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LOGO ET SYMETRIE CENTRALE
Elisabeth GALLOU-DUMIEL - Institut Fourier

Université Joseph Fourier

ABSTRACT. — Point symmetry is a transformation taught in the secondary shool in
France which involves a problem of orientation. A cémparison between the construction of
the image of an angle in the case of a point symmetry and in the case of a reflection seems
to be useful. For this we undertook the construction of a learning of point symmetry in the
same LOGO environment than the one we realized before for the learning of reflection. We
explain the choice of the LOGO environment, of the tasks, of the figures and we give the

results of the experimentation in three classes in Grenoble (France).

1-Introduction,problématique.- La syméltrie centrale est une transformation qui
change l'orientation d'un solide dans un espace de dimension 3 et qui, dans un plan
transforme une figure en une figure superposable. La conservation des angles du plan
semble un des points essentiels de cette notion.

Il nous .a semblé judicieux de construire une séquence d'apprentissage qui par le
choix des taches, des consignes, le dispositif, soit analogue a celle réalisée pour la
symétrie orthogonale pour permettre a 'éléve d'établir des mises en relation de ces deux
notions et pour l'amener a déterminer la spécificité de chacune d'entre elles. La
détermination du symétrique d'un angle nous semble l'activité fondamentale pour la
symétrie centrale comme pour la symétrie orthogonale.

Nous avons donc choisi un disposilif identique a celui de la séquence d'apprentissage
réalisé pour la symétrie orthogonale: un micro - ordinateur avec la liste restreinte des
commandes LOGO:AVn, REn, TDn, TGn, ORIGINE, LC, BC, GOMME , FINGOMME
et VE.

En effet ce dispositif réalise un "micro-monde™ ou la procédure suivante appelée
procédure de tracé par segments initialisés est favorisée. Celte procedure consiste a

)
l: TCr une figure formée de segments juxtaposés en indiquant a chague sommet l'angle
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dont doit tourner la tortue puis la longueur du c6té A tracer. Ce "micro-monde”™ est
différent de celui de la géométrie de la régle et du compas ou sont favorisées les propri¢tés
dincidence et les reports de longueurs mais ol la détermination des angles est presque
toujours absente et en tous cas ou leur sens n'est jamais précisé. Nous avons de plus une
double médiation pour la réalisation d'une tache le tracé se faisant par lintermédiaire des

commandes d'un langage qui n'est pas la langue naturelle (LABORDE 1982).

2. Variables et choix des figures.— La séquence a pour objectif de favoriser la
construction chez I'éléve des connaissances nécessaires pour:

* reconnaitre 1a présence ou l'absence de centre de symétrie dans une figure;

* construire la figure symétrique d'une figure.

Il parait raisonnable de faire Ihypothése que pour acquérir ces connaissances I'éléve doit
étre capable de différencier les trois termes qui sont mis en relation : la figure objet, le
centre de symétrie et la figure image. Cela nous a conduit & choisir des taches de tracé de
symétriques de figures.

Les variables de la situation sont de deux types :

* les variables des taches qui concernent la forme des figures et
remplacement du centre de symétrie et de la tortue,

- les variables de modalités qui concernent le dispositif déja choisi et
l'organisation de la classe.

a) variables des taches et choix des figures.

Trois variables principales apparaissent: la variable figure liée aux seules
propiétés de la figure , la variable position du centre de symétrie, la variable position
initiale de 1a tortue. Les figures choisies sont des figures fermées constituées de segments
juxtaposés comme pour la symétrie orthogonale. La variable figure nous semble donc
caractérisée par le nombre de segments et la variable angle droit qui prend la valeur vrai
que si la figure ne comporte que des angles droits.

La variable position du centre de symétrie se partage en trois sous variables
suivant que celui-ci appartient au contour de la figure, lui est intérieur ou lui est

G“V'érieur. Dans le cas ol le centre de symétrie appartient au contour nous avons une sous

E lCiable sommet qui prend la valeur-vrai si le centre de symétrie est placé en un sommet



de la figure et la sous variable milieu d'un segment qui prend la valeur vrai si le centre
est au milieu d'un segment de la figure. .

L.a variable 1ohue se sépare en quatre sous variables qui sont les suivantes:

la variable position du centre de symétrie,

la variab_le position d'un sommet de la figure,

la variable position du milieu d'un segment de la figuire,

la variable paralléle ou perpendiculaire & un segment de la figure qui prend
la valeur vrai si la direction de la tortue est initialement paralléle ou perpendiculaire a
un segment de la figure.

Lés figures sont choisies de fagon a ce que chaque groupe de variables liées
apparaisse avec des choix de valeurs différentes & c6té des autres. Les tableaux suivants
indiquent le choix des figures en fonction des valeurs des variables.

b) choix des consignes.

Le dispositif choisi est I'utilisation d'un micro - ordinateur avec la liste restreinte
des commandes LOGO déja citées. Les éléves travaillent pa; paires devant le micro -
ordinateur. lls regoivent des documents sur lesquels les figures et les centres de symétrie
sont fracés. Un des éléves de la paire tape les commandes sur le clavier du micro -
ordinateur, F'autre les écrit sur une feuille de papier. Quand les éléves pensent avoir>
terminé le tracé de la figure symétrique ils appellent la correction. A ce moment on dit
qu'ils terminent un essai. Si leur tracé ne coincide pas avec la correction ils doivent faire
un nouvel essai jusqu'a concurrence de trois essais. Si au troisiéme essai le tracé est

toujours inexact les éléves doivent lire et noter les commandes réalisant le tracé exact

puis les taper au clavier.

3.Résultats de l'expérimentation et bitan.— L'expérimentation a eu lieu dans trois

classes;
* une classe de cinquiéme (12-13 ans) ayant réalisé la séquence sur la symétrie
orthogonale I'année précédente;
* une classe de cinquiéme ne l'ayant pas réalisé ;
* une classe de sixi¢éme venant de réaliser la séquence sur la symétrie orthogonale.
E \l'lc‘iARREE ne comporte pas d'erreur. Le CARREF comporte l'erreur suivante:
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Cette erreur est analogue aux erreurs réalisées pour la symétrie orthogonale pour

CARREC qui sont les suivantes:

30

10

CARREC

Erreur 1 Erreur 2 Erreur 3

Pour MAISONF on trouve comme erreur :

qui correspond & I'erreur d'orientation. On remarque que pour MAISONH cette erreur ne
se retrouve que faiblement ce qui indique la présence d'un apprentissage. La classe ou on
trouve le plus d'erreurs en début de séquence est la classe de cinquiéme n'ayant pas
réalisé la séquence sur la symétrie orthogonale précédemment. Les deux autres classes ont
des résultals assez semblables avec cependant plus de rapidité et légérement moins

Q rreurs dans la classe de cinquitme ayant réalisé la séquence sur la symétrie
10
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orthogonale l'année précédente. En fin de séquence les réalisations des éléves des trois
classes se rapprochent et les évolutions au cours de la séquence sont de méme type en
laissant cependant subsister une différence sensible entre la classe n'ayant pas réalis¢ la
séquence sur la symétrie orthogonale et les deux autres.

Cela nous montre I'importance de I'établissement par I'¢léve de mises en relation

des deux notions: la symétrie orthogonale et symétrie centrale.

4. Conclusion.— Des résultats similaires sont trouvés pour le déroulement de la
séquence dans le cas de la symétrie centrale et dans le cas de la symétrie orthogonale. Nous
notons cependant que la meilleure maitrise des notions a lieu chez les éléves ayant
effectué la séquence sur la symétrie orthogonale en classe de sixiéme puis celle sur la
symétrie centrale en classe de cinquiéme .

Le dispositif choisi avec le type de procédure de tracé qu'il induit apparait comme
un outil didactique favorisant ['apprentissage des notions de géométrie ol intervient

I'orientation.
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ABOUT CONTINUOUS OPERATOR SUBCONSTRUCT IN RATIONAL
NUMBERS

Joaquim Gimenez
Dept. Educacio i Psicologia. Univ. Barcelona. Spain.

He found the existence of 3 special subconstruct with [rational numbers in
continvous situation reflated to Kierea's studies after addiog problems to bis
rational thinking test. Factorial analysis conlirm the &bove researches with’
Spanish people . and shows different factors with strechers and shrinkers than
discrete gperator probleas .

INTRODUCTION

It's well known the discussion about subconstructs in rational number concepts
during the last years . The Kieren's general point of view about intuitional knowledge
(Kieren 1988) accepts four central aspects : quotient, measure, ratio and operator . and
many relations between them (Kieren 1987). Successive modifications of the rational
thinking test (1980-1988) according to this theoretical approach (Rahim-Kieren 1988) .

It seem to be simifar to the Vergnaud's and Freudenthal's ideas (Vergnaud 1983,
Freudenthal 1683) ,and also for the Rational Number Project (RNP Behr et. al.1985) seem to
talk the same ideas with little differences. For instance , Freudenthal talks about fracturer
and ratio operatoror transformer (op.cit. pg. 148-149), RNP provides the discrete,
continuous and countable situations (perceptual variability) for the fraction concepts
(op.cit. 101). ’

OBJECTIVES

Our purposes were to find if some aspects of variability (Dienes 1971, Behr et al.
1983-85) are as different as it seems in a operator context of rational numbers with
graphical presentations. It's a part of wide study about koowledge of fractions.

Questions: 1) It is possible to have a distinction between the continuous and discrete
situations of an operator subconstruct ? 2) Can we accept these operator situations as
"different subconstructs refated the Kieren ' schemes ?

ERIC 12 .’
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METHODOLOGY OF RESEARCH

We used the Rational Thinking Test (version Kieren 1981). [n this test there are four
parts with 24 general items : ratio situations (mixing xocolat; q.1-6) .quotient problems
(divided pizzas;q.7-14) .operator discrete problems (input little bars ouput boxes;q.15-18) ,
measure (sharing and drawving surfaces;q.19-24). I

We decided to add six more questions about continuous operators bringing the
enlargement idea of stretchers and shrinkers (Dienes 1967 Braunfeld 1975,Streefland 1983)
to test the possible differences . We call these items continuous operator (q.25-30) The items
have the samé order of difficulties than the used for cognitive levels (Brindley 1980,
Noelting 1982). We ask for order comparison between machine situations.

30. Les maquines A i B que veus abaix, allarguen el bastd d'entrada i el
fan més gran .

=1 |1 - F

Encercia quina de les dues maquines allarga més ... A guad B

., Per qué ? )
crera Fig. Model of item situations

We also add 3 items about continuous measure situations (30-33) bringing ideas from
Ratsimba-Brousseau (1931) and Filloy Figueraset al. (1937)

Ve administered the tests to 1800 pupils (grade 5 and 8 ,that are final courses of 2
last periods in Primary Education in Spain ). There are 33 items in 3 hours divided by two
parts . This test was administered before holidays. and represent the acquisition of concepts
atthe end of scholarity in each grade.

In each item we consider it'swrong if thereisnoa convincent explanation of the
answer in each case . We assess by exploratory studies (Gimenez 1987) the validity of items.

E l{lC BEST COPY AVAILABLE
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RESULTS

Here we have the significative results of factorial analysis by principal
componeants. We present the rotated orthonormal vacimax solution (8th grade for values x
r .35):

Fact.| Fact.2 Fact.3 Fact.§ Fact.5 Fact.6 Fact.?7 Fact8
47
|
1

=
[
8
“»

[V R RV A

.39 34

w

*

24 45

~
o®
—— e m - b

The 8 factors above presented explain 98% of variance and the single contributions
of first to seventh are greater than 10% . The contribution of 8th is 8.3%.

With these results, we assigned to each children an addition of items corresponding
each subtest . Then we did the factor analysis of the results of the subtest | to 5 (ratio,
quotient, discrete operator. measure continuous operator), by the same procedure. and we
can see here the plot of the new factors

O
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Retated Orthegeaal Plot: Faster | vs. Faoter 2
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Factor 1

We found analogous results with Sth grade students , but really lower level. The
only important difference is to present a 9th factor (q.23.25.26) .

Some other results not commented here showed that difficulty is related with item-
levels studied by different authors (Noelting 1982, Eieren 1983).

SUMMARY DISCUSSION

The table above presented shows that the items 25-30 ,and 31-33 identify different
factors from the Kieren's test and it seems to be an evidence of the perceptual variability.
We can also reflect the goodness of RIT (Rahim-Kieren 1988) and the completed items
(Gimenez {988 b).

The different factors 6th and 8th seems to be "sharing” and “fractions as quaantities”
respectively. The items I-3 and 4-6 are according to direct or non direct observations on
ratio situations.

The plot-design factor-sum explained above shows an acumulation of factors except
the 4th . It seems to show the measure conceptual jtems belong to different categories
while the others are more related between them . All this results ask for a new synthetic
scheme of literature about fractions (Gimenez 1988a)

ERIC 15
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Constructivist Epistemology and Discovery Learning
in Mathematics

GERALD A. GOLDIN
Center for Mathematics, Science, and Computer Education
Rutgers University
New Brunswick, NJ 08903 USA

Many who adopt constructivist approaches to mathematics education base them on
radical constructivist epistemology; but as a foundation for research this leads to
problems. Empiricism, encompassing nonmechanistic models for knowledge
“construction™ as well as procedural models for knowledge “"transcription,” allows
equally well the advocacy of constructive mathematics learning through discovery.
Some invalid inferences sometimes drawn from radical constructivist epistemo-
logy are identified and discussed.

What is the best way to characterize mathematical knowledge and to study mathematics learning?
What classroom activities facilitate meaningful learning, and how can teachers be enabled to foster
them? One set of research perspectives with which | generally concur includes the following main
ideas: 1 Mathematics is invented or comsirucied by people, not an abstract body of "truths” or
necessary rules. 2 Mathematical meaning is not transmitted by teachers, but constructed by
learners. 3 Guided discovery, meaningful application, and problem solving are more effective
than imitation or rote slgorithmic symbol-manipulation. 4 Mathematics learning is better
observed and assessed through qualitative case rstudies and individusl interviews, not just
quantitatively scored skills tests. S Effective mathematics teaching does not focus exclusively on
correct responses, but encourages diverse, nonmechanical problem-solving processes. 6 Teacher
development should include reflections on epistemology--from the historical origins of
mathematics to knowledge construction by individuals. As attention has been given to epistemology
in the psychology of mathematics Tearning, the philosophical perspective of radical constructivism
hes emerged as & justification for views such as these (Cobb, 1981; Confrey, 1986; von
Glasersfeld, 1984; 1987; Steffe e &/, 1983). Radical constructivists have made important
contributions by challenging the premature conclusions and overgeneralizations sometimes drawn
from “scientific™ research, pointing out that in experimental studies surface variables are often
studied because they are easier to make quantitative, while more difficult cognitive variables are
disregarded. They have also sought slternatives to the overly mechanical models someti mes offered
by the artifical intelligence/cognitive science school. Nevertheless this paper rai'ses some issues
incriticism of radical constructivism, arguing for an empiricist approach compatible with the

views above that avoids some of its potentially damaging consequences (Kilpatrick, 1987).
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Epistemological Perspectives Influencing Mathematics Education

Epistemology is the branch of philosophy that examines the underpinnings of knowledge: what it is,
how one acquires it, and the logical (or psychological) bases for ascribing “truth” or validity to it.
Much epistemological reasoning begins by analyzing the sources of what “I” (the reasoning entity)
know. One such source consists of directlij accessible sensory experience (sense-data) ; another is
logical reasoning. Some questions with which epistemologists grapple are: Can i validly infer the
existence of external reality ggss7 from my an experience? If so how? What can | know about
the “real world,” and how can 1 know it? Can | validly infer the existence of other people’s inter-
nal experiences? If so how? What comparisons can be made between their sense-data and mine?
Can | consistently verify the validity of myown reasoning? Are logicel and mathematical reason-
ing intrinsically valid, or only systems of human linguistic convention? hat does it mean to say
that logical /mathematical statements (seeming to depend on reason) are true, compared to state-
ments in science {seeming to depend on empirical observation) ? Is either “truth” objective? Does

psychology differ in this from physical or biological science, because its domain is “the mind?"

Answers to such questions have been proposed by exponents of various epistemological schoois
(e.g. Turner, 1967). ldealism is the view that all reality is mental, and no physical real world
can be validly inferred. But brosdly construed, it may allow the existence of many minds, or even
a universal mind with which individual minds share experience. Solipsism is the more radical
view that the only reality is in my mind. At the other end of the spectrum, caﬁsal realism
asserts that an external world exists and ceuses my sense experiences. This view falls within the
more general framework of rationalism as it asserts that one can acquire knowledge about the
physical world wig reason and logical inference. To the rationalist, sense-data are untrustworthy:
they are not the most fundamental reality and may be illusory; one must reason one’s way past
them to arrive at knowledge of the external world. Empiricism relies more heavily on sense-
data 8s elements of a world-as-experienced. Observation and measurement are fundamental empi-
ricist tools, and the predictive value of inferences drawn from patterns in sense-data account for
the validity of knowledge. Many epistemologists distinguish ers/yric from sypthetic truths,
though they do not alway agree on their definitions. Roughly speaking, analytic statements (eqg.
“aAll brothers are siblings") are true by virtue of the meanings of the terms involved and cannot be
empirically refuted, while synthetic statements {e.g. “George Polya was a mathematician™) depend
for their truth on empirical evidence. Keasoning may nevertheless be required to verify analytic
statements; in one view mathematics consists of a body of analytic knowledge. Logical positiv-

ism is a form of radical empiricism which adopts the “verifiability criterion” of meaning, that
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the only meaningful content of a synthetic statement lies in the operational methods for verifying
itin principle (Ayer, 1946). Radical constructivism argues that we can never have access to
a world of reality, only to what we ourselves construct from experience; all knowledge (mathe-
matical or not) is mecesssriZy constructed. Without telepathic perception one has no direct know -
ledge of anyone else's world of experience, and can only construct personal models of the kno;nedge
and experience of others. Thus one can never conclude that one's own knowledge is “the same as”
another's. Likewise one can only lm&/ reality, and never conclude that one's knowledge is
actuslly of the real world. In this view knowledge i3 never communicated, but of epistemological
necessity constructed (and reconstructed) by waigue individusls. Yerbal learning entails know-
ledge construction from in-context experiences of discourse; thus social conventions and interac-
tions rather than “objectivity” often function as the most important deter minants of whether a
mathematical or scientific concept to be taught has been "correctly” learned. At times epistemo-
logy has influenced the psychology and practice of mathematics education, but its implications have
not always been correctly drawn. First we discuss logical positivism as a foundation for radical
behaviorist psychology and “behavioral objectives™ in education (Skinner, 1953; Mager, 1962;
Sund & Picard, 1972). Then we examine some aspects of the radical constructivist influence.

The idea of mental states knowable through direct experience is compatible with idealism: since all
reality is mental, ZeAsr7or (or,ina more precisely idealist characterization, mental experiences
classified as behavior), and 727 (the full set of mental experiences that | or other human beings
have) are on the same epistemological footing. Alternatively, causal realists can posit the res//éy
of mental states, treating them as part of a world “out there,” knowable in principle by reasoning
from their effects on observers. Thus mentalistic explanations of behavior and characterizations
of learning outcomes are reconcilable with either idealist or causal realist views. The radical
behaviorists, however, rejected mentalistic explanations as mesaingless (in the sense of logical
positivism), involving in-principle-unobservable statements. Their exclusive focus on stimuli,
responses, and stimulus-response (S-R) relationships derived explicitly from the fact that these
are directly observsdle and measursble while presumed cognitive (mental} states are not. 1t was
arqued epistemologically that the latter should be excluded & pr70r7 from scientific psychology- -
but S-R models never succeeded well in describing insightful mathematics learning. Likewise for
instructional objectives to satisfy the verifiability criterion observable, measurable, and thus
behavioral learning cutcomes must be set inadvance But strict behavioral objectives in mathe-
matics fostered teaching discrete, disconnected rules over developing meaningful patterns or
insights. Directly testable goals led to the “efficient” procedure of teaching behaviors directly;

accuracy on standardized tests came to dominate instruction; so that teachers now assert with
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near-unanimity that they have no classroom time for mathematical exploration, discovery, or
problem solving. Of course some advocated “back to basics” in mathematics for other reasons:
uncomfortable with diversity, they re/ued drill-and-practice or perfor mance- based accountabi-

lity. But & pr7or7 principles of epistemology or science do not necessitate these goals.

One need not adopt radical constructivism to pinpoint the error in the positivist epistemological
analysis. A moderate empiricist can ask that meaningful synthetic statement have in-principle-
verifiable 7mplicetions without requiring that it be itself directly verifiable. 1 would not concede
that the only meaning of such a statement consists in its presently definable consequences. A model
for cognition using unobservable entities (e.g. internal cognitive representations) may succeed in
Uservily SUMmerizing and synthesizing okservable events (e.q. behaviors), and may suggest addi-
tional observations that were not specified in advance. Such a model is scientific if it gives a more
parsimonious description of empirical phenomena than models based on directly observable
entities. The early atomic theory in chemistry made use of atoms and molecules then thought to be
in principle unobservable; it accounted for certain observations, e.g. those fitting the law of mul-
tiple proportions; scientists later found further consequences of the theory, and invented once-
unforeseeable ways toobserve atomsand molecules directly. The radical behaviorists' & priori

epistemological reasoning, though wrong, did considerable damage to mathematics educatio n!

Radical constructivism in contrast not only allows but necessitates psychological models for the
individual's "understandings” or mental processes. But it has other implications for mathematics
education and psychology which should be carefully considered. It's conclusions that all knowledge
is constructed and a1l 1earning {including mathematics lear ni ng) involves constructive processes,
are not derived from empirical studies which Zistinguist: constructive from non-constructive
tearning and observe their conditions of occurrence or degrees of effectiveness. Instead theyare
claimed to follow from & grior7 epistemological considerations: human knowledge is mecesssrily
“constructed,” from a world of experience. Again as & priori epistemological necessities, each
person’s world of experience (and, therefore, knowledge) is context-dependent: unique and insc-
cessible to others. Descriptive case studies are not merely a technique in anexploratory stage of
empirical study; they are the best that can be achieved, and must #¢p/sce controlled experimenta-
tion in mathematics education research because individuals' cognitions are non-comparable. Now
the conce ption of 8 “mathematical structure” {e.g. the integers and their properties), natural to a

1 The early behaviorists were reacting at least in part against psriiculer mentalistic psycho-

logical theories derived 1argely from introspection, which relied little on systematic empirical
observation. Thus they did sweep away much in psychology that was relatively valueless.
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mathematician, has been central to “structural” goals in mathematics teaching (Dienes, 1963;
Dienes & Jeeves, 1965). The structure of problem representations (search space complexity,
etc.) as external to problem solvers is importent in task variable research (Goldin, 1984).
Radical constructivism denies us these as analytical tools apart from the constructed knowledge of
alearner or problem solver, allowing mkr;mmla no way to establish that a problem or concept
"has™ the same (or similar) structure for two people: not because of empirical evidence of
differences, but due to & prior7epistemology. Radical constructivist influences on mathematics
education have been opposite in direction to that of logical positivism, but both make major claims
based on epistemology rather than empirical research. Though sympathetic to the general
direction of their influence, | still see dangers if the radical constructivist reasoning is unsound:
t Adv;)cates of constructive learning 7z discovery processes may find that invalid conclusions
from the epistemology are intertwined with otherwise valid perspectives. 2 Avaluable and time=
1y set of nonbehavioristic, nonmechanistic ideas in mathematics education may be discredited in
the eyes of those who justifiably seek an empirical, scientific basis for research--indeed, recent
schelarly debate on issues affecting policy (e.g. variables associated with effective teachi ng) has
been cast as differences between quantitative empiricism and constructivism (Brophy, 1986;
Confrey, 1986). Thus | stress that one need not accept radical constructivism to model learning
constructively, or to advocate increased classroom emphasis on guided discoveryin mathematics.2.

Constructive and Nonconstructive Empricial Learning Models

Before returning to the epistemological issue let us consider the difference between constructive
and nonconstructive empirical models for learning. To do so, we define “learning” as the s&oygu/s/-
lion by & system or entity of & set of in-principle-observable compelencies or cpebilities. We
contrast two situations where, because the systems involved are not human minds, questions of
epistemology can be deferred: 1 A computer is programmed ina high-level language, e.g. BASIC.
Users (even if familiar with the machine's circuitry) need a Ae/p7ul model for its competency ac-
quisition, which detailed knowledge of the electronics is not. Therefore we imagine that the com-
puter represents internally, 17 literal "transcription,” the procedures and conti ngencies that in
the program input are expressed in a conventional notational system; and that these are precisely
followed in executing the program. The description does not include Aon representation occurs as
the program is entered; but there is a useful sense in which no new, important internal systems

2 = insome [constructivist] writings the implication seems to be drawn that certain teaching

practices and views about instruction presuppose a constructivist view of knowledge. That
implication is false.” (Kilpatrick, 1987, pp. 11-1 2)

[
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are built. The "learning” is non-constructive: new competencies are /7mited to processes fully
described by the program itself. 2 The body acquires immunity by inoculation, “learning” 17#
infection with a killed or weakened virus to defend itself. This biological process is o/ adequately
modeled as representation of explicit instructions; scientists may not even know the procedures
the body will acquire. Itis more useful to conjecture that in interacting with the vaccine material
the immune system coasiructs new capabilities, e.g. to recognize the dangerous virus biochemi-
cally, or to manufacture antibodies in guantity more rapidly, which are complex and not fully
understood. The evidence for a constructive model is obtained 72 controlled, empirical research.
Such examples illustrate empirical grounds for distinguishing "constructive” from “nonconstruc-
tive™ learning: either may occur, in various situstions. The hypothesis that immunization (but
not programming) elicits constructive processes is testable, and depends not at all on radical
constructivist epistemology--immunology and computer science are not helped by saying that “the
immune system (computer) has access only to its personal world of experience, not directly
knowable by any other immune system (computer), or scientist.” Likewise modeling mathemati -
cal competénce acquisition constructively as part of an empirical theory, or hypothesizing that
knowledge construction occurs (e.g., instages) - -is logically independent of radical constructivist
epistemology. Some learning may be co nstructive, some not, and the two empiricelly distinguish-
able. Perhaps constructed knowledge is more widely generalizable and retained longer. The
moderate empiricist can define, study, and advocate discovery processes and open-ended problem

solving in mathematics, and take account of co ntextual influences and individual differences.
Constructivist and Empiricist Yiews of Knowledge

To make explicit the disagreement between radical constructivism and the moderate empiricist
position taken here, we return to the question of how “I™ (the reasoning entity) acquire knowledge.
The (valid) constructivist statement that | have direct access only to my world of experience
differs from the {(invelid) phrasing that we have direct access only to our worlds of experience,
which tacitly places “me” on the same epistemological footing as other human minds (but pre-
sumably not on the same footing as computers or immune systems). ltis valid to say thet | con-
struct {in an epistemological sense) my “knowledge.” Doing so | infer (tacitly, and later overtly)
a “real world” to which | relate words and symbols drawn from experience. | then reason about it:
as an empiricist | consider my statements as useful summaries of patterns in sense-data, both
actual and contingent. | infer in the real world entities called “other people,” and in another epis-
temological step reason that they too have "worlds of experience.” This organizes my experience

of their behavior: people seem to act &s /7 they feel sensations and have thoughts like my own.

O
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Thus in modeling their cognitions (e.g. to teach mathematics) | begin with my sz experiences
and infer a description of 242/~ knowledge: informally, or with systematic empirical techniques
such as controlled experimentation. Others' behavior and cognitions are for me on the same

epistemological footing as any other aspect of the real world (suchas atoms and molecules).

The fact that | wish to study cognition rather than chemistry has slight effect on the epistemo-
logical underpinnings of my investigative methods. In cognitive (unlike chemical) studies, it may
help to establish and reasen from similarities between others® behavior and mine, and corres-
pondences between my behavior and subjective experiences. But such techniques have limitations:
it is apparent that other people differ from me behaviorally in important ways, and there is
empirical evidence that my awareness and recollection of my behavior and subjective experiences
are imperfect. Thus reasoning about others’ cognitions by analogy with my own i3 only a heuristic
tool - -it mag‘)guide some theorizing and motivate some everyday tesching activity, but it must
yield to more rigorous empirical investigation when the latter is possible. Thus I argue that it is
epistemologically invalid to take as equivalent (a) the "knowledge” of others that | or other re-
. searchers model when we study cognition empirically, and (b) the inner “knowledge” that | con-
struct from- my personal experience. 74ese vy senpses of “krowledge " aitter : one is a defined,
wsetul shared construet enabling researchers and teachers to better predict or influence beha-
vior; the other is accessible-onlg to introspection. Whether empirically-defined knowledge

“really” describes inner knowledge-as-constructed is not an issue, because /487 /s mot ils Inlent.
Epistemology and the Psychology of Mathematics Education

Mathematics seen Jogically is a set of assumed conventions for manipulating symbols. Once these
are established, there is asense (contrary to radical constructivism) in which the system exvsis
and “has” a structure, apart from the individusl. Historicelly conventions were /a1ented , and
psychologically they are reinvented by individuals; but their corseguences are logically con-
strained. Though a logical formalism is useful, we stress its empirice/ motivation: e.g. the com-
mutative law of addition, &ssumed in one formal approach to number theory, can be drisewiered if
we first interpret addition as & physical procedure. To talk about discovering a pattern or struc-
ture we must view it as existing apart from the individual. One guides a child to “invent” counting,
or "invent™ addition by joining sets of objects; having done so the commutative law is not invented
but discovered: it exists in that context apart from the child's cognition. To guide the discovery a
teacher must know of its existence, and foster situations in which it can be found and interpreted.

To encourage mesningful over role mathematics learning, we must distinguish them empirically.

23
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One distinction focuses on teaching and learning strategies, which may range from the teacher
stating and exemplifying rules, to the student detecting patterns and verifying conjectures.
Another focuses on the empirically observed capabilities of students who have “learned” an arith-
metic rule: stating the rule, applying it to numerical examples when asked or spontaneously,
identifying presented instances of it, providing exemplars and non-exemplars, are important but
can be acquired »7g rbte, fairly nonconstructive procedures. Other capabilities, e.g. illustra-
ting the rule physically, justifying it, or setting up a pattern where it can be discovered, suggest
more meaningful learning. The latter go beyond computation to connect numerical with non-
numerical domains, or make explicit reference to reasoning processes. | think it is empirical
fact, not epistemological necessity, that methods based on “transcription” and application of rules
are less successful than those of mathematical discovery and constructive learning. Criticism of
radical constructivism is 207 support for behaviorism or rule-governed learning in mathematics,
but a call for new empirical models encompassing far more complex capabilities (Goldin, 1987).
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COMPARATIVE ANALYSIS OF TWO ARITHMETIC SITUATIONS
IN SEVEN YEAR OLD CHILDREN

Maria Grazia Grossi

Nucleo di Ricerca Didattica, Universita di Pavia, Italy

Summary

A sample of 105 seven-year-old children were subjected to a
test consisting of two semantically similar arithmetic
situations, but different in the amount of information and
structure. The comparison of the responses given by the sub-
jects in the two situations indicated that the modalities of
response varied from situation to situation, even for the same
child. Whoever, in the first situation, had used a con-
solidated and internalised subtractive procedure, in the second
used other modalities which again return to graphic repre-

sentations and a restructuring of the information.

Introduction

The aim of the present work is to study the Qtrategies
used by a group of children, aged seven, in the solution of two
arithmetic situations; addition and subtraction.

The comparative analysis between the two situations has
the intent of pointing out, within the theoretical framework of
cognitive psycology, = how the additive - subtractive procedures
are acquired by children who are at the stage of concrete
operations. Such research is done within the autHorised ac-
tivities conducted by the Didactic Research Group (Nucleo di
Ricerca Didattica) of the University of Pavia which proposes to
put into effect, in the elementary schools, a mathematics cur-—
riculum which emphasises the critical-formative aspect of the
disciplines. In this regard, the study of the cognitive
strategies used by the children gain particular importance.

Here we will limit ourselves to the presentation of a
strong point of the investigation that we are conducting on the

verbal additive situations.

Methodoloqy

lzl{jﬂ:he research was conducted on 1035 s?v??—year—old subjects
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attending the second elementary class.

Our children belonged to six different schools, repre-
senting the social and economic classes of the population of
the city and province of Pavia.

The trials were composed of ‘two arithmetic situations
which the children had to solve on successive days to avoid the
possibility that choice of solution of the first could, accord-
ing to the logic of the "fixity of the task", influence the
solution of the second.

The two arithmetic situations were undertaken b? the sub-
jects after about three months from the beginning of the second
year of elementary school when addition and subtraction were
presented in the cultural baggage of the students.

The two sSituations proposed are the following:

A. There are 18 gifts under the tree on Christmas morning:
Three children enter and féke their gifts from under the
tree;

6 gifts remain for their parents;

How many gifts have the children taken?

B. This morning the baker had 30 buns;j;
He sold & of them to Roberta, 2 to Luca, and some to
Mario;
Now he has 18 left;
How many did he sell to Mario?

How many did he sell altogether?

If we use Moser's (1985) semantic classification of the
proposed problems, our sSituations can both be placed in the
class Transforming/Separating.

The semantic classification of the problems begins from
the situations of action or staticity which the problem
descr ibes for identifying the . logical operators like wunion
and/or separation in situations of transformation, combination,
comparison and equality.

The second problem proposed by us presents, however, a
syntactic and organisational structure of the information which
is different with respect to the first. In fact, the order of
O
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questions is not one which conforms to the sequentiality of



the actions described. The text also contains a problem of
combinaticn of the subtractive type. Further, to put into play
the relations which exist between a particular set and three of
its subsets does not indicate any implicit actions and,
therefore, any reference to the strategies of separation and
addition, but it describes the relation which occurs between
the quantities.

Our problem was that of seeing how the same subjects be-
haved in the two situations. Thus, the different subtractive
strategies used to resolve the trials were pointed out.

For the first situation, three strategies were used.

I 6 + = 18 In this case the modality used by the child
is additive, he begins from the smallest
quantity and builds a larger one by the ad-
dition of objects until reaching the greater
number . The counting of the objects added

Qives the result.

In 19 - = 6 In this case the modality used is that of
“separating up to“. The child removes, from
the more numercus set, many unitas up to the
point when the number remaining equals that

- of the smaller given.

I1I11) 1B - &6 = The modality used here is that of ‘"separa-
ting from". The child takes away from the
larger of the given sets the number of units

indicated by the smaller set.

These three subtractive strategies are also represented in the

second situation, even if combined among themselves in a dif-

ferent way. There are, in fact, four modalities which we have
compared.

I 30 - 4 - 2 - = 18 In this case the child used the
modality “separating up to", using
more sets and then those of the
sums between two quantities which
were not directly given by the

text, but which had to be found by
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1D 4 + 2 + 18 = " Here the child uses an additive

modality to build the subset of

the objects that he knows, then
using the modality "separating
from" to find the unknowns of the

problem.

II1) 30 - 18 = In this case the subtractive moda-
lity “separating from" is also
used.

IV) 30 -4 -2 - 18 = In this last case the child unites

& + & = to the modality "separating from"
that of the sum between two

quantities.

It is interesting to note, above all in the second situation,
how the children demonstrate a "flexibility"” not so much in the
operative modality as in the organisation of the information
that they have at their disposition. In using the same sub-

tractive strategies, the data are used in a different way.

Besults
Of our 10S subjects, &B% (71 students) responded correctly

to both trials, &2S% got only one trial wrong (8.5% the first
and 16.S% the second) while only 7% got both trials wrong.
Now let's study the modalities used in the two different

situations; examining the correct protocols.

Situation A Correct 83.8% Situation B Correct 77.13%
Modality Modality
1 12.38% I 38.09%
Il 20.00% II 14 .28%
III 51.42% I11I 8.37%
83.80% v 16.19%
77.13%

Q .
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Of our subjects, B83.8% responded correctly to the first situa-
tion and 77.13% to the second.

In situation A the most used modality (S51.42%) was that
known as "“separating from". In this case the information was
used in the given order. Only 31% (17 out of S4) of the
children doing the third modality also used the graphic repre-
sentations of the objects. Instead, we observe that 71.4% of
the children who used the modality "separating.up to" made use
of the representations of the objects; representation used by
all the subjects that resort to the first resultive modality,
the additive one.

Therefore, it seems that the children who resort to the
third modality are already able to use an internalised plan of’
action which does not need the objects to be activated.

In situation B we encounter the highest percentage (38.09)
of the use of the strategy "separating up to". However, we
must observe that the other three modalities use the strategy
"separating from" which therefore, as a whole, was used by

39.04% of the subjects who responded correctly to the second

situation. Moreover, it should be noted that the use of the
graphic representations was increased. A . good B0% of the
children who used the first modality made wuse of the

representations, &6.6% of those uging the second modality and
B2.3% using the fourth, while none of the subjects who used the
third modality used them. The comparison of these percentages
allows us to hypothesize that the internalisation of the work
plan of subtraction does not always follow a linear process,
but facing information of a greater quantity and which is mére
d}fficuit to organise, as in the case of situation B, the
children resort to procedures which can still be verified at a
perceptive level following the technique of counting.

In the following table the data of the children who cor-
rectly solved both the first and the second modality are

reported with reference to the modality used.
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| SITUATION A

MODALITY | 1 11 111
| |
s { |
I I ! S 12 18 t 35
T | |
U [ i
A II t 1 3 ? 1 13
T | |
I | |
0 111 { 1 1 S 7
N | |
| |
v ! 3 // 13 1 16
B [ {
i 10 16 4s | 71

Of the 45 subjects who, in the first problem, used the modality
“separating from", 18 did not use it in the second, while 27
used it with different modalit}es. This would seem to confirm
the initial observation that the 7-year-old children who used
the subtractive strategy “separating from" elaborated an opera-
tive model that, in most cases, no longer resorted to the
object.

We must, however, recognise that only S subjects who used
the third strategy in sitgation B effectively demonstrated that
they had internalised the plan of "separating from" , avoiding
both the graphic representation of the objects and the sequen-—
tial use of the information in favour of a process of
synthesis.

Moreover, it is interesting to underline the fact that of
the 35 subjects who, in situation B made use of the modality
"separating up to", 18 had used the modality “separating from"
in situation A. These data become clearer by the last analyses
of the protocols from which it results that a good 14 of these
sub jects had, however, used graphic representations in situa—
tion A, witnessing to the necessity of still connecting the
thouaht to the object.

o ‘
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Conclusiong

The results obtained in this research point out how the
internalisation of the subtractive processes are much more com-
plex than they had seemed.

Our subjects, at 7 years of age, having, by all means, un-
derstood the meaning of such processes, present some differen-
tiation from the operative point of view.

Two semantically similar arithmetic situations resulted
from the same subjects according to different modalities of
calculation which vary in relation to the amount of information
and, in general, to the context.

Therefore, it would seem that the acquisition of the sub-
tractive procedure is also subjected to a ‘“cognitive
flexibility” which can re-enter into the capacity of the crea-
tive thought. Lacking a plan internalised in an adequate way,
the subject resorts to his own abilities of creative thought

trying other solutions.
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Understanding and discussing lincar functions in situations.
A developmental study.!

Jean-Luc Gurtner, Université de Fribourg, Switzerland?

This study is a first attempt to investigate 7th, 9th and 11th graders’
functional reasoning in situations and to understand how and when
general expressions are spontaneously used in such a context.

Results indicate that all the groups had good understanding of key features
of linear functions in the situation, but that only 1lth graders understood
that conceptual descriptions may work as answers where lack of informa-
tion does not allow numerical answers. 7th and 11th graders spontaneously
adapted the level of generality of their solutions to the level of constraint of
the problems.‘. 9th graders focused more on the way the different variables
of the situation interacted than on trying to compute specific answers even

in highly constrained problems.

Onc can accept the first part of the following claim :"Gencrality is the lifeblood
of mathematics” (Routes to/Roots of Algebra. Opcn  University, Centre for
Mathematics Education, 1985, p.8) without buying its tail "and algcbra is the
language of gencrality”. (our emphasis). Potentially an idcal way to learn to deal
with concepts and numbers together, algebra, as taught in the schools, is now
widely charged with "too much mcaningless symbol pushing" (Kaput, 1987, p. 345).

Linear functions rcpresent the easicst way to kcep expressing generalitics
while reintroducing mcanings. This is not a ncw idca and Whecler and Lee (1987)
scc its origin in the 1920s. Well documented studies have shown (Piaget, 1968) that
mastery Aof the symbolic notational system is not nccessary to understand
functional rclations, and that the usc of situations may successfully trigger
functional rcasoning among students (Janvicr, 1978). Most school curricula

however delay the study of functions until the introduction of algcbra.

IRescarch donc with J. Moore, M. Korpi, J. Greeno, G. Pribyl and J. Simon and
supported in part by NSF, Grant BNS-8718918 to J. Greeno.

2Currcnlly visiting at Stanford University, sponsored by the FNRS Fcllowship
~1.0.86.
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in this study, we have tried to capturc in the language of Tth, 9th and 1lth
graders marks of an understanding of functions beyond the simplc stalcment of
the relations between the variables of the situation, and to analysc its strengths
and wcaknesses. We also wanted to lukc a first look at what makes students

spontancously decide what level of generality is appropriate for a given situation.

The experimental situation

The data come from the protocols of 9 pairs of subjects, three of 7th, three of
oth and threc of 11th graders, with respectively, 0, 1 and 2 ycars of algecbra at
~ school. They were asked to answer questions and solve problems related to the

functioning of thc device shown in Figurc 1. Each interview lasted 50 minutes.

Fig. 1 The device used in the experiment.

Two blocks can be moved up along parallel tracks by turning the wheels
situated at onc end of the device. The wheels can be actionned independently or
together. Wheels of different sizes can be put on cach crank, allowing  the blocks
to move 2. 3. 4 or 6 inchecs per turn, Different starting positions can also be given
to the blocks. Each track may be scen as cmbodying a lincar function of the form
y=ax+b, in which y represents the ending positions of thc blocks, a the sizes of
the wheels, x  the number of tums and b the starting positions of the blocks. The
usc of two tracks, aside of proving hiéhly motivating by introducing an clecment
of compctition, was decided to allow the discussion of linear functions, beyond one
"G":"ular instantiation. 36
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The first 15 minutes of the scssions scrved as an open-cnded familiarisation
phasc. Its aim was to let the subjects beccome acquainted both with the device and
with questions designed 1o promote gencralisation by offering only part of the
nccessary information. “What will happen when you tum the handle?" or "Where
will the blocks be when you stop turning?* arc cxamplc of thosc initial questions.

For the next fiftcen minutes, subjects were given problems to solve. These
problems prescnted various level of constraint. The less constrained problems like

“How could you make the bluc block bc at 20 first?”, were solvable in many
different ways. Morc constrained problems, like "Have both blocks be at 24 at the
same time?" accepted fcwer solutions. In both cases, the experimenter kept
prompting for other ways, until cvidence was received that the subjccts had
considered possible action on the three variables involved (i.c number of turs,
sizes of thc spools and starting points). In the totally constrained problems,
enough information was introduced into the situation, (for instance by seclecting
two spools and two starting positions), that only onc solution remaincd possible.

At the end of thc problem phase, another 15 minutes were rescrved to ask the
subjects to make Inferences in -order to assess their degree of understanding of
some key features of linear functions. As in the totally constraincd problems, the
questions concemed particular scttings of the device. Given the usual difficulties
raiscd by problems about ratios, a central question was thc understanding that the
ratio of the travelled distances of the two blocks was constant and equivalent to the
ratio of the sizes of the two spools. In the simple case where both blocks started at 0
and had respectively a 3 and a 6 spool, wc asked successively: “Will the number
that this block is at (thc onc with the larger spool) ever be two timcs thc number
that this onc is at?" "Will it always bc so?" and "Will this number ever be threc
times the number of thc other block?”. Argumentations were always requested.

The sessions cnded by a presentation of an abstract situation, in which the
sizes of the spools and thc Starting positions were only given in a relative way
("Now lct's imaginc that we have a bigger spool on onc side and a smaller onc on

)
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the other. 1 won't tcll you the size of the spools I have in mind, howecver. The block
pulled by the smaller spool starts ahcad, but again 1 won't tell you how far ahcad.).
Questions like: "Can you still say anything about when they arc going to bc on the
same line?"  weic discusscd in order 1o assess thc subjeccts’ understanding that

general, conceptual answcrs rcmamcd possxblc whcn numcncal answcers  werc no

longer to be found.

Results

Problems : subjccts wcre voluntarily left totally free to dccide whcether and
how much they wanted to usc thc device in their solutions. The interviewer
acccp(cd spcc:fic answers -~ solutions involving mcnuon or usc of at lcast onc
pamcular ’Spoor ~slarung posmor; or.n:m:bcr of tumns (cx Put a 6 on thi§ one) as

well as unspecific solutions -- answers containing only relative descriptions of

those parameters (cx : Have a bigger spool on this one) and no specific valucs.

For the less constrained problems, all agc groups gave predominantly
unspecific, but working solutions, (respectively 60, 74 and 70 % for thc T7th, 9th
and 11th graders). This result indicates that unspecificity about the values of the
variables is sccn as the appropriatc answer to a weakly constraincd problem. For
more constraincd problems, the proportion of unspecific solutions drops
significantly for the 7th and the 11th graders to respectively 31 and 25 % but stays
high among the 9th graders (75 %, p < .05). This rcsult shows that cven the 7th
graders arc able to adapt the level of generality of their solutions to the level of
constraint of the problcm“s The unspecific solutions given by the 9th graders
should not be regarded as wcaker performances. They arc indced often well
formulated (4A: Well, I think you have to use the same size spool, or if you used a
smaller one you'd have to start it ahead.) and can bc followed by very accurate

answers on requesl, as shown in the following intcrchange.
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Interviewer : Al right, suppose you want to make the red end at 24 and the blue end at
8. Can you construct that situation?

Student 6A : At the same time?

Interviewer : Yes, at the same time, a tie, or you know...

Student €8 : If you took, um, a 6-spool, a 2-spool, and like, you did, um, wait,
oh.

Interviewer : The red's gonna be at 24, and the blue’s gonna be at 8.

Student 6A : You can have the 2-spool to the blue, and the 6-spool to the...
| mean the 6-spoo! to the red...and then have the same number of
turns.

Student 6B : You can crank that one (red) three times as much as this one.

This tendency of the 9th graders to remain u‘nspcciﬁc cven in the more
constrained problems may be due to a special cffort to capturc and express how the
variables of the situation can be manipulated and interact to produce the target
event (like a mecting) rather than to try lo‘pursuc one specific solution that wouid
make the target event to happen at the specificd location (24). Another finding of
this research offcrs support for this intcrpretation. Use of comparatives
throughout the session (like smaller, faster, ctc) is more frcquent among the Sth
graders than in any other -group (appearing in 25 % of their general statements
and in only 15 % for the 7th and 11 % for the 1lth graders).

Totally constrained problems arc generally received with guesses and requests
to use paper or to work them on the device. Correct solutions appear in all age
groups and are usually found by constructing tables and comparing the positions
of the two blocks after each turn. Onc 11th grader however got thc correct answer
to thc problem : "How many tums will it take for thc two blocks to be equal?” by
immecdiatcly computing the gain per tumn of the bigger spool and comparing it to
the hcad start of the other. (7B: I knew thar if this was 4 and this was 3, every turn
this would gain 1, and they are 5 apart, so 5 turns would put'em together),
attesting that he also understood that the function resulting from the composition
of (wo lincar functions was also lincar. Two pairs of 11th graders tricd to usc
cquations to verify their correct solution but failed to sct the cquations correctly.
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Inferences : Only onc pair of subjects (9th graders) accepied that, when
starting both from the 0 mark, bluc could cventually later be three timcs as far as
red after having scen it bc two times as far at onc particular point. All the other
pairs (cxccpt for onc pair of 1lth graders for whom the question was considered
too obvious) explicitly argucd that, with a joint start at the 0 mark, the ratio
between the positions of the two blocks would stay constant and cqual to the ratio
of the spool sizes. One can hardly be more cxplicit than this 9th grader : the blue

spool is twice as large as the red spool, so it can’t move any faster than twice as far.

Subjects’ rcactions to thc abstract situation show a clear developmental
pattern across levels. In all the 7th grade pairs, subjects proposcd to supply the
unspecific information given by introducing valucs of their own. No other pair
did so. The four 9th graders dcaling with the question considered that because of
the unspecific information given :;bout the spool sizes and the starting positions
nothing sensible could bc said about where the mecting of the two blocks would
occur. (SA: We don't know, to which 5B added : It all depends on how much bigger
the spool is or 4A: You need to know how many inches it moves per spool ). This
result is somcwhat surprising coming from the very same subjects who had
proposcd unspecific solutions cven for thc more constrained problems ecarlicr in
the scssion. Further investigation is necded to better understand this apparent
paradox. Answers at the level of the variabl_cs were given only at the 11th graders’
level who gave answers like: 9A: The red will catch up with the blue at the point at
which it's size advantage can cover the original loss in distance, or TA: the
number of turns it takes for blue to carch up with red will depend on the size of
the spool, immediatcly completed by 7B: and the head start.

This result is consistent with another finding of lhi; rescarch showing that if
the use of the variables' names riscs remarkably at the 9th graders level alrcady,
those names remains absent of cxpressions involving words like it depends on or
O
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a quantifier like twice or half. Whilc 9th graders produced almost only scntences
like : it depends on how big the spool is or it will go twice as far, thc 11th graders
used mainly cxpressions likec it depends on the size of the spools (79 % of their
"depend” cxpressions involved concepts’ name‘s. a highly significant increase,
p<.001). Expressions like it's twice the distance started to be more than just the
exception among the 11th graders only (33 % of their quantified cxpressions
involve thc variables’s namcs against only 11 % among younger subjects).
"Composite” formulas like : the smaller size spool , or twice as much distance
while also attesting of the 9th graders cffort to integratc concepts imoltheir
cxpressions, rcveals that they arc not yet ready to have thc concepts supplant the

comparatives.
Discussion

This study rcpresents a first attempt to understand how and when 7th, 9th and
11th graders form and usc gcneral expressions to characterize functions in
situations. It was shown that, when reasoning about a situation, -even 7th graders
had a good enough undcrstanding of linear functions, to correctly answer
qucstions about the ratios of the images of two lincar functions with same
intercept. Only the 1lth graders however introduced the variables’ names in
expressions involving .- mention of dependé'ncy .or_"malhen.lalical relations,

although the usc of those names was frequent amiong lhc 9th’ gradcrs in other

Lypes of*scmences Half “of Jhe lllh gradcrs*—underslood‘ lhaf"cxprcssnons o lhe~

level of 1he.variablcs could ‘be given as solutions for problcms where lack of
specific information made numerical answers impossible.

The 7th and the 11th graders correctly adapted the level of gencrality of their
solutions to the lcvel of constraint of the problem. Thc 9th graders, though
generally able to find specific solutions on request, tended to stay at the samc level
of generality for the morc than for the less constrained problems. In both cases,
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they oftcn focusscd morc on cxpressing the possiblc ways to rcalize the desired
event (likc usc a bigger spool, to makc a particular block win, or givc onc a bigger
spool and thc other onc a head start, to get a tic) than on the specific valucs that
would makc this event happen at a particular location on the device, as also
requested in the problem. Additional data suggest that this tendecncy is to be scen
as rcflecting how thc 9th graders interpreted the intervicwer's cxpectations in
the situation and not as a drop in quality of their rcasoning. Interestingly the
intervicwer even acccpted as a good solution for the problem : "How to makc the
blue block be at 20 first?" an answer as ambiguous as : 5A: Put a different spool.
This result shows that subjccts. do make some hypothcscs on the level of precision
they have to go to and the level of understanding they will be credited for, when
they dcliver general answers. Very often, this level was dctermined through
negotiation bctwecen the students, making the usc of pairs of subjccts a very
appropriatc technique where the form of the message is as important as it's
content. This also shows that, if g.cncralily is the lifcblood of mathematics, morc

theoretical work has to be done in defining generality for verbal expressions.
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LOW MATHEMATICS ACHIEVERS' TEST ANXIETY

Rina lHadass
Oranim, School of Education of the Kibbutz Movement,

University of Haifa, Israel.

Nitsa Movshovitz-Hadar
Technion, Israel Institute of Technology
Department of Education in Technology and Science

Haifa, Israel.

Abstract

Reactions To Tests questionnaire (Sarason, 1984) was
used to check eighty two low achievers in mathematics in
order to find out their level of test anxiety. Counter to
theoretical expectations, which predicted a high level of
test anxiety, findings show indifference to taking of tests
among these students. Implications for curriculum
indentation are discussed.

The Problem and Its Background

Test anxiety has been widely studied (e.g. Helmke,
1988; Hembree, 1988; Sarason, 1984). Evidence of a negative
correlation between test anxiety and performance in
evaluative situations has led to a wide variety of
experiments, aimed at evaluating hypotheses about the

processes that may be involved. (Sarason, 1988).
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We chose to check test anxiety of low ability students
in vocational high schools. The system of vocational high
schools in Israel runs in parallel to the academic high
schools. In vocational high schools students major in
technical fields such as mechanics, constructions,
secretarial work, etc. In the context of evaluating a newly
developed mathematics curriculum for these students, the
problem of achievement evaluation arose. Naturally, it
became apparent that testing for achievements should be
considered as an instrument. In view of the well established
history of failures in mathematics examinations of this

population, and in accordance with Sarason'

s findings
mentioned above, it was reasonable to expect high level of
test anxiety on the part of these students. Therefore we
decided to check it. Existance of test anxiety certainly

would violate achievement tests validity. One must,
however, be very careful in concluding the opposite if test
anxlety measure proves that it does not exist. Namely, if
test anxiety is too low, this also may violate the validity

of the results.

The Instrument

Test anxiety was measured using Sarason's (1984)
Reactions To Tests {(RTT) questionnaire. As both general and
test anxieties are usually defined as complex states which
include cognitive, emotional, behavioral and bodily
components, Sarason's instrument consists of four factor
analytically derived scales

T: Tension (e.g. "I feel distressed and uneasy
before tests")

W: Worry (e.g. "During tests I wonder how the other
people are doing")

IT: Test-Irrelevant Thought (e.g. "Irrelevant bits of

information pop into my head during a test")

BS: Bodily Symptoms (e.g. "My heart becats faster when

the test begins")

O
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Altogether, the RTT questionnaire consists of 40
statements, each with four alternative reactions. Examinee
is to circle the alternative that best reflects how he or she
reacts to the statement. The four alternatives are:

- not at all typical of nme
- only somewhat typical of me

- Quite typical of me

£wWw N -

- very typical of me

As there are 40 §tatements in the questionnaire, ten of
each scale, a student could get a score of between 10 to 40

for each scale, and a score of between 40 and 160 for the

whole questionnaire.

The instrument was validated by Sarason using it for
normal students' population in the United States (198Y4).
Michaelis et al. (1988) translated it into Hebrew, and
validated the translation applying the test to 54 Tel Aviv
University students, who sought counselling because of their
suffering from test anxiety.

The Sample

The RTT instrument was administered to 82 low ébility
vocational high school students at average age sixteen, 4y
boys and 37 girls. Their mathematics achievements, asg well
as other achievements throughout school, were below average,
therefore in high school they were assigned to the low
ability vocational stream. A study of their characteristics
(Movshovitz-Hadar, 1987) revealed g low motivation coupled

with a variety of social and learning problems.,

Results
—_— >

The mean questionnaire scores and standard deviations

are presented in Table 1. In that Table we also present, for

the sake of comparison, results obtained by Michaelig et al.
(1988) and by Sarason (1984 .
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TABLE 12 RIT MEANS AND SEANDARD DEVIATIONS
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Table 2 presents distribution of results by scales and sub-

groups of scores.
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TABLE 2
1
Anxiety
Scores T W IT BS
Low
(10-20) 68 LL] 68 75
Med
(21-30) 12 33 14 7
High
(31-h0) 2 S 0 0
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Discussion
_—oetlsston

Counter to our theoretically based expectations,
results in Table 1 show that students of both sexes in the
low mathematics achievements population have a very low test
anxiety score, compared to that of students of both sexes of
high test anxiety population in Israel, and to that of normal

students' population in the United States.

Table 2 shows that hardly any student received a score
higher than 30 in each of the four scales. To re-examine
this gap between theoretical prediction and our results, we
interviewed the mathematics teachers of these students.
Teachers rejected the theory and were not at all surprised to
hear about their students' low test anxiety. On the
contrary, they said it was éonsistent with their own
expectations and observations. According to their
experience, they said unanimously , these kids are
indifferent to tests, as they do not care any more about
success . They lost every bit of inner motivation to succeed
in mathematics, and hence they could not care less about

tests.

Conclusions
- "

Even though we did not find a high level of test
anxiety as we had theoretically predicted, we cannot
recommend using achievement tests as the basis of curriculum
evaluation for this particular population. As their teachers
suggested, a major problem is that of total lack of success-
drive. A careful study of this population's inner and
external motives to succeed is needed. Meanwhile, innovative
measures ought to be found in order to evaluate new
mathematics curriculum, developed for these students.
Perhaps, a measure of change in test anxiety can serve as an

indicator of change in student's motivation, in case an
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Proofs that Prove and Proofs that Explain

Gila Hanna

The Ontario Institute for Studies in Education

Abstract
A distinction is made between mathematical proofs that prove and
mathematical proofs that explain: those that explain show not only that a
statement is. true, but also why it is true. It is then argued that proofs that
explain should be favoured in mathematics education over those that merely
prove.

In recent years many mathematics educators have actively reassessed the role of
mathematical proof in various parts of the curriculum, and as a result there has been a
trend away from what has often been seen as an over-reliance on formal proofs. In a
desire to take into account the role of proof as a means of communication, and in
recognition of the social processes that play a crucial part in the acceptance by
mathematicians of a new‘ result, educators have come to place greater emphasis on the

concept of proof as "com)incing argument.”

The trend away from formal proofs in the curriculum, and the resulting search for
alternative ways of demonstrating the validity of mathematical results in the
classroom, have motivated a number of studies dealing with the problem of teaching
proof. Leron (1983), concerned that most of the formal proofs found in textbooks do a
poor job of communicating mathematical ideas, suggested that such mathematical
presentations would be much more comprehensible if the proof were structured into

short autonomous modules, each emphasizing one particular idea.

Deploring the teaching of gecometry as narrow and overly concerned with deductive

proof, Volmink (1988) believes that mathematics education would be better served if
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the curriculum were to place greater emphasis on the social criteria for the acceptance
of a mathematical truth, at the expense of the purely formal ones. Movshovitz-Hadar
(1988) elaborates upon six different ways of presenting theorems and six ways of
presenting proofs, in an effort to enhance mathematical understanding through what

she calls the "stimulating responsive method."

Alibert (1988), on the other hand, relies on the method of scientific debate, which
provides students the opportunity to discuss the arguments made by a proof. In an
extensive study of the processes involved in teaching a mathematical proof, Balachefl
(1988) also points to the importance of creating classroom situations in which the
student becomes aware of the complexity of the problem and of the necessity to produce

valid arguments.

These ideas, and others not cited here, have made a substantial contribution to our
understanding of the didactics of proof, and have permitted their authors to offer
specific and interesting new ways of teaching proofs. In these discussions, however, a
proof is viewed primarily as a valid argument, as opposed to an argument that must be
both valid and explanatory. I believe it would be useful to introduce to the discussion an

explicit distinction between proofs that prove and proofs that explain.

In this paper I first address this additional aspect of proof, namely proof as explanation,
and then consider the implications of this view of proof for the handling of proof in the
curriculum, suggesting that we should, whenever possible, seek to present to students

the proofs thdt explain rather than those that only prove.
Explanation versus Validation

Both proofs that explain and proofs that prove are legitimate proofs. By this I mean
that both fulfill all the requircments of a mathematical proof. Each serves to establish
the validity of a mathematical assertion. Each consists of statements that are cither

axioms themselves or follow from previous statements, and thus eventually from
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axioms, as a result of the correct application of rules of inference. Each is recognized by
the mathematical community as a valid proof (though there may be differences of

opinion on the degree of rigour).

