which were involved. Nevertheless,

conclusions were drawn that these pupils' knowledge, or understanding, of pendulums was

still deficient. The authors distinguish between ritual knowledge and principled knowledge.

They quote from research by Taba and Elzey (1964), citing the instance of a girl who regularly

achieved good marks in mathematics and described her procedures as follows:

"I know what to do by looking at the examples. If there are only two numbers, I subtract. If there are lots
of numbers I add. If there are just two numbers and one is smaller than the other it is a hard problem. I
divide to see if it comes out even and if it doesn't I multiply."

Edwards and Mercer comment,

'What we are calling ritual knowledge is a particular sort of procedural knowledge, knowing how to do
something. In many contexts, of course, procedural knowledge is entirely appropriate and exactly
what is required. This was the case with learning to do clay pottery, and was also an important part of
the lessons on pendulums; the pupils had to know how to operate their apparatus, their stop watches and
calculators, and much of their ability to get through the lessons required knowledge which was
essentially procedural. Procedural knowledge becomes 'ritual' where it substitutes for an understanding
of underlying principles. Ritual knowledge is the sort exhibited rather crudely by the pupil in Taba and
Elzey's example, ... Principled knowledge is defined as essentially explanatory, oriented towards an
understanding of how procedures and processes work, of why certain conclusions are necessary or
valid, rather than being arbitrary things to say because they seem to please the teacher.

They go on to discuss the pendulum lessons from the point of view of theprincipled knowledge

which pupils gain and conclude that despite the teacher's declared attempts to enable a
principled understanding of the operation of pendulums, nevertheless what they observe is
only a ritualistic parroting of the aspects of pendulums which the teacher has emphasised
during their experimental work.

It is 'what is done which seems to be crucial. The pendulums teacher, in Edwards and Mercer's

research prompted pupils in various ways and they appeared to sieze on her cues as the
important pieces of knowledge which they were expected to take from the lessons. The authors

suggest that these pupils were not encouraged to conceptualise pendulums adequately.
However, it is easy for an observer to make judgements about teaching which appears
inadequate because understanding appears ritualised, but very much harder to identify
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teaching strategies which lead to successful principled understanding. Many teachers and

researchers have discussed activities and strategies which have been designed and
demonstrated to promote mathematical thinking in pupils in the classroom (see for example
Brown and Walters (1983); Collins (1988); Jaworski (1985); Cobb, Wood and Yackel (in
press)). In all of these, pupils are observed to engage with mathematical thinking and, it is
suggested, to take on some of the responsibility for their own learning, in that they are no
longer simply seeking for teachers' explanations. In classess which I have observed as part of
my own study (See Jaworski (1988) for details and methodology) it has been possible to observe

pupils engaged in their own mathematical activity, actively constructing mathematics
themselves. The knowledge that is gained by pupils in consequence of this might be described
as principled. What is often difficult for the teacher in such circumstances is to assess pupils'
thinking in terms of the standard topics which the curriculum requires, and moreover to
ensure that the thinking includes ability to succeed in standardised tests on these topics. Put

into the context of pendulums, what teaching approaches would result in a principled
understanding of pendulums and would, as well, enable pupils to succeed in standard tests
regarding pendulum operation?

Teaching requirements

In my own research, one of the teachers whom I observed planned a series of lessons on
'tessellation' for a class of eleven-year-olds. During the planning she stated that she wanted
pupils to investigate aspects of tessellating polygons. A number of activities were designed in
which pupils took part. I observed lively discussion about which polygons would tessellate - for
example, some pupils decided that regular pentagons would never tessellate, whereas
quadrilaterals would 'if you could draw them better'. They had experimented by drawing
their own shapes, cutting them out and fitting them together, but recognised that their shapes
were imperfect and that they had to take this into account. Despite a certain amount of what she

later referred to as prompting, the teacher felt that pupils had not gone as far with ideas as she
would have liked them to, particularly in consideration of angles in the polygons. She said,

The group work that they did, I'm not sure that it worked exactly as I'd hoped it would work or that they
actually focused on the angles meeting at a point as I hoped they might .... They kept referring to the fact
that if they were able to make the shapes into quadrilaterals or rectangles, that they would be able to
tessellate the shapes. But yet they weren't all convinced that all quadrilaterals tessellated. That was the
thing I wanted them to go on to.

She had been pleased with the mathematical activity and discussion which provided insights
into the sense which the pupils were making, but she wanted more. She was justifiably
influenced by her syllabus demands, and unsure about how she was going to fulfill their
requirements. Her view of investigational work involved only a minimal level of
intervention, and she was in the process of reconsidering what that intervention might
involve.

Teachers have to take account of the educational system in which the teaching takes place, the
requirements of this system and the expectations of the consumers of the system. Currently the
British government is in the process of introducing legislation to establish a National
Curriculum in schools in England and Wales. This will have associated attainment targets
and pupils will be tested nationally at the ages of 7, 11 and 14. The form which attainment
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targets and testing will take is the subject of much controversy. It is sometimes implied that it

is a straightforward matter to say what standard a particular pupil has reached at any stage.

One attainment target , for example, requires that pupils can

Multiply a 3-digit number by a 2-digit number and divide a 3-digit number by a 2-digit number in both
cases without a calculator. (NCC 1988 - Target 3, level 5)

How this will be tested is not yet clear, but if testing involves asking pupils to apply the
algorithm to particular given numbers, then teachers will want to ensure that pupils are able to

tackle this successfully. It raises questions about what methods of teaching are appropriate to

such success, and indeed what is implied for the childs overall mathematical development.

One of the dangers of a rigid curriculum and system of testing is that teachers, pressured by
perceived expectations and shortage of time, feel unable to exploit teaching methods which
require a high degree of confidence for their application. This confidence lies in the belief that

the methods will promote learning most successfully, so that the requirements of the system

will be fulfilled along with other learning objectives. In terms of the attainment target quoted
above, it might mean that as children are helped to make sense of the arithmetic operations of
multiplication and division generally, they will learn to cope with the algorithms required.
The teacher on tessellation however, felt that her methods had been unsuccessful, because she

had not been able to elicit the particular mathematical ideas which she wanted from pupils as a

result of the activities she had provided. Edwards and Mercer, on the other hand, felt that the
pendulums teacher had sacrificed a principled understanding of the pedulum concepts in her

pupils because of certain results which she had been at pains to inculcate. In the remainder of

this paper I shall quote from a case study of one teacher whose lessons I observed over a period

of six months. This teacher was very confident in his teaching methods, which might be

described as investigative in style, and believed in trying to teach in a way which provided
pupils with the best opportunity for learning mathematics.

From a case study of an investigative method of teachinr,

An investigative method of teaching, briefly, involves encouraging pupils to explore ideas
and to develop their analytical and problem solving abilities. My own research in its global
sense aims to characterise such teaching, and this case study is just a part of it. (See Jaworski

(1988) for excerpts from another such case study.) The teacher, Ben, teaches in a 12-16
comprehensive school where he is head of mathematics. I observed him teaching a fourth year

class which he had been teaching for just over one year. They were starting preparation for
GCSE (General Certificate of Secondary Education) assessment at the end of their fifth year.

This involves continuous assessment of course work and a final examination. I shall give
examples of a way of working which encouraged the development of a principled
mathematical understanding, while keeping in sight the demands of the final examination
and its importance for pupils.

I observed a lesson where pupils were exploring Kathy shapes - Ben's name for shapes which

have the same area as perimeter. At the start of the lesson, Ben had asked for silence and said,

"Let's recap last lesson". Pupils responded variously with reference to areas and perimeters

of various shapes and to Kathy shapes. Ben asked, "What is a Kathy shape?" Some

negotiation led to an articulation of 'same area as perimeter'. Ben pushed them to explain

what they meant by area and periiieLaryind a number of pupils joined in struggling to express
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their understanding of these terms. Ben commonly used this approach to a follow-up lesson,

beginning with whole class reconstruction of ideas to draw pupils back into mathematical
thinking. On this occasion, different groups in the room had chosen to work on different
shapes, some on squares and rectangles, some on triangles, some on circles, others. more

ambitiously on polygons generally. Ben had told me before the lesson that they would work in
groups of their awn choice, and that this choice might reflect their own level of ability. In a
subsequent lesson, he said similarly, "How do you want to work, pairs, groups, ...?" A brief
period of class negotiation followed where pupils decided what they would start working on,
and so moved into like minded groups. I observed that Ben rarely constructed groups himself
and he later commented that he wanted pupils to make decisions about how it was most
appropriate for them to work. If he felt strongly that anyone was making the wrong decision,
then he would suggest why they might do otherwise - for example, one very bright pair of boys

were advised not to work together because they vied with each other in a way which Ben felt was
not helping them to make progress.

Three girls had chosen to look for Kathy triangles.. They had started by drawing an
equilateral triangle of side two units whose height , they claimed, was two units. "What do you
mean by height ? ", said Ben. (Had they confused height with the length of a side?) One of them
traced out the vertical height with her pencil. It looked as if she understood height, but how
could she think it was of length two? Another girl started to draw the triangle accurately and
when complete she measured its height. It was Less than two! While she was drawing, the
others, at Ben's prompting, discussed what the height should be. They first thought that it
should be the same as the sides of the triangle, and then that it would bemorethan that. They
were surprised when it turned out to be less than two. Ben suggested that they should draw other

triangles and compare heights with sides. "What am I always saying?", he said. "Is there a
pattern?", one girl replied.

At some point early in our discussions, Ben had said to me, "You should ask them (the pupils)
what it is that .I always tell them to do." He was quite confident as to the reply that I should get.
It emerged that the instruction was look for a pattern, or is there a pattern?, and indeed
whenever there was a hint of "what questions should we be asking?", someone in the class
came up with "is there a pattern?", (sometimes. when, to Ben's chagrin and my amusement, it
was inappropriate!). The words symbolised Ben's belief in mathematics being about
expressing generality. Implicit in the interchange here was emphasis on conjecturing, on
trying out special cases, and on seeking for generality. As I continued to observe the class I
saw more and more evidence of pupils' intuitive appreciation of these processes. For example,
one group in the class had found a Kathy square - a square of side four units. In trying to
explain, one boy said, "If you times 4 by 4 you get 16, and then ifyou times 4 by itself you get
sixteen." Ben replied, "I don't understand the difference?". He said that the two things
sounded the same, so what did the boy mean? The conversation proceeded:

Boy: Pick a number. Ben: Three. Boy: Right, what is three times by itself? Ben: Nine. Boy: Because
a square has got four side, to find the perimeter you have to times that, three times four. Ben: Twelve.
Boy: But if you do it with four, they both equal the same number, sixteen.

As a response to Ben's deliberate provocation, the boy had used a generic example to
demonstrate a general understanding of Kathy squares.
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In discussion with me after the lesson Ben referred to the importance ofrecognising particular
misconceptions which pupils have, in order to try to correct them. A number of misconceptions
had been evident, for example the one about the height of a triangle described above. Another

involved a belief by some pupils that any three numbers which they might choose could be

lengths of the sides of a triangle. Yet another involved confusion between the terms area and

perimeter. Ben admitted to surprise as to the difficulty which pupils had had in recognising

the vertical height of a triangle, and estimating its length. He felt that from work done
previously, pupils would have had a better understanding of these concepts. Yet he was happy

that an opportunity had arisen in which pupils could tackle them. He felt that the situation in
this lesson had aided his recognition of these misconceptions better than a more narrowly
defined activity might have done.

In a subsequent lesson Ben returned to Kathy shapes. Some work had been done on Pythagoras'

theorem and he expected that use of the Pythagorean result would help in the search for Kathy

triangles. After the lesson I reminded Ben that he had expected pupils to use Pythagoras to
calculate lengths in triangles, and asked whether he felt this had happened. His reply was,

I suddenly realised that it wasn't. I suddenly saw people measuring and I was going to jump in and say
"hang on, why aren't you calculating it?", and then I realised, if you're going to do it roughly why not
measure it to hunt it down, you know, a far better strategy ... I wanted them to use Pythagoras and
they've actually come up with a better strategy. And I then made a decision that their's was a better one
than mine and they might as well use it ... why force people to use inefficient systems? But I do realise
that when they actually come down and say, "I've measured it", I can turn round and say, "but is it
exact ?', then they have to start using Pythagoras.

Ben was ready to admit that often what occurred in a lesson was different to what he had
planned because he believed that flexibility in following up pupils' methods and ideas was
important. We talked about where the work might go from here. He referred to one group who

had been using graphs to hunt down Kathy shapes. He felt that it might be helpful to others in

the class to work on their graphical method, as well as providing some context for graphical
work required by the GCSE syllabus. In talking about how he made decisions for a particular
lesson he said,

If I actually do graphs through Kathy shapes, will they be bored with Kathy shapes then or not? If
they're bored with Kathy shapes, I'm going to lose out; I'm not going to get my mathematical points
over. So you weigh things like that up - rule of thumb methods - I have no fixed techniques, I just get a
feeling.

In the event the class did work on graphs of Kathy shapes. The activity provided new
opportunities for pupils to express their understanding of area and perimter, and a familiar
context in which to develop ideas of graphical representation. It is tempting to say that at this
stage most pupils were reaching a principled understanding of many aspects of area and
perimeter. Justification of this would need a closer analysis of what was done and said.

However, one instance of the development of principled understanding is worth reporting. In a

lesson on vectors I observed two boys, Lee and his partner, Danny. They had been asked to

invent some vectors of their own and work out the lengths of the vectors. Lee explained to
Danny what he thought they had to do. Ile wrote down the vector AB, as below, placed points A
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and B on a grid, drew the triangle around them, drew squares on two sides of the triangle as

AB= (2 )
4

shown, wrote the square numbers in the squares, and then worked out mentally aloud: 16

plus 4, that's 20; square root ... about 4.5". (He demonstrated considerable skill in estimating
square roots.) Danny seemed to follow what he had done, and the pair set about independently
inventing vectors and finding lengths. In each case Lee drew a diagram similar to the one
above, writing the square numbers into the squares. He then performed the calculation
mentally and wrote down the result. He seemed to demonstrate a fluency with using the
Pythagorean result, but I wondered what role the diagrams were playing for him in its use. I

mentioned this to Ben after the lesson. He reminded me that in one of the lessons on Kathy
shapes, Lee had had difficulty with the use of Pythagoras, and had certainly shown no fluency
with it. He was delighted to hear that Lee seemed to have 'learned' its use in the intervening
period. I wondered if Lee would in fact be able to abstract it - whether he would be able to cope
without his diagrams. With Ben's agreement, in another lesson (where in fact Pythagoras
was not in use at all) I went over to Lee and asked if I could try something out on him. He
seemed agreeable, so I asked if he remembered finding lengths of vectors, and if he would
work out the length of a vector for me. I gave him the vector numerically, (5,7). He drew a
diagram similar to the one above, wrote the numbers 25 and 49 in the squares, then did a
mental calculation resulting in looking for the square root of 74. I then asked if he would try
another but without drawing a diagram. He worked it through aloud, getting to the result with
hardly a hesitation. Here, it seemed, was an example of learning actually having occurred
over a period of time. I was reminded of a saying of my colleague John Mason, that 'teaching
takes place in time but learning happens over time'. Lee seemed to have demonstrated a
principled understanding of the Pythagorean result, and it seemed likely that he would be able

to reproduce it for use in an examination question. One of the problems of evaluating
investigative styles of teaching is that formal testing can be inappropriate. It is often not clear
what you actually test. What is required is a sense of the mathematical development which has
taken place for pupils and, as this is different for every pupil it is very hard to measure. The
teacher working in this way has to develop ways of perceiving the progress which individual
pupils make, and this example of Lee was one of the treasures which a teacher hopes for.

At the end of one lesson, two boys remained after the rest of the class had left, in conversation
with Ben and myself about some aspect of the lesson. The conversation turned onto aspects of
teaching and learning which the boYs thought were important. Some of the words from one of
the boys go some way towards a vindication of the methods which this teacher used, and their
perceived success:

To tell you the truth (addressed to me, although Ben was present) I mean, Mr mooc's ... a different kind
of teacher completely. Before, you've had sums that you've been set .... At first, to tell you the truth, I
didn't like him as a teacher. I thought, "No. Pathetic!", - you knOw, "this isn't maths - what's this got to do
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with maths?" And as I've come along I've realised that it's got a lot to do with maths. To have to learn

rather than just have to sit and "Oh, I've done 50 sums today.", 'Tye done a hundred. You don't bother

about that now, you just concentrate, and at the end of a lesson you've learned something - ... I've really

progressed.

Ben was nevertheless concerned that his class could cope with the externally set GCSE

examination papers in which pupils had to individually tackle questions on mathematical

topics from the GCSE syllabus. He set the class one past paper during the time that I was

observing, and reported that he was satisfied with pupils' results at this stage of their course.

What was particularly interesting for me was how he tackled errors in pupils' solutions.

Rather than produce a set of model solutions, he duplicated a setof incorrect solutions. Pupils

had to compare their own solutions, right or wrong, with the incorrect solutions given. Their

task was to decide wherein lay the errors, and to work together to correct them. Discussions

which I heard indicated that pupils were being challenged to reconsider their understanding of

concepts involved through the various solutions which they had to compare.

In conclusion, I believe that I was given repeated evidence of the development of principled

understanding of mathematical concepts in the pupils I observed. I saw a teacher who

promoted independance of pupils in his classroom, and encouraged pupils to take

responsibility for their own learning, while maintaining a concern for concept development,

and recognition and tackling of misconceptions. He was working to a standard syllabus, and

there was evidence of pupils' mastery of standard topics on this syllabus. It remains to be seen

how the pupils will fare in the standardised testing at the end of their course.
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VAN HIELE LEVELS AND THE

SOLO TAXONOMY

Murad Jurdak

American University of Beirut

A comparision is made between van Hiele levels of development

in geometry and the Structure of Learning Outcomes (SOLO)

taxonomy. It is hypothesized that if the correspondence

between van Hiele levels and SOLO levels is tenable then the

latter may be used as an operational scheme for characteri-

zing a posteriori the learning outcomes in geometrical tasks

without going through the process of identifying van Hiele

level indicators empirically, deriving them for a multitude of

geometrical tasks. This is particularly relevant since the

construct validity of the SOLO taxonomy has been established.

The logical comparision and an illustrative example revealed

a high degree of similarity between the two sets of levels.

A number of studies have focussed on van .Hiele model of

development in geometry.. One line of investigation was to

establish the hierarchical nature of van.Hiele levels. Another

line was to characterize van Hiele levels operationally using

student behaviors as level indicators. Conclusions in this

area may be summarized as follows:

1. In general there is evidence in support of the hiera-

rchical nature of van Hiele levels (Mayberry, 1983).

2. Students can be assigned a van Hiele level based on

their performance on geometrical tasks. However, the

decalage phenOmenon was observed across different

tasks supposedly in the same van Hiele level.
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Moreover, some students performed below the expected

van Hiele level (Burger and Shaughnessy, 1986;

Mayberry, 1983; and Usiskin, 1982).

An assumption underlying van Hiele model and subsequent

studies is the existence of hierarchical levels, each of which

has its idiosyncratic mode of functioning and can be characte-

rized by its own set of developmental tasks. Student behaviors

on such tasks may be determined empirically. Assignment to var

Hiele levels on each of these tasks may bemadeby Utilizing. the

student behaviors as van Hiele level indicators. This seems

to be reminiscent of Piagetian stages of development.

An alternative scheme for studying performance on geomet-

rical tasks is classifying learning outcomes by looking at

':heir structure rather than classifying individuals by looking

at indicators of some cognitive abilities. This is not to sug-

guest to ignore van Hiele levels but rather to look at them as

cognitive abilities which reflect'typical modes of functioning

predominant at different stages of development in geometrical

thought. The Structure of the Learned Outcomes (SOLO) taxonomy

developed by Biggs and Collis (1982) is such a scheme. In this

taxonomy, the structure of the learned outcome occurs within

each mode of functioning. The learned outcome becomes increa-

singly complex but structurally the complexities at each mode

are the same. On the other hand, the van Hiele levels which

are specifically developed to describe geometrical thought

assume a sequence of cognitive abilities characterizing a seq-

uence of developmental stages. The descriptions of SOLO and

van Hiele appear in Figure 1.
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Purpose

The purpose of this paper is twofold. First, to estab-

lish logically the correspondence among van Mule levels ar'

the levels in the SOLO taxonomy. Second, to present an ana-

lysis of an illustrative example to demonstrate the results

of the logical analysis.

If the correspondence between van Hiele model and SOLO

taxonomy is tenable, then the SOLO taxonomy will provide an

operational scheme for characterizing a posteriori the learn-

ing outcomes in geometrical tasks without going through the

process of identifying van Hiele level indicators by empiri-

cally deriving them for a multitude of geometrical tasks.

Moreover, the construct validity of the SOLO taxonomy has

been established in terms of the hierarchical nature of its

levels and in terms of partioning students at different age

levels into interpretable groups that reflect the SOLO levels

(Romberg, Jurdak, Collis and Buchanan, (1982). In addition,

the usefulness of the SOLO taxonomy in assessing levels of

reasoning in mathematical problem solving has been establiL

shed (Collis, Romberg, Jurdak, 1986). At last, if the corre-

spondence is established, then the SOLO level which is

matched with the van Hiele level will be hypothetically the

predominant level of reasoning in that particular van Hiele

level.

Logical Correspondence

Figure 1 presents the van Hiele levels with the hypothe-

sized corresponding SOLO levels. Column 1 shows the typical

van Hiele levels with their descriptions as they appeared in
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1

Van Hiele Level

2

SOLO Level

Prestructural. Response

represents the use of no

relevant aspect.

Level 0 (Visualization). Unistructural. Response

Visual consideration of

the concept as a whole but

not its properties.

represents the use of one

relevant aspect.

Level 1 (Analysis).Perception Multistructural. Response

of properties of geometric

properties but these pro-

perties are isolated and

unrelated.

represents the use of several

disjoint aspects,

Level 2 (Abstraction). Per- Relational. Response repre-

ception of relationships

between properties to form

abstract definitions.

sents the use of all aspects

related into an integrated

whole.

Level 3 (Deduction). Extended Abstract. Compre-

Reasoning within the

context of a mathematical

system using deduction,

anxicms, and definitions.

hensive use of all relevant

aspects together with related

hypothetical constructs and

abstract principles.

Level 4 (Rigor) Comparing
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the literature (Hoffer, 1981; Mayberry, 1983; and Burger and

Shaughnessy, 1986). Column 2 shows the SOLO taxonomic levels

with their descriptions using sources like Biggs and Collis

(1982) and Collis, Romberg, and Jurdak (1986).

A careful study of the descriptions of the van Hiele and

SOLO levels in Figure 1 reveals that, with the exception of

two levels, the two sets may be reasonably matched. This

means that the classification of a response of a geometric

task belonging to a particular van Hiele level falls within

the corresponding SOLO level. In other words, when the SOLO

taxonomy (which is of general nature) is applied to geometric

tasks, the SOLO levels of reasoning are very similar to van

Hiele levels (which are specific to geometric thought). How-

ever, there seems to be two exceptions. First, the prestruc-

tural SOLO level has no corresponding level in van Hiele model.

This is understandable since the prestructural SOLO level is

simply a refusal or inability to become engaged in the task.

Second, van Hiele level 4 (rigor) has no corresponding SOLO

level. It is to be noted here that van Hiele level 4 has not

been identified for pre-university students and rarely for

math major students.

An Illustrative Example

To illustrate the correspondence between SOLO and van

Hiele levels, an example from the literature on van Hiele

model (Burger and Shaughnessy, 1986) was classified in accor-

dance with the SOLO taxonomy and compared with its van Hiele

classification. The example was taken from a study by Burger

and Shaughnessy (1986) in which many geomet,-ic tasks were

administered to a sample of students usink the interview method.
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The purpose of the study was to characterize the van Hiele

levels operationally by students behaviors. The task is

called "Identifying and Defining task" and it consisted of

identifying quadrilaterals from a given sheet of drawn quadri-

laterals by putting S on each square, R on each rectangle,

P on each parallelogram and B on each rhombus. The defining

task was to basically define the figure by giving a minimal

list for characterizing each figure (necessary and sufficient

conditionS). The responses of students were taped, analyzed

and assigned a van Hiele level by three reviewers.

In the SOLO taxonomy framework, the relevant data in the

task consist of the quadrilaterals and their properties as

reflected in the drawings. The increased use of data and re-

lationships result in an increased structural complexity in

the response.

Figure 2 shows a detailed comparative classifications of

the "Identifying and Defining Task" in SOLO and van Hiele

models. The'analysis in Figure 2 provides support for the

Possibility of matching the van Hier SOLO levels.

Concluding Remarks

There seems to be theoretical as well as empirical support

for the possibility of matching the SOLO and van Hiele levels.

Thus, responses to geometric tasks can be characterized in a

way compatible with van Hiele levels without necessarily de-

riving the student behaviors indicative of van Hiele levels

for every geometric task. The assumption of SOLO taxonomy

is that the structural levels of responses occur within each

development stage, thus the extended abstract level in one

166
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Response SOLO Classification

* identified some quadri-

laterals but failed to

identify others of the

same kind because of

consideration of irre-

levant data.

* Unistructural.Used

one relevant aspect

(the figure).

Van Hiele

Classifi-

cation.+

Level 0

* identified types of

quadrilaterals but

without class inclusion.

* Multistructural.

Used several rele-:

vant disjoint aspects

(the quadrilateral

and its separate

properties).

Level 1

* identified quadri-

laterals correctly

and defined them by

their components.

* Relational. Used all

relevant information

and the relationships

among them (the quad-

rilateral, properties

of its components,

sufficient conditions

to define the shape).

Level 2

* defined various quad-

rilaterals indepen-

dantly of each other

then checked definitions

to make sure that they

permitted the desired

class inclusion.

* Extended abstract.

Comprehensive use of

the given information

(figure, properties,

relations) with re-

lated hypothetical

constructs and

abstract principles

(tested on the data).

Level 3

Figure 2. Comparative classification of th, (Identifying and

Defining Task" in SOLO and van Hiele models-+ Source: Burger
and Shaughnessy (1982).
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stage becomes the unistructural level in the subsequent stage

to form a new learning cycle. Consequently, the predominant

level of reasoning in a particular van Hiele level would be

characterized by the corresponding SOLO level. The possible

occurence of all SOLO levels within. a van Hiele level., with the

predominance of one of them, probably explains the decalage

phenomenon onserved in van Hiele levels.

References

Biggs, J.B., and Collis, K.K. (1982).. Evaluating the quality

of learning: the SOLO taxonomy (structure of the observed

learning outcome). New York: Academic Press.

Burger, W.F., and Shaughnessy, J.M. (1986). Characterizing

the van Hiele levels of development in geometry. Journal for

Research in Mathematics Education, 17, 31-48.

Collis, K.F., Romberg, T.A. and Jurdak, M.E. (1986). A tech-

nique for assessing mathematical problem-solving ability.

Journal for Research in Mathematics Education, 17, 206-221

Hoffer, A. (1981). Geometry is more than proof.Mathematics

Teacher, 74, 11-18.

Mayberry, J. (1983). The van Hiele levels of geometric

thought in undergraduate preservic teachers. Journal for

Research in Mathematics Education, 14, 58-69.

Romberg, J.A., Jurdak, M.E. Collis, K.F. and Buchanan,

A.E. (1982). A report on the NIE/ECS Item Development Project

Construct validity of a set of mathematical superitems.

Madison: Wisconsin Center for Education Research.

Usiskin, Z. (1982). Van Hiele levels and achievement in

secondary geometry. ERIC Document Reproduction Service

No. ED 220 288.

1 6 S



163
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This theoretical paper examines the issue of algebraic
thinking. The Research Agenda Conference on the
Learning and Teaching of Algebra pointed to the topic of
algebraic thinking as an area sorely in need of research
attention. Since so little discussion of the topic has
taken place, no real consensus exists as to what
algebraic thinking_ means. This paper argues for a
particular interpretation of the phrase and then goes on
to document findings from some of the few studies
related to this research issue.

One of the topics pointed to in the Research Agenda, an

outcome of the 1987 Research Agenda Conference in Algebra (Wagner

& Kieran, 1989) as an area sorely in need of research attention is

that of algebraic thinking. Some of the questions raised by

conference participants were:

What dimensions of algebraic thinking can we identify
(e.g., knowledge of structures, use of variables,
understanding of functions, symbol facility/flexibility,
generalizing, inverting and reversing operations and
relations, ability to formalize arithmetic patterns,
etc.)?

a. What kinds of thought processes are involved in
various algebraic topics?

b. What kinds of thinking processes are required to
apply algebra to problem situations?

c. What are the effects of studying specific topics on
students' facility in algebraic thinking?

o How does/can a given dimension of algebraic thinking
develop?

a. What skills/concepts mediate algebraic thinking?

b. What instructional strategies promote the
development of certain dimensions of algebraic
thinking?
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c. Are there particular types of (word) problems that

stimulate the development of algebraic reasoning?

All of these are interesting, researchable questions;

however, there would appear to be something missing in the above

list. That something is a meaning for algebraic thinking--a

working definition or characterization of the phrase that might

remove some of the ambiguity from the above questions. In this

paper, I will attempt to argue for a particular interpretation of

what we might consider algebraic thinking to be, and then provide

some research evidence documenting students' difficulty with this

aspect of algebra.

Love (1986) has proposed the following chracterization of

algebraic thinking:

Algebra is now not merely "giving meaning to the symbols,"
but another level beyond that; concerning itself with those
modes of thought that are essentially algebraic--for example,
handling the as yet unknown, inverting and reversing
operations, seeing the general in the particular. Becoming
aware of these processes, and in control of them, is what it

means to think algebraically. (p. 49)

Appealing though this characterization might seem initially,

especially the aspect referring to algJ_ thinking as a

different mode of thought, I would like to quibble with Love's

first two processes: handling the as yet unknown, and inverting

and reversing operations. These two processes are included in the

procedures involved in solving equations. There is ample

empirical evidence to show that students are able to manipulate

symbolic expressions and equations with a great deal of control

and success, but still not be able to do much else in algebra

(e.g., Booth, 1984; Kieran, 1984; Matz, 1979; Wagner, Rachlin, I,

Jensen, 1984). Love's third process, seeing the general in the

particular, suggests an ability that is qualitatively different
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from the other two. However, even this one does not seem to go

far enough. I suggest that, for a meaningful characterization of

algebraic thinking, it is not sufficient to see the general in the

particular; one must also be able to express it algebraically.

Otherwise we might only be describing the ability to generalize

and not the ability to think algebraically. Generalization is

neither equivalent to algebraic thinking, nor does it even require

algebra. For algebraic thinking to be different from

generalization, I propose that a necessary component is the use of

algebraic symbolism to reason about and to express that

generalization.

To make the point more clearly on what I mean by algebraic

symbolism and how it can be used to reason about and to express

general statements, I refer in some detail to an article by Harper

(1987).

The historical development of algebraic symbolism is used by

Harper as a theoretical framework for analyzing qualitative

differences in student ability to represent generalizations of

numerical relations. Harper begins by describing the three

evolutiOnary stages through which the development of algebraic

symbolism has passed. The rhetorical stage, which belongs to the

period before Diophantus (c. 250 AD), was characterized by the use

of ordinary language descriptions for solving particular types of

problems and lacked the use of symbols or special signs to

represent unknowns. The second stage, referred to by Harper as

Diophantine, extended from Diophantus who introduced the use of

abbreviations for unknown quantities to the end of the sixteenth

century. Harper has pointed out that the concern of algebraists

during these centuries was exclusively that of discovering the

identity of the letter(s), as opposed to an attempt.to express the

17.1.



166

general, The third stage, referred to by Harper as Vietan, was

initiated by Vieta's use of letters to stand for given quantities.

At this point it became possible to express general solutions and,

in fact, to use algebra as a tool for proving rules governing

numerical relations. It is this Vietan stage in the development

of algebraic symbolism that forms the basis of what I consider

algebraic thinking to be.

In his interviews of 144 secondary school pupils from Years 1

to 6, using questions such as:

"If you are given the sum and the difference of any two
numbers, show that you can always find out what the numbers
are."

Harper was able to find evidence of the three types of solutions

that can be identified in the history of mathematics. With the

rhetorical method, the pupil does not use algebraic symbolism but

nevertheless specifies a procedure that is general (e.g., You

divide the sum by 2 then divide the difference by 2; then to get

'Elie first number add the sum divided by 2 to the difference

divided by 2; to get the second number take the difference divided

by 2 away from the sum divided by 2."--Harper, 1987, p. 81). With

the Diophantine method, the pupil uses a 1 ' dr (or letters) to

represent an unknown quantity (e.g., x Y = 2 and x + y = 8,

solving for x and y) and states that the method can be applied to

any numbers but does not use symbols for a general "given"

quantity. With the Vietan method, the pupil uses letters for both

unknown and given quantities:

Let nos. = x and y
m = sum ca x and y
n = difference of x and y
General equations: m = >: + y

Add together: m + n = 2x
. . Find x and substitute back for K.

