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Children's Connections Among Representations of Mathematical Ideas

Alice S. Alston and Carolyn A. Maher
Rutgers University

Analysis of the written problem protocols and videotape
segments of 11 children for seven problem-tasks containing
common structural elements over a 6 day period is made in
order to gain insight into the development of the
representations built by the children and the connections
made between and among the representations. A more
detailed analysis is given of the mathematical behavior of
two children. The observations provide descriptions of the
process by which children construct representations of
ideas in cooperative group problem-solving settings and in
individual written assessments. This information lends
insight to the results of a Larger study in which highly
significant gains Ln understanding were made by
participants in these activities as compared with a control
group.

Much attention has been directed recently to the need to study the processes by which

learners build-up systems of representation of mathematical ideas and relate them to other

systems (Davis, 1984; Kaput, 1987). One approach to assessing understanding of a

mathematical concept is recognition of that idea embedded within qualitatively different

representational systems (Lesh, Post, and Behr, 1987). The building-up of meaningful

experience may cane about by being aware of the structure of the activity and reflecting on

it (Steffe & Cobb, 1983). Another dimension of the building-up of representations is task

involvement by the learner (Cobb, Yackel, & Wood, 1989). Lave (1988) urges us to

consider, in studying the transfer of knowledge among representations, the learner's social

interaction or other factors that motivate problem solving. Wood and Yackel (1990)

demonstrate in their work the importance of peer group dialogue so that learners have an

opportunity to make sense of each other's interpretations and serve mutually supportive

roles. Brown, Collins, and Duguid (1989) also direct us to consider learning that arises out

of shared activity by other learners in a context in which representations of ideas are

constructed and discussed together. Our view is that learning mathematics is facilitated in

an environment that provides for social interactions in small group problem solving tasks

that enable learners to build-up representations, over time, of the structure of the idea(s).
(Maher, 1987; Maher, Alston, & O'Brien, 1986).
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Background

As part of a larger investigation to measure the mathematical behavior of 12 and 13

year old 7th grade children, a teaching experiment was conducted in which 84 children

from two schools (one, a public school in a blue-collar community and the other, an

independent school in an affluent suburban community) were given a series of 7 problem-

tasks in a natural classroom setting over a five day period of time. The purpose of the

study was to observe and analyze children's mathematical thinking as they were engaged in

tasks dealing with the properties of closure, identity, inverse and commutativity and to

assess their ability to make connections among various representations of each of the

concepts. The population was stratified into three groups, the first two from a public K-8

school, and the second from an independent middle school: high ability prealgebra students

from the public school; students enrolled in regular seventh-grade math (students in this

heterogeneous group ranged from remedial to average in ability) from the public school;

and (non-honors) prealgebra students from the independent school. Children from each

school population were randomly assigned to two comparable groups for five class periods,

one, experimental and the other, control. The children in the experimental group were

given three nonnumerical problem-tasks each based on a different concrete embodiment of

the properties for the purpose of constructing solutions to the problems posed without any

teacher intervention, while those in the control group were similarly engaged but were

given problems that dealt with different content. In a final class session, each child was

given three final written assessments. Each of these was a numeric problem task that was

structurally isomorphic to one of the concrete tasks.

A logistic regression analysis was used to examine the relationship between problem

solving success and the factor of experimental versus comparison group for each of six

mathematical assessment categories across the three written postassessments. The

categories were defined as (a) Closure, (b) Identity, (c) Inverse, (d) Order, referring to

commutativity, (e) Transfer, that is generalization to other mathematical ideas, and (f)

Total, referring to total success on the preceding five sections for the particular written

assessment. The analysis of the Transfer category gave the probability of success for those

children who had participated in the experiment to be 97% for the high ability experimental

students; 79% for the average and heterogeneous experimental groups; and 32% for the

comparison groups for all three of the postassessment tasks.

19
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This report provides a description of the mathematical behavior ofa group of 11
experimental students. Because of limitations of space, a more detailed analysis is given of
only two of the children to provide insight into how they developed the concepts in their
small groups and made connections to the ideas across the task activities.

In particular, the study sought to investigate, for representations built by all eleven
children, the following three questions:

(1) Did the children make meaningful connections from the ideas considered in
each of the seven problem tasks to other mathematical ideas?

(2) Did the children make connections from one task to another?

(3) What references, if any, do children make to mathematical ideas that
are not specific to their task activities?

For the two more detailed analyses of children's mathematical behavior, two
additional questions were also addressed:

(4) What references, if any, do children make to structural similarities and differences
among representations?

(5) What connections, if any, do children make among the three concrete
representations? Among the three numeric representations?