There is nevertheless a very important difference between these two kinds of proof. A
proof that proves shows only that a theorem is true; a proof that explains also shows
why it is true. A proof that proves may rely on mathematical induction or even on
syntactic considerations alone. A proof that explains must provide a rationale based
upon the mathematical ideas involved: the mathematical properties that cause the

asserted theorem or other mathematical statement to be true.

The sense in which 1 use the term explanation is perhaps best clarified in
contradistinction to that of Balacheff. In his analysis of the cognitive and social aspects

of proof, Balacheff (1988) proposed the following distinctions:

» We call an explanation the discourse of an individual who aims to establish
for somebody else the validity of a statement. The validity of an
explanation is initially related to the speaker who articulates it.

» We call proof an explanation which is accepted by a community at a given

time.

e We call mathematical proof a proof accepted by mathematicians. As a
discourse, mathematical proofs have now-a-days a specific structure and

follow well defined rules that have been formalized by logicians (p. 2).

For Balacheff, then, a proof is an explanation by virtue of it being a proof. Yet surely a
proof need have no explanatory power. One can even establish the validity of many
mathematical assertions by purely syntactic means. With such a syntactic proof one
can demonstrate that a statement is true without ever showing what mathematical
property makes it true. Thus I prefer to use the term explain only when the proof
reveals and makes use of the mathematical ideas which motivate it. Following Steiner
(1978), I will say that a proof explains when it shows what "characteristic property”

entails the theorem it purports to prove. As Steiner put it:

O
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... an explanatory proof makes reference to a characterizing property of an
entity or structure mentioned in the theorem, such that from the proof it is
evident that the results depends on the property. It must be evident, that is,
that if we substitute in the proof a different object of the same domain, the
theorem collapses; more, we should be able to see as we vary the object how
the theorem changes in response (p. 143).

The following example will illustrate the difference between a proof that proves and a

proof that explains:
Prove that the sum of the first n positive integers, S(n), is equal to n(n+1)/2.

A proof that proves

Proof by mathematical induction:

For n=1 the théorem is true.

Assume it is true for an arbitrary k.

Then consider:

S(h+1) = S(k) + (k+1) = n(n+1)/2 + (n+1) = (n+1)(n+2)/2
Therefore the statement is true for k+1 if it is true for &

By the induction theorem, the statement is true for all n.

Now, this is certainly an acceptable proof: it demonstrates that a mathematical
statement is true. What it does not do, however, is show why the sum of the first n
integers is n(n+1)/2 or what characteristic property of the sum of the first 2 integers
might be responsible for the value n(n+1)/2. In general, proofs by mathematical

induction are non-explanatory.

Gauss's proof of the same statement, however, is explanatory, because it uses the
property of symmetry (of the different representations of the sum) to show why the
statement is true. It makes reference to the property of symmetry and it is evident from

the proof that the results depend on this property.

O
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A proof that explains

Gauss’s proof is as follows:

s = 1+ 2 4+ ... +n
S = n+ (n-1) + ... + 1
28 = (n+l) + (n+l) + ... + (n+l) = n (n+l)

172}
4

n(n+l)/2 _ QED.

Another explanatory proof of this same statement is, of course, the geometric
representation of the first n integers by an isosceles right triangle of dots; here the
characteristic property is the geometrical pattern that compels the truth of the

statement.

Both Gauss’'s proof and the geometric representation show that an explanatory
approach to proof in the classroom need not always entail doing away with legitimate
mathematical proofs and relying on intuition only. What is required is the replacement
of one kind of proof, the non-explanatory kind, by another equally legitimate proof
which has explanatory power, the power to bring out the mathematical message in the
theorem. In their paper "Wann ist ein Beweis ein Beweis?” (When is a proof a proof?)
Wittmann and Mueller (1988) refer to these kinds of proof, in fact, as “clear-content
proofs" (inhaltich-anschaulich), and furnish an interesting example. The challenge is
to identify suitable explanatory proofs as alternatives to the many non-explanatory

ones nOw in use.

One might ask whether an abandonment of non-explanatory proofs would not make the
curriculum less reflective of accepted mathematical practice. It is certainly true that,
far from making the mathematical content clear, many mathematicians have thought it
necessary in constructing a proof to avoid any reference at all to mathematical content,
sometimes through reliance on purely syntactic methods. To ensure the correctness of
their proofs, they have consciously emphasized the deductive mechanism at the

expense of the mathematical ideas. i
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As I have argued elsewhere (Hanna, 1983), however, mathematicians, including those
who have recourse to purely syntactic methods, are nevertheless really more interested
in the message behind the proof than in its codification and syntax, and they see the
mechanics of proof as a necessary but ultimately less significant aspect of mathematics.
Furthermore, as I have also argued, the significance of what is proved is given more
weight than the very correctness of the proof. Thus there is no infidelity to the practice
of mathematics if in mathematics education we focus as much as possible on good
mathematical explanations (even at the expense of rigour), and highlight for the
students in our proof of a theorem the important mathematical ideas that lead to its

truth.

Implications for Teaching

As mathematics educators it is our mission to make students understand mathematics.
It is my contention that in support of this mission we should give a more prominent
place in the mathematics curriculum to proofs that explain. Such a focus is particularly
important in teaching, because, unlike mathematicians, students of mathematics have
yet to learn the relative importance of different mathematical topics and may easily be

misled by a classroom emphasis on the deductive mechanism.

The first step in promoting understanding through explanatory proofs is, of course, to
recognize that understanding is much more than confirming that all the links in a
chain of deduction are correct, that in fact the completeness of detail in a formal
deduction may obscure rather than enlighten, and that understanding requires some
appeal to previous mathematical experience. In discussing the relationship between
understanding and proof it is useful to keep in mind that mathematical arguments may
have various atiributes (such as convincing, precise, formal, explanatory), and that

these attributes are often quite distinct.
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Fischbein's Theory: A Further Consideration

Guershon Harel
and
Merlyn Behr
Northern Illinois University

Thomas Post
University of Minnesota

Richard Lesh
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This paper presents a theoretical framework for and some preliminary results of a study
which aims to further investigate Fischbein's theory on multiplication and division
concepts, with sophomore and senior préservice teachers and elementary school inservice
teachers. The study uses an instrument which controls several confounding variables to
reexamine the impact of number type on problem difficulty and to further investigate the
following aspects: (a) the domain of the number system from which the problem quantities
are derived--fractions versus decimals; (b) the “"absorption effect" notion; (c) the
relative robustness of the intuitive rules associated with Fischbein's intuitive models; and
(d) the solution processes used by subjects to solve multiplication and division problems.
It was found that inservice teachers who were highly successful at multiplication and
division problems employ proportional reasoning, others have difficulty translating a
correct problem representation into a correct mathematical sentence, and the rest attend
only to the surface structure of the problem .

In an attempt to understand preservice and inservice teachers' concepts of multiplication and

division, we designed and implemented a study which controls a wide range of confounding variables;

these are the variables of structure (e.g., simple proportion versus multiple proportion, Vergnaud,

1983), text (e.g., mapping rule versus multiplicative compare, Nesher, 1988), context, and syntax

described in Harel, Post, and Behr (1988a). The study consists of three components. The first deals

with the impact of the propositional structure on the problem situation of multiplication and division

problems (see Harel, Behr, and Post, 1988b); the second component reexamines the impact of the

number type (whole number, non-whole number greater than one, and positive number smaller than

one) on the problem solution and further investigates several aspects of Fischbein, Deri, Nello, and
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Marino's (1985) theory. The third components aims to reveal teachers’ processes of thinking on both
pedagogical and mathematical aspects of multiplication and division concepts. The subjects in this
study are sophomore preservice teachers (N=113), senior preservice teachers (N=63), and
elementary school inservice teachers (N=139). The analysis of the results from this study is
underway; in this paper we will present a theoretical framework of the second component of the study
along with some preliminary results.

Fischbein's intuitive models. According to Fischbein et al. (1985), the model associated with
multiplication problems is repeated addition. This mode! leads subjects to intuit the rule that a
multiplier must be a whole number and reinforces the misconception that the product must be larger
than the multiplicand, or multiplication makes bigger (Bell Fischbein, and Greer, 1984; Bell, Swan,
and Taylor, 1981; Hart, 1984). For division, Fischbein et al. suggested two intuitive models:
partitive division and gquotitive division. Associated with the partitive division mode! are two
intuitive rules: the divisor must be a whole number and the divisor must be smaller than the dividend.
These rules result in another intuitive rule that the quotient must be smaller than the dividend, or
division makes smaller. The only rule associated with the quotitive division model is that the divisor
must be smaller than the dividend.

Domain of the number system. The studies that address the incongruity beMeen these
intuitive models and the formal opérations of multiplication and division problems involve only
decimal numbers: the question of whether a similar incongruity exists in multiplication and division
problems with fractions has never been directly addressed. There is a reason to believe, however,
that fractions and decimals do not have the same effect on the difficulty of multiplication and division
problems. A rationale for this is that a fraction, more than a decimal, can be viewed as an operator.
As aresult, it might be easier to identify relationships among problem quantities in multiplication and
division problems in which the multipliers and divisors are fraction than in those in which they are

decimals.
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The absorption effect. Fischbein et al. (1985) suggested the notion of the "absorption cffect,”
1o conjecture that "when the whole part of a decimal is clearly larger than the fractional par, the
pupil may treat it more like a whole number (as though the whole part ‘masks’ or ‘absorbs' the
fractional part).” To support their conjecture, they compared performance on several problem types:
one with the decimal multiplier 3.25, one with the decimal multiplier 1.25 and four with the decimal
mullipliers. 0.75 or 0.65. They found that compared to decimals like 0.75, 0.65, or 1.25, a decimal
like 3.25 has a slighter counterintuitive effect when playing the role of multiplier. This finding
raises several questions: (a) What is the conceptual base for the argument that the whole part 3in the
decimal multiplier 3.25 better "masks” or *absorbs" the fractional part 0.25 than 1 does in the
decimal multiplier 1.257; (b) does the "absorption effect” apply to decimal multipliers between 2
and 3 (e.g., 2.25)7; (c) are "large” decimals (e.g., 42.35) better conceived as multipliers than small
decimals (e g., 3.25)7 (d) does the relative size between the whole part and the decimal part of a
decimal multiplier play a role in the "absorption effect?" (e) does the "absorption effect” apply to
fractions as well?

Levels of robustness. A clear result from the study by Fischbein et al. and others (e.g.,
Graeber, Tirosh, and Glover, 1989; Mangan, 1986} is that a non-whole-number multiplier
differentially affects the refative difficulty of a multiplication problem depending on whether it is
greater or smaller than one. This suggests that violations of the rule, "multiplier must be a whole
number,” are of two types: one is when the multiplier is greater than one and the other is when the
multiplier is smaller than one. Thus, with respect 10 violation of the intuitive rules associated with
multiplication, there are three classes of multiplication problems:

M(0). Problems which conform to the the multiplication model,

M(1.1). Problems in which the multiplier is a non-whole-number greater than one, these

violate exactly one rule: "multiplier must be a whole number,”

M(1.2, 2). Problems in which the multiplier is a number less than one; these violate exactly

two rules: "multiplier must be a whole number"” and "multiplication makes bigger.”

O
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Surprisingly, the impact of the "absorption effect” has not been investigated with respect to
the intuitive partitive division rule, divisor must be a whole number, even though the same argument
made with the multiplier can be made with the divisor. To address this effect we suggest a similar
refinement to that with non-whole number muitipliers in order to distinguish between a
non-whole-number divisor greater than one and a positive divisor less than one. As in the
multiplication case, this refinement results in the following classification of partitive division
problems:

P(0). Problems which conform to the the partitive division model,

P(1.1). Problems in which the divisor is a fractional number greater than one; these violate

exactly one rule: "divisor must be a whole number,”

P(2). Problems which violate exactly one rule: "divisor must be smaller than dividend,”

P(1.1, 2). The intersection of the classes P(1.1) and P(2); that s, problems which violate

exactly the two rules: "divisor must be a whole number” and "divisor must be smaller than

the dividend.”

P(1.2, 3). Problems in which the divisor is a fractional number smaller than one; these

violate exactly two rules: "divisor must.be a whole number” and "division makes smaller,”

P(1.2, 2, 3). The intersection of the classes P(1.2, 3) and P(2); that is, problems which

violate all three rules.

Since quotitive division problems are associated with only one rule, the divisor must be
smaller than the dividend, their classification is:

Q(0). Problems which conform to the the quotitive division model.

Q(1). Problems which violate the rule: "divisor is greater than the dividend.”

This analysis and a careful examination of results from different studies led us to hypothesize
that the intuitive rules are not equally robust in problem solutions. For example, from the results
reported by Fischbein et al. (1985) we hypothesized that different intuitive rules within the

partitive model may not be equally strong in affecting students’ solution of partitive division
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problems: children prefer to cope with the violation of the rule, "divisor must be smaller than the
dividend,” than with the violation of the rule divisor must be a whole number (see Harel et al.
1988b).

A first indication of how the intuitive rules associated with the partitive division model
differentially affect the solution performance can be seen from Table 1. Performance on P(2)
problems--those which only violate the rule, "dividend must be greater than divisor™--is higher
than performance on the other categories of problems which violate one or a combination of intuitive
rules. This indicates that the rute, "dividend must be greater than divisor,” is the least robust in the
solution of partitive division among other combinations of the intuitive rules. Further indication of
the relative robustness of the intuitive rules associated with the partitive division modet will
discussed below.

Another important result from Table 1 is that the "absorption effect” does not apply to the
divisor in partitive division problems. This can be seen by comparing the performance on P(1.1)
problems (whose divisor is a decimal greater than one) to the performance on two classes of
problems: P(0) (problems whose divisor is a whole number) and P(1.2, 3} (problems whose divisor
is a decimal smaller than one). Table 1 shows a big difference in the first comparison, which suggests
that, unlike a decimal multiplier greater than one, a decimal divisor greater than one is not treated
tike a whole number. The second comparison shows no precedence of a decimal divisor greater than

" one to a decimal divisor smaller than one, and since performance on both classes is low, both impose a

strong constraint that causes major difficulty in problem solution.
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Jable1
Category Rule violation Operation Correct responses (%)
: Preservice Inservice
Sophomore Senior
P(0) No rule violation . 68+17 86.5 925 95.5
P(1.1) Divisor must be a whole number 11+2.53 315 36 41
P(2) Dividend must be greater than divisor 3+5 62.3 79.7 85
Divisor must be a whole number
P(1.1, 2) AND 12+24.67 19 26.7 41
Dividend must be greater than divisor
Divisor must be a whole number
P(1.2, 3} AND 6+0.67 39.3 52 61
Quotient must be greater than dividend
Divisor must be a whole number
AND
P(1.1, 2, 3) _ Dividend must be greater than divisor 0.35+0.79 33 43 55

AND
Quotient must be greater than dividend

A further distinction among the intuitive rules described above is that some of the rules are

associated with the problem information, others with the problem solution. In multiplication, the

rule, "muttiplier must be a whole number” imposes a constraint on the type of multiplier provided in

the problem information; in contrast, the rule, "multiplication makes bigger” restricts the problem

solution to be a number greater than the multiplicand. Similarly, in partitive division, the rules,

"divisor must be a whole number" and "divisor must be smaller than dividend" are problem

information rules, whereas the rule "quotient must be greater than dividend" is a "problem solution”

rule. Finally, the rule, "divisor must be smaller than dividend" associated with quotitive division is a
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"problem information” rule.

Any problem solution rule is dependent on a problem information rule; therefore, the relative
robustness o.f these two types of rules cannot be tested independently. However, we hope to get some
information about the role that these two types of rules play in the solution process from the
interview data.

Summary

In this paper we have addressed several aspects of Fischbein et al.'s (1985) theory: (a) the
number type and the domain of the number system from which the problem quantities are
derived--fractions versus decimals; {b) the "absorption effect” notion suggested by Fischbein et al. to
account for differences in subjects' performance on multiplication problems with multiplier greater
than one versus those with multiplier smaller than one; and (c) the relative robustness of the
intuitive rules associated with the intuitive models suggested by Fischbein et al.

The primary results described in this paper are very discouraging: preservice and inservice
teachers have serious misconception in a content domain that is included in their teaching
responsibility. Moreover, in comparing teachers' misconceptions to those possessed by children
(Bell, Fischbein, and Greer, 1984; Bell, Swan, and Taylor, 1981; Fischbein et al, 1985; Han,

1984; Mangan, 1986), and teachers' solution strategies to those used by children (e.g., Sowder,
1988) we found a striking resemblance. Graeber et al. (1989), who found this same result, indicated
that " efficient strategies are needed for training teachers to monitor and control the impact that
misconceptions and primitive models have on their thinking énd their students' thinking” (p. 100).
Graeber et al. suggest such strategies. For example, asking teachers to write about their conception
and misconception, or encourage them to compare their estimated answer with the computed one.
These strategies can be used with children as well. Fischbein et al. (1985) recommended that
teachers {(assuming they are competent in the content domain) should "provide learners with efficient
mental strategies that would enable them to control the impact of the primitive models” (p. 16).

Greer (1985) recommended that teachers should "aim to widen the range of models available to the
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pupils” (p. 74).

Our investigation of the solution‘processes used by inservice teachers suggests that the main
difficulty is in the translation process of the comprehension representation (i.e., the understanding
the relationships between the.problem guantities, see Harel and'Behr, in.press) into a mathematical
representation (i.e., a mathematical expression that represent these relationships).
High-performanceteachers use the concept of proportion in-employing this-translation process by
representing multiplication and division problems as missing value proportionproblems. Intuitive
solution strategies -are-available:to this representation. These:strategies involve determining the
multiplicative -relationship between two-given quantities and-extending that relationship to the other
two quantities to find'the unknown quantity (see Harel and-Behr, in press; Vergnaud, 1983). Sellke,
Behr, and Voelker (1988)-show that'this approach-results-in:improved.performance with

seventh-grade children.
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THEY'RE USEFUL - CHILDREN'S VIEW OF CONCRETE MATERIALS
K. Hart and A. Sinkinson
Nuffield Secondary Mathematics, Kings College, London.

The provision of & bridge between the Use of Conarete mIterfals and formal
mathematics was tostad with 12 taachers Thelr Interpretation of this distict

FCLVILY 5 reportad

Whon children are taUGht MAthematical rules by sppasling to the results of
Qucrete expertanees. their taachers often tell them that the materfals are helpfuf
for understanding. The pupils later repaat this claim of helpfulness although
they themselves are Unable to AISplay suess with the materiafs. izgrams
appeasr mrore USelul than rods fn the sofution of equations but not very useiu!

. when e?(]llf valent fractions are taught.

This report extends the statement made at PME, 1986 on the research, funded by
Nuffield and carried out at King's College, London, on the connections between the
use of concrete materials and formal mathematics. The particular aspect of using
concrete materials, considered in the research project "Children’s Mathematical
Frameworks™ (Hart et al, in press) was one which is very commonly used in
upper primary and early secondary school classes. The pupils are given
structured situations in which they use manipulatives, from the results they are

asked to see patterns which are then formalised in rules, algorithms or formulae.

The research reported here concerned the same type of situation. The emphasis
was however, on the effectiveness of the imposition of a third type of activity
which was neither using concrete material nor formal mathematics but formed a
‘bridge’ between them. The volunteer teachers were asked to teach two matched

asses. With the second of these the normal progression to the formalisation
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would include a ‘bridge’. The teachers, topics and time spent on them are shown

in Table 1.
Table |
Topi . i bridge’ activi
Teacher Topic Time spent on Bridge Activity

teaching scheme

A Equations 10 hours Diagrams

B Equations 6 hours 40 minutes Child discussion

C Equations 7 hours Child discussion

D Volume 2 hours 55 minutes Child discussion

E Volume 2 hours 55 minutes Table

F Volume 2 hours 55 minutes Table

G Volume 2 hours 55 minutes Graphs

H Volume 4 hours Table

Ie Equivalent Fractions ? Child discussion

] Equivalent Fractions 6 hours Table

K Equivalent Fractions 4 hours Table

L Area of a rectangle S hours Table

a Data provided by this teacher were incomplete and insufficient for analysis

The Bridge

In the research, the ‘bridge’ was described as an activity which was distinctly

different from both the concrete materials and the formalisation but was seen to

connect the two. The plans of the 12 teachers were examined and the following
were thought to embody the ‘bridge’ criteria.

a) Child discussion - the emphasis being on the pupils expressing themselves and
not simply answering questions posed by the teacher. Such a discussion could
also include ideas on examples counter to the formalisation.

b) Tables - the concrete experiences often gave rise to results which could be put
in a table, the pattern emphasised and the generalisation ensue.

¢) Graphs - similar to tabulation was graphing, in which results were recorded on

o squared paper, a pattern sought and a relationship expressed.
ERIC .
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d) Diagrams - this was possibly the activity closest to the use of concrete
materials since it was essentially to represent the manipulatives and what

was done with them, through diagrams.

After the first class had been taught the researchers discussed which ‘bridge’
coutd be used for the second class, with the teacher, who then planned the

activity, as shown in Table 1.

The Teaching

The effectiveness of two teaching sequences was under investigation. They were
designed to be identical as far as the concrete material and formalisation phases
were concerned. Only one lesson in each sequence was observed by a researcher
who took notes of biackboard displays etc., and tape-recorded the statements of
the teacher. No teacher explained to the class that a method of sotution which
was generalisable to many situations was a very powerful mathematicai tool

although two said it would be quicker to use than the concrete material.

Having chosen which style of Dridge’ was to be used, the teacher designed the

content of it.

‘Child Discussion was used by two of the teachers who were concerned with the
solution of algebraic equations. In both cases, however, it came after the
formalisation so was a discussion of the method rather than a verbalisation of the

connection between materials and method.

Diagrams of algebraic equations were used as a ‘bridge’ by one teacher and in this
case they proved to be a greater prop to the children than the actual materials.
There were two reasons for this, one being the fact that it is easier to draw a

O gram freehand (and inaccurately) than to find bricks to line up. Secondly and
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possibly more important i the fact that diagrams can represent lengths of any
size and are not restricted to the preordained lengths of Cuisenaire rods or Colour
Factor. To show for example 3x+ 5 = 17, the fact that there is no rod of length
17¢m, is immaterial, one draws a long rectangle and simply labels it 17, as shown

here.

oL * x 5

Tabulation seemed to be a natural way of recording results from concrete
experiences in finding a) the volume of a cuboid or b} equivalent fractions. In
each case the patterns of numbers were meant to suggest a rule. Three teachers
chose this bridge for ‘Volume', two chose it for ‘Equivalent Fractions’ and one

used it in the teachirig of the Area of a Rectangle. In no class, however, were thé \
tables emphasised, discussed at length, put forward as a good way of presenting
information or indeed explained as a way of connecting the blocks (in Volume)
and the formula. In three cases the tables were presented on worksheets and not

subsequently mentioned in the lesson.

In only one case were the results graphed. This was by a teacher of the Volume
formula. There is a drawback to its use here - one is only able to draw a graph of
the relationship between two variables and in V = L x B x H we have four, so we
are restricted to a fixed situation (such as a layer of constant area) rather than

illustrating the general case.

g
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The time spent on the setting-up, exploitation of the bridge and in linking it to
both concrete situation and formalisation was in the case of ‘tables’and ‘graphs’

very short. Six teachers spent ten minutes or less on this linking activity, see

Table 2.
Table 2
Time spent on ‘connecting’ activity in formalisation and ‘bridge’ lessons
Teacher Formalisation lesson ‘Bridge’ lesson
A 60 60 minutes
B 35 35
C 20 60
D 40 30
E 8 35
F 5 1
G 10 5
H 40 2
] 30 10
K 6 4
L 10 8

Child Interviews

The teachers were asked to interview six children from each group, just after the
teaching, in order to obtain further information on their understanding and to
illuminate the post-test scores. The researchers interviewed the same children
three months after the teaching. The questions were intended to provide
information on (i) the methods used by the children to solve problems (the
forralisation or something else), ({i) their attitude to and use of the concrete
materials (iii) their memory of how the formalisation was arrived at and (iv)
their appreciation of the connection between the two (or three) phases of

teaching.

The immediate post tests showed very little difference in performance between

E l{llcle two groups in each topic see Fig.1 for some typical examples.
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Similarly the interviews produced no vastly different response from the ‘bridge’
children than from the others. Qver half the number of children interviewed

stated that the materials were helpful. Asked about the rods used in the solution
of equations children responded:-

When using the rods you can actually see what you're doing and actually take

them away and move them. (Bethan)

Well using the rods is easier if you're got big numbers of x's or something.
(Bethan again)

It's a lot easier to begin with, it's a lot easier with bricks (Ross)

It's easier to do with blocks (John)

Oh bricks, it's easier to understand. I suppose that those make it easy to explain

what you're doing here. ' (Helen)
Well it's just that's on paper and that's kind of real, you can see it, you can move

it about and it helps you more. (Giles)
To explain to people I'd use bricks because you can actually see what is

happening, you ¢an see what you're taking away. (David)
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These same children, however never chose to demonstrate the solution of
equations with rods and were unable to do so when asked. Three (out of 12)

could set up the equation.

Ohe teacher of equations had introduced the use of diagrams alongside the bricks
to both her classes whilst another teacher had diagrams as the ‘bridge’. Fifteen
{out of 18) of these users thought diagrams were helpful and eight of these could
set up the equation with diagrams and make an attempt at solution. Diagrams

seem to provide a better support than the bricks themselves.

The embodiment used by the two teachers dealing with equivalent fractions was
the diagram of a region. On the three month interview 17 pupils were asked to
show 3/4 = 6/8 using diagrams. Seven of them could do so, although all the
diagrams were inaccurate. Only two chiose to use diagrams to demonstrate the
equivalence. Indeed, only half of those asked, said that a diagram would be

helpfut.

Further Research

There appears to be evidence that children do not use the concrete embodiment,
on which the teaching was based, after the formalisation has been taught. This
does not mean that the formuia or algorithm is necessarily available to them,
often neither experience has provided a usable skill. Those interviewed however,

avowed that the concrete materials were useful.

Aruitoxt provided by Eic:



EﬂzJﬂ:did you shade in altogethfr?

67

CHILDREN'S INDIVIDUALITY IN SOLVING FRACTION PROBLEMS
Klaus Hasemann

University of Hannover

In interviews, 24 pupils (aged 11 to 13) solved fraction
problems; in addition, the technique of “concept mapping"
was used to find out which individual fraction concepts
had been constructed by the children. Some examples of
pupils’ solutions and concept maps are given.

To interpret the results, the problem solving processes
are regarded from three points of view: pupil's problem
representation, cognitive style, and "conceptual world”.
Each aspect is indicated by contrasting prototypes which
are used to characterize different kinds of behaviour,
and to explain the great variety in individuals’' problem
solving behaviour.

Fractions are regarded as a rather difficult subject in mathe-
matics teaching. In our country, pupils do not have formal in-
stuctions on fractions wuntil they are in grade 5 or 6, then
from the beginning on a rather abstract level. It is, of cour-
se, intended that the children get “relational understanding"
of fractions (cf.'Skemp, 1979). A problem is how to check whe-

ther they have reached this goal or not.

In interviews, we gave (word) problems to the pupils and, in
addition, we used the technique of "concept mapping" (see be-
low). This paper is to show how differently - and how idiosyn-
craticly - the pupils proceeded when they solved fraction pro-
blems, and to explain why there is such a big variety in the

pupils’ problem solving behaviour.

After they had had formal instructions on fractions, 24 pupils
(of grade 6, aged 11 to 13) were interviewed. They were asked
to solve three problems on the addition of fractions (the pu-

pils was given the choice of item 1 or 1*, resp.):

3

1. At first, shade in 7 of the rectangle
then shade in é of the rectangle as
well.

Q What fraction of the whole rectangle
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1.* At first, mark % of the straight line. Then mark % of the

straight line as well. When you put these two parts of the
line together: what fraction of the whole line form these
two parts altogether?

2. Calculate:

&jw
+
fop IS

3. Mother wants to divide out 4 apples to her 4 children. Un-
fortunately, one apple has a bad patch.
So mother gives at first 3 apples to the 4 children; after
that each child gets one sixth of the fourth apple.
What fraction of an apple does each child get altogether?

Obviously, these items are equal in content: one has to add
3

7 and % (some children, however, did not realize this fact).
From an adults point of view, item 1 seems to be a very easy
one as the rectangle is already divided in 12 equal parts (the
straight line has a length of 12 cm). The calculation in item
2, in fact, turned out to be rather easy for this sample of
pupils, whereas the problem in item 3 consciously was worded a
little complicatedly as it is well-known that in word problems
a pupil’'s selection of arithmetical operations mainly depends
from the kind in which he or she constructs a mental image of

Lhe  situvabion descreibed  n Lhe problem (see, e.qg., Frschbhern

et al., 1985, or Greer, 1987).

The technique of concept mapping (see Novak et al., 1983) was
used to find out which individual fraction concepts had been

constructed by the pupils; it was used, however, different from

the way it was described by Novak et al.: Twelve small cards
with concept names like "fraction", "rational number", "numera-
tor", "denominator", "%", "%", "one sixth", "apple", "rectang-
le" (or "straight line"), "to divide out", etc. (see fig. 2

and 4) were given to the children, and they were asked to dis-

tribute these cards on a sheet of paper in such a way that con-

cepts which are related were put together closely whereas tho-

se concepts which are not related were separated on the sheet.

In a second step, the children were asked to find a generic

term for the chunks of concepts and/or to mark and to name re-
[: T(:tlonshlps between the concepts on the sheet.

s
-ﬂ
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Examples for pupils' solutions (the children's solutions are

indicated by hand-writing):

Till:
ad 1: ad 2: % + % = T; + %% = %%
Avivaam
A7 47' Af( 47 12
Vavavi fig. 1
ad 3: 1 Y x =7
1x 1 {
Y L . B
T 1 7 Ux3 3
g [ W TR
R A T

From Angela's solution just her concept mab will be presented;
this map obviously is very much influenced by the problems she

had solved before:

rational number

numerator

6

one sixth

. - L .
rational wumbes fraction

denominator

one twelfth

f"\KcV\-( V\untw{
a mubkré{cai-im f/ﬂUcw\

a %(,KP o( utwnl)(«fﬁ

to divide out
apple
rectangle

o BEST COPY AVAILABLE
ERIC 23

fig. 2
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Andreas took the straight-line-version of item 1; he marked
3 cm for % and 2 cm for % of the line. His answer "2%" refers
to the whole line: The whole line is twice as much as the new

line (2 x 5 cm) plus a remainder of 2 cm (= %).

After he had done item 2, Andreas realized his mistake:

1
— =1lc
2¢ =
fig. 3
o3 .1 19 y oz M
ad 2: z+g= gt YW Iz

ad 3: Andreas emphasized that he had constructed a mental ima-
ge of the apples. In this way, he had "seen" that this problem

was already solved by the calculation in item 2.

In the concept mapping experiment, however, Andreas did not at
all refer to the problems: He put together all concepts rela-
ted to the fraction concept, but he separated the other con-
cepts and claimed that, for instance, "to divide out apples be-

longs to (the subject) German".

| <& num(/-{’v#
C}umerator denominatof) I’ & denominator

(:Ene sixth 1
6 .
LOH\ are @Iad-\mr
( one twelfth fraction
3 L &~ Mum besy
Z rational number 4

straight line to divide out

6 apple
fig. 4

) . .
l:l{jﬂ:q Nils and Nike just the answers to item 1 will be given:
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Nils: Nike:

7

2]
“Y,

3 i} fig. 5
4 [}

¢
AR [ A AN

NN
o
o~
T~

i fig. 6
- g.
[

For an analysis of pupils’' solutions it would be appropriate

to describe cach pupil’s individual "fraction frame" (cf. Da-
vis, 1984, or Hasemann, 1986a,b) in more detail. Andreas, for
instance, when solving the word problem in item 3 linked to-

gether the "subunit-frame" (see Hasemann, 1986a, p. 135, or
1986b, p. 63) with a correct interpretation of "% of the line"

in a rather strange way.

However interesting pupils’ individual frames are, in the fol-
lowing to explain children’s individuality some prototypes of
problem solvers will be discussed. To give characteristics of
these prototypes, we shall look at the problem solving proces-

ses mentioned above from three different points of view:

(1) The kind of problem representation in a pupil’'s mind,
(ii) a pupil’s cognitive style, and

(iii) the kind of a pupil’s "conceptual world"

(whereas (i) and (ii) refer to an actual problem solving pro-
sess, (iii) names a more general disposition; ad (i) and (iii)

see also Cohors-Fresenborg & Kaune, 1984, and Schwank, 19886).

ad (i): When actually solving a problem there are two types of
pupils: Type A sees the problem and its solution; type 8 cal-

culates the result.

"To see"” means here: to construct a mental image of the situ-
ation described in the problem. In item 1, for instance, this
can be done in a rather natural way as the fraction that is
asked for can be identified just by looking at the the rectang-
le (Nike's solution is a very nice example for this kind of
behaviour, see fig. 6). On the other hand, there were pupils
Qf"‘ calculated; Heike, in the staight-line-version (item 1*),
[E l(:‘instance. did like this: 3
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3 T x 12 S
}L-f‘- 0( L em = s x 2 = T = 5 = 9 em
L - 5  _ 4
'?G +¢ Tt T o™

Pupils of type A or B, resp., can also be identified with
word problem in item 3: Andreas (see above) is an example
type A. Type B - pupils, on the other hand, try to find
what they can do with the figures which are given in the

blem (as an example see Till).

Regarding these examples, the characteristics of types A an
can also be described als follows: Type A - pupils are ma
interested in the problem itself, i.e. in the situvation g
in the problem and/or in its conceptual structure. Type B -
pils, in comparison, are mainly interested in acting: W
arithmetical operations or procedures match the situation

even just the figures) given in the problem?

ad (ii): When observing the pupils’ problem solving proces
Kogan's differentiation of reflexive and impulsive chil
(see Kogan et al., 1966) obviously makes a lot of sense

example, look at Nils' and Nike's solutions in item 1).

ad (iii): A Pupil’s problem solving behaviour seems to be h
ly influenced by the way he or she thinks about mathemat
concepts: Some children seem to ignore the situation give
a problem, but right from the beginning they relate the
blem to the <conceptual framework they have (already) 1in
(we call them concept-orientated pupils). Some others pre
to think about situations; they relate concepts to situat
they have in mind (we call them context- or task-orientat
The former pupils are easily to recognize by their con
maps: All concepts related to the <concept of fractions
grouped together, but concepts like "rectangle" or "apple"
excluded (see Andreas in fig. 4). The latter pupils try to
struct mental images of the situations described in the
blems, and their concept maps are representations of these
Q |
76

L images (see Angela in fig. 2)}.
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(It should be remarked that the contrasting of concept- vs.
context-orientated children does not refer to the fact that an
individual's interpretation of a mathematical concept always
depends from his or her "domain of subjective experience" (see
Baversfeld, 1983, Kilpatrick, 1985, p. 19f, or Hasemann, 1988,
p. 128f). It showld also be remarked fhétachild‘s view of the
{(mathematical) world seems not to depend from age or mathemati-

cal ability.)

Obviously, the prototypes and <categories mentioned above do
not match each child’s individwval problem solving process. It
- was, however, possible to illustrate the contrasting types by
some characteristics and examples. If it is accepted that the
contrasts which were given make 'sense, and that the aspects (i)
to (iii) are - more or less - indepenmdend, then there are at
least 2 x 2 x 2 = 8 different kinds of problem solving beha-
viour that explain the big variety in this behaviour. But
much more important is the fact that each child in his or her
problem solving behaviour is an individual who has a right to

be accepted as such, and to be treated adequatedly.

Regarding aspect (iii), for example, in our experiment most pu-
pils turned out to be concept-orientated. When these children
have Jdifficulties with a word problem it makes not much sense
to get them to look at the problem again and again, and to ask
them to construct a mental image of the situation which is des-
cribed in the problem - that's not the world they feel at ‘home
in. Instead, the teacher should try to enable these children
to relate the problem to the conceptual framework they have al-
ready constructed, or to check whether their results are rea-
sonable or mnot, i.e whether the results can be accepted consi-
dering the conceptual framework which was used to solve the
problem. If, for instance, a fraction is asked for and an inte-

ger figures out one should become suspicious.

Anyhow, we as researchers and teachers have to accept that
there are individuals who are concept-orientated @and who try
to ignore the context of a task. We should try to find out whe-
ther there are aspects in out teaching that have caused this

or whether these preference is independent from the kind

Q
]EIQJ!:‘eaching. The technique of concept,mapping seems to be ra-
P o v 0 :?2?
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ther effective to elucidate a child's conceptual world,; in ad-
dition, concept maps are a very useful tool to become aware of

children's alternative conceptual framework.
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ASPECTS OF DECLARATIVE KNOWLEDGE ON CONTROL STRUCTURES

Kristina Haussmann & Matthias Reiss ]
Pidagogische Hochschule Karlsruhe & Universitit Mainz

Knowledge has procedural aspects as well as declarative aspects, which
means, that there is a knowledge of concepts as well as a knowledge of
rules applied while working with a specific concept. In particular, computer
programming presupposes a knowledge of declarative and procedural
aspects of control structures. In order to assess declarative knowledge on
control structures, we used the method of concept mapping (NOVAK,
GowiN, & JOHANSEN, 1983) with students of lower secondary level after
some months of programming instruction. It was applied to concepts repre-
senting knowledge on iteration and recursion.

Procedural and declarative knowledge

Knowledge diagnosis and knowledge representation have become central problems of
cognitive science researchers and computer scientists as well. There is an intensive
discussion of these topics in both disciplines. For computer scientists, the main task is
representing expert knowledge in a machine adapted way. In particular, knowledge
representation is a problem of defining and accessing data structures (SHAPIRO, 1987). A
symbolic representation system has to be designed which fits into the specific pieces of
knowledge and allows a mapping of its structure in a machiné. However, it is not only
the technological prerequisites of this research which have to be taken into account.
Obviously, in behalf of computer developments, there has been tremendous effort and
success in recent years. In contrast to these encoumging results concerning the hardware
equipment, work on the problem of diagnosing knowledge (TERGAN, 1988) is still in its
beginnings. Research in cognitive psychology is mainly concerned with modelling cogni-
tive processes, and, in particular, with modelling components of memory (Tack, 1987).
Applications for these research results may be found in the development of intelligent
tutoring systems. Such systems are aiming at an acquisition of expert knowledge in a
specific domain with the help of an interactive computer program. They take into
consideration the student’s success while working with the program and so show nced
for a separate component of knowledge diagnosis. Having diagnosed the knowledge, the

ERIC - 78
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difference between the goal of a learning process and the actual state of the learner
causes execution of a specific part of the learning program (LEsGoLD, 1988).

With respect to a discussion in computer sciences (WINOGRAD, 1975) and to
ANDERSON (1983) and his theory of thought, procedural and declarative aspects of
knowledge may be differentiated. Crucial concepts in this respect are the working
memdry and the long term memory. The working memory consists of elements which
are directly accessible at a certain instant. These elements are knowledge structures of
temporary importance as well as activated particles of the long term memory. Moreover,
there is a possibility for conclusions provided in the working memory. In particular,
ANDERSON presumes that working memory and short term memory are not identical,
which is contrary to older theories of thought (cf. MILLER, 1956). The working memory
interacts with both the short term memory and long term memory. For our purposes, the
interaction with the long term memory is of special importance. This part of the memory
includes procedural as well as declarative elements. Procedural elements or productions
indicate which action has to ensue from a specific condition. Thus, productions are
sometimes referred to as condition action pairs. Applying knowledge in this framwork
usually means sequencing a number of productions, and so representing knowledge may
be performed by constructing a production system which consists of all the independent
rules leading to the solution of a problem. In this process, not only procedural aspects
but also declarative components of knowledge are involved. Establishing a condition for
a possible action includes asking for certain properties of a piece of information. These
properties are part of the declarative knowledge which is also situated in long term
memory. They are organised in such a way that classes and subclasses may be distin-
guished. So every concept is connected with certain specific properties, but it is also
connected with properties which are true for a whole class of concepts. This way of
storage has economical advantages, because every property is stored only once in
connection with the most general subclass a concept belongs to (ANDERSON, 1983).

So, declarative knowledge includes not only specific concepts but also connections
between those concepts. According to ANDERsON (1983) declarative knowledge may be

represented as sequences in time, images in space, abstract propositions, or a
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combination of these elements. In the following, we are primarily interested in abstract
propositions. Their objects are concepts and their relations are semantic relations
between the concepts. Giving a representation of an abstract proposition might lead to a
semantic network. A semantic network is a graph consisting of nodes which are
connected by directed edges. The nodes stand for concepts, the edges represent relations
between these concepts, the direction gives the distinction between the subject and the

object of the proposition (WENDER, 1988).
Assessing declarative knowledge

Different methods of representing declarative knowledge in a semantic network which
will be described shortly in the following text have been established. We will present the
methods of Novak, GowiN, & JOHANSEN (1983), BALLSTAEDT & MANDL (1985), SCHEELE
& GROEBEN (1984), and FELDMANN (1979).

Novak, GowIN, & JoHANSEN (1983) presented a method they refer to as concept
mapping. They aimed at investigating declarative knowledge in physics, and presented a
certain number of concepts concerning this subject written on small cards to their
students. The students were supposed to group the cards so that similar concepts were
close to each other. Moreover, the subjects were asked to give a verbal description of
relations they realized between different concepts. The work results in a concept map
representing declarative knowledge as a complex network of concepts. A very similar
method was worked out by BALLSTAEDT & MANDL (1985). In contrast to NovaK & AL.,
BALLSTAEDT & MANDL do not use a fixed number of concepts. Their subjects are not
only supposed to find relations between presented cards, but were asked to add new
concepts to their map as well. The number of concepts involved in a map gives evidence
for its quality, because experts in a specific domain use a wider range of concepts than
novices. The design of SCHEELE & GROEBEN (1984) is also based on a varying number of
concepts. But the student is supposed to use only certain relations and so match
concepts with respect to these relations. FELDMANN (1979) does not pay attention to the
semantics of a relation but only to the number of connections between concepts, The
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only criterion for assessing knowledge is the existence and direction or the non-existence
of an edge between two nodes.

Because we were interested in assessing knowledge in the domain of control struc-
tures with two students who had attended a LoGo course for some months, we decided
1o use the concept mapping method of Novak & AL. (1983), which had proved to be
appropriate for mathematics related concepts (REiss, 1987). We were primarily inter-
ested in the way students looked at concepts related to iteration or recursion. Our hypo-
theses was that their understanding of these concepts differed significantly from the
intended goals of the course. So we presented a fixed number of concepts, but asked
them to verbalize the relations between the concepts. We had in mind that misconcep-
tions might be revealed thus. Moreover, we were interested in the number of relations
between different concepts, because it may be regarded as a measure of importance for
a student. Nonetheless, we had to assess every defined relation. We determined not only
whether it was true or false, but also whether it was a proposition with general or specif-
ic contents. The following concepts were used:

program, input, repetition, call, condition, loop, recursion, name of a

program, stop condition, program line.

running a program, repeat, subprogram, if..then, a procedure calls

itself, nesting.
The concepts may be divided into four groups, and every concept belongs to at least one
of them. We will here present our classification, which was a basis for the choice of
objects.

There are concepts which are used by students and teachers during progamming
instruction and which may be referred to as part of the fundamental vocabulary. These
concepts are program, program line, name of a program, running a program, subprogram.
In a second group we included concepts which reflect structural aspects expressed in
naturat language (but not necessarily colloquial language). These concepts are repetition,
loop, nesting, recursion, condition. Another four concepts may be classified as indicating

actions with respect to a given program. These concepts are input, call, a procedure calls
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itself, and (at least in some respect) stop condition. The last group includes the
programming language commands repeat and if...then.

The concepts were presented to a seventh grader and to an eighth grader after six
months of LoGo programming instruction. The subjects were Jan, aged 14, a boy who
was pretty successful in programming but lacked extra access to a computer, and Tom,
also aged 14, a student who performed on a medium level during the course, but was
able to work on a computer of his own. The assessment of declarative knowledge was
only part of a number of interviews, which also included the assessment of procedural
knowledge. In this respect, JAN may be regarded as problem solver using recursive
strategies, whereas ToM prefers iterative solutions (HAUSSMANN, 1987; HAUSSMANN &

REIss, 1989). The following table shows the number of the established relations.

Table I: Individual declarative knowledge of two students

CONCEPT IS OBJECT OF 1S SUBJECT OF ToraL
A PROPOSITION A PROPOSITION

Tom Jan TomMm JAN TomMm Jan

PROGRAM

INPUT

REPETITION

CALL

CONDITION

Loor

RECURSION

NAME OF A PROGRAM

STOP CONDITION

PROGRAM LINE

RUNNING A PROGRAM

REPEAT

SUBPROGRAM

IF...THEN

A PROCEDURE CALLS
TTSELF

NESTING 1

<o
A OO0

CTOOONWN AphONAE N
- N OWHENCNN=NWWWN A
TN E AT W= paW
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AN NN Q= 00N
=N W= AW WA

wno
W
[+ 98-8
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Results
ToM regards call as the most central concept, that is the node with the maximum

number of ten connections. There are nine edges with direction to call so this concept is

@ edasan object of a proposition in order to clarify others. But actually the propositions
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show that call is regarded on a very general level. It is connected to other concepts only
by relations like is, may be, or may include. During the LoGo course we used call when a
procedure was initiated by another. Tom’s understanding of the concept includes this
point of view as well as a number of vague or even faulty conceptions.

Tom’s concept of "call”

repeat is a call

call may be repetition

nesting is a call

stop condition is a call

input may be a call

in program line may be included a call

name of a program 1s input for the call of a program
subprogram may be call

program is call for a computer so that it knows what to do
condition is call at the same time

The interpretation on a very general level is also true for JAN's main concept program
line. There are ten relations defined to other concepts but most of these connections use
program line as an object. The propositions use has, may be, and needs as verbs.

JAN’s concept of “program line”

a procedure calls itself has program line
nesting has a program line of its own
subprogram has program line
program line may be loop

program needs program line

a repeat loop has two program lines
stop condition has program line
condition has program linc

input has program line

input may be program line

Another important concept for ToM is input which is, as is call, a concept indicating a
possible action. This concept is used as subject and as object of a proposition four times
cach. But once more Tom’s relations express only vague connections using verbs like
may be or is. So he states that input may be a program, input may be a condition, or input
may be a call. The examples show that Tom’s concept of input is not that of an input to a
procedure but rather a concept which stands for touching a key on the keyboard.

Tom’s concept of "input”

input may be program

input may be condition

input may be call

nesting needs input for reaching the goal

Qe - input may be loop
E lC name of a program is input

8
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subprogrant is input
running a program needs input -

Looking at JAN's concept of input, there are similar findings. The meaning of input is not
restricted to an input to a procedure.

JaN's concept of "input”

input may be name of a program

if a procedure calls itself by the name of the program there is an input
input may be subprogram

different inputs may be represented in a nesting

input has program line

input may be program line

loop needs input

program needs input

input may be call

The concept map of Jan reveals repetition as another important concept with respect to
the number of relations. This concept belongs to those describing structural aspects in
natural language. The concept map indicates that Jan has a pretty elaborated
understanding of the structural aspect of repetition. It is contrasted with ToM’s concept
of repetition.

JaN’s concept of “reperition”

repetition with program name loop causes a procedure calls itself
repeat and repetition are identical

repetition is condition that program needs loop

a repetition loop has two program lines

loop may be repetition

repetition and recursion are identicul

an infinite repetition loop needs a stop cc~ " .un

Tom’s concept of ‘repetition”

repeat is repetition

in a subprogram there may be a repetition

running a program may cause a repetition
repetition causes a procedure calls itself after input
nesting may cause repetition

loop is a repetition

call may be repetition

Thie concept of repetition shows important differences between ToM and JAN. Whereas
Tom’s propositions use mostly.vague verbs like is or may be, JAN’s understanding of
repetition is meaningful and initiates concrete operations. Nonetheless, the proposition
repetition and recursion are identical reveals that there are still misconceptions.
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Conclusions

Concept mapping may be regarded as a means for assessing declarative knowledge. In
particular, in our study we were able to identify misconceptions and partial
misconceptions with respect to knowledge on control structures. The results indicate
that even after some months of LoGo instruction relevant fundamental concepts may
not be learned in an appropriate way. In the classroom, it might be necessary to clarify
the use of a specific concept prior to the solution of a programming prob.lem. Moreover,
the results indicate that the number of defined relations cannot be a measure for
concept understanding. But they show as well that concept mapping might be an
adequate instrument for diagnosing concepts and misconceptions. Every student has a
subjective theory about the domain taught in classroom which may reflect either an
intense knowledge or only a vague idea about the subject. Concept maps are helpful for
understanding the students misconceptions in the domain in order to optimize

instruction quality.
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A CONCEPTUAL ANALYSIS OF THE NOTION OF LENGTH
AND ITS MEASURE

Bernard Héraud, Université de Sherbrooke, Québec

The objective of this study is to establish a descriptive framework for
the constuction of the notion of length and its measure by children in
primary school. This is achieved by using a two-tier model of
understanding. The first one involves three levels of understanding of
the concept of length, length being perceived here in a global sense,
as an unmeasured physical entity. The second tier describes three
components of understanding of the emerging mathematical concept,
that of the measure of length. Length is then viewed numerically, in
terms of quantification. These different aspects of understanding are
-described through situations that correspond to appropriate criteria.

The notion of measure in one and two dimensions is presently the subject of a
research projet carried out at the Université de Sherbrooke (Héraud,1987). The
objective of the present paper is to present for discussion the conceptual analysis
which is the theoretical basis of an investigation of the child's construction of the
concept of length and its measure.

In the last ten years, several researchers have studied the problems encountered
by children.in the learning of measurement in general and more particularly, the
measurement of length. Based on the results of the second assessment of the
National Assessment of Educational Prograss (NAEP), Carpenter et al. (1980) have
pointed out that, at the end of primary school, many children had but a very
superficial understanding of the basic measu.o ~ -<pts. For instance, regarding
the use of a ruler, if the measuring segment started at 1 and not at 0 on the ruler,
only 19% of the 9-year-olds were then able to provide a correct answer. Hart (1981)
has shown that even in secondary school, there were many students who still had
problems with the conservation of length with réspect to a simple displacement due
to the fact that they were focusing on the end points of the segments and not on
their length. Bessot and Eberhard (1983) have tried, with children aged 7 and 8, to
get a closer assessment of the difficulties involved in measuring length, such as
those found in identifying the proper ruler marks to determine the length of an object
when the initial end point is not lined up with 0.

Research funded by the Quebec Ministry of Education (F.C.A.R. —Grant EQ-2923)
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Other problems related to the learning of measurement have been investigated. In a
study of first graders, Hiebert (1984) has brought out the difficulties related to the
use of units of different size. In general, children were unable to recognize the
inverse relation between the size of the units and the resulting measurement
number. In comparing measures, they only took into account the number of units
used but not their relative size. Thus, it seems that an understanding of the notion of
unit is at the heart of the problem of understanding the notion of measure.

More recently, Boulton-Lewis (1987) has tried to assess the development of the |
concept of the measure of length by determining a hierarchy of the tasks handled by
children aged from 3 to 7 years. The present study has the same orientation. Its aim
is not only to find all the difficulties related to the learning of the measure of length,
but also to order them in a sequence that may enable us to get a better grasp of the
child’s construction of this concept.

MODEL USED IN THE ANALYSIS

In order to achieve our objectives, we plan to perform a conceptual analysis of the
notion of length and its associated measure that will enable us to determine the
main steps in the construction processes used by the learners. To achieve this, we
will use a model developed by Herscovics & Bergeron (1988) which suggests that
the construction of some mathematical concepts can be described within a
framework of a two-tier model of understanding, the first tier describing the
understanding of preliminary physical concepts, and the second tier identifying the
understanding of the emerging mathematical concept.

In this model, the understanding of preliminary physical concepts involves
three levels of understanding:

intuitive understanding which refers to a global perception of the notion
at hand; it results from a type of thinking based essentially on visual
perception; it provides rough non-numerical approximations;

procedural understanding refers to the acquisition of logico-physical
procedures (dealing with physical objects) which the learners can relate to
their-intuitive knowledge and use appropriately;

logico-physical abstraction refers to the construction of logico-physical
invariants, the reversibility and composition of logico-physical
transformations and generalizations about them.

The understanding of the emerging mathematical concept can be described in
terms of three components of understanding:
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procedural understanding refers to the acquisition of explicit logico-
mathematica! procedures which the learner can relate to the underlying
preliminary physical concepts and use appropriately;

logico-mathematical abstraction refers to the construction of logico-
mathematical invariants together with the relevant logico-physical invariants,
the reversibility and composition of logico-mathematical transformations and
operations, and their generalization;

formalization refers to its usual interpretations, that of axiomatization and
formal proof which at the elementary level could be viewed as the discovery
of axioms and the elaboration of logical mathematical justifications. Two
additional meanings are assigned to formalization: that of enclosing a
mathematical notion into a formal definition, and that of using mathematical
symbolization for notions for which prior procedural understanding or
abstraction already exist to some degree.

This model suggests a disiinction between on one hand, logico-physical
understancing which results from thinking -about procedures applied to physical
objects and about spatio-physical transformations of these objects, and on the other
hand, logico-mathematica! understanding which results from thinking about
procedures and transformations dealing with mathematical objects. We will now
use this model to describe the primary schoolchildren's understanding of length
and of its measure.

THE UNDERSTANDING OF PRELIMINARY PHYSICAL CONCEPTS

This first classification leads us to distinguish between length and its measure. At
this first tier, we consider length as a still unmeasured one-dimensional physical
magnitude. We now examine the different levels of understanding that can be
determined according to the above model by specifying appropriate criteria.

Intuitive understanding. At this initial leve! i wnildren's judgments are based
on a visual frame of reference. They can thus state that a given object is long or
short according to their visual perception of it. This distinction is closely linked to
their knowledge of "little” or "a lot” and related to concrete situations of their daily
life. For instance, this is how they will judge the amount in a strip of licorice they
have, as a function of the length associated with this quantity.

At this intuitive level children are also capable of estimating the respective lengths
of two objects by simple visual estimation. They can thus perform direct
comparisons of the type "This object is longer (or shorter) than that one”, without
having to pick up the objects dnd putting them side by side: they rely on their visual
perception.

O
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Procedural understanding. Moving beyond visual estimation, the children will
feel the need to use a logico-physical procedure that will guarantee the accuracy of
their prior judgment, especially when the difference between the lengths is very
small. The simplest procedure consists in aligning side by side the two objects to be
compared and verifying which one extends beyond the other. It should be noted
that in this procedure there is no need for any quantification. We remain at a logico-
physical level where the children are using what might be called a comparative
measure in the sense that they use one object to compare it with another one in
order to estimate their relative lengths.

This primitive procedure for direct comparison between two objects of different
lengths can then be generalized to the seriation of a whole set of objects. For
instance, one could envisage a situation in which the children are given a set of
rods of different lengths but already ordered, and from which one of the rods has
been removed. They would then have to replace this rod by direct comparison with
those already laid out. A more difficult task would consist in giving them a whole
unordered set of rods ot different lengths and asking them to arrange them in an
appropriate order. To do this, they could of course proceed by visual estimation for
the obvious cases; but, it the difference in tength between some rods is very small,
they then have to compare them two at a time to order them relatively to each other.

Logico-physical abstraction. To identify abstraction in the logico-physical
sense, we can use as criterion the perception that children may have of the
invariance of the length of an object with respect to various figural transformations. I
they can overcome the disequilibrium induced by the erroneous information
received from their visual perception, this can then be taken as evidence of a
certain degree of abstraction.

it is at this level that one can use some well-known tasks developed by Piaget et al.
(1948/1973) on the conservation of length, such as the one on the invariance of
length with respect to unidirectional displacement. For instance, one can place
two identical straws one below the other and then perform a very slight translation
on one of them: do the two straws have the same length? A variation of this task
might verify if children believe the straws are still the same length when they are
placed next to each other, and part of one being hidden in front of them. In this case,
one could call it the invariance with respect to the visibility of the object.

Other forms of invariance can be envisaged such as the invariance with respect to™
the orientation of an object. Thus, taking the two identical straws and placing one
perpendicular or oblique to the other, one could verify how it affects the child's
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perception of length. Has it remained the same or has it changed? Another form of
invariance is related to the fragmentation of the object. For instance, if a straw is
cut up into several parts, is its length conserved by the child? Even a more complex
task can be designed that might involve both the disposition and the fragmentation
of the object. Given two rods, one of them having been split up, the parts can be
arranged along a non-rectilinear "path".

UNDERSTANDING THE EMERGING MATHEMATICAL CONCEPTS

At this second tier, we extricate length from its purely physical aspect in order to
consider it under its quantifiable, numerical aspect, that is, in the context of its
measure. The Herscovics and Bergeron model (1988) described before, enables us
to identify three components, and these will now be examined in greater detail.

Procedural understanding. As soon as measuring length is involved, one must
necessarily bring in the notion of unit. A simple way of measuring the length of an
object is to proceed by the iteration of the unit. But while this might appear to be a
very simple task, the children are faced with many problems. For instance, can one
use indiscriminately several kinds of units or must they all be the same length? How
should they then be arranged: can they be partially overlapping or can there be
gaps between them? Must one have as many units as needed to cover the length of
the object to be measured or can one do with fewer units or even just one unit? All
these questions are non trivial for the children and the answers they find will lead
them to discover the meaning of unit and will also bring them to use progressively
more involved procedures. Initially, they become aware of the importance of using
identical units which they then learn to place carefully one after the other in order
to find the length of an object. Then, in a more sophisticated procedure, they learn
to use increasingly fewer units. Finally, they gz _.ed by genuine iteration using
one single unit that serves as a measuring standard. i

Logico-mathematical abstraction. One of the first ways to identify some logico-
mathematical abstraction of the measure of length is to examine whether or not
children are capable of judging the invariance of this measure with respect to
different figural transformations, in situations where a measuring standard is
known and used. In this sense, the various tasks used to evaluate the invariance of
length at the first tier, at the level of logico-physical abstraction, can now be
repeated here, but by adding o them this new dimension provided by units.

Moreover, at this level, the child should be able to grasp the links between
apparently contradictory aspects of length and its associated measure. For

ERIC 91



E

88

instance, children can find themselves in the following conflictual situations: on one
hand, the length of an object taken as a physical entity is invariant; on the other
hand, its measure can be expressed in different ways depending on the choice of
the measuring standard! Thus, the child must discover that regardless of the unit
chosen, the size of the object remains the same, even if its measure varies. The
resolution of this conflict is at the very heart of the processes involved in
understanding measure.

Another important relation that the child must establish is that of the inverse relation
existing between the numericai measure and the size of the unit: the smaller the
unit, the larger the numerical measure of the object. Another problem related to the
notion of approximation and stemming from it, concerns non-integral measures. In
this case, the child must be able to choose an appropriate unit in terms of the
desired degree of accuracy.

Formalization. This last component of understanding can cover many different
aspects. For instance, it may involve the computation of a measure using
conventional units and the use of their symbolic representation. It is only at this
level that their utilization acquires its true meaning, when the child can use them
appropriately and understands ratios existing between the different units.

It is also at this level that one can include the problems related to the introduction of
the ruler as a measuring instrument; its use involves the formalization of notions
acquired previ.:usly. The rational use of such an instrument is not as simple as one
may believe and it requires the prior resolution of several problems by the child.
Among these, one can mention the need to discover the link between the various
marks appearing on the ruler and the units associated with them. Another example
is the distinction that must be made between the coordinates of the extremities of an
object on a scale and the real length of the object.

CONCLUSIONS

The use of Herscovics and Bergeron’s Extended Model of Understanding (1988)
has enabled us to establish a conceptual framework allowing for a better grasp of
the various stages that can lead to the children’s construction of the concept of
length and its measure. One of the great advantages of this model is that it indicates
how a mathematical concept rests on the understanding of preliminary physical
concepts. Thus, in the present case, it enables us to distinguish clearly between the
concept of length, which is part of the logico-physical domain, and the measure of
length, which is part of the logico-mathematical domain. It is not a distinction that
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relates to the mental processes, but rather to the objects to which these processes
are applied. This model should not be perceived as linear, for it allows the
overlapping of components of the second tier with those of the first tier (e.g., a child
may be using some measuring processes without having reached the level of
logico-physical abstraction). It has also the merit of establishing a classification
involving two tiers that enable us to easily identify different stakes in the
construction of a conceptual scheme and to get a better grasp of its various stages.