17°4
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It is important to note that the Diophantine solution assumes

that the same process can be carried on no matter which sum and

difference are chosen and, thus, x is an unknown whose value is to

be found. The Vietan solution, on the other hand, has a means of

expressing any sum and any difference and of specifying the

solution: The two numbers are (m + n)/2 and (m - n)/2. Not only

is this solution general, it uses letters rather than conventional

numerals to express given quantities.

Only 28 of the 144 pupils of the Harper study used a Vietan

type of response to the above problem. Harper points out that the

use of this approach rises dramatically in Year 5, but mostly

among the more mathematically-able students--20 of the 28 who used

a Vietan response were in Year 6. He further notes that these

findings accord well with the 87. success rate among Year 4

students of the CSMS study (K:Uchemann, 1978) on the question:

"Which is larger, 2n or n + 2; why?" Thus, it would appear that

the use of a Vietan approach is not something that high school

students are adept at.

Another example illustrating the Vietan function of letters

to express the general is provided by the work of Chevallard and

Conne (1984) who have documented students' use of algebraic

symbolism as a tool for proving rules governing numerical

relations. These two researchers presented an eighth-grade

student with a sequence of questions that included the following:

Take three consecutive numbers. Now calculate the square of
the middle one, subtract from it the product of the other
two. ... Now do it with another three consecutive numbers.
... Can you explain it with numbers? ... Can you use algebra
to explain it?

The student began with the three consecutive numbers 3, 4, and 5,

which led to the calculation of 16 - 15 to yield the result of 1.
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He then tried out the numbers 10, 11, and 12, which led to the

same result. When asked to explain what was happening, using

algebra, he at first tried out x= = 1--simply replacing all

of the "given" numbers by letters. Having then realized that the

use of only one letter would be better ("Puis apres j'ai pence

qu'on prenait simplernent le chiffre au carre qu'on remplacait par

une lettre puis les autres c'est ce chiffre plus un et ce chiffre

moins un"--Chevallard & Conne, 1984, p. 8), the student proved the

rule governing this numerical relation with the formulation,

- ((x + 1)(x 1)) = 1. Chevallard and Conne point out that

this student, though only in the eighth grade, was one who had

unusual facility with algebraic representations and their use as

thinking tools.

Many other Students have, however, been found not to be so

successful in using algebraic symbolism as a tool with which to

think about and to express general numerical relationships. Lee

and Wheeler (1987), in their study of students' conceptions of

generalization and justification, tested 354 Grade 10 students on

subsets of their questionnaire and then interviewed 25 of these

students. One of the questions they presented to the students was

the following

A girl multiplies a number by 5 and then adds 12. She then
subtracts the original number and divides the result by 4.
She notices that the answer she gets is 3 more than the
number she started with. She says, "I think that would
happen, whatever number I started with."
Using algebra, show that she is right.

Of the 118 students who were given this problem, only 9 set up

(5x + 12 x)/4 and then algebraically worked it down to x + 3.

Four of these 9 students then went on to "demonstrate further" by

substituting a couple of numerical values for x. Thirty-four

others set up (5x + 12 x) /4 = 3 + x and then proceeded to
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simplify the left side, yet did not base their conclusions on

their algebraic work. They then worked numerical examples and

concluded from these examples. The interviews provided further

evidence of students' ignoring their algebra.

Another question from the Lee and Wheeler study was the

following:

Show, using algebra, that the sum of two consecutive numbers
is always an odd number.

Although the way in which the question was formulated is different

from Chevallard and Cannes in that the latter began by asking

students to work initially with numerical examples to see what

they came up with, it does ask what Chevallard and Conne

eventually requested of their subject. Only 77. of Lee and

Wheeler's students succeeded on this question. Nevertheless, the

interviews showed that students do appreciate an algebraic

demonstration when they or someone else produces it, but they are

happier with their own numerical examples.

The study by Wheeler and Lee showed that "formulating the

algebraic generalisation was not a major problem for the students

who chose to do so; using it and appreciating it as a general

statement was where these students failed" (Lee & Wheeler, 1987,

p. 149). Evidence illustrating that the majority of high school

students do not see algebra as a tool for generalization and

justification was also seen in the results of the Harper (1987)

study. A historical perspective suggests that the "big picture"

of present-day algebra involves two major components: (a) the use

of algebraic symbolism as a tool to solve specific problems (i.e.,

discovering the identity of the letter(s)), and (b) the use of

algebraic symbolism to express general solutions-and as a tool for

proving rules governing numerical relations. Research evidence
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has shown that our schools are better at equipping students to do

the former than the latter.

This paper has taken a restricted perspective in that it has

focused on algebraic thinking as characterized by the latter

component of the "big picture" of algebra. For some authors

(e.g., Open University, 1965), the main idea of algebra is that it

is a means of representing and manipulating generality and, thus,

they see algebraic thinking everywhere, even in the recording of

geometric transformations. There are some advantages to taking a

more restricted perspective, that is, in not viewing algebraic

thinking as equivalent to algebra or to generalization. One of

these is that it can provide researchers with an entry point for

investigating students' conceptualizations in a well-defined area

and subsequently guide them in conducting teaching experiments

aimed at helping students develop meaning for this essential

aspect of algebra. A second advantage to taking this perspective

on algebraic thinking--and it may be the more important one at the

present time--is that it can aler.t us to the fact that computer

technology and, consequently, most computer-based approaches to

the teaching of algebra are not idea7ly suited to incorporating

this aspect of algebra into their programmes. Algebraic thinking- -

as characterized in this paper--could well become an area of

algebra that is taught even less (if at all) in computer

environments than it is now taught in traditional algebra courses.

That, in my opinion, would be a real loss.
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A STRUCTURAL CONCEPTUAL MODEL FOR INVESTIGATING

SOME COGNITIVE ASPECTS OF PROBLEM-SOLVING

Dr. Nira Krumholtz
Department of Education in Technology & Science

Technion Israel Institute of Technology
Haifa 32000, ISRAEL

A structural conceptual model of programming strategies, together
with its empirical verifications, is presented. the paper stresses the
need for a complete structural model rather than studying isolated
concepts. Guttman's Facet Theory has been employed for the
construction and the validation of the proposed model. Three facets
define the conceptual model: Knowledge type (content. structure and
implementation), Language (level of abstraction), and task Familiarity
(level of analogical generalization) The structural lawfulness
revealed in the analysis reflects the associative connections among
problem solving concepts in the learner's mind. Some cognitive
aspects as well as educational implications are discussed.

INTRODUCTION

In order to investigate the relationship between task performing and

thinking, there is a need for a conceptual model based on the cognitive analysis

of the performance. The construction of a structural conceptual model, and its

empirical verification, will be presented in this paper.

The proposed model is based on two assumptions. The first assumption is that

conceptual components of a learner's thinking car 3 inferred from observed

behaviors. The second assumption is that connections among those components are

reflected through correlations between the corresponding observable behaviors.

That is, closely connected components in the model will tend to produce highly

associated behaviors. Therefore, a step towards the intended model should be to

assess a typology of students' strategies in performing problem-solving tasks.

The classifying rules, according to which strategies will be classified, will

serve as facets of the structural conceptual model. The term structural refers

to the structure of interrelations among those facets.

This paper stresses the need to investigate cognitive aspects of problem

solving from a complete structural conceptual model rather than from studying

isolated concepts. The representation of all the components in one encompassing

structure enables us to reveal relationships which are not evident in studying

each component separately. Guttman's Facet-Theory (Guttman, 1957) turns out to

be particularly appropriate in pursuing this process of model building.
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The first step towards constructing a conceptual model is to define the

world of discourse. The universe of content which was defined in this study is

concerned with strategies in performing programming tasks. Nevertheless, most

of the implications for teaching and curriculum development can easily be

transferred to other learning domains or even be generalized to phenomena

independent of school subjects.

The paper starts with briefly introducing Guttman's Facet Theory. In the

second and the third sections, this methodology is employed for constructing and

validating a proposed conceptual model. The last section is a discussion of

some cognitive aspects of problem solving and possible educational implications.

FACET THEORY - A METHODOLOGY FOR CONSTRUCTING STRUCTURAL MODELS

According to Guttman's approach (Guttman 1957), a universe of content is

defined as a Cartesian product of several facets. A facet according to

Guttman's terminology, is a classification rule according to which variables are

classified. Each facet is a component set of the Cartesian set which defines

the universe of content. The representation of each strategy as a unique

element of the Cartesian set, reveals its similarities and differences with any

other strategy.

THE METHOD

Choosing Relevant Facets for the Proposed Conceptual Model.

The concept of a model implies that it is a simplification of the real world.

Therefore, one has to decide what the aspects of the world to be modelled are.

For the sake of simplicity and generality, we decided to concentrate on three

facets only. The facets were chosen on the basis of existing theories dealing

with human information processing and problem solving (reviewed in: Krumholtz

1987, Bar-On & Krumholtz, forthcoming). The facets and their elements are

described in the following sections.

The familiarity facet

In this study tasks were ordered from familiar to unfamiliar, according to the

familiarity of the objects dealt with. The objects were the basic geometrical

forms (squares and hexagons), which served as basic building blocks. Squares

were considered to be more familiar than hexagons.

The language facet

The second facet is concerned with the language in which the description of the

solution is expressed. Languages can be ordered according to their level of
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formality. This hierarchy is consistent with the one proposed by Chomsky for

formal generative grammars. The two structs (elements in the facet) chosen in

this study were: natural language (Hebrew) and computer language (Logo), which

represent two extremes on the language hierarchy.

The knowledge type facet

The third facet is concerned with the type of knowledge which is presumably

employed by the student. We propose to distinguish among three types of

knowledge:

a. Content related knowledge - refers to domain specific concepts and their

meaning. For example, the strategy: "declarative verbal description" (as

opposed to a procedural one), which cannot be employed without referring to a

specific content (i.e. the geometric figure).

b. Knowledge about structure or organization - is manifested as structuring a

description or a computer program, by employing modules, constructing plans and

spatial organization. This knowledge is independent of a specific content.

c. Knowledge about implementation schemes - which can be treated independently

of a specific content or structure. In our case it was a graphical task and the

implementation strategies were classified according to the spatial

representation system which they employed: Extrinsic spatial representation

system, in this study, the well-known Cartesian rectangular system, and

Intrinsic spatial representation system which was adopted by the "turtle

language" (Abelson and DiSessa, 1981). The Logo computer language, used in this

study, enables the usage of both extrinsic and intrinsic spatial representation

systems.

A Definitional System for the Observations

In order to achieve an empirical validation of the proposed model, and to

check the correspondence between the predic,c: the observed structure of

interrelations, a specific definitional system for the observations was defined.

The Cartesian product of the three facets defines twelve (2.2.3=12) possible

different types of strategies, which can be employed to define systematically,

specific programming strategies (i.e. the items). The observable behaviors were

the extent of employing each strategy by each subject (i.e. the observations).

Sixty observable behaviors were defined in a specific experimental set-up and

thus, could be quantitatively assessed.

THE EXPERIMENT

Population and Experimental Set-up

The research population consisted of seventy-eight subjects. All the
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subjects were novice programmers and those courses were their first experience

with computers. The subjects studied according to a curriculum, which was

especially designed for this study. The special design intended to emphasize

the higher cognitive skills of programming and to expose the subjects to the two

spatial representation systems.

The experimental tasks

The experiment consisted of two programming tasks (Figure I), in each a

drawing of a geometrical figure was presented. Each of the two tasks consisted

of two sub-tasks: description in natural language and programming in computer
language. The Logo code was written without using a computer to verify it.

Figure I: The two geometrical figures whicb have been used
in the experimental tasks.

"Squa'es figure" "Hexagons figure"

Items and Categories for Observation

As mentioned above, the programming behaviors of the learners were observed

and their preferences for the predefined strategies were recorded. The
following are the categories for evaluating the items (a detailed description

in: Bar-On & Krumholtz, forthcoming).

Items concerning natural language

Item 1. Using declarative verbal description - The evaluation of this item

ranges from a procedural description to a declarative one. Characteristics of

procedural descriptions are: using verbs (e.g. do, draw, turn), dynamic

description of constructing and considering the temporal order of performance

(e.g. first, then, at last). Characteristics of declarative descriptions are

static, using words like: there are, built of, etc.. ignoring the temporal order

of construction of the figure.

Item 2. Holist perception of a figure - This item concerns the order of

referring to the figure when describing it. Possible descriptions range from

first describing the figure as a whole, to starting with a description of the

details of the figure.

Item 3. Complexity of "basic building-block" This item relates to the most

inclusive "basic building-block" used for constructing,the figure.
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Item 4. Ignoring details. Item.5. Spatial organization as measured from

subject's indication of the location of the figure on the paper.

Items concerning the use of formal language

Item 6. "Top-Down" planning. Item 7. Structuring by using sub-procedures.

Item 8. Explicit reference to location.

Item 9. Giving meaningful name to the main procedure.

Item 10. Organization of the produced program.

The last three items (i.e. 11, 12, 13) refer to preference of extrinsic spatial

representation system.

Method of Analysis

As mentioned, the analysis of the observations in this study, was concerned

with assessing a typology of programming strategies. The methodology of
treating this problem is the Non-metric Smallest Space Analysis (SSA). This

analysis is performed on the intercorrelation metric. The computer program

employs the algorithm suggested by Guttman (1968), for calculating the smallest

space (minimal number of dimensions), required to represent the structure of

interrelntions among the strategies. In order to reveal this structure, these

interrelations are represented geometrically. Items are represented as points

in an Euclidean space, where the distances between points reflect their
dissimilarities. The desired space that enables such an inverse relationship to

exist between the observed correlations and the geometrical distances is one

with the minimal number of dimensions. Assessing the empirical verification for

the proposed structural model from this analysis, ylll be explained in the
results section.

RESULTS

Typology of Programming Strategies The Cylindrical Lawfulness

Prior to the application of the Smallest Space Analysis (SSA-1), several

preparatory steps had been taken, i.e. the selection of items to be analysed and

the computation of the intercorrelations among the selected items (detailed

analysis in: Bar-On & Krumholtz).

The smallest space for the priogramming strategies is three dimensional, and

has been shown to have a cylindrical lawfulness (figure II), which corresponds

to the three proposed facets.

The familiarity of the task facet is represented by a separate dimension

which is orthogonal to the language-knowledge plain. The middle horizontal

circular disk (in figure II)..separates the items concerning the "Squares

figure" from those concerning the "HeZagons figure".
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Figure II: A schematic CYLINDREX represents the structure of
interelations among the strategies when all
three facets are considered.

CONT ENT

The three dimensional cylinder structure can be displayed as two separate

orthogonal projections onto two dimensional space:

Figure III: Output of the SSA program: projection of the three
dimensional CYLINDREX onto two dimensional space.
This figure represents the structure of interrelations
among the programming strategies when only the facets
of the "language" and "knowledge type" are considered.

BEST COPY AVAILABLE 183



178

As cnn be seen from figure III, the language and the knowledge-type plain cnn

be divided into two concentric circular bands. The peripheral band contains the

points corresponding to strategies which are expressed in natural language,

whereas strategies expressed in formal (computer) language, occupy the inner

band. Another structural lawfulness revealed in the same plain is the partition

to three wedge-like regions emanating from the same common origin, corresponding

to the three types of knowledge.

DISCUSSION

The cognitive aspects involved in problem solving which will be discussed are

based on the constructed and verified model. The underlying assumption was that

the structure of empirical interrelations among observed behaviors, reflects the

associative connections among the problem-solving concepts in the learner's

mind. Further it was assumed that hypothetical Cognitive constructs explain the

observable behaviors.

According to that model, the knowledge can be divided into content, structure

and implementation types of knowledge. The three types of knowledge can be

expressed in various levels of abstraction and formality. The formal

expressions of the different knowledge types tend to be highly correlated, while

the informal expressions of content, structure and implementation aspects are

more distinct.

The structural lawfulness revealed in the language and the knowledge-type

plain implies a relation of hierarchy to hold between natural language and

formal one. The rationale for this relation is that a formal computer language

is conceptualized as a restriction of a natural language. From this result it

can be implied that performing of programming should always start with

using the natural language before applying the formal computer language. This

suggestion holds whatever type of knowledge of the three is being discussed.

In order to identify the source of difficulties the learner has in performing

any given task, it is necessary to distinguish between two stages in the process

of problem solving. The first concerns the understanding of the problem at hand

and the ability to describe the solution in natural language. The second stage

deals with formulating the problem as a computational process expressed in a

formal language. Very often the learner's difficulties are in making the

connection between the informal level (using the natural language) and the

formal one. It is worthwhile indicating that these two stages can be utilized

both in the computer science uiscipliine, where the formal language is any

computer language, and in mathematics where the computational process is

expressed in the appropriate formal mathematics language.

The structure which represents the relations among elements of the knowledge
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types, reflects no notion of order among the elements. This implies that no

preference among these elements is suggested when a task is to be performed.

This finding has an important educational implication in the process of

teaching. It means that it is important to analyse a given task concerning each

of those three types of knowledge separately. Dealing with each element

independently of the two others. emphasizes different aspects of the same

problem and thus, enables better understanding of the problem at hand. Those

relations among the knowledge types hold whatever language of the two is being

used. For the designing of tasks in teaching it means, that students will be

asked to relate to the three types of knowledge expressing them in various

levels of abstraction and formality.

The structure of relation that was revealed between the first facet on one

hand, and the second and the third on the other hand, reflects no dependency.

This means, the level of familiarity of the task is independent of the two other

facets since it depends on the individual learner. The relation implies as

well, that the interrelations between language and type of knowledge will remain

unchanged in different tasks. The findings emphasize the importance of

exhibiting both familiar and unfamiliar tasks in the teaching processes, while

starting with familiar problems. The finding that this structure is preserved

across different analogical tasks is consistent with the meaning of analogy as a

structure preserving transformation.
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THE EFFECT OF SETTING AND NUMERICAL CONTENT ON THE DIFFICULTY OF RATIO TASKS

Dietmar Wichemann University of London Institute of Education

Summary. Data from three written ratio tests confirm findings of other
researchers, that Setting and Numerical Content can have a marked effect
on the difficulty of ratio tasks. Further, the data throw light on the
effect of Setting and Numerical Content on students' preference for
Within ratio or Between ratio procedures.

Introduction. Three closely related ratio tests (Tests Rx, Ry, Rz) were

developed, each containing about 30 items (a mixture of missing value and

comparison tasks) and taking about half an hour to administer. Each test was

given to just over 150 secondary school students (156, 153, 154 for Rx, Ry, Rz

respectively). Though the samples were different, they were comparable, in

as much as the tests were distributed randomly to students within their

mathematics classes. The students were in their 2nd, 3rd or 4th year of

secondary school (that is, between 13 and 15 years old) and five schools in

England and one in Wales took part. No attempt was made to control for age,

mathematical attainment or for other background variables and the data are

not intended to provide norms; however, they do allow the effect of different

item types on students' performance to be compared.

The tests were developed to investigate further some of the findings of

Hart(1981), Karplus et al (1983), Vergnaud(1983) and others. Some of the items

were based on tasks in the NMP texts (Harper et al, 1987) with which the

writer is involved.

Setting. The study of children's understanding of ratio undertaken by Hart(1981)

as part of the CSMS study seemed to indicate that students could more readily

identify a ratio relationship in, for example, a Setting involving a recipe

than in a Setting involving geometric enlargement. It was decided to investigate

this further in the present study, by using items related to Hart's but in which

the Numerical Content remained the same, or at least similar, while the Setting

changed. Data from the resulting items add weight to Hart's findings. Thus for

example, in the items shown schematically below, the Recipe item 1Z is much

easier than item 1Y, even though they involve identical numbers, which in turn

is much easier than the Enlargement item 6.3Y, even though it involves the same

"ratio factor" (x12). Likes se, the Recipe item 2.1X is much easier than the

Enlargement item 6.1X though they have the same Numerical Content.
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Item 1Z Item 1Y Item u.tY
(64 facility) (434 facility) (25% facility)

people EGGS

4' 6

6

4 6

6

K

K

8 12

12

Item 2.IX Item 6.1X
(49% facility) (22% facility)

people SUGAR

6 7

15 . K
6

15

Item 1Y is identical to an item used by Hart and is based on the well known

Mr Short & Mr Tall task devised by Karplus(1970). Hart found that about half the

students in her samples gave the response 8, which is consistent with their

using the Addition Strategy (4+2=6, 6+2=8). In the present study, 44', of the

students gave this response to item lY and almost the same proportion gave the

corresponding response of 16 to item 6.3Y. On the other hand, only 19% gave the

Addition Strategy response to item 1Z.

It is of interest to speculate why the enlargement Setting, in particular,

provokes more Addition Strategy responses than the recipe Setting (in turn, this

might throw light on the finding that the recipe Setting is easier). It is

possible that students less readily see that the Addition Strategy is inappropriate

in the enlargement Setting: increasing the sides of a rectangle, say, by the same

amount still produces a rectangle, and one whose shape might be difficult to

distinguish from the original if the increase is relatively small; on the other

hand, having two more eggs for two more people might well be seen as unjust,

given that in the original recipe there are more eggs than people.

Item 1Z was also given to 31 adult students at the Institute of Education,

who were asked to write down the method they used, as well as giving the answer.

Just over one-third wrote that they had used a method of this sort:

Half as many people again, so half as many eggs again
(that is, 6 eggs + 3 eggs = 9 eggs or 4,6 + 2,3 = 6,9).

This approach has variously been called Rated Addition (Carraher,1986), Scalar

Decomposition (Vergnaud,1983) or a Build 1.1-p method (Kachemann,1981; Hart,1981).

It seems likely that a sizeable proportion of school students would also use this

method on item lZ. However, the method does not seem well suited to a geometric

Setting. While one can produce a recipe for 6 people by combining recipes for

4 people and 2 people, it is not so easy to see how an enlarged geometric shape

might be produced by combining an object with one that is half as big (especially

if the object is a curly K...). In turn, this suggests that for some students

at least, the enlargement Setting is more difficult.
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Numerical Content. In general, the effect of Numerical Content on facility seemed

predictable. Items with ratio factors of xli'T and x2;=, tended to have comparable

facilities for a given Setting (eg 9.12 and 2Y, below); items involving simpler

ratio factors (eg x3, as in 5Y below) tended to be substantially easier, whilst

items with more complex ratio factors (eg li, as in 5Z below) were much harder.

Item 9.1Z Item 2Y

(60 facility) (65% facility) (85% facility) (38% facility)

ounces choc

Item 5Y Item 5Z

people POTATOES people of RICE

12 18

8

6 15

7

bars OUNCES biscuits OUNCES

5 15

2 .

15 25

9 .

However, Numerical Content seemed to exert a secondary and more subtle effect

on facility in that it seemed to influence students' choice of Within ratio .

or Between ratio procedures. This is discussed next.

Within and Between Ratios. For any ratio item of the sort discussed here, it is

possible to construct two kinds of ratio. For example, for the Rice Salad item

(item 2Y) it is possible to construct the ratio of number of people and the

amount of rice (6:15) or the ratio of the different numbers of people (or the

different amounts of rice) (6:7). The first kind is commonly called a Within

or Function ratio, the second a Between or Scalar ratio (Karplus et al, 1983;

Vergnaud,1983).

For the items below, which are all in a recipe Setting, it turns out that

the easier item in each pair is the one where t' dithin ratio is simpler that

the Between ratio (I would argue that 6:15 or x22 is simpler than 6:7 or xli;

and that 12:150 or x12 is simpler than 12:10 or xi).

Item 2Y

(x2i-)
(65% facility)

people RICE

6 15

7

Item 2.1X

(x224)
(49% facility)

people SUGAR

6 7

15 .

Item 9.4Z Item 7.4X
(x121 t.) (x1*1 )
(48% facility) (35% facility)

ml SALAD
people DRESSING people OLIVES

12 150

10

12 10

150 .

The above suggests that, in a recipe Setting at least, students generally

prefer to transform the numbers that form the Within ratio rather than the Between

ratio. however, this does not necessarily mean that they prefer Within ratio

procedures. Consider the numbers 6,15 that form the Within ratio pair for item 2Y.
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It is possible to transform the numbers using a Within or Between ratio procedure.

as is illustrated in the diagram below. The Within ratio procedure might involve

identifying the operator x2-;-F (6x2?-,-.15) and applying it to 7 (7x2k=17T, so 7 people

require l73 ounces of rice). On the other hand, the Within ratio pair 6,15 can be

transformed into the pair 3,73, say, and in particular, by using the Unitary

method, into the pair 1,23. Though the latter might involve the same arithmetic

as is used to find the operator x24 (15+6, say), Vergnaud(1983) makes the very

important point that in this case a Between ratio procedure is being used:

6 people is transformed into 1 person, 15 ounces of rice into 23 ounces; there

is no transformation from number of people to number of ounces of rice.

A Within ratio procedure on
item 2Y using the operator x

A Between ratio procedure on
item 2Y using the Unitary method

people RICE people RICE

6 6 15i.15
4. +6 1

7 1 2i

/ x7 1

7

To investigate students' choice of procedure further, the test sheets on

which students had written their responses to items 2Y and 2.1X were scrutinised

for any indications of the methods they might have used.

Most students did not show any working, and those who did tended to provide

working that was ambiguous, as in the example below. The working is for item 2Y

and leads to the correct response, but it is not clear whether the Unitary method

is being used ounces per person, etc) or whether Or is being used as an

operator (O-, times as many ounces as people, etc).

15 + 6 = 2.5 2.5 x 7 = 17.5

Overall, of the 94 students who answered 2Y correctly, 39 showed some working,

of whom 37 wrote working that included the intermediate value Ok. (The remaining

two students wrote down the expression 15i.6x7.) This strongly suggests that most

of the students who gave a correct response to item 2Y either used a Within ratio

procedure involving an operator (x2) or used a Between ratio procedure involving

the Unitary method (and/or Rated Addition).

Interestingly, none of the students who answered 2Y correctly, wrote down the

intermediate value li(or 1.16, etc), which would almost certainly have indicated

a Between ratio procedure with 14 as operator. This contrasts quite strongly with

item 2.1X, which involves the same numbers as 2Y, but transposed. Here, 69 students

answered the item correctly, with 28 students showing some working. Of these 28,

12 gave the intermediate value 16, whilst only 4 gave the intermediate value 22,-T.

The relative frequencies of the values lb and Or suggest that, as with item 2Y,
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more students chose to transform the Within ratio pair (using either a Within

ratio procedure involving an operator, or a Between ratio procedure involving

the Unitary method) -despite the fact that this time the Within ratio pair (6,7)

is arithmetically more complex that the Between ratio pair (6,15).

A similar picture emerges from an examination of students'

working for item 9Y, shown here on the right. For this item the

ratio pairs 21,35 and 21,30 would appear to be of roughly equal

complexity, but of the 20 students who answered the item

correctly and showed working, 16 gave the intermediate value

derived from evaluating 3521, but none gave the value that

corresponds to 30421.

The scrutiny of students' scripts confirms that in some settings (in particular

those involving recipes), students prefer to transform the Within ratio pair.

However, it is still not clear whether they prefer to do this using Within ratio

or Between ratio procedures. To pursue this further, some adult students at the

Institute of Education were given a recipe item (item 1Z) and asked to write down

as clearly as possible the method they used to solve it. Thirty-one students took

part, of whom 9 used a Between ratio Unitary Method and a further 11 used a Between

ratio procedure involving Rated Addition. Three students clearly used a Between

ratio procedure using an operator (eg 6 people = 3/2 x 4 people, so no. eggs =

3/2 x 6 eggs). Two students seemed to use the Rule of Three, and the remaining

6 students' explanations were ambiguous. No one unambiguously used a Within

ratio method.

This small supplementary study, then, strongly suggests that, for recipe

settings, students not only prefer Within ratio pairs, but prefer to transform

them using Between ratio procedures (in partictuar, involving the Unitary method

or Rated Addition). Further credence is given to this by a consideration of the

meanings that might be attached to the elements in these procedures: while the

Unitary method and Rated Addition are always working with "states" or "entities"

(4 people need 6 eggs, so 2 people need 3 eggs, 1 person needs 1 eggs, etc),

the Within ratio operator procedure seems to be working with something less

tangible, namely a relationship between states, which might also seem rather

contorted (Whatever the number of people, there are times as many eggs...).

Somewhat different conclusions have been drawn from studies by Karplus et al

(1983) and Vergnaud(1983). Karplus found no clear preference for Within or

Between ratio procedures. However, this conclusion is based, essentially, on data

from just one item (shown below, left) which, furthermore, can be solved directly

by using a whole number operator (x2 or x3). Because of this, the item would seem

to "discourage" the Unitary method; at the same time, no mention is made of this

Item 9Y
(32 facility)

ticks SECONDS

21 35

30
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method and it is possible that any occurrences of it would have been counted as

instances of a Within ratio procedure as it involves transforming the Within

ratio pair 3,9.
Vergnaud did take account of the Unitary method. He found that even with

an item like the one below (right), which would seem to favour transformation

of the Within ratio pair, more students used Between ratio procedures than

Within ratio procedures, but the Between ratio procedure was generally not the

Unitary method. However, as with the Karplus item, Vergnaud's items can be solved

in one step, using a whole number operator, which might supress use of the Unitary

method. It can be argued, therefore, that the present study extends rather than

contradicts that of Vergnaud.

Karplus Ratio Item

laps TIME

Jane

Phyllis

3 9

6 15

Vergnaud Ratio Item

hours LITRES of oil

7 21

84 .

In comparing the Karplus and Vergnaud studies with the present study, it

should be noted that neither Karplus's nor Vergnaud's items used recipe Settings,

though they did use Settings involving quantities of different dimensions

(laps and minutes; hours and litres). The Enlargement items in the present

study involve quantities of exactly the same kind (cm lengths) and it is

interesting to observe that for these items the preference for transforming

Within ratio pairs rather than Between ratio pairs seems to be reversed

(though not necessarily the preference for Between ratio procedures). Thus,

for example, for the two items shown below (in full and schematically),

6.1Z is answered no more successfully than 6.2Z, even though the ratio pair

2,8 is arithmetically much simpler than 2,5. This finding needs to be

investigated further.

Items 6.1Z and 6.2Z

These two Js are exactly
the same shape.

How long
is the curve 8T'

HU'
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5
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To summarise, the study supports the findings of other researchers tat

Numerical Content and Setting can have a marked effect on students' success

rates on ratio tasks. In particular, the study showns that students are more

likely to use effective strategies on tasks in a recipe Setting than ones

that involve geometric enlargement. The study also suggests that in tasks

that involve a recipe Setting, students prefer to transform Within rather

than Between ratio pairs, but that they prefer to do this using Between ratio

procedures such as the Unitary method. For tasks in a geometric Setting, the

first of these preferences seems to be reversed.

Dietmar achemann, Institute of Education, Bedford 'lay, London WCI1 GAL, UK
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method and it is possible that any occurrences of it would have been counted as

instanced of a Within ratio procedure as it involves transforming the Within

ratio pair 3,9.

Vergnaud did take account of the Unitary method. He found that even with

an item like the one below (right), which would seem to favour transformation

of the Within ratio pair, more students used Between ratio procedures than

Within ratio procedures, but the Between ratio procedure was generally not the

Unitary method. However, as with the Karplus item, Vergnaud's items can be solved

in one step, using a whole number operator, which might supress use of the Unitary

method. It can be argued, therefore, that the present study extends rather than

contradicts that of Vergnaud.

Karplus Ratio Item

laps TIME

Jane

Phyllis

3 9

6 15

Vergnaud Ratio Item

hours LITRES of oil

7 21

64 .

In comparing the Karplus and Vergnaud studies with the present study, it

should be noted that neither Karplus's nor Vergnaud's items used recipe Settings,

though they did use Settings involving quantities of different dimensions

(laps and minutes; hours and litres). The Enlargement items in the present

study involve quantities of exactly the same kind (cm lengths) and it is

interesting to observe that for these items the preference for transforming

Within ratio pairs rather than Between ratio pairs seems to be reversed

(though not necessarily the preference for Between ratio procedures). Thus,

for example, for the two items shown below (in full and schematically),

6.1Z is answered no more successfully than 6.2Z, even though the ratio pair

2,8 is arithmetically much simpler than 2,5. This finding needs to be

investigated further.

Items 6.1Z and 6.2Z

These two Js are exactly
the same shape.