Methods

Each child was given a written preassessment task (WPA). During the five following
sessions the children met in experimental or comparison classes. The members of each
experimental class were partitioned into groups of two or three children to work together to
construct solutions of the three nonnumerical problem tasks. The structure of Task One
(T1) was a Klein group using two small wooden figures, a boy and a girl. The elements of
the set were the four possible 180 degree turns of the two figures taken together and the
operation was one turn followed by a second. Task Two (T2) had a lattice structure and the
elements of the set were cards, each of which had cut out a different polygonal shape. The
operation was placing one card on top of a second to form a resulting polygonal shape.
The third task (T3) had a cyclic group structure based on index cards,called Road Cards,
each of which had a different set of four straight lines from beginning points on the left side
of the card to end points on the right. The result of the operation, in which one card was
followed by a second, was the single card with with the beginning points of the first card
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and the end points of the second. Within each experimental class, two groups were

randomly chosen to be videotaped during all five sessions. On the final day to the teaching

experiment the children returned to their regular class groupings and each child was given

the three final written assessments (FWA I, FWA2, and FWA3). In each of the seven

problem-tasks, the children were asked to construct a table of results for the set ofelements

and the given operation and then to answer a series of questions concerning closure,

identity, inverse, and commutativity for that particular operational system. The concluding

question of each task was whether the problem called to mind any other problems or ideas

about mathematics, and, if so, to describe them.

The seven boys and four girls considered in this investigation were four of the

cooperative problem-solving groups. The data included the children's solutions to each of

the four written assessments, each child's written solution to the nonnumerical problem

tasks, transcripts of the videotapes, and observer notes of the group problem-solving

sessions. (Note 1)

Results

Table 1 presents a summary of the data for the eleven children, In each task, evidence

of the presence of a meaningful connection is indicated by a Y, its absence by N, and when

the presence of a connection was in doubt, by U (e.g., student appeared to go along with

group consensus).

Categories of connections were also indicated. A reference to one of the concrete tasks

was coded as c; reference to a written numeric assessment was coded as a; references to

mathematical ideas that were not specific to the task activities were coded according to

their context (e.g., arithmetic operations (o); numbers (n); fractions (f); and geometric ideas

(g). Whenever children made specific reference to a particular property, the connection

was coded as p.

The table indicates that all children made some connections during the duration

of the study. Two of the eleven children made connections in the preassessment, one

to the property of zero and the other to the arithmetic operation of addition. In the

final assessment, all but one made connections to a variety of representations. An

analysis of two children's mathematical behavior, Ed (Cl) and Joe (C7), follows the
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Table to illustrate the nature of the connections made among the various tasks and to

other mathematical ideas.

TABLE 1: CHILDREN'S CONNECTIONS AMONG REPRESENTATIONS

Problem Task
CHILD WPA T1 T2 T3 FWAI FWA2 FWA3 Connections
Cl Y Y Y Y Y Y Y p,a,n,f,o,g,c
C2 N Y Y U Y Y Y a,f,c,p,o

C3 N U U U Y Y Y a,f,c,o,p

C4 NU Y Y N Y Y a,g,o
C5 NY Y Y Y Y N g,a,o

C6 N Y Y Y Y N Y a,g,c
C7 N Y Y Y Y Y Y p,o,c

C8 N Y U U Y Y Y o,p,n,c

C9 Y Y U Y Y Y Y o,p,c,a
C10 N Y Y Y N N Y n.p,c,a
C11 N Y U Y Y Y Y p,c,a

Note: Y = presence, N = absence, U = uncertain of connections.

p = properties (i.e. commutativity, identity), a = assessment problem tasks, c=

concrete tasks, o = arithmetic operations, n = numbers, f = fractions, g = geometric

ideas

Case 1: Ed (C1) worked on the classroom cooperative group tasks with two girls,

Trish (C2) and Natasha (C3), all children from the independent school. He was one

of the two children who indicated in WPA that the problem reminded him of another

mathematical idea. His written response stated that the problem reminded him of

problems about zero because zero and any other number is the same result. In
his written work for T1, he wrote: the problem task reminded him of WPA,

commenting aloud that the commands were like numbers. He also wrote that the

problem was like fractions -- like knowing how to cancel out the common

factor. While working with his group to figure out inverse elements for the set, he

announced to the others: It's like fractions; like 1/2 times 2/1; they cancel.

7 22



His reference to numbers was continued in T2. Ed wrote that this problem reminded

him of addition, subtraction, and multiplication with charts. He then referred

again to WPA: I did a chart like this with numbers that followed sort of the

same pattern. In discussing this problem with the group, Ed stated: It's the

commutative property; like 3 + 1= 1 + 3. It's like adding. While solving T3, Ed

pointed out to his group: This problem is like the other ones; this card is the

special card (identity element) like Nobody Turns (the identity element in Ti).