It also allows us to get a better overview of the difficulties children encounter in such
a construction. The: 2 problems acquire a new meaning in the sense that, with this
mocel, one cun get a better grasp of their root causes and thus provide a better
explanation. For instance, the difficulties that children face in leaming to use a ruler
might be reduced if they wecre not asked to utilize such an instrument prematurely.

As can be seen, the interest in this model is not just theoretical. For instance, at the
pedagogical level, it strongly suggests that thelearning of length should be based
on concrete activities related to the child's physical environment as a basis for the
mathematization process. Moreover, it enables us to conceive many
complementary tasks related to the construction of this concept. When these
activities are develcped in correspondence with the different aspects of
understancing that we have identified, they should allow us to establish a
progression in the construction of length and its measure, progression that would
have a better basis and be more pertinent than the one found with a traditional
approach.
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THE KINDERGARTNERS' UNDERSTANDING
OF CARDINAL NUMBER: AN INTERNATIONAL STUDY

Nicolas Herscovics, Concordia University
Jacques C. Bergeron, Université de Montréal

This paper reports the results of an international study on the
kindergartners' understanding of cardinal number. This
understanding has been investigated through various tasks
determining if the children perceive the uniqueness of the cardinality
of a set, and also its invariance with respect to the direction used in
counting a row of objects. Four other tasks were used to assess the
child's perception of the invariance of the plurality of a set as well as
the invariance of the quotity of the set under various irrelevant spatio-
physical transformations. Data on samples of kindergartners
interviewed in Montreal, Paris, and Cambridge, Mass. are reported in
this communication.

The kindergartners numerical knowledge is of prime interest to both teacher and
researcher. On one hand, teachers have to know the extent and depth of the
cognitive baggage the children bring with them to primary school in order to
establish some cognitive continuity between their experience and the planned
arithmetic instruction. On the other hand, for researchers this age group is of
particular interest since they can literally witness a cognitive explosion taking
place under their own eyes.

Our investigation of the kindergartners' numerical knowledge is now in its fifth year
and our results reflect new approaches both at the theoretical level and at the
methodological level. At the theoretical level, our research has started with an
epistemological analysis of the number concept. This provided us with an overview
enabling us to perceive number as a conceptual scheme, that is as a network of
related knowledge together with the "problem-situations” in which it can be used.
Regarding our methodology, we have adopted th~ - .nical approach used in case
studies but have tried to go beyond a few individual cases by using larger samples,
averaging thirty odd children, in order to identify likely patterns of thinking.

The term 'epistemological analysis’ refers to the analysis of a conceptual scheme
along likely patterns of construction by the learner. In our work we have performed
such conceptual analyses by applying a two-tiered model of understanding
(Herscovics & Bergeron, 1988a) , the first tier describing the understanding of the
preliminary physical concepts, and the second tier identifying the understanding of
the emerging mathematical concept.

Applying this model to the number concept we have identified the notion of
plurality , that is, the distinction between one and many, and the notion of
position of an element in an ordered set as two preliminary physical concepts
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(Bergeron & Herscovics,1988, Herscovics & Berge. 18b). Defining number as
a measure of plurality and also as a measure of position, we could identify
these as the emerging numerical concepts.

Using the above analysis we have developed a sequence of about forty tasks
aimed at uncovering the child's numerical knowledge in about three or four
interviews lasting on average 30 minutes each. These interviews were carried out
in each of three cities (Montreal, Paris & Cambridge, Mass.) with 30 average
children selected by the school authorities. The choice of cities was based on our
desire to compare samples with language affinities (Montreal & Paris) and samples
with cultural affinities (Montreal & Cambridge).

Among the four Montreal schools two were located in higher socio-economic
suburbs whereas the other two were in a lower socio-economic neighborhoods
(lower middle-class & working class). The Martin Luther King Jr Elementary School
in Cambridge provided us with children in four different classes, two of these being
considered as regular kindergarten classes, the other two following an activity-
based mathematics program for early childhood education based on Mary Baratta-
Lorton's Mathematics Their Way (1987). Both samples from Paris and Cambridge
originated from schools located in lower socio-economic neighborhoods.

Two other variables beyond our control were the age difference between the
samples and the date of the interviews: The 29 Parisian children had an average
age of 5:8 and were interviewed between the last week of February and the first
week of April 1988; the 30 Cambridge kindergartners had an average age of 5:10
and were interviewed between the end of April and the beginning of June 1988;
the 32 Montreal children had an average age of 6:2 and were interviewed between
the end of April and the beginning of June 1988.

The present paper will cover the logico-mathematical abstraction of cardinal
number. A companion paper in these Proceedings deals with the the abstraction of
ordinal number (Bergeron & Hersovics, The kindergartners' understanding of
ordinal number).

In view of the first part of our definition of number as a measure of plurality , the
logico-mathematical abstraction of number must reflect both the invariance of
plurality and the invariance of its measure with respect to irrelevant spatio-
physical transformations, leading to the abstraction of cardinal number. We now
describe the various tasks designed to assess the children's understanding of
these notions.

Uniqueness of the cardinality of a set. Ginsburg (1977) has pointed out that
some young children can enumerate a given set several times and obtain different
results without necessarily developing any sense of contradiction. The
kindergartners' perception of the uniqueness of the cardinality of a set, as
measured by their enumeration, was evaluated by asking each child how many
cubes were in a given set (12). After these had been counted, the interviewer told
the following story: "When | asked another little friend how many cubes there were
here, he told me there were eleven. Do you think that you are right, or that he is
right, or that both of you are right?". In each of the three cities. only one child in each
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sample (n=29;30;32) thought that both answers could be right. This indicates that
by the time children finish kindergartnen, they are aware of the uniqueness of the
cardinality of a set. Most of the children in Montreal and Cambridge went about
counting the cubes a second time and then immediately affirmed that they were
right and the friend was wrong. It is interesting to note that many Parisian children
interviewed first responded by claiming that both answers were right. However,
further questioning revealed that they did not really believe the answer they had
given for they too ended up recounting the cubes and claiming their answer as the
right one. A discussion with their teachers indicates that their initial response could
be explained by the emphasis of "getting along" that is stressed in French
kindergartens.

Invariance of cardinality with respect to the direction of the count .
Another aspect of the cardinality of a set is its invariance with respect to the order of
enumeration of the objects (Piaget,1973; Gelman & Gallistel,1978). A simpler
problem involves the invariance of the cardinality with respect to the direction used
in counting up a row of cubes. Earlier research had shown that 77% of
kindergartners were aware of this invariance (Herscovics et al.1986). The results
obtained in the present study were somewhat better. The children's perception was
ascertained by aligning in a row 12 identical cubes in front of a child who then had
to find how many there were. Following the enumeration, the subject was asked "If
you start counting from here (indicating the end point of the initial count), how many
will you find?". In case the child counted the row a second time the interviewer
asked "Did you need to count them that way? (indicating the second direction)?".
Notwithstanding the given answer, another set of 10 cubes was aligned and the
task was repeated in order to verify if the the child would count again in the second
direction. The reason for repeatmg the task was that for many students the words
"How many?" trigger a counting response and for others their second count is not
so much used to verify the number of elements but more as a demonstration
intended for the interviewer. The following table shows the results obtained:

City Succeeded Srnee ded Did not
on first try Ci. . .cond try succeed

Cambridge

Regular classes (n=14) 12 1 1

Lorton classes (n=16) 14 2 0

Totals 26 (86.7%) 3 (10%) 1(3.3%)

Paris (n=29) 20 (69.0%) 5 (17.2%) 4 (13.8%)

Montreal

Higher socio-econ (n=16) 13 3 0

Lower socio-econ (n=16) 9 4 3

Totals 22 (68.8%) 7 (21.8%) 3 (9.4%)

it should be noted that the overall success rate is fairly high in the three samples
(96.7%, 86.2%, and 90.6% respectively). The Parisian and Montreal children seem
to have very similar success rates whereas the Cambridge sample indicates that all
but one child perceive this invariance. .

O
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INVARIANCE OF PLURALITY AND INVARIANCE OF QUOTITY

Over twenty years ago, Piaget's collaborators Greco (1962) felt the need to
distinguish between the children's conception of plurality and the meaning they
attach to enumeration. They modified the original conservation task involving two
equal rows of chips by asking the children to count one of the rows before
stretching the other one; they then asked how many chips were in the elongated
row while screening it from view. Those who could answer the question were said
to conserve quotity. Greco found that many five-year-olds claimed that there
were seven chips in each row but that the elongated row had more. Thus, these
subjects conserved quotity without conserving plurality. For these children,
to conserve quotity simply meant that they could maintain the numerical label
associated with the elongated row, but their count was not yet a measure of
plurality, since they thought that the plurality had changed. It is only when both
plurality and quotity are conserved, when both invariances are perceived, that
number can become a measure of plurality. At that stage, one can claim that the
child has achieved a logico-mathematical abstraction of cardinal number. Of
course, the Piaget and the Greco tasks are not the only ones which can be used to
assess abstraction of cardinal number. We have theirs and designed three other
tasks for our assessment.

Invariance with respect to the elongation of a row. During the first interview
each child was presented with a row of 11 identical cubes and was told : "Here is a
row of cubes. Look, 'm going to stretch it out....Now, do you think that there are
more cubes._les cubes... or the same number as before ! stretched the row?". In the
third interview the child was presented with the same row of cubes, but this time
was asked right at the beginning "Can you tell me how many cubes we have?".
After the count, the row was stretched out and the interviewer asked: “Now, without
counting, can you tell me how many cubes are in the row?" (while screening off the
row from the child's view with a forearm or two hands to prevent any counting). The
following table provides the data for these tasks:

City Invariance Invariance Invariance
of plurality of quotity of both

Cambridge

Regular classes (n=14) . 13 (92.9%) " 11 (78.6%) 10 (71.4%)
Lorton classes (n=16) 16 (100%) 15 (93.8%) 15 (93.8%)
Totals 29 (96.7%) 26 (86.7%) 25 (83.3%)
Paris (n=29) 16 (55.2%) 24 (82.8%) 14 (48.3%)
Montreal

Higher socio-econ (n=16) 14 (87.5%) 14 (87.5%) 13 (81.3%)
Lower socio-econ (n=16) 12 (75.0%) 16 (100%) 12 (75.0%)
Totals 26 (81.3%) 30 (93.8%) 25 (78.1%)

The data indicate that on the conservation of quotity there is a remarkably high rate
of success in the three samples. On the invariance of plurality , the average for the
Parisian children is much lower than for the other two groups. The fact that they
were 2 months younger than the Cambridge children and 4 months younger than
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the Montreal ones may account for some of this difference, as well as the fact that
they were interviewed two months earlier in the school year.

Invariance with respect to the dispersion of a set. Tasks analogous to the
preceding ones were used to assess the children's perception of the invariance of a
set of 9 identical cubes laid out randomly and théen spread out in front of them. The
following table shows the results obtained:

City Invariance Invariance Invariance
of plurality of quotity of both

Cambridge :

Regular classes (n=14) 11 (78.6%) 10 (71.4%) 8 (57.1%)
Lorton classes (n=16) 15 (93.8%) 16 (100%) 15 (93.8%)
Totals 26 (86.7%) 26 (86.7%) 23 (76.7%)
Paris (n=29) 19 (65.5%) 25 (86.2%) 19 (65.5%)
Montreal

Higher socio-econ (n=16) 14 (87.5%) 16 (100%) 14 (87.5%)
Lower socio-econ (n=16) 11 (68.8%) 13 (81.3%) 10 (62.5%)
Totals 25 (78.1%) 29 (90.6%) 24 (75.0%)

As in the previous set of tasks the success rate on the invariance of quotity is high
for the three groups. All but one child from the two Lorton classes have also
acquired the invariance of plurality. What is strikingly similar is the result obtained
on piurality in the regular Cambridge classes, the Parisian children, and the
Montreal classes in lower socio-economic neighborhoods (78.6%,65.5%, and
68.8% respectively).

Piagetian tasks. The third set of tasks used to assess the invariance of cardinality
were the classical Piagetian test on the conservation of plurality and the Greco
modification mentioned earlier. The following. table shows the results obtained:

City Invariance Invariance Invariance
of plurality of quotity of both
Cambridge
Regular classes (n=14) 8 (57.1%) 12 (8 7%) 8 (57.1%)
Lorton classes (n=16) 16 (100%) 1o 100%) 16 (100%)
Totals 24 (80.0%) 28 (93.3%) 24 (80.0%)
Paris (n=29) 7 (24.1%) 21 (72.4%) 7 (24.1%)
Montreal
Higher socio-econ (n=16) 13 (81.3%) 14 (87.5%) 12 (75.0%)
Lower socio-econ (n=16) 8 (50.0%) 12 (75.0%) 7 (43.8%)
Totals 21 (65.6%) 26 (81.3%) 19 (59.4%)

Results indicate a maximal rate of success among the children following the
Barrata-Lorton program. On the invariance of plurality, the sample from the regular
Cambridge classes compares with the sample from the two Montreal lower socio-
economic neighborhoods. The sample of Parisian children achieves a much lower
rate (24.1%). Again, this can bé attributed in part to their younger age. However,
this result is fairly consistent with their earlier performance on the elongation of a
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single row, for their success rate there was 20% lower than the lowest resuits
obtained in Montreal (55.2% vs 75.0%).

Invariance with respect to the visibility of the objects. In this last set of
tasks on the invariance of cardinality, children were given in the first interview a
row of 11 chips glued on a piece of cardboard. They were told: "Here is a large
cardboard with little chips glued to it. Look, I'm putting the cardboard in a bag (the
interviewer inserting the cardboard in a transparent bag). Good, are all the chips
in the bag?". Following confirmation: “Look, I'm putting a plastic strip in the bag
{the interviewer inserting a platic strip with an opague part large enough to cover
three chips). And now, are there more chips in the bag, less chips, or the same
number as before?".Usually in the second interview, this task was repeated but the
children were asked to count up the number of chips before they were inserted in
the bag. The following table shows the results obtained:

City . Invariance Invariance Invariance
of plurality of quotity of both

Cambridge

Regular classes (n=14) 1 (7.1%) 10 (71.4%) 1(7.1%)

Lorton classes (n=16) 5 (31.3%) 14 (87.5%) 5 (31.3%)

Totals 6 (20.0%) 24 (80.0%) 6 (20.0%)

Paris (n=29) 8 (27.6%) 6 (20.7%) 1 (3.4%)

Montreal

Higher socio-econ (n=16) 3 (18.8%) 13 (81.3%) 2 (12.5%)

Lower socio-econ (n=16) 8 (50.0%) 12 (75.0%) 0

Totals 3 (9.4%) 25 (78.1%) 2 (6.3%)

Whereas the results on the invariance of quotity are similar in Cambridge and in
Montreal, their discrepancy with those obtained in Paris is hard to explain. But it is
the uniformly low results on the invariance of plurality that are most astonishing.
They indicate that among most kindergartners, including those in the Lorton
program, the visibility of the objects is still primordial. As pointed out by Hermine
Sinclair (personal communication), this is not a question of the permanence of the
objects which is acquired well before the age of five. Nor is it a question of the
enumerability of the partially hidden set as evidenced by the invariance of quotity.
Visibility of the objects affects these children's perception of plurality.

BY WAY OF CONCLUSION

In order to have an overview of the children's understanding of cardinal number,
the results (in percents) obtained on the various tasks are summarized in the
following table, invariance of cardinality signifying the invariance of both plurality
and quotity:
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Invariance Cambridge Paris Montreal
’ Lorton  Regular Lower Higher
classes classes income income
Uniqueness of card. 93.8 100 96.6 100 93.8
Inv.wrt direction of count  100. 929 86.2 81.3 100
Inv.wrt elongation of row 93.8 71.4 48.3 75.0 81.3
Inv.wrt dispersion of set 93.8 57.1 65.5 62.5 87.5
Inv.wrt Piagetian tests 100 57.1 24 .1 43.8 75.0
Inv.wrt visibility of objects  31.3 7.1 3.4 0 12.5

What is most striking about this table is that apart from the Parisian results obtained
on tasks involving the elongation of a set, the basic hierarchy is similar in the three
samples. By and large, the uniqueness of the cardinality of a set and the invariance
with respect to the direction of the count seem to be achieved in this age group. The
Cambridge and Montreal results on the elongation of a row and on the dispersion
of a set are similar in the two regular classes and the two lower income classes.
The Piagetian tests are more difficult for both Parisian and Montreal children. The
invariance with respect to the visibility of the objects has the lowest rate of success
in all groups.

Equally striking is the overall success rate obtained by the children following the
Baratta-Lorton program. Clearly, the type of activities that enable the child to reflect
about the various properties of number can have a strong impact even at this early
age. ’

Also remarkable is a comparison of the success rates in the three middle columns.
Again, if the odd results obtained in Paris on the elongations tasks are ignored,
very similar rates are found among the Cambridge -children from the.regular
classes, the Parisian children (who also come from a lower middle class and
working class area), and the two Montreal classes situated in comparable
neighborhoods.
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LEARNING ABOUT {SOSCELES TRIANGLES

JHillel
Department of mathematics and statistics
Cancordia University, Montreal, Canada.
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The activilies involving isosceles triangles were part of a year long computer-
based geometry project. The project was conducted with an entire grade-6 class
(12-13 yesr olds) of average ability, in an elementary school in Montreal. Its
general objectives were to provide children with experiences of basic geometric
shapes, of their quentifisble components and of the geometrical-numerical

relationships that arise out of some geometrical configurstions.

The Learning Environment

The sessians spanned 26 weeks and were part of the children's normsi school
activities. The class split into two groups of 13 children, and each group came to
the school’s computer leb for & 45-minute session while the other group steyed

in the classroom. There were enough camputers in the lab for each child to work

~on & separate machine.

_The available progremming tools consisted of three geometric objects:
Rectangles, Circles and (isosceles) Triangles which were given as pre-defined
Logo procedures, RECT, CIRCLE and TRI. The procedure RECT needed two positive
inputs representing the base and height of the rectangle. CIRCLE's single
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positive input stood for the digreter. TRI's first input was a positive number
representing the base and the second input was a number representing the base
angle of the isosceles lriangle.. (Ar invalid input for the base angle resulted in
the error message “the base angle of an isosceles triéngle has to be between 0
and 207.)

Each procedure produced g figure on the screen which was placed in a
particular position and orientation relative to the turtie, i.e. 9 circle with the

turtie at its center, a rectangle and a triangle with the turtle at the mid-point of

the base and with its heading perpendicular to the baseline. Once the children
became familiar with the shapes, the placement of the turtie was changed to a

simple marker. as shown in Figurel.

Figurel

-

There were three commands to manipulate the turtie in the plane: MOVE,
SLIDE and TURN, each of which required a single input which could be either
negative or positive. MOVE displaced the turtie along the line of its heading, in
the same direction if the input was positive and in the opposite direction, if the
input was negative. SLIDE displaced the turtle along a line perpendicular to its
heading, to its right, if the input was positive, and to its left otherwise (see
Figure2). TURN led to a rotation, the input indicating the number of degrees and

positive input resuiting in a clockwise rotation.

k4 ’
. ’
. .

Q/ ) Figure2
v
MOVE SO SLIDE SO
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Finally, two specisl numerical procedures were avatlable in conjunction
with the isosceles triangle. ALT gave the altitude from the base of the triangle
and SIDE gave the length of its equal sides. Both needed the same inputs as TR,
e.q. ALT 100 70 yielded 137, which is the altitude of an isosceles trisngle with
base 100 and base angle of 70°.

This particular environment resulted in a geometry with transformational
and qusntitstive aspects. The turtle commands of MOVE, SLIDE and TURN,
measured in terms of turtle-steps and degrees, allowed for transiation and
rotation of geometric shapes. The three basic geometric figures were s1so given

as objects with attached measures.

The Isosceles Trigngle

The isosceles triangle was introduced in Session 10 (S10). This was not a very
famitisr object for the children and their notion of angular measure and base
angles was almost non-existent. Qur choice of parametrizing the isosceles
triangle by its base angle rather than its base and side {(which are the obvious
visible components of the triangle) or base and altitude, was in order to bring
the concept of angle into the environment. Furthermore, the base angle serves as
@ nice example of an invariant of a family of figures , i.e. of similar isosceles
triangles. wWe expected that the children would have difﬁpulties making sense
out the second input to the TRI procedure and that their spontaneous caonception
would be that the second input controls, in some way, the height of the triangle.
Many of the tasks that we gave the children were meant to create conflicts with
such conception . Also this kind of parametrization conflicted with children's
general upderiying assumption that if figure A is embedded in figure B, then all

the corresponding inputs sre larger for figure B (true, for example, if the
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The numerical procedures ALT and SIDE were introduced by S16. By then,
most of the children were aware of the different attributes of an isosceles
triangle and of the need to have different kinds of megsures in order to solve

some of the given tasks in 3 more analylical way.

Understanding Isosceles Triangles

We examine the children's progressive understanding of the procedure TRI by
looking at the work of one child, Jay. His work was rather typical of the
behaviour shown by at least 15 children {21 children stayed for the duration of
the project).

After the procedure TRI was introduced (and the children were told inan
explicit way what the two inputs to TRI signify, though we did not expect that
they would make immediate sense of the term ‘base angle’), Jay worked on
several tasks involving {isoceles) triangles. Among the first was Figure3

involving three similar triangles;
Figure3

In going from the smatlest to the largest triangle, Jay initially incremented both -
the base and the base angle by 10 and after receiving feedback from the screen,
he continued by making several adjustments to the second tnput of TRI.

In S11, Jay worked on Figured. Again his spontaneous choice was to vary
both inputs. After several triai-and-adjustment moves, he did end up with a

fixed second input for the three triangles.

Figured
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His experiences at the end of S{{ carried over to 512, end Jay kept a fixed

second input of 60 for the two triangles in FigureS:

Figures

However, when he was asked what the 60 stood for, Jay replied "it is the height
of the triangle”.

It seems that at this point, after three sessions of work on triangles, Jay
was entertaining two conflicting ideas. He retained his initial spontaneous
conception that the second input to TRI represented height. At the same time he
begen to recognize that certain configurations involving triengies of different
heights involved the same second input. When Jay was confronted with the
inconsistency, he once more talked of height, but then corrected himself “no, it
[the secand input] is angle”. Further probing by the observer indicated that though
he used the term 'angle’, he wes not sure which angle wes being referred to, and
he received some explicit help.

Later in the same session, Jay kept the second input of TRI invariant for the

two triangles in Figure6:
~ Frureab
On the next task (Figure?}, he referred to the second input of for triangle ABC by

tracing with his hend the angle at A and seying "it has to be some kind of & low

number, less than 65".

Figure?

S13 started with a blackboard activity and & class discussion. When Figure8
was drawn on the blackboard anpd a question about the size of the angle was

asked, Jey offered 60. He justified his response by drawing & 90-degree angle on
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the blackbosrd, then tracing a 30-degree line {Figure9):

/
i Figured

His expianation was: “suppose this is 20, then this 30 is one third, and 60 is

.©  Figure9

twice that”. He alse was among the pupils who srgued that extending the arms of
the angle would not change the size of the angle.

Jay had shown that, at that stage, he had a good grasp of the notion of angle
and Ur'its measure in degrees. His work at the end of 512 also suggested that he
began to understand how angle was related to the procedure TRI. Yet, in 514,
working once more on § task involving similar triangles (see FigureS), he ended
up with inputs of 70 and 65 for the larger and smaller triangles, respectively.
Furthermore, 65 was arrived at after several trial-and-adjustments increments,
which he carried until the (left) sides of the trisngles looked paraliel to him.

Jay continued with his conception of TR! even after the numerical procedure

ALT to calculate the altitude of a8 trisngle was introduced to the class. For

Figure!0 D c
E  Figurelo
A B

Jay started with g 100x50 rectangle (AB = 100, AD = 50) and chose

TRI 50 100 for triangle AED, consistent with his interpretation of the second
input as height. Since the error message alerted him that the input must be less
than 90, he decremented the input by successive trials till he arrived st

TRI 50 76, which Ted to a correci-looking figure. When asked what 76 stoed for, -
Jay replied “the height of the triangle”. Once more, he saw no contradiction

between his initial (correct) assessment that the altitude of triangle AED must
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be 100 and his subsequent conclusion that the height was 76.

After another discussion with the observer about the procedures TR and
ALT, Jay returned to Figure10, this time starting with triangle AED, then
evaluating its altitude and using this value for the dimension of AB.

His deliberate use of the procedure ALT on the previous task finally allowed
Jay to disentagle the two related notion of height and base angle. From 518
onwards, Jay's work pointed to a consistent interpretation of TRl in terms of
base angles, theugh he experienced some perceptual difficulties in separating
similar amd non-similar triangles. He started to work on tasks which involved
relationships such as compiementary base angles and complementary and
supplementary (turtle) rotations relstive to a base angle. His solutions to these
tasks showed a definite progression from ‘visual' to ‘analytical” solution scherna

(see Hillel & Kieran, 1987). For example, in S18 he worked on Figure 11

Figure !

After starting with TRI 80 37 for the lower triangle, he figured out correctly
that the base of the second triangle is twice the altitude of the first. However,
he estimated the second base angle as 40 rather than using complementarity. On
the other hand, for Figure12 in S23, he began by choosing SO and 25 for the base
angles of Tt and T2. Asked what he would choose for T3, he answered "I am going

to find out how much angle | have used, and take it away from 90~

. . Figuret12

O
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All the pupils in the study were interviewed st the end. The interview
included six questions on the procedure TRI and on related concepts. Jay's

responses to these questions i524) were precise and correct.

Conclusion .

Ag we have mentioned above, the way Jsy's understanding of the procedure TR!
evolved was typical of most of the children in the study (Four children hanged on
to their initial conception that the second input to TRI parametrized the gide of
the triangle; see Kieran and Hillel {1289a), for the complete discussion of the
results of the study). From & pedagogical perspective, Jay's behaviour illustrates
the persistence of pupils initial conceptualizations and their abilty ta
accommodsate conflictual situations prior to resclving them. What is interesting
here is that such ‘classical’ learning behaviour took place in a very flexible
lesrning environment which allowed ample opportunity to experiment and which
provided constant feedback. This reminds us, once more, that pupils need lots of
time and experiences before they arrive at an operational understanding of a new

concept.
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CONSTRUCTION OF FUNCTIONS, CONTRADICTION AND PROOF.

Fernando Hitt.
Seccién de Matematica Educativa del CINVESTAV, PNFAPM, Mexico.
Institute of Education, University of London. UK.

Abstract:

The intuitive knowledge with which an individual tackles a
problem in mathematics acts in two ways. It may act as a
stimulus to progress; or it may be an 'anchor” or obstacle,
which cannot be changed or removed by means of simple
exercises and explanations. It can also lead to a
contradictory situation for an individual attempting to solve
a mathematical problem and lacking the right tools or
strategies to overcome the obstacle. From this perspective,
the behaviour of a number of mathematics teachers is analysed
by means of a questionnaire on the concept of function and
this behaviour is related to the historical development of a
mathematical idea. One finding is that the notions of function
and continuous function are intuitively assimilated as the

single concept ' function-continuity’’.

INTRODUCTION

In what follows we shall be concerned with contradiction
and proof. The construction of functions is the vehicle
whereby I hope to analyse contradiction and processes in

mathematical proof.

It is difficult for an observer or researcher to interpret
the intuitive knowledge with which an individual approaches a
problem. In some cases, however, it can prove helpful, in
interpreting the situation which individuals may find
themselves faced with, the study how a mathematical idea has

developed over time.

With the foregoing considerations in mind, I undertook a
study into the concept of function, both from the historical

viewpoint and also from the point of view of a mathematics

teacher. For the study I asked 29 mathematics teachers to
answer a questionnaire containing 25 questions, all of which
Q ‘'re related to the concept of function. The results showed

Emcat teachers who gave correct answers generally showed a
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strong tendency to construct continuous functions, even when

the question only specified a function of some kind.

Question 4: Construction of functions.

Construct. two functions f‘ and fz with the domain R and rank R
also, such that
f(~5) = 2 H 0> = 1 ; f(5) = 6

The results were as follows:

Question No ansver Incorrect Correct Correct
ansver ansver ansver
continuous disconti-
function nuous

function
40 11 a 10 3

4b 14 o 3 k4

Of the ten who gave correct answers by constructing continuous
functions, seven teachers constructed parabolas for the first
function and three made compositions of two semi-straight
lines. of the ten sub jects who constructed continuous
functions only three were able to construct another continuous
function. The remaining seven reached .the limit of their

ability to construct continuous functions.

The mathematics teachers who took part in the study knew
about. discontinuous functions. However, their intuitive grasp
of the function-continuity concept was an ‘anchor’ which
proved stronger than their awareness of function on its own.
The teachers, in other words, had assimilated the concept of
function-continuity and could use it when called upon to do so
in a natural way; but to make them produce their own ideas and
isolate the concept of funct-ion, it would have been necessary
to say something on the lines of: ’Construct two functions,
which need not be continuous, with the following
characteristics..’. The history of the concept of function

shows us that Euler behaved in a similar way.

Consider another task which the teachers were asked
Question 23:Constructing functions wvith special properties.

Q 3Given the property (fef>G) = ffGA> =1 for any xeR.

EMCiomtrucL two different .examples, either by means of a graph
f?‘? &
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strong tendency to construct. continuous functions, even when

the question only specified a function of some kind.
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lines. of the ten sub jects who constructed continuous
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ability to construct continuous functions.
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proved stronger than their awareness of function on its own.
The teachers, in other words, had assimilated the concept of
function-continuity and could use it when called upon to do so
in a natural way; but to make them produce their own ideas and
isolate the concept of func(;ion, it would have been necessary
to say something on the lines of: ‘Construct two functions,
which need not be continuous, with the following
characteristics...”. The history of the concept of function
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Q :30iven the property (f°f)(x) = f(f(x>> =1 for any xelR.

EMClomtruct two differgnt, examples, either by means of a graph
Ti@
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or by making the function explicit, which have this property.

The results of this question were as follows:

Incorrect Correct Incorrect Correct
Question Ne anever to|lansver to|ansver to|ansver to
anever 1et iLtem 1aet iLtem 2nd item 2nd item
23
Making 4 4 16 ? 2
function
explicit
Graph 4 S 17 2 2

This example shows to what extent intuition can have an
’anchor’ effect. The effect. here was that the teachers, having
solved the first part of the question, were prevented from
going on to solve the second. The most fx‘ecfuently chosen
answer was (=1, for any x<R. Only two teachers were able to
break the ’anchor’ and separate the intuitive knowledge of
function-continuity from the notion of function per se. 1
would suggest, again, that if the teachers had been told that
it did not matter whether the function they produced was
continuous. or not, the number of correct responses to the

second part of the question would have been higher.

In the light of this evidence, we would agree with

Fischbein 1973), page 223, when } assures us that
’..intuition cannot be created, eliminated or modified by
either explanations or short learning exercises...’. In

Fischbein <1982), page 17-18, we find an example related to
the theorem in Euclidean Geometry according to which ’the sum
of the angles of a triangle is equal to two right angles’. He
suggests an intuitive proof of the theorem, and states that
’this representation can be translated directly into a formal
proof. The formal proof and the intuitive interpretation are
perfectly congruent. Here, intuition is seen as having a
direct effect on learping. On the other hand, what we have

called the ’anchor’ of intuition, which may be related to the

notion of ‘’epistemological obstacle’ (Brousseau, 1983), far
from being a stimulus to the learning of notions,
=present,at,10ns, etc., may actually prevent learning from
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The history of mathematical ideas is a rich source of
examples of this process in action. One such can be found in
J. Fourier’s ’'Théorie analytique de Ila chaleur’, Chapter 3
(1812> p.157, in which he assures us that

‘En general, la limite de la série est alternativement

positive et négative: au reste, la convergence n'est

point assez rapide pour pProcurer une approximation
facile, mais elle suffit pour la vérité de U'équation.

L'équation

1 1 1
y=COSX—5C0$3x+;COS5X—;COS7x+...

appartient A une ligne qui, ayant x pour abscisse et y
pour ordonnée, est composée de droites séparées dont
chacune est parallele a Uaxe et égale a la
demi-circon férence. Ces paralléles sont placées
alternativement au-dessus et au-dessous de lUaxe, 3 la
distance n-rs, et jointes par des perpendiculaires qui
font elles—-mémes partie de la ligne. Pour se former une
idée exacte de la nature de cette ligne, il faut
supposer que le nombre des termes de la fonction
1 1
COS x - 7 GOS 3x + - COS S5x - ...

regoit d'abord une valor déterminée.

Fourier considered that hence the limiting function was
continuous. But, in fact, Fourier’s statement does not.
represent. the graph of any function CCet jointes par des
perpendiculaires’). However, if we consider the intuitive
ide.as of Fourier, he must have thought that the infinite sum
of continuous functions was continuous. His comment on the
convergence of the series that ’the convergence is not
sufficiently rapid to produce an easy approximation, but it
suffices for the truth of the equation’ suggests something of

the intuitive ideas that Fourier had in relation to this

concept.

In Fourier’s work, a ’statement in action’, to adapt
Vergnaud’s (1982) expression, can be seen to exist: ’If the
terms Iin the series u ,u ,u ,..,u ,u ..., are functions of

1 2 k) n n+ 1

a single variable x, which is continuous with respect to this

variable in the vicinity of a particular value in which the

series is convergent, the sum S of the series is also, in the
Q icinity of this particular value, a continuous function of x’

E MC Th

e statement ISE_ Salse in the Weierstrass’ continuum.



Indeed, until the work of Robinson [1966]1 d(related with Non
Standard Analysis), everybody thougt that the above statement
was wrong, and Fourier’s function was a counter example. But,

the statement is a theorem in Non Standard Analysis.

Augustin-Louis Cauchy must surely have been influenced by
Fourier’s ideas, and it is possible he perceived this
'statement in action’ and developed it as a theorem [1821]. In
other words, intuition played an important role by generating
an argument which led to a false theorem {n Weierstrass’
continuum). Cauchy (18531 modified the statement adding
another hypothesis to the functions. Did Cauchy think his
theorem was wrong 7. Indeed, he wrote didem p. 31-32> ’Au
reste, il est facile de wvoir comment on doit modifier Uenoncé
du théorem, pour qu’il nr’y ait plus lieu a aucune exception.

C’est ce que je vais expligquer en peu de mots.’

Abel N. H., in his article <1826> on binomial series, makes
the following statement: ‘It seems to me that there are
exceptions to Cauchy's theorem’ and proposes, as a counter

example:
' A L.
sin ¢ - pt sin 2¢ + 3 Sin ag - ..,

In the Weierstrass’ continuum context, ’Abel tried to
answer the gquestion: What is the safe domain of Cauchy’'s
theorem?’ (Lakatos [19761>. ’It was .ne mathematician Seidel
C1847) who found the error and from this the concept of
Uniform Convergence in a predetermined neighborhood of a

point was born’ (idemD.

Returning to the experiment with 29 teachers in regard to
the subject of proof, the results of two other questions in
the test were revealing. These two questions had features
"which were not commonly found in the daily teaching activities
of the subjects. In both questions teachers were asked first
to say whether a ptoposition was true or false; if it was
true, they were asked to give a proof, and if it was false, to
give a counterexample. The questions were intended to ’remove,

o in the teacher, the classical picture of mathematical
E lC‘developmenL as a steady accumulation of established truths’.
e AS it happened, both propositions E\lq%;stions 20 and 21 were



false, and what was therefore required in each case was either

a proof of falsity or a counterexample. - - s e .

- L - - . e

Question 20:
20Let f and ¢ be two functions of R in R.
Let. (f(x)>)> + (¢G> = 0 for any x<R.
Does this implie that f(x> = 0 and ¢ = 0 for any xR ?

Yes I:} No I:]

Explain your answer either by giving an argument in favour of
the implication or giving an example of two functions f and g
which meet. the first. condition but wﬁhe_re~ f ~anq ¢ are . not
functions which..annlll each o:(,her out. in ény xeR.’ '

Explanation:

Question 21:
21.Let f a function of R in R.
Let (fefX(x)> = f(fOGD> = 0 for any xeR.
Does Lhi§ implie that f(x)> = 0 and g(x) = 0 for any xeR ?

Yes I:} No I:]

Explain your answer either by giving an argument. in favour of
the implication or giving an example of a function f which

meet. the first condition but. where f is not the function zero

in R.
Explanation:
Quegtion No.
RESULTS QUESTIONS 20 AND 21t
20 T 21
No, and gave a counterexample 1 1
No, and gave an erroneous argument 2 o
No, and constructed an ‘example’, but o a
not a counterexample
No, and failed to give an explanation o 1
Totally failed to ansver the question -] 16
Yes, and attemplted to prove the propo- 2 e
. . . . 1
sition vith unsuitable arguments
Yes, and gave an unsuitable argument 2
Yes, and failed to give an explanation 4

Only one teacher solved both questions correctly. In question
21, three teachers constructed a function for which the
)
U  itatement was true as a particular instance, although they

]: lC:aid that the proposition was not generally true, their answer
Lo
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was ’f(x) = 0 for any xeR’. The argument most favoured by the
17 teachers shown in the table was: ’If either of the two
equals zero, let f(x) = 0 V xeR’ or, in other case, though the
argument is fundamentally the same: ’The product ‘of two real
numbers is zero, if and only if one or both factors equals

zero’.

The fact that so many subjects failed to provide any answer
to question 21 is significant. The eight teachers who tried to
prove the proposition made use of arguments such as: ’Let
f(x> > 0 for any x, then f(f(xd> > 0 for that value of x,

similarly for another case’.

The teachers were undoubtedly able to carry out a
mathematical proof, but the results show that they had
difficulty in applying the general notions of a proof when the
proposition was not immersed in the context of direct

implication (A =» B).

In questions 20 and 21, there was a strong tendency to use
the direct proof method which made it difficult for subjects
to imagine that the proposition might be false and therefore
to prove its falsity or to construct a counterexample. All
other methods, and even the possibility of a false
proposition, were obscured by this prevalence of the direct

proof method.

We know that awareness of the presence of a contradiction
is not a simple matter CHitt, 1979). A contradiction may even,
as Balacheff ((1987) assures us, be an aid to progress, though

he points out that there are conditions:

’Nous retiendrons les conditions sutvantes comme
nécessaires 3a la prise de conscience d’'une contradiction:
1) existence d’'un attendu;
i1) possibilité de construire Uaffirmation assobiée

A cet attendu et sa négation.’

In the studies I have mencioned, ’l'existence d'un attendue’
was brought about in a variety of ways. But the main problem
o rises in ’la possibilité de construire Uaffirmation associée

E lC cet attendu et sa négation’. is precisely in constructing

It



the negation that the obstacle arises. In this study on the
concept of function, I show that the concepts of
counterexample and proof by reductio ad absurdum have not been
assimilated by the mathematics teachers who took part in the
experiment and deserve greater attention than they have
‘hitherto received in the teaching of mathematics. We can see
the same problem in the history of a mathematical idea related

with the subject above explained.
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A LOGO-BASED MICROWORLD FOR RATIO AND
PROPORTION

Celia Hoyles, Richard Noss and Rosamund Sutheriand
Institute of Education, University of London

We report the results of the first part of a study to design, implement and evaluate a Logo-
based microworld for ratio and proportion. The microworld provided pupils with pre-written
Logo tools which could be uséd and explored in terms of their internal and external
refationships; pupils were given opportunities to Create and explore their own programs. The
microworld was implemented in a class of 24 children with the researchers acting as teachers.
Evaluation took the form of i. written pre and delayed post-tests; ii. audio recorded interviews
(pre and post) with 9 pupils; iii. process datagluring the microworld implementation.

We begin with some attempt to identify the essential components of a
computer-based microworld. In general, this will require identification of pupil
initial conceptions so these can be worked with during the activity, carefully
planned pedagogical intervention to 'impose’ a mathematical perspective on
the activity and some consideration of the range of contextual factors which are
crucial to the learning process (see Hoyles and Noss, 1987). Also, such
learning environments need to strike a delicate balance between exploration
and structure: between allowing the child sufficient time and space to nudge up
against the ideas embedded within the environment, and the attempt to
maximise her chances of doing so. We have already experimented in well-
defined and restricted mathematical domains with a small number of children;
(see for example, Noss and Hoyles, 1988; Sutherland, 1987). The construction
and investigation of children's interaction in such environments is problematic
largely because any mathematical concept is part of an intricate network of
concepts — so addressing one inevitably necessitates calling upon
understandings of a whole range of other mathern...cal ideas. The ongoing
work reported here describes in more detail than in our past studies the pupil
perspective prior to engagement in the microworld and the pedagogical
sequence as well as computer-based tasks. [n addition it represents our first
effort in microworld activity with a whole class rather than in an experimental
situation with small groups.

We have chosen ratio and proportion as the conceptual domain. One
reason for doing so is the considerable research effort which has been centred
on this issue resulting in a comprehensive picture of the range of pupil
responses to ratio questions to be expected in a non-computational

-‘gﬁ?“"’{!?ﬁ,rn'em (see for eiamp‘le_ Iourniire and Pulos 1985, Hart (1984). Finally
our own fesearch has indicated that, under the appropriate “Conditions, the
computer makes a qualitative difference to what pupils can do (for example,

]: Q eeing the general in the particular) as well as influencing the strategies
B MC
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they choose to adopt and the skills they exhibit (Hoyles and Sutherland 1989,
Hoyles and Noss 1989).

Our general aims were to utilise the power of the computer and the feedback
it can provide, to provoke children:

— to use and get to know graphical 'objects’ built according to proportional
rules ( which were initially not made explicit to the pupils)

— to engage in proportion-based situations and to construct figures in
proportion on the computer.

— to come up against visual conflict if the ‘ruleg’ of proportionality are broken.

Our objectives were to:

— uncover and then build upon children's underlying intuitions and ideas
about ratio and proportion rather than focussing on their ability to manipulate.
— design a sequence of computer-based activities in which children would first
use proportional ideas with the hypothesis that such functional use (with
appropriate structure) would lay the foundation for discrimination and
generalisation given an environment which facilitates the linkages between
intuitive actions, graphical outcomes and symbolic descriptions (Hoyles 1986).
— plan pedagogical interventions to promote these links, assist in computer-
use and build in pupil discussion in order to provoke children to articulate their
methods in natural language. Thus spoken and written natural language would
act as a bridge between vague intuitions and the formal specifications needed
to write a computer program or conversely be the means by which pupils could
make sense of (discriminate) the meanings of the computer formalism.

— strike a balance between our own agenda and the children's own activities.

We thus planned that the computer would provide assistance with arithmetic
operations; more imporantly, it could offer cognitive scaffolding for making
sense of the mathematical meanings of ratio and proportion. We particularly
wanted to devise activities that would produce visual feedback to stand in
conflict with common initial strategies (such as ‘adding’).

The microworld consisted of a set of activities Logo-based and paper and
pencil, with some well-defined pedagogical agendas around which we
focussed the children’s activities. In thinking about design issues in
computational environments, it is important to address a number of peripheral
(to the specific intended mathematical learning) but important issues
concerning the pupil/computer interface; such as familiarity with the computer,
the creation and editing of Logo procedures, the syntax and meaning of
variable, acquaintance with Logo's arithmetic operations and flow of control. We
silmilarly recognise that turtle orientation is sometimes a source of confusion for
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children with limited Logo experience. We deliberately avoided having to
address this explicitly in the activities whilst still working within the turtle
graphics subset of Logo.

Methodology

The work which is reported here forms a component of a larger research
study — the Microworlds Project!. The work reported here represents the results
of the pilot study2. This took place in a single comprehensive school with a
class of 24 children aged between 12 and 13 years. The class teacher had
been a participant in the Microworlds project. All the teaching and organisation
in the pilot study was however undertaken by the three researchers. The
teaching experiment consisted of 6 sessions of 70 minutes duration in the
school computer room (11 computers); children worked in pairs or exceptionally
in groups of three. The children had very limited previous Logo experience (0-2
hours). The methodology to be adopted was:
— pre, post® and delayed post tests for a whole year group — the same test to
be administered on each occasion.
— audio-recorded interviews of 9 of the 24 pupils in the experimental class in
order to probe their answers: the choice of the nine was on the basis of their
answers to the pre-test (to obtain a spread of apparent misconceptions),
distribution of girls and boys (to represent the distribution within the year-group)
and spread of attainment (as judged by the mathematics teacher).
— process data on microworld implementation consisting of: observational
notes on the 9 pupils to assist the interpretation of the post-test results in terms
of the activities undertaken during the micr. v~ ‘d;marked homework
assignments administered after each session;hard copies of the procedures
written by all the pupils within the class. '

The pre and post written tests were designed to probe children’s intuitions
and understandings about proportion from as wide a range of viewpoints as
possible. We set out to investigate:

! The Microworlds project is co-directed by the authors and funded by the Education and Social
Research Council in UK. (1986-9). The aim of the research is to assess ways of using the
computer to provoke mathematics teachers 1o reflect upon, and if necessary change, their
practice. The project consists of the evatuation of an in-service course for teachers in terms of
attitude change and implementation tofether with microworld design.

2 The main study will have a similar methodology but consist of two strands: teaching of the
microworld (suitably modified as a result of the pilot) by the researchers to one class of 30 pupils
aged between 13 and 14 years; teaching of the microworld 1o 3 classes: a class of 25 pupils
aged 12 to 13; a class of 10 pupils aged 15 to 16; a class of 20 11-12 year olds (all of these
classes are normally taught by teachers who attended the Microworlds course).

]: lK\l.(:‘mmediate post-test was given due 1o administrative problems.
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— the influence of different contexts; that is to see how context might be used
{or not) by the pupils in deciding upon their strategies and assessing the
'correctness' of their answers. Questions were set in three different contexts
designed to be realistic for the pupils and thought to carry with them intuitions of
enlarging or shrinking in proportion. The first question was a ‘recognition’ task
involving the identification of a range of given rectangles which could be
different sized plans of a swimming pool of given dimensions; the second
question consisted of a set of paint-mixing problems; and the third a set of
questions involving photographic enlargements (an example of this latter
category is given in Figure 1).
— the effects of different mathematical structures; that is the distinction between
scalar and functional relations (Vergnaud 1983), integral and fractional scale
factors, and non-integral answers.
— the possible differential effects of the essentially graphical microworld on
numerical problems (paint-mixing) and visual problems {photographic
enlargements of rugs).

We also deliberately excluded questions where a simple ‘doubling’ strategy
was appropriate. In the pilot tests, no calculators were available.

You collect photographs of rugs. You have just received a new set of photographs to add to your

collection. You need to enlarge or shrink them to fit into the spaces in your catalogue. One of the

'new’ lengths is unknown. Find the missing lengths (marked "?") on each diagram.
?

YA . Uy

Fiqure 1: A Rug Task: Integral Eunctional - Multiplication: Question 3(b}

The Microworld

Two computational ‘objects' formed the basis of exploration in the computer
based activities. These tools were designed in order that by their use and
examination the pupils could become aware of the important ideas behind ratio
and proportion. One was a figure — LESLI — made up of variable parts as
shown in Figure 2. The second was a fixed closed shape — HOUSE — using
FD BK RT LT. The overall objective of the activities was for pupils to use and
then discriminate the nature of the functional relations (i.e. multiplicative) within
LESLI in order that 'families’ of LESLI's would be in proportion; to recognise the
nature of the scalar relationships needed (ie multiplicative) to achieve different
sized proportional HOUSEs and to recognise — through visual fsedback — the

= 124



119

conflicting situations which would arise when non-multiplicative relations were
employed in either context.

TO LESLI :SIZE
JUMP :SIZE
SHAPE1 SIZE
LINE :SIZE+ 0.4
SHAPE2 SIZE 1.5
LINE :SIZE- 0.6
SHAPE3 :SIZE 2
END

iqure 2: Pr re and picture of

We provide below a resume of the six sessions. Each session was followed
by written homework which provided researchers and pupils with ongoing
feedback and formative evaluation.

Session 1: Pupils were given the constituent components of LESLI
(SHAPE1, SHAPEZ2 etc.) and invited to use these to make patterns of their own
choosing. Pattern generation was facilitated by the provision of procedures
JUMP and STEP which respectively moved the turtle (without drawing) up and
across the screen. The use of these procedures avoided the problematic
issues of interfacing procedures and turtle orientation. The main pedagogical
interventions for this session were to provoke pupils to use a wide a range of
inputs (including negative and decimal); to give help on the technical issues of
procedure definition and editing and to encourage collaboration and sharing.

Session 2: This session began with &1 introduction to the idea of using
Logo's arithmetic operations to perform calcul:tions. Pupils constructed LESLI
as a whole by putting together the component pie . Our aim was to focus
pupils’ attention on the components of LESL!I and the inter-relations between
these components.The relationships within LESLI were all multiplicative so sets
of LESLIs produced by using different inputs were necessarily in proportion.
Pupils were then invited to explore with LESLI and create their own designs
using different inputs. They were also asked to predict the size of the
component parts of LESLI for specific values of the input.

Session 3: The aim was to encourage pupils to reflect on the way the
procedure LESLI worked and to discriminate the necessary nature of the
functional relationships between LESLI's constituent subprocedures in order to
obtain sets of LESLIs all in proportion. First LESLI 83 was 'played out' away
from the computer using the 'little people metaphor’ as a class activity.
Calculations were undertaken on the computer and leaving an ‘open’ answer
O'C'jm'raged leaving the calculation as 83 * 1.6. Pencil-and-paper tasks were
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given in order to encourage reflection on the relationships between visual
image,its formalisation (its procedure name) and its numerical 'size’. Pupils
were asked to modify LESLI so that it had a large head, long arms etc. Our
intention was to focus attention on the idea that only multiplicative
modifications would produce classes of figures that were in proportion since
strong visual images drew attention to the non-proportionality of figures
constructed using different rules.

Session 4: A class discussion was held to consider how to make LESLI's
arms shorter. Aftention was focussed on how to label the lengths of the
constituent parts of LESLI on a paper and pencil diagram and make exphcnt the
multiplicative solution.  Finally, a LESLI with a small head PINHEAD, was
‘given where the small head was generated by using a subtraction strategy; thus
small input values would produce "upside down™ heads, and focus pupils’
attention on the non- proportionality of the resulting figures.

Session 5: Pupils were given a procedure for a closed shape — HOUSE
— using FD BK RT LT . Pupils were asked to make bigger and smaller HOUSEs
all in proportion. It was anticipated that attention would be drawn to the
necessity of muitiplicative scalar relationships since cognitive conflict would be
generated on the adoption of non-multiplicative strategies (production of non-
closed shapes or overlaps). Figure 3 illustrates computer feedback on the
adoption of an additive strategy results and the obvious mismatch between the
intended and actual outcomes.

TOHOUSE TOBIGHOUSE

HT HT

FD 50 FD 125 145 45
RT 60 70 70 RT 60

FD 70 FD 145

RT 60 50 50 RT 60

FD 70 FD 145 125 125
RT 60 121 RT 60

FD 50 2 . FD 125

RT 90 RT 90

FD 121 FD 196 196

RT 90 RT 90

END END

Fiqure 3: alHOUSE ; b) BIGHOUSE adopting an additive strateqy.

Session 6: We organised group tasks to work on differently sized HOUSEs
of the pupils’ choosing, in order to make the method explicit. The session
started with a game in which pairs of pupils produced 'enormous’ houses — in

@ tion to the original HOUSE — and challenged another pair to find how it
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had been generated given one length. The aim was that the pupils would:
construct similar shapes where their scale factors was not obvious (in order to
present a challenge for the opposite team); be forced by the rules of the game
to negotiate their methods in pairs and make their methods explicit; devise
methods to generate the rule of the ‘opposite’ pair given the original HOUSE
and one length in the final HOUSE and finally compare their numerical results
across pairs and defend their decisions. During the process of 'finding the rule’
we encouraged pupils to work out the scaling factor iteratively using the
computer; that is, in order to find the number to multiply 30 by to give 50, guess .
a number, try it and improve the guess.

Findings

The results of the pre and delayed post tests for the integral rug and paint
questions are presented in Table 14 . Although these results are not spectacular
the difference between the pre and the delayed post test results for questions 3b
(see Fig. 1) and 3c is significant at the 5% level.

Question No. | Type of Question Pre-Test Delayed Post-Test | Ratio
% Correct (n=24)} % Correct (n=25)

PAINT 2a |INTEGRAL Functional (x) 16.7 34.8 39=27
2b | INTEGRAL Scalar (x) 16.7 13.0 37 =12:?
2c | INTEGRAL Scalar (/) 8.3 17.4 10:15 = 2;?
2d | INTEGRAL Functional /) 25.0 30.4 8:2 = 20:?

RUG 3a |INTEGRAL Scalar (x) 33.3 47.8 9.2 =412
3b | INTEGRAL Functional (/) 0.0 30.4° 15?2 =37
3¢ |INTEGRAL Scalar (/) 16.7 52.2* 18:?7 =244
3d | INTEGRAL Functional (/) 29.2 13.0 288 =7:?

Table 1: Pre- and delayed post-test results for [ntegral Paint and Rug

Questions (* denotes significant atth * % level)
More interesting than these overview statistics were the results of the
interviews with the nine individual pupils. Of these nine pupils, six exhibited
quite a major shift in the ways they attempted to approach the questionsS .
These shifts can be characterised as follows: a) from a perceptual to a more
analytic strategy; b)towards a consistent strategy, and b) towards a
multiplicative strategy. Analysis of these shifts will form the focus of our
continuing work. '

4 Almost all the pupils were unable to answer the non-integral rug and paint questions so this data
is not presented below.

S Affective considerations: The remaining three pupils interviewed could all characterised by an
attitude which appeared to be unconcerned by whether their solutions were correct. They still
narcieted in using mathematicatly inconsistent strategies. It was noticeable that all three were not

]: lk\l-c:d at any deep level in the microworld activities.
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Conclusions

Our data has led us to propose a number of substantial changes in the
design of the microworld — in terms of sequence but also in terms of making
our definitions and methods more explicit. We also now see that in order to
exploit the visual feedback and understanding conflicting evidence during
computer activity, an understanding of the mathematical meaning of proportion
and a recognition of the need for consistency is necessary. We also intend to:
stress the equivalence of comparing similar figures in a scalar and in functional
ways and that both ways give the same 'result’; build on (rather than avoid)
intuitive doubling and deliberately try to forge the link between doubling and
imes by 2'; specify the use of calculators in the pre , post and delayed tests, for
all questions involving non -integral scale factors and specify that a calculator
should not be used for integral questions (rather than leaving the decision
open).

Our tentative conclusions from the pilot study are that our microworld
achieved some limited success. We are reasonably confident that, given the
modifications above, the main study will be able to generate an appreciation of
the meaning of proportion and its formalisation in terms of multiplicative
operations. In the work undertaken already for the main study we anticipate
further interesting shifts — for example, from random number pattern spotting to
searching for the ratio pattern, from senseless answers to appreciating the
context of the questions. Results of the main study will be presented at the
conference.
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THE FACILITATING ROLE OF TABLE FORMS
IN SOLVING ALGEBRA SPEED PROBLEMS: REAL OR IMAGINARY?

RON HOZ GUERSHON HAREL
Ben-Gurion University of the Negev Northern lllinois University
Beer-Sheva, 'Israel DeKalb, Hlinois

The instruction of how to solve mathematics problems uses several auxiliaries,
including the table form. We tested the effects of using table forms on the solution of
speed problems. The resuits refute the common belief that table forms facilitate
problem solution: Half of all the solutions that were based on a table form were
incorrect, and when students used table forms in 1, 2, or 3 problems, only 9.9%,
12.5%, and 17.1% of them were successful, respectively. The examination of the
table forms revealed that most of them were faulty. The results of no facilitating
effects is attributed to the inherent drawback of table forms, which comprise
Nondirect Relations but neither hint nor provide for their prerequisite inference by
the INFER schemas. '

INTRODUCTION

The analysis of algebra speed problems (Harel and Hoz, forthcoming) identified
three kinds of relation that may be found in problems dealing with rectilinear)
motion: Basic, Direct, and Nondirect. The Basic refations indicate whether
elementary temporal and spatial attributes (such as starting times, terminal points,
and direction of motion) of the moving objects are same or different. To solve a
speed problem its representation must incorporate the ~:i~.ons it includes. To
achieve this it is not enough though to use basic relations, and other relations have
to be represented as well. Of these, some can be encoded into the representation
directly, while those which are implicit in the problem statement have to be first
inferred from the basic relations. This inference is a prerequisite for the solution of
many a type of speed problems and it may be relatively complex and difficult to
achieve. The relations other than the basic ones are classified as either direct or
nondirect. Direct relations can bs derived directly from the problem statement and
represented without using basic relations. Nondirect relations cannot be derived

this way but rather inferred from basic relations to be represented. All three types of
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relation pertain to the concepts distance and time, but only the Direct pertains for
the concept of speed. For example, “Car 1 was on its way 3 hours more than car 2*
is a direct relation, since it can be encoded directly with no need to infer by how
much one duration is larger than the other. “Car 1 started from city A 5 hours before
car 2, which arrived to city B 3 hours after car 1" is a nondirect relation, since the
same relation (“car 1 was on its way 3 hours more than car 2) has to be inferred
from the stated basic relations.

Cognitive analysis illustrated the importance of structure variables in problem
solving (e.g., Goldin, 1984) and ours (Harel and Hoz, forthcoming) has identified the
INFER DURATIONS RELATION and INFER DISTANCES RELATION schemas as
the mental inference mechanism for nondirect relations. The latter are simitar to the
Part-Whole schema (Riley, Greeno and Heller's, 1983, and Nesher, Greeno and
Riley’s 1982), and can accounted for the difficulty of speed problems that students
have at all educational levels, in both formal schoo! algebra and nonmetric tasks
(e.q., Siegler and Richards, 1979; Wilkening, 1982; Mayer, Larkin, and Kadane,
1984; Reed, 1984; Gorodetsky, Hoz, and Vinner, 1986; Goldenberg, 1989).

The observed difficulties that many students have in solving mathematical
problems inspired mathematics educators and psychologists to propose auxiliary
means and models. Most of these concentrate on parsing the problem statement
into its components that correspond to the problem’s elements and transiating each
into an equation. From both the theoretical and practical aspects Polya is the most
salient proponent of such means. He proposed (Polya, 1957) the use of a table form
and highly recommended to use it to present the relations between the values of
one variable (stated as the "givens"), and to facilitate obtaining the relation between
the values of a second variable (stated as the “condition”). The latter, when
expressed as an equation models the problem (an example is presented in the
Discussion part). .

Table forms are very popular and used by many mathematics teachers, who
believe them to be helpful in deriving the équation(s). This may be esp~ciaily true
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for the weak students who cannot understand let alone solve most algebra
problems, but seem capable of coming out with some equation as a result of using
a table form. There are though teachers who reject the use of table forms. They view
the teacher's primary role as developing student thinking and problem solving
ability, and do not believe in an easy life in mathematics classes. They want their
students “to think hard” and discover the solution on their own, and they contend
that table filling involves none of these, being a technical and automatic way of
problem solving of bypassing the important functions of “understanding” or
“thinking”.

Within the framework of the research on the solution of speed problems
(Goldenberg, 1989; Harel and Hoz, forthcoming; Hoz and Harel, 1988) we
addressed the question whether table forms can facilitate the solution of speed
problems. it emerged when table forms were examined in light of the central role
that the INFER schemas play in the soiution of problems. it became evident that
Polya's proposal does not take cognizance of the INFER schemas, and his
treatment lacks in three respects which may render the application of table form
useless. (a) The columns of a table form do not represent the Basic but only the
Direct and Nondirect relations. (b) He had not distinguished the recognition of basic
relations (that he considered one of the “givens”) from the inference of the nondirect
relations from them. (c) He never mentioned nor elaborated on how this inference is
to be made. The hypothesis tested was that this type of auxiliary is not helpful in the

solution of speed problems as it was designed and is claimed to be.

. METHOD
The subijects were 178 students enrolied in three Sth, seven 10th, and three
11th grades in a comprehensive high school in Beer-Sheva. The tests were
administered to whole classes, and the instructions required only to set the
equation(s) but not to solve them. The students were neither told nor hinted as to

what auxiliaries to use, but were required to provide full explanations to their
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answers. Enough time (up to one class period) allowed all the students to complete
the test.