How long
is the curve RT9

RIJ9
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To summarise, the study supports the findings of other researchers tat

Numerical Content and Setting can have a marked effect on students' success

rates on ratio tasks. In particular, the study showns that students are more

likely to use effective strategies on tasks in a recipe Setting than ones

that involve geometric enlargement. The study also suggests that in tasks

that involve a recipe Setting, students prefer to transform Within rather

than Between ratio pairs, but that they prefer to do this using Between ratio

procedures such as the Unitary method. For tasks in a geometric Setting, the

first of these preferences seems to be reversed.

Dietmar Ochemann, Institute of Education, Bedford 'Pay, London WC1H OAL, UK
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ABSTRACT

This paper deals with the choice of math as an evamination subject and the
satisfaction with or regret of this choice. More boys than girls appeared to
choose math. We observed a tendency for girls to regret their choice more
than boys. Students not choosing math regretted their choice more than

siudena choosing math. This was especially the case for boys at lower
difficulty levels. Probably they regretted their lesser future possibilities
without math, the main reason for regret of no-math choice. The main reason
for regret of the math choice had to do with poor achievement in math. As
predicted by the attitude-model of Fishbein & Ajzen (1975), we observed a
quite strong relationship between the intended and actual choice of math. We
failed to predict satisfaction with the choice at a satisfactory level using
decisional variables measured a year ago. However, the role of .the careers

master's believed opinion was remarkable in this prediction.

INTRODUCTION

Dutch general formative secondary education consists of a Low Level (LL), a Medium

Level (ML), and a High Level (HL) of difficulty (in dutch: MAYO, HAVO and VWO,

respectively). After passing three years of education LL and ML students have to choose

six examination subjects; one type of math may be chosen. The final examination takes

place after one or two more years of education for LL and ML students, respectively. HL

students have to choose seven examination subjects after passing four years of education,

and the final examination takes place after two more years. Two types of math may be

chosen: math A (mainly 'applied': HL-A) or math B (mainly 'pure': HL-B). It is also

possible to choose neither one or both.

In a longitudinal study various aspects concerning the intended choice of math, the

actual choice of math, and satisfaction with the actual choice were studied at all

difficulty levels. One aspect concerned the prediction of the intended choice of math by

means of the attitude-model of Fishbein & Ajzen (1975), which provides insight into the

decision processes underlying a choice. The attitude-model distinguishes two components

that influence the intention to perform a behavior: the aggregated. attitude towards the

behavior and the aggregated subjective nom: about the behavior. The elements of the

attitude and the subjective norm are product-terms of probability ratings and importance

ratings (for details, see Otten & Kuyper, 1988). Using multiple regression these product-
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terms (referred to as the decisional variables hereafter), together with three other

variables, predicted 64%, 76%, 50% and 73% of the variance in the intended choice at LL,

ML, 11L-A and HL-B, respectively (Kuyper & NIculenbeld, 1988; Ottcn & Kuyper, 1988).

The other three variables were sex of student, math achievement (i.e., the mean of

the math grades on the previous two reports), and math-requirement (i.e., whether or not

math was required for the favored vocational training). The latter variable was a main

predictor of intended math choice at all difficulty levels, especially for boys.

Notwithstanding the fact that at all levels sex of the student was not included in the

regression equation, the differences between the boys' and girls' regression equations

could be attributed to gender differences in favored vocational trainings (Otten &

Kuyper, 1988).

The purpose of the present paper is to describe the actual choice behavior of the

students and the statisfaction with or regret of that choice at all difficulty levels. Do

differences exist between type of choice (math vs. no-math) and sex on these variables?

Which are (the) major reasons fol. regret? Given the fact that Fishbein Sc. Ajzen (1975)

postulate that intended choice is the main determinant of actual choice behavior, we will

examine the relationship between intended and actual choice of math. Finally, we try to

predict actual choice and satisfaction with that choice using as predictors the decisional

variables, which predicted the intended choice fairly well.

METHOD

The conducted longitudinal study consisted of two measurements: the first before the

choice of examination subjects (May and June, 1986), the second after this choice (May

and June, 1987). The results reported in the present paper mainly concern the second

measurement. In this measurement 2445 students from 16 secondary schools participated

(30% LL; 38% ML; 32% HL). A minority of the students also participated in the first

measurement (33% LL; 26% ML; 36% HL).

Variables of interest in the second measurement were: (1) the actual choice of math

(0=no-math chosen, 1 =math chosen), (2) the satisfaction with the particular choice

(1 = very satisfied, 2 = satisfied, 3 = not satisfied but also no regret, 4 = a bit of regret,

5 = regret, 6 = much regret). Students expressing (some) regret of their choice (categories 4,

5 and 6) were offered eleven or eight reasons for this regret, depending on the

particular choice regretted (math vs. no-math, respectively). The students were asked to

indicate whether the offered reason was a cause of their regret (0 = no cause, ..., 3 = much

the cause). At HL these variables were asked for both types of math (A and B).

Only for students participatin in both measurements it was possible to relate

intended choice (choose math: 1= not, 2 = maybe not, 3 = maybe not, maybe yes, 4 = maybe yes,

5 = yes) to actual choice behavior. Also only for these students we could predict actual

choice behavior and satisfaction with their choice using as predictors the decisional
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variables measured in the first measurement. These decisional variables consisted of

twelve attitude- elements and six subjective nano elements. Besides these eighteen

decisional variables, the variables set of student, math-achievement and math-

requirement were used as predictors in the multiple regression analyses (see also

Introduction; Otten & Kuyper, 1988).

RE=SULTS

Actual Choice

The results regarding actual choice and satisfaction with this choice are summarized in

Table 1. The second column of Table I shows that more boys than girls chose math as an

examination subject. In general the difference is about 30%, except at HL-A ('applied')

where it is only 8%.

Satisfaction with the choice

Before discussing the data concerning satisfaction with the choice, represented in

Table 1, we want to stress three points relevant for the interpretation of these data.

First, it appeared that 7% of the data on the satisfaction variable were missing. This

percentage is higher for boys than girls (8% vs. 5%) and higher for no-math choice than

for math choice (10% vs. 4%). Speculating on this last finding, it is conceivable that not

answering this question is an indication of regret.

Table 1:Total number of boys end girls, percentages of students choosing math, and percentages of

satisfaction with and regret of the choice. Missing data are excluded.

N

I math

choice

MATH CHOICE NO -MATH CHOICE

satief. middle regret astisf. middle regret

LL boys 297 83 81 15 4 48 45 8

girls 441 51 62 21 17 74 16 10

ML boys 402 76 74 20 5 45 41 13

girls 527 48 74 17 9 68 21 10

HL-A boys 405 67 81 14 4 62 23 15.

girls 373 59 79 16 6 60 24 16

HL-Bboys 405 60 83 13 4 84 11 5

girls 373 31 76 17 7 80 14 6

The second point relates to the interpretation of the 'not satisfied but also no regret'

category. It appeared that a considerable number of students in this category also scored

the subsequent reasons for regret, although they were not asked to do so. For this

reason the category might be better interpreted as 'satisfaction on the one hand, regret

on the other'. This category is referred to as the Afiddle category (M) hereafter.

Third, it appeared that the 'regret' and 'much regret' categories were hardly used;
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of the relatively few students indicating regret about 75% scored the 'a bit of regret'

category. For this reason the three regret categories (categories 4, 5 and 6) arc taken

together and referred to as Regret category (R) hereafter. Also the two satisfaction

categories (categories Lsand 2, in which the frequencies were more equal distributed) are

taken together and reflcred to'4as file Satisfaction category (S).

Table 1, columns 3 through 8, shows that most students (74% S; 18% M; 8% Ili were

satisfied with their choice. in general it seems that less students were satisfied with a

no-math choice (69% S; 21% M; 10% R) than with a math choice (76% S; 17% M; 7% R).

The main exception are the LL-girls. Looking at sex, there seems to be a slight

difference in satisfaction; girls (72% S; 18% M; 10% R) seem to regret their choice more

than boys (75% S; 19% M; 6% R). The exceptions are found in the no-math choice at LL

and ML. Here we find a remarkable high percentage of boys with "mixed feelings" about

their choice (LL: 46% S, 45% M, 8% Ft; ML: 45% S, 4/% M, 13% R).

Considering level of difficulty, Table'l stows that the most satisfied students are

found at HL-B (81% S; 14% M; 5% R), followed by HL-A (73% S; 18% M; 9% R), LL

(71% S; 19% M; 10% R) and ML (69% S; 22% M; 9% R). In general, the students were most

satisfied with their choice at HL-B (math and no-math choice) and HL-A (math choice,

only). The students were least satisfied with their no-math choice at 11L-A, ML and LL.

Reasons for regret

Only the students indicating regret (Table 1, columns 5 and 8) are included in the

analysis of the importance of the reasons for regret. In case of regretting the math

choice, eleven reasons were offered. The most important reason was 'math was very

difficult this year' (overall mean 2.1), followed by 'afraid of failing the year' (1.8) and

'too low grades on math' (1.6), which are related to the first (and to each other). The

next reason was in fact a reformulation of regret 'I wish I had chosen another subject'

(1.1), followed by 'I had to spend a lot of time on math at home' (1.1) and 'I did not

like math this year' (1.0). The next two reasons state that me, is not necessary for the

intended (vocational) study and profession (1.0 and 0.9). 't least important reasons were

'I did not like the math teacher' (0.7), 'I did not like the fellow students' (0.2), and 'my

parents forced me to take math' (0.1).

In case of regretting the no-math choice eight reasons were offered. Evidently the

most important reason was 'I have less possibilities without math' (1.9), followed by

'math is required for the (vocational) study I intend to follow' (0.9), 'math is necessary

for my future profession' (0.7) - which arc related to the first - and 'I wish I had not

chosen math' (a reformulation of regret). The other four reasons were not important at

all. On both sets of reasons the means for LL, ML, HL-A and HL-B did not deviate

systematically from the overall means, neither did the means for boys and girls.

Intended and actual choice

At all difficulty levels the Pearson product-moment correlation between intended and

actual choice is quite high: LL r =0.81, ML r =0.93, HL-A r=0.79, and HL-I3 r=0.82.
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l'redic(ion of actual choice and satisfaction

Table 2 shows the explained variance in various criteria at all difficulty levels by the

decisional variables, sex of student, math-achievement and math-requirement. The numbers

in column 1 of Table 2 slightly differ from the explained variances mentioned in the

Introduction, because the analyses in Table 2 are performed on the students participating

in both measurements, whereas the before-mentioned explained variances resulted from

analyses on all students in measurement 1. Comparing column 1 and 2 in Table 2 reveals

that the predictor variables of measurement 1 explain about 20% less variance in the

actual choice behavior than in the intended choice behavior. The exception is at ML,

where the difference is only 8%. The predictor variables entering the regression equations

of actual choice are similar to the equations of intended choice and the latter are

reported elsewhere (Otten & Kuyper, 1988; Kuyper & Meulenbeld, 1988).

Table 2. The explained variance (100xR') in intended choice, actual choice, and satisfaction with

the particular choice. Between parentheses the maximum number of subjects in the multiple

regression analysis.

INTENDED CHOICE ACTUAL CHOICE SATES. MATH SATES. NO-MATH

LL 63 (195) 43 (195) 27 (156) 29 (33)

ML 75 (201) 67 (201) 5 (116) 12 (83)

HL-A 44 (173)' 27 (173( 10 ( 34) 24 (39)

HL-B 74 1166) 54 (166) 20 ( 72) - (72)

The percentages explained variance in columns 3 and 4 indicate that predicting

satisfaction with the actual choice in measurement 2 by the predictor variables of

measurement 1 was not quite a success. The best results are found at LL where 29% and

27% of the variance in satisfaction with the math and no-math choice, respectively, was

explained. The worst result is found at IIL-13 where no prediction of the satisfaction with

the no-math choice was possible, because of the small correlations between the predictor

variables and the criterium. Despite the small amount of explained variance in the

satisfaction with the choice, we will briefly discuss the predictor variables entering the

regression equations.

In Table 3 the criterium variable, satisfaction with choice, is mirrored; so the

higher the score on satisfaction, the more satisfied with the choice. At LL the students

were more satisfied with their math choice when they were a boy, had higher math

grades on their previous two reports, saw more possibilities in the future with math as

an examination subject, spent less time at math home-work and when they liked their

math teachers. Considering the no-math choice, LL-students were more satisfied when

they saw less future possibilities with math as an examination subject and (peculiarly)

expected their math grade to be high at the examination. At ML the students were more

satisfied with their math choice when they thought their friend's opinion was riot to

choose math as an examination subject. The ML-students were more satisfied with a no-
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math choice when math was not a requirement fur their favored vocational training and

when they expected to stay together with their friend in the same school-class doing so.

At I-IL -A the students were more satisfied with their math choice when they need not to

take extra math-lessons and thougt their careers master's opinion was to do so. Also

111,A students were more satisfied with their no-math choice when they thougt their

careers master's opinion was to do so and their friend's opinion was, in contrast, to

choose it as an subject. Finally, the HL-13 students were more satisfied with their math

choice when they had higher math grades on their previous two reports and thought

math was necessary for their future profession.

Table 3: The elements included in the regression equations predicting the satisfaction with the

particular mach choice. Represented are the 0-weights, the correlation of the predictor

with the criterion to 100) between parentheses; the criterion
(satisfaction) is mirrored.

LL Kt at-A HL -B

MATH NO-MATH MATH NO-MATH MATH NO-MATH MATH

ll' x 100 27 29 5 12 10 24 20

REQUIRE -27 (-24)

SEX 19 (25)

ACHIEV 16.(24)
31 (38)

PROFESSION
25 (34)

FUTURE POSSIBLE 30 (37) -41 (-40)

HOME-WORK 15 (17)

EXTRA LESSONS
21 (20)

EXAMINATION MARKS 36 ( 35)

MATH-TEACHERS 19 (26)

FRIEND IN CLASS -25 (-21)

FRIEND'S OPINION -21 (-21) 36 ( 10)

CAREERS MASTER'S O. 25 (25) -54 (-37)

Generally speaking a quite divergent picture emerge:, An Table 3, regarding the

predictors of the satisfaction with the (no-)math choice next year. We like to draw the

attention to four elements in this picture. First, the fact that sex of student is a

predictor at LL for satisfaction with math choice. Second, both at LL and HL-B the math

grades on the previous two reports are predictors of the satisfaction with the math

choice. Third, At LL the amount of possibilities in the future with math as an

examination subject is a predictor of the satisfaction of both choices. Fourth, at HL-A

the careers master' believed opinion about choosing math as an examination subject is

also a predictor of the satisfaction with both choices.

DISCUSSION

Despite the efforts of the Dutch government to stimulate girls to choose math as an

examination subject, they still choose it less than boys. Only the more 'applied' math
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version at IIL is chosen by (almost) equal numbers of both sexes. Considering the

satisfaction with their choice there seems to be sonic difference between the sexes.

There is a slight tendency that girls really !egret their choice more than boys.

More striking is the fact that not choosing math is more regretted than coosing

math. Especially the high percentage of boys at LL and ML having mixed feelings about

their no-math choice is surpising. Probably they realize after their choice that they have

less possibilities without math, which was the main reason for regret of the no-math

choice. On the other hand those "mired" boys may not have been the most brilliant math

students, considering the fact that the main reasons for regret of the math choice were:

'math was very difficult', 'afraid of failing this year' and 'too low grades on math'.

The relationship between intended choice and actual choice was quite strong,

supporting the postulation of the Fishbein & Ajzen model (1975) that intended choice is a

determinant of actual choice behavior. Using the decisional variables, sex of student,

math-achievement and math-requirement of the first measurement to predict the actual

choice in measurement 2 proved to be less successful than the prediction of intended

choice. The best prediction was at ML where 67% of the variance in actual choice could

be explained, the worst prediction was at HL-A where only 27% of the variance could be

explained.

The attempt to predict the satisfaction with the choice with predictor variables

measured one year before failed to reach a satisfactory level. The explained variances

varied between 0% and 29%. Remarkable was the role of the careers master's believed

opinion in predicting satisfaction with the choice at HL-A; irrespective of which opinion,

when the students acted accordingly, they were more satisfied with their choice. Also

expected possibilities in the future with(out) math and math-achievement appeared to be

predictors of satisfaction. The latter two relating to the main reason(s) for regret of the

(no-)math choice.
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INTRINSIC VERSUS EUCLIDEAN GEOMETRY: IS THE DISTINCTION
IMPORTANT TO CHILDREN LEARNING WITH THE TURTLE?

Chronis Kynigos
Institute of Education University of London

Abstract. This is a report of case study research whose aim was to
investigate children's criteria for choosing between Intrinsic and

Euclidean geometrical notions while employing the turtle metaphor in a
Circle microworld in Logo. Two 11 12 year old Logo experienced
children worked collaboratively within the microworld for 24 hours in
total. The analysis shows that the children did not seem to find
qualitative differences between the nature of Intrinsic and Euclidean
notions. Instead, their choices were influenced by certain broader aspects
of the mathematical situations generated during the study.

Research into the learning processes of children engaged in Logo programming

activities has provided substantial evidence that Logo can be used as a means
to generate rich mathematical environments for children to act upon in a

personally meaningful way (Noss, 1985, Hoyles and Sutherland, in press).

However, it does not necessarily follow that children always use the

mathematics embedded in the Logo language. Regarding the learning of

geometrical content, for instance, researchers have shown that children do not
necessarily use geometrical ideas when doing Turtle geometry, an important
part of Logo (Hillel and Kieran, 1987, Leron, 1983); instead, they often restrict
themselves to the use of perceptual cues in deciding how to change the turtle's
state on the screen (Hillel et al, 1986). Furthermore, little attention has been
given to the nature of the geometrical content children can actually learn
while using the turtle metaphor, i.e. when they identify with the turtle to
drive it on the screen.

Analyses of the geometrical structure of Turtle geometry have characterised
it as Intrinsic (Papert, 1980, Abelson and diSessa, 1981, Harvey, 1985), i.e. as
embedding the two following main geometrical principles: a) the turtle's state
is uniquely determined by its immediately previous state and b) there is no
reference to any part of space outside the turtle's immediate vicinity.
Furthermore, Papert and Lawler argue that the use of the turtle metaphor
(termed "intrinsic schema") by children' draws upon intuitive ideas originating
from very early experiences of bodily motion (Papert, 1980, Lawler, 1985).

The research reported here was part of a wider research project aimed at
investigating the potential for children to use the turtle metaphor in Logo in
order to develop understandings of a wide span of geometrical ideas belonging
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not only to Intrinsic, but also to Euclidean and Coordinate geometry (Kynigos,
1959). The evidence from this research project corroborates the previous view
regarding the intuitive nature of the intrinsic schema (Kynigos, in press). The
particular case study reported here involved a pair of children working with
a Circle microworld and was aimed at questioning the implicit general
assumption that children's intrinsic schema can be a powerful tool mainly In
the learning of Intrinsic geometry.

OBJECTIVES

The general aim of the Circle microworld case study was to investigate the
criteria children develop in choosing between Intrinsic and Euclidean ideas
within the context of Turtle geometry.

The study involved a pair of children and consisted of two phases. In phase 1
(which was of a preliminary nature), the children participated in a learning
sequence involving the construction and use of four circle procedures, each of
which embedded specific Intrinsic and/or Euclidean notions. The procedures the
children wrote as a result of the learning sequence are given in figure 1. In

phase 2 (the main research phase), these four circle procedures were treated
as primitives of a Circle microworld. The children were given structured
tasks involving the construction of figures consisting of compositions of
circles. They had the choice of which of the four circle procedures to use in
constructing the figures (examples of the task figures are given in figure 2).
The specific research objectives in phase 2 were to investigate:

a) the extent to which the children used the geometrical notions embedded in
the structured tasks and the nature of the notions they used for constructing
the tasks' figures;

b) the nature of the children's implicit or explicit criteria for choosing
Intrinsic or Euclidean geometrical notions in their constructions.

METHOD

The pair of 12 year old children participating in the Circle microworld case
study (Alexandros and Valentini), had previously had around 50 hours of
experience with Turtle geometry in an informal classroom environment. During
the case study, the children worked collaboratively with the computer for 24
hours in total. The collected data included hard copies of everything that was
said, typed and written on paper. Verbatim transcriptions from audio tape,
dribble files and written notes were used respectively
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CIR4 6 4\CIR9 50

/4)
6

TO CIR9 :R
TO CIR4 :5 RT 5
REPEAT 36 [FD :5 RT 101 REPEAT 36 [FD :R * 2 * 3.14 / 36 RT 101
END LT 5

END

50

TO CIR17 :S CIR19 50
LT 90
PU

FD :S

RT 90
PD

END TO CIR19 :S
CIR17 :S
CIR9 :5
CIR18 :S
END

TO MOVE :S TC 50
TO CIR18 :S PU
RT 90 FD :S ,<7
PU

FD :S FD :S / :S
PD Mt _ )

LT 90 PU

PD BK :5 + :5 / :S
END PD

END TO TC :S
REPEAT 360 [MOVE :S RT 11
END

Denotes a turtle state during the execution of the procedure

tDenotes the turtle's state of transparency

Figure 1: The children's constructions of the Circle microworld's primitives

During the main phase (phase 2) the children were each given a copy of a task
figure and asked first of all to individually write down their strategy for
solving the task. They were then asked to calla'-orate by discussing their
strategies and trying them out on the compu',. in the process of changing
them or refining them. Finally, the researcher carried out semi structured

interviews at the end of each task in order to gain further insight into their
criteria for choosing Intrinsic or Euclidean notions. A 90 minute session was
allowed for each task. The results from the analysis of the data are outlined
below. Specific episodes from the research are described in order to illustrate
the main points of the analysis.

TASK 4

000
O 0
000'

TASK 5 TASK 7 TASK 8 TASK 9

Figure 2: Examples of the structured tasks in phase 2 of the case studg
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RESULTS

At the end of the learning sequence in phase 1, even though the children had
ample time to construct and use the four circle procedures meaningfully and
although they seemed aware of their functioning, there were limits to which
they showed an explicit awareness of which geometrical notions were
embedded within each circle construction.

In phase 2, the analysis of the children's choices between using Intrinsic and
Euclidean notions in constructing the task figures provided evidence of a
balance in their use of both kinds of notions, i.e. the children seemed to be
quite prepared to use both Intrinsic and Euclidean ideas in planning and
explaining turtle actions.

In order to illustrate the children's use of both types of geometrical ideas, an
example is given of an episode which took place during their solution of task 4,
fig. 2. The episode illustrates how the children saw the connection between the
positions of the centre points of the three circles. After having tried out
several strategies involving the construction of one circle after the other and
stumbling on the working out of the interface between the second and third
circle, Alexandros seemed to spot the uniformity of the lengths between the
circles' centres by revolving the piece of paper on which the figure was
drawn, so that a bottom circle would go to the top and vice versa. Although the
children seemed enthusiastic about their "discovery" concerning the distances
between centres, they still did not consider the positions of the centres;
although they had decided on the length of the second interface, they turned the
turtle 45 degrees to the left apparently using their perceptual cues (fig. 3).

CIR19 40
RT 90
PU
FD 80
LT 90
PD
CIR19 40
LT 45

a

Figure 3: The children's perceptual strategy in task 4

The researcher decided to prompt them to focus their attention on the
uniformity of the figure they had noticed from Alexandros' turning of the piece
of paper. Their dialogue at this point illustrates how '!!e relationship among
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the three centres was made explicit by the children;

V: You know what I'm thinking? Why should It be 45? (the turn)
You know why? Since, if we join the three dots... a triangle is
been done (formed)... an equilateral."
A: "Equilateral."
V: "Eh?"
A: And the sum of the angles of a triangle... is 180?"
V: "Look. It goes forward. It goes left, you know how much? It
goes left 360 divided by 3. So, how much is it? 3... 120. It goes
left 120... it goes forward and does the circle... (she observes
that the turtle's current heading is zero)... 120... 30 because I

was thinking that its like that, so 90 plus 30... (she types LT
30)." (brackets are used for the researcher's comments).

This new strategy involved a rather complicated but coherent use of both
Intrinsic and Euclidean notions. The reference to the two radii forming the
sides of a triangle and the centres of the circles forming its vertices implies
the use of Euclidean ideas. On the other hand, deciding on the turtle's turning
after constructing each circle was based on a partitioning of a total turtle
turn. Furthermore, Valentini's argument for turning the turtle left from a zero
heading to face the top vertice of the triangle, was based on partitioning the
turtle's turn into a 90 plus 30 degree turn.

As implied from the above example, the findings in phase 2 suggest that the
children did not seem to find inherent qualitative differences between
Euclidean and Intrinsic ideas when they us d them while employing their turtle
schema. An occasion where the children aLLL_..8 expressed this view was
during a semi structured interview after they had solved task 5 (fig. 2); the
children were comparing the CIR4 and CIR9 circle procedures (fig.1), having
used the latter in constructing the small circles of the figure in task 5:

V: "...the CIR4 and the CIR9 are the same, because..."
R: The same?"
V: "I mean that they are related in this shape in particular. I

mean that it goes there, I turn left again, I give it a number, it
does the circle again I turn it right and take It back."
R: "So what is it that makes them almost the same?"
V: "Right. That... of course in one we know the precise... (she
means length of radius) in the other one we don't know it, but
here in both cases we turn and we make the circle as usual,
while if I said that CIR4 and CIR19 were the same... they are not
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the same because in CIR19 it starts from the middle like TC and
in those two it starts from the edge."

In this occasion, Valentini seemed to refer to the CIR4 and CIR9 procedures as
a product of the turtle's action, implicitly de emphasising how this action is
quantified. Her criterion for distinguishing the CIR4 and CIR9 procedures from
the CIR19 and the TC involved the notion of where the turtle started (and
ended) in constructing the circle, i.e. on the curve itself or on a point away
from the curve. In explaining why she thought CIR4 and CIR9 were "equally
easy", Valentini subsequently said:

V: "Because both of them make a circle. A 36 agon that is.
Especially from the turtle's point of view, the turtle would say
that 4 is easier. Because 4 is completely clear, you tell her 'go
forward turn, go forward turn' while in CIR9 it does all that
thing."
R: "So, for the turtle CIR4 is easier. Does that mean that for you
CIR9 is easier?"
V: "It's the same."
A: "It's the same."

The indications that the children's criteria for using Intrinsic and Euclidean
notions were not primarily related to inherent characteristics of the notions
themselves, but rather on aspects of the broader mathematical situations
generated during. the research, lead to a further prompting of which of these
aspects were important in the forming of the children's choices and why.

Two factors concerning the role of the intrinsic schema in the children's
choices emerged from the analysis. Firstly, they found employing the schema
meaningful and did not seem to favour one kind of notion or the other as a
consequence of having employed it. Secondly, their criteria for using the
schema tended to relate to its intuitive nature rather than to a particular type
of geometrical notions. The programming and modularity involved in the

children's strategies also influenced their choices on which notions to use.
However, their priorities in their decisiOns lay with the programming rather
than with what kind of geometrical notions to use. The children's critical
remarks on generalised rules involving Intrinsic and Euclidean notions referred
to whether the rules had been derived via an inductive method or not, rather
than on which kind of generalised rules were easier to understand. Finally, the
children expressed a preference for employing notions which they had
previously used in personally meaningful contexts rather than those presented

ti
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to them through the school system. Their distinction between "personalised"
and "Impersonal" notions, however, did not seem to be related to the

distinction between Intrinsic and Euclidean notions.

TASK 8

REPEAT 4[CIR19 20 PU FD 40 PD RT 90]

Figure 4: The children's solution of task

An episode encapsulating the above issues occured within the context of the
children discussing their solution of a task figure involving circles placed in
a square formation (fig. 4). Both children said that they preferred explaining
the turtle's turn of 90 degrees by means of the partitioning of a total turn
rather than adding up the internal angles of the formed square. What is
interesting is not their preference as such (after all, they were using the
turtle to construct the figure), but the reasons they gave for and against the
two methods:

(The children's reasons on why they did not prefer the internal angles
method)
V: "...they tell us, that definitely it's 360 (she means that the sum of the
internal angles is 360 degrees) and that's it, you can't say anything, it's
definitely 360, I know and you can't ask, you can't do a thing."
A: Its like I told you the other time. Geometri' `Jrces us, we can't ask
her... this, since its been discovered that this is that much, that much
we'll write it. We can't ask her why is it like that and why is it like this
because they'll tell us because that's what it want's to be."

(Their reasons on why they preferred the total turn method)
V: "Because it's more natural... yes it's more natural, now I thought of
that... anybody can understand it..."
A: "Even if he doesn't know turtle at all."
R: "Tell me something. What does someone have to know to understand this
thing?"
V: "Nothing."

As implied by the above example, the children did not seem to consider one
type of notions easier to understand than the other. Instead, their choice of
which one to use was influenced by other factors of the generated
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mathematical situations outlined above, such as whether using a notion had
been part of the children's personal experience. Therefore, It was ultimately
those factors which were important in the children's choices and not whether
one type of notions, Intrinsic or Euclidean, made more sense than the other.

CONCLUSIONS

The analysis has indicated that the children did not find qualitative
differences between the nature of Intrinsic and Euclidean notions while
employing their turtle schema in the Circle microworld. The case study can
therefore be used to argue that there is rich educational potential in creating
microworld environments which on the one hand invite children to use their
intrinsic schema and on the other embody conceptual fields (in the sense of
Vergnaud, 1982) incorporating a range of geometrical ideas substantially
wider than the one provided by Intrinsic geometry.
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MATHOPHOBIA:
A CLASSROOM INTERVENTION

AT THE COLLEGE LEVEL

Raynald Lacasse, Universito d'Ottawa.
Linda Gattuso, COgep du Vieux-Montreal.

Following an investigation conducted with mathophobics students
(Gattuso, Lacasse,1986), we formulated a set of working
hypotheses for mathematics teaching. This new model was put to
use in a regular class of at the college level. The main objective was
to create an environment in which the affective aspects of learning
mathematics would be recognized and coped with, along the lines
determined by our former research, through genuine mathematical
activities. (This workshop will be presented in English)

1 Cheminement

Ce texte presente les resultats d'une recherche menee en vue d'articuler un
modele d'intervention en classe qui permette a l'eleve de poursuivre des activites
mathematiques dans un contexte qui minimiserait ('emergence de reactions negatives
face a cette dernarche. Nimier (1976), Tobias (1978), Blanchard-Laville (1981) et
Blouin (1985,1986,1987), entre autres, font apparaitre ('importance du cote affectif de
l'enseignement des mathematiques; nous nous interessons particulierement a ces
aspects negatifs qui sont recouverts par le terme "mathophobie". Notre modele devait
s'inspirer des resultats obtenus dans notre recherche : "Les mathophobes: une
experience de reinsertion au niveau collegial." (Gatti. Lacasse 1986).

Cette premiere etude nous a permis d'analyser le phenomene de la
mathophobie clans le cadre d'ateliers qui avaient pour but de reconcilier un certain
nombre d'eleves ayant un vecu negatif face aux mathematiques. (Lacasse,Gattuso,
PME XI, 1987). A l'origine, it s'agissait de voir s'il etait possible de modifier ('attitude
des eleves face aux mathematiques.

Les resultats de notre premiere recherche aupres des mathophobes sont
regroupes autour de treize enonces ou hypotheses qui semblent nous indiquer un
ensemble de conditions permettant de creer un environnement favorable a
l'apprentissage des mathematiques, du moins en ce qui concerne ('aspect affectif. Par
contre, ces hypotheses avaient generees dans un cadre bien specifique: celui des
ateliers "Phobie des maths". C'est ainsi que nous avons ete amends a prevoir un
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deuxieme volet a cette recherche. L'analyse des resultats obtenus a mis en evidence
un certain nombre de facteurs sur lesquels les enseignants peuvent effectivement
intervenir dans une demarche didactique reguliere. Une partie des resultats a ete
presentee au PME XII (1988). Nous aimerions maintenant completer cette
presentation, a la lumiere de ('analyse que nous avons faite depuis.

2 Les problemes d'implantation

Le commencement

La question cruciale, au debut, c'etait bien sur de construire le cours en tenant
compte des hypotheses. Nos avions fait le choix dune demarche tits orientee vers
l'activite de l'eleve. Or, l'environnement physique au sens large nous amene
beaucoup de contraintes. Lors des activites, les eleves travaillent en groupe mais les

locaux sont exigus et les tables de travail sont assez petites. De plus, la disposition
nest pas prevue pour ce genre de travail. Lors de notre intervention, le hasard nous
avait attribue des classes qui etaient libres a la suite des poriodes de cours. Les
eleves en profitent souvent pour rester en classe apres le cours et poursuivre leur
travail ou leurs echanges. L'atmosphere demeure tres detendue. Des le depart les
relations personnelles entre les eleves et l'enseignante sont favorisees. La presence
au cours s'en est ressentie de meme que la complicite entre les eleves.

La construction des activites

Nous avons pu experimenter plusieurs activites utilisant du materiel concret. La
plupart di, temps, le materiel est bien recu des eleves, meme s'il nest presque jamais
destine au collegial. L'enseignant doit constamment inventer, imaginer et aussi
construire des supports concrets que les eleves peuvent manipuler. II y a beaucoup
de travail a faire de ce cote. Nous avons pu constater lors de la preparation des
protocoles d'activites, que trop souvent dans l'enseignement certains concepts
implicites sont pris pour acquis. II est necessaire qu'ils soient explicites. Cela est
surtout vrai dans le contexte de resolution de problemes. L'enseignant doit insister sur

la demarche de resolution de problemes et non seulement sur la solution ou sur le
contenu. Lors d'un cours a caractere non magistral, ce sera, entre autres choses, par
ses questions que l'enseignant pourra mettre en valeur ses processus, ses
demarches et surtout celles de ses eleves.

Les activites libres ont donne aux eleves ('occasion d'emettre des hypotheses,
d'echanger des resultats et de se poser d'autres questions. De plus, Is apprecient le
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fait de decouvrir, cela leur permet de comprendre. Cependant, it y a tout un
apprentissage a faire pour eux et ce nest pas evident. Ils ont des difficultes a
travailler, a se developper une methode. C'est pourquoi le role de l'enseignant est

tres important. II doit agir comme un guide: resituer l'eleve, relancer le travail, poser
des questions et eclairer a l'occasion mais sans rien imposer.

3 L'evolution des eleves: attitudes et comportements

La classe reguliore.

A la suite de ('experience des ateliers, nous nous posions une question
fondamentale: est-ce possible de mettre en place cette fagon de travailler avec les
eleves reguliers? Or, bien qu'il soit difficile de voir des resultats immediats sur le strict
plan de la performance, dans ('ensemble, nous repondons oui a cette question pour

plus d'une raison.
II y a eu sensiblement moins d'abandons, soit sur le plan formel (abandon de la

session), soit sur le plan de l'activite quotidienne. Lors des entrevues, nous avons pu
constater I'effet generalement positif de notre approche. Les eleves expriment avec
grande facilite leurs reactions parfois negatives, parfois positives par rapport au cours,

aux mathematiques.

Le phenomene du dOblocage chez les eleves.

Nous avons pergu, en cours de session, un changement chez certains eleves,
un deblocage par rapport aux mathernatiques. Pou l'eleve, it s'agit de se dire: je vais
reussir ce cours de mathematique et je vais prendre les moyens necessaires a cette
reussite. Le deblocage peut etre identifie a un mom, tres précis; c'est-e-dire, it peut

y avoir une periode de gestation et puis, tout d'un coup, on trouve qu'on a du plaisir a

faire des mathernatiques. Cependant, it ne faut pas penser que c'est permanent.
C'est plutot un zig zag; mais, une personne qui vit une experience positive en tire une

certaine capacite a faire face a la prochaine attaque d'anxiete de fagon un peu plus

solide.

Le vecu des eleves: les activitos ouvertes et la communication.

Dans les communications qu'on veut etablir dans une classe, on cherche a
faire en sorte que les eleves partagent leur vecu mathematique. Evidemment, it faut
leur faire vivre quelque chose, parce que bien souvent leur passé mathematique est
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reduit au minimum. C'est le rale des activites ouvertes. Ce style d'enseignement qui
consiste a ne pas trop dormer de reponses mais a relancer le questionnement s'avere

plus efficace probablement lorsqu'il est utilise, comme on l'a fait, de facon tres
systematique.

Deux facteurs sont Orients dans la poursuite de cette demarche.
Premierement, it y a le programme, le systeme. C'est une enorme contrainte; les
objections des enseignants a propos du programme a suivre sont comprehensibles. II
y a aussi le facteur relie au temps qu'il Taut pour demarrer. Au debut, ('incertitude est
totale. On se demande si les eleves qui vont avoir realise telle partie des activites
vont avoir reussi a couvrir tous les elements.

Selon les dossiers scolaires, dix eleves sur 19 ont ete recuperes
temporairement. On peut donc presumer que ce modele d'enseignement favotise
l'apprentissage des mathematiques. Le taux de reussite assez faible de la session
suivante permet de supposer que ('intervention est positive mais peut -titre pas assez
longue. Un suivi serait necessaire. II fallait s'attendre a cette conclusion: it est

impossible de refaire en une session un mode d'apprentissage qui s'est installe
pendant des annees. Dans ('ensemble, nous croyons qu'une etude plus complete du
cheminement des eleves devrait etre faite et devrait mettre en jeu un suivi sur
plusieurs sessions. A la lumiere de notre travail dans les ateliers de phobie des maths
et a la suite de nos deux experimentations, nous croyons que la prochaine etape,
c'est de suivre un groupe d'eleves a travers tous leurs cours de mathematiques au
cegep. Nous pourrions alors mesurer la qualite de ('intervention et la permanence
des acquis sur toute la duree de leur presence au cegep.

4 Le jeu des relations et des perceptions

Canaux de communication

La forme de travail privilegiee dans notre intervention a ete le travail d'equipe.
L'enseignante a mis les eleves dans une situation favorisant les echanges et le travail

de groupe. Nous y avons vu plusieurs avantages. Le travail en groupe permet une
activite mathernatique qui se trouve souvent enrichie par des discussions qui emanent

des questions des eleves. Certains d'entre eux ont pu prendre confiance en eux et se
sont senti valorises de pouvoir en aider d'autres. De plus les situations de resolution
de problemes permettent a certains eleves, et ce ne sont pas les forts habituels, de se
faire valoir; en effet, ces situations font souvent appel a d'autres habiletes que celles
generalement utilisees dans nos classes de mathematiques comme ('imagination, la
capacite de synthese, la vision globale.
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Le travail en groupe, nous avons pu ('observer, comporte cependant ses
difficultes. Les tres faibles et trop timides ne s'integrent pas a line equipe, d'autres ont
tendance a trop se fier sur les voisins. Par ailleurs certains eleves plus forts n'ont pas
toujours envie d'aider les plus faibles. Ils mettent beaucoup de temps a travailler leurs
mathematiques et voudraient avec raison que les autres en fassent autant. Ils ne
veulent pas perdre leur temps.

Pour les eleves au point de depart, verbaliser leur demarche nest pas facile.
Mais le travail en equipe, surtout au moment d'activites plus exploratoires, ameme
doucement les eleves a decrire ce qu'ils font et ensuite ils en discutent et l'evaluent.
Ce procede les aide a comprendre ce qu'ils font (que ce soit juste ou non) trop
souvent instinctivement sans aucune analyse. Ils sortent de ces echanges valorises.
L'enseignant qui les ecoute peut juger des acquis, meme si, a l'occasion, certains
eleves restent insecures.

Relations eleves-enseignant

Si l'apprenant prend conscience que les resultats decoulent de son travail, it y
a de bonnes chances qu'il puisse les retrouver au besoin. L'eureka, c'est simplement
un signal tres important que la personne reste accrochee a sa demarche. Cette
reaction est aussi une forme d'auto-renforcement ou de renforcement interne et c'est
dans ce sens que le fait d'apprendre nous rend curieux et nous pousse a vouloir
apprendre autre chose. L'enseignant cherche donc a multiplier les occasions
d'emergence de ce signal qui ne peut survenir que dans les activites.

Les eleves prennent plaisir a comprendre et a reussir. Ils sont par la suite plus
encourages a poursuivre leur travail. D'autre part, l'enseignant doit faire en sorte que
les acquis soient conserves. Pour cette raison ct alement pour favoriser une
certaine continuite dans les cours, it nous apparait primordial qu'il souligne les
decouvertes des 616N/es soit individuellement ou en groupe a l'occasion d'un retour
la fin dune periode de travail.

Un dernier point: le cours magistral sert aussi dans une bonne mesure a
transmettre le vecu de l'enseignant. II est important que l'enseignant puisse montrer

ses dernarches, ses conjectures, ses tatonnements. Dans notre cas, comme it y a eu
tres peu de cours magistraux, les occasions de tranmettre ce vecu se sont faites rares.
Cependant, nous restons avec le sentiment que cette dimension doit demeurer
presente a ('esprit de l'enseignant comme si le choix de cette formule didactique etait
conditionne par le desir de transmettre une partie de son vecu mathernatique.
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5 Le vecu de l'enseignant

PremiOres constatations

Nous avons prate une attention particuliere au cheminement de l'enseignante
et it nous a semble que les points suivants etaient les plus saillants.

D'abord la personnalite de l'enseignante, son "personnage" en quelque sorte,
est reliee a Ia gestion du cours comme tel. Par exemple, le fait de se rendre disponible
entre les cours a pu jouer dans le deblocage de certains Moves. Mais cette
disponibilite tits grande et la reponse que les eleves y font depend dans une large
mesure de personnalites qui s'accomodent. Le rep test fait that d'une composante
importante pour I'enseignante: la capacite pour l'eleve d'utiliser la ressource "prof".
Un manque de maturite de l'eleve sera mat regu ou mal pergu sur ce plan.

Deuxiemement, la structuration du cours, surtout dans les parties les plus
novatrices, pose des problemes. II Taut souvent creer du materiel nouveau selon une

dernarche inhabituelle puisqu'experimentale. La pression constante des regularites
du milieu engendre une fatigue qui, assez rapidement, va faire en sorte que
l'enseignant va retomber dans ses anciens schemes, ses anciennes habitudes. II

aura recours a des methodes d'enseignement plus traditionnelles, des methodes ou
les eleves, comme l'enseignant, ne sont pas constamment confrontes a la recherche
du sens.

Les conceptions des eleves eux-memes sont parfois des obstacles serieux a ce
nouveau fonctionnement. Ce 'sont toutes ies fausses conceptions qui jouent: les
eleves habitués a d'autres exigeances s'accomodent mal de ce nouveau role surtout
s'ils croient qu'il ne se poursuivra pas dans les cours suivants.

Erifin, le modele applicable semble s'orienter vers deux aspects principaux: un
enseignement visant surtout la communication oil ('importance est dans la
construction et ('utilisation du langage mathematique et un enseignement axe sur Ia
decouverte oil le contenu mathematique est primordial. Ces deux aspects doivent
etre conserves a &avers une etape de consolidation formelle des acquis. Cette
consolidation depend de ('action de l'enseignant, par exemple au niveau de la
cloture de chaque cours ou de chaque sequence d'activites.

Les exigences en termes de disponibilite de l'enseignant

L'un des avantages de la methode de travail par activites devrait etre de
permettre a l'enseignant d'intervenir plus precisement selon les besoins de chacun.
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Nous avons pu constater qu'il est possible d'agir ainsi en classe mame en depit des

contraintes.
Par ailleurs, les eleves ont souvent eu recours a ('aide de l'enseignante apres

les periodes de classes. Les eleves sentent qu'il y a toujours une possibilite de
demander de ('aide soil a I'enseignant soit aux autres eleves. Ils arrivent ainsi
depasser leur timidite a poser des questions car, en general, ils n'y sent pas habitués

et ils ont toujours peur de paraitre ridicule ou stupide. La preparation par l'enseignant
de ce qu'on pourrait appeler l'environnement didactique doit donc inclure cette
composante.

En guise de conclusion

Dans l'etat actuel des choses, les faiblesses des eleves se situent sur deux
plans: il y a ('aspect preparation au contenu mathematique et it y a la preparation a
travailler tout court. En tant qu'enseignant en mathematiques, nous trouvons qu'il y a
quelque chose de special a l'interieur de l'activite mathematique. Ce n'est pas
necessairement relie aux notions apprises a l'ecole; dans la vie de tous les jours,
quand se sert-on des mathematiques offertes au niveau collegial? Mais, dans la vie
courante, la formation mathematique conditionne-t-elle notre facon de reagir a
differentes situations? Peut-titre que oui, mais comment? N'est-ce pas dans cette
direction qu'il faut chercher une raison d'être a I'enseignement des mathematiques
quelque niveau que ce soit?
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LE MICRO- ORDINATEUR, OUTIL DE REVELATION ET D'ANALYSE
DE PROCEDURES DANS DE COURTES DEMONSTRATIONS DE

GEOMETRIE.

Annie LARHER (1) et Regis GRAS (2)
Equipe de Didactique de l'Institut Mathematique - Universite de Rennes I

Resume. Les eleves frangais de 12 A 14 ans mettent en oeuvre leur raisonnement cleducti
principalement en geometrie. Les difficultes rencontrees sont tres importantes ; elles
hypothequent quelquefois la suite de leur scolarite mathematique. L'etude presentee ici vise A
connaitre l'origine et la nature des erreurs les plus frequentes. Nous utilisons pour cela le
micro-ordinateur qui s'avere puissant outil de revelation et d'analyse des &marches des
eleves, en particulier dans le cas ou l'activite deductive se reduit A une simple inference. Des
methodes statistiques multidimensionnelles permettent de &gager les grandes structures de
comportements errones.

Abstract. French pupils, between the ages of 12 and 14 use deductive reasoning especially in
geometry. They have to cope with many difficulties which may jeopardize their success in
future mathematics courses.The study that we are submitting here aims at a deeper knowledge
of the origin and the nature of the most common mistakes. In order to achieve this we use the
micro-computer which appears to be a powerful tool to reveal and analyse pupils'ways of
reasoning, especially when the deductive activity is limited to a simple inference.
Multi-dimensional statistical methods provide us with the possibility of bringing out the main
structures of erroneous behaviours.

§ 1 - PROBLEMATIQUE.
Des observations et quelques etudes plus approfondies de productions

d'eleves, de 4eme en particulier (13-14 ans), sur les problemes a demonstration
geometrique, ont montre la multitude et la grande variete des procedures
erronees des eleves. Certes, les erreurs puisent leur origine profonde dans
l'absence de signification de la preuve mathematique et dans une carence de
maitrise du lexique necessaire (puisque, done, or, car ...), mais egalement de
facon ou consequente ou conjointe :

* dans une absence de rigueur dans .iculation dissymetrique des
trois elements-cles de l'inference : hypothese - tneoreme - conclusion

* dans la prise en compte d'indicateurs extrinseques pour choisir
Fun" quelconque de ces elements-cles :

. indicateurs formels (structure, rythme, ...)
semiotiques (mot, lettre, syrnbole, )

sernantiques (un sens voisin, une utilisation ante-
rieure, ...).

II est difficile, voire impossible, pour l'enseignant de reperer a chaque
fois dans une copie d'eleve le type d'erreur commise et surtout sa repetition
chez l'eleve, sa frequence dans la classe et les conditions dans lesquelles
l'erreur s'elabore et apparait. De plus, it lui est encore plus difficile de trouver
pour chaque eleve les situations qui permettraient de perturber et mieux,
d'eliminer les procedures erronees.

L'ordinateur, en edhange, permet un travail plus individualise et,
surtout, une sanction immediate de l'erreur et donc un retour de l'eleve sur
ses procedures.
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(2) Professeur A l'I.R.E.S.T.E. - Universite de Nantes.



211

12 - METHODOLOG1E RETENUE.
Il semble donc important, pour mieux traiter ensuite ces procedures

chez chaque eleve, de les identifier et d'en reperer les circonstances
d'apparition. II parait necessaire de limiter les variables en interaction et pour
cola de fournir a l'eleve des situations oil le sens entretenu par le but lointain .

de la demonstration nest pas le moteur essentiel et oil le lexique est reduit.
Pour ce faire, on atablira une liste de faits mathernatiques

(geometriques en l'occurence) pouvant tenir lieu, suivant les situations,
d'hypotheses ou de conclusions et une liste de theoremes. Une inference'
incomplete - voire un probleme a demonstration - etant proposee, l'eleve devra
choisir un ou plusieurs faits, un ou plusieurs theoremes pour que soit validees
l'inference ou les inferences successives. La Cache de l'eleve sera executee
l'aide d'un logiciel permettant un travail personnel, puis une analyse
individuelle de ses reponses (apres eventuellement 2 essais).

Notre tache didactique et informatique (1) consistera alors, a plus ou
moins long terme :

* a construire des situations oil les variables sant controlables ;
* a identifier et interpreter les erreurs et les conditions de leur

emergence ;
* a construire un modele predictif de procedures erronees ;
* a construire des situations oil celles-ci seraient desequilibrees ;
* a elaborer des logiciels satisfaisant les objectifs didactiques.

Schematiquement, compte tenu de ces objectifs, le micro-ordinateur est
integre sous 2 aspects :

* aide tutorielle de l'eleve dans une situation de probleme
demonstration (logiciel D)

* aide pour l'enseignant a mieux comprendre les erreurs commises
par l'eleve et donc si possible a les corriger (logiciels "Premiers Pas" et
"Multipas") .

L'evaluation du logiciel D (aide a la demonstration), souligne, entre
autres, trois difficultes :
1°) Les eleves, dans la conduite de la demonstration, butent sur des obstacles de
nature logique difficultes a identifier avec precision

la ou les hypotheses associees a une assertion restant a prouver
- la ou les conclusions decoulant d'hypotheses donnees et d'un theoreme

le theoreme justifiant que telle hypothese conduit a telle conclusion.
2°) Les obstacles rencontres par l'eleve sont aussi. tres souvent d'ordre lexical et
discursif.
3°) Le nombre de variables didactiques a controler est &eve et certaines d'entre
elles demeurent difficilement maitrisables. Aussi, pour echapper a un
empirisme prejudiciable a la recherche-meme, nous allons chercher, a travers
une recherche incidente, a limiter les variables en jeu afin d'agir plus
efficacement sur elles.

Nous sommes alors conduits de facon necessaire a affronter differentes
questions lives a ces trois difficultes. Comment venir a bout de celles-ci ?
Comment aider les jeunes eleves (5eme et debut 4enle) dans l'apprentissage de
la demonstration, en commencant par cello a un pas, pour eliminer les
difficultes introduites par la redaction et la conception globale d'un probleme ?
(1) Dans le cadre du Groupement de Recherches du C.N.R.S. : "Didactique et Acquisition des
connaissances scientifiques". Le groupe de Rennes est constitue, of 're les presentateurs de cc
texte Marie-Daniele Fontaine (College de Combourg), Alain Nicolas Victor-Rault),
Andre Simon (Lycee Brequigny), d'I. Giorgiutti, F. Ruamps (Institut Mathematique de
Rennes), de P. Nicolas et D. PY (Institut de Recherche en Informatique et Systemes Aleatoires
de Rennes) et de C. Boulard (College La Ilarpe, Rennes). Tous ces enseignants-chercheurs
participent A cette recherche, A son experimentation et son evaluation.910
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Comment lour permettre de savoir faire un choix pertinent, parmi une
liste d'assertions et de theoremes, de triplets dont les termes sont :

hypothese
thooreme
conclusion ?

Exemple : Questionnaire : 6 questions independantes. Hypotheses et
theoremes sont donnes. La conclusion est a trouver. (cf. analyse § 4).

Nous avons entrepris pour ce questionnaire le traitement statistique de
donnees recueillies suivant deux methodes d'analyse : la classification.
hierarchique (selon I.C. LERMAN) et la classification implicative (selon
R. GRAS). Nous verrons plus loin les resultats que nous en avons deduits.

D'ores et dejA, nous pouvons nous demander sur quoi s'appuie la
strategic de decision de l'eleve dans cet exercice tres particulier qui consiste a
faire un choix parmi un ensemble ferme de solutions ?

Cette strategic est necessairement fort proche de celle deployee dans les
Q.C.M., et, en revanche, tres differente de celle qui est suivie dans les
demonstrations a plusieurs pas, dans les problemes ouverts et meme dans le
logiciel D. Ici l'eleve doit seulement retenir ou rejeter un element dune liste. II
n'a pas de veritable activite creatrice. De plus, le sens global nest pas
mobilisable ; les seuls points d'appui sont le sens du pas de demonstration et
l'ensemble langagier des assertions ou theoremes dont it dispose. Nous avons
cependant remarque, grace a la repetition, a l'accumulation et a la
concomitance d'erreurs, la stabilite de certaines procedures qui correspondent
A des modeles de fonctionnement en equilibre aussi bien chez un eleve
particulier que chez l'eleve en general. Les erreurs, que nous appelons tous
"erreurs de raisonnement", relevent de causes profondement ancrees et pas
seulement d'ordre logique. Elles tiennent aussi a la meconnaissance des objets
traites (quand ce n'est pas du vocabulaire utilise) et aussi, tres fortement, lors
de l'articulation hypothese theoreme conclusion , au pouvoir attracteur
de certains mots, certains signes ou symboles, certaines formes (structures de
phrases, rythmes,...). L'eleve assemble plus, quand it se trompe a partir d'un
critere "signe" que d'un critere "sens". II va puiser dans les solutions offertes
les indices formels les plus vraisemblables, les plus pc-tinents pour lui.

§ 3 - LOGICIELS DE REVELATION ET D'ANALYSE.
3.1. 'Premiers Pas".

II ne s'agit pas a proprement parler d'un didacticiel mais plutot d'un
outil de diagnostic.

a) Le module eleve :
L'eleve dispose dune liste de faits (enonces pouvant servir aussi bien en

hypothese qu'en conclusion) et dune liste de theoremes repores par un
numero. Une demonstration a un pas - inference - lui est proposee. Elle
comporte un ou plusieurs trous qu'il doit completer. Toutes les reponses
fournies sont bien entendu conservees.
Exemples de questions. 1 et '? ..3 ? it manque une hypothese et la conclusion

? 2 5 seule l'hypothese est demandee (elle peut
comporter un ET).

Suivant le choix fait au depart par l'enseignant (module PREPA) l'eleve
dispose de plusicurs cssais ou non et la bonne reponse lui est donnee ou non.

b) Le module PREPA : preparation du professeur.
Outre quelqucs options que lc professeur peut choisir (cf. ci-dessus),

l'essentiel du travail de preparation est la constitution des fichiers de faits,
theoremes, demonstrations, exercice.
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Le fichier "demonstrations" conticnt les inferences "exactes" attendues
par l'enseignant et le fichier "exercice" localise les "trous".

Il est a noter que l'enseig-nant a l'entiere liberte de son exercice, tant du
point de vue du choix des theoremes et faits que de leur formulation. II
l'entiere responsabiilte du choix des questions en fonction des variables
didactiques qu'il souhaite observer. Le logiciel est done parfaitement neutre de
cc point de vue et personnalisable en fonction d'objectifs :
1. Renforcement d'apprentissage du fonctionnement dun pas deductif.
2. Bilan, recensement des acquis des eleves.
3. Revelation, analyse, diagnostic des erreurs pour une etude didactique.

c) Le module BILAN.
Il comporte des compteurs standards gerant les fautes les plus

courantes, comme inversion hypothese-conclusion, et des compteurs non
standards qui permettent au professeur d'etudier de facon plus precise des
variables didactiques.

3.2. Mu1tiPAS.

a) Objecti fs.
Comme nous l'avons vu, la vocation essentielle de "Premiers PAS" est le

diagnostic des procedures d'erreur commises par les eleves. Cependant son
utilisation nous fait decouvrir d'indeniables apports au niveau de
l'apprentissage de la demonstration a un pas.

L'ambition de "Mu1tiPAS" est de mettre plus l'accent sur l'objectif
apprentissage : it sera propose aux eleves de resoudre un probleme simple
mais complet, avec a sa disposition :

* des faits-donnees
* un fait-conclusion
* une liste de theoremes
* des faits "intermediaires".

L'operationnalisation de cet objectif se poursuivra suivant deux axes :
1 - la reconnaissance du changement possible dans le statut d'un fait (un fait
demontre, qui apparait en conclusion d'un pas, peut etre utilise comme
hypothese ou partie d'hypothese dans un pas qui suit) ;
2 - l'enchainement des pas, avec la possibilite donnee eventuellement a l'eleve
d'inscrire ses pas dans l'ordre de son choix, y compris a partir de la
conclusion.

b) Conception generale.
"MultiPAS" herite du logiciel precedent une conception en trois

modules : * preparation des exercices par l'enseignant ;
* recherche dune demonstration par les eleves (toutes les reponses

sont enregistrees) ;
* bilan, execute apres le passage des groupes d'eleves.

§ 4 - ANALYSES STATISTIQUES ET DIDACTIQUES D'UN QUESTIONNAIRE.

4.1. Presentation du questionnaire.
Un ensemble de 6 questions est propose a des eleves de la classe de lieme (12-13
ans) apres l'enseignement de quelqucs proprietes de la symetrie par rapport a
un point. A chaque question correspond une inference que l'eleve doit
completer en choisissant un des 11 faits suivants a titre de conclusion :
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trtIittt*tti,ttt
FAITScittatitiitCiit

(EF) ET (CD) SONT SYMETRIQUES PAR RAPPORT AU POINT I
CNN] EST LE SYMETRIOUE DE CPR] PAR RAPPORT AU POINT I

3 (AD) ET (CD) SONT SYMETRIQUES PAR RAPPORT AU POINT 0
4 (MN)//(PR)
5 (CD)//(EF)
6 (AB) / /(CD)
7 (AB)//(EF)
B MN=PR
9 CD=EF
10 AS=CD
11 AB=EF

ttStitIc*Stit***
THEOREMES
***************

1 LA SYMETRIE CENTRALE CONSERVE LES LOt4GUEURS
SI (D)/J(Y) ET (0')//(D") ALORS (D)//0",

3 LE SYMETRIDUE D'UNE DROITE (D) PAR RAPPORT A UN POINT EST UNE DROITE (D':
PARALLELE A OW

4 SI DEUX DROITES SONT SYMETRIQUES FAR RAPPORT A UN POINT ALORS ELLES SONT
PARALLELED

DEUX SEGMENTS SYMETRIQUES PAR RAPPORT A UN POINT ONT MEME LONGUEUR
6 LA SYMETRIE CENTRALS CONSERVE LES DIRECTIONS

Question. Hypothese et theoreme des listes ci-dessus etant donnes, trouver la
conclusion tip& de la liste des faits (2 essais sont possibles a cheque question).

NSTRATIONS

HYPOTHESES THEOREME

?

CONCLUSION
A trouver

Hypothase :1
Q, Theorame : 34.

' Conclusion : 5\..

(EF) et !C.I1:21,07:trliques Le symatrique de (D) par rapport
a un pal__ est (D')//(D) (EF)//(CD)

Hypothase :3
Q, 1Theorame : 4 -1.

Conclusion : 6

. .
.

(AB) et (CD) symatriques
par rapport a 0

Si 2 droites sont symetriques
par rapport a un point alors
elles sont //

(AB)//(CD)

: 2
,

T heorameQ3
'

Conclusion :8

[MN1 est symatrique de
[ PRI par rapport a I

2 segments symatriques par
rapport a un point ont meme
longueur

PIN = PR

.

Hypothase :3

Q4 TC=Itairion :66.

(AB) et (CD) symetriques
par rapport a 0

La symetrie centrale conserve
les directions (AB)//(CD)

Hypothase : 6ET5
Q5 Tcheolamseion : 2

1.

5 ' (AB)//(CD) et
(cn)//(EF)

Si (D)//(D') et (D')//(D")
alors (D)//(D") E(AB)//(r)

Hypothase : 2

Q6 Th6orame : I

i.0onclusion :8

est symarioue de
ITAI par rapport 5 I

La symatrie centrale conserve
les longueurs MN PR

2 4d.2



215

On peat schematiser Ies proximites fornielle, aemantique et
rOerentielle, a priori -, de ces six questions :

Sym attic - centrale Transit iv it,: du
paral1011sme

Si alors

dOclaration

conservation

sym,e ttle or Aymetrie et
d ir ec tsbrrs longueurs

4.2. R'esultats.
1°) Parametres des- reussites.

a) Movennes.
On. retrouve la hierarchie presumee a priori entre les reussites Ri aux 6

questions : R2 (96,25%) , R1 (78,75')/d) et R4 (72,5 70) .

On a : R3 = R6 (87,5%)

R4 nettement inferieur. a R6 , R2 legerement superieur a R.
Le taux de reussite de Q5 (85 70) est un peu inferieur aux taux de

reussite de Q3 et. Q6 (Q5 n fait pas reference a la symetrie centrale ; son-

theoreme est instancie). Il est nettement inferieur a celui de Q2 malgre la
meme formulation du theoreme en "si... alors... ; est-ce en raison de Ia double
hypothese ?

b) Coefficients de correlation et x2 entre les modalites "reussites"
des & questions.

- Les plus fortes liaisons positives sont observees entre :
R

1 et R2 (formulation differente du theoreme mats meme
content') : p = 0;38.

R et R6 (p = 0,358) : est-ce que ce sont les memes eleves qui ont

des difficultes a la mise en train (Q1) et a soutenir leur attention (Q6) ?!

- R3. et R5 ont avec toutes les. autres reussites un coefficient de
correlation tres proche de 0. et meme nogatif sauf avec R4.

2°) Analyse hierarchique des reponses.
Nous utilisons la mothode de classification de I.C. Lerman. scion

algorithme dit de Ia vraisemblance du lien.

Arbre hierarchigue des roussi Les.

(3)

(5)

(4)

(I) 223
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L'arbre complet figure en annexe.

7.4. Analyse implicative.
Scion une mothode analogue a celle de I.C. Lerman, R. Gras mesure

l'implication entre attribut a et b a partir de l'indicateur de base EaAb ,
ensemble des individus contredisant a b.

Le tableau des implications permet de construire le graphe orient&
transitif, pondere, associe a la relation de quasi-implication.

Arbre implicatif de reussites.

Transit ivite
du paral-
lelisms

rs
TRANSITIVITE DU
PARALLELISME

§ 5 - En conclusion, it semble clair que l'outil informatique s'avere puissant
au niveau didactique pour controler et activer certaines variables dont on
mesure mal l'effet dans les cadres traditionnels de l'expression orale ou &rite
de la classe. Il permet, en attenuant l'influence de l'affect dans la relation de
l'eleve au savoir, de faire emerger des procedures spontanees et naturelles et
embrassant des populations de taille importante (sans imposer un plan
d'experience lourd et complexe), d'analyser des regularites dans ces
procedures . Ainsi , l'emission de conjectures sur le plan des strategies
d'inganierie didactique trouve un fondement moins empirique que celui qu'un
enseignant peut formuler au vu des productions des eleves de sa classe. Aussi,
nous continuerons dans la voic dialectique dune part, de perfectionnement,
efficacite et accessibilite de logiciels, d'autre part, emission, oparationalisation
et evaluation d'hypotheses didactiques. C'est, nous semble-t-il, a travers des
telles dualitas que l'integration du micro-ordinateur dans lc processus
d'enseignement puisera son sans et convaincra de son utilite.
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CLASSIFICATION DE 31 NODALITES DE REPONSE
CT LES EFFECTIFS D'ELEVES CORRESPONDANTS

(41)

Q3 2-5-2

(70)

(2)

(6)

(4)

R 1-3-5 (63)
1

R6 2-1-8

Q5 6,5-2-9

Q6 2-1-6

Q2 3-4-3 (4)

R
2

3-4-6 (77)
_
R
3

2-5-8 JI21____

5

(68)
R 6,5-2-7

Q1 1-3-1
(14)

Q3 2-5-4
(12)

Q5 6,5-2-11
(11)

3-6-3 (17)

3-6-10

1-3-2
(6)

1-3-9 _(.9).

3-4-5 -0)

2-5-6 40
2-5-7

(4)

3-6-9
(4)

2-1-3
(12)

2-1-4
(5)

3-6-5
(6)

6,5-2-3 (7)

Q4

.Q4

Q1

Q1

Q2

Q3

Q3

Q4

Q6

Q6

Q4

Q5

Q

Q
0

Q4

Q6

E I Q4

redondance

a
B

C

1-3 -3

1-3-6.

3-4-2

3-6-4

2-1-5

3-4-10

3-6-6
(58)

Ell

I

E]relations par rapport
a l'attendu des
theoremes

a
Maintien des
instantiations,

changement des

changement des instan-

tiations des variables

changement des rela-

tions par rapport

a l'attendu des thee,-
fames

(1 0 )

B

Liaiso
Hyp.Co cl
par le
signe

p

1

changement des instan-
tiations ; maintient 1

H

p

du sens du th
dans le choix
conclusion

oreme
de is
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GENDER DIFFERENCES IN MATHEMATICS LEARNING HEVISITED,1)

Gilah C. Leder
Faculty of Education
Monash University
Clayton, Victoria, Australia, 3168

Abstract

Over the last decade much attention has been focused by practitioners,
administrators, school systems, governments, as well as researchers, on
gender differences in mathematics learning. In this paper data
gathered through interviews in 1988 with students in grade three and
six classes are discussed. Particular emphasis is placed on affective
variables believed to impact on mathematics learning. It is argued
that summary statistics need to be supplemented with interview data for
an accurate and comprehensive description of continuing gender
differences in mathematics learning.

The National Policy for the Education of Girls (Commonwealth Scools

Commission, 1987) formalized quite explicitly the commitment of the

Australian government to gender equity in education. The proclaimed

policy summarised and built on practices and initiatives already in

place in various States and systems. Its recommendations included

the development of educational programs and related action in
primary and secondary schools ... which will enable all Australian
girls and boys to develop their potential.