To test the research hypothesis we used five variables. The independent
variable was the nature of Time Basic Relations from which Time Nondirect
Relations had to be inferréd (explained later). Three variables were measured for

each solution: (i) whether it included a table form, (ii) whether it had congruent table

and equation(s), and (iii) whether it was correct (i.e., had a correct equation(s)).
Three dependent variables were derived, which record the number of solutions in
each test (0, 1, 2, or 3) with each of the features: (A) including table forms, (B)
having congruent table and equation, and (C) having a correct equations. Ordered
in this way, each of them characterizes a more progressive phase in the solution if
the test had at least one table form.

The test problem involves two cars, each going at a different speed from one
place to another: “Two cars go from city A to city B, akm apart. Car 1 leaves city A b
hours after car 2. Car 1 arrives at city B d hours before car 2. Car 1 is ckmv/h faster
than car 2. Find the speed of each car.” This is the simplest problem type possible
for two cars, in which (1) the Distance Nondirect Relation can be easily inferred, (2)
the §ame Distance Speed Relation is that one car is faster than the other, (3) only
one Time Nondirect Relation has to be inferred from two pairs 91’ Time Basic
Relations that pertain to the starting and arriving times. The city names and the
values of &, b, ¢, and d were specified, and the latter as well as the phrases before
and afterwere different in each problem, to provide for the experimental design.
The three possible time basic ‘relations are: the cars started (arrived) together, car 1
started (arrived) first, and car 2 started (arrived) first. These yield 9 different
combinations, three of which were represented in each of the four test forms that

were distributed equally among the students in each class.
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RESULTS
To test the hypothesis the tests were classified into the following two-way table.
In theory the three dependent variables are unrelated to each other, but in practice
they were, as the table shows: the more advanced phase in the solution a feature

represents, the smaller the number of solutions that have it.

FEATURE NUMBER OF SOLUTIONMS IN TEST TOTALNUMBER OF
OF SOLUTION 0 1 2 3 TESTS SOLUTIONS
A Has table form 11 8 0 70 89 218
B Has congruent 15 13 22 39 74 174
table and equation
C Has correct 15 20 27 12 59 110
equation

These figures show that when a table form was used, the chance is .83
(174/210} that equation and table form are congruent, and the chance is .63
(110/174 ) that the equation is correct. Hence, the overall chance to obtain a
solution is about .50.

The first observation In regard to students Is that only hal_f of them (89 out of
178) attempted to construct table forms (and 11 of these did not manage to write
any equation). The majority (89.7%) of those who con=trnu~*ad table forms, did so
consistently for all three problems (70/89). Of these, 17.1% (12/70) obtained three
correct equations, 37.1 % (26 out of 70) obtained two correct equations, and 27.1%
(19/70) obtained one correct solution. The rest (18.7%) did not get any correct
equation. Therefore, despite the success of most students in basing their equations
on the tables, the targe percentage of incorrect equations reflects the general failure
to construct table forms that reflect the Time Nondirect Relation.

Of the students who constructed table forms for all problems, only 9.5% could
derive 3 correct equations. Of thase that had three congruent tables and equations,
only 30.8% (12/39) wrote correct equations. Further analysis revealed a positive

inear relation between the number of table forms {n the test and the number of
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correct solutions (the more table forms constructed the higher the success rate):
When 1, 2, and 3 table forms were constructed, 9.9%, 12.5%, and 17.1% of the
solutions were correct, respectively. Also, in 83.1% (74/89) of the tests at least one
equation was congruent with the table, and in 79.7% (59/74) of these at least one
equation was correct. Therefore, of all the students who attempted table forms

{typically in 3 solutions), 66.3% got a correct solution to at feast one solution.

DISCUSSION

The results of this research clearly support the hypothesis that table forms do
not facilitate the solution of the simplest type of speed problems. Using table forms,
the chance of a student to obtain at least one correct solution for three identical
problems depends on the number of table forms constructed, and lies between .10
and .17. The chance of a solution to be correct when it is based on a table form are
about .50. These estimates can at best be the upper limit for these probabilities,
since only half of the students used table forms. Extrapolating from their results to
those who (for unknown reasons) preferred not to use table forms, it seems
plausible to estimate that 3/4 of the latter would not construct appropriate table
forms.

The reason why table forms, despite being consistently used by half of the
students, were found unhelpful lies in the nature of the INFER DURATION schema
and its role and function in the solution. We argue that if table forms were designed
to aid students glean the meaning of the problem by arranging the relations in an
orderly (and expectedly) helpful manner, then it is not the case that our students
used table forms ineffectively. Students failed to solve the problems because the
relations were not appropriately represented in the table form. Those students could
not be helped by table forms, that neither hint at nor provide for the instantiation of
the INFER schema for the inference of the Time Nondirect Relation (or Distance
Nondirect Relation in other problems). The following table form for our test problems
illustrates this argument.

)
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VARIABLE
distance speed time
cari a a/x X
car2 a a/(x+b+d) _ x+b+d
EQUATION a/x=a/(x+b+d)+c

This table form includes the Time Nondirect Relation but not any Time Basic
Relation. The values in the sbeed column prove that the inference of the former
relation is a prerequisite, that cannot be. bypassed, for the derivation of the Speed
Direct Relation. Table forms are useless for students who lack the INFER
DURATION schema in their knowledge base. This example clearly indicates that
the construction of table forms is not a matter of automatically filling in the variable
values, nor is it a warranty for correct problem solution (even to isomorphic
problems, one of which was successfully solved). A

The conclusion to be drawn from the results of this research is that if auxiliaries
are to be of any help in problem solving they must be based on theoretical cognitive
analysis of the solution processes (and therefore may be domain-specific) in the
first place. They also have to address specific factors and processes that were

identified by cognitive analysis or empirical findings as needing help.
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THE LEARNING OF PLANE 1SOMETRIES FROM THE VIEWPOINT OF
THE VAN HIELE MODEL

AdelaJaime and Angel Gutiérrez
Departamento de Didactica de la Matematica. Universidad de Valencia (Spain)

Abstract

7he aim of this communication is to suggest a new application of the Van
Hiele mode] of reasoning we present a description of the Van Hiele levels for
he 1earning or plane Isometries, and Some examples of activities for each
level e have oblained this theoretical descrintion or the Van Hiele levels from
EXDETIMENtS In schoo! settings carried out with primary Schoo! students and

wWiln pre=service primary school teacher:

ABLE
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The Van Hiele modet of reasoning claims that there exist several levels. of
reasoning for the students; one of its main claims is that, for successiyl
teaching, it is necesSary to take Into account the students’ current level.
Therefore, one of the main aims of the Van Hiele ... _1. is to analyze each area
of qeometry (or of mathematics in general) and to characterize each level of
reasoning using elements belon@ing to a given area, in order to develop teaching
units for the classroom In the existing titerature there are general descriptors
{see Usiskin (1982), Burger & Shaughnessy (1986), Hoffer (1983), and Fuys,
Geddes & Tischler (1985)) and also specific descriptors and teaching units
focused on several areas of plane geometry, such as polygons, angies or
surfaces (see Fuys, Geddes & Tischler (1985) and Scally (1987)). But there are
other important topics which hdve not yet been investigated; one such topic is
geometric transformations and, in particular, plane isometries: although Hoffer
) ang Alsina, Burgues & Fortuny (1987) do present descriptions of the

Q !
EMC in terms of plane isometries, they are simo'l); theoretical statements
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lacking any further practical application. In our current research we have
continued the study of the Van Hiele model that we began some time ago, with
relation to measurement and spatial geometry (see Gutiérrez & Jaime (1987a)
and Gutiérrez, Fortuny & Jaime (1988)) by working on plane isometries.

The results that we show here have been obtained from our work over
several years on teaching plane isometries to primary school pupils and to
future teachers in Valencia (see Gutiérrez & Jaime (1987b and 1988)). Our wish
to provide pupils with activities according to their reasoning abilities has led
us to use the Van Hiele model. Therefore, we have first determined the
characteristics of translations, rotations and symmetries for each Van Hiele
level and, within each level, those corresponding to the learning phases which
allow access to the higher level. Secondly, we have designed teaching units for
each isometry, taking into account these characteristics.

Now we shall present the general characteristics of each level, related to
plane isometries. As we think that it will be clearer if we give examples of
just one isometry instead of using all three symmetries for different examples,
we will confine ourselves to the translations in the examples.

Of the various opinions on the number of levels of the Van Hiele model, we
assume (see Gutiérrez & Jaime (1987a)) the existence of four levels of
reasoning, namely, (1) recognition, (2) analysis, (3) classification and (4)
deduction. Table 1 shows a summary of the Van Hiele levels of reasoning for
plane isometries.

Now we shall make a detailed description of the characteristics of the
four levels and the most significant results of our experiments. The activities
on plane isometries that we propose to the students include, in general, the use
of cut-outs, to promote active learning and to avoid difficulties caused by the

children's lack of drawing ability.
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Table t: The Van Hiele reasoning levels in plane isometries

Level 1

Visual identification of translations, rotations and symmetries.
Static  recognition tdentification of 1sometric  figures.
Dynarnic recognition: The movements are carried out automatically.

Level 2

Experimental discovery of the elements and basic properties of the
isometries.

The isometries are made and identified by means of their elements
and basic properties.

Level 3

Experimental deduction of relations and properties of the
isometries.

Justification of properties and relations already known.
Formal definition of translation, rotation and symmetry.
Products and decompositions of isometries are determined.

Level 4

Global insight of plane isometries: Properties are proved formally;
the structure of group is taken into account; the relations existing
between the isometries are generalized; ...

LEVEL 1 There are two ways to beqinning to discover the plane

isometries: static and dynamic. The static approach consists of the visual

recognition of fiqures which correspond to each ~t..er under an 1sometry; this

recognition includes the use of figures arranged In non-Standard positions. in

the dynamic approach, the students move the figures physically; in the early

phases of this level they use some devices (rulers, discs, mirrors, computers,

folding, ...}, and in the later phases the students can begin to perform the

movements without those tools, by remembering what they have done before.

Some {pes of activities for transiations on level | are:

- Giving examples and non-examples of translations.

- Moving figures or objets along a ruler or a straight line.

- Asking pupils to talk about the differences between translated and

O

non-translated figures; to do so, they can use a ruler and make the

EMC movéments physically or tell by looking-at-the figures.

Aruitoxt provided by Eic:

1 39 nEAT ANV AVIAN i\DI‘ C



- Asking the students for some examples of translations from his
environment.
- Translating a figure so that one of its segments maps onte another given
segment.
[t is evident that when students use visual recognition (a behaviour
characteristic of the first level), they use the elements of isometries (directed
segment, center, reflection line) and some of their basic properties, but they

will only become conscious of them when they have reached the level 2.

LEVEL 2 The work with the students at this level begins with the
discovery of the basic elements and characteristics of each isometry: Directed
segment and parallelism (translations), center, directed angle and movement
along circumferences (rotations), reflection line, equidistance, perpendicularity
and inversion (symmetries). When identifying which figures correspond to each
other under an isometry, at this level the students do not base their reasoning
only on visual recognition, but they also verify the presence of the basic
properties of the identified isometry; this allows the students to use ruler,
compass and protractor to move points of the figures.

However, the students do not relate the properties to each other, that is,
they have not yet built up the network of relations; consequently, they are not
able to determine minimal sets of properties that characterize an isometry and,

theren, they cannot properly define isometries.

One typical piece of behaviour

g

observed in the early phases of level 2 is to

expect different images after moving a /
v

figure under the same translation when the

origin of the arrow has been placed on

different points of the figure (see figure 1). Figure 1
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After experimentation they realize that the result will be the same, but they
do not understand why.

The absence of the network of
relations can also be seen in the way
students manipulate two figures to check
if they correspond under a specific

isometry. Moreover, the students do not

realize that they can locate the whole

figure image under a given isometry when

they know the image of two points of the Figure 2
figure (see figure 2).

At level 2; the students learn to distinguish and to use the characteristics
of translations (length, slope and direction); they also discover by
experimentation other basic properties, such as paralielism between the
corresponding figures. when working with squared paper, students can also
discover the coordinates of the arrow defining a translation, and they can
describe them by means of whole numbers qualified by words such as right/left
up/down (if students already know the negative numbers, they can use them).
They can find products of translations and deduce from experimentation some
properties, such as commutativity.

With respect to rotations, some of the facts that the students will
discover at level 2 are equidistance from the center, variation of slope
(according to the rotation angle) of the rotated figure, the importance of angle
direction and the existence of equivalent rotations. The students can also
handle products of rotations with the same center and discover some algebraic
properties.

As for symmetries, the students will discover equidistance and
pe&pendicularity with respect to the reflection line of two symmetric points.

EMCalso recognize other properties such as the parallelism between the
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segments that join several points and their respective images under a
symmefry, the inversion of figures, the fact that the position of the image ot a
line varies according to its position relative to the refiection line, etc.

There are some examples of different ¢pes of level 2 activities for
translations:

- Performing a translation given its directed segment.

- Performing a translation on squared paper, given the coordinates of its
directed segment (for instance, 3 squares to the right, S squares down).

- Completing several frieze patterns from the same figure, by means of
translations whose arrows differ only in slope, length or direction.
Comparing the results and discussing the differen'ces

- Checking whether tWo figures correspond to each other after a translation
and, if they do, finding its arrow.

- Obtaining products of translations and observing the results.

LEVEL 3 At this level the students have already acquired the ability to
relate the properties they already know and to discover new properties by
experimentation and informal deductive reasoning. They give definitions for
each isometry, that is, they identify minimal sets of sufficient conditions to
characterize an isometry. They can give informal proofs for properties
discovered at level 2.

The students now know the minimal number of point-images of a figure
needed to locate the whole image, and can justify this.

With respect to the product of isometries, students can deduce the result
of products of two symmetries or two rotations. This will allow them to begin
to build up a network of relations between various isometries in the later
phases of level 3 (because they can find products which include different kinds
of isometries) and to acquire a global understanding of isometries when they

)
E TC level 4.1t is also possible at this level to work with giide reflections and
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to discover or deducé some of their properties from the knowledge they already
have of translations and symmetries.

In the later phases of level 3 the students can handle the general
decomposition of isometries and, in several cases, obtain all the- possible
solutions (infinite: sometimes).

As for rotations, the students can deduce that the perpendicular bisector
of a segment is the set of the centers of all the possible rotations which map
one endpoint of the segment onto the other; in this way, they will be able to
discover the centers of rotation and will understand the meaning of the usual
algorithm to discover the centerof a-circle.

There are some. ¢ypes of level 3 activities about translations:

- Finding products of several translations and. discovering, from the
coordinates of their directed segments, the coordinates of the- resulting
directed segment. Generalizing and. justifying the result.

- Decomposing a translation into several products of transiations (and
Jjustifying that there are infinite possibilities).

- Decomposing a translation into two symmetries, a) when one reflection
line has been fixed, b) when no reflection line has been fixed. Discovering
and comparing.the number of possible solution. .n each case:

- Predicting and justifying. the result of the product of a transiation and a

rotation.

LEVEL 4 The main activity which students develop at this level is
formal and consists in deducing and proving complex properties and theorems
which in the previous levels were out.of the students’ reach.

These are some of the facts which must be used in the activities belonging
to level 4, because they help to acquire a global insight of isometries:

- The group structure of the plane isometries as a basic tool.
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- The Classification Theorem of the Plane 1sometries (every isometry is
equivalent to a product of at most three symmetries).

- Equivalent movements, decompositions and products.

- Given the characteristics of several isome’t‘riés, identify the movement

which results from their product
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Representation and Contextualization
by Claude Janvier
Université du Québec a3 Montréal

Summary. This paper presents a theoritical framework on how engineers and
technicians make an efficient use of mathematics. Inspired from several cases
reported on arithmetics, it introduces the notion of contextualised
mathematics. Application and contextualization are contrasted from
examples. The role of representations will be examined in this conjunction.
This paper is basically theoritical in the sense that it determines new research
avenues on the fondamental issue of professional training in mathematics
and try to define some of the major factors concerned.

Introduction: a remark on the notion of contextualization.

The notion of representation will be understood as it is defined in Janvier
(1987) [see the papers of Kaput, Mason and Goldin]. As for the notion of
contextualization, the aim of this paper is precisely to make it explicit and to
relate it to the notion of representation.

The context is often interpreted as the set of conditions or of propositions
that at some point in time "organize" the meaning of a concept. According to
such a definition of the notion of context, the development of a concept (and
its learning) is necessarily associated with a double process involving de-
contextualization and re-contextualization in which a notion gains meaning
through a series of more and more refined settings. I do not deny the validity
of such an approach but the issue at stake in this paper leads us to depart from
this interpretation.

In fact, the notion of context to which I refer in this paper, brings us
outside of mathematics. Context will be synonymous to situation. It will be
regarded as the "concrete" support from which a mathematical concepts is
derived. It basically presupposes that many basic mathematical ideas are
abstracted form the real world. The process involves mental images that are
close to the reality, close to the observed objects or relations.

The aim of the paper.

This paper will present the rationale behind a research that I have just
strarted on how engineers and technicians make use of mathematics. Inspired
from several cases reported on arithmetics, I will try to make explicit what
could be meant by contextualised mathematics. This will lead me to question
the notion of application. Finally, some experimental details will be provided.
This paper is basically theoritical in the sense that it determines new research
avenues on the fondamental issue of professional training in mathematics
and try to define some of the major factors concerned.

The case of arithmetic.
Terezinha N. Carraher, Analucia D. Schliemann, Jean Lave and others (see

Q .
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references) have studied arithmetic "users” such as supermarket shoppers,
young market merchants in developing countries, illiterate carpenters, book-
keepers, warehouse workers, lottery ticket sellers.. is order to discover to what
extent arithmetic is used, the way it is used and how successfully?

These research projects has adopted a combination of observation
techniques and interview procedures that do not rely on the users’
impressions or beliefs. Their conclusions converge. As Lave, Murtaugh & de
la Rocha (1984) puts it: "There are evidence that workers make calculations
which are arithmetically more advanced than they had the opportunity to
learn at school.”

These calculations are made almost error-free. However, what appears to
me as more important, is that the algorithms and the procedures used are
different from the ones introduced in school. First of all, the exists a tacit
rule:"no pencil, no paper”. Mental arithmetic is predominant. This explains
that computation methods turn out to be "primitive". But, since being
dismissed can be the consequence of a mistake, there exists a form of
“"priority” for using methods which will ensure success and with which one
will feel confident.

Let us examine what is meant by primitive. For instance, multiplication is
performed as a repeated addition. Three coconuts at 80¢ each will cost: 80, 160,
240: $2.40. For calculating how much are 12 melons at 50 cruzeiros, the
youngster more or less mentally takes them "two by two" and counts: 100,
200, 300, 400, 500, 600. Sometimes, the procedure is more tricky: 10 times 35
will be carried out in the head as: (3 +3 +3) times 35 plus 1 time 35 which is
equivalent to 105 (3 times 35) + 105 +105 (315) +35... 350. The technique of
adding a "0" seems to be suspicious. As it has just been pointed out
"primitive" does not necessarily mean simple. It may turn out to be
associated with a certain degree of complexity.

In ratio and proportion problems, going back to the value of a unit is quite
rare. Let us give an example. If 3 melons costs $6.00, how much are 9. In that
case, the value of 1 melon ($2.00) will not be evaluated. "Users” will consider
that they have three times more melons and that consequently they will pay
three times more: $9.00. Some combinations of numbers will make such a
procedure often difficult but it is by far prefered to the other one that consists
in finding the rate, in other words, the price for a unit or the unity. This was
already pointed out by Freudenthal(1983), Vergnaud (1979) and others.

This research orientation seems very inspiring because a form of arith-
metic seems to be constructed on the basis of particular needs. There seems to
exist a school arithmetics and a contextualized one It is possible to analyse
further the differences between both but I will restrict myself to only one

RIC |
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element: the problem solving dimension of the tasks must not be
overlooked. In fact, we cannot imagine contextualization without problem
solving whether the problem is solved on the spot or a known technique is
being re-utilized with adequate adjustements. The problem solving
“environment” seems to induce the"informal ways" of doing mathematical
calculations “which have little to do with the procedures taught in
school...and that are more effective"[Carraher et al.(1985)].

The notion of contextualization.

However correct the explanations we find in the litterature may be, it
seems to me that the fact that the computations are contextualized is not
sufficiently emphasized In other words, the descriptions of the users’
performance do not take enough into account the inter-actions between the
context and the calculations. In fact, calculations are not made with abstract
numbers but rather on quantities, magnitudes or measures. More precisely,
numbers are processed in the operations without loosing their situational
connotations. This equally means that the context plays an active role. A
multiplication problem becomes an addition problem as the melons (either
actual as a mental images) are used as support for the reasoning. The
question: "How much for one?" is avoided since combining the units (to
obtain a rate) cannot be supported by a contextual entity which would be
derived from the combination of observed numerical entities.
Contextualized mathematics

If the-man-in-the-street uses arithmetic his own way or contextually, is it
possible that scientists, engineers or technicians do the same with
mathematics in solving efficiently their problems whether when they solve
equations or when they make use of functions, integrals, derivatives...? This
is precisely the question the current research will address.

Trying to ask this question brought me back "in spirit" to my university
years. Indeed, I have remembered how much I was frustrated by a Professor
teaching electronics and who could amazingly juggle with trigonometry and
complex numbers. I had the conviction that he was appplying mathematics
when carrying out his circuits analyses. However, either this was not my
mathematics or we were not applying it the same way. That is probably these
memories that led me to check with electrical circuits and people around
me.working on them.

.
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Solution of an electricity circuit.

Ri1=300q
—\

120v

AN

Figure 1

In the sort of easy problem presented in figure 1 and that is found at the
end of all chapters on elementary electricity, the students are asked to find the
resistance of resistor Rz, given that the current is 3 amps and the battery
voltage 120 volts. The internal resistance of the battery is negligible.

In the traditional way to solve such a problem., the students are expected
to set up the equations. To start with, it needs little inspiration to write down

V=Vi+Va.

And then, they can write: V=Re i and V=R) ¢i + R2*i. The last equation
can be derived in many ways. The main goal to reach is the substitution of
values in it to get:

120=3 » 10 + 3R2

And solving:

120 — 30 = 3R2
"Re=90/3=30

The point to emphasize here is that a lot of equation handlings are
performed without resorting to the circuit diagram. It would be very
interesting to know more precisely what is the real contribution of this
diagram in solving the problem. But, at any rate, the vast majority of physics
teachers would not write down equations when it comes to solve such a
simple electricity exercise. The equations would be replaced by "the diagram”
itself which will be used to combine the quantitative relations between the
variables involved. The context here can be considered as a mixture of the
well known basic current laws and the diagram which guides and supports
the reasoning. The equations implicitly used by them (and having a strong
schematic content) will differ from those of the students that are mostly
“mathematically inspired" in the sense that they are totally dependent on the
allowed algebraic transformations: to put the unknown on one side...

O
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In constrast, when our laboratory technician inspected the circuit, a total
resistance came to his mind going with a voltage drop in two steps. Indeed, 3
amps for a voltage drop of 120 volts “requires” 40 Q. The split 30 Q and 10 Q
(which gives 40 Q) appears quite clearly on the diagram. In short, the
fundamental relations that are conveyed by the equation are readily visible
on the diagram. In this sense, the diagram replaced the equation and was
most likely used as the mental images or the concrete objects which help the
young market merchants.

I am inclined to believe that each solution on the diagram (or without
equation) should be examined in order to discover how the fundamental
relations between voltage, resistance and current are articulated in
conjonction with the diagram. For instance, you should scrutinize the way
you or your friends would solve the above circuit. While in the arithmetic
examples, standard computations that would bring the users too far from the
context were avoided for reasons of certainty, here the equations are
dispensed with because they appear extraneous to the reasoning. Can
equations in such cases always be avoided? With more complex circuits, I
imagine that some equations would be partially written down and a fair
amount of work towards the solution would be carried at the diagram level.
However, the last statement is only a hypothesis suggested by the skillful
reasoning of my electronic professor. From the few readings I made on the
topic (reasoning in electricity) the issue as to how the diagram comes into
play is overlooked: an interesting research orientation. Let us clarify further
the notion of contextualisation.

Contextualization

Applying mathematics is generally associated with setting up equations or
formulae and solving them. At a more basic level, only a simple arithmetic
operation or a proportionality relation will be set up. Nevertheless, and this
is what I consider as being most important, there exists an epistemological
tradition implicitly accepted by the scientific community which assigns to
mathematics a precise role that it plays with respect to science in general.
According to this conception, mathematics is at first learnt in the
mathematics lessons and then applied in the science lessons. In fact,
mathematics is as every science a generalizable knowledge. Always according
to this conception, the domain in which mathematics is meaningful and in
which it can be used do not change the basic mental operation performed
when problems are solved. It is moreover considered that mathematics
points towards the genuine solution, the others being regarded as partial or
inadequate. This has brought about a very well defined scenario: applications
take place in the solutions of the end-of-chapter problems.They conduce to

O
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the "writing down" of a few equations which are then solved more or less
successfully. Too often, the modelisation by which the equations are at first
associated to a phenomenon belong to the teacher exposition. The initial
model is reduced to the one mathematics can treat. The underlying analysis
through which contextual elements are associated to mathematical relations
is rarely assumed or realized by the students. Thus, by solving equations, one
“applies” mathematics which is regarded as an abstract system. The content or
the situation are at first absent and they are expected to arise through
applications. In other words, the contextual richness or depth will be added to
the mathematical concepts with the application exercises. Mathematical
notions (more today than in the past) are mainly determined by a kind of
inter-conceptual organization. For instance, the notion of variable has
become a special sort of cartesian product. The science teachers as
the"appliers” or the utilizers make use of notions that are, so to speak,
bestowed by the mathematics teachers. However, even though this
epistemological perspective is never challenged, the day-to-day "life" in
schools is not so simple. It frequently happens, for instance, that science
teachers express concerns because mathematics teachers have not quite
“prepared” the "right” object. It is well known that students complain that
they have to deal with the functions of their mathematics teachers and that of
their science instructors. This is also too often the case for vectors or
logarithmic functions.

Several examples of contextualized mathematics can be provided. The
reader may refer to Janvier (1989). They all allow us to re-examine the notion
of application.

Application versus Contextualization or Modelization Revisited.

It is worth comparing "applying mathematics” with the process of
modeling in science. Both start from the phenonenon which is at first
examined in order to find out patterns, relations already known to be
extended...This first stage leads to the formulation of a mathematical
equivalent counter-part of the situation, which is called a model, and that
will stand for the situation as the analysis will be carried on. In fact, the
model belongs to another level or mode of representation and imply
necessarily a selective reduction of the factors involved as more fully
expounded in Janvier (1980). This is what makes it abstract. In the case of
application, the real elaboration of an abstract model consists much more in a
selection of the right equations or relations. But, as the figure 2a illustrates it,
the dramatic similarity between application and modeling is that at some
point the entire work is assumed to be carried out within the model or

RIC
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within the mathematical domain. The interpretation process in modelization
is aimed at checking the domain of validity of the model and eventually
brings about a new "formulation-interpretation" cycle yielding a more
refined model. For applications, going back to the context enables one to
detect calculation mistakes or inappropriate selection or processing of
equations. The article challenges the fact that always, at some point, work is
exclusively achieved in the mathematics domain. For some efficient users,
the context remains present and this fact entails particular abilities.

formulate
/"N
equations

phenomena

.. - measures:

interpretate objects of contextualized

mathematics

figure 2a. figure 2b.
In applications, the work is done Contextualization provides an over-
in the "mathematics domain" lap as "working space".

This position is suggested by the research whose results were exposed above
and several examples I have analyzed. The notion of contextualization has been
introduced to convey the idea that the context is kept into play even though the
appearance would allude to processes being achieved solely in the mathematics
domain. The modes through which the context exerts its influence are diverse:
diagrams, graphs, verbal descriptions, mental images; imagined or actual
actions. Their role in the process of contextualization is to bring closer the
situation and the "mathematics domain" (see figure 2b.). The overlap being
produced becomes the "working space" of contextualized mathematics whose
objects are quantities, measures or magnitudes..They consist in mathematical
ideas that have kept some concrete connotations or in other words of
mathematical entities not entirely stripped of their situational content. The
cognitive status of those "quantities" have clearly to be examined further
mainly in their subtle and implicit support for the reasoning in problem
solving settings.
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The consequences for research.

The project we are about to start makes the assumption that day-to-day usage
by ingeneers and technician induces particular procedures. On the one hand,
there exist particular mathematical procedures that are used; but on the other
hand, they are context related in the sense that the mathematical notions need,
in order to be mentally worked on ,the interventions of some features
borrowed from the context. It is aimed at verifying the nature of the
contextualized mathematics some electrical engineers and technicians resort to
while solving circuit problems. '

In fact, the way they use mathematics will be described as a form of
coordination between representations as mentionded in Kaput, Goldin Lesh
and Janvier. In other words, it will be envisaged as a form of translation that
does not simply imply going from one source to another, but also coordinating
both sources taking into account the fact that the connotations attached to the
concepts are present. Consequenly, the notions of primitive conception
(Janvier), phenomenological primitive (diSessa), mental models (Gentner),
spontaneous reasoning (Viennot) will be fondamental for our analysis in that
they contain, I believe, the basic ingredients of contextualized mathematics. The
notion of theorem-in-action of Vergnaud seems to be equally inspiring. A
major step in the research will be to search deeper into the work of Joshua
(1982), Closset (1983) and others to find the basic electricity models from which

the ones observed will be related.
As for the observation techniques, we shall make use of a scheme in which
the subjects will have to inter-act two by two on a rich set of situations
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TO INCULCATE VERSUS TO ELICIT KNOWLEDGE

Barbara Jaworski Open University England

"The teacher’s dilemma is to have to inculcate knowledge while apparently eliciting it." [Edwards
and Mercer 1987)

It is usual that a mathematics teacher is required by some syllabus, scheme of
work, or curriculum to teach stated mathematical concepts to pupils. As a result of

the teaching/learning situation pupils acquire certain knowledge. A
constructivist view of learning suggests that pupils learn as a result of their own
construal affecting their own experiential world, which implies that any
inculcation of knowledge can only be successful if it contacts the experience of the
learner. The dilemma for the teacher is ,"I've got to get them to construe x"

This report concerns teaching approaches which seek to encourage effective
construal by the learner of required mathematical concepts. It includes extracts
from a case study of one classroom where there has been evidence of success in
methods used to elicit knowledge rather than a dependence on inculcating it.
Successful teaching of mathematics involves a teacher in intentionally and effectively
assisting pupils to construe, or make sense of mathematical topics. There are many words
and metaphors used to describe the process by which a teacher teaches and pupils, as a result,
gain knowledge. A familiar one is that of inculcation, of giving or handing over knowledge.
The giving of a good explanation carrics with it a sense of one person (the teacher) successfully
transmitting to another person (the pupil) some item of knowledge. Although some teachers
and pupils still see successful teaching in terms of such transmission, there is a movement
towards belief that in and of itself this is not enough. The literature which relates a
constructivist view of learning to classroom teaching of mathematics suggests that teaching
has to take into account individual construal and its relation to and modification of
individual experience in the learner (see for example von Glasersfeld (1983), Kilpatrick
(1987), Cobb (1988), Jaworski (1988)). The view of knowledge and of learning which thié
philosophy promotes may seem at variance with the requirements which society places on its
educational system, often through legislation, in terms of learning being measured by the
ability to reproduce certain predefined items of knowledge on demand. This paper seeks to
highlight some of the issues in teaching for effective learning, particularly with regard to
such requirements, and reports on the work of one teacher who aims to meet the requirements
while working in a way he believes to be most fruitful in providing opportunity for pupils to

make sense of mathematics.
in roach

In a desire to make teaching more relevant to the learner, the phrase ‘learning from
experience’ has gained some currency, and this, like the transmission metaphor, has proved
inadequate in describing a basis for effective learning. In their book Common Knowledge,
Edwards and Mercer (1987) report on a number of lessons on ‘pendulums’ which were taught
by a teacher who, it was reported, believed in the importance of experiential learning. Briefly,
this suggests that pupils can best learn a concept when they have experienced for themselves
manifestations of that concept. Thus the teacher took care to provide opportunity for pupils to
experience aspects of pendulums, andjto explore some of their properties. Implicit here seemed
to be the idea that experience leads to learning. The teacher in providing the experience is

@ ¢ promoting learning.
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Driver (1983) comments, of such experimental work in science teaching,

"Activity by itself is not enough. It is the sense that is made of it that matters.”
She claimed, of science lessons, that often a lesson ends with the clearing up after practical
work is finished, so that opportunity for discussion of how experiences relate to new ideas is
missed. Paul Cobb, who has worked extensively with teachers on the implications of a
constructivist philosophy for the mathematics classroom, was asked how he would reply to the
question from a teacher,

“If I leave pupils to construct for themselves, how can I be sure that they will construct what [ want them

to construct?”
He said (Paul Cobb 1988),

The idea that we give the children some blocks or some materials and we leave them alone, and we come

back in fifteen years' time and expect them to have invented calculus just makes absolutely no sense
whatsoever. The teacher is still very much an authority in the classroom. The teacher still teaches.

Edwards and Mercer's pendulums teacher did not leave pupils just to come to their own
conclusions as a result of their experimentation with the pendulums apparatus. She engaged
with them in extensive discussion about the principles which were involved. Nevertheless,
conclusions were drawn that these pupils’ knowledge, or understanding, of pendulums was
still deficient. The authors distinguish between ritual knowledge and principled knowledge.
They quote from research by Taba and Elzey (1964), citing the instance of a girl who regularly
achieved good marks in mathematics and described her procedures as fol]ow;vs:

“I know what to do by looking at the examples. If there are only two numbers, I subtract. If there are lots

of numbers I add. If there are just two numbers and one is smaller than the other it is a hard problem. I
divide to see if it comes out even and if it doesn’'t [ multiply.”
Edwards and Mercer comment, !

‘What we are calling ritual knowledge is a particular sort of procedural knowledge, knowing how to do
something. In many contexts, of course, procedural knowledge is entirely appropriate and exactly
what is required. This was the case with learning to do clay pottery, and was also an important part of
the lessons on pendulums; the pupils had to know how to operate their apparatus, their stop watches and
calculators, and much of their ability to get through the lessons required knowledge which was
essentially procedural. Procedural knowledge becomes ‘ritual’ where it substitutes for an understanding
of underlying principles. Ritual knowledge is the sort exhibited rather crudely by the pupil in Taba and
Elzey's example, ... Principled knowledge is defined as essentially explanatory, oriented towards an
understanding of how procedures and processes work, of why certain conclusions are necessary or
valid, rather than being arbitrary things to say because they seem to please the teacher.

They go on to discuss the pendulum lessons from the point of view of the principled knowledge
which pupils gain and conclude that despite the teacher's declared attempts to enable a
principled understanding of the operation of pendulums, nevertheless what they observe is
only a ritualistic parroting of the aspects of pendulums which the teacher has emphasised

during their experimental work.

It3s what is done which seems to be crucial. The pendulums teacher, in Edwards and Mercer's
research prompted pupils in various ways and they appeared to sieze on her cues as the
important pieces of knowledge which they were expected to take from the lessons. The authors
suggest that these pupils were not encouraged to conceptualise pendulums adequately.
However, it is easy for an observer to make judgements about teaching which appear-s

:-i“""quate because understanding appears ritualised, but very much harder to identify
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teaching strategies which lead to successful principled understanding. Many teachers and
researchers have discussed activities and strategies which have been designed and
demonstrated to promote mathematical thinking in pupils in the classroom (see for example
Brown and Walters (1983); Collins (1988); Jaworski (1985); Cobb, Wood and Yackel (in
press)). In all of these, pupils are observed to engage with mathematical thinking and, it is
suggested, to take on some of the responsibility for their own learning, in that they are no
longer simply seeking for teachers’ explanations. In classess which I have observed as part of
my own study (See Jaworski (1988) for details and methodology) it has been possible to observe
pupils engaged in their own mathematical activity, actively constructing mathematics
themselves. The knowledge that is gained by pupils in consequence of this might be described
as principled. What is often difficult for the teacher in such circumstances is to assess pupils’
thinking in terms of the standard topics which the curriculum requires, and moreover to
ensure that the thinking includes ability to succeed in standardised tests on these topics. Put
into the context of pendulums, what teaching approaches would result in a principled
understanding of pendulums and would, as well, enable pupils to succeed in standard tests
regarding pendulum operation?
Teachi .
In my own research, one of the teachers whom I observed planned a series of lessons on
‘tessellation’ for a class of eleven-year-olds. During the planning she stated that she wanted
pupils to investigate aspects of tessellating polygons. A number of activities were designed in
which pupils took part. I observed lively discussion about which polygons would tessellate - for
example, some pupils decided that regular pentagons would never tessellate, whereas
quadrilaterals would 'if you could draw them better'. They had experimented by drawing
their own shapes, cutting them out and fitting them together, but recognised that their shapes
were imperfect and that they had to take this into account. Despite a certain amount of what she
later referred to as prompting, the teacher felt that pupils had not gone as far with ideas as she
would have liked them to, particularly in consideration of angles in the polygons. She said,
The group work that they did, I'm not sure that it worked exactly as I'd hoped it would work or that they
actually focused on the angles meeting at a point as 1 hoped they migh§ ... . They kept referring to the fact
that if they were able to make the shapes into quadrilaterals or rectangles, that they would be able to

tessellate the shapes. But yet they weren't all convinced that all quadrilaterals tessellated. That was the
thing I wanted them to go on to.

She had been pleased with the mathematical activity and discussion which provided insights
into the sense which the pupils were making, but she wanted more. She was justifiably
influenced by her syllabus demands, and unsure about how she was going to fulfill their
requirements. Her view of investigational work involved only a minimal level of
intervention, and she was in the process of reconsidering what that intervention might

involve.

Teachers have to take account of the educational system in which the teaching takes place, the
requirements of this system and the expectations of the consumers of the system. Currently the
British government is in the process of introducing legislation to establish a National
Curriculum in schools in England and Wales. This will have associated attainment targets

"""\;"—ils will be tested nationally at the ages of 7, 11 and 14. The form which attainment
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targets and testing will take is the subject of much controversy. It is sometimes implied that it
is a straightforward matter to say what standard a particular pupil has reached at any stage.
One attainment target , for example, requires that pupils can
Multiply a 3-digit number by a 2-digit number and divide a 3-digit number by a 2-digit number in both
cases without a calculator. (NCC 1988 - Target 3, level 5)
How this will be tested is not yet clear, but if testing involves asking pupils to apply the
algorithm to particular given numbers, then teachers will want to ensure that pupils are able to
tackle this successfully. It raises questions about what methods of teaching are appropriate to
such success, and indced what is implied for the childs overall mathematical development.

One of the dangers of a rigid curriculum and system of testing is that teachers, pressured by
perceived expectations and shortage of time, feel unable to exploit teaching methods which
require a high degree of confidence for their application. This confidence lies in the belief that
the methods will promote learning most successfully, so that the requirements of the system
will be fulfilled along with other learning objectives. In terms of the attainment target quoted
above, it might mean that as children are helped to make sense of the arithmetic operations of
multiplication and division generally, they will learn to cope with the algorithms required.
The teacher on tessellation however, felt that her methods had been unsuccessful, because she
had not been able to elicit the particular mathematical ideas which she wanted from pupils as a
result of the activities she had provided. Edwards and Mercer, on the other hand, feit that the
pendulums teacher had sacrificed a principled understanding of the pedulum concepts in her
pupils because of certain results which she had been at pains to inculcate. In the remainder of
this paper I shall quote from a case study of one teacher whose lessons I observed over a period
of six months. This teacher was very confident in his teaching methods, which might be
described as investigative in style, and believed in trying to teach in a way which provided
pupils with the best opportunity for learning mathematics.

F Iy of an investirati hod of hi

An investigative method of teaching, briefly, involves encouraging pupils to explore ideas
and to develop their analytical and problem solving abilities. My own research in its global
sense aims to characterise such teaching, and this case study is just a part of it. (See Jaworski
(1988) for excerpts from another such case study.) The teacher, Ben, teaches in a 12-16
comprehensive school where he is head of mathematics. I observed him teaching a fourth year
class which he had been teaching for just over one year. They were starting preparation for
GCSE (General Certificate of Secondary Education) assessment at the end of their fifth year.
This involves continuous assessment of course work and a final examination. I shall give
examples of a way of working which encouraged the development of a principled
mathematical understanding, while keeping in sight the demands of the final examination

and its importance for pupils.

I observed a lesson where pupils were exploring Kathy shapes - Ben's name for shapes which
have the same area as perimeter. At the start of the-lesson, Ben had asked for silence and said,
"Let's recap last lesson”. Pupils responded variously with reference to areas and perimeters
of various shapes and to Kathy shapes. Ben asked, "What is a Kathy shape?” Some
]: \l‘lC«tion led to an articulation of 'same area as perimeter’. Ben pushed them to explain

ey meant b, d i and ber of ils joined i ing t
N ey y area an perIegrgn a number of pupils joined in .strugghng 0 express



their understanding of these terms. Ben commonly used this approach to a follow-up lesson,
beginning with. whole class reconstruction of ideas to draw pupils back into mathematical
thinking. On this occasion, different groups in the room had chosen to work on different
shapes, some on squares and rectangles, some on triangles, some. on circles, others more
ambitiously on polygons generally. Ben had told me before the lesson that they would work in
groups of their own choice, and that this: choice might. reflect their own level of ability. In a
subsequent lesson, he said similarly, "How do you want. to work, pairs, groups,. ...?" A brief
period of class negotiation followed where pupils decided what they would start working on,
and so moved into like minded groups. I ebserved that Ben rarely constructed groups himself
and he later commented that he wanted pupils to make decisions. about how it was most
appropriate for them to work. If he felt strongly that.anyone was making the wrong decision,
then he would suggest why they might do otherwise - for example, one very bright pair of boys
were advised not.to work together because they vied with each other in a way which Ben felt was

not helping them to make progress.

Three girls had chosen to look for Kathy triangles.. They had started by drawing an
equilateral triangle of side two units whose keight , they claimed, was two units. "What do you
mean by height ?", said Ben. (Had they confused height with the length of a side?) One of them
traced out the vertical height with her pencil. It looked as if she understood height, but how
could she think it was of length two? Another girl started to draw the triangle accurately and
when complete she measured its height. It was less than two! While she was drawing, the
others, at Ben's prompting, discussed what the height should be. They first thought that it
should be the same as the sides of the triangle, and then that it would be more than that. They
were surprised when it turned out to be less than two. Ben suggested that they should draw other
- triangles and compare. heights with sides. "What am I always saying?", he said. "Is there a

pattern?’, one girl replied.

At some point early in our discussions, Ben had said to me, "You should ask them (the pupils)
what it is that. I always tell them to do.” He was quite confident as to the reply that I should get.
It emerged that the instruction was look for a pattern, oris there a pattern?, and indeed
whenever there was a hint of "what questions should we be asking?", someone in the class
came up with "is there a pattern?", (sometimes. when, to Ben's chagrin and my amusement, it
was inappropriate!). The words symbolised Ben's belief in mathematics being about
expressing generality. Implicit in the interchange here was emphasis on conjecturing, on
trying out special cases, and on seeking for generality. As I continued to observe the class I
saw more and more evidence of pupils’ intuitive appreciation of these processes. For example,
one group in the class had found a Kathy square - a square of side four units. In trying to
explain, one boy said, "If you times 4 by 4 you get 16, and then if you times 4 by itself you get
sixteen.” Ben replied, "I don't understand the difference?’. He said that the two things
sounded the same, so what did the boy mean? The conversation proceeded:

Boy: Pickanumber. Ben: Three. Boy: Right, what is three times by itself? Ben: Nine. Boy: Because

a square has got four side, to find the perimeter you have to times that, three times four. Ben: Twelve.
Boy: Butif you do it with four, they beth equal the same number, sixteen.
b

As a response to Ben's deliberate provocation, the boy had used a generic example to
dnr:gnstrate a general understanding of Kathy squares.
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In discussion with me after the lesson Ben referred to the importance of recognising particular
misconceptions which pupils have, in order to try to correct them. A number of misconceptions
had been evident, for example the one about the height of a triangle described above. Another
involved a belief by some pupils that any three numbers which they might choose could be
lengths of the sides of a triangle. Yet another involved confusion between the terms area and
perimeter. Ben admitted to surprise as to the difficulty which pupils had had in recognising
the vertical height of a triangle, and estimating its length. He felt that from work done
previously, pupils would have had a better understanding of these concepts. Yet he was happy
that an opportunity had arisen in which pupils could tackle them. He felt that the situation in
this lesson had aided his recognition of these misconceptions better than a more narrowly

defined activity might have done.

In a subsequent lesson Ben returned to Kathy shapes. Some work had been done on Pythagoras’
theorem and he expected that use of the Pythagorean result would help in the search for Kathy
triangles. After the lesson I reminded Ben that he had expected pupils to use Pythagoras to
calculate lengths in triangles, and asked whether he felt this had happened. His reply was,
1 suddenly realised that it wasn't. I suddenly saw people measuring and I was going to jump in and say
"hang on, why aren't you calculating it?", and then I realised, if you're going to do it roughly why not
measure it to hunt it down, you know, a far better strategy ... . | wanted them to use Pythagoras and
they've actually come up with a better strategy. And I then made a decision that their's was a better one
than mine and they might as well use it ... why force people to use inefficient systems? But I do realise
that when they actually come down and say, "I've measured it", I can turn round and say, "but is it
exact?”’, then they have to start using Pythagoras.

Ben was ready to admit that often what occurred in a lesson was different to what he had
planned because he believed that flexibility in following up pupils’ methods and ideas was
important. We talked about where the work might go from here. He referred to one group who
had been using graphs to hunt down Kathy shapes. He felt that it might be helpful to others in
the class to work on their graphical method, as well as providing some context for graphical
work required by the GCSE syllabus. In talking about how he made decisions for a particular
lesson he said,
If I actually do graphs through Kathy shapes, will they be bored with Kathy shapes then or not? If
they're bored with Kathy shapes, I'm going to lose out; I'm not going to get my mathematical points
over. So you weigh things like that up - rule of thumb methods - I have no fixed techniques, I just get a
feeling.
In the event the class did work on graphs of Kathy shapes. The activity provided new
opportunities for pupils to express their understanding of area and perimter, and a familiar
context in which to develop ideas of graphical representation. It is tempting to say that at this
stage most pupils were reaching a principled understanding of many aspects of area and

perimeter. Justification of this would need a closer analysis of what was done and said.

However, one instance of the development of principled understanding is worth reporting. In a
lesson on vectors I observed two boys, Lee and his partner, Danny. They had been asked to
invent some vectors of their own and work out the lengths of the vectors. Lee explained to
Danny what he thought they had to do. He wrote down the vector AB, as below, placed points A
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and B on a grid, drew the triangle around them, drew squares on two sides of the triangle as

4 —_
AB= (2
B (4)

16

A

shown, wrote the square numbers in the squares, and then worked out mentally aloud: " 16
plus 4, that's 20; square root ... about 4.5". (He demonstrated considerable skill in estimating
square roots.) Danny seemed to follow what he had done, and the pair set about independently
inventing vectors and finding lengths. In each case Lee drew a diagram similar to the one
above, writing the square numbers into the squares. He then performed the calculation
mentally and wrote down the result. He seemed to demonstrate a fluency with using the
Pythagorean result, but I wondered what role the diagrams were playing for him in its use. I
mentioned this to Ben after the lesson. He reminded me that in one of the lessons on Kathy
shapes, Lee had had difficulty with the use of Pythagoras, and had certainly shown no fluency
with it. He was delighted to hear that Lee seemed to have ‘learned’ its use in the intervening
period. I wondered if Lee would in fact be able to abstract it - whether he would be able to cope
without his diagrams. With Ben's agreement, in another lesson (where in fact Pythagoras
was not in use at all) I went over to Lee and asked if I could try something out on him. He
seemed agreeable, so I asked if he remembered finding lengths of vectors, and if he would
work out the length of a vector for me. I gave him the vector numerically, (5,7). He drew a
diagram similar to the one above, wrote the numbers 25 and 49 in the squares, then did a
mental calculation resulting in looking for the square root of 74. I then asked if he would try
another but without drawing a diagram. He worked it through aloud, getting to the result with
hardly a hesitation. Here, it scemed, was an example of learning actually having occurred
over a period of time. I was reminded of a saying of my colleague John Mason, that ‘teaching
takes place in time but learning happens over time'. Lee seemed to have demonstrated a
principled understanding of the Pythagorean result, and it seemed likely that he would be able
to reproduce it for use in an examination question. One of the problems of evaluating
investigative styles of teaching is that formal testing can be inappropriate. It is often not clear
what you actually test. What is required is a sense of the mathematical development which has
taken place for pupils and, as this is different for every pupil it is very hard to measure. The
teacher working in this way has to develop ways of perceiving the progress which individual

pupils make, and this example of Lee was one of the treasures which a teacher hopes for.

At the end of one lesson, two boys remained after the rest of the class had left, in conversation
with Ben and myself about some aspect of the lesson. The conversation turned onto aspects of
teaching and learmning which the boys thought were important. Some of the words from one of
the boys go some way towards a vindication of the methods which this teacher used, and their
perceived success:

To tell you the truth (addressed to me, although Ben was present) I mean, Mr xxxx’s ... a different kind

O ‘Leacher completely. Before, you've had sums that you've been set .... At first, to tell you the truth, I
E l C dn't like him as a teacher. I thought, "No. Pathetic!", - you know, "this isn’t maths - what’s this got to do
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with mnths?” And ns I've come along I've renlised thnt it's got & 1ot to do with maths. To have to learn
rather thnn just have to sit and "Oh, I've done 50 sums taday.”, “I've done a hundred. You don't bother
about thnt now, you just concentrnte, and nt the end of a lesson you've learned something - ... I've really
progressed.

Ben was nevertheless concerned that his class could cope with the externally set GCSE
examination papers in which pupils had to individually tackle questions on mathematical
topics from the GCSE syllabus. He set the class one past paper during the time that I was
observing, and reported that he was satisfied with pupils' results at this stage of their course.
What was particularly interesting for me was how he tackled errors in pupils' solutions.
Rather than produce a set of model solutions, he duplicated a set of incorrect solutions. Pupils
had to compare their own solutions, right or wrong, with the incorrect solutions given. Their
task was to decide wherein lay the errors, and to work together to correct them. Discussions
which I heard indicated that pupils were being challenged to reconsider their understanding of

concepts involved through the various solutions which they had to compare.

In conclusion, I believe that I was given repeated evidence of the development of principled
understanding of mathematical concepts in the pupils I observed. I saw a teacher who
promoted independance of pupils in his classroom, and encouraged pupils to take
responsibility for their own learning, while maintaining a concern for concept development,
and recognition and tackling of misconceptions. He was working to a standard syllabus, and
there was evidence of pupils’ mastery of standard topics on this syllabus. It remains to be seen
how the pupils will fare in the standardised testing at the end of their course.
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VAN HIELE LEVELS AND THE
SOLO TAXONOMY

Murad Jurdak
American University of Beirut

A comparision is made between van Hiele levels of development
in geometry and the Structure of Learning Outcomes (SOLO)
taxonomy. It is hypothesized that if the correspondence
between van Hiele levels and SOLO levels is tenable then the
latter may be used as an operational scheme for characteri-
zing a posteriori the learning outcomes in geometrical tasks
without going through the process of identifying van Hiele
level indicators empirically, deriving them for a multitude of
geometrical tasks. This is particularly relevant since the
construct validity of the SOLO tazxonomy has been established.
The logical comparision and an illustrative example revealed

a high degree of similarity between the two sets of levels.

A number -of studies have focussed on van Hiele model of.
development in geometry.. One line of investigation was to
establish the hierarchical nature of van.Hiele levels. Another
line was to characterize van Hiele levels operationally using
student behaviors as level indicators. Conclusions in this
area may be summarized as follows:

1. In general there is evidence in support of the hiera-

rchical nature of van Hiele levels (Mayberry, 1983).
2. Students can be assigned a van Hiele level based on

their performance on geometrical tasks. However, the

decalage phenémenon was observed across different

tasks supposedly in the same van Hiele level.
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Moreover, some students performed below the expected
van Hiele level (Burger and Shaughnessy, 1986;

Mavberry, 1983; and Usiskin, 1982).

An assumption underlying van Hiele model and subsequent
studies is the existence of hierarchical levels, each of which
has its idiosyncratic mode of functioning and can be characte-
rized by its own set of developmental tasks. Student behaviors
on such tasks may be determined empirically. Assignment to vanr
Hiele levels on each of these tasks may be-madeby utilizing the
student behaviors as van Hiele level indicators. This seems

to be reminiscent of Piagetian stages of development.

An alternative scheme for studying performance on geomet-
rical tasks is classifying learning outcomes by looking at
théir structure rather than classifying individuals by looking
at indicators of some cognitive abilities. This is not to sug-
guest to ignore van Hiele levels but rather to look at them as
cognitive abilities which reflect .typical modes of functioning
predominant at different stages of development in geometrical
thought. The Structure of the Learned Outcomes (SOLO) taxonomy
developed by Biggs and Collis (1982) is such a scheme. 1In this
taxonomy, the structure of the learned outcome occurs within
each mode of functioning. The learned outcome becomes increa-
singly complex but structurally the complexities at each mode
are the same. On the other hand, the van Hiele levels which
are specifically developed to describe geometrical thought
assume a sequence of cognitive abilities characterizing a seq-
uence of developmental stages. The descripfions of SOLO and

Q 1w Hiele appear in Figure 1.
ERIC -
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Purpose

The purposc of this paper is twofold. First, to estab-
lish logically the correspondence among van Nicle levels anr”’
the levels in the SOLO taxonomy. Second, to present an ana-
lysis of an illustrative example to demonstrate the results

of the logical analysis.

If the correspondence between van Hiele model and SOLO
taxénamy is tenable, then the SOLO taxonomy will provide an

operational scheme for characterizing a posteriori the learn-

ing outcomes in geometrical tasks without going through the

process of identifying van Hiele level indicators by empiri-
cally deriving them for a multitude of geometrical tasks.
Moreover, the construct validity of the SOLd taxonomy has
been established in terms of the hierarchical nature of its
levels and in terms of partioning students at different age
levels into interpretable groups that reflect the SOLO levels
(Romberg, Jurdak, Collis and Buchanan, (1982). In addition,
the usefulness of the SQLO taxonomy in assessing levels of
reasoning in mathematical problem solving has been establi-
shed (Collis, Romberg, Jurdak, 1986). At last, if the corre-
spondence is established, then the SOLO level which is
matched with the van Hiele level will be hypothetically the
predominant level of reasoning in that particular van Hiele
level.
Logical Correspondence

Figure 1 presents the van Hiele levels with the hypothe-

sized corresponding SOLO levels. Column 1 shows the typicé]

van Hiele levels with their descriptions as fhey anpeared in
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Van Hiele Level

2

SOLO Level

Prestructural. Response
represents the use of no

relevant aspect.

Level 0 (Visualization).

Visual consideration of
the concept as a whole but

not its properties.

Unistructural. Response

represents the use of one

relevant aspect.

Level 1 (Analysis).Perception

of properties of geometric
properties but these pro-
perties are isolated and

unrelated.

Multistructural. Response

represents the use of several

disjoint "aspects

Level 2 (Abstraction). Per-

ception of relationships
between properties to form

abstract definitions.

Relational. Response repre-
sents the use of all aspects
related into an integrated

whole.

Level 3 (Deduction).

Reasoning within the
context of a mathematical
system using deduction,

anxicms, and definitions.

Extended Abstract. Compre-

hensive use of all relevant
aspects together with related
hypothetical constructs and

abstract principles.

Level 4 (Rigor) Comparing

systems based on different
axioms in the absence of 1
concrete models.
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the literature (Hoffer, 1981; Mayberry, 1983; and Burger and
Shaughnessy, 1986). Column 2 shows the SOLO taxonomic levels
with their descriptions using sources like Biggs and Collis
(1982) and Collis, Romberg, and Jurdak (1986).

A careful study of the descriptions of the van Hiele and
SOLO levels in Figure 1 reveals that, with the exception of
two levels, the two sets may be reasonably matched. This
means that the classification of a response of a geometric
task belonging to a particular van Hiele level falls within
the corresponding SOLO level. In other words, when the SOLO
taxonomy (which is of general nature) is applied to geometric
tasks, the SOLO levels of reasoning are very similar to van
Hiele levels (which are specific to geometric thought). How-
ever, there seems to be two exceptions. First, the prestruc-
tural SOLO level has no corresponding level.in van Hiele model.
This is underst?ndable since the prestructural SOLO level is
simply a refusal or inability to become engaged'in the task.
Second, van Hiele level 4 (rigor) has no corresponding SOLO
lével. It is to be noted here that van Hiele level 4 has not
been identified.for pre-university students and rarely for

math major students.

An Illustrative Example
To illustrate the correspondence between SOLO and van
Hiele levels, an example from the literature on van Hiele
model (Burger and‘Shaughnessy, 1986) was classified in accor-
dance with the SOLO taxonomy and compared with its van Hiele
classification. The example was taken from a study by Burger
o and Shaughnessy (1986) in which mdny geomet sic tasks were

[E l(:‘administered to a sample of students usin;, the interview method.
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The purpose of the study was to characterize the van Hiele
levels operationally by students behaviors. The task is
called "Identifying and Defining task" and it consisted of
identifying auadrilaterals from a given sheet of drawn quadri-
laterals by putting S on each square, R on each rectangle,

® on each parallelogram and B on each rhombus. The defining
task was to basically define the figure by giving a minimal
list for characterizing each figure (necessary and sufficient
conditions). The responses of students were taped, analyzed
and assigned a van Hiele level by three reviewers.

In the SOLO taxonomy framework, thé relevant data in the
task consist of the quadrilatefals and their properties as
reflected in'the drawings. The increased use of data and re-
lationships result in an increased structural complexity in
the response.

Figure 2 shows a detailed comparative classifications of
the "Identifying and Defining Task' in SOLO and van Hiele
models. The analysis in Figure 2 provides support for the

nossibility of matching the van Hie¢? ad SOLO levels.

Concluding Remarks
There seems to be theoretical as well as empirical support

for the possibility of matching the SOLO and van Hiele levels.
Thus, responses to geometric tasks can be characterized in a
way compatible with van Hiele levels without necessarily de~-
riving the student behaviors indicative of van Hiele levels

for every geometric task. The assumption of SOLO taxonomy

is that the structural levels of responses occur within each

development stage, thus the extended abstract level in one
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+

[Van Hiele

Response SOLO Classification
Classifi-
cation.t
* identified some quadri- * Unistructural .Used Level O
laterals but failed to one relevant aspect
identify others of the (the figure).
same kind because of
consideration of irre-
levant data.
* identified types of * Multistructural. Level 1

quadrilaterals but

without class inclusion.

Used several rele-
vant disjoint aspects
(the quadrilateral
and its separate

properties).

identified quadri- * Relational. Used all Level 2
laterals correctly relevant information
and defined them by -and the relationshiﬁs
their components. among them (the quad-
rilateral, properties
of its components,
sufficient conditions
to define the shape).
defined various quad- * Extended abstract. Level 3

rilaterals indepen-
dantly of each other
then checked definitions

to make sure that they

'permitted the desired

class inclusion.

Comprehensive use of
the given information
(figure,‘properties,
relations) with re-
lated hypothetical
constructs and
abstract principles
(tested on the data).
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Figure 2. Comparative classification of thc (Identifying and

Defining Task' in SOLO and van Hiele models.+ Source: Burger

and Shaughnessy (1982).
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stage becomes the unistructural level in the subsequent stage
to form a new learning cycle. Consequently, the predominant
level of reasoning in a particular van Hiele level would be
characterized by the corresponding SOLO level. The possible
occurence of all SOLO levels withizi a van Hiele level, with the
predominance of one of them, probablylexplains the decalage

phenomenon onserved in van Hiele levels.
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A PERSFECTIVE ON ALGEBRAIC THINKING

Carolyn Eieran

Université du GQuébec a Montréal
Canada

This theoretical paper examines the issue of algebraic
thinking. The Research Agenda Conference on the
Learning and Teaching of Algebra pointed to the topic of
algebraic thinking as an area sorely in need of research
attention. Since so little discussion of the topic has
taken place, no real consensus exists as to what
algebraic thinking means. This paper argues for a

particular interpretation of the phrase and then goes on
to document findings from some of the few studies
related to this research issue.