Well before its publication, special funds had been made available for

programs mounted to redress the disadvantages faced by girls in

traditional education settings. Though not its main purpose, the study

described here allowed an examination of the impact of such

initiatives on factors associated with mathematics learning. While the

work, which is still in progress, is concerned with both cognitive and

affective factors, only information relating to the latter is

presented here.

AIMS

The main aim of the study was to monitor students' processing of

teachers' explanations. The participating teachers were informed that

this was the purpose which motivated the research. However, the data
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collection procedure used also allowed a number of gender differences

to be examined.

METHOD

Mathematics lessons were videotaped at various times during the school

year. Selected excerpts were replayed to the students in a one-to-one

setting to explore what they heard and processed when teachers

explained and discussed mathematical concepts. Analysis of these data

are still in progress.

Various strategies were used to facilitate rapport between the

students and the interviewer during these sessions. For example,

before turning to the videotapes students were asked questions about

their background, general interests, and reactions to different aspects

of mathematics lessons. These sessions were either videotaped or

audiotaped. Inspection of the students' responses revealed a

sufficient number of continuing gender differences to warrant closer

examination of the data.

Measures of student achievement were collected on two occasions:

during terms 2 and 4,i.e., one quarter of the way through and towards

the end of the school year respectively.

The sample

The sample comprised 94 students, 43 girls and 51 boys, in grades 3 and

6 in four different schools in the same region in Melbourne, Australia.

The schools were identified by a senior regional officer for their

interest in research and their progressive educational philosophies.

Instruments

The main data gathering instrument, i.e., for the data reported here,

consisted of structured interviews. Since their nature and scope

become apparent in the reporting of the results, they are not described

in more detail here.
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Two measures of student achievement were obtained: through the

administration of mathematics tests and through teacher rankings.

The Progressive Achievement Tests in Mathematics (Australian Council

for Educational Research, 1984) was administered to the grade three

students; The Class Achievement Tests in Mathematics (Australian

Council for Educational Research, 1976) to the grade 6 students.

Prior to the administration of the tests teachers were asked to

rank their students into three groups: above average, average, and

below average.

RESULTS

No significant differences were found in girls' and boys' overall

performance on the mathematics tests. This held for each class, at

each grade level, and for both testings. The broad overlap between

teacher rating and student score attained on the tests can be

summarised by reporting that in each class students rated above average

had the highest mean score, followed by those rated as average, with

the students rated as below average having the lowest mean scores.

However, a number of subtle differences were noted in teachers' ratings

of their students. Despite the very similar performances of the girls

and boys on the tests, collectively teachers rated 25% of the boys but

only 14% of the girls in the above average group, and 18% of the boys

compared with 28% of the girls in the below average group. When asked

a comparable question about their own performance, 25% of the boys and

14% of the girls indicated that they considered themselves to be above

average; 10% of the boys and 28% of the girls below average. Responses

to a number of other questions are summarised below. Because of the

open ended nature of the data gathering technique, more than one option

was offered by some students to a number of the questions asked.
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*Spare time activities:

While there was much overlap in girls' and boys' leisure time

activities, girls seemed to spend more time on sedentary indoor

activities; boys on active outdoor pursuits.

*Favourite lesson:

Mathematics was nominated by 51% of the boys and 21% of the girls;

sport by 18% of the boys and 9% of the girls; language by 14% of

the boys and 42% of the girls.

*Difficulty of mathematics

Thirty three per cent of the girls considered mathematics to be

easy, compared with 12% of the boys; 26% of the girls and 45% of

the boys believed mathematics to be difficult; the rest 'couldn't

say' or believed that 'it depends on the work'.

When faced with a difficult mathematics problem, about two-

thirds of both the girls and the boys would ask the teacher for

help. Strategies of trying again or returning to the problem

later were volunteered by about one-third of the boys and

approximately half the girls. Surprisingly, very few students

indicated that they would ask a friend for help.

*Strategy for catching up, after an absence

Friends featured strongly in the replies to this question. About

two-thirds of the boys and half the girls indicated that they

would ask a friend first. Often specific individuals, typically

of the same sex, were nominated. About a quarter of the boys and

40% of the girls would first turn to the teacher. The remainder

were evenly divided between 'mum', 'dad', and 'don't know'.

*Doing mathematics alone or with a partner

Despite some strong individual preferences, most students

indicated that they liked both.
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*Perceived parents' attitudes to mathematics

Approximately 20% of the boys and 10% of the girls indicated that

their parents haesaid that mathematics was an important subject

and that they, the students, should try hard to do well. Some

40% of both sexes said that they had no idea what their parents

thought about mathematics or that they believed them not to be

particularly interested in it.

*Who is better at mathematics?

The majority of the students (75% of the boys and 60% of the

girls) believed that girls and boys were equally good at

mathematics. Nevertheless, 9% of the boys and 15% of the girls

expected girls to do better; 15% of the boys and 8% of the girls

boys to be better.

To supplement these representative summative data, a number of

student responses are reported at some length.

Katrina

Katrina is a grade 3 student. She scored or shared the top mark in her

class at both testings and is considered to be well above average by

her teacher. She does not have much spare time because

I usually go to gym and when I am at home I like to go up and

play with the pets.

Mathematics is her favourite lesson at school. She thinks

mathematics is fairly easy if you know what you are doing....If I

listen I know what to do, if I don't, I don't know what to do, so

I listen.

She thinks that she is near the top of the class and can think of
nothing that she dislikes about mathematics. When she comes across a

difficult problem

I just try and wait, to see if it's wrong. I try as hard as I can.

(If it is still wrong) I try and see if I can work it out again

because I was probabl thinking of something else when I did it.

She likes doing mathematics on her own and has some hesitancy about

working with a partner. 230
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Sometimes when I work with others they tell me. 1 don't feel
quite as good because sometimes when they do that, they mis-tell
me and I end up with the wrong sum, 'cause they mis-told

me....(But) I don't, mind helping others.

She thinks that girls are probably better at mathematics than boys. In

fact

all the girls in our grade are a lot better at mathematics than
the boys. ... I think you should try. Some people do learn more

than others. But it would be nice if we all learnt the same.
Then people wouldn't Lease you. In our grade they like teasing
mostly the boys do.

Her parents think that mathematics is a good subject to study and that

it is a fairly easy subject to learn as well.

Simon

Simon is also in grade 3, in the same class as Katrina. He scored

equal first and equal second on the two testings and is also perceived

to he a good student by his teacher. He likes reading cricket

magazines in his spare time. Sport is his favourite lesson at school.

He really likes doing sums but gets frustrated when the teacher's

instructions are not exact.

Like, when she says we're going to do 12 sums, so I put down 12
and then we do only 10.

He prefers doing difficult sums

especially something new that we haven't done before.

When he comes across a difficult problem he simply goes over to the

teacher and tells her

I don't understand this. And then she just explains it to me.

Generally he likes doing mathematics on his own. If he has been away

for a few days he asks his teacher for some extra help. His parents

think mathematics is 'good'. Boys and girls, he believes, are about

equal when it comes to mathematics.

Steven

Steven is a grade G student who obtained the second and third highest
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scores in his class on the two Lestings. He is regarded as a good

student by his teacher. In his spare time he likes

to build things with lego. And my mum said to learn my tables so
sometimes I do sums.

Mathematics is his favourite lesson at school.

It's good. I like it. You need to learn it for when you go to a
job. Everyone has to know mathematics.

When asked to describe a typical mathematics lesson, he said

They're good. First we usually do some work together. Then we do
the work on the board. You write in your book and work them out.

He particularly likes

just sitting in the quiet. Figuring out things. Doing hard sums
and that. I don't like it when we have real easy ones.

His preference is for doing mathematics on his own because

it's fun and quiet. I like working in a group a bit. Well, you
need to be cooperative.

If he'd been away he would ask Nathan, his best friend, for help. He

believes that boys and girls are the same at maths:

Like a boy could do some things better than a girl, but a girl
could do other things better....My mum is real good at it. My dad
needs it to do diameters and things for houses at work. But he's
not that good. Sometimes he gets stuck.

Helen

Helen is in the same class as Steven. She scored the highest mark at

both testings and is also described by her teacher as a good

mathematics student. In her spare time she likes to type, do

mathematics games on the computer or perhaps read. While she generally

likes school

I'd probably say mathematics is my favourite lesson because it's
fun to do ... because I understand it and it's easy. Some people
think it's hard but when you know what you are doing you enjoy it.

In a typical lesson

Mr. N. goes through eadi question two or three times. Examples or
whatever. And when he's finished that, some of the people in the
class can ask when that's all finished we can
start on our own. '

She considers herself to be Ol¢:.:Of the top at mathematics. When she
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encounters a difficult problem:

Sometimes I ask Mr. N. and he gives me hints and I get it straight

off. Sometimes I just sit there and wait until it comes into my
head.

She can not say whether girls or boys are better at mathematics because

it all depends on how smart you are, not whether you're a boy or
girl.

Her parents

are pretty strict on maths. They say I'm not to fool around in
maths so I'll pass and all that. They want me to be pretty good
in maths. My dad's good and sometimes he makes me these little
stories and I have to work them out.

CONCLUDING COMMENTS

In many ways the data presented here merely confirmed those of earlier

research. Despite the considerable number of programs mounted to

promote equity in mathematics learning, girls and boys with comparable

achievement in mathematics perceived themselves, and were perceived by

their teachers, differently in a number of subtle ways.

The results were reported in two ways: through summative

statistics which emphasized Between- group differences and through more

detailed interview extracts which facilitated recognition of individual

and within-group differences. The former tend to reinforce popular

stereotypes while the latter are not only more likely to serve as a

challenge to them but at the same time point to the students most at

risk. Collectively, the data reveal the continuing need to monitor

affective components of mathematics learning.

(1) The financial support of Australian Research Council and the
assistance of Janet Clark with the data collection are gratefully
acknowledged.
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La resolution de problenes dans 1° enseignenent des
nathenatiques: conpte rendu dune experience

aupres d'enseignants du prinaire

Lenayne at Francois Conne
Universitet de tiontreal

Abstract

llathematical problem soirDA7 is a pert of the curricula for
primary and secondary school levels. Proved by most of the teachers

and the authors of the curricula as a royal mean to construct
mathematical habilities and knovledge, problem solving heuristics
constitute an object to teach. In order to get a better understanding
of that phenomena_lve conducted an experiment vith teachers in vhicL

they vere invited to solve problems they jUdfed difficults.. tc

discuss about the heuristics they used and to clarify the role of

setheiaticalproblesi solrEig in the teaching of mathematics.

i. Discntant des heuristianes. les onseionants decouvrent que

lee nathenatiaues ont un contenu

Interesses g inflechir les conceptions des enseignants Bur les

nerites d'un enseignenent des heuristiques de resolution de problems

natheaatiques, nous les invitons 8 resaudre des problexes et

discuter des heuristiques alors appliquees. De cette experience, la

najorite des enseignants ne retiennent que les connaissances

mathenatiques qu'ils ont pu construire. Le coapte rendu et l'analyse

de cette experience visent une interpretation de ce resultat.

2. La resolution de aroblenes dans l'elaboration des savoirs.

en nathenatioues

L'activite des nathematiciens, productrice de savoirs savants,

est declenchee at nodulee par les probleses, les conjectures et les

questions envisages par ces chercheurs (Brousseau, 1986). La

resolution de problenes caracterlse cette activite de construction de

savoirs. Le nathematicien partage ainsi avec sa connunaute

scientifique, naneulenent des savoirs sais egalenent des savoir

faire. L'intera des didacticiens et des enseignants pour ces savoir

faire apparait pleinenent justifie.
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3. La resolution de problems dens l'enselanenent dea

path6 Amex at la recherche en didactioue den nathenatlaues

L'interet des enseignants pour la resolution de problems,

a toujours ete. Comae le fait remarquer Conne (1989), les problems

sont des *archetypes dans l'epistemologie commune' des enseignants

qui les proposent depuis des siecles our Cleves; cet interet trouve

sa justification dans les astuces de raisonnement ou les heuristiques

qui ennoblissent cette activite qui apparait alors mane manifestation

eclatante de l'intelligence generale. La notion d'heuristique s'avere

6galement des plus commodes dans 1' interpretation des Cchecs ou des

difficultes des Cleves en mathematiques, au centre d'elaborations qui

preservent les identites des enseignants et des eleves. Enfin. les

enseignants ne peuvent generalement que recourir aux heuristiques

pour rendre compte de la construction de leurs connaissances en

matbhmatiques; ces heuristiques constituent 6galement dans rechange

enseignant-Cleves les entrees du male de construction de

connaissances que l'enseignant entend transmettre our neves.

La resolution de problems est egalement un objet privilegie par

les chercheurs en didactique des mathematiques. Les etudes realisees

depuis les dix dernieres annees (Kilpatrick, 1985; Kintsch S Greeno,

1985; Krutetskii, 1976; Bayer, 1983; Schoenfeld, 1985; Vergnaud,

1981, 1982) ant modifie les perceptions initiales sur les

heuristiques de resolution de problems; peu de chercheurs en

didactique des mathematiques ne songent maintenant a dissocier les

heuristiques de resolution des contenus mathematiques des problemes

at ne croient utiles d'imposer aux Cleves des demarches de

resolution de problems.

Ces modifications des connaissances et des prescriptions des

chercheurs en didactique des mathematiques n'ont pas encore atteint

les enseignants et les curricula en mathematiques. Bien au contraire,

on observe depuis un certain noabre d'annees une inclusion

d'heuristiques de resolution de problemes mathematiques dans les

programmes d'enseignement de cette matiere. On assiste donc 8 la

creation d'un nouvel objet d'enseignement: les heuristiques , voire
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mama, les algorithaes de resolution de problems. Ce glissement

aetadidactique releve-t-11 d'une transposition didactique? Notre

interpretation des etudes du phenomene de transposition didactique

(Chevallard, 1985; Brousseau, 1986) nous incite a le penser.

4. Les oblectifs de la present(' etude

Les questions suivantes sont 8 l'origine de cette etude: a)

Quelles sont les connaissances des enseignants sur les heuristiques

de resolution de problems? b) Quel role les enseignants

attribuent-ils et be resolution de probleaes dans l'enseigneaent et

l'apprentissage des mathematiques? c) Quelles sont les heuristiques

que ces enseignants aettent spontaneaent en oeuvre dans la resolution

de probleaes mathematiques? Correspandent-elles a celles qu'ils

preconisent dans leur enseignement? d) Quelles sent les

heuristiques que ces enseignants aettent en oeuvre dans une activate

de resolution de problemes aside sur plusieurs jours, exigeant de

multiples tentatives de resolution de problemes juges complexes ou

difficiles? e) Cette derniere activate de resolution de problems

aodifie-t-elle leurs perceptions de be place et du role de la

resolution de problems dans l'enseignment des mathematiques?

5.La sequence didactique

36 enseignants (28 etudiants en formation des maitres et 8

enseignants en perfectionnement) participant 8 cette experience.

5.1. premiere etape

Les enseignants sont d'abord invites a repandre individuelleaent

aux questions suivantes: a) Quelles sont les heuristiques

(strategies) de resolution de problems mathematiques que vous

connaissez ou utilisez; peril celles-ci, quelles sont selon vous les

plus efficaces? b) Quel role attribuez -vous a la resolution de

probleaes dans l'enseigneaent et l'apprentissage des mathematiques?
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5.2. seconds 6tane

Une benque de problems leur est ensuite presentee. Les problemes

retenus sent pulses des problems discutes per Schoenfeld (1985) et

Myer (1983); une traduction at une adaptation sont effectuees. A

titre d'exemple, le problem suivant: "Une distance de 363 km. separe

deux vines. Jean et Paul decident de se rencontrer. Si Jean

parcourt 1 km la premiere journee, 3 la seconde, 5 la troisiems et

ainsi de suite. et si Paul parcourt 2 km la premiere journee, 6 la

seconde, 10 la troisieme et ainsi de suite, quand se

rencontreront-ils?"

Les enseignants disposent cbacun de 2 heures pour resoudre ces

problemes. Its sont invites A essayer de resoudre taus les problemes

et A indiquer pour cbacun les beuristiques qu'ils utilisent et le

temps de resolution. Leurs solutions sont ensuite examinees' les

problemes apparement les plus difficiles sont retenus. Puis, cbacun

des enseignants se voit contraint de resoudre le problems qu'il juge

le plus difficile; it dispose alors d'une periode de 2 semaines; it

enregistre sa demarche et redige un rapport ecrit de son activate.

Suit une presentation comentee des heuristiques de resolution de

problemes decrites par Schoenfeld (1985). Les analyses de chacun des

enseignants sent alors discutees en fonction de cette presentation;

des questions cantrolent cette discussion: Queues sont les

heuristiques dont fait etat votre analyse? Quelles sont les

connaissances qui president ti l'evocation de l'une ou l'autre de ces

heuristiques? Est-11 possible d'ordonner ces heuristiques et de

suggerer une sequence d'application de ces heuristiques? Existent-ils

des heuristiques plus efficaces selon le contenus mathematiques?

5.3. traisieme etave

Quatre equipes sont formees et doivent resoudre le problem

suivant:

Un autamobiliste part de ffontreal et se rend It Quebec: it
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effectue ce trajet a une vitesse aoyenne v. A quelle vitesse dolt -il

revenir a Nontreal, s'il veut que la vitesse aoyenne pour tout le

parcours (aller-retour) soit 2 v?

Une heuristique differente est imposee a trois des equipes, la

derniere equipe pouvant choisir les heuristiques qui lui seablent

approprides: equipe i: representation graphique; equipe 2:

representation nuaerique; equipe 3: representation algebrique. Les

solutions de chacune des equipes sont discutdes.

5.4. auatrieae etave

Les questions forauldes a la preaiere dtape sont reprises a cette

derniere etape; un examn des reponses est alors effectude et les

enseignants sont confrontes a leurs reponses initiales.

6. Exaaen des connortenents

6.1. les perceptions initiales des enseignants

Invites a prdciser le role de la resolution de problems dans

l'apprentissage et l'enseignement des aatheaatiques, les enseignants

ne font janais appel a leurs activites en aatheaatiques. Its

invoquent trois points de vue essentiels: le point de vue de

l'enseignant qui tente d'expliquer les reussites et les echecs des

eaves en resolution de problems; le point de vue de l'enseignant

qui releve certaines observations sur l'efficacite de certaines

situations de resolution de problems, de certaines aches, en regard

des heuristiques dont elles peuvent susciter l'application: le point

de vue de l'enseignant sur les processus de resolution de problems,

relevant davantage de la psycho - pedagogic que de la didactique.

6.2. les heuristioues annlianees par lee enseionants au

cours du travail prolonue on resolution d'un problene

Les heuristiques de resolution de problems asses en oeuvre au

cours de la preaiere tentative de resolution des problems qu'ils
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jugent difficiles sent peu varides Chez ces enseignants: lecture

repetee des textes, inscription de certaines donnees, calculs

imediats on encore, representation algebrique de certaines donntes.

Peu de schemes ou de dessins sont construits. Torus abandannent ces

problems apres avoir procede 8 certain calculs.

Ces comportements se medifient par is suite; contraints de

poursuivre is resolution d'un de ces problems, plusieurs enseignants

mettent en oeuvre diverses heuristiques et peuvent les &valuer en

tenant comptc; des connaissances en jeu dans les problems.

Dan la discussion des protocoles, la majorite des enseignants

peuvent reconnaitre les heuristiques de resolution de probleies

decrites par Schoenfeld (1985). Its constatent 'Velment que

l'application d'heuristiques depend de connaissances specifiques; ils

s'entendent aussi sur le fait qu'une heuristique n'assure pas la

reussite d'un probleme. S'ils nuancent alors leurs jugeaents

initiaux sur les heuristiques, la discussion n'entraine pas une

modification des conceptions du role des heuristiques dans is

resolution de probleies et une dissociation des notions

d'heuristiques et d'algorithaes.

6.3. L'avvlication contrainte d'heuristiaues

particulieres par les enselanants

Devant appliquer une heuristique spdcifique pour resoudre le

probleme sur is vitesse (troisieme etape), quelques enseignants

seulenent parviennent a resoudre ce probleme; certain resolvent

d'abord le problem 8 leur fagan (une solution nuierique, en general)

puis produisent une solution adaptee a l'heuristique demandee.

6_4. le bilan realise par les enseignants A is suite des

activitds de resolution de orobleaes

Le bilan des enseignants sur les resultats de l'experience

qu'ils ant vecue ne comporte presqu'exclusivement que des references

our connaissances mathematiques construites. Ainsi, places dans une
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situation analogue 8 celle des eleves auxquels its s'adressent,

devent ainsi resoudre des problenes non routiniers et appliquer

certaines des heuristiques qu'ils suggerent normalement aux eleves

d'appliquer, its sont anenes 8 s'interroger sur la pertinence de ces

heuristiques et 8 her ces heuristiques aux contenus mathematiques

des proble*es et aux connaissances dont its disposent. Cette

activite leur periet avant tout de construire diverses connaissances

matheimatiques; pour cette raison, bien peu peril eux affirnent avoir

egalement elabore des savoir faire en mathematiques.

On peut faire l'hypothese que ces constatations sur leurs

experiences puissent les conduire t modifier leurs perceptions du

role et de la place de la resolution de probleaes dans l'enseigneient

des mathematiques. Cette hypothese serait, dans notre etude, non

confirnee. En effet, hors de la reprise des questions initiates, la

majorite des enseignants s'appuient sur les differences entre leurs

situations d'enseignents et les situations d'eleves pour rappeler

l'importance de proposer des demarches de resolution de problems aux

eleves; les raisons invoquees sont de cette nature: contrairenent aux

adultes, les eleves ne savent pas consent aborder les problems, it

Taut donc leur enseigner; les eleves n'ont pas encore fait

suffisamient d'activites mathematiques pour etre en mesure

d'identifier les strategies pertinentes, ih convient donc de leur

faire decouvrir l'importance de ces strategies 8 travers des

activites varides de resolution de problems. Les enseignants

concluent en declarant que cette experience leur a pernis toutefois

de decouvrir que les contenus mathematiques des problemes doivent

etre examines avant de proposer des heuristiques, un tel examen leur

permttant de proposer des heuristiques plus pertinentes.
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STRATEGIES USED BY 'ADDERS' IN PROPORTIONAL REASONING

Fou-Lai Lin

Department of Mathematics, National Taiwan Normal University

Adders are students who consistently used the incorrect-addition
strategy on some hard ratio items. English adders used
addition-based methods on most of ratio items. Both written test
papers and interview data showed that Taiwan adders used
predominantly the taught multiplicative algorithms on easy ratio
it-ems. The strategies Taiwan adders used and the reasons they made
their errors were examined in the interviews.

The Incorrect Addition Strategy And Adders

When asked to enlarge ZI 3 so that the new base line is 5 units, a child
concentrating on the difference 5-3 rather than 5/3 will say: "5 is 2 more
than 3, so the new upright is 2 more than 2, answer 4 unite. Such a strategy
for crilving proportional items is called the incorrect-addition strategy.

In both Hart's (1981) CSMS ratio study and its replicated study in Taiwan
(Lin et al, 1985), the incorrect addition strategy occured most frequently on
four 'hard' items (the addition-type questions), namely, Mr. short question
(the misting value paper clips task), enlargement with ratio 3:5 of a L -shape
and enlargement with ratios 8:12 and 12:8 of a R, -shape. In both cases, a
significant feature of the performance of children operating at the lower
levels of understanding was their use of the incorrect-addition strategy (Hart,
1981; Lin et al,1985).

Theoretically, Piaget and Inhelder (1958) describe the incorrect-addition
strategy as a typical answer from a child at the late concrete stage. However

Karplus et aL (1975) and Hart (1984) see'it not as an inevitable consequence
of developmental level but as a method which should be corrected. In order to
develop appropriate diagnostic teaching procedures, it is necessary to
investigate why children make this kind of error. Consequently, Hart
(1981,1984) investigated the prevalence and context of this strategy within
English sample in detail
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Hart (1981) described those students who consistently used the incorrect-
-addition sLiategy to solve at least three out of the above four addition-type

items as 'adders'. There are about 30% (resp.20%) of adders in English (resp.

Taiwan) children population of aged 13-15. It was found that adders are not in

any particular age group. Most of adders are not the least able. .

According to Hart's (1984) findings, English adders used the 'additive

methods consistently on ratio problems. Where the relationship between the

values involved was simple (such as double, half, three times ... etc.), the

students were able to nee their additive methods to obtain a correct solution.
Difficulties arose when the numerical relationship were more complex. In these

cases, the 'adders' were not able to apply their methods correctly. Instead,

they resorted to a simple addition of the given values, This given rise to the

'incorrect-addition strategy'. In general, English adders' approach was

characterised by
a) using addition-based child-methods, such as halving, doubling, adding on and

building up to solve easy ratio items;
b) avoiding applying multiplication of fractions, and taught algorithms; and
c) never using multiplicative strategies, such as the unitary method (how much

for one), and the formula method (a/b = c /d).
Instead of the taught multiplicative methods, English adders used

prevalently their own child-methods on ratio tasks. In Taiwan, Lin (1988)

showed that the taught algorithms is the only system in junior high school

mathematics. With such difference, it is a matter of interest to examine
whether the strategies used by Taiwan adders were similar to English adders or

not This paper therefore sets out to study the characteristics of Taiwan

adders.

Methodology

A sample of 33 adders, aged 13-14, were identified from six classes in

three typical schools in Taiwan.
Each of these adders was interviewed for about 30-40 minutes during the

same week that the written test was given. On interview, each one was shown

the test paper completed earlier, and asked to explain the answers to some

items they had completed. Since the question under examination was whether

Taiwanese adders' performance is characterised by. the same features as the CSMS

adders' performance, students were interviewed on selected 'easier' items where

correct answers could be found by additive methods, as CSMS adders did, as well.
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as on the addition-type questions. This was necessary in order to determine if
the items which they had answered correctly had also been handled by additive
m ethods.

Following students' explanations and bearing in mind the features
identifies for the CSMS adders, the interview focussed on investigating the
following questions:

a) Do 'adders ever use multiplicative strategies?
b) How did adders decide to either an additive or a multiplicative

strategy?
c) What kind of understanding of fractions do 'adders' have ?

In order to provide a ftillt=,r description of adders' characteristics, the
following three aspects which were not covered in Hart's (1981, 1984) studies

were also examined:
d) Are adders aware of non-integer multiples'
e) Are adders aware of two kinds of ratio, ratio of two portions either within

one figure or between two figures?
f) How good is adders' recognition ability for distinguishing non-ratio

contexts from ratio contexts?

Findings

1. Methods used by Taiwan adders

Besides the four addition -type questions, fourteen easier items in the
test paper were used in the interview. Out of 33 adders, twelve adders
consistently used multiplicative algorithms before they faced the four
addition-type questions. Six adders used the correct multiplicative strategies
consistently. Ten adders used approximately the same number of additive and
multiplicative strategies on these easy items. Four adders used additive

strategies on ten or more easy items. Only one adder never used a

multiplicative slidtegy on the easy items.
When the numerical relation involved were easy (e.g.8:4; 5:10; 5:15)

Taiwan adders were very often able to apply the taught algorithms correctly.
Most of them concentrated on either 'how many for one' or 'the multiple
relation of the values involved' and used the unitary method and the multiplier
method. 9 adders used correct additive strategies, such as repeated addition
or adding on the extra units according to the multiple, on the eel and its ford
items with ratio 5:10 and 5:15.
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On a recipe item where the amounts for 8 people was given and the amounts
for 6 peoples was asked, 8 out of 33 adders viewed 6 people as the sum of 4
people and 2 people and used the building up strategy to solve it.

When the numerical relationship were more complex (e.g. 8:6; 10:15;

15:25), about half or more of adders faced their difficulties. Some adders

were doing 'undirected manipulation'. They manipulated the given data in one
or two procedures, similar to the correct multiplicative procedures. However

there appeared to be little idea of how to reason proportionally. Some adders

were using 'bigger / smaller so then multiplying / dividing strategy. They

felt the need to operate multiplicatively. However, the multiple / divisor
used is not the enlargement factor, but is very often small integers. Some

adders were using 'bigger / smaller so then adding / subtracting' strategy.
They felt that some extra units were needed to add / subtract for a bigger /
smaller one. The number of extra units can usually be identified from the
nearby context, but sometimes can be arbitrary.

On the four addition-type items, 8 out of 33*4 responses were different
from the incorrect-addition strategy. Five of them used correct multiplicative
methods and the other three were incorrect responses. On the geometric
enlargement questions, Hart (1984,p.23) says "the children's answers ...
provided a clear indication that multiplication was.not used to produce an
enlargement. The children stated that the only way of obtaining 12 from 8 was
by addition." So, for English adders, these items seemed to be 'natural'
addition-type questions. Many Taiwan adders were aware that multiplicative is
appropriate for these items. However, due to some individual reasons, they

chose the incorrect-addition strategy.

2. Reasons for switching to the incorrect-addition strategy

(i) Non-awareness of non-integer multiple
27 out of 33 adders on the interviews said that 'there is no multiple

relation between 5 and 3'. Non-awareness of a non-integer multiple as a
multiple, was the main reason that most of the Taiwan adders switched their
multiplicative algorithms to the incorrect-addition strategy.
(ii) The geometric settings

In relation to some studies, Karplus et al. (1983) concluded that "the
occurrence of dimensions inhibits the (incorrect) addition strategy". The four

addition-type questions were concerned with enlargement of figures and with
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non-integer ratios which were dimensionless. Apart from the complexity of the
numerical relationship, the geometeic settings also create obstacles, as some
excerpts from the interviews showed.

"...same shape just means the length of a bigger diagram is
increased, so I add..."
"...straight, can use ratio. Curved, I am not sure if I can use
ratio. In a flash, I saw the relation of constant difference, I
decided to use it."

(iii) Affective reasons
"...all items were using multiple relation before (on this test); the
test paper might have a trick, it is impossible that each item was
'multiple'. I had such an experience before. Since I and K, look

different, I changed my method."
This adder interpreted his distraction in terms of his belief about test

papers which had developed becansP of his previous testing experiences.
In Taiwan, very often students are trained to solve problems as quickly as

possible. Because subtraction was quicker and easier,so adders chose it.
"...during the examination, I tried to choose between subtraction and

multiplication. Subtraction was easy. I have checked the
answer, both with constant difference of 4 units (the -shape item).

It was right, so I chose subtraction."
This adder even evaluated and felt happy about his choice, for he had been

reasoning 'logically'.

3. Other findings

(i) Poor understanding of fractions
14 out of 33 adders used fractions on the test paper. Only six of them

could ilex. fractions to amplify their multiplicative algorithms. In the
interviews, about 2/3 of adders could do computation of fractions by taught

algorithm. However, most of them could not apply it appropriately in any

context, as their test papers showed. They have a poor understanding of

fraction.

(ii) Awareness of 'Within' and 'Between' ratios
Regarding the geometric enlargement questions, the between ratio method is

used by the adder who concentrated on the ratio of two corresponding portions
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between two figures; the within ratio method is used by the adder who
concentrated on the ratio of two portions within a figure. Mcet of the Taiwan

adders were aware of one kind of ratio but might not have been aware of both

kind of ratios. None of the adders in the interviews showed the ability to
chose the more economic one among two kind of ratios.

(iii) Distinguishing ratio from non-ratio contexts
Some Taiwan adders identified the type of question, additive or

multiplicative,by checking some key words in the problem sentences. Some, when

they used the native methods, 'bigger so adding/multiplying' and 'smaller so

subtracting/dividing', chose their operations in terms of how comfortable they

felt about the numbers to be operated on.
In order to.investigate their process of solving problems, a

non-multiplicative task with surface structure similar to missing value
proportional item was asked during the interviews. 14 out of 33 adders used

the multiplier method to solve it. They tended to solve the problem by
repeating methods used on the ratio test paper.

4. Summary

In terms of the findings, some characteristics of Taiwan adders could be

sum marized as follows:
a). Using multiplicative algorithms predominantly on easy ratio items.
b). Thinking of multiplying, however their multiplicative methods are not

secure on harder items with ratios 2:3, 2:5 stc.
c). Switching to the incorrect-addition sliategy because of, e.g.

non-awareness of non-integer multiple, obstacles of the geometric

settings, on the addition-type questions.
d). Manipulating fractions by taught algorithms; poor understanding of

fractions.
e). The process of solving problems were inappropriate, very often were

divorced from understanding.
f). Non-awareness of non-integer multiple.
g). Only aware of one kind of ratio, within or between ratio.
h). Poor ability of distinguishing contexts.
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Discussion

Almost all the Taiwan adders used taught multiplicative algorithms on the
easy items of the ratio test- Unlike the English adders who are only working
in the addition system, Taiwan adders are also working in the multiplication
system, especially on easy items. From this point of view, Taiwan adders are
not really 'adders', in the true sense of that word.