One

of the topics pointed to in the Research Agenda, an

outcome of the 1987 Research Agenda Conference in Algebra (Wagner

% Kieran,

1989) as an area sorely in need of research attention is

that of algebraic thinking. Some of the questions raised by

conference participants were:

ERIC
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What dimensions of algebraic thinking can we identify
(e.g., knowledge of structures, use of variables,
understanding of functions, symbol facility/flexibility,
generalizing, inverting and reversing operations and
relations, ability to formalize arithmetic patterns,
etc.)?

a. What kinds of thought processes are involved in
various algebraic topics?

b. What kinds of thinking processes are required to
apply algebra to problem situations?

c. What are the effects of studying specific topics on
students’ facility in algebraic thinking?

How does/can a given dimension of algebraic thinking

develop?

a. What skills/concepts mediate algebraic thinking?

b. What instructional strategies prombte the

development of certain dimensions of algebraic
thinking?

v
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c. Are there particular types of (word) problems that
stimulate the development of algebraic reasoning?

All of these are interesting, researchable questionsg
however, there would appear to be something missing in the above

list. That something is a meaning for algebraic thinking--a

working definition or characterization of the phrase that might
remove some of the ambiguity from the above gquestions. In this
paper, I will attempt to argue for a particular interpretation of
what we might consider algebraic thinking to be, and then provide
some research eviderice documenting students’ difficulty with this
aspect of algebra.

Love (1986) has proposed the following chracterization of
algebraic thinking:

Algebra is now not merely '"giving meaning to the symbols,"”

but another level beyond that; concerning itself with those

modes of thought that are essentially algebraic——for example,
handling the as yet unknown, inverting and reversing
operations, seeing the general in the particular. Becoming
aware of these processes, and in control of them, is what it

means to think algebraically. (p. 49)

Appealing though this characterization might seem initially,
especially the aspect referring to alg.'u thinking as a
different mode of thought, I would like to quibble with Love's
first two processes: handling the as yet unknown, and inverting
and reversing operations. These two processes are included in the
procedures involved in solving equatioens. There is ample
empirical evidence to show that students are able to manipul ate
symbolic expressions and equations with a great deal of control
and success, but still not be able to do much else in algebra
(e.g., Booth, 1984; Kieran, 1984; Matz, 1979; Wagner, Rachlin, %
Jensen, 1984). Love’'s third process, seeing the general in the

\)"cular, suggests an ability that is qualitatively different
ERIC (
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from the other two. However, even this one does not seem to go
suggest that, for a meaningful characterization of

far enough. 1

algebraic thinking, it is not sufficient to see the general in the

particular; one must also be able to expréss it algebraically.
Otherwise we might only be describing the ability to generalize
ard not the ability to think algebraically. Generalization is
neither equivalent to algebraic thinking, nor does it even require
aléebra. For algebraic thinking to be different from
generalization, I propose that a necessary component is the use of
algebraic symbolism to reason about and to express that
generalization.

To make the point more clearly on what I mean by algebraic
symbolism and how it can be used to reason about and to express
general statements, I refer in some detail to an article by Harper
(1987).

The historical development of algebraic symbolism is used by
Harper as a theoretical framework for analyzing q;alitative
differences in student ability to represent generalizations of
numerical relations. Harper begins by describing the three
evolutibnary stages through which the development of algebraic
symbolism has passed. The rhetorical stage, which belongs to the
period before Diophantus (c. 250 AD), was characterized by the use
of ordinary language descriptions for solving particular types of
problems and lacked the use of symbols or speciél signs to
represent unknowns. The second stage, referred to by Harper as
Diophantine, extended from Dicophantus who introduced the use of
abbreviations for unknown quantities to the end of the sixteenth
century. Harper has pointed out that the concern of algebraists
during these centuries was exclusively that of discovering the

identity of the letter(s), as opposed to _an attempt to express the
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The third stage, referred to by Harper as Vietan, was

initiated by Vieta's use of letters to stand for given gquantities.
At this point it became possible to express general solutions and,
in fact, to use algebra as a tool for proving rules governing
numerical relations. It is this Vietan stage in the development
of algebraic symbolism that forms the basis of what [ consider
algebraic thinking to be.

In his interviews of 144 secondary school pupils from Years 1
to 6, using questions such as:

“If you are given the sum and the difference of any two

numbers, show that you can always find out what the numbers

are."”
Harper was able to find evidence of the three types of solutions
that can be identified in the history of mathematics. With the
rhetorical method, the pupil does not use algebraic symbolism but
nevertheless specifies a procedure tﬁat is general (e.g., "You
divide the sum by 2 then divide the difference by'2; then to get
€he first number add the sum divided by 2 to the difference
divided by 2: te get the second number take the difference divided
by 2 éway from the sum divided by 2."--Harper, 1987, p. 81). With
the Diophantine method, the pupil uses a 1 ar ﬁor letters) to
represent an unknown guantity (e.g., x —y = 2 and % + y = 8,
solving for » and y) and states that the method can be applied to
any numbers but does not use symbols for a general "given”
quantity. With the Vietan method, the pupil uses letters for both

unknown and given quantities:

Let nos. = % and y

m = sum of x and y

n = difference of 3 and y

General equations: m =% +y
n=x-=-Y

Add tagether: m + n = 2

. . . Find x and substitute back for Y-

O
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It is important to note that the Diophantine solution assumes

that the same process can be carried on no matter which sum and
difference are chosen and, thus, » is an unknown whose value is to
be found. The Vietan solution, on the other hand, has a means of
expressing any sum and any difference and of specifying the
solution: The two numbers are (m + n)/2 and (m - n)/2Z. Not only
is this solution general, it uses letters rather than conventional
numerals to express given quantities.

Only 28 of the 144 pupils of the Harper study used a Vietan
type of response to the above problem. Harper points out that the
use of this approach rises dramatically in Year S, but mostly
among the more mathematically-able students—-20 of the 28 who used
a Vietan response were in Year 6. He further notes that these
findings accord well with the B% success rate among Year 4
students of the CSMS study (Kachemann, 1978) on the question:
“"Which is larger, 2n or n + 2; why?" Thus, it would appear that
the use of a Vietan approach is not something thaé high school
students are adept at.

Another example illustrating theAVietan function of letters
to express the general is provided by the work of Chevallard and
Conne (1984) who have documented students’ use of algebraic
symbaolism as a tool for proving rules governing numerical
relations. These two researchers presented an eighth-grade
student with a sequence of questions that included the following:

Take three consecutive numbers. Now calculate the square of

the middle one, subtract from it the product of the other

two. ... Now do it with another three consecutive numbers.

«-. Can you explain it with numbers? ... Can you use algebra

to explain it?

The student began with the three consecutive numbers 3, 4, and S,

which led to the calculation of 16 ~ 15 to yield the result of 1.
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He then tried out the numbers 10, 11, and 12, which led to the
same result. When asked to explain what was happening, using
algebré, he at first tried out %2 - yz = l--simply replacing all
of the "given" numbers by letters. Having then realized that the
use of only one letter would be better ("Fuis aprés j ai pensé
qu’'on prenait simplement le chiffre au carré qu’'on remplagait par
une lettre puis les autres c'est ce chiffre plus un et ce chiffre
moins un"-—-Chevallard & Conne, 1984, p. é), the student proved the
rule governing this numerical relation with the formulation,

n= - ((n + 1) - 1)) = 1. Chevallard and Conne point out that
this student, though only in the eighth grade, was one who had
unusual facility with algebraic representations and their use as
thinking tools.

Many other students have, however, been found not to be so
successful in using algebraic symbolism as a tool with which to
think about and to express general numerical relationships. Lee
and Wheeler (1987), in their study of students’ c;nceptions of
generalization and justification, tested 354 Grade 10 students on
subsets of their questionmaire and then interviewed 23 of these
students. One of the questions they presented to the students was
the following:

A girl multiplies a number by S and then adds 12. She then

subtracts the original number and divides the result by 4.

She notices that the answer she gets is 3 more than the

number she started with. She says, "I think that would

happen, whatever number I started with."
Using algebra, show that she is right.

0f the 118 students who were given this problem, only 9 set up
(Gn + 12 - %)/4 and then algebraically ;orked it down to x + 3.
Four of these 9 students then went on to "demonstrate further" by
substituting a couple of numerical values for xn. Thirty—four
others set up (3x + 12 - ®)/4 = I + % and then proceeded to
O
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simplity the left side, yet did not base their conclusions on
their algebraic worl:. They then worked numerical examples and
concluded from these exambles. The iAteryiewS provided further
evidence of students’ ignoring their algebra.

Another question from the Lee and Wheeler study was the

following:

Show, using algebra, that the sum of two consecutive numbers

is always an odd number.

Although the way in which the question was formulated is different
from Chevallard and Conne’s in that the latter began by asking
students te work initially with numerical examples to see what
they came up with, it does ask what Chevallard and Conne
eventually requested of their subject. Only 7% of Lee and
Wheeler 's students succeeded on this qugstion. Nevertheless, the
interviews showed that students do appreciate an algebraic
demonstration when they or someone else produces it, but they are
happier with theif own ngqerical examples.

The study by Wheeler and Lee showed that “formulating the
algebraic generalisation was not a major problem for the students
who chose to do se; using it and appreciating it as a general
statement was where these students failed" (Lee % Wheeler, 1987,
p. 149). Evidence illustrating that the majority of high school
students do not see algebra as a tool for generalization and
justification was also seen in the results of the Harper (1937)
study. A historical perspective suggests that the "big picture"
of present-day algebra involves two major components: (a) the use
of algebraic symbolism as a tocl to solve specific problems (i.e.,
discovering the identity of the letter(s)), and (b) the use of
aléebraic symbolism to express general solutions ‘and as a tool for

provina rules governing numerical relations. FResearch evidence
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has shown that owr schools are better at equipping students to do
the former than the latter.

This paper has taken a restricted perspective in that it has
focused on algebraic thinking as characterized by the latter
component of the "big picture” of algebra. For some authors
(e.g., Open University, 1985), the main idea of algebra is that it
is a means of representing and manipulating generality and, thus,
they see algebraic thinking everywhere, even in the recording of
geometric transformations. There are some advantages to taking a
more restricted perspective, that is, in not viewing algebraic
thinking as equivalent to algebra or to generalization. Cne of
these is that it can provide researchers with an entry point for
investigating students’ conceptualizations in a well-defined area
and subsequently guide them in conducting teaching experiments
aimed at helping students develop meaning for this essential
aspect of algebra. A second advantage to taking this perspective
on algebraic thinking-—and it may be the more impértant one at the
present time-—-is that it can alert us to the fact that computer
technolegy and, consequently, most computer-based approaches to
the teaching of algebra are not ideally suited to incorporating
this aspect of algebra into their programmes. Algebraic thinking-~—
as characterized in this paper—--could well become an area of
algebra that is taught even less (if at all) in computer
environments than it is now taught in traditional algebra courses.

That, in my opinion, would be a real loss.
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A STRUCTURAL CONCEPTUAL MODEL FOR INVESTIGATING
SOME COGNITIVE ASPECTS OF PROBLEM-SOLVING

Dr. Nira Krumholtz
Department of Education in Technology & Science
Technion - Israel Institute of Technology
Haifa 32000, ISRAEL

A structural conceptual model of programming strategies, together
with its empirical verifications, is presented. the paper stresses the
need for a complete structural model rather than studying isolated
concepts. Guttman's Facet Theory has been employed for the
construction and the validation of the proposed model. Three facets
define the conceptual model: Knowledge type (content, structure and
implementation), Language (level of abstraction), and task Familiarity
(level of analogical generalization).. The structural lawfulness
revealed in the analysis reflects the associative connections among
problem solving concepts in the learner's mind. Some cognitive
aspects as well as educational implications are discussed.

INTRODUCTION

In order to investigate the relationship between task performing and
thinking, there is a need for a conceptual model based on the cognitive analysis
of the performance. The construction of a structural conceptual model, and its
empirical verification, will be presented in this paper.

The proposed model is based on two assumptions. The first assumption is that
conceptual components of a learner's thinking c¢ar =2 inferred from observed
behaviors. The second assumption is that connections among those components are
reflected through correlations between the corresponding observable behaviors.
That is, closely connected components in the model will tend to produce highly
associated behaviors. Therefore, a step towards the intended model should be to
assess a typology of students' strategies in performing problem-solving tasks.
The classifying rules, according to which strategies will be classified, will
serve as facets of the structural conceptual model. The term structural refers

to the structure of interrelations among those facets.

This paper stresses the need to investigate bognitive aspects of problem
solving from a complete structural conceptual model rather than from studying
isolated concepts. The representation of all the components in one encompassing
structure enables us to reveal relationships which are not evident in studying
each component separately. Guttman's Facet-Theory (Guttman, 1957) turns out to
O
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The first step towards constructing a conceptual model is to define the
world of discourse. The universe of content which was defined in this study is
concerned with strategies in performing programming tasks. Nevertheless, most
of the implications for teaching and curriculum development can easily be
transferred to other learning domains or even be generalized to phenomena
independent of school subjects.

The paper starts with briefly introducing Guttman's Facet Theory. In the
second and the third sections, this methodology is employed for constructing and
validating a proposed conceptual model. The last section is a discussion of

some cognitive aspects of problem solving and possible educational implications.

FACET THEORY - A METHODOLOGY FOR CONSTRUCTING STRUCTURAL MODELS

According to Guttman's approach (Guttman 1957), a universe of content is
defined as a Cartesian product of several facets. A facet according to
Guttman's terminology, is a classification rule according to which variables are
classified. Each facet is a component set of the Cartesian set which defines
the universe of content. The representation of each strategy as a unique
element of the Cartesian set, reveals its similarities and differences with any

other strategy.

THE METHOD
Choosing Relevant Facets for the Proposed Conceptual Model.

The concept of a model implies that it is a simplification of the real world.
Therefore, one has to decide what the aspects of the world to be modelled are.
For the sake of simplicity and generality, we decided to concentrate on three
facets only. The facets were chosen on the basis of existing theories dealing
with human information processing and problem solving (reviewed in: Krumholtz
1987, Bar-On & Krumholtz, forthcoming). The facets and their elements are

described in the following sections.

The familiarity facet

In this study tasks were ordered from familiar to unfamiliar, according to the
familiarity of the objects dealt with. The objects were the basic geometrical
forms (squares and hexagons), which served as basic building blocks. Squares

were considered to be more familiar than hexagons.

The language facet
The second facet is concerned with the language in which the «description of the
solution is expressed. Languages can be ordered according to their level of
O
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formality. This hierarchy is consistent with the one proposed by Chomsky for
formal generative grammars. The two structs (elements in the facet) chosen in
this study were: natural language (Hebrew) and computer language (Logo), which

represent two extremes on the language hierarchy.

The knowledge type facet

The third facet is concerned with the type of knowledge which is presumably
employed by the student. We propose to distinguish among three types of
knowledge:

a. Content related knowledge - refers to domain specific concepts and their
meaning. For example, the strategy: "declarative verbal description" (as
opposed to a procedural one}, which cannot be employed without referring to a
specific content (i.e. the geometric figure).

b. Knowledge about structure or organization - is manifested as structuring a
description or a computer program, by employing modules, constructing plans and
spatial organization. This knowledge is independent of a specific content.

c. Knowledge about implementation schemes - which can be treated independently
of a specific content or structure. In our case it was a graphical task and the
implementation strategies were classified according to the spatial
representation system which they employed: Extrinsic spatial representation
system. in this study, the well-known Cartesian rectangular system, and
Intrinsic spatial representation system which was adopted by the "turtle
language" (Abelson and DiSessa, 1981). The Logo computer language, used in this
study, enables the usage of both extrinsic and intrinsic spatial representation

systems.

A Definitional System for the Observations

In order to achieve an empirical valication of the proposed model, and to
check the correspondence between the predic.c. + the observed structure of
interrelations, a specific definitional system for the observations was defined.
The Cartesian product of the three facets defines twelve (2*2%*3=12) possible
different types of strategies, which can be employed to define systematically,
specific programming strategies (i.e. the items). The observable behaviors were
the extent of employing each strategy by each subject (i.e. the observations).
Sixty observable behaviors were defined in a specific experimental set-up and

thus, could be quantitatively assessed.

THE EXPERIMENT

Population and Experimental Set-up

The research population consisted of seventy-eight subjects. All the

O
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subjects were novice programmers and those courses were their first experience
with computers. The subjects studied according to a curriculum, which was
especially designed for this study. The special design intended to emphasize
the higher cognitive skills of programming and to expose the subjects to the two

spatial representation systems.

The experimental tasks

The experiment consisted of two programwing tasks (Figure 1), in each a
drawing of a geometrical figure was presented. Each of the two tasks consisted
of two sub-tasks: description in natural language and programming in computer

language. The Logo code was written without using a computer to verify it.

Figure I: The two geometrical figures which have been used
in the experimental tasks.

"Squares figure" "Hexagons figure"
"~ 1 1 )
o ~
[ ]
]
Ll

Items and Categories for Observation

As mentioned above, the programming behaviors of the learners were observed
and their preferences for the predefined strategies were recorded. The
f‘ollowihg are the categories for evaluating the items (a detailed description

in: Bar-On & Krumholtz, forthcoming).

Items concerning natural language

Item 1. Using declarative verbal description -~ The evaluation of this item

ranges from a procedural description to a declarative one. Characteristics of

procedural descriptions are: using verbs (e.g. do, draw, turn), dynamic

description of constructing and considering the temporal order of performance

(e.g. first, then, at last). Characteristics of declarative descriptions are

static, using words like: there are, built of, etc., ignoring the temporal order

of construction of the figure.

Item 2. Holist perception of a figure - This item concerns the order of

referring to the figure when describing it. Possible descriptions }‘ange from

first describing the figure as a whole, to starting with a description of the

details of the figure. ’

o .- Complexity of "basic building-block" - This item relates to the most

EMC ve "basic building-block" used for constructing, the figure.
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Item 4. lgnoring details. Item.5. Spatial organization as measured from

subject's indication of the location of the figure on the paper.

Items concerning the use of formal language

Item 6. “Top-Down" planning. Item 7. Structucing by using sub-procedures.

Item 8. Explicit reference to location.

Item 9. Giving meaningful name to the wain procedure.

Item 10. Organization of the produced program.

The last three items (i.e. 11, 12, 13) refer to preference of extrinsic spatial

representation system.

Method of Analysis

As mentioned, the analysis of the observations in this study, was concerned
with assessing a typology of programming strategies. The methodology of
treating this problem is the Non-metric Smallest Space Analysis (SSA)}. This
analysis is performed on the intercorrelation matric. The computer program
employs the algorithm suggested by Guttman (1968), for calculating the smallest
space (minimal number of dimensions), required to represent the structure of
interrelations among the strategies. Tn order to reveal this structurce, these
interrelations are represented geometrically. Items are represented as points
in an Euclidean space, where the distances between points reflect their
dissimilarities. The desired space that enables such an inverse relationship to
exist between the observed correlations and the geomatrical distances is one
with the minimal number of dimensions. Assessing the empirical verification for
the proposed structural model from this analysis, «i1ll be explained in the

results section.

RESULTS

Typology of Programming Strategies - The Cylindrical Lawfulness

Prior to the application of the Smallest Space Analysis (SSA-1), several
preparatory steps had been taken, i.e. the selection of items to be analysed and
the computation of the intercorrelations among the selected items (detailed
analysis in: Bar-On & Krumholtz}).

The smallest space for the péogramming strategies is three dimensional, and
has been shown to have a cylindrical lawfulness (figure II), which corresponds
to the three proposed facets.

The familiacvity of the task facet is vepresented by a separate dimension
~NA~t 15 orthogonal to the language-knowledge plain. The middle horizontal
E lC‘.ur disk (in figure II)._s_e,pqrates the items concerning the "Squares

wmmmmden ' from those concerning the “Hexagons figure®.



177

Figure II: A schematic CYLINDREX represents the structure of
interelations among the strategies when all
three facets are considered.
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The three dimensional cylinder structure can be displayed as two separate

orthogonal projections onto two dimensional space:

Figure III: Qutput of the SSA program: projection of the three
dimensional CYLINDREX onto two dimensional space.
This figure represents the structure of interrelations
among the programming strategies when only the facets
of the "language" and "knowledge type" are considered.
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As con be seen from figure Ill, the language and the knowledge-type plain can
be divided into two concentric circular bands. The peripheral band contains the
points corresponding to strategies which are expressed in natural language,
whereas strategies expressed in formal (computer) language, occupy the inner
band. Another structural lawfulness revealed in the same plain is the partition
to three wedge-like regions emanating from the same common origin, corresponding
to the three types of knowledge.

DISCUSSION

The cognitive aspects involved in problem solving which will be discussed are
based on the constructed and verified model. The underlying assumption was that
the structure of empirical interrelations among observed behaviors, reflects the
agssociative connections among the problem~solving concepts in the learner's
mind. Further it was assumed that hypothetical tognitive constructs explain the
observable behaviors.

According to that model, the knowledge can be divided into content, structure
and implementation types of knowledge. The three types of knowledge can be
expressed in various levels of abstraction and formality. The formal
expressions of the different knowledge types tend to be highly correlated, while
the informal expressions of content, structure and implementation aspects are
more distinct. s )

The structural lawfulness revealed in the language and the knowledge-type
plain implies a relation of hierarchy to hold between natural language and
formal one. The rationale for this relation is that a formal computer language
is conceptualized as a restriction of a natural language. From this result it
can be implied that performing of programming ¢! %  ;hould always start with
using the natural language before applying the formal computer language. This
suggestion holds whatever type of knowledge of the three is being discussed.

In order to identify the source of difficulties the learner has in performing
any given task, it is necessary to distinguish between two stages in the process
of problem solving. The first concerns the understanding of the problem at hand
and the ability to describe the solution in natural language. The second stage
deals with f‘ormuluting the problem as a computational process expressed in a
formal language. Very often the learner's difficulties are in making the
connection between the informal level (using the natural language) and the
formal one. It is worthwhile indicating that these two stages can be utilized
both in the cowputer science uiscipliine, where the formal language is any
computer language, and in mathematics where the computational process'is
expressed in the appropriate formal mathematics language.

The structure which represents the relations among elements of the knowledge
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types, reflects no notion of order among the elements. This implies that no
preference among these elements is suggested when a task is to be performed.
Thig finding has an important educational implication in the process of
teaching. It means that it is important to analyée a given task concerning each
of those three types of knowledge separately. Dealing with each element
independently of the two others, emphasizes different aspects of the same
problem and thus, eﬁables better understanding of the problem at hand. Those
relations among the knowledge types hold whatever language of the two is being
used. For the designing of tasks in teaching it means, that students will be
asked to relate to the three types of knowledge expressing them in various
levels of abstraction and formality.

The structure of relation that was revealed between the first facet on one
hand, and the second and the third on the other hand, reflects no dependency.
This means, the level of familiarity of the task is independent of the two other
facets since it depends on the individual learner. The relation implies as
well, that the interrelations between language and type of knowiedge will remain
unchanged in different tasks. The findings ewmphasize the importance of
exhibiting both familiér and unfamiliar tasks in the teaching processes, while
starting with familiar problems. The finding that this structure is preserved
across different analogical tasks is consistent with the meaﬁing of analogy as a

structure preserving transformation.
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THE EFFECT OF SETTING AND NUMERICAL CONTENT ON THE DIFFICULTY OF RATIO TASKS

Dietmar Klichemann University of London Institute of #Zducation

Summary. Data from three written ratio tests confirm findings of other
researchers, that Setting and Numerical Content can have a marked effect
on the difficulty of ratio tasks. Further, the data throw light on the
effect of Setting and Numerical Content on students’ preference for
Within ratio or Between ratio procedures.
Introduction. Three closely related ratio tests (Tests Rx, Ry, Rz) were
developed, each containing about 30 items (a mixture of missing value and
comparison tasks) and taking about half an hour to administer. Each test was
given to just over 150 secondary school students (156, 153, 154 for Rx, Ry, Rz
respectively). Though the samples werevdifferent, they were comparable, in
as much as the tests were distributed randomly to students within their
mathematics classes. The students were in their 2nd, 3rd or 4th year of
secondary school (that is, between 13 and 15 years old) and five schools in
fngland and one in Wales took pért. No attempt was made to control for age,
mathematical attainment or for other background variables and the data are
not intended to provide norms; however, they do allow the effect of different
item types on students' performance to be compared. '

The tests were developed to investigate further some of the findings of
Hart(1981), Karplus et al (1983), Vergnaud(1983) and others. Some of the items
were based on tasks in the HMP texts (Harper et al, 1987) with which the

writer is involved.

Setting. The study of children's understanding of ratio undertaken by Hart(1961)
as part of the CSMS study seemed to indicate that students could more readily
identify a ratio relationship in, for example, a Setting involving a recipe

than in a Setting involving geometric enlargement. It was decided to investigate
this further in the present study, by using items related to Hart's but in which
the Numerical Content remained the same, or at least similar, while the Setting
changed. Data from the resulting items add weight to Hart's findings. Thus for
example, in the items shown schematically‘below, the Recipe item 1Z is much
eagsier than item 1Y, even though they involve identical numbers, which in tum
is much easier than the Enlargement item 6.3Y, even though it involves the same
"ratio factor" (xl%). Likewise, the Recipe item 2.1X is much easier than the

Enlargement item 6.1X though they have the same Numerical Content.
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Item 12 Item 1Y Item v.3Y Item 2.1X Item 6.1% .
(645 facility) (43% facility) (25% facility) (495 facility) (22% facility)
people TIGGS —r = people SUGAR

4 6 a4 6 Kls 12 6 17 Kie 7

6 . Als . Kz . 15 . /<15.

Item 1Y is identical to an item used by Hart and is based on the well known
Mr Short & Mr Tall task devised by Karplus(1970). Hart found that about half the
students in her samples gave the response 8, which is consistent with their
using the Addition Strategy (4+2=6, 6+2<8). In the present study, 413 of the
students gave this response to item 1Y and almost the same proportion gave the
corresponding response of 16 to item 6.3Y. On the other hand, only 19% gave the
Addition Strategy response to item 1Z.

It is of interest to speculate why ths enlargement Setting, in particular,
provokes more Addition Strategy responses than‘the recipe Setting (in turn, this
might throw light on the finding that the recipe Setting is easier). It is
possible that students less readily see that the Addition Strategy is inappropriate
in the enlargement Setting: increasing the gides of a rectangle, say, by the same
amount still produces a rectangle, and one whose shape might be difficult to
distinguish from the original if the increase is relatively small; on the other
hand, having two more eggs for two more people might well be seen as unjust,
given that in the original recipe there are more eggs than people.

Item 1Z was also given to 31 adult students at the Institute of Education,
who were asked to write down the method they used, as well as giving the answer.
Just over one-third wrote that they had used a method of this sort:

Half as many people again, so half as many eggs again
(that is, 6 eggs + 3 eggs = 9 eggs or 4,6 + 2,3 = 6,9).

This approach has variously been called Rated Addition (Carraher,l986), Scalar
Decomposition (Vergnaud,1983) or a Build Up method (Klichemann,1981; Hart,1981).
It seems likely that a sizeable proportion of school students would also use this
method on item iZ. However, the_method does not seem well suited to a geometric
Setting. “hile one can produce a recipe for 6 people by combining recipes for

4 people and 2 people, it is not so easy to see how an enlarged geometric shape
might be produced by combining ah object with one that is half as big (especially
if the object is a curly X...). In turn, this suggests that for some students

at least, the enlargement Setting is more difficult.
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Numerical Content. In general, the effect ot Numerical Content on facility seemed
predictable. Items with ratio factors of x1j and x25 tended to have comparable
facilities for a given Setting (eg 9.1Z and 2Y, below); items involving simpler
ratio factors (eg x3, as in 5Y below) tended to be substantially easier, whilst

items with more complex ratio factors {eg 1%, as in 5Z below) were much harder.

Item 9.1Z Item 2Y Item 5Y Item 52
(64% facility) (65% facility) (85% facility) (38% facility)
ounces choc
people POTATOES people of RICE bars OUNCES biscuits OUNCES
12 18 6 15 5 15 15 25
8 . 7 . 2 . 9 .

However, Numerical Content seemed to exert a secondary and more subtle effect
on facility in that it seemed to influence students' choice of Within ratio

or Between ratio procedures. This is discussed next.

Within and Between Ratios. For any ratio item of the sort discussed nere, it is

possible to construct two kinds of ratio. For example, for the Rice Salad item
(item 2Y) it is possible to construct the ratio of number of people and the
amount of rice (6:15) or the ratio of the different numbers of people (or the
different amounts of rice) (6:7). The first kind is commonly called a Within
or Function ratio, the second a Between or Scalar ratio (Karplus et al, 1983;
Vergnaud,1983).

For the items below, which are all in a fecipe Setting, it turns out that
the easier item in each pair is the one where t° 4ithin ratio is simpler that
the Between ratio (I would argue that 6:15 or x24 is simpler than 6:7 or xlg;
and that 12:150 or x12% is simpler than 12:10 or xg).

Item 2Y © Item 2.1X Item 9.42 Item 7.4X
(x23 =) (x25 4) (x125 -») (x12% )
(65% facility) (4%4 facility) (48% facility) (35% facility)
) ml SALAD
people RICE people SUGAR people DRESSING people OLIVES
6 15 6 7 12 150 12 10
7 . 15 . 10 . 150 .

The above sugzests that, in a recipe Setiing at least, students generally
prefer to transform the numbers that form the Within ratio rather than the Between
ratio. However, this does not necessarily mean that they prefer within ratio

[: iu:iacedures. Consider the numbers 6,15 that form the Within ratio peair for item 2Y.
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It is possible to transform the numbers using a Within or Between ratio procedure,
as is illustrated in the diagram below. The Within ratio procedure might involve
identifying the operator x24 (6x2%=15) and applying it to 7 (7x2i=17%, so 7 people
require 17% ounces of rice). On the other hand, the Within ratio pair 6,15 can be
transformed into the pair 3,74, say, and in particular, by using the Unitary
method, into the pair 1,2%. Though the latter might involve the same arithmetic

as is used to find the operator x23 (15:6, say), Vergnaud(1983) makes the very
important point that in this case a Between ratio procedure is being used:

6 people is transformed into 1 person, 15 ounces of rice into 2} ounces; threre

is no transformation from number of people to number of ounces of rice.

A Within ratio procedure on A Between ratio procedure on
item 2Y using the operator x 2% item 2Y using the Unitary method
people RICE people RICE
6 — 15 6 15
x2% L =6 |
17— . 1
$ox1 |
7 .

To investigate students' choice of procedure further, the test sheets on
which students had written their responses to items 2Y and 2.1X were scrutinised
for any indications of the methods they might have used.

Most students did not show any working, and those who did tended to provide
working that was ambiguous, as in the example below. The working is for item 2Y
and leads to the correct response, but it is not éleér whether the Unitary method
is being used (2% ounces per person, etc) or whether 2% is being used as an
operator (2% times as many ounces as people, etc).

15+ 6 =2.5 2.5x7 =17.5
Overall, of the 94 students who answered 2Y correctly, 39 showed some working,
of whom 37 wrote working that inciuded the intermediate value 2%. @%e remaining
two students wrote down ths expression 15§6x7.) This strongly suggests that most
of the students who gave a correct response td item 2Y either used a Within ratio
procedure involving an operator (x2%) or used a Between ratio procedure involving
the Unitary method (and/or Rated Addition).

Interestingly, none of the students who answered 2Y correctly, wrote down‘ﬁhe
intermediate value 1é(or 1.16, etc), which would almost certainly have indicated
a Between ratio procedure with lé as operator. This contrasts quite strongly with
item 2.1X, which involves the same numbers as 2Y, but transposed. Here, 69 students
answered the item correctly, with 28 students showing some working. Of these 28,
12 gave the intermediate value 1%. whilst only 4 gave the intermediate value 2%.

The relative frequencies of the values 1% and 2% suggest that, as with item 2Y,
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rore students chose to transform the Within ratio pair (using either a Within
ratio procedure involving an operator, or a Between ratio procedure involving
the Unitary method) -despite the fact that this time the Within ratio pair (6,7)
is arithmetically more complex that the Between ratio puir (6,15).

A similar picture emerges from an examination of students'

working for item 9Y, shown here on the right. Por this item the Item 9Y
(326 facility)

ticks SECONDS
21 35

ratio pairs 21,35 and 21,30 would appear to be of roughly equal

complexity, but of the 20 students who answered the item

correctly and showed working, 16 gave the intermediate value

derived from evaluating 35321, but none gave the value that 30 .

corresponds to 30:21.

The scrutiny of students' scripts confirms that in some settings (in particular
those involving recipes), students prefer to transform the Within ratio pair.
However, it is still not clear whether they prefer to do this using Within ratio
or Between ratio procedures. To pursue this further, some adult students at the
Institute of Education were given a recipe item (item 12) and asked to write down
as clearly as possible the method they used to solve it. Thirty-one students took
part, of whom 9 used a Between ratio Unitary Method and a further 11 used a Between
ratio procedure involving Rated Addition. Three students clearly used a Between
ratio procedure using an operator (eg 6 people = }/2 x 4 people, so no. eggs =
3/2 x 6 eggs). Two students seemed to use the Rule of Three, and the remaining
6 students' explanations were ambiguous. No one unambiguously used a Within
ratio method.

This small supplementary study, then, strongly suggests that, for recipe
settings, students not only prefer Within ratio pairs, but prefer to transform-
them using Between ratio procedures (in particuiar, involving the Unitary method
or Rated Addition). Further credence is given to this by a consideration of the
meanings that might be attached to the elements in these procedures: while the
Unitary method and Rated Addition are always working with "states" or "entities”
(4 people need 6 eggs, so 2 people need 3 eggs, 1 person needs l% eggs, eté).
the Within ratio operator procedure seems to be working with something less
tangible, namely a relationship between states, which might also seem rather
contorted (Whatever the number of people, there are 1% times as many eggs...).

Somewhat different conclusions have been drawn from studies by Karplus et al
(1983) and Vergnaud(1983). Karplus found no clear preference for Within or )
Between ratio procedures. However, this conclusion is based, essen<tially, on data
from just one item (shown below, left) which, furthermore, can be solved diréctly

by using a whole number operator (x2 or x3). Because of this, the item would seem

Q
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method and it is possible that any occurrences or it would have been counted ag
instances of a Within ratio procedure as it involves transrorming the Within
ratio pair 3,9.

Vergnaud did take account of the Unitary method. He found that even with
an item like the one below (right), which would seem to favour transformation
of the Within ratio pair, more students used Between ratio procedures than
Within ratio procedures, but the Between ratio procedure was generally not the
Unitary method. However, as with the Karplus item, Vergnaud's items can be solved
in one step, using a whole number operator, which might supress use of the Unitary
method. It can be argued, therefore, that the present study extends rather than

contradicts that of Vergnaud.

Karplus Ratio Item Vérgnaud Ratio Item
laps TIME hours LITRES of oil
Jane 3 9 7 21
Phyllis 6 15 64 .

In comparing the Karplus and Vergnaud studies with the present study, it
should be noted that neither Karplus's nor Vergnaud's items used recipe Settings,
though they did use Settings involving quantities of different dimensions

(laps and minutes; hours and litres). The Enlargement items in the present
study involve quantities of exactly the same kind (cm lengths) and it is
interesting to observe that for these items the preference for transforming
Within ratio pairs rather than Between ratio pairs seems to be reversed
(though not necessarily the preference for Between ratio procedures). Thus,
for ekample. for the two items shown below (in full and schematically),
6.12 is answered no more successfully than 6.2Z, even though the ratio pair
2,8 is arithmetically much simpler than 2,5. This finding needs to be

investigated further.

Items 6.1Z and 6.22 Item 6.12
i - -
These two Js are exactly U R 3 (307% facility)
the same shape. 2= Jj2 =8
How- long : -
is the curve ET? .vevvw. :]~ > M
RU? wevenee Sa ., Item 6.22
(3065 facility)
72 5

T :r’ 5 .
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To summarise, the study supports the findings of other researchers trat
Eumerical Content and Setting can have a marked effect on students' success
rates on ratio tasks, In particular, the study showns that students are more
likely to use effective strategies on tasks in a recipe Setting than ones
that involve geometric enlargement. The study also suggests that in tasks
that involve a recipe Setting, students prefer to transform Within rather
than Between ratio pairs, but that they prefer to do this using Betwéen ratio
procedures such as the Unitary method. For tasks in a geometric Setting, the

first of these preferences seems to be reversed.

Dietmar Kﬁchemann, Institute of Education, Bedford ‘ay, London WC1H OAL, UK
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rmethod and it is possible that any occurrences or it would have been counted as
inastances of a Within ratio procedure as it involves transrorming the Within
ratio pair %,9.

Vergnaud did take account of the Unitary method. He found that even with
an item like the one below (right). which would seem to favour transformation
of the Within ratio pair, more students used Between ratio procedures than
Within ratio procedures, but the Between ratio procedure was generally not the
Unitary method. However, as with.the Karplus item, Vergnaud's items can be solved
in one step, using a whole number operator, which might supress use of the Unitary
method. It can be argued, therefore, that the present study extends rather than

contradicts that of Vergnaud.

Karplus Ratio Item Vergnaud Ratio Item
laps TIME hours LITRES of oil
Jane 3 9 7 21
Phyllis 6 15 84 .

In comparing the Karplus and Vergnaud studies with the present study, it
should be noted that neither Karplus's nor Vergnaud's items used recipe Settings,
though they did use Settings involving quantities of different dimensions
(laps and minutes; hours and litres). The Enlargement items in the present
study involve quantities of exactly the same kind (cm lengths) and it is
interesting to observe that for these items the preference for transforming
Within ratio pairs rather than Between ratio pairs seems to be reversed
(though not necessarily the preference for Between ratio procedures). Thus,
for eiample, for the two items shown below (in full ané schematically),

6.1%2 is answered no more successfully than 6.22, even though the ratio pair
2,8 is arithmeticelly much simpler than 2,5. This finding needs to be

investigated further.

Items 6.12 and 6.22 Item 6.12
Ol . .
These two Js are exactly U R S (307 facility)
the same shape. = Jl2 s
How long
is the curve ET? ...... . :r > o
RU? wenennn S Item 6.22
(305 facility)
8co I 2 5

T Tl5 -
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To summarise, the study supports the findings of other researchers trat
Numerical Content and Setting can have a markgd effect on students' success
rates on ratio tasks. In particular, the stu@y showns that students are more
likely to use effective strategies on tasks in a recipe Setting than ones
that involve geometric enlargement. The study also suggests that in tasks
that involve a recipe Setting, students prefer to transform Within rather
than Between ratio pairs, but that they prefer to do this using Between ratio
procedures such as the Unitary method. For tasks in a geometric Setting, the

first of these preferences seems to be reversed.

Dietmar Klchemann, Institute of Education, Bedford ‘ay, London WC1H DAL, UK
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SATISFACTION AND REGRET
ABOUT TIHE CHOICE OF MATH

HANS KUYPER and WILMA OTTEN

Institute of Educational Research (RION)
University of Groningen

Institute of Social and Organizational Psychology
University of Groningen

ABSTRACT

This paper deals with the choice of math as an examination Subject and the
satisfaction with or regret of this choice. More boys than girls appeared (0
choose math. We observed a tendency for girls to regret their choice more
than boys. Students not choosing math regretted their choice more than
students  choosing math. This was  especially the case for boys at lower
difficulty levels.  Probably they regretted their lesser future  possibilities
without math, the main reason for regret of no-math choice. The main reason
for regret of the math choice had to do with poor achievement in math. As
predicted by the attitude-model of Fishbein & Ajzen (1975), we observed a
quite strong relationship between the intended and actual choice of math. We
failed to predict satisfaction with the choice at a satisfactory level using
decisional variables measured a year ago. However, the role of .the careers
master’s believed opinion was remarkable in this prediction.

INTRODUCTION

Dutch general formative secondary education consists of a Low Level (LL), a Medium
Level (ML), and a High chcl.(HL) of difficulty (in dutch: MAVO, HAVO and VWO,
respectively). After passing three years of education LL and ML students have to choose
six examination subjects; one type of math may be chosen. The final examination takes
place after one or two more years ol education for LL and ML students, respectively. HL
students have to choose seven examination subjects after passing four years of education,
and the final examination takes place after two more years. Two types of math may be
chosen: math A (mainly ‘applied: HL-A) or math B (mainly 'pure’: HL-B). It is also
possible to choose neither one or both.

In a longitudinal study various aspects concerning the intended choice of math, the
actual choice of math, and satisfaction with the actual choice were studied at all
difficulty levcls. One aspect concerned the prediction of the intended choice of math by
means of the attitude-model of Fishbein & Ajzen (1975), which provides insight into the
decision processes underlying a choice. The attitude-model distinguishes two components
that influence the intention to perform a behavior: the aggregated .attitude towards the
behavior and the aggregated subjective nomm about the behavior. The elements of the
attitude and the subjective norm are product-terms of probability ratings .and importance

)
l: TC«lgs (for details, see Otten & Kuyper, 1988). Using multiple regression these product-

1395



E

O

188
terms (referred to as the decisional  variables hereafter), together with three  other
variables, predicted 64%, 76%, 50% and 73% of the variance in the intended choice at LI,
ML, HL-A and HL-B, respectively (Kuyper & Meculenbeld, 1988, Otten & Kuyper, 1988).

The other three variables were sex of student, math-achievemnent (ie., the mean of
the math grades on the previous two reports), and math-requirement (i.c., whether or not
math was requircd for the favored vocational training). The latier variable was a main
predictor  of intended math choice at all difficuly levels, cspecially for  boys.
Notwithstanding the fact that at all levels sex of the student was not included in the
regression  equation, - the dilferences  between the boys' and girls’ regression equations
could be attributed to gender differcnces in favored vocational trainings (Otten &
Kuyper, 1988).

‘The purpose of the present paper is to describe the actual choice behavior of the
students and the statisfaction with or regret of that choice at all difficulty levels. Do
differcnces exist between type of choice (math vs. no-math) and sex on these variables?
Which are (thc) major rcasons for regret? Given the fact that Fishbein & Ajzen (1975)
postulate that intended choice is the main determinant of actual choice behavior, we will
cxaminc the rclationship between intended and actual choice of math. Finally, we try to
predict actual choice and satisfaction with that choice using as predictors the decisional

variables, which predicted the intended choice [airly well
METHOD

The conducted longitudinal study coasisted of two measurements: the first before the
choice of examination subjects (May and June, 1986), the second after this choice (May
and June, 1987). The results reported in the present paper mainly concern the second
measurement. In this mcasurcment 2445 students from 16 secondary schools participated
(30% LL; 38% ML; 32% HL). A minority of the students also participated in the first
measurement (33% LL; 26% ML; 36% HL).

Variables of interest in the second mcasurement were: (1) the actual choice of math
(0=no-math chosen, l=math chosen), (2) the satisfaction with the particular choice
(1=very satisfied, 2=satisficd, 3=not satisfied but also no regret, 4=a bit ol regret,
S=regret, 6=much regret). Students expressing (some) regret of their choice (categorics 4,
5 and 6) wcre offered cleven or eight reasons for this regret, depending on the
particular choice regretted (math vs. no-math, respectively). The students were asked to
indicate whether the offered reason was a cause of their regret (O=no cause, .., 3=much
the causc). At HL these variables were asked for both types of math (A and B).

Only for students participating in both measurements it was possible to relate
intended choice (choose math: 1= not, 2 =maybe not, 3=maybe not, maybe yes, 4 =maybe yes,
5=yes) to actual choice behavior. Also only for these students we could predict actual

choicc behavior and satisfaction with their choice using as predictors the decisional
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variables measured fn the first measurement. These  decisional variables  counsisted  of
welve  atimde-elements  and  six  subjective norm  clements.  Besides  these cighteen
decisional  variables, the variables sex of student, rath-achievement and math-
requirement were used as predictors in  the  multiple regression analyses (see also

Introduction; Otten & Kuyper, 1988).
RESULTS

Actual Choice

The results regarding actual choice and satisfaction with this choice arc summarized in
Table 1. The second column of Table t shows that more boys than girls chose math as an
examination subject. In general the differcnce is about 30%, cxcept at HL-A (applied’)
where it is only 8%.

Satisfaction with the choice

Before discussing the data concerning satisfaction with the choice, represented in
Table 1, we want to stress threc points relevant for the interpretation of these data.
First, it appcared that 7% of the data on the satisfaction variable were missing. This
percentage is higher for boys than girls (8% vs. 5%) and higher for no-math choice than
for math choice (10% vs. 4%). Spcculating on this last finding, it is conceivable that not

answering this question is an indication of regret.

Table 1:Toral number of boys and girls, percentages of students choosing math, and percentages of

satisfacrion with and regrer of the choice. Hissing data are excluded.

MATH CHOICE NO-HATH CHOICE
1 math
N choice satisf., widdle regrecr satisf. middle regret

LL:  boys 297 83 81 15 4 48 45 8

girls 441 51 62 21 17 74 16 10
ML boys 402 76 T4 20 5 45 41 13

girls 527 48 74 17 9 68 21 10
HL-A boys 405 67 81 14 4 62 23 15,

girls 313 59 79 16 6 60 24 16
HL-B boys 405 60 83 13 4 - B4 11 5

girls 313 31 76 17 7 80 14

The second point relates to the intcrpretation of the ’not satisfied but also no regret’
category. It appeared that a considerable number of students in this catcgory also scored
the subsequent reasons for regret, although they were nor asked to do so. For this
reason the category might be better interpreted as 'satisfaction on the one hand, regret
on the other’. This catcgory is rclerred to as the Middle category (M) hereafter.
o Third, it appcared that the ‘regret’ and 'much regret’ calcgorics> were hardly uscd;
ERIC ..
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of the relatively few students indicating regret about 75% scored the a bit of regret’
category. For this rcason the three regret categories (Categorics 4, S and 6) arc taken
together and referred to as Regrer category (R) lhereafter. Also the two satisfaction
categories (calc!,ongs 1sand 2, in which th¢ [requencies were moge cqual distributed) arc
taken logclhcr and reffered (o as the Satisfaction catcgory S).

Table 1, columns 3 through 8, shows that most students (714% S; 18% M; 8% RY were
satisfied with their choice. In general it scems that less students were satisfied with a
no-math choice (69% S; 21% M; 10% R) than with a math choice (6% S; 17% M; 7% R).
The main exception arc the LL-girls. Looking at scx, there seems (o be a slight
difference in satisfaction: girls (72% S; 18% M; 10% R) seem (o regret their choice more
than boys (75% S; 19% M; 6% R). The exceptions are found in the no-math choice at LL
and ML. Here we find a remarkable high percentage of boys with "mixed feclings™ about
lhcnr choice (LL 46% S, 45% M, 8% R; ML: 45% S, 41% M, 13% R).

COnsldcrmg tevel of. difficulty, Table“1 stows that the mest satisfied stiidents are
found at HL-B (81% S; 14% M; 5% R), [ollowed by HL-A (73% S; 18% M; 9% R), LL
(71% S; 19% M; 10% R) and ML (69% S; 22% M; 9% R). In general, the students were most
satisfied with their choice at HL-B (math and no-math choice) and HL-A (math choice,
only). The students werc least satisfied with their no-math choice at HL-A, ML and LL.
Reasons for regret
Only the students indicating regret (Table 1, columns 5 and 8) are included in the
analysis of the importance of the reasons for regret. In case of regrelting the math
choice, cleven rcasons were offered. The most important rcason was ‘math was very
difficult this year’ (overall mean 2.1), [ollowed by ’afraid -of failing the year’ (1.8) and
oo fow grades on math’ (1.6), which arc related to the first (and to each other). The
next reason was in fact a reformulation of regret T wish 1 had chosen another subject’
(1.1), followed by "I had to spend a lot of time on math at home’ (1.1) and 'l did not
like math this year' (1.0). The next two reasons staic that mat* is not necessary for the
intended (vocational) study and profession (1.0 and 0.9). ‘tu. least important reasons werc
I did not like the math teacher (0.7), I did not like the fellow students’ (0.2), and 'my
parents forced me lo take .ma(h' (0.1).

In casc of regretting the no-math choice cight reasons were offered. Evidently the
most important reason was 'l have less possibilities without math’ (1.9), followed by
'math is required for the (vocational) study I intend to follow (0.9), 'math is nccessary
for my future profession’ (0.7) - which arc rclated to the first - and ‘I wish I bhad not
chosen math’ (a rcformulation of regret). The other four reasons were not important at
all. On both sets of recasons the means for LL, ML, HL-A and HL-B did not deviate
systematically from the overall mcans, neither did the tmeans for boys and girls.
Intended and actual choice
At all difficulty levels the Pearson product-moment correfation between intended and

actual choice is quite high: LL r=081, ML r=093, HL-A r=079, and HL-B r=0382.
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Prediction of actual choice and satisfaction

Table 2 shows the explained variance in various criteria at all difficulty levels by the
decisional variables, sex of student, math-achicveinent and math-requircment. The numbers
in column 1 of Table 2 slightly differ from the explained variances mentioned in the
Introduction, because the analyses in Table 2 are performed on the students participating
in both measurements, whercas the before-mentioned cxpluiucd variances resulted from
analyses on all students in measurement 1. Comparing column 1 and 2 in Table 2 reveals
that the predictor variables of measurement 1 explain about 20% less variance in the
actual choice behavior than in the intended choice behavior. The exception is at ML,
where the differcnce is only 8%. The predictor variables cntering the regression cquations
of actual choice are similar to the equations of intended choice and the latter are

reported clsewhere (Otten & Kuyper, 1988, Kuyper & Meulenbeld, 1988).

Table 2: The explained variance (100xR?) in intended choice, actual choice, and satisfaction with
the particular choice. Batueen parentheses the maximum number of subjects in the multiple

regression analysis.

INTENDED CHOICE ACTUAL CHOICE SATIS. MATH SATIS. NO-MATH
LL 63 (195) 43 (195) 27 (156) 29 (33)
HL 75 (201) 67 (201) 5 (116) 12 (83)
HL-A 44 (173) 27 (173) 10 ( 38) 24 (39
HL-B 74 1166) 54 (166) 20 « 72) - (2

The percentages explained variance in columns 3 and 4 indicate that predicting
satisfaction with the actual choice in measurement 2 by the predictor variables of
measurement 1 was oot quite a success. The best results arc found at LL where 29% and
27% of the variance in satisfaction with thc math and no-math choice, respectively, was
explained. The worst result is found at HL-B where no prediction of the satisfaction with
the no-math choice was possible, because of the small correlations between the predictor
variables and the criterium. Despite the small amount of explained variance in the
satisfaction with the choice, we will briefly discuss the predictor variables entering the
regression  equations.

In Table 3 the criterium variable, satisfaction with choice, is mirrored; so the
higher the score on satisfaction, the more satisfied with the choice. At LL the students
were more satisfied with their math choice when they were a boy, had higher math
grades on their previous two reports, saw more possibilities in the future with math as
an examination subject, spent less timc at math home-work and when they liked their
math teachers. Considcring the no-math choice, LL-students wecre more satisficd when
they saw less [future possibilitics with math as an examination subject and (peculiarly)
expected their math grade to be high at thc examination. At ML the students were more
satisfied with thcir math choice when they thought their friend's oOpinion was nof to

“~'\osc math as an examination subject. The ML-students werc more satisfied with a no-
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math choice when math was not a requirement for their favored vocational training and
when they expected to stay together with their friend in the same school-class doing so.
At HL-A the students were more satisfied with their math choice when they need not to
take extra matl-lessons and thougt their careers master’s opinion was 10 do so. Also
HL-A students were more satisficd with their no-math choice when they thougt their
carcers master’s Opinion was to do so and their friend’s opinion was, in contrast, (0
choose it as an subject. Finally, the HL-B students were more satisfied with their math
choice when they had higher math grades on their previous two reports and thought

math was nccessary for their future profession.

Table 3: The elements includad in the regresaion equations predicting the satisfaction with the
particular math choice. Represented are the p-weights. the correlation of the predictor

with the criterium (x 100) between parentheses; the criterium (satisfaction) is mirrored.

LL ML HL-A HL-B

MATH NO-HATH HATH NO-MATH HATH NO-HATH HATH
R* x 100 27 29 5 12 10 24 20
REQUIRE -27 (-24)
SEX 19 (23)
ACHIEY 16, (24) 31 (38)
PROEESSION 25 (34)
FUTURE POSSI1BLE 30 (37) -41 (-40)
HOME -WORK 15 (1N
EXTRA LESSONS 21 (20)
EXAMINATION MARKS 36 ( 33)
HATH-TEACHERS 19 (26)
FRIEND 1N CLASS -25 (-21)
FRIEND'S OPINION -21 (-21) 36 ¢ 10)
CAREERS HASTER'S O. . 25 (25) -54 (-37)

Generally spcaking a quite divergent picture emerges . Table 3, regarding the
predictors of the satisfaction with the (mo-)math choice next year. We like to draw the
atteation to four elements in this picture. First, the fact that sex of student is a
predictor at LL for satisfaction with math choice. Second, both at LL and HL-B the math
grades on the previous two reports arc predictors of the satisfaction with the math
choice. Third, At LL the amount of possibilitics in the future with math as an
examination subject is a predictor of the satisfaction of both choices. Fourth, at HL-A
the careers master’ believed opinion about choosing math as an cxamination subject is

also a predictor of the ssatisfaction with both choices.
DISCUSSION

Despite the cfforts of the Dutch government to stimulate girls to choose math as an

@ :xamination subject, they still choose it less than boys. Only the more ‘applicd’ math
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version at HL is chosen by (almost) equal numbcers of both sexcs. Considering the
satisfaction with their choice there secms to be some difference between  the  sexes.
There is a slight tendency that girls really regret their choice more than boys.

More striking is the fact that not choosing math is more regretted than coosing
math. Especially the high percentage of boys at LL and ML haviug mixed feelings about
their no-math choice is surpising. Probably they realize after their choice that they have
less possibilities without math, which was the main reason for regret of the no-math
choice. On the other hand those "mixcd” boys may not have been the most brilliant math
students, considering the fact that the main reasons for regret of the math choice were:
‘math was very difficult’, ’afraid of failing this year’ and 'too low grades on math’.

The relationship between intended choice and actual choice was quite strong,
supporting the poslul-a(iOn of the Fishbein & Ajzen model (1975) that intended choice is a
determinant of actual choice behavior. Using the decisional variables, sex of student,
math-achievement and math-requirement of the first mcasurement to predict the actual
choice in measurement 2 proved to be less successful than the prediction of intended
choice. The best prediction was at ML where 67% of the variance in actual choice could
be explained, the worst prediction was at HL-A where only 27% of the variance could be
explained. : ) . . -

The attempt to predict the satisfaction with the choice with predictor variablc.g
measured one year beforc failed to reach a satisfactory level The explained variances
varied between 0% and 29%. Remarkable was the role of the carcers master’s believed
opinion in predicting satisfaction with the choice at HL-A; irrespective of which opinion,
when the students acted accordingly, they were morc satisfied with their choice. Also
expected possibilities in the future with(out) math and math-achicvement appeared to be

predictors of satisfaction. The latter two relating to the main reason(s) [or regret of the

(no-)math choice.
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INTRINSIC VERSUS EUCLIDEAN GEOMETRY: 1S THE DISTINCTION
IMPORTANT TO CHILDREN LEARNING WITH THE TURTLE?

Chronis Kynigos
institute of Education University of London

Abstract. This is a report of case - study research whose aim was to
investigate children's criteria for choosing between Intrinsic and
Euclidean geometrical notions while employing the turtle metaphor in 3
Circle microworld in Logo. Two 11 - 12 year old Logo - experienced
children worked collaboratively within the microworld for 24 hours in
total. The analysis- shows that the children did not seem to find
qualitative differences between the nature of Intrinsic and Euclidean
notions. Instead, their choices were influenced by certain broader aspects
of the mathematical situations generated during the study.

Research into the learning processes of children engaged in Logo programming
activities has provided substantial evidence that Logo can be used as a means
to generate rich mathematical environments for children to act upon in a
personally meaningful way (Noss, 1985, Hoyles and Sutherland, in press).
However, it does not necessarily follow that children always use the
mathematics embedded in the Logo language. Regarding the learning of
geometrical content, for instance, researchers have shown that children do not
necessarily use geometrical ideas when doing Turtle geometry, an important
part of Logo (Hillel and Kieran, 1987, Leron, 1983); instead, they often restrict
themselves to the use of perceptual cues in deciding how to change the turtle's
state on the screen (Hillel et al, 1986). Furthermore, little attention has been
given to the nature of the geometrical content children can actually learn
while using the turtle metaphor, ie. when they identify with the turtle to
drive it on the screen.

Analyses of the geometrical structure of Turtle geormetry have characterised
it as Intrinsic (Papert, 1980, Abelson and diSessa, 1981, Harvey, 1985), ie. as
embedding the two following main geometrical principles: a) the turtle's state
is uniquely determined by its immediately previous state and b} there is no
reference to any part of space outside the turtle’s immediate vicinity.
Furthermore, Papert and Lawler argue that “the use of the turtle metaphor
(termed “intrinsic schema") by children draws upon intuitive ideas originating
from very early experiences of bodily motion (Papert, 1980, Lawler, 1985).

The research reported here was part of a wider research project aimed at
investigating the potential for children to use the turtle metaphor in Logo in
]:lillc)rder to develop understandings of a wide span of geometrical ideas belonging
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not only to Intrinsic, but also to Euclidean and Coordinate geometry (Kynigos,
1989). The evidence from this research project corroborates the previous view
regarding the intuitive nature of the intrinsic schema (Kynigos, in press). The
particular case - study reported here involved a pair of children working with
a Circle microworld and was aimed at questioning the implicit general
assumption that children's intrinsic schema can be a powerful tool mainly in
the learning of intrinsic geometry.

OBJECTIVES
The general aim of the Circle microworld case - study was to investigate the
criteria children develop in choosing between Intrinsic and Euclidean ideas
within the context of Turtle geometry.

The study involved a pair of children and consisted of two phases. In phase |
(which was of a preliminary nature), the children participated in a learning
sequence involving the construction and use of four circle procedures, each of
which embedded specific Intrinsic and/or Euclidean notions. The procedures the
children wrote as a result of the learning sequence are given in figure 1.1In
phase 2 (the main research phase), these four circle procedures were treated
as primitives of a Circle microworld. The children were given structured
tasks involving the construction of figures consisting of compositions of
circles. They had the choice of which of the four circle procedures to use in
constructing the figures (examples of the task figures are given in figure 2).
The specific research objectives in phase 2 were to investigate:

a) the extent to which the children used the geometrical notions embedded in
the structured tasks and the nature of the notions they used for constructing
the tasks' figures;

b) the nature of the children's implicit or explicit criteria for choosing
Intrinsic or Euclidean geometrical notions in their constructions.

METHOD

The pair of 12 year old children participating in the Circle microworld case -
study (Alexandros and Valentini), had previously had around 50 hours of
experience with Turtle geometry in an informal classroom environment. During
the case - study, the children worked collaboratively with the computer for 24
hours in total. The collected data included hard copies of everything that was
said, typed and written on paper. Verbatim transcriptions from audio tape,
Aribble files and written notes were used respectively

.
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PD FD S FD S/ S
END LT 90 PU
TO CIR19 :5 pp BK S+ :S/:S
CIR17 S END )
CIR9 :5 END TO TC :S
CIR1B S REPEAT 360 [MOVE :S RT 11
END END

Q Denotes a turtle state during the execution of the procedure

Denotes the turtle's state of transparency

Fiqure 1: The children's constructions of the Circle microworld's primitives

During the main phase (phase 2) the children were each given a copy of a task
figure and asked first of all to individually write down their strategy for
solving the task. They were then asked to colliza“orate by discussing their
strategies and trying them out on the compui.. in the process of changing
them or refining them. Finally, the researcher carried out semi - structured
interviews at the end of each task in order to gain further insight into their
criteria for choosing Intrinsic or Euclidean notions. A 80 minute session was
allowed for each task. The results from the analysis of the data are outlined
below. Specific episodes from the research are described in order to illustrate
the main points of the analysis.

0%o

) 0

o o o
TASK 4 TASKS  TASK7 TASK 8 TASK 9

Q igure 2. Examples of the structured tasks in phase 2 of the case - study
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RESULTS
At the end of the learning sequence in phase 1, even though the children had
ample time to construct and use the four circle procedures meaningfully and
although they seemed aware of their functioning, there were limits to which
they showed an explicit awareness of which geomelrical notions were
embedded within each circle construction.

In phase 2, the analysis of the children's choices between using Intrinsic and
Euclidean notions in constructing the task figures provided evidence of a
balance in their use of both kinds of notions, i.e. the children seemed to be
quite prepared to use both Intrinsic and Euclidean ideas in planning and
explaining turtle actions.

in order to illustrate the children's use of both types of geometrical ideas, an
example is given of an episode which took place during their solution of task 4,
fig. 2. The episode illustrates how the children saw the connection between the
positions of the centre points of the three circles. After having tried out
several strategies involving the construction of one circle after the other and
stumbling on the working out of the interface between the second and third
circle, Alexandros seemed to spot the uniformity of the lengths between the
circles’ centres by revolving the piece of paper on which the figure was
drawn, so that a bottom circle would go to the top and vice versa. Although the
children seemed enthusiastic about their “discovery” concerning the distances
between centres, they still did not consider the positions of the centres;
although they had decided on the length of the second interface, they turned the
turtle 45 degrees to the left apparently using their perceptual cues (fig. 3).

CIR18 40
RT S0
PU

FD 80
LT %0
PD
CIR18 40
LT 45

Figure 3: The children's perceptuatl strateqy in task 4

The researcher decided to prompt them to focus their attention on the
uniformity of the figure they had noticed from Alexandros' turning of the piece
qf naper. Their dialogue at this point illustrates how 'he relationship among
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the three centres was made explicit by the children;

V: “You know what I'm thinking? Why should it be 457 (the turn)
You know why? Since, if we join the three dots.. a triangle is
been done (formed).. an equilateral.”

A: "Equilateral.”

V: "Eh7"

A: "And the sum of the angles of a triangle.. is 1807"

V: "Look. It goes forward. It goes left, you know how much? {t
goes left 360 divided by 3. So, how much is it? 3.. 120. It goes
left 120.. it goes forward and does the circle.. (she observes
that the turtle's current heading is zero). 120.. 30 because !
was thinking that it's like that, so 90 plus 30.. (she types LT
30)." (brackets are used for the researcher's comments).

This new strategy involved a rather complicated but coherent use of both
Intrinsic and Euclidean notions. The reference to the two radii forming the
sides of a triangle and the centres of the circles forming its vertices implies
the use of Euclidean ideas. On the other hand, deciding on the turtle’s turning
after constructing each circle was based on a partitioning of a total turtle
turn. Furthermore, Valentini's argument for turning the turtle left from a zero
heading to face the top vertice of the triangle, was based on partitioning the
turtie's turn into a 90 plus 30 degree turn.

As implied from the above example, the findings in phase 2 suggest that the
children did not seem to find inherent qualitative differences between
Euclidean and Intrinsic ideas when they us~d them while employing their turtie
schema. An occasion where the children acwi...y expressed this view was
during a semi - structured interview after they had solved task 5 (fig. 2); the
children were comparing the CIR4 and CIR9 circle procedures (fig.1), having
used the latter in constructing the small circles of the figure in task 5.

V: “..the CiR4 and the CIR9 are the same, because..”

R: "The same?”

V: "l mean that they are related in this shape in particular. |
mean that it goes there, | turn left again, I give it a number, it
does the circle again | turn it right and take it back.”

R: "So what 1is it that makes them almost the same?”

V: "Right. That.. of course in one we know the precise.. (she
means length of radius) in the other one we don't know it, but
here in both cases we turn and we make the circle as usual,
while if | said that CIR4 and CIR18 were the same.. they are not

Aruitoxt provided by Eic:
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the same because in CIR19 it starts from the middle like TC and
in those two it starts from the edge.”

In this occasion, Valentini seemed to refer to the CIR4 and CIRS procedures as
a product of the turtle's action, implicitly de - emphasising how this action is
quantified. Her criterion for distinguishing the CiR4 and CIR9 procedures from
the CIR19 and the TC involved the notion of where the turtle started (and
ended) in constructing the circle, i.e. on the curve itself or on a point away
from the curve. In explaining why she thought CiR4 and CIR9 were “equally
easy”, Valentini subsequently said:

V: "Because both of them make a circle. A 36 - agon that is.
Especially from the turtle's point of view, the turtle would say
that 4 is easier. Because 4 is completely clear, you tell her ‘go
forward turn, go forward turn’ while in CIRS it does all that
thing.”

R: "So, for the turtle CIR4 is easier. Does that mean that for you
CIR9 is easier?”

V: "tt's the same.”

A: "It's the same.”

The indications that the children's criteria for using Intrinsic and Euclidean
notions were not primarily related to inherent characteristics of the notions
themselves, but rather on aspects of the broader mathematical situations
generated during the research, lead to a further prompting of which of these
aspects were important in the forming of the children's choices and why.

Two factors concerning the role of the intrinsic schema in the children’'s
choices emerged from the analysis. Firstly, they found employing the schema
meaningful and did not seem to favour one kind of notion or the other as a
consequence of having employed it. Secondly, their criteria for using the
schema tended to relate to its intuitive nature rather than to a particular type
of geometrical notions. The programming and modularity involved in the
children's strategies also influenced their choices on which notions to use.
However, their priorities in their decisions lay with the programming rather
than with what kind of geometrical notions to use. The children's critical
remarks on generalised rules involving Intrinsic and Euclidean notions referred
to whether the rules had been derived via an inductive method or not, rather
than on which kind of generalised rules were easier to understand. Finally, the
children expressed a preference for employing notions which they had
1Dreviouslg used in personally meaningful contexts rather than those presented
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to them through the school system. Their distinction between “personalised”
and “impersonal” notions, however, did not seem to be related to the
distinction between Intrinsic and Euclidean notions.

REPEAT 4 [CIR19 20 PU FD 40 PD RT 90)

TASK 8

Figure 4: The children's solution of task 8

An episode encapsulating the above issues occured within the context of the
children discussing their solution of a task - figure involving circles placed in
a square formation (fig. 4). Both children said that they preferred explaining
the turtle’s turn of 90 degrees by means of the partitioning of a tota! turn
rather than adding up the internal angies of the formed square. What is
interesting is not their preference as such (after all, they were using the
turtle to construct the figure), but the reasons they gave for and against the
two methods:

(The children's reasons on why they did not prefer the internal angles
method)

V: “.they tell us, that definitely it's 360 (she means that the sum of the
internal angles is 360 degrees) and that's it, you can't say anything, it's
definitely 360, | know and you can't ask, you can't do a thing”

A: "it's like | told you the other time. Geomietrt ‘urces us, we can't ask
her.. this, since it's been discovered that this is that much, that much
we'll write it. We can't ask her why is it like that and why is it like this
because theyll tell us because that's what it want's to be.

(Their reasons on why they preferred the total turn method)

V: "Because it's more natural.. yes it's more natural, now | thought of
that.. anybody can understand it..”

A: “Even if he doesn't know turtle at all”

R: “Tell me something. What does someone have to know to understand this
thing?”

V: "Nothing.”

As implied by the above example, the children did not seem to consider one
type of notions easier to understand than the other. Instead, their choice of
O ich one to use was influenced by other factors of the generated
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mathematical situations outlined above, such as whether using a notion had
been part of the children's personal experience. Therefore, it was ultimately
those factors which were important in the children's choices and not whether
one type of notions, Intrinsic or Euclidean, made more sense than the other.

CONCLUSIONS
The analysis has indicated that the children did not find qualitative

differences between the nature of Intrinsic and Euclidean notions while
employing their turtle schema in the Circle microworld. The case - study can
therefore be used to argue that there is rich educational potential in creating
microworld environments which on the one hand invite children to use their
intrinsic schema and on the other embody conceptual fields (in the sense of
Vergnaud, 1982) incorporating a range of geometrical ideas substantially
wider than the one provided by Intrinsic geometry.

~ ABELSON, H. & Di SESSA, A, (1981), Turtle Geometry: The Computer as a
Medium for Exploring Mathematics, MIT Press. _
HILLEL, J.,, & KIERAW, C., (1987), Schemas Used by 12 year-olds in Solving
Selected Turtle Geometry Tasks, Recherches en Didactique des Mathematiques.
HILLEL, J., ERLWANGER, S., & KIERAN, C., (1986), Schemas used by Sixth
Graders to Solve Turtle-Geometry Tasks, Research Report No. 3., Concordia
University, Mathematics Department.
HOYLES, C., & SUTHERLAND, R: (in press) Logo Mathematics in the
Classroom Routlege
HARVEY, B., (1985), Computer Science Logo Styte, Vols 1 & 2, MIT Press.
KYNIGOS, C. (1989), From Intrinsic to Non - Intri
Children's Understandings in Logo - Based Microworlds, Unpublished Doctoral
thesis, Institute of Education University of London
KYNIGOS, C. (in press) The Turtle Metaphor as a Tool for Children Doing

Geometry, M.I.T. press

LAWLER,R.(1985)Computer Experience and CognitiveDevelopment Ellis Horwood
LERON, U., (1983), Some Problems in Children's Logo Learning, Proceedings of
the Seventh international Conference for the Psychology of Math. Educ.346-352
NOSS, R, (1985), Creating a Mathematical Environment through Programming:
A Study of Young Children Learning Logo, Doctoral Thesis, published by
University of London Institute of Education.

VERGNAUD, G., (1982), Cognitive and Developmental Psychology and Research
in Mathematics Education: Some Theoretical and Methodololglcal Issues, For the
Learning of Mathematics, 3., 2, p.31-41.

ERIC  gegr copy AVAILABLE




E

202

MATHOPHOBIA:
A CLASSROOM INTERVENTION
AT THE COLLEGE LEVEL

Raynald Lacasse, Université d'Ottawa.
Linda Gattuso, Cégep du Vieux-Montréal.

Following an investigation conducted with mathophobics students
(Gattuso, Lacasse,1986), we formulated a set of working
hypotheses for mathematics teaching. This new mode! was put to
use in a regular class of at the college level. The main objective was
to create an environment in which the affective aspects of learning
mathematics would be recognized and coped with, along the lines
determined by our former research, through genuine mathematical
activities. (This workshop will be presented in English)

1 Cheminement

Ce texte présente les résultats d'une recherche menée en vue d'articuler un
modeéle d'intervention en classe qui permette a I'éléve de poursuivre des activités
mathématiques dans un contexte qui minimiserait 'émergence de réactions négatives
face & cette démarche. Nimier (1976), Tobias (1978), Blanchard-Laville (1981) et
Blouin (1985,1986,1987), entre autres, font apparaitre limportance du coté affectif de
Ienseignement des mathématiques; nous nous intéressons particulierement a ces
aspects négatifs qui sont recouverts par le terme "mathophobie”. Notre modéle devait
s'inspirer des résultats obtenus dans notre recherche : "Les mathophobes: une
expérience de réinsertion au niveau collégial.” (Gatt.. ~ cacasse 1986).

Cette premiére étude nous a permis d'analyser le phénoméne de la
mathophobie dans le cadre d'ateliers qui avaient pour but de réconcilier un certain
nombre d'éléves ayant un vécu négalif face aux mathématiques. (Lacasse,Gattuso,
PME XI, 1987). A l'origine, il s'agissait de voir s'il était possible de modifier I'attitude
des éleves face aux mathématiques.

Les résultats de notre premiére recherche auprés des mathophobes sont
regroupés autour de treize énoncés ou hypothéses qui semblent nous indiqder un
ensemble de conditions permettant de créer un environnement favorable a
apprentissage des mathématiqyes, du moins en ce qui concerne I'aspect affectif. Par
contre, ces hypothéses avaient &té générées dans un cadre bien spécifique: celui des
ateliers "Phobie des maths". C'est ainsi que nous avons été amenés a prévoir un
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deuxiéme volet a cette recherche. L'analyse des résultats obtenus a mis en évidence
un certain nombre de facteurs sur lesquels les enseignants peuvent effectivement
intervenir dans une démarche didactique réguliere. Une partie des résultats a été
présentée au PME XIlI (1988). Nous aimerions maintenant compléter cette
présentation, 4 la lumiére de I'analyse que nous avons faite depuis.

2 Les problémes d'implantation
Le commencement

La question cruciale, au debut, c'était bien slr de construire le cours en tenant
compte des hypothéses. Nos avions fait le choix d'une démarche trés orientée vers
I'activité de I'éleve.  Or, l'environnement physique au sens large nous améne
beaucoup de contraintes. Lors des activités, les éléves travaillent en groupe mais les
locaux sont exigus et les tables de travail sont assez petites. De plus, la disposition
n‘est pas prévue pour ce genre de travail. Lors de notre intervention, le hasard nqQus
avait attribué des classes qui étaient libres a la suite des périodes de cours. Les
éléves en profitent souvent pour rester “en classe aprés le cours et poursuivre leur
travail ou leurs échanges. L'atmosphére demeure trés détendue. Dés le départ les
relations personnelles entre les éléves et I'enseignante sont favorisées. La présence
au cours s'en est ressentie de méme que la complicité entre les éléves.

La construction des activités

Nous avons pu expérimenter plusieurs activités utilisant du matériel concret. La
plupart du temps, le matériel est bien regu des éléves, méme s'il n'est presque jamais
destiné au collégial. L'enseignant doit constamment inventer, imaginer et aussi
construire des supports concrets que les éléves peuvent manipuler. Il y a beaucoup
de travail a faire de ce c6té. Nous avons pu constater lors de la préparation des
protocoles d'activités, que trop souvent dans l'enseignement certains concepts
implicites sont pris pour acquis. Il est nécessaire qu'ils soient explicités. Cela est
surtout vrai dans le contexte de résolution de problémes. L'enseignant doit insister sur
la démarche de résolution de problémes et non seulement sur la solution ou sur le
contenu. Lors d'un cours a caractére non magistral, ce sera, entre autres choses, par
ses questions que I'enseignant pourra mettre en valeur ses processus, ses
démarches et surtout celles de ses éléves.

Les activités libres ont donné aux éléves I'occasion d'émettre des hypothéses,
d'échanger des résultats et de se poser d'autres questions. De plus, ils apprécient le
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fait de découvrir, cela leur permet de comprendre. Cependant, il;)y a tout un
apprentissage a faire pour eux et ce n'est pas évident. lis ont des difficultés a
travailler, a se développer une méthode. C'est pourquoi le réle de Fenseignant est
trés important. Il doit agir comme un guide: resituer I'éléve, relancer le travail, poser
des questions et éclairer a l'occasion mais sans rien imposer.

3 L'évolution des éléves: attitudes et comportements
La classe réguliére.

A la suite de l'expérience des ateliers, nous nous posions une question
fondamentale: est-ce possible de mettre en place cette fagon de travailler avec les
éléves réguliers? Or, bien qu'il soit difficile de voir des résultats immédiats sur le strict
plan de la performance, dans I'ensemble, nous répondons oui a cette question pour
plus d'une raison.

Il'y a eu sensiblement moins d'abandons, soit sur le plan formel (abandon de la
session), soit sur le plan de l'activité quotidienne. Lors des entrevues, nous avons pu
constater 'effet généralement positif de notre approche. Les éléves expriment avec
grande facilité leurs réactions parfois négatives, parfois positives par rapport au cours,
aux mathématiques.

Le phénoméne du déblocage chez les éléves.

Nous avons pergu, en cours de session, un changement chez certains éléves,
un déblocage par rapport aux mathématiques. Pou l'éléve, il s'agit de se dire: je vais
réussir ce cours de mathématique et je vais prendre les moyens nécessaires a cette
réussite. Le déblocage peut étre identifié & un mom: i trés précis; c'est-a-dire, il peut
y avoir une période de gestation et puis, tout d'un coup, on trouve qu'on a du plaisir a
faire des mathématiques. Cependant, il ne faut pas penser que c'est permanent.
C'est plutdt un zig zag; mais, une personne qui vit une expérience positive en tire une
certaine capacité a faire face a la prochaine attaque d'anxiété de fagon un peu plus
solide.

Le vécu des éléves: les activités ouvertes et la communication.

Dans les communications qu'on veut établir dans une classe, on cherche a
faire en sorte que les éleves partagent leur vécu mathématique. Evidemment, il faut
leur faire vivre quelque chose, parce que bien souvent leur passé mathématique est
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réduit au minimum. C'est le role des activités ouvertes. Ce style d'enseignement qui
consiste & ne pas trop donner de réponses mais a relancer le questionnement s'avere
plus efficace probablement lorsqu'il est utilisé, comme on I'a fait, de fagon trés
systématique.

Deux facteurs sont génants dans la poursuite de cette démarche.
Premiérement, il y a le programme, le systéme. C'est une énorme contrainte; les
objections des enseignants a propos du programme a suivre sont compréhensibles. |l
y a aussi le facteur relié au temps qu'il faut pour démarrer. Au début, l'incertitude est
totale. On se demande si les éléves qui vont avoir réalisé telle partie des activités
vont avoir réussi a couvrir tous les éléments.

Selon les dossiers scolaires, dix éléves sur 19 ont été récupérés
temporairement. On peut donc présumer que ce modéle d'enseignement favorise
I'apprentissage des mathématiques. Le taux de réussite assez faible de la session
suivante permet de supposer que l'intervention est positive mais peut-étre pas assez
longue. Un suivi serait nécessaire. Il fallait s'attendre a cette conclusion: il est
impossible de refaire en une session un mode d'apprentissage qui s'est installé
pendant des années. Dans I'ensemble, nous croyons qu'une étude plus compliéte du
cheminement des éléves devrait étre faite et devrait mettre en jeu un suivi sur
plusieurs sessions. A la lumiére de notre travail dans les ateliers de phobie des maths
et 4 la suite de nos deux expérimentations, nous croyons que la prochaine étape,
C'est de suivre un groupe d'éléves a travers tous leurs cours de mathématiques au
cégep. Nous pourrions alors mesurer la qualité de lintervention et la permanence
des acquis sur toute la durée de leur présence au cégep. '

4 Le jeu des relations et des perceptions
Canaux de communication

La forme de travail privilégiée dans notre intervention a été le travail d'équipe.
L'enseignante a mis les éléves dans une situation favorisant les échanges et le travail
de groupe. Nous y avons vu plusieurs avantages. Le travail en groupe permet une
activité mathématique qui se trouve souvent enrichie par des discussions qui émanent
des questions des éléves. Certains d'entre eux ont pu prendre confiance en eux et se
sont senti valorisés de pouvoir en aider d'autres. De plus les situations de résolution
de problémes permettent & certains éléves, et ce ne sont pas les forts habituels, de se
faire valoir; en effet, ces situations font souvent appel a d'autres habiletés que celles
généralement utilisées dans nos classes de mathématiques comme limagination, la
capacité de synthése, la vision globale.
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Le travail en groupe, nous avons pu lobserver, comporte cependant ses
difficultés. Les trés faibles et trop timides ne s'intégrent pas a une équipe, d'autres ont
tendance a trop se fier sur les voisins. Par ailleurs certains éléves plus forts n'ont pas
toujours envie d'aider les plus faibles. (Is mettent beaucoup de temps & travailler leurs
mathématiques et voudraient avec raison que les autres en fassent autant. lls ne
veulent pas perdre leur temps.

Pour les éléves au point de départ, verbaliser leur démarche n'est pas facile.
Mais le travail en équipe, surtout au moment d'activités plus exploratoires, améme
doucement les éléves a décrire ce gqu'ils font et ensuite ils en discutent et I'évaluent.
Ce procédé les aide & comprendre ce qu'ils font (que ce soit juste ou non) trop
souvent instinctivement sans aucune analyse. Ils sortent de ces échanges valorisés.
L'enseignant qui les écoute peut juger des acquis, méme si, & l'occasion, certains
éléves restent insécures.

Relations éléves-enseignant

Si l'apprenant prend conscience que les résultats découlent de son travail, il y
a de bonnes chances qu'il puisse les retrouver au besoin. L'euréka, c'est simplement
un signal trés important que la personne reste accrochée & sa démarche. Cette
réaction est aussi une forme d'auto-renforcement ou de renforcement interne et c'est
dans ce sens que le fait d'apprendre nous rend curieux et nous pousse & vouloir
apprendre autre chose. L'enseignant cherche donc a multiplier les occasions
d'émergence de ce signal qui ne peut survenir que dans les activités.

Les eléves prennent plaisir 8 comprendre et & réussir. lls sont par la suite plus
encouragés a poursuivre leur travail. D'autre part, I'enseignant doit faire en sorte que
les acquis soient conservés. Pour cette raison ¢t * alement pour favoriser une
certaine continuité dans les cours, il nous apparait primordial qu'il souligne les
découvertes des éléves soit individuellement ou en groupe a l'occasion d'un retour a
la fin d'une période de travail.

Un dernier point: le cours magistral sert aussi dans une bonne mesure a
transmettre le vécu de l'enseignant. Il est important que I'enseignant puisse montrer
ses démarches, ses conjectures, ses tatonnements. Dans notre cas, comme il y a eu
trés peu de cours magistraux, les occasions de tranmettre ce vécu se sont faites rares.
Cependant, nous restons avec le sentiment que cette dimension doit demeurer
présente & l'esprit de I'enseignant comme si le choix de cette formule didactique était
conditionné par le désir de transmettre une partie de son vécu mathématique.
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5 Le vécu de lenseignant

Premiéres constatations

Nous avons prété une attention particuliére au cheminement de I'enseignante
et il nous a semblé que les points suivants étaient les plus saillants.

D'abord la personnalité de I'enseignante,‘son "personnage” en quelque sorte,
est reliée a 1a gestion du cours comme tel. Par exemple, le fait de se rendre disponible
entre les cours a pu jouer dans le déblocage de certains éléves. Mais cette
disponibilité trés grande et la réponse que les éléves y font dépend dans une large
mesure de personnalités qui s'accomodent. Le rep test fait état d'une composante
importante pour I'enseignante: la éapacité pour I'éléve d'utiliser la ressource "prof".
Un manque de maturité de 'éléve sera mal regu ou mal pergu sur ce plan.

Deuxiémement, la structuration du cours, surtout dans les parties les plus
novatrices, pose des problémes. Il faut souvent créer du matériel nouveau selon une
démarche inhabituelle puisqu'expérimentale. La pression constante des régularités
du milieu engendre une fatigue qui, assez rapidement, va faire en sorte que
I'enseignant va retomber dans ses anciens schémas, ses anciennes habitudes. |l
aura recours a des méthodes d'enseignement plus traditionnelles, des méthodes ou
les éléves, comme I'enseignant, ne sont pas constamment confrontés a la recherche
du sens.

Les conceptions des éléves eux-mémes sont parfois des obstacles sérieux a ce
nouveau fonctionnement. Ce ‘sont toutes les fausses conceptions -qui jouent: les
éléves habitués a d'autres exigeances s'accomodent mal de ce nouveau réle surtout
s'ils croient qu'il ne se poursuivra pas dans les cours suivants. ’ '

Enfin, le modéle applicable semble s'orienter vers deux aspects principaux: un
enseignement visant surtout la communication ol l'importance est dans la
construction et I'utilisation du langage mathématique et un enseignement axé sur la
découverte ou le contenu mathématique est primordial. Ces deux aspects doivent
étre conservés a travers une étape de consolidation formelle des acquis. Cette
consolidation dépend de I'action de I'enseignant, par exemple au niveau de la
cléture de chaque cours ou de chaque séquence d'activités.

Les exigences en termes de disponibilité de I'enseignant

L'un des avantages de la méthode de travail par activités devrait étre de
permettre a I'enseignant d'intervenir plus précisément selon les besoins de chacun.
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Nous avons pu constater qu'il est possible d'agir ainsi en classe méme en dépit des
contraintes.

Par ailleurs, les éléves ont souvent eu recours a l'aide de 'enseignante aprés
les périodes de classes. Les éléves sentent qu'il y a toujours une possibilité de
demander de l'aide soit a I'enseignant soit aux autres éléves. lis arrivent ainsi a
dépasser leur timidité a poser des questions car, en général, ils n'y sont pas habitués
et ils ont toujours peur de paraitre ridicule ou stupide. La préparation par I'enseignant
de ce qu'on pourrait appeler I'environnement didactique doit donc inclure cette
composante.

En guise de conclusion

Dans I'état actuel des choses, les faiblesses des éléves se situent sur deux
plans: il y a I'aspect préparation au contenu mathématique et il y a la préparation &
travailler tout court. En tant qu'enseignant en mathématiques, nous trouvons qu'il y a
quelque chose de spécial & l'intérieur de l'activité mathématique. Ce n'est pas
nécessairement relié aux notions apprises a I'école; dans la vie de tous les jours,
quand se sert-on des mathématiques offertes au niveau collégial? Mais, dans la vie
courante, la formation mathématique conditionne-t-elle notre fagon de réagir a
différentes situations? Peut-étre que oui, mais comment? N'est-ce pas dans cette
direction qu'il faut chercher une raison d'étre a I'enseignement des mathématiques a
quelque niveau que ce soit?
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LE MICRO-ORDINATEUR, OUTIL DE REVELATION ET D'ANALYSE
DE PROCEDURES DANS DE COURTES DEMONSTRATIONS DE
GEOMETRIE.

Annie LARHER 1 et Régis GRAS @
Equipe de Didactique de I'Institut Mathématique - Université de Rennes I

Résumé. Les éléves frangais de 12 2 14 ans mettent en oeuvre leur raisonnement déductif,
principalement en géométrie. Les difficultés rencontrées sont trés importantes ; elles.
hypothquent quelquefois la suite de leur scolarité mathématique. L'étude présentée ici vise &
connaitre l'origine et la nature des erreurs les plus fréquentes. Nous utilisons pour cela le
micro-ordinateur qui s'avdre puissant outil de révélation et d'analyse des démarches des
éleves, en particulier dans le cas ol I'activité déductive se réduit & une simple inférence. Des
méthodes statistiques multidimensionnelles permettent de dégager les grandes structures de
comportements erronés. .

Abstract. French pupils, between the ages of 12 and 14 use deductive reasoning especially in
geometry. They have to cope with many difficulties which may jeopardize their success in
future mathematics courses.The study that we are submitting here aims at a deeper knowledge
of the origin and the nature of the most common mistakes. In order to achieve this we use the
micro-computer which appears to be a powerful tool to reveal and analyse pupils'ways of
reasoning, especially’ when the deductive activity is limited to a simple inference.
Multi-dimensional statistical methods provide us with the possibility of bringing out the main
structures of erroneous behaviours.

§1 - PROBLEMATIQUE.

. Des observations et quelques études plus approfondies de productions
d'éleves, de 4%me on particulier (13-14 ans), sur les problémes & démonstration
géométrique, ont montré la multitude et la grande variété des procédures
erronées des éleves. Certes, les erreurs puisent leur origine profonde dans
I'absence de signification de la preuve mathématique et dans une carence de
maitrise du lexique nécessaire (puisque, donc, or, car ...), mais également de
facon ou conséquente ou conjointe :

* dans une absence de rigueur dans ' .iculation dissymétrique des
trois éléments-clés de l'inférence : hypothese - tnéoréme - conclusion
* dans la prise en compte d'indicateurs extrinséques pour choisir
I'un’ quelconque de ces éléments-clés :
. indicateurs formels (structure, rythme, ...)
" sémiotiques (mot, lettre, symbole, .. )
A sémantiques (un sens voisin, une utilisation anté-
rieure, ...).

11 est difficile, voire impossible, pour l'enseignant de repérer a chaque
fois dans une copie d'éleve le type d'erreur commise et surtout sa répétition
chez l'éléeve, sa fréquence dans la classe et les conditions dans lesquelles
I'erreur s'élabore et apparait. De plus, il lui est encore plus difficile de trouver
pour chaque éléve les situations qui permettraient de perturber et micux,
d'éliminer les procédures erronées.

L'ordinateur, en échange, permet un travail plus individualisé et,
surtout, une sanction immédiate de l'erreur et donc un retour de I'éleve sur
ses procédures.
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§2 - METHODOLOGIE RETENUL.

Il semble donc important, pour micux traiter ensuite ces procédures
chez chaque éleve, de les identifier et d'en repérer les circonstances
d'apparition. Il parait nécessaire de limiter les variables en interaction et pour
cela de fournir a I'éleve des situations ot le sens entretenu par le but lointain .
de la démonstration n'est pas le moteur essentiel et o1 le lexique est réduit.

Pour cc faire, on établira une liste de faits mathématiques
(géométriques en l'occurence) pouvant tenir lieu, suivant les situations,
d'hypothéses ou de conclusions et une liste de théor2mes. Une inférence
incompléte - voire un probleme a4 démonstration - étant proposée, I'éléve devra’
choisir un ou plusieurs faits, un ou plusieurs théorémes pour que soit validées
l'inférence ou les inférences successives. La tiche de l'éleve sera exécutée a
l'aide d'un logiciel permettant un travail personnel, puis une analyse
individuelle de ses réponses (aprés éventuellement 2 essais).

Notre tache didactique et informatique (1) consistera alors, a plus ou

moins long terme :

* 3 construire des situations ou les variables sont contrdlables ;

* 3 identifier et interpréter les erreurs et les conditions de leur
émergence ;

* 3 construire un modele prédictif de procédures erronées ;

* 3 construire des situations ol celles-ci seraient déséquilibrées ;

* 3 élaborer des logiciels satisfaisant les objectifs didactiques.

Schématiquement, compte tenu de ces objectifs, le micro-ordinateur est
intégré sous 2 aspects :

* aide tutorielle de l'éléve dans une situation de probléme a
démonstration (logiciel D)

* gide pour l'enseignant & mieux comprendre les erreurs commises
par 1'élave et donc. si possible & les corriger (logiciels "Premiers Pas” et
"Multipas") .

L'évaluation du logiciel D (aide 4 la démonstration), souligne, entre
autres, trois difficultés :
1°) Les élaves, dans la conduite de la démonstration, butent sur des obstacles de
nature logique : difficultés a identifier avec précision
- 1a ou les hypothéses associées 4 une assertion restant a prouver
- 1a ou les conclusions découlant d'hypothéses données et d'un théoréme
- le théoréme justifiant que telle hypothése conduit a telle conclusion.
2°) Les obstacles rencontrés par 1'éleve sont aussi trés souvent d'ordre lexical et
discursif.
3°) Le nombre de variables didactiques a contrdler est élevé et certaines d'entre
elles demeurent difficilement maitrisables. Aussi, pour échapper 4 un
empirisme préjudiciable a la recherche-méme, nous allons chercher, 4 travers
une recherche incidente, a limiter les variables en jeu afin d'agir plus
efficacement sur elles. ’

Nous sommes alors conduits de fagon nécessaire a affronter différentes
questions liées & ces trois difficultés. Comment venir & bout de celles-ci ?
Comment aider les jeunes éleves (5¢m¢ et début 42m¢) dans l'apprentissage de
la démonstration, en commenc¢ant par celle 4 un pas, pour éliminer les
difficultés introduites par la rédaction ct la conception globale d'un probleme ?

0] Dans le cadre du Groupement de Recherches du C.N.R.S. : “Didactique et Acquisition des

connaissances scientifiques”. Le groupe de Rennes est constitué, ot ‘re les présentateurs de ce
fai'*n Maric-Dani2le Fontaine (Colldge de Combourg), Alain Nicolas (L.E.P. Victor-Rault),
O < Simon (Lycée Bréquigny), d'l. Giorgiutti, F. Ruamps (Institut Mathématique de
E l 15), de P. Nicolas et D. PY (Institut de Recherche en Informatique ¢t Systémes Alcéatoires
snnes) et de C. Boulard (Coll2ge La IHarpe, Rennes). Tous ces enscignants-chercheurs

paruicipent & cette recherche, a son expérimentation et son évaluation.
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Comment leur permettre de savoir faire un choix pertinent, parmi une
liste d'assertions et de théordmes, de triplets dont les termes sont :
- hypothese
- théoréme
- conclusion ?

Exemple : Questionnaire : 6 questions indépendantes. Hypotheses ct
théor2mes sont donnés. La conclusion est a trouver. (cf. analyse § 4).

Nous avons entrepris pour ce questionnaire le traitement statistique des
données recueillies suivant deux méthodes d'analyse : la classification
hiérarchique (selon I.C. LERMAN) et la classification implicative (selon
R. GRAS). Nous verrons plus loin les résultats que nous en avons déduits.

D'ores et déja, nous pouvons nous demander sur quoi s'appuie la
stratégie de décision de l'éléve dans cet exercice trés particulier qui consiste a
faire un choix parmi un ensemble fermé de solutions ?

Cette stratégie est nécessairement fort proche de celle déployée dans les
Q.C.M., et, en revanche, trées différente de celle qui est suivie dans les
démonstrations a plusieurs pas, dans les problémes ouverts et méme dans le
logiciel D. Ici 1'éleve doit seulement retenir ou rejeter un élément d'une liste. 1
n'a pas de véritable activité créatrice. De plus, le sens global n'est pas
mobilisable ; les seuls points d'appui sont le sens du pas de démonstration et
I'ensemble langagier des assertions ou théorémes dont il dispose. Nous avons
cependant remarqué, grice a la répétition, & l'accumulation et & la
concomitance d'erreurs, la stabilité de certaines procédures qui correspondent
4 des modeles de fonctionnement en équilibre aussi bien chez un éléve
particulier que chez 1'éléve en général. Les erreurs, que nous appelons tous
"erretirs de raisonnement”, relevent de causes profondément ancrées et pas
seulement d'ordre logique. Elles tiennent aussi & la méconnaissance des objets
traités (quand ce n'est pas du vocabulaire utilisé) et aussi, trés fortement, lors
de l'articulation  hypotheése M, conclusion , au pouvoir attracteur
de certains mots, certains signes ou symboles, certaines formes (structures de
phrases, rythmes,...). L'éléve assemble plus, quand il se trompe & partir d'un
critére "signe" que d'un critére "sens". Il va puiser dans les solutions offertes
les indices formels les plus vraisemblables, les pluz pe-tinents pour lui.

§3 - LOGICIELS DE REVELATION ET D'ANALYSE.
3.1. "Premiers Pas".

Il ne s'agit pas a proprement parler d'un didacticiel mais plutét d'un
outil de diagnostic.

a) Le module éleve :

L'éléve dispose d'une liste de faits (énoncés pouvant servir aussi bien en
hypothése qu'en conclusion) et d'une liste de théorgmes repérés par un
numére. Une démonstration & un pas - inférence - lui est proposée. Elle
comporte un ou plusieurs trous qu'il doit compléter. Toutes les réponses
fournies sont bien entendu conservées.

Exemples de questions. 1 et ?...,.3 ? il manque une hypothése et la conclusion
........... 5 scule I'hypothése est demandée (elle peut
compor t,er un ET).

Suivant le choix fait au départ par I'enseignant (module PREI’A) 'éleve
dispose de plusieurs essais ou non et la bonne réponse lui est donnée ou non.

b) Le module PREPA : préparation du professcur.
]: lCoquc quelques options que le professeur peut choisir (¢f. ci-dessus),
P tiel du travail de préparatlon est la constitution dcs fichiers de faits,
tncoremes, démonstrations, cxcrc1cc§ n
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Le fichier "démonstrations” contient les inférences "exactes” attendues
par l'enseignant et le fichier "exercice” localise les "trous”.

11 est & noter que l'ensecignant a l'enti¢re liberté de son exercice, tant du
point de vue du choix des théorémes ct faits que de leur formulation. Il a
I'entiére responsabiilté du choix des questions en fonction des variables
didactiques qu'il souhaite observer. Le logiciel est donc parfaltement neutre de
cc point de vue et personnalisable en fonction d'objectifs :

. Renforcement d'apprentissage du fonctionnement dun pas déductlf.

2. Bilan, recensement des acquis des éléves.
3. Révélation, analyse, diagnostic des erreurs pour une étude didactique.

¢) Le module BILAN.

Il comporte des compteurs standards gérant les fautes les plus
courantes, comme inversion hypothése-conclusion, et des compteurs non
standards qui permettent au professeur d'étudier de fagon plus précise des
variables didactiques.

3.2. MultiPAS.

a) Objectifs.

Comme nous l'avons vu, la vocation essentielle de "Premiers PAS" est le
diagnostic des procédures d'erreur commises par les éleves. Cependant son
utilisation nous fait découvrir d'indéniables apports au niveau de
l'apprentissage de la démonstration a un pas.

L'ambition de "MultiPAS" est de mettre plus l'accent sur 1'objectif
apprentissage : il sera proposé aux éléves de résoudre un probléme simple
mais complet, avec a sa disposition :

* des faits-données

* un fait-conclusion

* une liste de théorémes

* des faits "intermédiaires”.

Lopérationnalisation de cet objectif se poursuivra suivant deux axes :

1 - la reconnaissance du changement possible dans le statut d'un fait (un fait
démontré, qui apparait en conclusion d'un pas, peut étre utilisé comme
hypothése ou partie d’hypothése dans un pas qui suit) ;

2 - lenchainement des pas, avec la possibilité donnée éventuellement 2 I'éleve
d'inscrire ses pas dans l'ordre de son choix, y compris a partir de la
conclusion.

b) Conception générale.

"MultiPAS" hérite du logiciel précédent une conception en trois
modules : * préparation des exercices par l'enseignant ;
’ * recherche d'une démonstration par les éleves (toutes les réponses
sont enregistrées) ;
* bilan, exécuté aprés le passage des groupes d'élaves.

§4 - ANALYSES STATISTIQUES ET DIDACTIQUES D'UN QUESTIONNAIRE.

4.1. Présentation du questionnaire.

Un censemble de 6 questions est proposé a des éleves de la classe de 5é¢me (12-13

ans) aprés l'enseignement de quelques propriétés de la symétrie par rapport a

un point. A chaque question correspond une inférence que 1'éleve doit
© er en choisissant un des 11 faits suivants  titre de conclusion :

ERIC
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LEEALELLAAL AR
FAITS
cRltalLd AR LR

(MN) /7 (FR)
(CD) 7/ (EF})
(AB) /7 (CD)
(ABR) 7/ (EF)
MN=FR :
CD=EF

o] AB=CD

1 AB=EF

e, gONCGAR U

(1332222223333 5 44

214

(EF) ET (CD) SONT SYMETRIQUES FAR RAFFORT AU POINT I
CMN] EST LE SYMETRIQUE DE (FR] FAR RAPFORT AU FGINT I
(ABY ET (CD) SONT SYMETRIQUES FAR RAPPORT AU FOINT O

ALORS (D) /7 (D*7) )
FAR RAFFORT A UN FOINT EST UNZ

SI DEUX DROITES SONT SYMETRIQUES FAR RAFFORT A UN POINT ALDRS

THEOREMES

FEXEXTERXTETRLS

1 LA SYMETRIE CENTRALE CONSERVE LES LONGUEURS

z SI (DY //(D*) ET (D*)//¢D**)

3 LE SYMETRICUE D*UNE DROITE (D)

FARALLELE A (D)

4

FARALLELES

S DEUX SEGMENTS SYMETRIQUES FAR RAFFORT A UN FGINT
&

LA SYMETRIE cENTRALE CGONSERVE LES DIRESTITONS

DROITE (D7

ELLES SONT

ONT MEMZ LOHGUZIUR

Question. Hypothése et théoréme des listes ci-dessus étant donnés, trouver la
conclusion tirée de la liste des faits (2 essais sont possibles & chaque question).

DEMONSTRATIONS
?
HYPOTHESES THEOREME CQNCLUSION
3 trouver
e H:zg:;\i:e ;* (EF) et (CD) symétriques Le symétrique de (D) par rapport (EF) /1 (CD)
1 Conclusion : 5 ‘par rapport a I 3 un pol.. est (D')//(D)
Hypothése :3 . . . - S1 2 droites sont sym@triques
Q, {Théoréme b (AB)pSE fgg[)m:zm;t;iques par rapport 3 un point alors (AB)//(cD)
Conclusion : 6 elles sont //
Hypothése :2 P 2 segments symétriques par
Q3 {Théoréme : 5 [MFLRTS;KSZmetgigug %e rapport 3 un point ont méme MN = PR
Conclusion : 8 P arp longueur
Hypothése : 3 (AB) et (CD) symétriques La symétrie centrale co serve
. C n v
Q g:iz;z:ion . g* par rapport a O les directions (aB)//(cD)
Hypothé&se : 6ETH
Q. |Théorsme :a-|CAB)//(CD) et S1 (D)//(D') et (D')//(D") )/ /()
5 lconclusion :7 (cn) //(EF) alors (D)//(D") -
Hypothése :2 umd P
Thiordme . (MN] est symétrique de La symétrie centrale conserve ", )
Q N .8 [PR] par rapport 3 I les longueurs M= PR

onclusion :
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On peut schématiser les proximités formelle, sémantique ct
référenticlle, a priord, de ces six questions :

Symétrie .~ — —centrale Transitivité du
parallélisme

si ... alors....

a
@
6
-
9
"
&
I
199
)
£

s;n\é_:ne et
di.rcc;gihns~ Pad longueurs
.-
4.2. Résultats.
1°) Parameétres des- réussites.
a) Moyennes.
On. retrouve la hiérarchie présumée a priori entre les réussites E; aux 6
questions : R, (96,25%) , R, (78,75%) et R, (72,5%).
On a: R, = R¢ (87,5%)
R, nettement inférieur & R; , R, légérement supérieus & R;.
Le taux de réussite de Q4 (85 %) est un peu inférieur aux taux de
réussite de Q»3 et.Q6 (Q5 ne fait pas référence & la symétrie centrale ; son

théoréme est instancié). Il est nettement inférieur a celui de Q,. malgré la

méme formulation du théoréme en "si... alors..." ;. est-ce en raison de la double
hypothése ?

b) Coefficients de corrélation et 752 entre les modalités "réussites”
des 6 questions.

- Les plus fortes liaisons positives sont observées entre :
R, et R, (formulation différente du théoréme mais méme
contenu) : p = 0;38.
R et R (p-= 0,358) : est-ce que ce sont les mémes éléves qui ont
des difficultés 4 la mise en train (Q,) et 4 soutenir leur attention Q™
- R3._ et R5 ont avec toutes les autres réussites un coefficient de

corrélation trés proche de 0-et méme négatif sauf avec R4.

2°)_Analyse hiérarchique des réponses.
Nous utilisons la méthode de classification de I.€. Lerman. seclon
I'algorithme dit de la vraisemblance du lien.

Arbre hiérarchique des réussites.

(4»[

(&0} l

Q )
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L'arbre complet figure en annexe.

7.4. Analyse implicative.

Selon une méthode analo"uc A celle de I.C. Lerman, R. Gras niesure
I'implication entre attribut a et b a partir de l'indicateur de base E
ensemble des individus contredisant a = b.

Le tableau des implications permet de construire le graphe orienté,
transitif, pondéré, associé a la relation de quasi-implication.

aAb’

Arbre implicatif r i

A (affine)

—_—5 Transicivicé

—4_ du paral-
~>( (68151 5cne
Rg

§yrnétrie.§/
et paralléliswme

Si symél:r,i%ors

parallélisme

hrs
TRANSITIVITE DU
PARALLELISME

§ 5 - En conclusion, il semble clair que l'outil informatique s'avére puissant
au niveau didactique pour contrdler et activer certaines variables dont on
mesure mal l'effet dans les cadres traditionnels de l'expression orale ou écrite
de la classe. Il permet, en atténuant l'influence de l'affect dans la relation de
1'éléve au savoir, de faire émerger des procédures spontanées et naturelles et
embrassant des populations de taille importante (sans imposer un plan
d'expérience lourd et complexe), d'analyser des régularités dans ces
procédures . Ainsi , 1'émission de conjectures sur le plan des stratégies
d'ingéniérie didactique trouve un fondement moins empirique que celui qu'un
enscignant peut formuler au vu des productions des éléves de sa classe. Aussi,
nous continuerons dans la voie dialectique d'une part, de perfectionnement,
eflicacité et accessibilité de logiciels, d'autre part, émission, opérationalisation
et ¢valuation d'hypothéses didactiques. C'est, nous semble-t-il, 4 travers des
telles dualités que l'intégration du micro-ordinateur dans le processus
d'enseignement puisera son séns et convaincra de son utilité.

O
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CLASSIEICATION DE 31 MODALITES DE REPONSE
ANNEXE ET LES EFFECTIFS D'ELEVES CORRESPONDANTS

R, 1-3-5 £63)

—

—
w

1)

A Q2 3-4-3 1 redondance
(4) —
Q3 2-5-2

R, 3-4-6 (D

L)
Ry 2-5-8 @) S
= 68)
Lis 6,5-2-7
(14)

(11)

(9 1-3-1
Q 2-5-4 U2 J|°‘l

B {Qg 6,5-2-11
q, 3-6-3 LD

o
=~

Maintien des
instanciations,
changement des

Lia
Hyp
par

]
Q, 3-6-10 (41)

—H

Q, 1-3-2 RO

relations par rapport
3 l'attendu des
théorémes

changement des instan-
ciations des variables
changement des rela-
tions par rapport

3 1'attendu des théo-
rémes

= 0

changement des instan-
ciations ; maintient

du sens du thforéme
dans le choix|de la
conclusion

[

Q 1-3-9 L9
Q, 3-4-5 «4)
Qy 2-5-6 A4)
¢ {3 251 . &
Q, 3-6-9 L9
(12)
Qg 2-1-3 =
Qg 2-1-4 6]
Q, 3-6-5 &
g =75 '_—
Qg 65-2-3 D)
(10)
Q, 1+3-3
q 1-3-6 &
b {0, 342 2 [
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GENDER_DIFFERENCES IN MATHEMATICS LEARNING REVISITED!1)}

Gilah C. Leder

Faculty of Education

Monash University

Clayton, Victoria, Australia, 3168

Abstract

Over the last decade much attention has been focused by practitioners,
administrators, school systems, governments, as well as researchers, on
gender differences in mathematics learning. 1In this paper data
gathered through interviews in 1988 with students in grade three and
six classes are discussed. Particular emphasis is placed on affective
variables believed to impact on mathematics learning. It is argued
that summary statistics need to be supplemented with interview data for
an accurate and comprehensive description of continuing gender
differences in mathematics learning.
The National Policy for the Education of Girls (Commonwealth Scools
Commission, 1987) formalized quite explicitly the commitment of the
Australian government to gender equity in education. The proclaimed
policy summarised and built on practices and initiatives already in
place in various States and systems. Its recommendations included

the development of educational programs and related action in

primary and secondary schools ... which will enable all Australian

girls and boys to develop their potential.
Well before its publication, special funds had been made available for
programs mounted to redress the disadvantages faced by girls in
traditional education settings. Though not its main purpose, the study
described here allowed an examination of the impact of such
initiatives on factors associated with mathematics learning. While the
work, which is still in progress, is concerned with both cognitive and
affective factors, only information relating to the latter is
presented here.

IMS

The main aim of the study was to monitor students’ processing of
i3

teachers’ explanations. The participating teachers were informed that

) . .
[: \i(:; was the purpose which motivated the research. However, the data
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collection procedure used also allowed a number of gender diffefences
to be examined.

METHOD
Mathematics lessons were videotaped at various times during the school
year. Selected excerpts were replayed to the students in a one-to-one
setting to explore what they heard and processed when teachers
explained and discussed mathematical concepts. Analysis of these data
are still in progress.

Various strategies were used to facilitate rapport between the
students and the interviewer during these sessions. For example,
before turning to the videotapes students were asked questions about
their background, general interests, and reactions to different aspects
of mathematics lessons. These sessions were either videotaped or
audiotaped. Inspection of the students’ responses revealed a
sufficient number of continuing gender differences to warrant closer
examination of the data.

Measures of student achievement were collected on two occasions:
during terms 2 and 4,i.e., one quarter of the way through and towards
the end of the schoollyear respectively.

The sample

The sample comprised 94 students, 43 girls and 51 boys, in grades 3 and

6 in four different schools in the same region in Melbourne, Australia.

The schools were identified by a senior regional officer for their

interest in research and their progressive educational philosophies.

Instruments

The main data gathering instrument, i.e., for the data reported here,

consisted of structured interviews. Since their nature and scope

become apparent in the reporting of the results, they are not described
Q
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‘e detail here.



Two measures of sludent achievement were obtained: through the
administration of mathematics tests and through teacher rankings.
The Progressive Achievement Tests in Mathematics (Australian Council
for Educatlional Research, 1984) was administered to the grade three
students; The Class Achievement Tests in Mathematics (Australian
Council for Educational Research, 1976) to the grade 6 students.

Prior to the administration of the tests teachers were asked to
rank their students into three groups: above average, average, and
below average.

RESULT

No significant differences were found in girls' and boys' overall
performance on the mathematics tests. This held fér each class, at
each grade level, and for both testings. The broad overlap between
teacher rating and student score attained on the tests can be
summarised by reporting that in each class students rated above average
had the highest mean score, followed by those rated as average, with
the students rated as below average having the lowest mean scores.
However, a number of subtle differences were noted in teachers’ ratings
of their students. Despite the very similar performances of the girls
and boys on the tests, collectively teachers rated 25% of the boys but
only 14% of the girls in the above average group, and 18% of the boys
compared with 28% of the girls in the below average group. When asked
a comparable question about their own performance, 25% of the boys and
14% of the girls indicated that they considered themselves to be above
average; 10% of the boys and 28% of the girls below average. Responses
to a number of other questions are summarised below. Because of the
open ended nature of the data gathering technique, more than one option

was offered by some students to a number of the questions asked.

228  BEST COPY AVAILABLE
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*Spare Lime activities:
while there was much overlap in girls’ and boys' leisure time
activitiies, girls seemed to spend more time on sedentary indoor
activities; boys on active outdoor pursuits.

*Favourite lesson:
Mathematics was nominated by 51% of the boys and 21% of the girls;
sport by 18% of the boys and 9% of the girls; language by 14% of
the boys and 42% of the girls.

*Difficulty of mathematics
Thirty three per cent of the girls considered mathematics to be
casy, compared with 12% of the boys; 26% of the girls and 45% of
the bovs helieved mathematics ﬂn be difficult; the rest ‘couldn’t
say' or believed that 'it depends on the work’'.

When faced with a difficult mathematics problem, about two-
thirds of both the girls and the boys would ask the teacher for
help. S&rategies of trying again or returnfng to the problem
later were volunteered by about one-third of the boys and
approximately half the girls. Surprisingly, very few students
indicated that they would ask a friend for help.

*SLrafegy for catching up, after an absence
Friends featured strongly in the replies to this question. About
two-thirds of the boys and half the girls indicated that they
would ask a friend first. Often specific individuals, typically
of the same sex, were nominated. About a quarter of the boys and
40%Z of the girls would first turn to the teacher. The remainder
were evenly divided between ‘mum’, ‘dad’, and ‘don’t know’.

*Doing mathematics alone or with a partner
Despite some strong individual preferences, most stgdcnts

O
[E l(:‘ndicatod that they liked both.

“Bto1 COPY AVAILABLE 299
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*Perceived parents’ attitudes to mathematics
Approximately 20% of the boys and 10% of the girls indicated that
their parents had”said that mathematics was an important subject
and that they, the students, should try hard to do well. Some
40% of both scxes said that they had no idea what their parents
thought about mathematics or that they believed them not to be
particularly interested in it.
*Who is better at mathematics?
The majority of the students (75% of the boys and 60% of.Lhe
girls) believed that girls and boys were equally good at
mathematics. Nevertheless, 9% of the boys and 15% of the girls
expected girls to do better; 15% of the boys and 8% of tﬁe girls
boys to be better.
To supplement these representative summative data, a number of
student responses are reported at some length.
Katrina
Katrina is a grade 3 student. She scored or shared the top mark in her
class at both testings and is considered to be well above average by
her teacher. She does not have much spare time because

I usually go to gvm and when I am at home I like to go up and
play with the pets.

Mathematics is her favourite lesson at school. She thinks

mathematics is fairly easy if you know what vou are doing....I1f 1
listen 1 know what to do, if I don’t, I don’t know what to do, so
I listen.

She thinks that she is near the top of the class and can think of
nothing that she dislikes about mathematics. When she comes across a
difficult problem

I just try and wait to see if it's wrong. 1 try as hard as 1 can.
(If it is still wrong) | try and see if I can work it out again
because | was probably thinking of something else when I did it.
O
[E l(:he likes doing mathematics on her own and has some hesitancy about

o 3
working with a partner. £ Cj



Sometimes when | work with others they tell me. 1 don’t feel
quite as good because sometimes when they do that, they mis-tell
me and 1 end up with the wrong sum, ’cause they mis-told
me....(But.) I don’t mind helping others.

She thinks that. girls are probably better at mathematics than boys. In

fact
all the girls in our grade are a lot better at mathematics than
the bovs. ... I think you should try. Some people do learn more
than others. But it would be nice if we all learnt the same.
Then people wouldn’t tease you. In our grade they like teasing -
mostly the boys do.
Her parents think that mathematics is a good subject to study and that
it is a fairly easy subject to learn as well.
Simon
Simon is also in grade 3, in the same class as Katrina. He scored
eqnual first and equal second on the two testings and is also perceived
to be a good student by his teacher. He likes reading cricket
magazines in his spare time. Sport is his favourite lesson at school.
He really likes doing sums but gets frustrated when the teacher’s

instructions are not exact.

Like, when she says we’'re going to do 12 sums, éo I put down 12~
and then we do only 10.

He prefers doing difficult sums

especially something new that we haven’t done before.
when he comes across a difficult problem he simply goes over to the
teacher and tells her

I don’t understand this. And then she just explains it to me.
Gencrally he likes doing mathematics on his own. If he has been away
for a few days he asks his teacher for some extra help. Mis parents
think mathematics is ‘good’. Boys and girls, he believes, are about
equal when it comes to mathemat.ics.

Steven is a grade 6 student who obtained the sccond and third highest

© 3T COPY AVAILABLE
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scores in his class on the two testings. He is regarded as a good
student Ly his teacher. |In his spare time he likes

to build things with lego. And my mum said to learn my tables so
sometimes 1 do sums.

Mathematics is his favourite lesson at school.

It’s good. I like it. You need to learn it for when you go to a
job. Everyone has to know mathematics.

wWhen asked to describe a typical mathematics lesson, he said

They're good. First we usually do some work together. Then we do
the work on the board. You write in your book and work them out.

He particularly likes

Just sitting in the quiet. Figuring out things. Doing hard sums
and that. I don't like it when we have real easy ones.

His preference is for doing mathematics on his own because

it’s fun and quiet. | like working in a group a bit. Well, you
need to be cooperative.

1f he'd been away he would ask Nathan, his best friend, for help. He
believes that boys and girls are the same at maths:
Like a boy could do some things better than a girl, but a girl
could do other things better....My mum is real good at it. My dad
needs it to do diameters and things for houses at work. But he’s
not that good. Sometimes he gets stuck.
Helen
Helen is in the same class as Steven. She scored the highest mark at
both testings and is also described by her teacher as a good
mathematics student. In her spare time she likes to type, do
mathematics games on the computer or perhaps read. While she generally
likes school
I'd probably say mathematics is my favourite lesson because it’s
fun to do ... because I understand it and it’s easy. Some people
think it's hard but when you know what you are doing you enjoy it.
In a typical lesson

Mr. N. gocs through each question two or three times. Examples or
whatever.  And when he’s finished that, some of the people in the
class can ask (|ucst2132TI1en when that’s all finished we can

[:IQ\L(: start on our own

considers herself to be bne‘iéf the top at mathematics. When she



encounters a difficult problem:

Sometimes I ask Mr. N. and he gives me hints and | get it straight
off. Sometimes I just sit there and wait until it comes into my
head.

She can not say whether girls or boys are better at mathematics because

it all depends on how smart you are, not whether you're a boy or
girl.

Her parents
are pretty strict on maths. They sayv I’'’m not to {ool around in
maths so I'll pass and all that. They want me to be pretty good

in maths. My dad’s good and sometimes hc makes me these little
stories and I have to work them out.

CONCLUDING COMMENTS

In muny ways the data presented here merely confirmed those of earlier
research. Despite the considerable number of programs mounted to
promote equity in mathematics learning, girls and boys with comparable
achievement in mathematics perceived themselves, and were perceived by
their teachers, differently in a number of subtle ways.

The results were reported in two ways: through summative
statistics which emphasized between-group differences and through more
detailed interview extracts which fac{litated recognition of individual
and within-group differences. The former tend to reinforce popular
stereotypes while the latter are not only more likely to serve as a
chalienge to them but at the same time point to the students most at
risk. Collectively, the data reveal the continuing need to monitor
affective components of mathematics learning.

(1) The financial support of the Australian Research Council and the
assistance of Janet Clark with the data collection are gratefully
acknowledged.
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La résolution de problimes dans 1°enseignement des
mathématiques: compte rendu d°une expérience
aupreés d'enseigrpants du primsaire

Giséle Lenoyne et Frangois Comme
Université de Hontréal

Abstract

Mathematical problem solving is & part of the curricule for
primery and secondary school levels. Viewed by most of the teachers
and the authors of the curricula as & royal mean to construct
mathematical babilities and knovledge. problem solving heuristics
constitute an object to teach In order to get & better understanding
of thst phenomena. we conducted an experiment with teachers in whicl
they were invited to solve problems theF Judjed difficulls. Uc¢
discuss about the heuristics they used and to clarify the réle ot
Eathesatical probles solving in the teaching of Eathematics.

4. Discutamt des heuristiques. les enseignants découvreant que
les mathémpatigues ont un contenu

Intéressés A infléchir les conceptions des enseignants sur les
mérites d'un enseignement des heuristiques de résolution de problémes
mathématiques. nous les invitons & résoudre des problémes et a
discuter des heuristiques alors appliquées. De cette expérience. la
majorité des enseignmants ne retiennent que les connaissances
mathématiques qu'ils ont pu construire. Le compte rendu et 1'analyse
de cette expérience visent une interprétation de ce résultat.

2. La résolution de problémes dans 1‘'éleboration des savoirs. -

en mathématiques

L'activité des mathématiciens. productrice de savoirs savants.
est déclenchée et modulée par les problémes, les conjectures et les

questions envisagés par ces chercheurs (Brousseau, 1986). La
résolution de problemes caractérise cette activité de construction de
savoirs. Le =mathématicien partage 8ainsi avec sa commumauté

scientifique. non~seulement des savoirs mais égalemnent des savoir
faire. L'intérét des didacticiens et des enseigmants pour ces savoir
taire apparait pleinement justifié.
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L'intérét des enseignants pour la résolution de problémes,
a toujours été. Comme le fait remarquer Comne (1989). les problémes
sont des “archétypes dans 1'épistémologie commume* des enseignants
qui les proposent depuis des sidcles aux él2ves; cet intérét trouve
sa justification dans les astuces de raisonnement ou les heuristiques
qui ennoblissent cette activité qui apparait alors une manifestation
éclatante de 1'intelligence générale. La notion d'heuristique s'avére
également des plus commodes dans 1'interprétation des échecs ou des
difficultés des éléves en mathématiques. au centre d‘élaborations qui
préservent les identités des enseignants et des éléves. Enfin, les
enseignants ne peuvent généralement que recourir aux heuristiques
pour rendre compte de la construction de leurs connaissances en
mathématiques; ces heuristiques constituent également dans 1'échange
enseignant-éléves les entrées du modéle de construction de
connaissances que l'enseignant entend transmettre aux éldves.

La résolution de problémes est également un objet privilégié par
les chercheurs en didactique des mathématiques. Les études réalisées
depuis les dix dernitres années (Kilpatrick, 1985 Kintsch & Greeno,
1985; Krutetskii, 1976; Mayer, 1983 Schoenfeld, 1985. Vergnaud,
1981, 1982) ont modifié les perceptions initiales sur les
heuristiques de résolution de problémes; peu de chercheurs en
didactique des mathématiques ne songent maintenant A dissocier les
heuristiﬁuea de résolution des contenus mathématiques des problémes
et ne croient utiles d‘'imposer aux éléves des démarches de
résolution de problémes.