Evidence from other Taiwan studies (Lin, 1988) Suggests that the main
reasons for these differences lie with the very different teaching approaches
to which the two sets of students are exposed. In Taiwan the teaching emphasis
is on conventional algorithms while in the UK, the teachers encourage students .

to make 1190 of whatever method suits them best so students develop what Booth
(1981) called 'child-methods', "which are based on counting, adding-on or
building-up approach, and by which children attempt to solve mathematical
problems within a human-sense framework''.

Implication

In terms of the findings in this study, some suggestions should therefore
be made for developing diagnostic teaching modules which we hope to be of
benefit to all students.
1. Taiwan adders were able to use multiplier and unitary methods on easy

ratio problems. Therefore, instruction which is based on the 'for-every'
strategy (Case, 1978; Gold,1978) could link to their abilities and therefore
be of benefit to them.

2. Activities which lead to 'cognitive conflict', as Hart's (1984) module
emphasized, have proved to be very motivating in bringing about cognitive
and conceptual change (Kuo et aL,1986). Apart from these activities it
would be better for every lesson to include some non-ratio questions so that
adders have the chance to distinguish the difference between a constant
ratio relationship from a constant difference relationship. This activity

was also suggested by Karplus et al. (1983). In such a way, they can
gradually develop an appropriate process of solving problems, i.e. based on

understanding.
3. In terms of poor understanding of fractions, the concept of a fraction and

its operations should be emphasized. Using a calculator to grasp the
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meaning of 7/3 and 3/7, as Hart's (1984) module showed, has proved to be
very effective for Taiwan adders (Kuo et aL, 1986).

4. A formal method of finding m ultiples, i.e. find x in ax=b , should be
learned and the awareness of non-integer multilpe should be developed.

5. Both within and between ratios should be emphasized so that the flexibility
of choosing the more economic kind of ratio to match the context can be
developed.
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Canonical Representations of Fractions

as Cognitive Obstacles in Elementary Teachers

Liora Linchevski & Shlomo Vinner
Israel Science Teaching Center
Hebrew University, Jerusalem

THE EXPERIENCE SUGGESTED TO STUDENTS IN THE CONTEXT OF FRACTIONS IS
TOO RESTRICTED AND LACKS THE REQUIRED COMPLEXITY. IT IS BASED ON TWO
OR THREE STEREOTYPES WHICH WE CALL CANONICAL. THESE STEREOTYPES LEAD
TO A NARROW CONCEPTION AND CAN EASILY CAUSE MISCONCEPTIONS AND
CONFUSIONS. IN A SAMPLE OF ELEMENTARY TEACHERS THAT WE EXAMINED WE
ACTUALLY FOUND ALL THESE MISCONCEPTIONS AND CONFUSIONS.

Frege's characterization of whole numbers is not only an ingeniously

mathematical achievement. It can also be considered as a deep

psychological insight. It tells you, if you wish to interpret it this

way, what the cognitive requirements needed for constructing the

Meaning of the whole numbers are. (According to Frege, the number

five, for instance, is the class of all sets which contain exactly

five elements).

Thus, many psychological claims made about the child conception of

number can be considered as claims whithin Frege's arithmetical

paradigm. Here you can count Piaget (1952) and many others as Gelman

(1978), Skemp (1971) and Steffe et al (1983). We can illustrate this

point by the following quotation:

Skemp (1971, p. 144-146) asks: WHAT DO WE MEAN BY "THREE"? His answer

is: "THREE" IS THE CHARACTERISTIC PROPERTY OF A CERTAIN COLLECTION OF

SETS OF WHICH WE CAN CHOOSE A SUFFICIENT VARIETY TO ENABLE OUR

STUDENTS TO FORM THE CONCEPT ITSELF.

When dealing with fractions, one sees immediately that this domain

has striking inferiority relative to the domain of natural numbers.

We do not refer by this to the well known fact that fractions are

harder for the students than whole numbers. What is really missing is

(1) a mathematical definition which is also psychologically valid

and, as a result of it, a characterization of the concrete experience

required in order to acquire the abstract concept of fraction

(analogous to the concrete experience implied by Frege's definition).

We would like to suggest a definition of a fraction which imitates

Frege's definition of a whole number. This definition, so we hope,

contains also the psychological elements of the fraction concept and

thus has the potential of suggesting concrete experience required in

order to accquire the fraction concept.
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DEFINITION: a fraction m/n, 05m5n, IS TUE CLASS OF ALL

TRIPLETS in the first place of which there is a whole, in the second

place there is a partition of the whole into n equal parts and in the

third place there are m parts of the partition.

Note that by this definition we have defined only proper fractions

and we have not defined the notion of rational number. Namely, we

have not defined the equivalence of fractions. But one can easily see

how to define the missing concepts by applying the above definition.

Also the above definition lacks an additional condition on the whole

which we omitted in order to avoid complications. However, the

implicit assumption there is that some measure is associated with the

whole. It can be length, area, volume, weight, etc. in case of a

fraction of a continuous quantity and can be the number of elements

in case of a discrete quantity. In this paper we will deal with

fractions of continuous quantities.

Note that the notion of the whole is essential in our definition. It

implies that it has to be clear of what whole a partition is going to

be made. Our impression is that this problem is ignored by most

methods of teaching fractions and this fact leads to many well known

confusions and misconceptions of students and teachers. In addition

to that, the concrete experience suggested to students in relation

with the fraction concept is by no means not rich and not variegated

as the concrete experience they get in relation with the whole

number.

When introducing fractions as CONTINUOUS QUANTITIES there are some

stereotypes which we call canonical that block the way to the

abstraction required in order to acquire the fraction concept

according to our definition. The most common whole with which

students interact when learning fractions is the circle.

Sometimes they see also squares or rectangles which are not squares.

As a result of using the circle as a whole, the partition into equal

parts becomes a partition into congruent parts. This causes sometimes

a failure to identify fractions in case where the parts are equal but

not congruent. The fact that the question of the whole is not

discussed explicitly and that implicit assumptions are very often

involved causes sometimes confusion.

Examples and test items relating to this confusion one can find in

Peck and Jencks (1981), Hart (1979, p. 66) and Lesh et al (1983,

pp. 309 336).

2,51
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The goal of our study here was to examine elementary teachers

conceptions about the points raised above. The research questions

were:

1. To what extent elementary teachers are flexible when the

canonical whole is replaced by another whole?

2. To what extent do they realize that the awareness to the question

what the whole is determines sometimes the success on fraction

tasks?

3. To what extent do they realize that the partition of the whole

does not have to be to congruent parts?

4. To what extent do elementary teachers have noncanonical

representations for fractions?

Method

Several interviews with elementary teachers were made and as a result

of these the following questionnaire was formed:

1. What is the whole if the following figure is 2/3 of it?

2. Students were asked to evaluate 1/3 + 2/5. One student drew:

1/3

IS
2/5

and got the answer:

3/S

Another student drew similar representations for 1/3 and 2/5 and

got the answer.

3/8

Is the first student correct? Is the second student correct?

Please, explain!

(This question is based on Peck and Jencks (1981)).

3. Please determine in each figure whether it was divided into

thirds. If there is a mistake in a figure please, explain it!

(a)

(d)

(b)

(e)

(c)
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How will' you illustrate to a student. the meaning of 2/5. Please,

dMit imat least two-different ways!

&teacher. asked her students' to mark 2/3 of the following

configuration..

(2)
One, student drew

Another' student drew.

Is; the. first. answer' correct? Is' the second' answer correct?

Please', explain!'

The reader can easily'see that questions. 1, and 5' in the questionnaire

were- designed to answer research' question. 1'. Question 2. imthe

questionnaire: was- designed' to answer research question 2,. question I

in the' questionnaire was designed to answer research,question 3 and

question. 4 in the questionnaire was designed!to answer- research:

question

The'above questionnaire: was distributed to; 237 teachers. and 72 pre-

service: teachers. 54-teachers.out of the 237' had the officiU1 title

of Mathematics'. coordinators. in their schools. These are teachers who

have more interest in.mathematics. than.the average: teacher and also

underwent some in- service. mathematical. training.

ln.the result section they'will be referred to as. math coordinators'

whiie:the-other teachers will be referred. to. as teachers.

Results

Question 1 was, designed' to examine directly whether the canonical

representation. of the fraction as a part. of. a complete circle is an

obstacle in the way to the correct answer in.anom-canonical

situation. The results are. given. in Table 1..
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T A B L E 1

The whole is
the complete
circle

The whole is
3/4 of the
circle

I do not know or
it is impossible
to know

Pre - service
teachers (N = 72)

431 341 241

Teache1r3) s
(d - 8

29% 47% 232

Math coordinators
4)(N - 5

212 7% 722

Note that the first column indicates the expected misconception. The

complete circle is the whole, no matter what additional information

is given. The second column indicates a correct but possibly narrow

conception, since they are infinitely many ways to complete the given

figure in order to obtain a whole.

This was expressed by one of the math coordinators who claimed that

"it is impossible to tell what the whole is. We can only evaluate its

area. There are infinitely many wholes 2/3 of which is the given

figure". This can explain the fact that 72% of the math coordinators

are in the third column. The percentage of the incorrect answer in

the math coordinators was the least in the three subgroups but it was

also the least in the case of the correct but possibly narrow

conception of the fraction. Since verbal explanations were missing in

most of the answers we cannot tell whether somebody is in the third

column because of a correct or an incorrect reason.

The most common drawings for the claim that the complete circle is

the whole were:
7"."'

In the first one, the figure which was given in the question was

ignored. In the second one, the arithmetical information which was

given in the question was ignored. Such phenomena occur when

stereotypes are so dominant that they attract all the attention and

the additional information is ignored.

As to question 5 we believe that a teacher who has a flexible

conception of the ways to represent fractions would have claimed that

both drawings are legitimate and correct. But only 42% of the entire

sample demonstrated such flexibility. The details are in table 2.
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T A B L E 2

The rigid conc-
eption (only 1

drawing correct)

The flexible
conception, both
drawings correct

Other

Pre service
teachers (N - 72)

62% 32% 61

Teachers
(ni= 183)

46% 44% 10%

Math coordinators
(N - 54)

44% 522 42

Question 3 included three (out of five) non-canonical

representations of thirds. In order to claim that (a), (c) and (e)

are partitions into thirds a certain' geometrical knowledge is

required and we were not sure that all the teachers in our sample

had it. What we assumed was that all of them had the geometrical

knowledge required for (a). Hence, teachers who claimed that only

(b) and (d) were partitions into thirds were considered by us as

people who believe that the parts of a partition representing a

fraction should be congruent. We believe that if these teachers were

aware of the fact that the parts of a partition can be equal without

being congruent they would have examined (a) and would have come to

the conclusion that it is a partition into thirds.

T A B L E 3

All the partiti-
ons, partitions
into thirds

Only (b) & (d)
are partitions
into thirds

Only (a, b & d)
are partitions
into thirds

Pre - service
teachers (N - 72)

20% 51% 26%

Teachers
(A/- 183)

34% 381 251

Math coordinators
(N = 54)

521 15% 33%

Note that the common canonical representation prevented them from

examining (a) and their failure in (a) is due to the lack of a

conceptual understanding and not to the lack of geometrical

knowledge.

As we pointed in our introduction, it is extremely important on given

fraction tasks to be aware of the question what the whole is. This

point is not emphasized enough in textbooks or by teachers. In order

to illustrate (1/3)+(1/3) many authors use:

I

without mentioning explicitly what the whole should be.
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This leads immediately to the mistakes presented to our teachers by

question 2. We were interested to see what percentage of the teachers

could explain conceptually the childrens' mistakes. An answer like

"the child is wrong because (1/3)+(2/5) are 11/15" is not considered

as a conceptual explanation. Of course, it is better than an answer

justifying one of the childrens' results (and unfortunately there

were some answers like that). Nevertheless, such an answer is not

satisfactory because it does not have any conceptual explanatory

power. It indicates probably that the teacher does not have a

conceptual understanding of the situation. An indication of a

conceptual understanding can be the claim that the whole should

remain the same through the entire process of adding.

T A B L E 4

A claim of wrong
answers with
conceptual
explanation

A claim of wrong
answers with NO
conceptual
explanation

A claim that
one of the
answers is
correct

Pre service
teachers (N - 72)

141 661 201

Teachers
(N - 183)

16% 66% 18%

Math coordinators
(N = 54)

26% 61% 13%

Together with Table 4 we should consider also the answers to

question 4. Here, only 2 preservice teachers out of the entire

population gave non-canonical representations for 2/5. This is in

spite of the fact that the question asked for at least two different

representations. This is not surprising because in construction

tasks usually the dominant representation is evoked in the mind and

thus the respondents could use a circle and a rectangle or two non-

similar rectangles and to divide them into congruent parts.

Therefore, in order to get a more accurate picture, one should

consult Table 3 which relates to the identification task. This

table, when taking a liberal criterion to which columns 1 and 3 are

the columns of the correct answers, shows us that at most 61% of the

entire sample realize that non-canonical representations are

legitimate representations of fractions.
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Discussion

The above results show that teachers' visual representations of

fractions are incomplete and unsatisfactory. They are not sufficient

to form a complete concept of fraction. We do not intend here to

recommend specific learning aids which can improve the situation.

The direction is clear. One should provide the student with various

non-similar representations. We are aware of the risk of various

representations. They might confuse the student. Therefore, it is

worthwhile in this context to quote Behr et al (1983, p. 124):

"Contrary to the prevailing opinion among Mathematics educators, we

have learned that a "good" manipulative aid is one that causes a

certain ammount of confusion. The resultant cognitive disequilibrium

leads to greater learning".
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USING CONCEPT MAPS TO EXPLORE STUDENTS' UNDERSTANDING IN GEOMETRY

Helen Mansfield, Curtin University of Technology, Western Australia
John Happs, Western Australian College of Advanced Education

Concept maps were used before and after a teaching program on the topic
of parallel lines. The maps were studied to identify which concept
names were familiar to the students, and which propositions the students
were able to construct. The concept maps revealed some misconceptions
that were not evident in other forms of testing that were also used.

Concept maps have been used extensively in some subjects, notably

science, as a method of studying students' knowledge and understanding of

various topics. According to Novak and Gowin (1984), a concept map "is a

schematic device for representing a set of concept meanings embedded in a

framework of propositions" (p.15). As an evaluation tool, concept maps can

be used to determine what concepts are familiar to students and what links

the students have formed between the concepts.

A constructivist view of learning holds that students construct

knowledge in the context of actions on objects, including ideas, and

reflections on those actions. New knowledge might occur as the addition of

new information to the structures already held by the student, or

alternatively a more radical restructuring of the student's existing

knowledge may be made to accommodate new information. For meaningful

learning to take place, students must choose to relate new information to

relevant concepts and propositions they already know. For this reason, it

is necessary for the teacher to try to establish the main ideas and

relationships that each student has at the beginning of a new unit of

work. The teaching must then be designed to challenge the views the

student already has, and to compare and contrast the student's views with

those of other students and the teacher. Individual interuiews are one

appropriate means of probing students' views and their use in studies of
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teaching and learning is well established. However, their use in larger

scale studies or by teachers in daily classroom activities is not always

viable.

In our research on students' misconceptions in geometry, we have used

individual interviews in earlier phases of our study where the number of

students was relatively small. In the latest phase of our study, however,

we had twelve teachers in ten different schools using our teaching

materials on parallel lines. We decided to ask the students in these

classes to construct a concept map concerning parallel lines as part of

written pre- and post-tests. Following is a report on the concept maps

constructed by one class, and what we learned from them.

Procedure

The class of 29 Year 8 students (12 girls, 17 boys) attended a high

school in a disadvantaged suburb of Perth, Western Australia. The tests

were administered before and after the teaching program by their

mathematics teacher, who also taught the program:

The tests consisted of three parts: (1) the construction of a concept

map, (2) a set of propositions and (3) a set of drawings. In part (2) the

students were asked to indicate which of fourteen propositions about

parallel lines they thought were true, false, or were unsure about. In

part (3), they were asked to indicate whether each of the ten drawings

showed lines that were parallel or not parallel. Part (1) first showed a

simple concept map made by a Year 8 student to show the link between some

ideas about fractions. A statement pointed out that the ideas were written

inside the boxes in the map and that the lines with arrows showed the links

between the ideas. Ten ideas related to parallel lines were then listed.

The students were asked to draw a map showing the links between the given

ideas, to label the links, and to add other ideas about parallel lines if

they wished.
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These students had not received instruction previously on how to

construct a concept map. Other researchers (Edwards and Fraser, 1983;

Novak and Cowin, 1984) have stressed the importance of introducing students

carefully to the techniques of constructing concept maps but physical

constraints prevented us from doing this. These students were, therefore,

confronted with a novel task that not only required them to construct and

organize propositions about a topic, but also to interpret the given

example and to understand what the task was asking of them. We expected

that these students would find the construction of a concept map very

challenging.

Intrinsically, constructing concept maps is a more difficult task than

the other tasks in our tests, since to construct a concept map students

have to work out a hierarchy of the given concepts, construct propositions

to link those concepts, and make an intelligible spatial arrangement of the

concepts. In part (2) of our tests, the propositions were already

constructed and the students had only to decide between three responses.

In part (3) of our test, no propositional thinking was necessarily involved.

To evaluate concept maps, Novak and Gowin (1984, p.36) suggest a

numerical score with different weightings given to the number of

meaningful, valid propositions shown, the number of valid levels of the

hierarchical arrangement of the concepts, valid and significant cross links

between sets of related concepts or propositions, and examples given of

concepts. Other authors such as Brumby (1983) have used coding and scoring

procedures that cannot be transferred readily to other contexts. Our

purpose was to see what propositions about parallel lines the students were

able to construct before and after instruction, which concept names were

familiar to them, and whether they had any misconceptions that we were

unable to detect in the other parts of our tests. Accordingly, we were

interested in the number of propositions the students made and whether or
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not these were correct. An incorrect relationship suggests a misconception

that the student has. Misconceptions can be localized and specific and

exist in an otherwise satisfactory conceptual framework. Similarly,

concept maps can identify omissions in a student's understanding. Since we

provided the students with the ten concepts we wanted them to link, the

omission of any of these from a map might suggest either that the student

did not understand the concept, was not familiar with the word naming the

concept, or could not name a relationship between that concept and others

that were listed.

Findings

Of the 29 students in the class, 26 were present for both tests. In

the pre-test, one student re-drew the given fractions concept map and added

explanatory notes to it. Nine students did not attempt the concept map at

all in the pre-test. As suggested earlier, this may have been because the

task was unfamiliar, or because they did not understand the given concepts,

or because they could not organize the concepts in any meaningful way. In

the post-test, all the students constructed a concept map, even though

there had been no instruction about them during the teaching program.

The numbers of correct, incorrect, and meaningless propositions made by

the students were tallied. The data for the 16 students who completed both

maps showed that in the post-test most students (10 out of 16) constructed

more propositions, including both incorrect and meaningless propositions;

four made the same number and two made fewer propositions. Twelve students

made more correct propositions in the post-test, two made the same number

(both zero), and two made fewer. If the number of incorrect propositions

is counted, the students generally either made the same number of incorrect

propositions (6 students) or slightly more incorrect propositions (7

students). Overall, the total number of propositions made in the post-test

was greater than in the pre-test (122 compared with 76) and the percentage
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that were incorrect and meaningless dropped (29.9% compared with 48.7%).

these results suggest that in the post-test, the students were able and

willing to make more propositions, and indeed correct propositions, while

still showing some misconceptions.

The concept names that were omitted most frequently in the pre-test

were "coplanar- (13 times) and -equidistant" (12 times). Both these words

are not commonly met by students in everyday speech. While all concepts

were omitted less frequently in the post-test, these two concepts were

still omitted the most frequently (both 6 times). Both concepts were the

focus of parts of the teaching program. Nevertheless, from the maps it

seems clear that both remained difficult ideas for some students.

The difficulty the students had with "coplanar" was not surprising to

us. In previous phases of our study we had observed students' difficulties

with this concept. The difficulty with the concept "equidistant" was,

however, a complete surprise, although we knew of the difficulty some

students have in measuring accurately. An examination of the responses in

part (2) of our pre-test showed that the propositions that caused most

difficulty were "parallel lines have to be coplanar" and "parallel lines

can be curved ". In the pre-test, only three students said that parallel

lines must be coplanar, while 21 were unsure. The students' responses

indicated in the pre-test that they were unfamiliar with the concept

"coplanar". In the post-test, only three were still unsure, while 18

answered "true" and 8 answered "false". The students now seemed to be

familiar with the concept while not necessarily correct in recognizing that

parallel lines must be coplanar.

The proposition "parallel lines have to be the same distance apart" was

correctly answered by 22 students on the pre-test and 28 on the post-test.

Note that in this proposition we did not use the word "equidistant".

Evidently the word "equidistant" itself, although used in the teaching

program, presented difficulties to some students. An examination of the
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links made between "equidistant" and other concepts in the students'

concept maps suggested that some students thought that "equidistant" was a

synonym for "equal length". We were only able to identify this confusion

of language by an examination of the concept maps, since the proposition

concerning equal distance apart caused problems to so few students.

The value of concept maps in showing misconceptions where the responses

to propositions or interview questions might not was evident in several

individual cases. For example, on his post-test map Nathan T made the link

"parallel lines must be coplanar". However, he also made the links

"intersecting lines are not coplanar" and "curved lines cannot be

coplanar". These propositions suggest an incomplete understanding of the

concept "coplanar" and identify what aspects of the concept need further

exploration. Another concept that seemed to be difficult for some students

was "alongside". For example, Graham clearly thought that parallel lines

must be alongside (aligned rather than non-aligned segments). He stated

"to be parallel they must be alongside" and "they can be on any angle as

long as there (sic) alongside each other." Similar propositions were made

by several other students. Sharlene made the comment "It's not necessary

to be alongside each other but it does help to tell if they are parallel

lines", perhaps summarizing the view that some students have about why they

think being alongside is an important aspect of being parallel.

Finally, the overall style or appearance of the concept maps seemed to

give an indication of how the students were able to organize the knowledge

they had about parallel lines. Generally, the post-test maps were more

complex than the pre-test maps, because more concepts were included and

more links were made and labelled to show propositions. A few students

made linear maps by linking the concept names together to form a sentence.

For example, both of Anita's maps were linear, although she labelled the

links in the post-test map and showed much greater understanding of the

topic. She was not able to label cross links or to arrange the concepts
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hierarchically. An excellent example of a map that was arranged

hierarchically was Cordon's post-test map. He organized his map to show

three branches: things that "don't occur in parallel lines", things that

"aren't very important for parallel", and things that "have to be" for

parallel lines.

Natasha's pre-test map showed a different approach. She linked six of

the concepts to "parallel lines" by illustrating them pictorially. She

drew a vertical line, a curved line, equal lines, and slanting lines to

illustrate the meaning of these concepts, without in fact making any valid

propositions about parallel lines. Unfortunately, she was absent from the

post-test so a comparison between her maps was not possible. Generally,

despite the greater complexity of the post-test maps, there were some

stylistic similarities between the students' pre-test and post-test maps,

suggesting perhaps that the ways in which they interpreted the task and

their ways of organizing the concepts had not changed substantially.

Conclusions

We acknowledge that the task of constructing a concept map was a new

and difficult one for these students. Nevertheless, we considered that the

task was worthwhile from our point of view. We were able to find out which

concepts may have been unknown to the students both before and after the

teaching program by looking at what concepts were omitted. We could not

have obtained this information from part (2) of our tests which could have

been answered by guessing. We were able to look at individuals' maps and

identify some of their specific misconceptions which did not show up in

either part (2) or part (3) of our tests. We identified a problem with

language that was surprising to us. Finally, some students seemed to have

a particular style that they used in constructing their maps which may

suggest how they viewed the task they were set and the ways in which they

were able to organize the:concepts.
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Used along with the other types of questions we have used, the concept

maps added considerably to our
understanding of what students learned about

parallel lines and how they structured their knowledge of the topic.
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MENTAL IMAGES: SOME PROBLEMS RELATED TO THE DEVELOPMENT OF SOLIDS

MARIA ALESSANDRA MARIOTTI
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Abstract
In the reference frame of the theory of Piaget a study on the
complex role of mental images is presented.
Starting from problems related to the development of solids a

plan of interviews was set up and group of pupils at different
ages were observed, the main results of this research are
discussed. The aim is to propose didactic suggestions not only to
improve pupils performances in the particular task but also in
the elaboration of mental imaaes.

Introduction

The problem of the contribution of mental images to our thinking

is certainly fascinating and till now has not been completely

clarified. It is well known that very often our thinking is

'supported by images and this is particularly true in the case of

mathematical thoughts. Thus a study of mental images turns out to

be very important not only from the general point of view of

exploring the process of oriain and utilization of mental images,

but also from the point of view of mathematical education, with

the aim of identifying specific didactic variables related to the

problem.

The reference frame We choose the Piaget's theory as our

reference frame, but with the ambitious objective of clarifying

and exploring more thoroughly the question. Piaget devoted much

work to the problem of mental images, particularly in his book

"L'image mentale chez l'enfant."111 ; from Piaget's ideas we took

the following main hypothesis as a starting point:
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the mental image is not an excerrLion of perception, but it is

an "intetiorised imitation" ("imitation interiorisee"). so tear

the image has a great autonomy from the perceptive process.

lhe structural schematizing character of mental images

corresponds to that of imitation: that is to say that the image

organizes the information following the request of a symbolic

Ic-PInLaLibh: the -hem.a.izing it not

stressed as for a concept, but works in the same direction: so

there is a relation between thinking and image transformations.

Even if there is an evolution from a first level , when images

are strongly affected by the incapacity of mastering the

inversion of a transformation, to a second level when the images

acquire a greater dynamism by means of the influence of tne

operations, certain static characteristics of the first level

last.

The Hypothesis

The specific hypotheses of our research project arise from the

choice of a particular mathematical problem. This is nOt a

problem generally considered to be very important, but we find it

very stimulating: it is the problem of the development of a

solid. In Italy it is not a basic subject in the mathematical

curriculum, even if primary school. teachers always deal with it.

Problems concerning nets of regular polyhedra can be found in

nearly all the textbooks, mainly with a practical aim ifor

instance "how to construct a cube with a sheet of paper"), and it

is in this way that, it is treated by te,:icherE-., who do not. yiye

great importance to this kind of problem. On the other hail

besides the 'specific works of Piaaet [21 , there are not frirly
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studies devoted to this problem 14) . The basic aim of our

research project is to obtain more information on:

the influence of mental operations in the process of

oraanization of mental images during the period of concrete

operations:

the static versus dynamic character of mental images.

A specific hypothesis is considered:

there are two levels of complexity when one considers problems

connected with the manipulation of mental images:

1 a first level when primary intuitions [3] are sufficient: the

image is global, it is not necessary to coordinate intermediate

processes to solve the problem:

a second level when the primary intuitions are not sufficient

any more : an operative organization of images is required to

coordinate them according to the composition of transformation.

The method

Since the aim of the research is mainly explorative, the

interview method was chosen in order to provide the opportunity

to observe attentively the behavior of each individual child. On

the other hand a plan of the interview was set up which was

always followed in the same way, repeating the same questions

aivina the same explanations or suaaestions. This allows

standard in the final collection of results.

Subjects

Two different age levels were chosen:

10-11 year old pupils, corresponding to the end of the primary

school

g6S
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1 1.s year old pupils. corresponding to the sec.und thitd

grade of the secondary school.

Materials

During the interviews the following were proposed to the

subjects :

models of solids:a cube. a regular tetrahedron, a prism with a

base in the form of an equilateral triangle;

- sheets of paper where the nets of the same solids had been

drawn.

The Questions

The question set was organized following three different stages:

I 'howing each object one asks the name of the solid. After

hiding it one asks the child to count the number of faces.

vertices and edges of the solid.

II After a very short explanation one asks the child to draw

the net of the solid considered in the first stage. When the

first drawing is done the child is asked if it is possible to do

an alternative drawing, solving the same problem. Each staae

provides a first moment when the question is put without the

object available (after having shown it the solid is hidden ) and

.a second moment, if the child does not succeed, when the the

object is given to him. Finally each child is asked to verify his

solving procedure using the object itself.

III Successively the drawing of each solids is presented with

the question : Is this the net of a certain solid?- . If the

child gives an affirmative answer one asks him to imagine the

reconstruction and to color in the same color the segments on the

perimeter corresponding to the same edge on the solid. Accoldind
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to the hypothesis of two levels of complexity there are two types

of net.

Type A : following the straight strategy (as a "flower-) fig. 1.

Type Es: following a ( "rolling ") strategy where the composition of

more transformations is involved fig.2.

fig .2

fia.

Results

As remards the first stage it is possible to establish a

development in the systematic way of counting the elements of the

solids (faces. vertices and edges). Roughly three different

levels can be identified: absence of a systematic way, presence

of a certain systematic method and a good systematic solution.
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it is interesting to remark that at the intermediate level. if

tie object is not available. a rational organization overwhelms,

the mental representation of the object and counting reveals

instabilities. For instance: the child counts the vertices

grouping them by faces ( "4 for each faces ) and then multiplies

by the number of faces, without realizing that some vertices have

been counted twice. On the other hand at this level the presence

of the oPject and particularly the handling of it often causes

failure: for example this is the case of Sara (10 years): even if

without the object she has counted correctly, when she wants to

verify her procedure using the object she counts turning the cube

in her bands without any trace of order and fails. Generally it

is possible to'correlate a good systematic way of counting with a

good performance in the development questions, but on the other

hand often it is possible to find in the drawing of the net

strategies related to the handling activity.

It seems possible to reinforce the hypothesis that the mental

images supply a scheme useful for counting. Further it is clear

that verbal language plays a basic role: the majority of the

children improve their performances when asked to describe their

counting strategies verbally. But this is a very interesting

problem which deserves further specific study.

For the second stage there was the objective of verifying the

hypothesis about the different kinds of intuition involved in the

solution of the problem. Contructing the correct net of the solid

implies coordination of a comprehensive mental representation of

the object with the analysis of the single components (fa,.
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vortices and edges .
The results clearly show the presence of two

different levels of complexity: the most commonly used strategy

is that which corresponds, in our classification, to that of type

A (a -"flower-); in this case only primary intuitions are involved

and it is not necessary to coordinate more than one

transformation, As a further confirmation there is the fact that

many children deny the possibility of the existence of other

different nets of the solid. Naturally there is an improvement in

this sense with age: but even with older subject many cases of

failure are found so that it is possible to suggest the further

hypothesis that without a specific stimulus there is no further

evolution of the capacities in this field.

The role of mental operations is clearly shown by the results of

the third stage of the interviews. As regards the question about

the reconstruction it is found that the great majority of

children interviewed succeed in recognizing the type A net, while

they fail in the case of the type B net and consistent with their

opinion in the previous stage, they even deny that the drawing

proposed can be the net of a solid.

The description of the strategy provided by the children shows

that the difficulty arises from the following fact: to correctly

imagine the correspondence between the single segments of the

perimeter reveals many more difficulties in the case of type B

figures because in the process of reconstruction each element

(faces, vertices ...) is transformed many times successively. To

solve the task it is necessary to follow, in one's own mind , the

transformations of the single element, so that the number of

transformations represents an index of difficulty. As a remark it
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is interesting to observe that the presence of a symmetry in the

-,ituation is not always noticed and used; mainly t.ne youngest

children do not even understand the suggestion regarding this

possibility.

Conclusions

Thus, as we can see, it is possible to suggest a criterion to

construct a hierarchy of difficulties in the task regarding the

development of solids, based on a very general criterion related

to the elaboration of mental images; on the other hand, following

the same criterion, there are possible didactic suggestions

useful not only to improve pupils' performances in problems

related to the development of solids, but also to better organize

didactics which have the more general aim of improving pupils'

capacities in the elaboration of mental images.
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The Role of the Figure in Students' Concepts of Geometric Proof

W. Gary Martin

University of Hawaii

Guershon Hare!

Northern Illinois University

410 university students enrolled in a lower-division "core" mathematics course

designed for nonscience majors were asked to judge the correctness of a proof of a

geometric statement, and to assess the effect of using a different figure on the

proofs validity. Two major findings emerged. First, use of non-generic figures

did not appear to influence their judgments of the correctness of the proof;

moreover, use of the special features of a non-generic figure did not appear to

influence their judgments of the proof. Second, for many students, the proof

appeared to be particular to the given figure; they indicated that a new proof would

be required if a different figure were used. The "fit" between the two figures

appeared to be a critical issue in determining whether the same proof could be used.

The concept of proof is one of the most important ideas in mathematics, yet research has

shown that only the very ablest students achieve understanding of it (Senk, 1985; Williams,

1980). In a previous study, we found that many students do not limit their concept of

mathematical proof to deductive arguments, but also accept inductive evidence as mathematical

proof (Martin and Harel, 1989). Fischbein and Kedem (1982) showed that high-school

students do not understand that statements mathematically proved to be true require no further

empirical verification. Results of Vinner (1983) support this result and add the suggestion that

high school students view a general proof as a method to examine and to verify a particular case

the process of the proof is generalized rather than the result of the proof; this also agreed

with findings in our previous study (Martin and Hardt, 1989).
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In this study we address a further aspect of students' understanding of proof as

establishing a result versus proof as establishing a process. A formal proof of a general

statement usually involves various symbols and, in geometry a figure, which are used as

external representations of the variable elements represented within the statement. Our question

is whether students understand that these external representations do not influence the generality

of the proof. For example, in an algebraic context, if a theorem is proved for three variables

labeled x, y, and z, it is equally proved if they are labeled a, b, and c. In this paper we focus on

this phenomenon in the context of geometry to what degree do students of mathematics

realize that the proof of a general geometric statement is not dependent on the particular figure

accompanying the proof? More specifically,

I . Do students of mathematics realize that the proof of a general geometric statement is not

dependent on the figure accompanying the proof? Conversely, do they realize that the proof of

a general geometric statement may not depend on special features of the figure?

2. Do students conceptualize a geometric proof as a process that must be recapitulated in

terms of a particular figure rather than as a proof of the statement for all figures?

Procedure

Instrumentation

Three parallel paper-and-pencil instruments were designed to aid in answering our

research questions. In each instrument, subjects were presented with three situations, each

presented on separate page of the instrument, related to the statement: "A segment joining the

midpoints of two sides of a triangle is 112 the length of the third side."
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In the first situation of each instrument, subjects were presented with an argument and an

accompanying figure purporting to prove the statement. They were presented with a fixed-

response question about its correctness"Yes, it is a correct proof' or "No, it is not a correct

proof"and asked to explain their response. In the second and third situations of each

instrument, subjects were provided with an alternative figure (along with the original figure)

and asked to evaluate whether the same proof would still work, in a fixed-response question

"The previous proof will work here", "We will need a new proof", or "I would need to look at

the previous proof to answer the question" and asked to explain their response.

Figures presented in the instrument varied in the degree to which they represented a

generic triangle without special features. The proofs presented in the initial situation of each

instrument differed in whether they were a general proof, or whether they relied on special

features of the figure. The conditions of the three instruments are summarized in Table 1.

Table 1. Conditions found in Instruments 1, 2, and 3.

Situation 1 Situation 2 Situation 3

Kind of Proof Kind of Figure Kind of Figure Kind of Figure

Instrument 1 General General General Particular

Instrument 2 General Particular Particular General

Instrument 3 Particular Particular Particular General

Subjects and Method

One of the three instruments was presented to each of 410 students enrolled in a lower-

level "core" mathematics course designed for nonscience majors at a large midwestem

276



269

university; completion of a high-school level geometry course is a prerequisite for the course.

The instrument was administered during a required class meeting in the twelfth week of the

fifteen-week course. Subjects were allowed at least twenty minutes to complete their

instrument; all subjects were easily able to finish.

Results

Responses to each of the instruments were analyzed using two different methodologies.

First, frequencies of responses to the forced-answer questions were tabulated; see Table 2.

Table 2. Percentages of responses to forced-choice questions in Instruments 1, 2, and 3

Response

n Yes No Look again

Instrument 1

Situation 1 130 87 13 (n.a.)

Situation 2 1131 78 15 7

Situation 3 1131 61 33 6

Instrument 2

Situation 1 145 82 17 (n.a.)

Situation 2 1191 85 8 8

Situation 3 1191 30 65 4

Instrument 3

Situation 1 135 85 15 (n.a.)

Situation 2 1041 61 31 9

Situation 3 1041 24 70 6

1Limited to students who responded "Yes" to the first situation.

Several observations can be made at this level of analysis:

1. Roughly equal (x2=1.224; p>0.20) percentages of subjects accepted the initial proof in

the first and second instruments. Thus, presenting the general proof with a non-generic figure
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did not appear to influence subjects' judgment of the proof, relative to presenting the same

proof with a more generic figure.

2. Roughly equal (x2=0.494; p>0.500) percentages of subjects accepted the initial proof in

the second and third instruments. Thus, subjects did not appear to distinguish between a proof

which is general but attached to a non-generic figure, and a proof which uses features of that

same non-generic figure.

3. As seen in responses to each of the instruments, many subjects felt that the validity of a

proof may be dependent on the figure used in explicating the proof. In each instrument, at least

15% of the subjects who had accepted the original proof were not convinced that the proof

would work with the figure in Situation 2, which was "like" the original figure. In each

instrument, at least 39% (ranging up to 76%) of the subjects who had accepted the original

proof were not convinced that the proof would work with the figure in Situation 3, which was

quite different in appearance from the original figure.

In attempting to further explain their beliefs of the role of the figure in a proof, subjects'

explanations for their responses were reviewed and categorized. These were limited to

Instruments 1 and 2 due to the inadequacy of the base-line task in Instrument 3.

The following major categories of response for subjects who felt that a proof would apply

to the new figure were developed. Subjects categorized as General appealed to the generality of

proof, as in the following response: "A proof that finds a statement should hold true for all

examples of the same statement." Subjects categorized as Replay felt that the same proof could

be applied or "replayed" in the current situation, as in "You could go through all of the steps

you used before and get the right answer." Subjects categorized as Transfer focused on the
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new figure as a transformation of the previous figure, as in "All you did was enlarge the triangle

and turn the triangle 1800." Subjects categorized as Statement focused on the statement rather

than the proof, as in "If the statement is true, then it must work." The remaining students were

categorized as No explanation or Other. See Table 3 for frequencies of categorizations.

Table 3. Frequencies1 of categorizations for Subjects who accepted Situation 1.

Instrument 1 Instrument 2

Situation 2

Categorization

Situation 3 Situation 2 Situation 3

Accepted situation

General 7 15 10 7

Replay 15 10 12 8

Transfer 56 12 42 3

Statement 1 10 10 8

Unclassified 2 11 12 0

No explanation 10 10 15 9

Did not accept situation

Not Replayable 1 3 1 3

Not Transferable 12 32 5 70

Unclassified 5 1 4

= No explanation 1' 3

ISerne respondents were classified in more than one way.

In the case of subjects who felt that a proof would not apply to the new figure, two major

categorizations were developed. Subjects categorized as No-Replay felt that the same proof

could not he applied or "replayed" in the current situation, as in "When the additional lines are

added, the two corresponding triangles will no longer be congruent." Subjects categorized as
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No-Transfer focused on the new figure as a "too different" transformation of the previous

figure, as in "This is a new figure which is completely different." The remaining students were

categorized as No explanation or Other. Frequencies of categories are presented in Table 3.

Several observations may be made from a review of these categorizations.

1. Relatively few students appealed to the generality of proof when arguing that a

previously-accepted proof will work with a new figure. Many more students relied on surface

features of "likeness" of the figures, as seen in the Transfer and Replay categorizations.

2. This same reliance on the surface features of figures lead many students to believe that a

new proof would be required with a different figure, as can be seen in the No-Transfer and No-

Replay categorizations. This effect was heightened as the figure differed more substantially

from the original figure, as can be seen in the increased frequencies for these categorizations in

Situation 3.

Discussion and Conclusions

We can summarize our findings to our research questions as follows:

1. Use of non-generic figures does not appear to influence students' judgments of the

correctness of a mathematical proof. This finding is tempered by the observation that use of the

features of a non-generic figure is also not seen as a problem.

2. Many students appear to conceptualize a geometric proof as a process that must be

recapitulated in terms of the particular figure addressed. This can be seen in the number of

subjects who wanted a new proof when presented with a new figureindeed, a large

proportion of these students indicated that they were basing this judgment based on the "fit"

between the two figures. Further, even students who did feel that the same proof would he

2 ,t)0



273

valid with a different figure tended to base their judgments on "fit"; relatively few appealed to

t he generalcfy Of proof.

Eiffiliefelderice of this phenomenum was found in 9 subjects categorized Transfer and 7

subject§categOriZed NO-Transfer in Instrument 2. In Instrument 2, the figures in the first two

situations were "skewed" in opposite directions; these students mentioned that the proofs would

need to fie refOrtnulaied reversing the role of the labels of several of the points. This represents

very ditdct evidence for proof-as-replay.

Based on the findings on this study, the role of the figure in a geometric proof clearly

requires additional attention, both in the instructional process and in future research.
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The Inner Teacher, The Didactic Tension, And Shifts of Attention

J.H. Mason & P.J.Davis

Centre for Mathematics Education, Open University

Abstract: Hirabayashi and Shigematsu have written several articles
(1986, 1987, 1988) exploring the hypothesis of the Inner Teacher. Briefly
stated, this hypothesis is that students tend to pick up suggestions and
expressions of advice which they hear from their teachers, so that when
they are working, it is almost as if they can hear their teacher's advice.
Here we report on an opportunity taken to probe the Inner Teacher
hypothesis in the context of Open University students attending a week
long intensive mathematics surnmerschool while taking their first
university mathematics course. The study is used as a springboard to
examine connections between the Inner Teacher hypothesis, the Didactic
Contract' Tension (Brousseau 1984, Mason 1986), and Shifts in the
structure and nature of Awareness (Mason & Davis 1988).

BACKGROUND of THE COURSE and STUDENTS

Students of the Open University have to be over 21 years of age but otherwise
need have no other qualifications. They study at home (about 10 hours a week
for 32 weeks is expected for one course, and six courses make a general degree)
from printed texts, television programmes and audiotapes. The printed
materials make particular use of such suggestions as clarify what you know,
sort out what you want, build a bridge between them; when you are stuck,
specialise, then re-generalise. There is also one week's work devoted solely to
these processes and their role in both learning and doing mathematics (Mason
1985). As part of their studies all students attend a week-long summer school,
choosing from one of three sites over a ten week period. The summer school
involves investigative mathematical exploration, with specific suggestions as
to how.to go about it, as well as revision.

THE STUDY

Two cohorts of students were asked questions before and after their summer-
school week. The students present for the first week were asked two questions
while waiting for the opening lecture to begin. The first was

Pre 1.1 Think back to your days at school. Can you recall any slogans,
questions or advice that your teachers used zo talk to you about
working on or learning mathematics?

For the second week, the question was changed very slightly, because we
regretted the word slogan, which may have triggered a particular form of
reply.

Pre 1.2 Think back to your days at school. What advice or suggestions
from your teachers about working on or learning mathematics can
you recall?
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There were 170 students registered for each week, so about 160 were probably
there. Note that some students offered more than one reply.

Advice recalled from school Week One Week Two

None 74 (50%) 106 (69%)

Some aspect of memorising trig ratios 24 (16%) 7 (4%)

Some aspect of practicing using examples
or reading the question carefully 15 (10%) 31 (20%)

Miscellaneous* 15 (10%) 10 (6%)

Totals 128 replies 154 replies

* For example Don't say can't, say I will tomorrow; pay attention; show all
your working.

The second question posed both weeks before the opening lecture, was about
more recent advice recalled from their course. Again, the question was altered
slightly in the second week.

Pre 2.1 What advice, slogans or suggestions about working on or learning
mathematics from the course text or tutor stands out for you now?

Pre 2.2 Think back to doing the last assessment assignment. What advice
if any from the course or tutor came into your head?

Advice recalled from course/tutor Week One Week Two

None 81 (55%) 77 (53%)

Process Vocabulary
Know & Want 7 (5%) 3 (2%)

Process Vocabulary
Specialise & Generalise, Conjecturing 13 (9%) 2 (1%)

Miscellanous* 30 (21%) 45 (31%)

Specific to OU Study 4 (3%) 17 (12%)

Mathematical Content 10 (7%) 0

Total Student responses 145 replies 144 replies

At the end of the week students were asked

Post 1 What advice or suggestions struck you particularly during the
week?

During the week there are a number of mathematical songs and slogans
connected with mathematical topics (most notably QDQ-1 connected with
matrix diagonalisation), which are inescapable.
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Advice recalled from the week Week One Week Two

QDQ-1 and other such slogans 10 (9%) 7 (6%)

Process vocabulary:
Know and Want; clarify question 10 (9%) 9 (8%)

Process vocabulary
Specialise & Generalise, Conjecturing 40 (35%) 25 (23%)

Miscellaneous* 28 (24%) 35 (32%)

General comments** 2 24 (22%)

None (including too many; nothing salient) 25 (22%) 9 (8%)

Total number of student replies 115 replies 109 replies

* Many of these are connected with some striking incident or remark, eg week
one, tutor "I've got my lucky knickers on", quoted by two students. Advice
ranges from be methodical, to take a break, don't panic, listen to others, . . .

** Comments on the value of particular sessions, and other more personal
comments like I feel I'm thinking more mathematically.

METHODOLOGICAL REMARKS

We find it useful to distinguish three points in a spectrum of probes, ranging
from the explicitly directive, through prompted or cued, to spontaneous
utterances. Thus, do you recall . . .? is a highly directed question, whereas a
prompt or cue of the form what advice did I give your colleague a few minutes
ago?, is intended to trigger recall, and, at the other extreme, one can look for
spontaneous utterances by students which signal awareness of particular
advice. We favour the spontaneous (Davis & Mason 1987) as the only
unambiguous indication of a person having begun to internalise advice,
integrating it into the automatic functioning of the inner teacher. Of course
spontaneous utterances are few and far between, and therefore difficult to use
quantitatively. Thus in a study of this form it is necessary to resort to probes of
various sorts, and with groups of 150 students, such probes have to be fairly
directive in order to elicit any analysable response at all.

The ambiguity present in interpreting directed and probed responses, stems
from an instance of the Didactic Tension, a term derived by Mason (1986) from
Brousseau's Didactic Transposition (1984). The tension, which necessarily
pervades any teaching incident, is that the more explicit and precise a teacher
is about the behaviour sought (as evidence of learning), the more likely it is that
pupils will exhibit the behaviour mechanically, rather than as a result of
understanding. In the case of the Inner Teacher hypothesis, the more explicit
the researcher is about the kind of response being sought, or the kind of
experience being looked for (eg the spontaneous welling up inside of a strategy
for dealing with a particular mathematical situation), the more likely the
subject is to provide such a response, not spontaneously, but as a result of
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having been prompted. For this reason, the questions posed to the students in
our study were carefully chosen to be prompting but not wholly directing. It
would have been perfectly possible, for instance, to ask students what advice
they recalled from the course about what to do when you get stuck, since they
had had a whole week's work on this, together with the same advice at various
times in the mathematical texts. But the results would have provided even less
evidence about the growth of an inner teacher.

The aim of the study was to probe the Inner Teacher hypothesis. The word
probe was used intentionally, because it is not possible to prove or disprove the
hypothesis by a study of this type. However, it is possible to use such a study as
a springboard for further refinement and for reflection on some key issues in
mathematics education centred on the inner teacher and the didactic tension.

ANALYTIC REMARKS

Hyabashi and Shigematsu (1988) were able to classify pupil replies in terms of
explanation, question, indication, or evaluation. The replies we received were
all in the form of questions or indications, but we found the distinction hard to
sustain, because tutor questions sometimes emerged in the indicative mood,
transformed into advice for the self.

The pre-week replies are sufficiently different between the weeks to attract
attention. It is possible that more of the students in the first week were
teachers, or that the precise wording of the questions triggered different
memories. If the latter is the case, it highlights the sensitivity of replies to
minor changes in wording, and hence the difficulty of getting spontaneous
rather than prompted expressions of what students are thinking.

The comparison between pre- and post- week replies in both weeks is
heartening, even when bearing in mind that these are prompted responses
after an intensive week. Long term, the effects are likely to wear off, and there
is a world of difference between recalling advice when prompted, and using
advice when you get stuck, or even integrating the advice into your automatic
behaviour. Yet with these adults, we can assert that a significant number
became aware of the existence of advice, whatever the psychology of integrating
that advice into appropriate behaviour.

The replies suggest that the initial question may have triggered the classic
experience of tunnel vision when asked an unexpected question. Nothing
particularly resonated with students waiting eagerly, and sometimes-
uncertainly for the week of mathematics to begin. Of those who did think of
something in week one, the main advice recalled from school is connected with
memorising particular facts, especially trigonometry. Although as indicated
there were a variety of replies, we had no less than ten different versions of the
sine is side over hypotenuse sequence SOHCAHTOA, ranging from the
ordinary (Silly Old Hens Cackle All Hours Through Old Age) to the adult (Sex
On Holiday Can Always Help To Overcome Anxiety). Other mathematical
topics were similarly represented mnemonically.

A more careful conclusion is that, when asked these questions in the
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circumstances of waiting for the first lecture to begin on the first evening of
what is for most a new experience, namely a whole week of mathematical
activity, what came to mind was school mnemonics.

It is tempting to hypothesise that novelty plays a significant role in supporting
long-term memory retrieval, and furthermore, that there is a cultural
transmission of the mechanism of using novel mnemonics to remember facts
"that's how things stick in your mind". Perhaps this leads teachers to
construct new mnemonics for their pupils, taking pleasure in the novelty of
their own particular version, but perhaps losing sight of the main aim which
is for students to have ready access to the meanings of the trig ratio-names.
The SOCAHTOA sequence was presumably itself intended to be memorable.
Yet the convoluted two step process of recalling a sentence to get the letters and
then decoding the letters to get the trig ratios seems far more effort than
becoming imbued with the three trig ratios directly. Is it helpful to
recommend such expensive (in terms of mental energy) strategies? Is there
not a good chance that memorising of the mnemonic actually blocks further
integration of awareness of trig ratio-names as ideas, so that it is not possible
to subordinate and automate the awarenessee because they have been labelled
and stored in a mechanical-linguistic way?

By contrast, in week two the dominant feature was the need to practice in order
to succeed at mathematics. These replies could be seen as a manifestation of
the culturally dominant impression of mathematics as a series of techniques
which have to be practiced until they become automatic, so that you get the
right answers. Some summer-school activities are intended to challenge this
view, and the replies to the post-week question bear this out.

THEORETICAL DISCUSSION

The study reaffirms the observation that some students will not only notice the
use of process vocabulary and advice from tutors, but also remember it, and
even recall it when prompted by a question such as the ones we used. In Davis
& Mason (1987) we reported on a similar phenomenon by students studying the
same course, but with a longer time frame and with only spontaneous
utterances as feedback from students. Hirabashi and Shigematsu (1986, 1987,
1988) also report similar experiences. How might we account for this, (as well
as for its not being universal), and what issues does it raise for researchers
and teachers?

We suggest that the phenomenon described is an instance of subconscious
training of behaviour. In Davis & Mason (1987) we argued that the technique of
repeatedly using the same language pattern (eg What do you want?, What do
you know? etc) is more likely to register with students, even subconsciously,
than constantly using different language for the same thing. Furthermore it
is more likely to register if it is associated with an incident in which the advice
actually helped (this observation lies behind the discipline of noticing
elaborated in Mason 1987). And finally, such language is more likely to be
noticed as advice, if attention is drawn explicitly to it, or some other means is
used to invoke a shift in the nature and structure of students' attention (Mason
& Davis 1988).
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We suggest that the picking up of mannerisms, strategies and advice as
described by the notion of the inner teacher, arises from investment (conscious
or unconscious) in the teacher. Thus we would predict that it is more likely to
happen in pre-adolescents who are (generally) eager to please; in adults who
want to learn and who are impressed by what tutors seem to know; and by
those adolescents who find a suitable role model in a particular teacher. We
note that there can be deliberate mimicking (which is subject to the Didactic
Tension in terms of its value to the student, since what is picked up is the
behaviour rather than the understanding which generates the behaviour).
There can also be deliberate rejection. Thus there is no easily identifiable
general cause and effect operating, so it is necessary to look more closely. We
conjecture that the significant factors are investment/respect; deliberate &
explicit use at moments when the comments help the student out of difficulty;
and supportive use of a gradual movement from directed introduction of
advice, through prompted recall of that advice, towards unprompted, relatively
spontaneous use by students.

It could be argued that recall is never purely spontaneous if the teacher is
present, or even if the student is working on material associated with the
teacher, because the very presence of the teacher, or the clasroom context may
trigger recall. We suggest that this is but one step on the way to the educating
of the inner teacher. There are close connections here with the shift of
attention which comes from resonance induced by context or comment (Mason
& Davis 1988). Resonance is the mechanism by which any association comes to
mind, whether by expert or novice. The whole point of teaching is presumably
to help students to integrate useful behaviour and to obtain access to that
behaviour when appropriate. Integration comes by subordinating it (Gattegno
1987) to more automatic functioning, thereby releasing attention for higher
order activity, and in particular, monitoring of activity (Schoenfeld 1986;
Mason, Burton & Stacey 1984). Automatising behaviour can come through
practicing (as stressed particularly by students in week two) and by more
efficient means (Gattegno 1987, Tahta 1988) and is an important aspect of
learning. To develop a wide base of resonance, the teacher chooses moments to
invoke directed or prompted responses which are judged to be likely to make
significant sense to students, and through attention being drawn to the
interventions (a shift of attention), a rich web of meaning is built by students.
The richer the web, the more likely the associated advice is to surface in times
of need, or in other words, the more likely is the Inner Teacher to be heard.

James (1917) uses the term Acting As If to describe intentional change in
mood, perspective and attention. The un-intentional picking up of behaviour
patterns has much of the flavour of acting as if, in the sense that the student
finds themself mimicking teacher behaviour (ie acting as if they were the
teacher). We all experience it, especially when we suddenly notice that we
have picked up a new word, phrase or cliché sometimes even against our
wishes. We suddenly become aware that we are using a particular phrase,
and we can almost even hear our 'source' saying it. The force of the Inner
'reacher hypothesis lies, for us, precisely in the brief moment of experiencing
the other, or source. For a brief instant it is possible for the student, in a sense,
to be the revered teacher. As Hyabashi and Shigematsu (1988) put it, "the
teacher becomes another self of the pupil, monitoring and evaluating the
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original self's activity".

BEHAVIOUR and AWARENESS

Education is as prone to fad and fashions as any other human endeavour, and
mathematics education has its fair share. Of particular relevance to this study
is the opinion, often more implicit than explicit in what people say, that
teachers should not (note the moral imperative - a sure sign of dubious
reasoning) engage in activities which may prompt students to automatise
behaviour superficially. Phrases such as teaching for understanding are often
heard in discussions amongst teachers of mathematics, with the implication
that anything which contributes to rote learning is unhelpful if not dangerous
or irresponsible.

Our study is a reminder that this issue is not nearly as cut and dried as it
seems at first. It is part of human nature to integrate behaviour and to
subordinate or automate it. Furthermore it is only natural for pupils to wish to
minimise the attention and energy needed to invest in manifesting the
behaviour which the teacher seeks. This is the force which energises the
Didactic Transposition (Brousseau 1984).

We suggest that there is nothing wrong in itself with training of behaviour,
indeed we go so far as to suggest that Only behaviour is trainable, (an adage
which is the essence of part of the framework used in Griffin et al (1988), for
preparing to teach any topic). But hand in hand with behaviour goes
awareness, and the inspiring assertion of Gattegno that Only awareness is
educable (Gattegno 1976, Mason 1987, and used in Griffin et al 1988). Despite
the current theology that understanding precedes automaticity, we suggest
that responses such as those reported in our study remind us that the training
of behaviour and the educating of awareness go together. Neither specifically
or necessarily precedes the other. As we subordinate certain functioning,
attention can be freed to attend to more executive type of control, and our
awareness of appropriateness, of the range of relevant contexts, can grow
correspondingly. As we exercise a skill we begin to see more ramifications
than were visible on first encounter. Familiarity breeds contempt (prompts
become superficial jargon or cliché), when it involves a loss of richness and
stimulation. When familiarity has a sense of exploration, of uncovering
greater richness, of stimulation (prompts become more meaningful)
familiarity can also breed respect. Contempt and respect impinge on the
affective domain, the third aspect of our psyche which is not wisely omitted. It
has a correlate adage, Only emotion is harnessable, which links affect with
motivation and drive. This is the essence of the mechanism exploited in
Mason, Burton & Stacey (1984) in the form of emotional snapshots, and which
has been developed much further recently in the discipline of noticing (Mason
1987, Mason & Davis 1989, and Jaworski et al 1989).

VALIDITY and CONSEQUENCES

As with our previous work, validity of our study lies, for us, in the extent to
which it resonates with experience, and to which it awakens awareness of
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issues which they might otherwise have overlooked. If it helps some people to
think about the relationships between the educating of awareness and the
training of behaviour, or if it provokes further consideration of the Inner
Teacher hypothesis, then it will have served its purpose. There has not been
room or time here to develop teacher strategies which make use of
opportunities noticed (triggered by awareness of the Inner Teacher hypothesis)
in classrooms while teaching or researching, which is where the best test of
validity and effectiveness lies.
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LECTURE ET CONSTRUCTION DE DIAGRAMMES EN BATONS
DANS LE PREMIER CYCLE DE L'ENSEIGNEMENT SECONDAIRE FRANCAIS

S. MAURY , Af. JANYIER , J. BAILLE

Equipe E.E.A.M., Universite Montpellier II

Equipe E.E.A.M. et Universite Grenoble II

WAUnQ

La ptEoente itecheache conceane to taaitement deo diagaanuneo en

botono paa teo OfEveo du paerniea cycle de f'enoeianement 6econdailte

Leo deux activitEo de tectuae et de cowstkuction Uudi1e6 6ont

aux niveaux ocotaiaeo. Leo kEouttato dittEaencient to paogaeooion

deo peatoantanceo aetativeo a chacune deo activitEo .et une interaction

entre activitE (fectuae et conotauction) et objet (nombee et gaaphique).

Abotaact

Thio iteoeaach deaCo with the treatment of oticho-diagaamo by the

pupito ot the {,taut cycle (4 the {,Tench oecondaay education. The aeading

and construction activitieo are adated to the ochoot feveto. The aeoutto

dhow the improvement ot the peatoainanceo tinhed to each activity and

an interaction between activity (aeading or con6ftuction) and object (num-

beao on gaaphico).

Sur le plan le plus general, le recours aux representations graphiques

dans l'enseignement sollicite deux types d'activites : la lecture (qui con-

duit a l'interpretation) at la construction. Dans une premiere approche,

les taches qui renvoient a chacune de ces deux activites se distinguent

par l'information disponible au depart. Dans une Cache impliquant l'activite

de lecture, la totalite de ]'information graphique est disponible d'emblee,

it s'agit alors d'unc tactic dc reorganisation signiriante du materiel. En

revanche, l'autre tAche impose la construction, le trace, de l'information

manquante. Par ailleurs, in relation entre donnees numeriques at representa-

tions graphiques autorise, sous certaines contraintes d'accessibilite(nre-
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sense de to totalite des nombres dans un cas, ou possibilite de leur extrac-

tion a partir du graphique dans l'autre), l'extensiondes deux activites

de lecture et de construction aux valeurs numeriques des grandeurs represen-

tees. C'est donc a une exploration des relations entre activite de lecture

et activite de construction relatives a Is trace graphique et aux nombres

correspondents que le present travail est consacre.

Sujets :
l'echantillon examine comprend 461 eleves issus des quatre

niveaux scolaires du premier cycle de l'enseignement secondaire Francais

(niveau sixieme : age normal 11-12 ans; cinquieme : 12-13 ans; quatrieme:

13-14 aria; troisieme : ans).

Materiel :
Le materiel graphique est compose de diagrammes en biltons.

Son caractere elementaire -une seule variable a une dimension- n'induit

toutefois pas des traitements eux-memes elementaires (cf. Inhelder, 1970;

Bailie, Maury, Janvier, 1988).

Quatre series de quinze items chacune sent organisees. Tout item (cf.

exemples ci-apres) comprend des nombres qui representent des populations

de villes et un diagramme. Relativement aux valeurs numeriques et aux lon-

gueurs des batons, toutes les series sont constituees sur le meme modele:

cinq items presentent des rapports "scalaires" simples, entre des grandeurs

de meme nature, nombres ou batons ; cinq autres des relations de type "fonc-

tion" simples entre des grandeurs de natures differentes, enfin les cinq

derniers contiennent des relations additives simples entre grandeurs de

meme nature.

Les series se distribuent en deux classes qui renvoient aux activites

presupposees de lecture (L) et de construction (C). L'activite (L) est diri-

gee soit vers les nombres (N) soit vers les diagrammes (0). Il en va de

meme pour (C). On a donc les quatre series suivantes:(LD); (LN); ro en

(CN). A I.iiis d'exemnly, 11011:: aV011:: roprodnit en page rmivante le premier

item de chaque serie (figure 1).
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Voici 4 villos dont les populations

sont :

A : 6 000 habitants; B : 18 000 habitants

C : 9 000 habitants; 0 : 13 000 habitants

Sur be graphique on a deja indique

le baton qui represent° la population de

in Ville B.

Placez sous les autres batons le

nom des deux autres villes qui ont 6t6

representees.

1-.F.

1 -

Li' C

7....-t==.=

=

1-1 1

1 1

r

Voici un graphique qui represente

les populations de 4 villes A.B.C.D.

On sait déjà que le baton C repre-

sente une Ville de 18 000 habitants.

lndiquez a quels batons du graphique

correspondent les populations suivantes :

9 000 habitants :

6 000 habitants :

........

Voici 3 villes dont les populations

sont :

A : 18 000 habitants; B : 6 000 habitants

C : 9 000 habitants

Sur le graphique on a déjà indique

le baton qui represente la population

de la Ville A.

Tracez au dessus des noms des

deux autres villes les batons qui les

representent.

Voici un graphique qui represente

les populations de 5 villes A.B.C.

On sait c16.16 que le baton B

represente une villa de 18 000 habitants.

lndiquez les populations des

villes representees par les batons

suivantos :

B

"L ft. 1:1-YI:

Fig.2 : item N'l de chacune des series

t .2
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Le plan d'experience combine trois facteurs : le niveau scolaire (qua-

tre modalites : sixieme, cinquieme, quatrieme, troisieme), un facteur ac-

tivite (A) a deux modalites (L) et (C), un facteur "objet" vers lequel est

dirige l'activito (D) et (N). La variable dependante etudiee est la perfor-

mance :
cheque item est note 0 en cas d'echec, l pour une reussite partielle

et 2 pour la reussite totale.

Dans chaque niveau scolaire, les Cleves sont repartis au hasard en qua-

tre groupes. Cheque groupe correspond A une disposition (LN), (LD), (CN),

(CD) des modalites. La duree de l'epreuve est limitee 6 50 minutes.

Resultats :

a) Etude yeobaee

Pour chaque niveau scolaire, noun avons port6 dans to tableau ci-dessou!:

les moyennes obtenues par chacun des groupes (moyennes sur 30 points, arron-

dies au point pres).

Tableau I

Moyenne par niveau scolaire et par groupe .

Niveau scolaire sixieme cinquieme quatrieme troisieme

Groupe CN CO LN LO CN CD LN LO CN CD LN LD CN I .'D LN--LD

Moyenne ,15 16 22 19 15 18 25 22 22 21 '27 25 22 23 28 26

Afin de tester l'effet des trois facteurs ainsi que les eventuelles

interactions, nous avons effectue une analyse de la variance sur. les donnees

resumees dans le tableau I. A cet effet, nous avons utilise la procedure

G.L.M. (General Linear Models) du systeme Statistical Analysis System (S.A.S.

1982), en demandant en option le test des rangs multiples de Duncan (ce test

permet de regrouper les moyennes en classe a l'interieur desquelles les dif-

ference ne sont pas statistiquement significatives). Des resultats de l'analy-

se, portes dans le tableau II, attestent le fort impact du niveau scolaire

sur les performances des Cleves. Toutefois, nous verrons que la progression

observec ne renvoit pas strictement a la suite des niveaux scolaires. Notam-
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ment, l'application du test de Duncan conduit A une indifferenciation des

niveaux troisieme et quatrieme. Se distinguent et suivent dans l'ordre d'une

performance decroissante, les eleves de cinquieme et enfin ceux de sixieme.