Ces modifications des comnaissances et des prescriptions des
chercheurs en didactique des mathématiques n'ont pas encore atteint
les enseignants et les curricula en mathématiques. Bien au contraire,
on observe depuis un certain nombre d'anndes wune inclusion
d'heuristiques de résolution de problémes mathématiques dans les
progranmes d'enseignement de cette matitre. On assiste donc a la
création d'un nouvel objet d'enseignement: les heuristiques . voire
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méme, les algorithmes de résolution de problémes. Ce g¢glissement
nétadidactique reléve-t-il d'une transposition didactique? Notre
interprétation des études du phénoméne de transposition didactique
(Chevallard, 1985; Brousseau, i986) nous incite & le penser.

4. Les obiectifs de la présente étude

Les questions suivantes sont & 1l'origine de cette étude:. a)
Quelles sont les connaissances des enseignants sur les heuristiques
de résolution de problémes? b) Quel rdle les enseignants
attribuent-ils & la résolution de probléimes dans 1'enscignement et
1'apprentissage des mathématiques? c) Quelles sont les heuristiques
que ces enseignants mettent spontanément en oeuvre dans la résolution
de problémes mathématiques? Correspondent-elles & celles qu'ils
préconisent dans leur enseignement? d) Quelles sont les
heuristiques que ces enseignants mettent en oeuvre dans une activité
de résolution de problémes étalée sur plusieurs jours, exigeant de
multiples tentatives de résolution de problémes jugés complexes ou
difficiles? e) Cette dernidre activité de résolution de problimes
modifie-t-elle leurs perceptions de la place et du rfle de 1la
résolution de problémes dans 1'enseignement des mathématiques?

5.La aséquence didactigque

36 enseigrimts (28 étudiants en formation des maitres et 8
enseignants en perfectionnement) participent & cette expérience.

5.1. premiére étape

Les enseignants sont d'abord invités & répomdre individuellement
aux questions suivantes: a) Quelles sont les heuristiques
(stratégies) de résolution de problémes mathématiques que vous
connaissez ou utilisez; parmi celles-ci. quelles sont selon vous les
plus efficaces? b) Quel rdle attribuez-vous & la résolution de
problémes dans 1'enseignement et 1'apprentissage des mathématiques?

O
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9.2, seconde étape

Une banque de problémes leur est ensuite présentée. Les problémes
retenus sont puisés des problémes discutés par Schoenfeld (1985) et
Hayer (1983). une traduction et ume adaptation sont effectuées. A
titre d‘'exemple, le probléme suivant: “Une distance de 363 km sépare
deux villes. Jean et Paul décident de se rencontrer. Si Jean
parcourt 1 km la premidre journée. 3 la seconde, 5 la troisisme et
ainsi de suite. et si Paul parcourt 2 km la premiére journée. 6 la
seconde, 10 1la troisiéme et ainsi de suite, quand se
rencontreront-ils?*

Les enseignants disposent chacun de 2 heures pour réscudre ces
problémes. Ils sont invités A essayer de résoudre tous les problémes
et & indiquer pour chacun les heuristiques qu'ils utilisent et 1le
temps de résolution. Leurs solutions sont ensuite examinées; 1les
problémes apparemment les plus difficiles sont retenus. Puis. chacun
des enseignants se voit contraint de résoudre le problame qu'il juge
le plus difficile: il dispose alors d'ume période de 2 semaines; il
enregistre sa démarche et rédige un rapport écrit de son activité.

Suit une présentation commentée des heuristiques de résolution de
problimes décrites par Schoenfeld (1985). Les analyses de chacun des
enseignants sont alors discutées en fonction de cette présentation;
des questions contrdlent cette discussion: Quelles sont 1les
heuristiques dont tait état votre analyse? Quelles sont 1les
connaissances qui président & 1'évocation de 1l'une ou 1l'autre de ces
heuristiques? Est-i11 possible d'ordommer ces heuristiques et de
suggérer une séquence d‘'application de ces heuristiques? Existent-ils
des heuristiques plus efficaces selon le contenus mathématiques?

5.3. troisiéme étape

Quatre équipes sont formées et doivent résoudre 1le probléme
suivant:

Un automobiliste part de Hontréal et se rend & Québec: il
O
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effectue ce trajet & une vitesse moyerme v. A quelle vitesse doit-il
revenir & Montréal, s'il veut que la vitesse moyenne pour tout le
parcours (aller-retour) soit 2 v?

Une heuristique différente est imposée & trois des équipes, 1la
derniére équipe pouvant choisir les heuristiques qui lui semblent
appropriées: équipe 1: représentation graphique; équipe 2:
représentation numérique. équipe 3: représentation algébrique. Les
solutions de chacune des équipes sont discutées.

5.4. quatriéme étabpe
Les questions formulées & la premiére étape sont reprises & cette

dernitre étape; un examen des réponses est alors effectuée et les
enseignants sont confrontés & leurs réponses initiales.

6. Examen des comnortements

6.1. les perceptions initiales des enseignants

Invités & préciser 1le rdle de la résolution de problémes dans
l'apprentissage et 1'enseignement des mathématiques., les enseignants
ne font jomais appel A& leurs activités en mathématiques. Ils
invoquent trois points de wvue essentiels: 1le point de vue de
1l'enseignant qui tente d'expliquer les réussites et les échecs des
éléves en résolution de problémes; le point de vue de 1'enseignant
qui reléve certaines observations sur 1'efficacité de certaines
situations de résolution de problémes, de certaines tdches, en regard
des heuristiques dont elles peuvent susciter 1'application. le point
de vue de 1l'enseignant sur les processus de résolution de problémes,
relevant davantage de la psycho-pédagogie que de la didactique.

igues AN iguéeg ot L& ‘l"!‘l"‘”

cours du travail prolongé en résolution d’'un probldme

Les heuristiques de résolution de probleres mises en oeuvre au
cours de la premidre tentgtive de résolution des problémes qu'ils
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jugent difficiles sont peu variées chez ces enseignants: lecture
répétée des textes, inscription de certaines données, calculs
immédiats ou encore, représentation algébrique de certaines données.
Peu de schémas ou de dessins sont construits, Tous abandonnent ces
problémes aprés avoir procédé & certains calculs.

Ces comportements se modifient par la suite; contraints de
poursuivre la résolution d'un de ces problémes, plusieurs enseigmants
mettent en oeuvre diverses heuristiques et peuvent les évaluer en
te_mnt conptg des connaissances en jeu dans les problémes.

Dans la discussion des protocoles, la majorité des enseignants
peuvent recomnaitre les heuristiques de résolution de problémes
décrites par Schoenfeld (1986). Ils constatent 6également que
1'application d'heuristiques dépend de commaissances spécifiques; ils
s'entendent aussi sur le fait qu'une heuristique n'assure pas la
réussite d'un probléme. S'ils nuancent alors leurs jugements
initiaux sur les heuristiques, la discussion n'entraine pas ume
modification des conceptions du réle des heuristiques dans 1la
résolution de problémes et une dissociation des notions
d'heuristiques et d'algorithmes.

6.3. L'application contrainte d'heuristiques
particuliéres par les enseignants

Devent appliquer une heuristique spécifique pour résoudre 1le
probléme sur la vitesse (troisitme étape), quelques enseigmants
seulement parviennent & résoudre ce probléme; certains résolvent
d‘abord le probléme & leur fagon (une solution mmérique, en général)
puis produisent une solution adaptée & 1l'heuristique demandée.

6.4. le bilan réalisé par les enseignants & la suite des
activités de résolution de problémes
Le bilan des enseignants sur les résultats de 1'expérience

qu'ils ont vécue ne comporte presqu’exclusivement que des références
aux connaissances mathématiques construites. Ainsi., placés dans une
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situation analogue & celle des él&ves auxquels ils s'adressent.
devant ainsi résoudre des problémes non routiniers et appliquer
certaines des heuristiques qu'ils suggérent normalement aux éléves
d'appliquer, ils sont amenés & s'interroger sur la pertinence de ces
heuristiques et & lier ces heuristiques‘aux contenus mathématiques
des problames et aux connaissances dont ils disposent. Cette
activité leur permet avant tout de construire diverses connaissances
mathématiques; pour cette raison, bien peu parmi eux affirment avoir
également élaboré des savoir faire en mathématiques.

On peut faire 1'hypothése que ces constatations sur leurs
expériences puissent les comduire & modifier leurs perceptions du
rdle et de la place de la résolution de problémes dans l'enseignement
des mathématiques. Cette hypothése serait, dans notre étude, non
confirmée. En effet, lors de la reprise des questions initiales, la
majorité des enseignants s'appuient sur les différences entre leurs
situations d'enseignants et les situations d'éléves pour rappeler
1'importance de proposer des démarches de résolution de problémes aux
éleéves; les raisons invoquées sont de cette mature: contrairement aux
adultes, les éldves ne savent pas comment aborder les problémes, il
taut donc 1leur enseigner; 1les éléves n'ont pas encore fait
suffisamment d'activités mathématiques pour étre en mesure
d'identifier les stratégies pertinentes, il convient donc de 1leur
faire découvrir 1'importance de ces stratégies & travers des
activités variées de résolution .de problémes. Les enseignants
concluent en déclarant que cette expérience leur a permis toutefois
de découvrir que les contenus mathématiques des problémes doivent
étre examinés avant de proposer des heuristiques, un tel examen leur
permettant de proposer des heuristiques plus pertinentes.
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STRATEGIES USED BY 'ADDERS' IN PROPORTIONAL REASONING

Fou-Lai Lin

Department of Mathematics, National Taiwan Narmal University

Adders are students who consistently used the incarrect-addition
strategy on some hard ratio items. English adders used
addition-based methods on most of rato items. Both written test
papers and interview data showed that Taiwan adders used
predominantly the taught multiplicative algarithms on easy ratio
items. The strategies Taiwan adders used and the reasons they made
their errors were examined in the interviews.

The Incarrect Addition Strateqy And Adders

When asked to enlarge zLmeatme new base line is 5 units, a child
concentrating on the difference 5-3 rather than 5/3 will say: "5 is 2 mare
than 3, so the new updght is 2 more than 2, answer 4 units'. Such a strategy
faor solving proportional items is called the incorrect-addition strategy.

In both Hart's (1981) CSMS ratio study and its replicated study in Taiwan
(Lin et al, 1985), the incarrect-addition strateqgy occured most frequently on
four 'hard' items (the addition-type questions), namely, Mr. shart question
{the missing value paper dlips task), enlargement with ratio 3:5 of al__-shape
and enlargement with ratics 8:12 and 12:8 of a K -shape. In both cases, a
significant feature of the performance of children operating at the lower
levels of understanding was their use of the incorrect-addition strategy (Hart,
1981; Lin et al,1985).

Theoretically, Piaget and Inhelder (1958) describe the incorrect-addition
strategy as a typical answer from a child at the late concrete stage. However
Karplus et al. (1975) and Hart (1984) see’it not as an inevitable consequence
of developmental level but as a mathod which should be carrected. In order to
develop appropriate diagnostic teaching procedures, it is necessary to
investigate why children make this kind of error. Consequently, Hart
(1981 .1984) investigated the prevalence and context of this strategy within
l: lcsample in detail.




Hart (1981) described those students who consistently used the incarrect-
~addition strategy to solve at least three out of the above four additon-type
items as 'adders'. There are about 30% (resp.20%) of adders in English (resp.
Taiwan) children population of aged 13-15. It was found that adders are not in

" any particular age group. Most of adders are not the least able. .
Accarding to Hart's (1984) findings, English adders used the -additive
methods consistently on ratio problems. Where the relationship between the
values invalved was simple (such as double, half, three times ... etc.), the
students were ahle to use their additive methods to obtain a carrect sclution.
Difficulties arcse when the numerical relationship ‘were mare complex. In these
cases, the 'adders' were not able to apply their methods correctly. Instead,
they resorted to a simple addition of the given values, This given rise to the
‘incorrect-addition strategy'. In general, English adders' approach was
characterised by
a) using addition-based child-methods, such as halving,. douhbling, adding on ard
building up to solve easy ratio items;

b) avaiding applying multiplication of fractions, and taught algarithms; and

¢} never using multiplicative strategies, such as the unitary method (how much
far oné), and the formula method (a/b = c/d).

Instead of the taught multiplicative methods, English adders used
prevalently their own child-methods on ratio tasks. In Taiwan, Lin (1988)
showed that the taught algarithms is the only system in junicr high schoal
mathematics. With such difference, it is a matter of mfertst to examine
whether the strategies used by Taiwan adders were similar to English adders or
not. This paper therefore sets out to study the characteristics of Taiwan

adders.

Methodalogy

A sample of 33 adders, aged 13-14, were identified from six classes in
three typical schoals in Taiwan.

Each of these adders was interviewed for about 30-40 minutes during the
same week that the written test was given. On interview, each one was shown
the test paper completed earlier, and asked to explain the answers to some
items they had completed. Since the question under examination was whether
Taiwanese adders' performance is characterised by. the same features as the CSMS
adders' perfarmance, students were interviewed on selected ‘easier' items where

>+ answers could be found by additive methods, as CSMS adders did, as well
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as on the addition-type questions. This was necessary in arder to determine if
the items which they had answered correctly had also been handled by additive
methods.

" Following students' explanations and bearing in mind the features
identifies far the CSMS adders, the interview focussed on investigating the
fallowing questions:

a) Do 'adders' ever use multiplicative strategies?

b) How did adders decide to use either an additive or a mulkiplicative
strategy?

c) What kind of understanding of fractions do 'adders' have ?

In order to provide a fuller description of adders' characteristics, the
following three aspects which were not covered in Hart's (1981, 1984) studies
were also examined:

d) Are adders aware of non-integer multiples?

e) Are adders aware of two kinds of ratio, ratio of two portions either within
one figure or between two figures?

f) How good is adders' recognition ahility for distinguishing non-ratio
contexts from ratio contexts?

Findings
1. Methods used by Taiwan adders

Besides the four addition-type questions, fourteen easier items in the
test paper were used in the interview. Out of 33 adders, twelve adders
consistently used mulbplicative algorithms before they faced the four
addition-type questions. Six adders used the carrect multiplicative strategies
consistently. Ten adders used approximately the same number of additive and
multiplicative strategies on these easy items. Four adders used additive
strategies on ten or more easy items. Only one adder never used a
multiplicative strategy on the easy items.

When the numerical relation invalved were easy (e.9.8:4; 5:10; 5:15)
Taiwan adders were very often ahle to apply the taught algarithms carrectly.
Most of them concentrated on either 'how many for one' ar 'the multiple
relation of the values invalved' and used the unitary method and the multiplier
method. 9 adders used correct additive strategies, such as repeated addition
ar adding on the extra units according to the multiple, on the eel and its food
""C‘T‘ with ratio 5:10 and 5:15. .

B K o
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On a recipe item where the amounts for 8 people was given and the amounts
for 6 peoples was asked, 8 out of 33 adders viewed 6 people as the sum of 4
people and 2 people and used the building up strategy to solve it.

when the numerical relationship were more complex (e.g. 8:6; 10:15;
15:25), about half ar more of adders faced their difficulties. Some adders
were doing 'undirected manipulation'. They manipulated the given data in one
ar two procedures, similar to the comrect multiplicative procedures. However
there appeared to be little idea of how to reason propartionally. Some adders
were using 'higger / smaller so then multiplying / dividing' strategy. They
felt the need to operate multiplicatively. However, the multiple / divisar
used is not the enlargement factar, but is very often .small integers. Some
adders were using ‘higger / smaller so then adding / subtracting' strategy.
They felt that some extra units were needed to add / subtract for a higger /
smaller one. The number of extra units can usually be identified from the
nearby context, but sometimes can be arhitrary.

On the four addition-type items, 8 out of 33*4 responses were different
from the incarrect-addition strategy. Five of them used camrect mulbiplicative
methods and the other three were incarrect .respons&s. On the geometric
enlargement questions, Hart (1984,p.23) says "the children's answers ...
provided a clear indication that mu]ijplicatibn was not used to produce an
enlargement. The children stated that the only way of obtaining 12 from 8 was
by addition." So, for English adders, these items seemed to be 'natural
addition-type questions. Many Taiwan adders were aware that multiplicative is
appropdate for these items. However, due to some individual reasons, they
chose the incorrect-addition strategy.

2. Reasons far switching to the incarrect-addition strategy

(i) Non-awareness of non-integer multiple

27 out of 33 adders on the interviews said that 'there is no multiple
relation between 5 and 3'. Non-awareness of a non-integer multiple as a
multple, was the main reason that most of the Taiwan adders switched their
multiplicative algorithms to the incarrect-addition strategy.
(ii) The geometric settings

In relation to some studies, Karplus et al. (1983) concluded that “the
occurrence of dimensions inhibits the (incorrect) addition strategy'. The four
addition-type questions were concemed with enlargement of figures and with
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non-integer ratics which were dimensionless. Apart from the complexity of the
numerical relationship, the geometeic settings also create obstacles, as some
excerpts from the interviews showed.

" .same shape just means the length of a higger diagram is

increased, so I add..."

...straight, can use ratio. Curved, I am not sure if I can use

ratio. In a flash, I saw the relation of constant difference, I

decided to use it."
(iii) Affective reasons

...all items were using multiple relation befare {on this test); the

test paper might have a trick, it is impossible that each item was

‘multiple’. I had such an experience before.  Since L_ana K ook

different, I changed my method."

This adder interpreted his distraction in terms of his belief about test
papers which had developed because of his previous testing experiences.

In Taiwan, very often students are trained to solve problems as quickly as
possible.  Because subtraction was quicker and easier,so adders chose it.

"...durdng the examination, I trded to choose between subtraction and

multiplication. Subtraction was easy. I have checked the

answer, both with constant difference of 4 units (the ):(—shape item).

It was right, so I chose subtraction.”

This adder even evaluated and felt happy about his choice, for he had been
reasoning 'logically’.

3. Other findings

(i) Poor understanding of fractions

14 out of 33 adders used fractions on the test paper. Only six of them
could use fractions to amplify their multplicative algarithms. In the
interviews, about 2/3 of adders could do computation of fractions by taught
algorithm. However, most of them could not apply it appropdately in any
context, as their test papers showed. They have a poar understanding of
fraction.

(ii) Awareness of 'Within' and 'Between' ratios
Regarding the geometric enlargement questions, the between ratio method is
used by the adder who concentrated on the ratio of two carresponding portions
O . .
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between two figures; the within ratio method is used by the adder who
concentrated on the ratio of two portions within a figure. Most of the Taiwan
adders were aware of one kind of ratio but might not have been aware of both
kind of ratics. None of the adders in the interviews showed the ahility to

chose the more economic one among two kind of ratics.

(iii) Distinguishing ratio from non-ratio contexts

‘Some Taiwan .adders identified the type of question, additive or
mulkiplicative,by checking some key wards in the problem sentences. Some, when
they used the native methods, 'higger so adding/ multiplying' and 'smaller so
subtracting/dividing', chose their operations in terms of how comfartahble they
felt about the numbers to be operated on.

In order to investigate their process of solving problems, a
non-multiplicative task with surface structure similar to missing value
propartional item ‘was asked during the interviews. 14 out of 33 adders used
the multiplier method to solve it. They tended to solve the problem by
repeating methods used on the ratio test paper.

4. Sum mary

In terms of the findings, some characteristics of Taiwan adders could be
summarized as fallows:

a). Using multiplicative algorithms predominantly on easy ratio items.

b). Thinking of multiplying, however their multiplicative methods are not
secure on harder items with ratics 2:3, 2:5 ste.

c). Switching to the incorrect-addition strategy because of, e.g.
non-awareness of non-integer multiple, obstacles of the geometric
settings, on the addition-type questions.

d). Manipulating fractons by taught algorthms; poor understanding of
fractions.

e). The process of solving prohlems were inappropriate, very often were
divorced from understanding.

f). Non-awareness of non-integer mulfiple.

g). Only aware of one kind of ratio, within or between ratio.

h). Poor ahility of distinguishing contexts.

O
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Discussion

Almost all the Taiwan adders used taught multiplicative algarithms on the
easy items of the ratio test. Unlike the English adders who are only warking
in the addition system, Taiwan adders are also warking in the multiplication
system, especially on easy items. From this paint of view, Taiwan adders are
not really 'adders', in the true sense of that ward.

Evidence from other Taiwan studies (Lin, 1988) Suggests that the main
reasons for these differences lie with the very different teaching approaches
to which the two sets of students are exposed. In Taiwan the teaching emphasis
is on conventional algorthms while in the UK, the teachers encourage students
to make use of whatever moethod suits them best so students develop what Booth
(1981) called 'child-methods', "which are based on counting, adding-on or
building-up approach, and by which children attempt to solve mathematical
problems within a human-sense framewark'.

Implication

In terms of the findings in this study, some suggestions should therefore
be made for developing diagnostic teaching modules which we hope to be of
benefit to all students.

1. Taiwan adders were ahble to use multiplier and unitary methods on easy
ratio problems. Therefore, instruction which is based on the 'far-every'
strategy (Case, 1978; Gaold,1978) could link to their ahilities and therefore
be of benefit to them.

2. Actvities which lead to ‘cognitive conflict', as Hart's (1984) module
emphasized, have proved to be very motivating in bringing about cognitive
and conceptual change (Kuo et al.,1986). Apart from these activities it
would be better for every lesson to include some non-ratio questions so that
adders have the chance to distinguish the difference between a constant
ratio relationship from a constant difference relationship. This activity
was also, suggested by Karplus et al. (1983). In such a way, they can
gradually develop an appropdate process of solving problems, ie. based oh
understanding.

3. In terms of poor understanding of fractions, the concept of a fraction and
its operations should be emphasized. Using a calculator to grasp the

)
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meaning of 7/3 and 3/7, as Hart's (1984) module showed, has proved to be
very effective for Taiwan adders (Kuo et al., 1986).

4. A formal method of finding multiples, i.e. find x in a-x=b , should be
learmed and the awareness of non-integer multilpe should be developed.

5. Both within and between ratics should be emphasized so that the flexinility
of choosing the mare economic kind of ratio to match the context can be

developed.
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Canonical Representations of Fractions
as Cognitive Obstacles in Elenentary Teachers

Liora Linchevski & Shlomo Vinner
Israel Science Teaching Center
Hebrew University, Jerusalem

THE EXPERIENCE SUGGESTED TO STUDENTS IN THE CONTEXT OF FRACTIONS IS
TOO RESTRICTED AND LACKS THE REQUIRED COMPLEXITY. IT IS BASED ON TWO
OR THREE STEREOTYPES WHICH WE CALL CANONICAL. THESE STEREOTYPES LEAD
TO A NARROW CONCEPTION AND CAN EASILY CAUSE MISCONCEPTIONS AND
CONFUSIONS. IN A SAMPLE OF ELEMENTARY TEACHERS THAT WE EXAMINED WE
ACTUALLY FOUND ALL THESE MISCONCEPTIONS AND CONFUSIONS.

Frege's characterization of whole numbers is not only an ingeniously
mathematical achievement. It can also be considered as a deep
psychological insight. It tells you, if you wish to interpret it this
way, what the cognitive requirements needed for constructing the
meaning of the whole numbers are. (According to Frege, the number
five, for instance, is the class of all sets which contain exactly
five elements).

Thus, many psychological claims made about the child conception of
number can be considered as claims whithin Frege's arithmetical
paradigm. Here you can count Piaget (1952) and many others as Gelman
(1978), Skemp (1971) and Steffe et al (1983). We can illustrate this
point by the following quotation:

Skemp (1971, p. 144~146) asks: WHAT DO WE MEAN BY "THREE"? His answer

-is: "THREE" IS THE CHARACTERISTIC PROPERTY OF A CERTAIN COLLECTION OF

SETS OF WHICH WE CAN CHOOSE A SUFFICIENT VARIETY TO ENABLE OUR
STUDENTS Tb FORM THE CONCEPT ITSELF.

When dealing with fractions, one see§ immediately that this domain
has striking inferiority relative to the domain of natural numbers.
He do not refer by this to the well known fact that fractions are
harder for the students than whole numbers. What is really missing is
(1) a mathematical definition which is also psychologically valid
and, as a result of it, a characterization of the concrete experience
required in order to acquire the abstract concept of fraction
(analogous to the concrete experience implied by Frege's definition).
We would like to suggest a definition of a fraction which immitates
Frege's definition of a whole number. This definition, so we hope,
contains also the psychological elements of the fraction concept and
thus has the potential of suggesting concrete experience required in

order to agquire the fraction concept.

250



243

DEFINITION: a fraction m/n, n#0, O<msn, IS THE CLASS OF ALL

TRIPLETS in the first place of which there is a whole, in the second
place there is a partition of the whole into n equal parts and in the
third place there are m parts of the partition.

Note that by this definition we have defined only proper fractions
and we have not defined the notion of rational number. Namely, we
have not defined the equivalence of fractions. But one can easily see
how to define the missing concepts by applying the above definition.
Also the above definition lacks an additional condition on the whole
which we omitted in order to avoid complications. However, the
implicit assumption there is that some measure is associated with the
whole. It can be length, area, volume, weight, etc. in case of a

fraction of a continuous quantity and can be the number of elements

in case of a discrete quantity. In this paper we will deal with

fractions of continuous quantities.

Note that the notion of the whole is essential in our definition. It
implies that it has to be clear of what whole a partition is going to
be made. Our impression is that this problem is ignored by most
methods of teaching fractions and this fact leads to many well known
confusions and misconceptions of students and teachers. In addition
to that, the concrete experience suggested to students in relation
with the fraction concept is by no means not rich and not variegated
as the concrete experience they get in relation with the whole

number.

" When introducing fractions as CONTINUOUS QUANTITIES there are some

stereotypes which we call canonical that block the way to the
abstraction required in order to acquire the fraction concept

according to our definition. The most common whole with which

. students interact when learning fractions is the circle.

O
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Sometimes they see also squares or rectangles which are not squares.
As a result of using the circle as a whole, the partition into equal
parts becomes a partition into congruent parts. This causes sometimes
a failure to identify fractions in case where the parts are equal but
not congruent. The fact that the question of the whole is not
discussed explicitly and that implicit assumptions are very often
involved causes sometimes confusion.

Examples and test items relating to this confusion one can find in
Peck and Jencks (1981), Hart (1979, p. 66) and Lesh et al (1983,

pp. 309 -~ 336).
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The goal of our study here was to examine elementary teachers

conceptions about the points raised above. The research questions

were: .

1. To what extent elementary teachers are flexible when the
canonical whole is replaced by another whole?

2. To what extent do they realize that the awareness to the question
what the whole is determines sometimes the success on fraction
tasks?

3. To what extent do they realize that the partition of the whole
does not have to be to congruent parts?

4. To what extent do elementary teachers have non-canonical

representations for fractions?

Hethod

Several interviews with elementary teachers were made and as a result

of these the following questionnaire was formed:

1.
2.

What is the whole if the following figure is 2/3 of it? §

Students were asked to evaluate 1/3 + 2/5. One student drew:

N[ [

'3 2/5
and got the ansver: NN [

3/5

Another student drew similar representations for 1/3 and 2/5 and

got the answer: @1:\\\\1\\\1 I I | IJ

3/8

Is the first student correct? Is the second student correct?
Please, explain!

(This question is based on Peck and Jencks (1981)).

Please determine in each figure whether it was divided into

thirds. If there is a mistake in a figure, please, explain it!

(a) (b) (ci
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4. How will you illustrate to a student. the meéaning of 2/5. Please,
do it im at. least two different ways!

S.. A. teaclier: asked' her students to mark 2/3 of the following

configuration.. O

One: student drew

Another student drew

Is; the. first: answer correct? Is the second answer correct?

@-O

Blease:,. explain!

The reader can easily see that questions. I and 5 in the questionnaire
were- designed to answer research question I'. Question: 2. im: the
qpestionnaire:was'designed’t0'answeriteséafch question 2, question 3
in' the questionnaire- was. designed to answer research: question 3 and
question.kjfn\the questionnaire was designed: to answer research:

questions &

The above questionnaire was, distributed to: 237 teachers: and 72 pre-
service: teachers. 54 teachers. out of the 237 had the official title
of Mathematics: coordinators. in their schools. These are teachers who
have more interest in. mathematics than. the average teacher and also
underwent some in-service mathematical. training.

In. the result section they' will be referred to as math coordinators:

while: the other teachers will be referred. to. as. teachers.
Results

Question I was, designed to examine directly whether the canonical
representation. of the fraction as a part. of a complete circle is an
obstacle in the way to the correct answer in. a non~canonical

situation. The results are. given in Table 1.
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The whole is

The whole is

I do not know or

TABLE 1 the complete 3/4 of the it is impossible
circle circle to know
Pre - service 432 KL LS
teachers (N = 72) 242
Teachers 292 472 232
(W = 183)
? ath ¢ ?rdinators 212 7% 72%

Note that the first column indicates

the expected misconception.

The

complete circle is the whole, no matter what additional information

is given. The second column indicates a correct but possibly narrow

conception, since they are infinitely many ways to complete the given

figure in order to obtain a whole.

This was expressed by one of the math coordinators who claimed that

"it is impossible to tell what the whole is. We can only evaluate its

area. There are infinitely many wholes 2/3 of which is the given

figure". This can explain the fact that 72% of the math coordinators

are in the third column. The percentage of the incorrect answer in

the math coordinators was the least in the three subgroups but it was

also the least in the case of the correct but possibly narrow

conception of the fraction. Since verbal explanations were missing in

most of the answers we cannot tell whether somebody is in the third

column because of a correct or an incorrect reason.

The most common drawings for the claim that the complete circle is

the whole were:

In the first one,
ignored.

given in the question

In the second one,

was ignored.

/

the figure which was given in the question was
the arithmetical information which was

Such phenomena occur when

stereotypes are so dominant that they attract all the attention and

the additional information is ignored.

As to question 5 we believe that a teacher who has a flexible

conception of the ways to represent fractions would have claimed that

both drawings are legitimate and correct. But only 42% of the entire

sample demonstrated such flexibility. The details are in table 2.
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The rigid conc-{ The flexible Other
TABLE 2 eption (only 1 |conception, both
drawing correct)]drawings correct
Pre - service 623 323 6t
teachers (N = 72)
Teachers 463 443 102
(v = 183)
Math coordinators 443 523 43
(N = 54)
Question 3 included three (out of five) non-canonical
representations of thirds. In order to claim that (a), (c) and (e)
are partitions into thirds a certain geometrical knowledge is
required and we were not sure that all the teachers in our sample

had it. What we assumed was that all of them had the geometrical
knowledge required for (a). Hence, teachers who claimed that only
(b) and (d) were partitions into thirds were considered by us as
people who believe that the parts of a partition representing a
fraction should be congruent. We believe . that if these teachers were
aware of the fact that the parts of a partition can be equal without

being congruent they would have examined (a) and would have come to

the conclusion that it is a partition into thirds.

All the partiti-{ Only (b% & (d) only (a, b & d)
TABLE 3 ons, partitions | are partitions | are partitions
into thirds into thirds into thirds
Pre - service 20% 51t 263
teachers (N = 72)
Teachers 342 382 25%
(n = 183)
Math coordinators 523 152 N
(N = 54)

Note that the common canonical representation prevented them from

examining (a) and their failure in (a) is due to the lack of a

conceptual understanding and not to the lack of geometrical

" knowledge.
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As we pointed in our introduction, it is extremely important on given

fraction tasks to be aware of the question what the whole is. This

point is not emphasized enough in textbooks or by teachers. In order

to illustrate (1/3)+(1/3) many authors use:

N[

without mentioning explicitly what the whole should be.
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This leads immediately to the mistakes presented to our teachers by
question 2. We were interested to see what percentage of the teachers
could explain conceptually the childrens' mistakes. An answer like
"the child is wrong because (1/3)+(2/5) are 11/15" is not considered
as a conceptual explanation. Of course, it is better than an ansver
justifying one of the childrens' results (and unfortunately there
were some answers like that). Nevertheless, such an answer is not
satisfactory because it does not have any conceptual explanatory
power. It indicates probably that the teacher does not have a
conceptual understanding of the situation. An indication of a
conceptual understanding can be the claim that the whole should

remain the same through the entire process of adding.

A claim of wrong|{A claim of wrong| A claim that
TABLE (4 answers with answers with NO'| one of the

conceptual conceptual answers is
explanation explanation correct

Pre - servi 143 663 - 203

teachers (N = 72)

Teachers 163 663 183

(N = 183)

Math coordinators 262 612 133

(N = 54)

Together with Table 4 we should consider also the answers to
question 4. Here, only 2 preservice teachers out of the entire
population gave non—canonical representations for 2/5. This is in
spite of the fact that the question asked for at least two different
representations. This is not surprising because in construction
tasks usually the dominant representation is evoked in the mind and
thus the respondents could use a circle and a rectangle or two non-
similar rectangles and to divide them into congruent parts.
Therefore, in order to get a more accurate picture, one should
eonsult Table 3 which relates to the identification task. This
table, when taking a liberal criterion to which columns 1 and 3 are
the columns of the correct answers, shows us that at most 61% of the
entire sample realize that non-canonical representations are

legitimate representations of fractions.

O
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Discussion

The above results show that teachers' visual representations of
fractions are incomplete and unsatisfactory. They are not sufficient
to form a complete concept of fraction. We do not intend here to
recommend specific learning aids which can improve the situation.
The direction is clear. One should provide the student with various
non-similar representations. We are aware of the risk of various
representations. They might confuse the student. Therefore, it is
worthwhile in this context to quote Behr et al (1983, p. 124):
"Contrary to the prevailing opinion among Mathematics educators, we
have learned that a "good" manipulative aid is one that causes a
certain ammount of confusion. The resultant cognitive disequilibrium

leads to greater learning".
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USING CONCEPT MAPS TO EXPLORE STUDENTS®' UNDERSTANDING IN GEOMETRY

Helen Mansfield, Curtin University of Technology, Western Australia
John Happs, Western Australian College of Advanced Education

Concept maps were used before and after a teaching program on the topic
of parallel lines. The maps were studied to identify which concept
names were familiar to the students, and which propositions the students
were able to construct. The concept maps revealed some misconceptions
that were not evident in other forms of testing that were also used.

Concept maps have been used extensively in some subjects, notably
science, as a method of studying students' knowledge and understanding of
various topics. According to Novak and Gowin (1984), a concept map "is a
schematic device for representing a set of concept meanings embedded in a
framework of propositions™ (p.15). As an evaluation tool, concept maps can
be used to determine what concepts are familiar to students and what links
the students have formed between the concepts.

A constructivist view of learning holds that students construct
knowledge in the context of actions on objects, including ideas, and
reflections on those actions. New knowledge might occur as the addition of
new information to the structures already held by the student, or
alternatively a more radical restructuring of the student’'s existing
knowledge may be made to accommodate new information. For meaningful
learning to take place, students must choose to relate new information to
relevant concepts and propositions they already know. For this reason, it
is necessary for the teacher to try to establish the main ideas and
relationships that each student has at the beginning of a new unit of
work. The teaching must then be designed to challenge the views the
student already has, and to compare and contrast the student's views with
those of other students and the teacher. Individual interuiews .are one

O
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teaching and learning is well established. Hdwever, their use in larger
scale studies or by teachers in daily classroom activities is not always
viable.

In our research on students' misconceptions in geometry, we have used
individual interviews in earlier phases of our study where the number of
students was relatively small. In the latest phase of our study, however,
we had twelve teachers in ten different schools using our teaching
materials on parallel lines. We decided to ask the students in these
classes to construct a concept map concerning parallel lines as part of
written pre~ and post-tests. Following is a report on the concept maps

constructed by one class, and what we learned from them.

Procedure

The class of 29 Year 8 students (12 girls, 17 boys) attended a high
school in a disadvantaged suburb of Perth, Western Australia. The tests
were administered before and after the teaching program by their
mathematics teacher, who also taught the program:

The tests consisted of three parts: (1) the construction of a concept
map, (2) a set of propositions and (3) a set of drawings. 1In part (2) the
students were asked to indicate which of fourteen propositions about
parallel lines they thought were true, false, or were unsure about. In
part (3), they were asked to indicate whether each of the ten drawings
showed lines that were parallel or not parallel. Part (1) first showed a
simple concept map made by a Year 8 student to show the link between some
ideas about fractions. A statement pointed out that the ideas were written
inside the boxes in the map and that the lines with arrows shoged the links
between the ideas. Ten ideas related to parallel lines were then listed.
The students were asked to draw a map showing the links between the given
ideas, to label the links, and to add other ideas about parallel lines -if

Q
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These students had not received instruction previously on how to
construct a concept map. Other researchers (Edwards and Fraser, 1983;
Novak and Gowin, 1984) have stressed the importance of introducing students
carefully to the techniques of constructing concept maps but physical
constraints prevented us from doing this. These students were, therefore,
confronted with a novel task that not only required them to construct and
organize propositions about a topic, but also to interpret the given
example and to understand what the task was asking of them. We expected
that these students would find the construction of a concept map very
challenging.

Intrinsically, constructing concept maps is a more difficult task than
the other tasks in our tests, since to construct a concept map students
have to work out a hierarchy of the given concepts, construct propositions
to link those cbncepts, and make an intelligible spatial arrangement of the
concepts. In part (2) of our tests, the propositions were already
constructed and the students had only to decide between three responses.

In part (3) of our test, no propositional thinking was necessarily involved.

To evaluate concept maps, Novak and Gowin (1984, p.36) suggest a
numerical score with different weightings given to the number of
meaningful, valid propositions shown, the number of valid levels of the
hierarchical arrangement of the concepts, valid and significant cross links
between sets of related concepts or propositions, and examples given of
concepts. Other authors such as Brumby (1983) have used coding and scoring
procedures that cannot be transferred readily to other contexts. Our
purpose was to see what propositions about parallel lines the students were
able to construct before and after instruction, which concept names were
familiar to them, and whether they had any misconceptions that we were
unable to detect in the other parts of our tests. Accordingly, we were
interested in the number of propositions the students made and whether or
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not these were correct. An incorrect relationship suggests a misconception
that the student has. Misconceptions can be localized and specific and
exist in an otherwise satisfactory conceptual framework. Similarly,
concept maps can identify omissions in a student's understanding. Since we
provided the students with the ten concepts we wanted them to link, the
omission of any of these from a map might suggest either that the student
did not understand the concept, was not familiar with the word naming the
concept, or could not name a relationship between that concept and others

that were listed.

Findings

Of the 29 students in the class, 26 were present for both tests. In
the pre-test, one student re-drew the given fractions concept map and added
explanatory notes to it. Nine students did not attempt the concept map at
all in the pre-test. As suggested earlier, this may have been because the
task was unfamiliar, or because they did not understand the given concepts,
or because they could not organize thé concepts in any meaningful way. In
the post-test, all the students constructed a concept map, even though
there had been no instruction about them during the teaching program.

The numbers of correct, incorrect, and meaningless propositions made by
the students were tallied. The data for the 16 students who completed both
maps showed that in the post-test most students (10 out of 16) constructed
more propositions, including both incorrect and meaningless propositions;
four made the same number and two made fewer propositions. Twelve students
made more correct propositions in the post-test, two made the same number
(both zero), and two made fewer. If the number of incorrect propositions
is counted, the students generally either made the same number of incorrect
propositions (6 students) or slightly more incorrect propositions (7
students). Overall, the total number of propositions made in the post-test

O
[E l(:‘greater than in the pre-test (122 compared with 76) and the percentage
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that were incorrect and meaningless dropped (29.9% compared with 48.7%).
these results suggest that in the post-test, the students were able and
willing to make more propositions, and indeed correct propositions, while
still showing some misconceptions.

The concept names that were omitted most frequently in the pre-test
were “coplanar" (13 times) and "equidistant™ (12 times). Both these words
are not commonly met by students in everyday speech. While all concepts
were omitted less frequently in the post-test, these two concepts were
still omitted the most frequently (both 6 times). Both concepts were the
focus of parts of the teaching program. Nevertheless, from the maps it
seems clear that both remained difficult ideas for some students.

The difficulty the students had with "coplanar" was not surprising to
us. In previous phases of our study we had observed students' difficulties
with this concept. The difficulty with the concept "equidistant" was,
however, a complete surprise, although we knew of the difficulty some
students have in measuring accurately. An examination of the responses in
part (2) of our pre-test showed that the propositions that caused most
difficulty were “"parallel lines have to be coplanar" and “"parallel lines
can be curved"”. In the pre-test, only three students said that parallel
lines must be coplanac,'while 21 were unsure. The students' responses
indicated in the pre-test that they were unfamiliar with the concept
“coplanar”. In the post-test, only three were still unsure, while 18
answered “true” and 8 answered ""false"”. The students now seemed to be
familiar with the concept while not necessarily correct in recognizing that
parallel lines must be coplanar.

The proposition "parallel lines have to be the same distance apart™ was
correctly answered by 22 students on the pre-test and 28 on the post-test.
Note that in this proposition we did not use the word "equidistant™.
Evidently the word "equidistant" itself, although used in the teaching

O
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links made between "equidistant" and other concepts in the students’
concept maps suggested that some students thought that "equidistant’ was a
synonym for "equal length". We were only able to identify this confusion
of language by an examination of the concept maps, since the proposition
concerning equal distance apart caused problems to so few students.

The value of concept maps in showing misconceptions where the responses
to propositions or interview questions migﬂt not was evident in several
individual cases. For example, on his post-test map Nathan T ﬁade the link
“parallel lines must be coplanar”. However, he also made the_links
"intersecting lines are not coplanar” and "curved lines cannot be
coplanar”. These propositions suggest an incomplete understanding of the
concept "coplanar” and identify what aspecks of the concept need further
exploration. Another concept that seemed to be difficult for some students
was "alongside”. For example, Graham clearly thought that parallel lines
must be alongﬁide (aligned rather than non-aligned segments). He stated
"to be parallel they must be alongside” and "they can be on any angle as
long as there (sic) alongside each other.” Similar propositions were made
by several other students. ‘Sharlene made the comment "It's not necessary
to be alongside each other but it does help to tell if they are parallel
lines", perhaps summarizing the view that some students have about why they
think being alongside is an important aspect of being parallel.

Finally, the overall style or appearance of the concept maps seemed to
give an indication of how the students were able to organize the knowledge
they had about parallel lines. Generally, the post-test maps were more
complex than the pre-test maps, because more concepts were included and
more links were made and labelled to show propositions. A few students
made linear maps by linking the concept names together to form a sentence.
For example, both of Anita's maps were linear, although she labelled the
links in the post-test map and showed much greater understanding of the

)
[: \i(za. She was not able to label cross links or to arrange the concepts
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hierarchicaily. An excellent example of a map that was arranged
hierarchically was Gordon's post-test map. He organized his map to show
three branches: things that "don't occur in parallel lines", things that
“aren't very important for parallel”, and things that “have to be” for
parallel lines.

N;tasha's pre-test map showed a different approach. She linked six of
the concepts to "parallel lines™ by illustrating them pictorially. She
drew a vertical line, a curved line, equal lines, and slanting lines to
illustrate the meaning of these concepts, without in fact making any valid
propositions about parallel lines. Unfortunately, she was absent from the
post-test so a comparison between her maps was not possible. Cenerally,
despite the greater complexity of the post-test maps, there were some
stylistic similarities between the students' pre-test and post-test maps,
suggesting perhaps that the ways in which they interpreted the task and

their ways of organizing the concepts had not changed substantially.

Conclusions

We acknowledge that the task of constructing a concept map was a new
and difficult one for these students. Nevertheless, we considered that the
task was worthwhile from our point of view. We were able to find out which
concepts may have been unknown to the students both before and after the
teaching program by looking at what concepts were omitted. We could not
have obtained this information from part (2) of our tests which could have
been answered by guessing. We were able to look at individuals®' maps and
identify some of their specific misconceptions which did not show up in
either part (2) or part (3) of our tests. We identified a problem with
language that was surprising to us. Finally, some students seemed to have
a particular style that they used in constructing their maps which may
suggest how they viewed the task they were set and the ways in which they

() ‘re able to organize the.concepts.
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Used along with the other types of questions we have used, the concept
maps added considerably to our understanding of what students learned about

parallel lines and how they structured their knowledge of the topic.
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MENTAL IMAGES: SOME PROBLEMS RELATED TO THE DEVELOPMENT OF SOLIDS

MARIA ALESSANDRA MARIOTTI

DIPARTIMENTO D1 MATEMATLCA

UNIVERS1TA DI P1SA - 1TAL1A
Abstract
In the reference frame of the theory of Piaget & study on thes
complex role of mental images is presented.
Starting from problems related to the development of =solids a
plan of interviews was set up and aroup of pupils at. different
ages were observed. the main results of this research .are
discussed. The aim is to propose didactic suggestions not only to
improve pupils performances in the particular task but alsoc in
the elaboration of mental images.

Introduction

The problem of the contribution of mental images to our thinking
is certainly fascinating and till now has not been completely
clarified. It is well known that very often our thinking is
‘supported by images and thislis particularly true in the case of
mathematical thoughts. Thus a study of mental images turns out to
be very important not only from the general point of view of
exploring the process of origin and utilization of mental images,
but also from the point of view of mathematical education, witH
the aim of identifying specific didactic variables related to the
problem.

The referenee frame We choose the Piaget’s theory as our
reference frame, but with the ambitious objective of clarifying
and exploring more thoroughly the question. Piaget devoted much
work to the problem of mental images, particularly in his book
"L’image mentale chez l'enfant”[1] ; from Piaget’s ideas wz took

the following main hypothesis as & starting point:
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- othe mental image ie not an extension of porception, but it P=
TS - . . . . . I . . . . . - ’ N
interiorisad imitation” (Mimitation imteriorisea’™ ). so  tnat

BN

the image Has a great autonomy from the perceptive process.

- The structural schematizina character of nmental imaues
corresponds  to that of imitation: that is to say that the imaae
organizes the information following the reguest of & symbolic
Vepresentation:  the “Chemnabizing aspect oF A ineeess 15 ot o
strecssed as for a concept. but works in the same direction: SO
there is a relation between thinking and image transformations.

- Even if thereAis an evolution from a first level |, when 1maues
are <strongly affected by the incapacity of mastering the
inversion of a transformation, to a seéond level when the images
acquire a greater dynamism by means of the influence of tne
operations, certain static characteristics of the first level
last.

The Hypothesis

The specific hypotheses_of our research project arise from the
choice of & particular mathematical problem. This is‘ not &
problem generally considered to be very important, but we find it
very <stimulating: it 1is the problem of the development of a
solid. In TItaly it is not a basic subject in the mathemat;cal
curriculum. even if primary school teachers always deal with it.
Problems concerning nets of regular polyhedra can be fourd in
nearly all the textbooks, maimly with a practical aim (far
instance "how to construct & cube with a sheet of papar”), and it
i= i this way that 1t i3 tresated by tocacher <. who do  not  wive
reat  lmportance to GLhiis kind of problem. On the other hand |

besides the specific works of Fiaget [2) . there are not many
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ztudies Qevoted to this problem I4) . The basic aim of our

research project is to obtain more information on:

- the influence of mental operations in the process of

organization of nental images during the period of concrete

operations;:

- the static versus dynamic character of mental imagas.
cspecific hypothesis 1is considered:

- there are two levels of complexity when one considers problems

connectad with the manipulation of mental images:

@ a first level when primary intuitions [3) are sufficient: the
image is global. it is not necessary to coordinate intermediate
processes to <olve the problem:

@ a second level when the primary intuitions are not sufficient
any more . an operative organization of images is required to
coordinate them according to the composition of transformation.
The method

Since the aim of the research 1is mainly explorative, the
interview method was chosen in order to provide the opportunity
to observe attentively the behavior of each individual child. On
the other hand a plan of the interview was set up which was

always followed in the same way, repeating the same questions

1y

giving the same explanations or suggestions. This allows

f

standard in the final <collection of results.

Subjects

Two different age levels were chosen

- 10-11 year old pupils, corresponding to the end of the primary

=chool

Sc 2}:8"5
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py 13 yvear old pupils. correzponding to the second and thiid .
qrade of the secondary school.
Materials

During the 1interviews the following- wera proposed to the
subjects

- models of solids:a cube. a regular tetvahedron, & prism with a
base in the‘form of an eguilateral triangle;:

zheets of paper where the nets of the same <olids had bkaeen

drawn.

The auestions

The question set was organized following three different stagas:
I - Showing each object one asks the name of the solid. After
hiding it one asks the child to count the number of faces.
vertices and edges of the solid.

II - After a very short explanation one asks the child to draw
the net of the solid considered in the first stage. When the
first drawing is done the child is asked if it is possible to Jdo
an alternative drawing, csolving the same problem. £Each <stage
provides a first moment when the question is put without the
object available (after having shown it the solid is hidden ) and
.a second moment., if the child does not succeed, when the the

object ics given to him. Finally each child is asked to verify his

solving procedure using the object itself.

ITI - Successively the drawing of each solids is presented withy
the Gquestion : "Is this the net of a certain solid?” . If the
child gives an affirmative answer ong asks him to imagine the

reconstruction and to color in the came color the segménts on the

perimeter corresponcding to the same edge on the solid. Accoiding

ERIC oy NALMBLE -
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to the hypothe=ziz of two levels of complexity there are twd types
of net.

Type A : following the straight strategy (as a “flower”) fig. 1.
Type B: following a ("rolling”) strategy where the composition of

more transformations is involved fig.2.

fig.2

Results

as  regards the first stage it is possible to establizh &
development in the systematic way of counting the elemnents of the
solids (faces. vertices and edgss). Roughly three different
levels can be identitfied: absence of a systematic way, presence

of a certain systematic method and a @ood systematic solution.

O
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‘iz interesting to remark that at the intermediats: level . it
the oObject is not available. a rational organization overwhelm:
the mental representation of the object and counting reveals
instabilities. Ffor instance: the child counts the vertices
arouping them by faces (74 for each faces”) and then multiplies
by the number of faces, without realizing that some vertices have
been Couﬁbed twice. On the other hand at this level the presence
of the object and particularly the handling of it often causes &
failure: for example this i3 the case of Sara (10 ysars): even if
without the object she has counted correctly, when she wants to
verify her procedure using the object she counts turning the cube
in her ‘hands without any trace of order and fails. Generally it
is possible to correlate a good systematic way of counting with &
good performance in the development questions. but on the other
hand often it 1is possible to find in the drawing of the et
strategies related to the handling activity.

It seems possible to reinforce the hypothesis that the mental
images supply a scheme useful for counting. Further it is clear
that verbal language plays & basic role: the majority of the
children improve their performances when asked to describe their
counting strategies verbally. But this is & very intsresting
problem which deserves further specific study.

For the second stage there was the objective of verifying the
hypothesis about the different kinds of intuition involved in the
zolution of the preblem. Contructing the correct net of the solid
implies coordination of a comprehensive mental repreésentation of

the objecl with the analysis ot the single componznts (e,
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vartices and edges). The results clearly show the presence of two
different levels ot complexity: the most Commonly used strategy
is Lhat which corresponds. in our classification. to that of type
A (& "flower”): in this case only primary intuitions are involved
and it is not necessary to coordinate nore than one
transformation. As a further confirmation there is the fact that
many children deny the possibility of the existence of other

different nets of the solid. Naturally there is an improvement in

0]

this sense with age: but even with older zubject many case of
failure are found so that it is possible to suggest the further
hypothesis that without a specific stimulus there 1is no further
avolution of the capacities in this field.

The role of mental operations 1is clearly shown by the results of
the third stage of the interviews. As regards the question about
the reconstruction it 1s found that the great majority of
children interviewed succeed in recognizing the type A net, while

they fail in the case of the type B net and consistent with their

opinion 1in the previous stage. they even deny that the drawing

_proposed can be the net of a solid.

The description of the strategy provided by the children shows
that the difficulty arises from the followiné fact: to correctly
imagine the correspondence between the single seaments of the
perimater reveals many more difficulties in the case of type @©
figures because 1n the process of reconstruction each element
(faces, vertices _..) is transformed many times successively. To
solve the task it is necessary to follow, in one’s own mind , the
transformations of the single element, =o that the number of

transformations represents an index of difficulty. As & remark it

O
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iz interesting to observe that the presence of a symmetry in tha
situation 1s not always noticed and used; mainly the younaest
children do not even understand the suggestion regarding thiz

possibility.
Conclusions

Thus., as we can see, it is possible to suggest a criterion o
construct a hierarchy of difficulties in the task regarding the
development of solids, based on a very general criterion relatad
to the elaboration of mental images; on the other hand., following
the same criterion, there are possible didactic suggestions
usaeful not only to improve pupils’® performances 1n problaems
related to the development of solids, but also to better organize
didactics which have the more general aim of improving pupils’

capacities in the elaboration of mantal imag=s.
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The Role of the Figure in Students” Concepts of Geometric Proof

W. Gary Martin Guershon Harel

University of Hawaii Northern Hlinois University

410 university students enrolled in a lower-division “core” mathematics course
designed for nonscience majors were asked to judge the correctness of a proof of a
geomelric statement, and to assess the effect of using a different figure on the
proof’s validity. Two major findings emerged. First, use of non-generic figures
did not appear to influence their judgments of the correctness of the proof;
moreover, use of the special features of a non-generic figure did not appear to
influence their judgments of the proof. Second, for many students, the proof
appeared to be particular to the given figure; they indicated that a new proof would
be required if a different figure were used. The “fit” between the two figures

appeared to be a critical issue in determining whether the same proof could be used.

The concept of proof is one of the most important ideas in mathematics, yet research has
shown that only the very ablest students achieve understanding of it (Senk, 1985; Williams,
1980). In a previous study, we found that many students do not limit their concept of
mathematical proof to deductive arguments, but also accept inductive evidence as mathematical
proof (Martin and Harel, 1989). Fischbein and Kedem (1982) showed that high-school
students do not understand that statements mathematically proved to be true require no further
empirical verification. Results of Vinner (1983) support this result and add the suggestion that
high school students vicw a general proof as a method to exaniine and to verify a particular case
— the process of the proof is generalized rather than the result of the proof; this also agreed

with findings in our previous study (Martin and Harel, 1989).

O
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In this study we address a further aspect of students’ understanding of proof as
establishing a result versus proof as establishing a process. A formal proof of a general
statement usually involves various symbols and, in geometry a figurc', which are used as
external representations of the variable elements represented within the statement. Our question
is whether 'Sludems understand that these external representations do not influence the generality
of the proof. For example, in an algebraic context, if a theorem is proved for three variables
labeled x, y, and z, it is equally proved if they are labeled a, b, and c. In this paper we focus on
this phenomenon in the context of geometry — to what degree do students of mathematics
realize that the proof of a general geometric statement is not dependent on the particular figure
accompanying the proof? More specifically,

1. Do students of mathematics realize that the proof of a general geometric statement is not
dependent on the figure accompanying the proof? Conversely, do they realize that the proof of
a general geometric statement may not depend on special features of the figure?
2. Do students conceptualize a geométric proof as a process that must be recapitulated in
terms of a particular figure rather than as a proof of the statement for all figures?

Procedure
Instrumentation

Three parallel paper-and-pencil instruments were designed to aid in answering our
research questions. In each instrument, subjects were presented with three situations, each
presented on separate page of the instrument, related to the statement: “A segment joining the

midpoints of two sides of a triangle is 1 1y the length of the third side.”
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In the first situation of each instrument, subjects were presented with an argument and an
accompanying figure purporting to prove the statement. - They were presented with a fixed-
response question about its correctness—"Yes, it is a correct proof” or “No, it is not a correct
proof”’—and asked to explain their response. In the second and third siu.mtions of each
instrument, subjects were provided with an altcn'iati\./c figure (along with'the original figurc)
and asked to evaluate whether the same proof would still work, in a fixed-response question—
“The previous proof will work here”, “We will need a new proof”, or “I would need to look at
the previous proof to answer the qucstion’:—and asked to explain their response.

Figures presented in the instrument varied in the degree to which they represented a

generic triangle without special features. The proofs presented in the initial situation of each
o 2 SpLLIal ISR, P - . ach

5

- e . . -, - -

instrument differed in whether they were a general ;;r(;of, or whethex; they relied on Special

features of the figure. The conditions of the three instruments are summarized in Table 1.

Table 1. Conditions found in Instruments 1, 2, and 3.

Situadon 1 Situation 2 Situation 3

Kind of Proof Kind of Figure Kind of Figure Kind of Figure

Instrument 1 General General General Particular
Instrument 2 General Particular Particular General
Instrument 3 Particular Particular Particular General

Subjects and Method

One of the three instruments was presented to each of 410 students enrolled in a lower-

level “‘core” mathematics course designed for nonscience majors at a large midwestern
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university; complctim; of a high-school level geometry course is a prerequisite for the course.
The instrument was administered during a required class meeting in the twelfth week of the
fifteen-week course. Subjects were allowed at least twenty minutes to complete their
instrument; all subjects were easily able to finish.
Results
Responses to each of the instruments were analyzed using two different methodologies.

First, frequencies of responses to the forced-answer questions were tabulated; see Table 2.

Table 2. Percentages of responses to forced-choice questions in Instruments 1, 2, and 3

Response
n Yes No  Look again

Instrument 1

Situation 1 130 87 13 (n.a.)

Situation 2 1131 78 15 7

Situation 3 113! 61 33 6
Instrument 2

Situation 1 145 82 17 (n.a.)

Situation 2 1191 85 8 8

Situation 3 119! 30 65 4
Instrument 3

Situation 1 135 85 15 (n.a.)

Situation 2 1041 61 31 9

Situation 3 1041 24 70 6

I Limited to students who responded “Yes” to the first situation.

Several observations can be made at this level ofanalyéis:
1. Roughly equal (x2=1.224; p>0.20) percentages of subjects accepted the initial proof in

the first and second instruments. Thus, presenting the general proof with a non-generic figure
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did not appear to influence subjects’ judgment of the proof, relative to presenting the samie
proof with a more gencric figure.

2. Roughly equal (X2=().494; 7>0.500) percentages of subjects accepted the initial proof in
the second and third instruments. Thus, subjects did not appear to distinguish between a proof
which is general but attached to a non-generic figure, and a proof which uses features of that
same non-generic figure.

3. Asseen in responses to each of the instruments, many subjects felt that the validity of a
proof may be dependent on the figure used in explicating the proof. In each instrument, at least
15% of the subjects who had accepted the original proof were not convinced that the proof
would work with the figure in Situation 2, which was “like” the original figure. In each
instrument, at least 39% (ranging up to 76%) of the subjects who had accepted the original
proof were not convinced that the proof would work with the figure in Situation 3,‘which was
quite different in appearance from the original figure.

In attempting to further explain their beliefs of the role of the figure in a proof, subjects’
explanations for their responses were reviewed and categorized. These were limited to
Instruments [ and 2 due to the inadequacy of the base-line task in Instrument 3.

The following major categories of response for subjects who felt that a proof would apply

to the new figure were developed. Subjects categorized as General appealed to the generality of

proof, as in the following response: ““A proof that finds a statement should hold true for all
examples of the same statement.” Subjects categorized as Replay felt that the same proof could
be applied or “replayed” in the current situation, as in *“You could go through all of the steps

you used before and get the right answer.” Subjects categorized as Transfer focused on the

O
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new figure as a transformation of the previous figure, as in “All you did was enlarge the triangle
and turn the triangle 1800.” Subjects categorized as Statemient focused on the statement rather
than the proof, as in “If the statement is true, then it must work.” The remaining students were

categorized as No explanation or Other. See Table 3 for frequencies of categorizations.

Table 3. Frequencies! of categorizations for Subjects who accepted Situation 1.

Instrument 1 Instrument 2
Situation 2 Situation 3 Situation 2 Situation 3
Categorization -
Accepted situation
General 7 15 10 7
Replay 15 10 12 8
Transfer 56 12 42 3
Statement 1 10 10 8
Unclassified 2 11 12 0
No explanation . 10 10 15 9
Did not accept situation
Not Replayable 1 3 1 3
Not Transferable 12 32 5 70
Unclassified 5 1 3 4
. Né ex-plana-tion_» A LS 2 3 i
N “TSeme respondents .v.ver.gA: classified in mor.c' than one way. -
BRI SN A T A e T s e

."_In' the casé c-)f subjec-:ts who felt that a proof would ror apply to ‘the new .ﬁ;gure, two major
categorizations were developed. Subjects categorized as -No—RepIay felt that the same proof
could not be applied or “replayed” in the current situation, as in “When the additional lines are
added, the two corresponding triangles will no longer be congruent.” Subjects categorized as
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No-Transfer focused on the new figure as a “oo different” transformation of the previous

figure, as in “This is a new figure which is completely different.” The remaining students were

categorized as No explanation or Other. Frequencies of categories are presented in Table 3.