Tableau 11

Resultats de l'analyse de la variance relative

aux donnees du tableau I

OF PR>1
Source

Niveau scolaire

Activite IL, C)

3

I

F

25.58

102.12

0.0001

0:0001

Objet (N. Di 1 0.34 0.3611

Activite x objet 1 9.78 0.0019

Classe x activite 3 1.35 0.2562

Classe x objet 3 0.12 0.2470

Classe x objet x activite 3 1.09 0.3516

Ajoutons que si les activites (L) et (C) se distinguent, l'activite

de lecture etant tres significativement plus facile, tous objets confondus

que celle de construction, it semble, en revanche, que la nature (D) ou

(N) de l'objet vise ne determine aucune difference significative des per-

formances. Il reste que la forte interaction observde entre objets et ac-

tivites meritera, plus loin, quelques commentaires.

b) Etude pan modueite.. du tucteu/t activite

Tableau II

Moyennes des notes (M) et ecarts types (6) par niveau scolaire pour

chacune des activites (L) et (Cl. tous objets contondus

Niveaux
scolaires

s'xieme cinquieme quatrieme troisieme

Activite L C L C L C L C

20,7 15,6 23,5 16,4 25,9 21,1 26.7 22,2

6,6 5,8 5,5 6,9 4,9 6,8 3,2 6,7

A chaque niveau, tous objets confondus, it est manifestement plus facile

de lire quo de construire. Du point de vue des groupemonts de Duncan, l'ac-

tivite construction et l'activite lecture determinent, chacune, un groupe

de deux classes indifferenciaes : la quatrieme et la troisieme. Mais, alovs
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que l'activite lecture conduit a des performances moyennes distinctes entre

la sixieme et la cinquieme, l'activite construction ne partitionne pas ces

deux premiers niveaux scolaires.

Par rapport a l'efficacite du traitement de ces d agrammes en batons,

it semble donc que le niveau quatrieme corresponde a un saut significatif.

D'autre part, les resultats suggerent qu'une attention plus grande soit por-

tee a l'apprentissage de la construction de representations graphiques dans

les premiers niveaux de l'enseignement secondaire.

Afin de faciliter l'interpretation de l'interaction mise en evidence

par l'analyse de la variance (tableau II), nous avons construit la figure

2.

c) Etude de e'intenaction entke objet et activiteo

Moyennes A

des notes

25 -

20

15

L C

Fig.2 representation de l'interaction

Relativement au gain de lisibilite de la representation graphique (cf.

Bertin, 1979), ce resultat parait surprenant, au premier abord. Mais, dune

part, is suite des nombres est suffisamment courte pour se situer dans les

limites de l'empan en memoire de travail et, d'autre part, l'organisation

du materiel nest pas sans incidence. Dans les items de la serie (LN) o6

in valour des nombres tend a faciliter le recoups aux procedures scolaires

ou additives (c f. Vergnaud et al, 1979), la disposition des nombres renforce
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visuellement ce type de traitement. Dans les items correspondants de la

serie (LD), les eleves doivent, an
prealable, mesurer la longueur des batons.

Cette interpretation presuppose un ancrage initial du traitement sur les

nombres en (LN) et SUP le diagramme en (LD).

Dans l'activite de construction, le risque d'erreur nest pas equivalent

sur les batons et les nombres. Sur les batons, l'erreur est plus rare car

plus nette (au minimum un carreau en plus ou en moins). L'ajustement au

carreau pres peut conduire a une reponse juste des eleves ayant adopte une

procedure retour a l'unite meme quand l'echelle ne conduit pas A un nombre

entier de carreaux par millier
d'habitants. Dans le cas ou lee eleves adop-

tent la meme procedure dans lee items correspondants de la eerie (CN), ils

calculent la "valeur" (en nombre d'habitants) de 1 carreau. Celle-ci est

un nombre decimal non entier qu'ils multiplient ensuite par le nombre de

carreaux. Its obtiennent un nombre dont ils ne retiennent que la partie

entiere. Cet ajustement conduit dans tous les cas A une erreur alors qu'il

n'en va pas de meme lors do l'ajustement au carreau pres.

Discussion

Dans un commentaire qui succedait a la presentation des resultats

concernant l'effet du facteur activite, nous avons declare que les activites

de lecture etaient manifestement
plus facile que les activites de construc-

tion. Il est vrai que les resultats se pretent A ce rapide commentaire.

Mais celui-ci n'a de sens que si les deux operations, en dehors du fait

qu'elles impliquent les memes objets, sont comparables. Sans doute pour

les nombres comae pour les diagrammes, on lecture et en construction, le

traitement implique-t-il le
calcul, direct sur les premiers et par le biais

de la mesure sur lee seconds.
Cependant, en lecture, nous pouvons supposer

que la composante pevceptivo-cognitive de in memoire de travail facilite

une estimation comparative de in vraisemblance des calculs. En revanche,

la construction n'autoriserait
pas cette recherche implicite de vraisemblance

23G



289

au long des calculs. Dans ce dernier cas, si verification i1 y a, elle n'ope-

rerait qu'au terme des calculs, sans possibilite de comparaison. Ajoutons

que l'interaction temoigne dune complexite plus grande du phonomene.

Pour conclurc, soulignons que cette simple exploration des incidences

separees et conjointes des objets et des activites montre l'interet dune

diversification des exercices prepares aux eleves, si ion veut que l'inter-

pretation des graphiques se fonde sur une reversibilite complete du couple

donnees-diagrammes.
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COOPERATIVE GROUP LEARNING OF GEOMETRIC PROOF CONSTRUCTION:

A CLASSROOM ASSESSMENT

La Donna MacRae and Bruce Harrison

The University of Calgary, Canada

In this study, the effects of two different teaching methods on achievement in and attitude towards the

learning of deductive geometry were examined. The experimental method emphasized small-group, cooperative

learning through process-oriented, proof-construction tasks designed in accordance with the van Hiele

developmental levels. The control method, direct instruction, emphasized whole-class, teacher-led instruction. No

significant differences in overall achievement or attitude were found between the two treatment groups. However,

the cooperative- learning group did make modest process-oriented gains while maintaining conventional Grade 10

geometry skills. The results of a descriptive item analysis suggest that while the direct-instruction method

tended to produce a higher rate of student success on items that tested straight knowledge and application of the

geometric content studied, the cooperative- learning method tended to enhance student performance on actual

proof construction.

The current research literature on the teaching of geometry indicates that high school students are mostly

unsuccessful in their efforts to learn proof construction (Senk, 1983, 1985) and that high school geometry as experienced by

many students, if not most, is but a collection of meaningless isolated facts and proof sequences to be memorized in order to

pass the exams (Hotter, 1981; McDonald, 1983; and others). Is it possible to teach geometry and proof construction to high

school students so that higher levels of thinking in mathematics are cultivated rather than rote memorization of facts? To

assess the feasibility of one learning-theory-based alternative to conventional approaches to teaching deductive geometry,

MacRae (1988) compared the effects of cooperative group learning of process-oriented tasks with those of direct

classroom instruction.

Questions Investigated

1. Will there be a significant difference between the group mean post-test and retention-test achievement scores

obtained by the students taught geometry with direct instruction and those taught geometry in cooperative-learning groups

using process-oriented materials?

2. Is one method superior to the other for producing a higher student success rate on particular types of geometry

or proof questions?

3. To what extent will either method be successful in teaching students to solve standard geometrical problems and

to construct proofs at various difficulty levels?
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4. What kinds of attitudes wilt be exhibited towards geometry as measured by enjoyment and anxiety subscales,

before and after the study of the geometry unit? Will there be significant differences between the group mean changes in

attitude?

Mettigcl

Procedure

Two 25-student Mathematics 10 classes participated in the study. One class studied geometry in a guided discovery

approach, using cooperative-learning techniques (e.g., Stavin, 1980; Sharan & Sharan, 1976) and process-oriented geometry

materials which were structured around the van Hie le levels of mental development (Freudenthal, 1973). A direct-instruction

method was used in teaching the other class, emphasizing those teaching behaviors currently held to be most effective for

student learning under direct instruction, namely: emphasis on active teaching with little seatwork, frequent feedback

through regular homework checking, smooth transitions between activities, clear presentations with explanations of each step

in the learning process, regular review, and a fairly fast paced delivery (Good & Grouws, 1977; Good, 1982; Brophy & Good,

1984; Good , 1984).

The study began after a common midterm algebra exam was given. No significant difference between the class means

of the two groups on the midterm exam was found.

Both classes were taught the Mathematics 10 geometry unit by the first author over a period of four weeks. The

members of the 'direct-instruction' class had ample time to finish and review the geometry course in preparation for the

achievement exams written at the end of the study. The cooperative-learning group was hard pressed to cover the content in

the four weeks of the study so no review or practice time was allowed them before the exams were written.

Upon completion of the unit both classes wrote a geometry unit exam and a proof test. Seven months later a

geometry retention exam was given to 14 students from each of the original treatment groups who could be located in a

sequent mathematics course. Both classes also wrote pre- and post- attitude towards geometry questionnaires to indicate

change in enjoyment and anxiety towards the learning of geometry.

Analysis

The data collected from the achievement tests were analyzed using t-tests to determine whether there were

significant differences between the class means of the two groups on each test. The results of the attitude questionnaire

were analyzed using a two-factor analysis of variance with repeated-measures design.

A descriptive analysis of specific items on the achievement tests was used to determine whether the students who

were taught through a cooperative-learning method which used process-oriented materials attained a higher percentage of

successes or failures on particular types of geometry questions than the students taught by direct-instruction. An analysis

of student responses to these items revealed patterns indicating specific areas of strength and weakness of teaching method

with respect to the teaching of proof construction.
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Result

The results of the statistical analyses indicated that there were no significant differences between the group means

of the direct-instruction class and the cooperative-learning class on the three geometry achievement tests given. This is an

interesting result considering that the cooperative-learning class was severely pressed to finish the unit in time to write the

exams and, unlike the direct-instruction class, was given no time in class to review or prepare for the exams.

However, there is reason to believe that the cooperative-learning, 'guided discovery' group did make some modest

process-oriented gains while maintaining conventional Grade 10 geometry skills. The results of a descriptive item analysis

suggested that while the direct-instruction method seemed to produce a higher rate of student success on items that tested

straight knowledge and application of the geometric content studied, the cooperative-learning method enhanced student

performance on actual proof construction.

The results of the statistical analysis of the Attitude Towards Geometry questionnaire indicated that both groups

showed a slight improvement in enjoyment of geometry and a slight lowering of anxiety towards geometry at the conclusion of

the study but there were no significant differences between the group mean scores.

Discussion

Strengths and Weaknesses of Each Method

The strengths of the cooperative-learning method included: providing for a closer contact with the geometry

concepts and a greater involvement in forming one's own procedures for constructing proofs, promoting intellectual

involvement through the exchange of ideas with others to help clarify one's thinking and thus understanding, helping students

appreciate what is involved in learning axiomatic systems, and encouraging students to be more independent of the teacher in

learning mathematics. In particular, the members of the cooperative- teaming class seemed to be more adventuresome than

those in the direct-instruction class in attempting proofs to the more difficult and unfamiliar problems, even though they may

not have been particularly successful in completing them. They were quite used to attacking problems and creating their own

procedures for solving them without teacher guidance.

Another cooperative learning strength was that the students using this method seemed to enjoy working and learning

in small groups. However, it is surprising that their measured change in attitude towards geometry did not seem to reflect

this enjoyment. A reason for this finding might be that while the students did enjoy the group work, they did not necessarily

enjoy learning geometry as much. They found geometry and especially proof construction much more difficult than algebra.

Furthermore, not having had the time to complete the unit by using the cooperative-learning method or to consolidate their

knowledge through a review of the material in preparation for the exams could well have left them less happy with their

accomplishments than they may otherwise have been.

The greatest weakness of the cooperative-learning method seems to be the amount of time required to implement it

in a classroom situation. Not enough time was devoted to review and practice of the material learned. There are other
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weaknesses which might have been overcome with more teacher guidance. First, not enough attention was given to making uie

'discovered-concepts explicit (especially to the lessable members ofthe class) and to the details of setting.up the form in

which a proof should bepresented. Second, the lack of taught procedures which could be applied to new problems so that the

students did not have to start from first principles on each question may have.slowed them down when writing exams.

However, if more.time had been available forreview and practice this weakness may have been overcome. Third, itwas

perhaps too easylorthe less able students in each group to hide behind the accomplishments of the more able group members

to-the detriment of their own mathematical development. Fourth, it is possible that at least some of the 'discoveries' were

not actually made by the students in their group discussions. In this case they would not have learned the relevant geometric

concept or relation well enough to apply it to other problems.

The strengths of the direct-instruction method seem to follow directly from the weaknesses of the cooperative-learning

method: more teacher guidance in concept formation and proof construction, more time available for review and practice of

the materiatstudied, and more teacher help available especially for the less ablestudents. Additionally, the students in the

direct-instruction class might have been be better prepared for the Math 10 Geometry Exam, in particular, since in this

approach teachers tend to (inadvertently) teach towards the exam; that is, to cover explicitly all of the content most likely to

be tested.

A majormeakness of the direct-instruction method is that students become too dependent on the teacher in their

teaming of mathematics. The members of the direct-instruction class were much more insecure than those of the

cooperative-learning class when faced with a problem, especially eproof,:they had not seen before. They relied too heavily on

the teacher to show them procedures whichthey could use, before they had even attempted the question. The

cooperative-learning members, on the other hand, would complete theproof to the question first, and then ask the teacher to

check the finished product.

Another weakness of the direct-instruction method is that the teacher can never really tell whether the students

have understood the concepts presented, or whether they have just memorized them. And, in using the question-answer

technique (Socratic approach), it is the teacher who is giving the leading questions based on a logical approach to the problem

the students supply answers but perhaps never really learn which pertinent questions they should be asking themselves

when attacking problems on their own. The ability to make correct replies to leading questions is not necessarily indicative of

the students having a clear understanding of what is involved in proof construction. One of the major problems with the

direct instruction method in teaching geometry is that the teacher can never be certain about what and how the students are

learning. What are the students' perceptions of the material that is delivered to them? Do they really understand what is

being taught well enough to be able to apply it, or do they resort only to memorizing what they are taught? Are they

becoming too dependent on taught procedures and methods to the detriment of learning their own? While it is true that

students learning through the cooperative learning method may also resort only to memorizing facts and approaches, it is
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perhaps less likely because they are encouraged to actively negotiate their mathematical knowledge through discussion with

their group members as well as the teacher. Perhaps a synthesis of the two methods which draws on the strengths of each

could be developed and tested in another study.

Discussion of the Achievement Tests

The Math 10 Geometry Exam (observed reliability coefficient of 0.7919) was a standard Mathematics 10 geometry

exam which adequately tested the objectives as listed in the provincial curriculum. The item analysis revealed different

strengths and weaknesses in addressing particular items which may have been the direct result of the teaching methods

employed. But the Geometry Proof Test (observed reliability coefficient of 0.7302) was perhaps tar too difficult to expose

many of the real differences between the two groups in actual understanding of proof construction. It did reveal the

students' inadequacies and misconceptions in the different areas of geometry more clearly than did the former exam. The

results suggested that the problems that students had with proof construction were not necessarily of a logical nature but

had more to do with lack of intuition of the geometric concepts and relations themselves. To rectify this more time would be

required for students to work with the concepts and to apply them in various situations.

The Geometry Retention Test (observed reliability coefficient of 0.9999) was taken by the students seven months

later and without any preparation for it. The knowledge and application'questions were suitable for testing the amount of

geometrical knowledge retained by the members of both groups, but the proofs may have been too difficult to indicate

adequately retention of proof construction. Perhaps some straight-forward proofs which involved simpler, more basic

concepts should have been included, to better indicate how far the students could still go towards setting up iproper proof.

Conclusion

The cooperative learning approach using process-oriented geometry materials structured around the van Hiele levels of

mental development can add an important dimension to the learning of geometry which is not necessarily experienced by

students taught exclusively by the direct-instruction approach; that is, an active participation of the learners in the

exploration of geometrical concepts, leading to the construction of their own axiomatic systems of geometry. It is a method

which, with appropriate modifications designed to address the weaknesses found in this study, can be used to provide

personal experiences of "mathematizing; and thus to cultivate higher levels of thinking in mathematics. It can be argued that

a cooperative-learning approach directly addresses concerns about student beliefs that 'formal mathematics and proof

have nothing to do with discovery and invention; resulting in failure to use the results of formal mathematics in

problem-solving situations (Schoenfeld, 1985, 1987). And it is interesting to note that once the students had experienced

the cooperative-learning method many were reluctant to go back to the direct-instruction method at the conclusion of the

study. They preferred to discover for themselves and at their own rate, and not to be 'told' or to have to work things out in

whole class discussions where many of them could not get the chance to explore their own ideas.

Because of the limited time allotted to the study of geometry in a Mathematics 10 course, it is, perhaps, not an
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especially practical classroom approach. Instead it may be wiser to devise a teaching approach which attempts to draw on the

strengths and eliminate the weaknesses of both methods, for teaching high school geometry. The process-oriented materials

and group learning sessions could be used in conjunction with more frequent teacher-led class sessions to consolidate the

understanding of the concepts and procedures 'discovered'

It may be that too much was expected from the students in a relatively short geometry unit, especially as tar as the

level of thinking and proof construction demanded on the achievement tests were concerned. While the exams may have been

better constructed, the researcher believes that the intellectual demands made on the students and depth of the material

covered and tested should not be lessened in an attempt to make for better exam results. The students need real experiences

of Wathematizing; and if more time is required for this to be realized then perhaps one should take a serious look at

mathematics curricula to see how this might be accomplished.
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Abstract

This study investigated the role of affective factors in the

performance of both experts and novices who were asked to

solve nonroutine mathematical problems. The affective

reactions of the experts (four research mathematicians) were

similar to those of the novices (four undergraduate students),

but experts and novices differed in their ability to control

the influence of affective factors.

INTRODUCTION

Research on mathematical problem solving has tended to

concentrate on cognitive factors that influence performance.

In recent years, however, there has been increasing

recognition of the importance of affective factors in problem

solving (Silver, 1985). In this study we investigated the

differences between experts and novices in their

affective responses to nonroutine mathematical problems.

THEORETICAL BACKGROUND

Research on the affective domain has generally emphasized the

use of questionnaire data related to beliefs and attitudes.

In mathematical problem solving, however, affective responses
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can be much more intense and emotional, rather than

attitudinal, in nature (Mason, Burton, & Stacey, 1982;

McLeod, 1988). The investigation of affective reactions to

mathematical problem solving requires a new theoretical

foundation if it is to proceed in an intellectually satisfying

way. The work of Mandler (1984, in press) provides such a

foundation.

Mandler's view is that the basis of affective reactions to

problem solving (or more generally any task) is generated out

of the solver's emotional responses to the interruption of a

plan. In Mandler's terms, plans arise from the activation of

a schema. The schema produces an action sequence; if the

anticipated sequence of actions cannot be completed, the

blockage or discrepancy is followed by the arousal of the

autonomic nervous system. This response may be experienced as

an increase in heartbeat or in muscle tension. The arousal

serves as the mechanism for alerting the individual and

redirecting attention to the source of the interruption. When

the arousal occurs, the individual attempts to evaluate the

meaning of the interruption. This interpretation of the

interruption might classify it as a frustrating block or

perhaps a challenging surprise. The cognitive evaluation of

the interruption provides the meaning to the arousal.

In mathematics education, problems are usually defined as

those tasks where some sort of blockage or interruption

occurs. The student either does hot have a routine way of

solving the problem, or the routine attempts to solve the

problem all fail. As a result, the kind of problem solving
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that is attempted by mathematics students results in just the

kind of interruption that Mandler has analyzed in his theory.

In this study the responses of both experts and novices were

examined to look for similarities and differences in their

responses to interruptions in problem solving.

DESIGN AND PROCEDURES

Interviews were conducted with eight subjects who had

participated in problem-solving sessions. Four of the

subjects were research-active professors of mathematics; all

were males in the middle of their careers. The other four

subjects were undergraduate students (two female, two male)

who were majoring in one of the social sciences or education;

all were enrolled in a college-level mathematics course at the

time. All interviews lasted about an hour; most subjects

participated in two interviews. The four professors were

considered "expert" problem solvers, and the four students

were designated "novice" problem solvers.

The four professors were originally chosen to participate in a

study of how aesthetic factors influenced problem-solving

performance among eight mathematicians and graduate students

(Silver & Metzger, in press). These four were chosen for this

study since they were the most senior and experienced problem

solvers in the sample. The four undergraduates were chosen

from a set of six volunteers based on whether or not they were

successful on at least one of the problems.

The interviews began with a discussion of the think-aloud

procedure for gathering data on thought processes during
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problem solving (Ericsson S. Simon, 1980). Then participants

were asked to think aloud as they solved problems. After they

had attempted one or more of the problems, the subjects were

asked to comment on their feelings about problem solving,

particularly their feelings about being stuck on a problem or

how they felt when they had solved a problem. After the

discussion of affective factors related to problem solving,

the subjects went on to solve additional problems. In some

cases the discussion returned to the topic of affect and

problem solving.

Different problems were chosen for the experts and the

novices. A sample problem from the expert category is the

following (Schoenfeld, 1985):

Three points are chosen on the circumference of a circle

and the triangle containing them is drawn. What choice

of points results in the triangle with the largest

possible area? Justify your answer.

Here is a typical problem from the novice category:

A man entered an orchard through seven gates and there

took a certain number of apples. As he left the orchard,

he gave the first guard half the apples that he had and

one apple more. To the second guard he gave half his

remaining apples and one more. He did the same to each

of the remaining five guards and left the orchard with

one apple. How many apples did he gather in the orchard?
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For a complete list of problems given to the experts, see

Silver and Metzger (in press). The problems given to the

novices were similar to those in Burton (1984).

The novices solved 6 out of 13 problems; the experts also

solved about half of their problems (8 out of 17). The

problem set appeared to achieve the right level of difficulty

for each group; all subjects experienced some success and some

failure as they tried to solve the problems.

RESULTS

Audiotapes of the interviews were transcribed and checked for

accuracy by the experimenters. These protocols constituted

the data for the study. The analysis of the data focussed on

the magnitude, direction, awareness, and control of the

emotional reactions that were reported by the subjects

(McLeod, 1988).

Most experts and novices reported that they experienced

relatively intense emotional reactions when solving problems.

When they were asked to describe their feelings when stuck on

a problem, experts used words like frustration, aggravation,

and disappointment. Novices expressed many of the same

feelings, but they also referred to themselves using words

like dumb and stupid. The novices' negative statements about

their own ability suggest that their causal attributions may

be quite different from those of experts (Fennema & Peterson,

1985; Heckhausen, 1987). Although novices tended to make

more negative comments than experts, both groups reported a

mix of rather strong positive and negative emotional reactions
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to problems. One expert noted that as a research

mathematician, he was stuck on one problem or another all the

time; perhaps as a consequence of this view, his comments on

his emotional reactions to problem solving were somewhat less

intense than the other experts. One novice also seemed to

have less intense reactions; he reported that he got

frustrated, but didn't feel too badly since mathematics was

not his emphasis.

Both experts and novices indicated considerable awareness of

their emotions during problem solving. One of the experts

commented on his nervousness, and compared it to how he felt

when doing unfamiliar problems in front of the class. A

novice noted how he got worried when the numbers in the seven

gates problem started getting too large. When novices were

asked about their frustrations, they generally indicated that

they were aware of when they were frustrated. Both experts

and novices indicated that they had certain preferred

strategies when they became aware of their frustrations; the

most popular strategy was to quit working and come back to the

problem later. However, experts were more likely to suggest

other strategies like using special cases or visualization.

Experts and novices showed substantial differences in their

ability to stay in control of their emotions during problem

solving. Experts were more likely to comment on the need to

stay flexible, especially when stuck and frustrated with a

problem. The novices were more likely to get stuck "in a

groove" and keep on trying to solve the problem in the same

BESTCOPYAVAILASU
309



302

way. For example, novices would repeatedly try to represent

the seven gates problem with an equation rather than changing

to a more helpful strategy like working backwards. We

hypothesize that novices were more likely to use up short-term

memory in evaluating their affective responses, thus reducing

their ability to think of new approaches to the problem.

In summary, the experts and novices in this study responded to

problem solving tasks with strong emotions, both positive and

negative. Novices more frequently expressed negative feelings

about their own performance. Both experts and novices were

aware of their own emotions, but the experts were more likely

to remain in control. Novices appeared to be more likely to

let their frustrations drive them to repeated use of the same

strategy, but experts were more likely to stay flexible and to

consider alternate strategies.
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THE DEVELOPMENT OF CHILDREN'S CONCEPTS OF ANGLE

Michael C. Mitchelmore

Bavarian Academy of Sciences, Munich

The literature on the development of children's perception of ray pairs,

regions and rotations is summarised and related to research on the geomet-

rical concept of angle. Implications are drawn for teaching and research.

Classroom researchers repeatedly report how difficult children find the angle

concept. One reason is certainly its many-sided nature, which in mathematics

must be unified into a single definition. Practical experiences, as well as

mathematical definitions, tend to fall into three categotries:

1. a ray-pair giving the difference between two directions;

2. a region of a plane bounded by two rays with a common end-point;

3. an amount of rotation.

The purpose of this paper is to describe the development of children's under-

standing of these three concepts; to draw implications for geometry teaching;

and to indicate research needs. To save space, only a few key studies will

be cited by name; a full bibliography is available from the author.

PERCEPTUAL RESEARCH

We look first at research in which the word "angle" is not used in its mathe-

matical sense, the task being to process a given figure which happens to

contain angles. Basic to much of this research is the concept of

orientation. It has been demonstrated that equality of orientation plays a
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fundamental role in perceptual processing. However, orientation has a low

saliency in deciding when two figures are "the same", so that responses are

sensitive to a strong bias towards orientations in which a figure appears

uprightor stable or aligned with a surrounding frame. vertical and

horizontal orientations thus play a privileged role in perception.

Angle as ray-pair Very young children can discriminate the orientation of

single lines (which we may regard as the angle with the perceptual vertical),

but it is only at age 7 that children demonstrate the ability to memorise

orientations. Bryant (1974) claimed

that 5-yr-olds could easily discriminate

right angles from non-right angles and

do this better than they discriminate

non-right angles from each other.

r; 31

However, Noss (1987) found that less

than 50% of his 10-11-yr-olds thought

that the two angles in Fig 1 were equal. Fig 1

Copying of single lines and angles is subject to systematic biases which

depend on line orientation, angle size and the orientation of the surrounding

frame, and which decrease with age.

In most studies, it is not clear whether

children are processing the depicted

angle or the entire figure. An exception

is a study of Piaget et al. (1960), in

which children copied Fig 2. Up to age

8, children used mainly visual estimation;

older children usually measured AD, DB, DC
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AC and CB, apparently copying the entire figure. However, children aged 10

and over often measured AD, DB, DC and the perpendicular from C to AB,

suggesting that they were attempting to copy the angle CDB.

Several studies suggest that angles are not salient properties of figures. For

example, young children often prefer to preserve the topological properties of

a figure rather than copying its angles, and they do not copy parallel lines

parallel in the presence of a distracting background of oblique lines.

Angle as region The idea of an angle as a region has mostly only been

studied incidentally, in that the sharpness of a corner can be a distinguishing

feature of a shape. It is generally found that the accuracy and speed of

recognition varies with the angular displacement between stimulus and response

and that performance improves with age and training.

Beilin (1979) investigated children's concepts of angles as regions. He found

that even 4-yr-olds could mark corresponding angles of congruent triangles

without difficulty. However, in checking whether two triangles were congruent,

young children only tested the sides and never the angles; the use of super-

position only became popular from age 7. It is nevertheless surprising that

even 12-yr-olds have difficulty deciding whether a square template fits into

a given angle (Wallrabenstein, 1973).

Angle as rotation Rotation is in itself a difficult transformation:

non-conservers of length believe that rotation changes lengths, and it is not

until age 10-11 that more than 50% of children can represent the rotation of a

simple figure about a vertex. It may be noted that mental rotation is at the

basis of many spatial ability tests, and shows wide individual variation. Speed

of processing seems to be linearly dependent on the angle of rotation.
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RESEARCH ON ANGLES

We turn now to research where the word "angle" has to be interpreted in its

mathematical sense (as ray pair, region or rotation) and not simply as a figure.

We can summarise the sparse research here according to a few common findings.

Right angles are often not recognised in oblique position. Children at first

only accept the case of an angle between a horizontal and a vertical line as a

right angle. Even at age 11, only about 50-60% of children accept both figures

in Fig 1 above as right angles.

Angle size is often believed to depend on the lengths of the arms. This

error seems to be the result of treating the given figure as finite and

complete. Noss (1987) found that the experience of rotations in LOGO helped

improved 10-yr-olds' performance on

the angle comparison task in Fig 3 -

but not on that in Fig 1. However,

it is also possible that asking

"which angle is sharper?" instead of

"which angle is bigger?" would also

have lead to improved performance. Fig 3

Reflex angles are recognized late. Early angle concepts seem to be

restricted to convex angles (those up to 180

degrees in size). For example, Close (1982)

found several children who believed that the

angle in Fig 4 was obtuse. This could be the

result of limited experience of concave corners,

or because the figure is not seen as a Fig 4
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Measuring angles is difficult to learn. Every teacher knows this! But

measuring angles requires the ability to combine unit angles and compare the

result with a given angle apparently using regions, but often explained using

rotations and later applied to ray-pairs. In order to understand angle

measurement, the child must not only have mastered all three aspects of the

angle concept but also have achieved a high degree of integration between them.

SUMMARY: DEVELOPMENT OF THE ANGLE CONCEPT

Children's perception of angles develops rapidly from the age of 5 years.

Children must learn to overcome orientation biases, develop memory for

orientation, isolate corners as distinguishing features of shapes, and learn

to represent rotations. Not until 12 years of age can one expect the

majority of children to have completed this process to a satisfactory degree.

A critical step in the subsequent abstraction of the mathematical concept of

angle would seem to be the establishment of an angle as a class of equivalent

figures. I conjecture that this takes place independently for ray pairs,

regions and rotations. Consider, for example, ray pairs. At first only

angles related by a translation are accepted as "the same"; then angles

related by a reflection in a vertical or horizontal line; and only much later

those related by a general isometry combined with an arbitrary extension or

contraction of the arms. Notice that it is not sufficient for the child to

recognize that two angles are equal, although this skill must certainly be

learnt; it is the acceptance of equal angles in all orientations as "the

same" which shows that the concept of angle has been abstracted.

An important development is the integration of the three angle concepts. How

this occurs is completely unknown, but one can speculate that the ray-pair
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(as an abstract representation of both regions and rotations) plays a central

role. The integration of the region and rotation aspects of angle probably

takes place via the ray-pair aspect and would be a rather late development.

IMPLICATIONS FOR TEACHING

we have reached the position that the geometrical concept of angle cannot be

treated as either ray-pair or region or rotation, but must be an integration

of all three. Teaching should therefore encourage the development of all

three aspects of angle, providing ever closer connections between them until

the student is ready to treat the concept as a unity with many applications.

The concept of angle as region tends to be treated in the elementary school

and to be restricted to the right angle. Further activities comparing the

"sharpness" of corners of figures by superposition and on fitting corners

together (as in tessellations) could be highly beneficial. Figures with

concave corners should not be omitted. Diagrams used in this work should

show the angle as a shaded region with the suggestion of unboundedness.

The angle as rotation on the other hand tends to be left for the secondary

school, just before angle measurement. This is certainly too late: informal

experience of rotation can and should be gained in the elementary school

(Kirsche, 1987). Rotation angles may be conveniently represented by clocklike

diagrams, but the clock should not always start at 12 o'clock!

The next step would seem to be perhaps at the beginning of secondary school

- an attempt to integrate regions with rotations, making it clear that the

standard angle diagram can represent both concepts. A possible vehicle for

this step is the discussion of rotational symmetry, which can be equivalently
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treated using repeated regions or repeated rotations. Only after this

attempt at integration should angle measurement be treated, at best starting

with non-standard units and ending with the circular protractor.

One final implication: the formulation of a single, mathematically rigorous

definition of angle should follow much later. In view of the variety of

practical applications of angles, it is doubtful whether any exclusive

definition could serve a useful purpose outside a strict axiomatic treatment.

RESEARCH NEEDS

My review of research on the angle concept has revealed astonishing gaps in

our knowledge. For example, why do children have so much difficulty

comparing the angles in Fig 1? Some interesting questions are the following.

- when and under what circumstances do children conserve angle? How

are conservation judgements affected by the transformation made and

by the presence or absence of a demonstration of this transformation?

Is there a hierarchy for the discrimination and recognition of angles,

depending on the transformation involved and the size of the angle?

- How does knowledge of rotation and its representation develop?

What factors affect ability to compare angles by superposition?

How do children spontaneously classify angles? What roles do size,

orientation, arm length, etc. play?

How does the wording of the question ("Are these the same?", "Are these

318



3 1 1

the same angle?", "Which of these is sharper?", "Which bends the most?")

affect performance on angle comparison tasks?

When and how do children begin to integrate the various angle concepts?

Finally there is a host of questions on teaching angles: How to assist the

abstraction of angles as regions, how to promote integration, when to teach

measurement, what definition (if any one) is most effective, and so on.

This is an immense research program. I hope that this survey will lead more

mathematics educators to enter this field with enthusiasm and creativity.
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