Several observations may be made from a review of these categorizations.
1.  Relatively few students appealed to the generality of proof when arguing that a
previously-accepted proof will work with a new figure. Many more students relied on surface
features of “likeness” of the figures, as seen in the Transfer and Replay categorizations.
2. This same reliance on the surface features of figures lead many students to believe that a
new proof would be required with a different figure, as can be seen in the No-Transfer and No-
Replay categorizations. This effect was heightened as the figure differed more substantially
from the original figure, as can be seen in the increased frequencies for these categorizations in
Situation 3.

Discussion and Conclusions

We can summarize our findings to our research questions as follows:
1. Use of non-generic figures does not appear to influence students’ judgments of the
correctness of 2 mathematical proof. This finding is tempered by the observation that use of the
features of a non-generic figure is also not seen as a problem.
2. Many students appear to conceptualize a geometric proof as a process that must be
recapitulated in terms of the particular figure addressed. This can be seen in the number of
subjects who wanted a new proof when presented with a new figure—indeed, a large
proportion of these students indicated that they were basing this judgment based on the “fit”

between the two figures. Further, even students who did feel that the same proof would be

O
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valid with a different figure tended to base their judgments on “fit”; relatively few appealed o
the generality of proof.

Farihier eviderice of this phenomenuny was found in 9 subjects categorized Transfer and 7
subjecis citegorized No-Transfer in Instrument 2. In Instrument 2, the figures in the first two
situatior's were “skewed” in opposite directions; these students mentioned that the proofs would
need to be feforfriulated reversing the role of the labels of several of the points. This represents
very direct evidence for proof-as-replay.

Based on the firidings on this study, the role of the figure in a geometric proof clearly
requires additional auention, both in the instructional process and in future research.
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The Inner Teacher, The Didactic Tension, And Shifts of Aftention
J.H. Mason & P.J.Davis
Centre for Mathematics Education, Open University

Abstract: Hirabayashi and Shigematsu have written several articles
(1986, 1987, 1988) exploring the hypothesis of the Inner Teacher. Briefly
stated, this hypothesis is that students tend to pick up suggestions and
expressions of advice which they hear from their teachers, so that when
they are working, it is elmost as if they can hear their teacher's aduice.
Here we report on an opportunity taken to probe the Inner Teacher
hypothesis in the context of Open University students attending a week
long intensive mathematics summerschool while taking their first
university mathematics course. The study is used as a springboard to
examine connections between the Inner Teacher hypothesis, the Didactic
Contract/Tension (Brousseau 1984, Mason 1986), and Shifts in the
structure and nature of Awareness (Mason & Davis 1988).

BACKGROUND of THE COURSE and STUDENTS

Students of the Open University have to be over 21 years of age but otherwise
need have no other qualifications. They study at home (about 10 hours a week
for 32 weeks is expected for one course, and six courses make a general degree)
from printed texts, television programmes and audiotapes. The printed
materials make particular use of such suggestions as clarify what you know,
sort out what you want, build a bridge between them; when you are stuck,
specialise, then re-generalise. There is also one week's work devoted solely to
these processes and their role in both learning and doing mathematics (Mason
1985). As part of their studies all students attend a week-long summer school,
choosing from one of three sites over a ten week period. The summer school
involves investigative mathematical exploration, with specific suggestions as
to how to go about it, as well as revision.

THE STUDY

Two cohorts of students were asked questions before and after their summer-
school week. The students present for the first week were asked two questions
while waiting for the opening lecture to begin. The first was

Pre1.1 Think back to your days at school. Can you recall any slogans,
questions or advice that your teachers used <o talk to you about
working on or learning mathematics?

For the second week, the question was changed very slightly, because we
regretted the word slogan, which may have triggered a particular form of

reply.
Pre 1.2 Think back to your days at school. What advice or suggestions

from your teachers about working on or learning mathematics can
you recall?
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There were 170 students registered for cach week, so about 160 were probably
there. Note that some students offered more than one reply.

Advice recalled from school Week One Week Two
None 74 (50%) 106 (69%)
Some aspect of memorising trig ratios 24 (16%) 7 (4%)
Some aspect of practicing using examples

or reading the question carefully 15 (10%) 31 (20%)
Miscellaneous* 15 (10%) 10 (6%)
Totals v 128 replies 154 replies|

* For example Don't say can't, say I will tomorrow; pay attention; show all
your working.

The second question posed both weeks before the opening lecture, was about
more recent advice recalled from their course. Again, the question was altered
slightly in the second week.
Pre 2.1 What advice, slogans or suggestions about working on or 1earning
mathematics from the course text or tutor stands out for you now?

Pre 2.2 Think back to doing the last assessment assignment. What advice
if any from the course or tutor came into your head?

Advice recalled from course/tutor Week One Week Two
None 81 (55%) 77 (53%)
Process Vocabulary

Know & Want 7 (5%) 3 (2%)
Process Vocabulary

Specialise & Generalise, Conjecturing 13 (9%) 2 (1%)
Miscellanous* 30 (21%) 45 (31%)
Specific to OU Study 4 (3%) 17 (12%)
Mathematical Content . 10 (7%) 0
Total Student responses 145 replies 144 replies

At the end of the week students were asked

Post1  What advice or suggestions struck you particularly during the
week?
During the week there are a number of mathematical songs and slogans

connected with mathematical topics (most notably QDQ:! connected with
m?trix diagonalisation), which are inescapable.
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Advice recalled fnom.the week Week One Week Two
QDQ ! and other such slogans 10 (9%) 7 (6%)
Process vocabulary:

Know and Want; clarify question 10 (9%) 9 (8%)
Process vocabulary

Specialise & Generalise, Conjecturing 40 (35%) 25 (23%)
Miscellaneous* 28 (24%) 35 (32%)
General comments** 2 24 (22%)
None (including too many; nothing salient) 25 (22%) 9 (8%)
Total number of student replies ' 115 replies 109 replies

* ‘Many of these are connected with some striking incident or remark, eg week
one, tutor "I've got my lucky knickers on", quoted by two students. Advice
ranges from be methodical, to take a break, don’t panic, listen to others, . ..

** Comments on the value of particular sessions, and other more personal
comments like I feel I'm thinking more mathematically.

METHODOLOGICAL REMARKS

We find it useful to distinguish three points in a spectrum of probes, ranging
from the explicitly directive, through prompted or cued, to spontaneous
utterances. Thus, do you recall . . .2 is a highly directed question, whereas a
prompt or cue of the form what advice did I give your colleague a few minutes
ago?, is intended to trigger recall, and, at the other extreme, one can look for
spontaneous utterances by students which signal awareness of particular
advice. We favour the spontaneous (Davis & Mason 1987) as the only
unambiguous indication of a person having begun to internalise advice,
integrating it into the automatic functioning of the inner teacher. Of course
spontaneous utterances are few and far between, and therefore difficult to use

* quantitatively. Thus in a study of this form it is necessary to resort to probes of
various sorts, and with groups of 150 students, such probes have to be fairly
directive in order to elicit any analysable response at all.

The ambiguity present in interpreting directed and probed responses, stems
from an instance of the Didactic Tension, a term derived by Mason (1986) from
Brousseau's Didactic Transposition (1984). The tension, which necessarily
pervades any teaching incident, is that the more explicit and precise a teacher
is about the behaviour sought (as evidence of learning), the more likely it is that
pupils will exhibit the behaviour mechanically, rather than as a result of
understanding. In the case of the Inner Teacher hypothesis, the more explicit
the researcher is about the kind of response being sought, or the kind of
experience being looked for (eg the spontaneous welling up inside of a strategy
for dealing with a particular mathematical situation), the more likely the
subject is to provide such a response, not spontancously, but as a result of
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having been prompted. For this reason, the questions posed to the students in
our study were carefully chosen to be prompting but not wholly directing. It
would have been perfectly possible, for instance, to ask students what advice
they recalled from the course about what to do when you get stuck, since they
had had a whole week's work on this, together with the same advice at various
times in the mathematical texts. But the results would have provided even less
evidence about the growth of an inner teacher.

The aim of the study was to probe the Inner Teacher hypothesis. The word
probe was used intentionally, because it is not possible to prove or disprove the
hypothesis by a study of this type. However, it is possible to use such a study as
a springboard for further refinement and for reflection on some key issues in
mathematics education centred on the inner teacher and the didactic tension.

ANALYTIC REMARKS

Hyabashi and Shigematsu (1988) were able to classify pupil replies in terms of
explanation, question, indication, or evaluation. The replies we received were
all in the form of questions or indications, but we found the distinction hard to
sustain, because tutor questions sometimes emerged in the indicative mood,
transformed into advice for the self.

The pre-week replies are sufficiently different between the weeks to attract
attention. It is possible that more of the students in the first week were
teachers, or that the precise wording of the questions triggered different
memories. If the latter is the case, it highlights the sensitivity of replies to
minor changes in wording, and hence the difficulty of getting spontaneous
rather than prompted expressions of what students are thinking.

The comparison between pre- and post- week replies in both weeks is
heartening, even when bearing in mind that these are prompted responses
after an intensive week. Long term, the effects are likely to wear off, and there
is a world of difference between recalling advice when prompted, and using
advice when you get stuck, or even integrating the advice into your automatic
behaviour. Yet with these adults, we can assert that a significant number
became aware of the existence of advice, whatever the psychology of integrating
that advice into appropriate behaviour.

The replies suggest that the initial question may have triggered the classic
experience of tunnel vision when asked an unexpected question. Nothing
particularly resonated with students waiting eagerly, and sometimes
uncertainly for the week of mathematics to begin. Of those who did think of
something in week one, the main advice recalled from school is connected with
memorising particular facts, especially trigonometry. Although as indicated
there were a variety of replies, we had no less than ten different versions of the
sine is side over hypotenuse sequence SOHCAHTOA, ranging from the
ordinary (Silly Old Hens Cackle All Hours Through Old Age) to the adult (Sex
On Holiday Can Always Help To Overcome Anxiety). Other mathematical
topics were similarly represented mnemonically.

Almore carcful conclusion is that, when asked these questions in the
v
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circumstances of waiting for the first lecture to begin on the first evening of
what is for most a new experience, namely a whole week of mathematical
activity, what came to mind was school mnemonics.

It is tempting to hypothesise that novelty plays a significant role in supporting
long-term memory retrieval, and furthermore, that there is a cultural
transmission of the mechanism of using novel mnemonics to remember facts -
“that’s how things stick in your mind".  Perhaps this leads teachers to
construct new mnemonics for their pupils, taking pleasure in the novelty of
their own particular version, but perhaps losing sight of the main aim which
is for students to have ready access to the meanings of the trig ratio-names.
The SOCAHTOA sequence was presumably itself intended to be memorable.
Yet the convoluted two step process of recalling a sentence to get the letters and
then decoding the letters to get the trig ratios seems far more effort than
becoming imbued with the three trig ratios directly. Is it helpful to
recommend such expensive (in terms of mental energy) strategies? Is there
not a good chance that memorising of the mnemonic actually blocks further
integration of awareness of trig ratio-names as ideas, so that it is not possible
to subordinate and automate the awarenesses because they have been labelled
and stored in a mechanical-linguistic way?

By contrast, in week two the dominant feature was the need to practice in order
to succeed at mathematics. These replies could be seen as a manifestation of
the culturally dominant impression of mathematics as a series of techniques
which have to be practiced until they become automatic, so that you get the
right answers. Some summer-school activities are intended to challenge this
view, and the replies to the post-week question bear this out.

THEORETICAL DISCUSSION

The study reaffirms the observation that some students will not only notice the
use of process vocabulary and advice from tutors, but also remember it, and
even recall it when prompted by a question such as the ones we used. In Davis
& Mason (1987) we reported on a similar phenomenon by students studying the
same course, but with a longer time frame and with only spontaneous
utterances as feedback from students. Hirabashi and Shigematsu (1986, 1987,
1988) also report similar experiences. How might we account for this, (as well
as for its not being universal), and what issues does it raise for researchers
and teachers?

We suggest that the phenomenon described is an instance of subconscious
training of behaviour. In Davis & Mason (1987) we argued that the technique of
repeatedly using the same language pattern (eg What do you want?, What do
you know? etc) is more likely to register with students, even subconsciously,
than constantly using different language for the same thing. Furthermore it
is more likely to register if it is associated with an incident in which the advice
actually helped (this observation lies behind the discipline of noticing
elaborated in Mason 1987). And finally, such language is more likely to be
noticed as advice, if attention is drawn explicitly to it, or some other means is
used to invoke a shift in the nature and structure of students’ attention (Mason
%z Davis 1988).
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We suggest that the picking up of mannerisms, strategies and advice as
described by the notion of the inner teacher, arises from investment (conscious
or unconscious) in the teacher. Thus we would predict that it is more likely to
happen in pre-adolescents who are (gencrally) eager to please; in adults who
want to learn and who are impressed by what tutors seem to know; and by
those adolescents who find a suitable role model in a particular teacher. We
note that there can be deliberate mimicking (which is subject to the Didactic
Tension in terms of its valuc to the student, since what is picked up is the
behaviour rather than the understanding which generates the behaviour).
There can also be deliberate rejection. Thus there is no easily identifiable
general cause and effect operating, so it is necessary to look more closely. We
conjecture that the significant factors are investment/respect; deliberate &
explicit use at moments when the comments help the student out of difficulty;
and supportive use of a gradual movement from directed introduction of
advice, through prompted recall of that advice, towards unprompted, relatively
spontaneous use by students.

It could be argued that recall is never purely spontaneous if the teacher is
present, or even if the student is working on material associated with the
teacher, because the very presence of the teacher, or the clasroom context may
trigger recall. We suggest that this is but one step on the way to the educating
of the inner teacher. There are close connections here with the shift of
attention which comes from resonance induced by context or comment (Mason
& Davis 1988). Resonance is the mechanism by which any association comes to
mind, whether by expert or novice. The whole point of teaching is presumably
to help students to integrate useful behaviour and to obtain access to that
behaviour when appropriate. Integration comes by subordinating it (Gattegno
1987) to more automatic functioning, thereby releasing attention for higher
order activity, and in particular, monitoring of activity (Schoenfeld 1986;
Mason, Burton & Stacey 1984). Automatising behaviour can come through
practicing (as stressed particularly by students in week two) and by more
efficient means (Gattegno 1987, Tahta 1988) and is an important aspect of
learning. To develop a wide base of resonance, the teacher chooses moments to
invoke directed or prompted responses which are judged to be likely to make
significant sense to students, and through attention being drawn to the
interventions (a shift of attention), a rich web of meaning is built by students.
The richer the web, the more likely the associated advice is to surface in times
of need, or in other words, the more likely is the Inner Teacher to be heard.

James (1917) uses the term Acting As If to describe intentional change in
mood, perspective and attention. The un-intentional picking up of behaviour
patterns has much of the flavour of acting as if, in the sense that the student
finds themself mimicking teacher behaviour (ie acting as if they were the
teacher). We all experience it, especially when we suddenly notice that we
have picked up a new word, phrase or cliché - sometimes even against our
wishes. We suddenly become aware that we are using a particular phrase,
and we can almost even hear our ‘source’ saying it. The force of the Inner
Teacher hypothesis lies, for us, preciscly in the brief moment of experiencing
the other, or source. For a brief instant it is possible for the student, in a sense,
Inlhﬂ the revered teacher. As Hyabashi and Shigematsu (1988) put it, "the
E TC~1er becomes another sclf of the pupil, m\pnit'oring and evaluating the
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original self's activity".

BEHAVIOUR and AWARENESS

Education is as prone to fad and fashions as any other human endeavour, and
mathematics education has its fair share. Of particular relevance to this study
is the opinion, often more implicit than explicit in what people say, that
teachers should not (note the moral imperative - a sure sign of dubious
reasoning) engage in activities which may prompt students to automatise
behaviour superficially. Phrases such as teaching for understanding are often
heard in discussions amongst teachers of mathematics, with the implication
that anything which contributes to rote learning is unhelpful if not dangerous
or irresponsible.

Qur study is a reminder that this issue is not nearly as cut and dried as it
seems at first. It is part of human nature to integrate behaviour and to
subordinate or automate it. Furthermore it is only natural for pupils to wish to
minimise the attention and energy needed to invest in manifesting the
behaviour which the teacher seeks. This is the force which energises the
Didactic Transposition (Brousseau 1984).

We suggest that there is nothing wrong in itself with training of behaviour,
indeed we go so far as to suggest that Only behaviour is trainable, (an adage
which is the essence of part of the framework used in Griffin et al (1988), for
preparing to teach any topic). But hand in hand with behaviour goes
awareness, and the inspiring assertion of Gattegno that Only awareness is
educable (Gattegno 1976, Mason 1987, and used in Griffin et al 1988). Despite
the current theology that understanding precedes automaticity, we suggest
that responses such as those reported in our study remind us that the training
of behaviour and the educating of awareness go together. Neither specifically
or necessarily precedes the other. As we subordinate certain functioning,
attention can be freed to attend to more executive type of control, and our
awareness of appropriateness, of the range of relevant contexts, can grow
correspondingly. As we exercise a skill we begin to see more ramifications
than were visible on first encounter. Familiarity breeds contempt (prompts
become superficial jargon or cliché), when it involves a loss of richness and
stimulation. When familiarity has a sense of exploration, of uncovering
greater richness, of stimulation (prompts become more meaningful)
familiarity can also breed respect. Contempt and respect impinge on the
affective domain, the third aspect of our psyche which is not wisely omitted. It
has a correlate adage, Only emotion is harnessable, which links affect with
motivation and drive. This is the essence of the mechanism exploited in
Mason, Burton & Stacey (1984) in the form of emotional snapshots, and which
has been developed much further recently in the discipline of noticing (Mason
1987, Mason & Davis 1989, and Jaworski et al 1989).

VALIDITY and CONSEQUENCES

As with our previous work, validity of our study lies, for us, in the extent to
which it resonates with experience, and to which it awakens awareness of
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issues which they might otherwise have overlooked. If it helps some people to
think about the relationships between the educating of awareness and the
training of behaviour, or if it provokes further consideration of the Inner
Teacher hypothesis, then it will have served its purpose. There has not been
room or time here to develop teacher strategies which make use of
opportunities noticed (triggered by awareness of the Inner Teacher hypothesis)
in classrooms while teaching or researching, which is where the best test of
validity and effectiveness lies.
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Résumé

La paésente necheache conceane {e  traitement des diagrammes en
batons pan les éféves du premien cycle de Uenseignement secondaine fran-
cais. Les deux activités de lecture et de construction étudides sont 4é£é-
aées aux niveaux scolaines. Les absultats difjérencient La parogression
des performances nelatives & chacune des activités et une {interaction

entre activité (fecture et construction) et objet (nombae et graphique).

Abstract

This nesearch deals with the treatment of stichs-diagrams by the
pupils of the {inst cycle of the {nench secondary education. The reading
and construction activities axe related to the school levels. The nesults
show the improvement of the peaformances Unked to each activity and
an {nteraction between activity (reading on construction) and object (num-

bers on grapiiical.

Sur le plan le plus général, le recours aux représentations graphiques
dans l'enseignement sollicite deux types d'activités : la lecture (qui con-
duit & l'interprétation) et la construction. Dans une premiére approche,
les taches qui renvoient a chacune de ces deux activités se distinguent
par 1'information disponible au départ. Dans une tdche impliquant l'activité
de lecture, la totalit¢ de l'information graphique est disponible d'emblée,
il s'agit aloré d'une tache de réorganisation signifiante du n:;\Lériel. En
revanche, l'autre tache impose la construction, le tracé, de 1l'information

manquante. Par ailleurs, la relation entre données numériques et représenta-

Q . . . . A
l: lC«ns graphiques autorise, Ssous certaines contraintes d' accessibilité(pré-~
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sence de la totalité des nombres dans un cas, ou possibilité de leur extrac-
tion a partir du graphique dans l'autre), l'extensiondes deux activités
de lecture et de construction aux valeurs numériques des grandeurs représen-
tées. C'est donc & une exploration des relations entre activité de lecture
et activité de construction relatives & la trace graphique et aux nombres
correspondants que le présent travail est consacré.

Sujets : Ll'échantillon examiné comprend 461 éléves issus des quatre

niveaux scolaires du premier cycle de 1'enseignement secondaire francais
! <

(niveau sixiéme : &ge normal 11-12 ans; cinquiéme : 12-13 ans; quatriéme:
13-14 ans; troisicme : UI-15 ans).
Matériel : Le matériel graphique est composé de diagrammes en bitons.

Son caractére élémentaire -une scule variable a une dimen;ion— n'induit
toutefois pas des traitements eux-mémes élémentaires (cf. Inhelder, 1970;
Baillé, Maury, Janvier, 1988).

Quatre séries de quinze items chacune sont organisées. Tout item (cf.
exemples ci-aprés) comprend des nombres qui représentent des populations
de villes et un diagramme. Relativement aux valeurs numériques et aux lon-
gueurs des batons, toutes les séries sont constituées sur le méme modéle:
cinq items présentent des rapports "scalaires" simples, entre des grandeurs
de méme nature, nombres ou bitons ; cinq autres des relations de type "fonc-
tion" simples entre des grandeurs de natures différentes, enfin les cing
derniers contiennent des relations additives simples entre grandeurs de
méme nature.

Les séries se distribuent en deux classes qui renvoient aux activités
présupposées de lecture (L) et de construction (C). L'activité (L) est diri-
gée soit vers les nombres (N) soit vers les diagrammes (D). Il en va de
méme pour (C). On a donc les quatre séries suivantes :(LD); (LN); ©D) et
CN). A Litree d'oxemple, nons avons reproduit en page suivante e premier

item de chaque série (figure 1).
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Voici 4 villes dont les populations
sont :
A : 6 000 habitants: 8 : 18 000 habitants
C : 9 000 habitants; O : 15 000 hapitants
Sur le graphique on a déja indiqué

item N°1 -
de la i le baton qui représente la population de
o la ville 8,
série LO -
JoellE Placez sous les autres batons le
- nom des deux autres villes qui ont été
B représentées,
Voici un graphique qui représente
les populations de 4 villes A.8,C,D.
item N°1 On sait déjd que le biton C repra-
de la sente une ville de 18 000 habitants.
série LN Indiquez & quels b3tons du graphique
correspondent les populations suivantes :
9 000 habitants :
6 000 habitants :
LT
1 " } Voici 3 villes dont les populations
=11 ] sont :
- A : 18 000 habitants; B : 6 000 habitants
M C : 9000 habitants
item N°1 N Sur le graphique on a dé&ja indiqueé
de la le bdton qui représente la population
série CO de la ville A.
Tracez au dessus des noms des
deux autres villes les b3tons qui les
~ représentent.
{4 H e !
i BN ERE!
Voici un graphique qui représente
N . les populations de 3 villes A,8,C.
item N°1 - N On sait déja que le baton B
de la représente une ville de 18 000 habitants,
série CN A Indiquez les populations des
: | villes représentées par les batons
-_- ENEA suivantes :
i . '
' 8 :
i
O Fig.2 : item N°1 de chacune des séries
E MC 2@ o)
&
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Le plan d'expérience combine trois facteurs : le niveau scolaire (qua-
tre modalités : sixiéme, cinquiéme, quatriéme, troisiéme), un facteur ac-
tivite (A) a deux modalités (L)} et (C), un facteur "objet" vers lequel est
dirige l'activité (D) et (N). La variable dépendante étudiée est la perfor-
mance : chaque item est noté O en cas d'échec, 1 pour une réussite partielle
et 2 pour la réussite totale.
Dans chaque niveau scolaire, les éléves sont répartis au hasard en qua-
tre groupes. Chaque groupe correspond a une disposition (LN}, (LD). (CN),
(CD) des modalités. La durée de l'épreuve est limitée a 50 minutes.

Résultats

a} Etude globafe
Pour chaque niveuu spo}uirc. nous avons porté dans le tableau ci-dessous
les moyennes obtenues par chacun des groupes (moyennes sur 30 points, arron-
dies au point prés).

Tableau I

Moyenne par niveau scolaire et par groupe

Niveau scolaire sixiéme cinquiéme quatriéme troisiéme
Groupe CN co LN |LD {CN |CO{ LN] LD |[CN JCD {LN {LD | CN l D | LN-{LD
Moyenne 15 16 22 {19 {15 18| 25 | 22 22 21 |27 |25 22 23 |28 |26

Afin de tester l'effet des trois facteurs ainsi que les éventuelles
interactions, nous avons effectué une analyse de la variance sur- les données
résumées dans le tableau I. A cet effet, nous avons utilisé la proceédure
G.L.M. (General Linear Models) du systéme Statistical Analysis System (S.A.S.
1982), en demandant en option le test des rangs multiples de Duncan (ce test
permct de regrouper les moyennes en classe & l'intérieur desquelles les dif-
férence ne sont pas statistiquement significatives). Des résultats de l'analy-
se, portés dans le tableau II, attestent le fort impact du niveau Scolaire
sur les performances des éléves. Toutefois, nous verrons gue la progression

observée ne renvoit pas strictement & la suite des niveaux scolaires. Notam-
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ment, l'application du test de Duncan conduit a une indifférenciation des

niveaux troisiéme et quatriéme. Se distinguent et suivent dans 1'ordre d'une

performance décroissante, les &léves de cinquiéme et enfin ceux de sixiéme.

Tableau 11

Résultats de 1'analyse de lavariance relative
aux données du tableau I

Source OF F 4 PR>F
Niveau scolaire 3 25,58 0.0001
Activite (L, ©) 1 102,12 0.0001
Objet (N, D} 1 0.34 0.3611
Activité x objet 1 9.78 0.0019
Classe x activité 3 1.35 0.2562
Classe x objet 3 0.12 0.2470

3 1.09 0.3516

Classe x objet x activité

Ajoutons que si les activités (L) et (C) se distinguent, l'activité
de lecture étant trés significativement plus facile, tous objets confondus
que celle de construction, il semble, en revanche, que la nature (D) ou
(N) de l'objet visé ne détermine aucune différence significative des per-
formances. Il reste que la forte interaction observée entre objets et ac-

tivités méritera, plus loin, quelques commentaires.

b) Etude par modalité du factewr activité

Tableau [I

Moyennes des notes (M) et écarts types () par niveau scolaire pour
chacune des activités (L) et (C), tous objets confondus

Niveaux sixiéme cinquiéme quatriéme troisiéme

scolaires

Activité L c L ¢ L ¢ L ¢
M 20.7 15.6 23,5 16.4 25,9 210 26.7 22,2
S 6.6 5.8 5.5 6.9 4.9 6.8 3,2 6,7

A chaque niveau, tous objets confondus, il est manifestement plus facile
de lire que de construire. Du point de vue des groupements de Duncan, 1'ac-
tivité construction et l'activité lecture déterminent, chacune, un groupe

jeux classes indifférencices : la quatriéme et la troisiéme. Mais, alors
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que l'activité lecture conduit & des performances moyennes distinctes entre
la sixiéme et la cinquiéme, l'activité construction ne partitionne pas ces
deux premiers niveaux scolaires. N

par rapport a l'efficacité du traitement de ces diagrammes en biatons,
il semble donc que le niveau quatriéme corresponde a un saut significatit’.
D'autre part, les résultats suggérent qu'une attention plus grande soit por-
tée & l'apprentissage de la construction de représentations graphiques dans
les premiecrs niveaux de 1'enseignement secondaire.

Afin de faciliter 1'interprétation de 1'interaction mise en évidence
par 1l'analyse de la variance (tableau II), nous avons construit la figure
2.

¢) Etude de {'interaction entre objets et activités

Moyennes
des notes A—naN
25 -
o—-o R
20
15 3
. .
L Cc

Fig.2 : représentation de l'interaction

Relativement au gain de lisibilité de la représentation graphique {ct.
Bortin, 1979), ce résultat parait surprenant, au premier abord. Mais, d'unc
part, la suite des nombres est suffisamment courte pour se situer dans les
limites de l'empan en mémoire de travail et, d'autre part, l'organisation
du matériel n'est pas sans incidence. Dans les items de la série (LN) ou
1a valeur des nombres tend a faciliter le recours aux procédures scalaires

ou additives (ef. Vergnaud et al, 1979}, la disposition des nombres renforce
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visuellement ce type de traitement. Dans les items correspondants de la
série (LD), les éléves doivent, au préalable, mesurer la longueur des batons.
Cette interprétation présuppose un ancrage initial du traitement sur les
nombres en (LN) et sur le diagramme en (LD).

Dans l'activité de construction, le risque d'erreur n'est pas équivalent
sur les batons et les nombres. Sur les batons, l'erreur est plus rare car
plus nette (au minimum un carreau en plus ou en moins). L'ajustement au
carreau preés peut conduire & une réponse juste des éléves ayant' adopté une
procédure retour a l'unité méme quand l'échelle ne conduit pas & un nombre
entier de carreaux par millier d'habitants. Dans le cas ou les éléves adop-
tent la méme procédure dans les items correspondants de..la série (CN), ils
calculent la "valeur” (en nombre d'habitants) de 1 carreau. Celle-ci est
un nombre décimal non entier qu'ils m.ultiplient ensuite par le nombre de
carreaux. Ils obtiennent un nombre dont ils ne retiennent que la partie
entiére. Cet ajustement conduit dans tous les cas a une erreur alors qu'il
n'en va pas de méme lors de l'ajustement au carreau prés.

Discussion

Dans un commentaire qui succédait a la présentation des résultats
concernant l'effet du facteur activité, nous avons déclaré que les activités
de lecture étaient manifestement plus facile que les activités de construc-
tion. Il est vrai que les résultats sec prétent a ce rapide commentaire.
Mais celui-ci n'a de sens que si les deux opérations, en dehors du fait
qu'elles impliquent les mémes objets, sont comparables. Sans doute pour
les nombres comme pour les diagrammes, en lecture ¢t en coastruction, le
traitement implique-t-il le calcul, direct sur les premiers et par le biais
de la mesure sur les seconds. Cependant, en lecture, nous pouvons supposer
que la composante pcrccptivo-cognitive de la mémoire de travail facilite
une estimation compaurat.ii/e de la vraisemblance des calculs. En revanche,
la construction n'autoriserait pas cette recherche implicite de vraisemblance
Q
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au long des calculs. Dans ce dernier cas, si vérification il y a, elle n'opé-
rerait qu'au terme des calculs, sans possibilité de comparaison. Ajoutons
que l'interaction témoigne d'une complexité plus grande du phénoméne.

Pour conclure, soulignons que cette simple exploration des incidences
séparées et conjointes des objets et des activités montre 1l'intéréc d'une
diversification des exercices préparés aux éléves, si 1'on veut que l'inter-
prétation des graphiques se fonde sur une réversibilité compléte du couple

données-diagrammes.
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COOPERATIVE GROUP LEARNING OF GEOMETRIC PROOF CONSTRUCTION:

A CLASSROOM ASSESSMENT
LaOonna MacRae and Bruce Harrison

The University of Calgary, Canada

In this study, the effects of two different teaching methods on achievement in and aftitude towards the
leaming of deductive geometry were examined. The experimental method emphasized small-group, cooperative
leaming through process-oriented, proof-construction lasks designed in accordance with the van Hiele
developmental fevels. The control method, direct instruction, emphasized whole-class, teacher-led instruction. No
significant differences in overall achievement or altitude were lound belween the two treatment groups. However,
the cooperative- leaming group did make modest process-oriented gains while maintaining conventional Grade 10
geomelry skills. The results of a descriplive ilem analysis suggest that while the direct-instruction method
tended to proguce a higher rate of student success on items that lested straight knowledge and application of the
geometric content studied, the cooperative- fearning method lended to enhance student performance on actual

proof construction.

The current research literature on the teaching of geometry indicates that high school students are mostly
unsuccessiuf in their efforts to leam proof construction (Senk, 1983, 1985) and that high school geometry as experienced by
many students, if not most, is but a collection of meaningless isolated facts and proof sequences to be memorized in order to
pass the exams (Hoffer, 1981; McDonald, 1983; and others). Is it possible to teach geometry and proof construction to high
school students so that higher levels of thinking in mathematics are cultivated rather than rote memorization of facts? To
assess the feasibility of one leaming-theory-based alternative to conventional approaches to teaching deductive geometry,
Macﬁae (1988) compared the effects of cooperative group leaming of process-oriented tasks with those of direct
cfassroom instruction.

j vesti

1. Will there be a significant difference between the group mean post-test and retention-test achievement scores
obtained by the students {aught geometry with direct instruction and those taught geometry in cooperative-leaming groups
using process-oriented materials?

2. Is one method superior to the other for producing a higher student success rate on particular types of geometry
or proof questions?

3. To what extent will either method be successtul in teaching students to solve standard geometrical problems and
to construct proofs at various difficulty levels?

¢ €38
ERIC M

Aruitoxt provided by Eic:



291
4. What kinds of atlitudes will be exhibited towards geometry as measured by enjoyment and anxiety subscales,
before and after the study of the geometry unit? Will there be significant differences between the group mean changes in
attitude?
Method

Procedure
Two 25-student Mathematics 10 ctasses participated in the study. One class studied geometry in a guided discovery

approach, using cooperative-learning technigues (e.g., Slavin, 1980; Sharan & Sharan, 1976) and process-oriented geomelry
materials which were structured around the van Hiele levels of mental development (Freudenthal, 1973). A direct-instruction
method was used in teaching the other class, emphasizing those teaching behaviors currently held to be most effective for
student leaming under direct instruction, namely: emphasis on active‘ teaching with little seatwork, frequent feedback

through reguiar homework checking, smooth fransitions between activities, clear presentations with explanations of each step
in the leaming process, reqular review, and a fairly fast paced defivery (Good & Grouws, 1977; Good, 1982; Brophy & Good,
1984; Goad , 1984).

The study began after a corﬁmcn midterm algebra exam was given. No significant difference between the class means
of the two groups on the midterm exam was found.

Both classes were taught the Mathematics 10 geometry unit by the first author over a period of four weeks. The
members of the “direct-instruction” class had ample time to finish and review the geometry course in preparation for the
achievement exams written at the end of the study. The cooperative-leaming group was hard pressed to cover the content in
the four weeks of the study so no review or praclice time was allowed them before the exams were written.

Upon completion of the unit both classes wrble a geometry unit exam and a proof tesl. Seven monihs later a
geometry retention exam was given to 14 students from each of the original treatment grcups.whc could be located in a
sequent mathematics course. Both classes also wrote pre- and post- atiitude towards geometry questionnaires to indicate
change in enjoyment and anxiety towards the leaming of geometry.

Analysis

The data collected from the achievement tests were analyzed using t-tests to determine whether there were
significant differences between the class means of the two groups on each test. The results of the attitude questionnaire
were analyzed using a two-factor analysis of variance with repeated-measures design.

A descriptive analysis of specific items on the achievement tests was used to determine whether the students who
were laught through a cooperative-learning method which used process-oriented materials attained a higher percentage of
successes or failures on particular types of geometry quesl.ions than the students taught by direct-instruction. An analysis
of student responses to these ilems revealed patterns indicating specific areas of strength and weakness of teaching method

with respect to the teaching of proof construction.
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Besults

The results of the statistical analyses indicated that there were no significant differences between the group means
of the direct-instruction class and the cooperative-learning class on the three geometry achievement tests given. Thisis an
interesting resutt considering that the cooperative-learning class was severely pressed to finish the unit in time to write the
exams and, unlike the direct-instruction class, was given no time in class to review or prepare for the exams.

However, there is reason 1o believe that the cooperative-learning, "guided discovery™ group did make some modest
process-oriented gains while maintaining conventional Grade 10 geometry skills. The resufls of a descriptive ilem analysis
suggested that while the direct-instruction method seemed to peoduce a higher rate of student success on items that tested
straight knowledge and application of the geometric content studied, the cooperative-learning method enhanced student
performance on actual proof construction.

The results of the statistical analysis of the Atlitude Towards Geometry questionnaire indicated that both groups
showed a slight improvement in enjoyment of geometry and a slight towering of anxiety towards geometry at the conclusion of
the study but there were no significant differences between the group mean scores.

Discussion
Strengths and Weakpesses of Each Method

The strengths of the cooperative-leaming method included: providing for a closer contact with the geometry
concepts and a greater involvement in forming one’s own procedures for constructing proofs, promoting intellectual
involvement through the exchange of ideas with others to help clarify one's thinking and thus understanding, helping students
appreciate what is involved in learning axiomatic systems, and encouraging students to be more independent of the teacher in
learning mathematics. In particular, the members of the cooperative-leaming class seemed to be more adventuresome than
those in the direct-instruction class in attempting proofs to the more difficult and unfamiliar problems, even though they may
not have been particularly successful in completing them.” They were quite used to attacking problems and creating their own
procedures for solving them without teacher guidance.

Another cooperative-leaming strength was that the students using this method seemed to enjoy working and learning
in small groups. However, it is surprising that their measured change in attitude towards geometry did not seem to reflect
this enjoyment. A reason for this finding might be that while the students did enjoy the group work, they did not necessarily
enjoy leaming geometry as much. They found geometry and especially proof construction much more difficult than algebra.
Furthermore, not having had the time to complete the unit by using the cooperative-leaming method or to consolidate their
knowledge through a review of the material in preparation for the exams could welt have left them less happy with their
accomplishments than they may otherwise have been.

The greatest weakness of the cooperative-learning method seems to be the amount of time required to implement it

in a classroom situation. Not enough time was devoted to review and practice of the material learned. There are other

O
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weaknesses which might have been overcome with more teacher guidance. First, not enough attention was given to making the

“discovered” cancepts explicit {especially to the less able members of the class) and 1o the details of setting.up the form in

which a proof should be.presented. Second, the lack of taught procedures which could be applied to new problems so that the
students did not have to start from first principles on each question may have.slowed them down when wriling exams.
However, if more time had been available for review and practice this weakness may have been overcome. Third, itwas
perhaps too easyfor'the less able students ineach group to hide behind the accomplishments of the more able group members
1o the detriment of their own mathematical development. Fourth, it is possible that at least some of the “discoveries” were

ot actually made by the-sludents in their group discussions. In this-case they would not have leamed the refevant geometric
concept or refation well enough to apply it to other problems.

The strengths of the direct-instruction method seem to follow directly from the weaknesses of the cooperative-learning
method: more teacher guidance in concept formation and-proof construction, more time available for review and practice o
the material studied, and more teacher help available especially for the less able students. Additionally, the students in the
direct-instruction class might have been be better prepared for the Math 10 Geometry Exam, in particular, since in this
approach teachers tend to (inadvertently) teach towards the exam; that is, to cover explicitly all of the content most likely to
be tested. .

Amajorweakness of the direct-instruction method is that students become oo dependent on the teacher in their
leaming of mathematics. The members of the direct-instruction class were much more insecure than those of the
cooperativeeaming dass when faced with a problem, especially a-proof, they had not seen before. They relied too heavily on
the teacher to show them procedures which'they could use, before they had even attempled the question. The
cooperative-teaming members, on the-other hand, would wmﬁete the:proof to the question first, and then ask the teacher to
check the finished product.

Another weakness of the direct-instruction method is that the teacher can never really tell whether the students
have understood the concepts pres_enled, or whether they have just memorized them. And, in using the question-answer
technique (Socratic approach), it is the teacher who is giving the leading questions based on a logical approach to the problem
- the students.supply answers but perhaps never really leamn which pertinent questions they should be asking themselves
when attacking problems on their own. The ability to make correct replies to leading questions is not necessarily indicative of
the students having a clear understanding of what is involved in proof construction. One of the major problems with the
direct instruction method in teaching geometry is that the teacher can never be certain about what and how the students are
leaming. What are the students’ perceptions of the material that is delivered to them? Do they really understand what is
being taught well enough to be able to apply it, or do they resort only to memorizing what they are taught? Are they
becoming too dependent on taught procedures and methods to the detriment of learning their own? While it is true that

students learning through the cooperative leaming method may also resort onty to memorizing facts and approaches, it is
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perhaps less likely because they are encouraged to actively negotiate their mathematical knowledge through discussion with
their group members as well as the teacher. Perhaps a synthesis of the two methods which draws on the strengihs ol each
could be developed and tested in another study.
Di ion of the Achi I

The Math 10 Geometry Exam (observed refiabiiity coefficient of 0.7919) was a standard Malherﬁalics 10 geometry
exam which adequalely tested the objectives as listed in the provinciat curriculum. The item analysis revealed different
strengths and weaknesses in addressing particular items which may have been the direct result of the teaching methods
employed. But the Geometry Proof Test (observed reliability coefficient of 0.7302) was perhaps far too difficult to expose
many of the real differences between the two groups in actual understanding of proof construction. it did reveat the
students’ inadequacies and misconceptions in the different areas of geometry more clearly than did the former exam. The
results suggested that the problems that students had with proof construction were not necessarily of a logical nature but
had more 1o do with tack of intuition of the geometric concepts and relations themselves. To rectify this more time would be
required for Students to work with the concepts and 1o apply them in various situations.
. The Geometry Retention Test {observed reliability coefficient of 0.9999) was taken by the students sevenmonths
later and without any preparation forit. The knowledge and application-questions were suitable for testing the amount of
geometrical knowledge retained by the members of both groups, but the proofs may have been oo difficult to indicate
adequately retention of proof construction. Perhaps some straight-forward proofs which involved simpler, more basic
concepts should have beenincluded, to bener indicale how far the students could still go towards seniné up a‘proper proof.

Conglusion
The cooperative-leaming approach using process-oriented geometry materials structured around the van Hiele levels of

mental development can add an important dimension to the leaming of geometry which is not necessarily experienced by
students taught exclusively by the difecl-instruction approach; that s, an active participation of the leamners in the
exploration of geometrical concepts, leading to the construction of their own axiomatic systems of geometry. 1tis a method
which, with appropriate modifications designed to address the weaknesses found in this study, can be used to provide
personal experiences of ‘mathematizing,” and thus to cultivate higher levets of thinking in mathematics. It can be argued that
a cooperalive-leaming approach directly addresses concerns about student beliefs that “formal mathematics and proof
have nothing to do with discovery and invention,” resutling in failure 1o use the results of formal mathematics in
problem-solving situations (Schoenfeld, 1985, 1987). And it is interesting to note that once the students had experienced
the cooperative-leaming method many were reluctant to go back to the direct-instruction method at the conclusion of the
study. They preferred to discover for themselves and at their own rate, and not to be “fold” or 1o have to work things outin
whole dlass discussions whére many of them could not get the chance to explore their own ideas.

Because of the limited time aflotted to the study of geometry in a Mathematics 10 course, it is, perhaps, notan
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especially practical classroom approach. Instead it may be wiser lo devise a teaching approach which atiempts to draw on the
strengths and eliminate the weaknesses of both methods, for teaching high school geomelry. The process-oriented materials
and group leaming sessions could be used in conjunction with more frequent teacher-led class sessions (o consolidate the
understanding of the concepts and procedures “discovered.”

It may be that too much was expected from the students in a relatively short geomelry unil, especially as far as the
tevel of thinking and proof construction demanded on the achievement tests were concerned. While the exams may have been
better constructed, the researcher believes that the inteflectual demands made on the studenls and depth of the material
covered and lested should not be lessened in an attempt to make for better exam resulls. The studenls need real experiences
of “mathematizing,” and if more time is required for this to be realized then perhaps one should take a serious ook at

mathematics curricula to see how this might be accomptished.
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COMPARING EXPERTS’ AND NOVICES'
AFFECTIVE REACTIONS TO MATHEMATICAL PROBLEM SOLVING:

AN EXPLORATORY STUDY

Douglas Mcleod, Washington State University
Wendy Metzger, Palomar College

Cathleen Craviotto, Washington State University

Abstract
This study investigated the role of affective factors in the
performance of both experts and novices who were asked to
solve nonroutine mathematical problems. The affective
reactions of the experts (four research mathematicians) were
similar to those of the novices (four undergraduate students),
but experts and novices differed in their ability to control

the influence of affective factors.

INTRODUCTION

Research on mathematical problem solving has tended to
concentrate on cognitive factors that influence performance.
In recent years, however, there has been increasing
recognition of the importance of affective factors in problem
solving (Silver, 1985). 1In this study we investigated the
differences between experts and novices in their

affective responses to nonroutine mathematical problems.

THEORETICAL BACKGROUND <
Research on the affective domain has generally emphasized the
use of questionnaire data related to beliefs and attitudes.

In mathematical problem solving, however, affective responses
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can be much more intense and emotional, rather than
attitudinal, in nature (Mason, Burton, & Stacey, 1982;
McLeod, 1988). The investigation of affective reactions to
mathematical problem solving requires a new theoretical
foundation if it is to proceed in an intellectually satisfying
way. The work of Mandler (1984, in press) provides such a

foundation.

Mandler’s view is that the basis of affective reactions to
problem solving (or more generally any task) is generated out
of the solver’s emotional responses to the interruption of a
plan. 1In Mandler’s terms, plans arise from the activation of
a schema. The schema produces an action sequence; if the
anticipated sequence of actions cannot be completed, the
blockage or discrepancy is followed by the arousal of the
autonomic nervous system. This response may be experiénced as
an increase in heartbeat or in muscle tension. The arousal
serves as the mechanism for alerting the individual and
redirecting attention to the source of the interruption. When
the arousal occurs, the individual attempts to evaluate the
meaning of the interruption. This interpretation of the
interruption might classify it as a frustrating block or
perhaps a challenging surprise. The cognitive evaluation of

the interruption provides the meaning to the arousal.

In mathematics education, problems are usually defined as
those tasks where some sort of blockage or interruption
occurs. The student either does not have a routine way of
solving the problem, or the routine attempts to solve the
problem all fail. As a result, the kind of problem solving
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that is attempted by mathematics students results in just the
kind of interruption that Mandler has analyzed in his theory.
In this study the responses of both experts and novices were
examined to look for similarities and differences in their

responses to interruptions in problem solving.

DESIGN AND PROCEDURES

Interviews were conducted with eight subjects who had
participated in problem-solving sessions. Four of the
subjects were research-active professors of mathematics; all
were males in the middle of their careers. The other four
subjects were undergraduate studerits (two female, two male)
who were majoring in one of the social sciences or education:;
all were enrolled in a college-level mathematics course at the
time. All interviews lasted about an hour; most subjects
participated in two interviews. The four professors were
considered "expert" problem solvers, and the four students

were designated "novice" problem solvers.

The four professors were originally chosen to participate in a
study of how aesthetic factors influenced problem-solving
performance among eight mathematicians and graduate students
(Silver & Metzger, in press). These four were chosen for this
study since they were the most senior and experienced problém
solvers in the sample. The four undergraduates were chosen
from a set of six volunteers based on whether or not they were

successful on at least one of the problems.

The interviews began with a discussion of the think-aloud

procedure for gathering data on thought processes during
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problem solving (Ericsson & Simon, 1980). Then participants
were asked to think aloud as they solved problems. After they
had attempted one or more of the problems, the subjects were
asked to comment on their feelings about problem solving,
particularly their feelings about being stuck on a problem or
how they felt when they had solved a problem. After the
discussion of affective factors related to problem solving,
the subjects went on to solve additional problems. In some
cases the discussion returned to the topic of affect and

problem solving.

Different problems were chosen for the experts and the
novices. A sample problem from the expert category is the
following (Schoenfeld, 1985):
Three points are chosen on the circumference of a circle
and the triangle containing them is drawn. What choice
of points results in the triangle with the largest

possible area? Justify your answer.

Here is a typical problem from the novice category:
A man entered an orchard through seven gates and there
took a certain number of apples. As he left the orchard,
he gave the first guard half the apples that he had and
one apple more. To the second guard he gave half his
remaining apples and one more. He did the same to each
of the remaining five guards and left the orchard with

one apple. How many apples did he gather in the orchard?
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For a complete list of problems given to the experts, see
Silver and Metzger (in press). The problems given to the

novices were similar to those in Burton (1984).

The novices solved 6 out of 13 problems; the experts also
solved about half of their problems (8 out of 17). The
problem set appeared to achieve the right level of difficulty
for each group; all subjects experienced some success and some

failure as they tried to solve the problems.

RESULTS

Audiotapes of the interviews were transcribed and checked for
accuracy by the experimenters. These protocols constituted
the data for the study. The analysis of the data focussed on
the magnitude, direction, awareness, and control of the
emotional reactions that were reported by the subjects

(McLeod, 1988).

Most experts and novices reported that they experienced
relatively intense emotional reactions when solving problems.
When they were asked to describe their feelings when stuck on
a problem, experts used words like frustration, aggravation,
and disappointment. Novices expressed many of the same
feelings, but they also referred to themselves using words
like dumb and stupid. The novices’ negative statements about
their own ability suggest that their causal attributions may
be quite different from those of experts (Fennema & Peterson,
1985; Heckhausen, 1987). Although novices tended to make
more negative comments than experts, both groups reported a

mix of rather strong positive and negative emotional reactions
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to problems. One expert noted that as a rescarch
mathematician, he was stuck on one problem or another all the
time: perhaps as a consequence of this view, his comments on
his emotional reactions to problem solving were somewhat less
intense than the other experts. One novice also seemed to
have less intense reactions; he reported that he got
frustrated, but didn’t feel too badly since mathematics was

not his emphasis.

Both experts and novices indicated considerable awarencss of
their emotions during problem solving. One of the experts
commented on his nervousness, and compared it to how he felt
when doing unfamiliar problems in front of the class. A
novice noted how he got worried when the numbers in the seven
gates problem started getting too large. When novices were
asked about their frustrations, they generally indicated that
they were aware of when they were frustrated. Both experts
and novices indicated that they had certain preferred
strategies when they became aware of their frustrations; the
most popular strategy was to quit working and come back to the
problem later. However, experts were more likely to suggest

other strategies like using special cases or visualization.

Experts and novices showed substantial differences in their
ability to stay in control of their emotions during problen
solving. Experts were more likely to comment on the need to
étay flexible, especially when stuck and frustrated with a
problem. The novices were more likely to get stuck "in a

groove" and keep on trying to solve the problem in the same
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way. For example, novices would repeatedly try to represent
the seven gates problem with an equation rather than changing
to a more helpful strategy like working backwards. We
hypothesize that novices were more likely to use up short-term
memory in evaluating their affective responses, thus reducing

their ability to think of new approaches to the problemn.

In summary, the experts and novices in this study responded to
problem solving tasks with strong emotions, both positive and
negative. Novices more frequently expressed negative feelings
about their own performance. Both experts and novices were
aware of their own emotions, but the experts were more likely
to remain in control. Novices appeared to be more likely to
let their frustrations drive them to repeated use of the same
strateqgy, but experts were more likely to stay flexible and to
consider alternate strategies.

Preparation of this paper was supported in part by the
National Science Foundation Grant No. MDR-8696142. Any
opinions, conclusions, or recommendations are those of the
authors and do not necessarily reflect the views of the

National Science Foundation. We also want to acknowledye the
assistance of Michele Ortega in analyzing the data.
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THE DEVELOPMENT OF CHILDREN'S CONCEPTS OF ANGLE

Michael C. Mitchelmore

Bavarian Academy of Sciences, Munich

The literature on the development of children's perception of ray pairs,
regions and rotations 1s summarised and related to research on the geomet-

rical concept of angle. Implications are drawn for teaching and research.

Classroom researchers repeatedly report how difficult children find the angle
concept. One reason is certainly its many-sided nature, which in mathematics
must be unified into a single definition. Practical experiences, as well as

mathematical definitions, tend to fall into three categotries:

1. a ray-pair giving the difference between two directions;
2. a region of a plane bounded by two rays with a common end-point;

3. an amount of rotation.

The purpose of this paper is to describe the development of children's under-

standing of these three concepts; to draw implications for geométry teaching;

and to indicate research needs. To save space, only a few Kgy studies will
¥r4

be cited by name; a full bibliography is available from the author.
PERCEPTUAL RESEARCH

We look first at research in which the word "angle" is not used in its mathe-
matical sense, the task being to process a given figure which happens to
contain angles. Basic to much of this research is the concept of
%rientation. It has been demonstrated that equality of orientation plays a
LS
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fundamental role in perceptual processing. However, orientation has a low
saliency in deciding when two figures are “the same", so that responses are
sensitive to a strong bias towards orientations in which a figure appears
upright-or stable or aligned with a surrounding frame. vertical and

horizontal orientations thus play a privileged role in perception.

Angle as ray-pair Very young children can discriminate the orientation of
single lines (which we may regard as the angle wilh the perceptuul vertical),
but it is only at age 7 that children demonstrate the ability to memorise
orientations. Bryant (1974) claimed
that 5-yr-olds could easily discriminate
right angles from non-right angles and
do this better than they discriminate
non-right angles from each other.
However, Noss (1987) found that less
than 50% of his 10-11-yr-olds thought

that the two angles in Fig 1 were equal. Fig 1

Copying of single lines and angles is subject to systematic biases which
depend on line orientation. angle size and the orientation of the surrounding

frame, and which decrease with age.

In most studies, it is not clear whether ' C
children are processing the depicted
angle or the entire figure. An exception

is a study of Piaget et al. (1960), in

which children copied Fig 2. Up to age A D B
8, children used mainly visual estimation;

c children usually measured AD. DB, DC, Fig 2

ERIC
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AC and CB, apparently copying the entire figure. However, children aged 10
and over often measured AD, DB, DC and the perpendicular from C to AB,

suggesting that they were attempting to copy the angle CDB.

Several studies suggest that angles are not salient properties of figures. For
example, young children often prefer to preserve the topological properties of
a fiqure rather than copying its angles, and they do not copy parallel lines

parallel in the presence of a distracting background of oblique lines.

Angle as region The idea of an angle as a region has mostly only been

studied incidentally, in that the sharpness of a corner can be a distinguishing
feature of a shape. It is generally found that the accuracy and speed of
recognition varies with the angular displacement between stimulus and response

and that performance improves with age and training.

Beilin (1979) investigated children's concepts of angles as regions. He found
that even 4-yr-olds could mark corresponding angles of congruent triangles
without difficulty. However. in checking whether two triangles were congruent/
young children only tested the sides and never the angles; the use of super-
position only became popular from age 7. It is nevertheless surprising that
even 12-yr-olds have difficulty deciding whether a square template fits into

a given angle (Wallrabenstein, 1973).

Angle as rotation Rotation is in itself a difficult transformation:
non-conservers of length believe that rotation changes lengths. and it is not
until age 10-11 that more than 50% of children can represent the rotatién of a
simple figure about a vertex. It may be noted that mental rotation is at the
basis of many spatial ability tests., and shows wide individual variation. Speed

Q processing seems to be linearly dependent on the angle of rotation.
Aot Provded by enc| 23 ? 4%
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RESEARCH ON ANGLES
We turn now to research where the word "angle” has to be interpreted in its
mathematical sense (as ray pair, region or rotation) and not simply as a figure.

We can summarise the sparse research here according to a few common findings.

Right angles are often not recognised in oblique position. Children at first

only accept the case of an angle between a horizontal and a vertical line as a
right angle. Even at age 11, only about 50-60% of children accept both figures

in Fig 1 above as right angles.

angle size is often believed to depend on the lengths of the arms. This

error seems to be the result of treating the given figure as finite and
complete. Noss (1987) found that the experience of rotations in LOGO helped
improved 10-yr-olds' performance on

the angle comparison task in Fig 3 ~ -

but not on that in Fig 1. However,

it is also possible that asking ) B
"which angle is sharper?" instead of

"which angle is bigger?" would also

have lead to improved performance. Fig 3

Reflex angles are recognized late. Early angle concepts seem to be

restricted to convex angles (those up to 180
degrees in size). For example, Close (1982)
found several children who believed that the
angle in Fiqg 4 was obtuse. This could be the

reiult of limited experience of concave corners,
LS
[EIQ\L(::ause the figure is not seen as a roﬁ;%ﬁ?%; Fig 4
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Measuring angles is difficult to learn. Every teacher knows this! But

measuring angles requires the ability to combine unit angles and compare the
result with a given angle - apparently using regions, but often explained using
rotations and later applied to ray-pairs. In order to understand angle
measurement., the child must not only have mastered all three aspects of the

angle concept but also have achieved a high degree of integration between them.
SUMMARY: DEVELOPMENT OF THE ANGLE CONCEPT

Children's perception of angles develops rapidly from the age of 5 years.
Children must learn to overcome orientation biases, develop memory for
orientation, isolate corners as distinguishing features of shapes., and learn
to represent rotations. Not until 12 years of age can one expect the

majority of children to have completed this process to a satisfactory degree.

A critical step in the subsequent abstraction of the mathematical concept of
angle would seem to be the establishment of an angle as a class of equivalent
figures. I conjecture that this takes place independently for ray pairs,
regions and rotations. Consider, for example, ray pairs. At first only
angles related by a translation are accepted as “"the same"; then angles
related by a reflection in a vertical or horizontal line; and only much later
those related by a general isometry combined with an arbitrary extension or
contraction of the arms. Notice that it is not sufficient for the child to
recognize that two angles are equal, although this skill must certainly be
learnt; it is the acceptance of equal angles in all orientations as “the

same" which shows that the concept of angle has been abstracted.

An important development is the integration of the three angle concepts. How
o ,
[E l(:is occurs is completely unknown, but one can speculate that the ray-pair

316
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{as an abstract representation of both regions and rotations) plays a central
role. The integration of the region and rotation aspects of angle probably

takes place via the ray-pair aspect and would be a rather late development.
IMPLICATIONS FOR TEACHING

we have reached the position that the geometrical concept of angle cannot be
treated as either ray-pair or region or rotation, but must be an integration
of all three. Teaching should therefore encourage the development of all

three aspects of angle, providing ever closer connections between them until

the student is ready to treat the concept as a unity with many applications.

The concept of angle as region tends to be treated in the elementary school
and to be restricted to the right angle. Further activities comparing the
"sharpness” of corners of figures by superposition and on fitting corners
together (as in tessellations) could be highly beneficial. Figures with
concave corners should not be omitted. Diagrams used in this work should

show the angle as a shaded region with the suggestion of unboundedness.

The angle as rotation on the other hand tends to be left for the secondary
school, just before angle measurement. This is certainly too late: informal
experience of rotation can and should be gained in the elementary school
(Kirsche, 1987). Rotation angles may be conveniently represented by clocklike

diagrams., but the clock should not always start at 12 o’clock!

The next step would seem to be - perhaps at the beginning of secondary school
- an attempt to integrate regions with rotations, making it clear that the
standard angle diagram can represent both concepts. A possible vehicle for

ERIC
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treated using repeated regions or repeated rotations. Only after this
attempt at integration should angle measurement be treated. at best starting

with non-standard units and ending with the circular protractor.

One final implication: the formulation of a single, mathematically rigorous
definition of angle should follow much later. 1In view of the variety of
practical applications of angles. it is doubtful whether any exclusive

definition could serve a useful purpose outside a strict axiomatic treatment.

RESEARCH NEEDS

My review of research on the angle concept has revealed astonishing gaps in
our knowledge. For example, why do children have so much difficulty

comparing the angles in Fig 1? Some interesting questions are the following.

- When and under what circumstances do children conserve angle? How
are conservation judgements affected by the transformation made and
by the presence or absence of a demonstration of this transformation?
Is there a hierarchy for the discrimination and recognition of angles,

depending on the transformation involved and the size of the angle?

- How does knowledge of rotation and its representation develop?

- What factors affect ability to compare angles by superposition?

- How do children spontaneously classify angles? What roles do size.

orientation., arm length. etc. play?

- How does the wording of the question ("Are these the same?", "Are these
O
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the same angle?", "Which of these is sharper?”, "Which bends the most?")

affect performance on angle comparison tasks?
- When and how do children begin to integrate the various angle concepts?

Finally there is a host of questions on teaching angles: How to assist the
abstraction of angles as regions, how to promote integration, when to teach

measurement., what definition (if any one) is most effective, and so on.

This is an immense research program. I hope that this survey will lead more

mathematics educators to enter this field with enthusiasm and creativity.
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