Ed wrote in FWA1 that the task reminded him of all of the problems that we have

done because all have a procedure to get the result and the results all follow a
pattern. In FWA2 he wrote that the problem reminded him of problems about 1

because (in the task) 1 and any of the numbers turns out to be 1 and in
multiplication 1 times any number equals 1. Finally in FWA3, Cl wrote: We did

another problem almost exactly like this a few days ago.

Case 2: Joe (C7) worked with Dave (C8), both students in the heterogeneous
public school group. Joe wrote in WPA that nothing about the problem reminded

him of any other mathematical ideas or problems. In T1, however, he wrote: It
reminds me of addition and multiplication, and in discussion with his partner he

stated: This is like the commutative property. OGT and OBT or OBT and OCT
(two elements of the set). Either way, they equal BT (a third element). It's like
please, my dear Aunt Sally; it's like addition and subtraction; no, I don't think
subtraction works -- only addition and multiplication. In T2 Joe wrote that the

problem reminded him of the commutative property and the property of 1. He

had pointed out to Dave earlier: It's (referring to Card D, the identity) like 1 and E

(another element of the set) is like 4. And D on E is E just like 1 times 4 gives you

4 because if you put D on anything nothing happens. It's just like Nobody
Turns (the identity element in T1). In his response for T3, Joe wrote: It reminds

me of the other two problems and problems about numbers because the cards
are like numbers. In discussing with Dave he said: Card A (the identity element)

is like 1 for multiplication. The property of 1 - You know! - 1 times anything is
the other number. In FWA1 Joe wrote: It reminds me of the problems that we
just did. Then in FWA2, Joe continued: The problems about the commutative

property. Finally, in FWA3 Joe concluded: They were about Roads and stuff.
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Conclusions

The analysis indicated that each of the eleven children made at least one

connection in at least three of the 6 tasks (not including WPA) with the mode being

five. All children made at least one connection between tasks. Also, all children

made references to at least two different kinds of other mathematical ideas. Both

Ed and Joe made comparisons between the concrete tasks and operations with

numbers. Both indicated recognition of commutativity, comparing the concrete

elements with number representations. Both recognized the property of the identity

in the concrete tasks and each referred to the identity with numbers and in the other

concrete tasks. Both boys indicated in the final written assessments that the

numeric problems reminded them of the concrete tasks that they had done because

of properties such as commutativity and identity. The detailed analysis of the

mathematical thinking of Ed and Joe reported here is representative of the cases

developed for the other children.

A limitation in the study is that data were often obtained from video taped

episodes in which some children were more verbal than others. A design that

includes follow-up interviews could provide insight into the nature of the

uncertainty category as well as an opportunity to probe for meanings that are

unclear or inconsistent in written statements. For example, Ed's consistent

recognition of the identity among the seven tasks would lead one to expect that

what he meant to have written in his final assessment was that in multiplication, one

times any number equals that number rather than what he actually wrote (1 times

any number equals 1).

The detailed description of the representations articulated by the children and

the connections among them supports the statistical analysis of the larger study in

which the experimental group scored significantly better than the control. It is

important to understand how children build-up their mathematical ideas so that

appropriate task activities can be provided in classrooms to facilitate learning.

Note 1. For a detailed analysis of the children's problem-solving behavior in the group
activities as well as a description of the nonnumerical tasks (See Alston & Maher, 1988;
Alston, 1989).

9



References

Alston, A. (1990). Unpublished doctoral dissertation. Rutgers University.

Alston, A. (1989). Children's representations of arithmetic properties in small group problem-
solving activities. In C. Maher, G. Goldin & R. Davis (Eds.), Proceedings of the Eleventh
Annual Meeting of the North American Chapter of the International Group for the
Psychology of Mathematics Education, (pp. 235-242). New Brunswick, New Jersey: Rutgers
University Press.

Alston, A. & Maher, C.A. (1988). The construction of arithmetic structures by a group of
three children across three tasks. In A. Borbas (Ed.), Proceedings of the Twelfth International
Conference for the Psychology of Mathematics Education. (pp. 117-124). Vezprem,
Hungary: OOK Printing House.

Brown, J.S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning.
Educational Researcher. 17 (1), 32-42.

Cobb, P., Yackel, E., & Wood, T. (1988). Curriculum and teacher development:
psychological and anthropological perspectives. In E. Fennema, T.P Carpenter, & J. Lamon
(Eds.0, Integrating Research on Teaching and Learning Mathematics. Madison, WI:
Wisconsin Center for Education Research, University of Wisconsin.

Davis, R.B. (1984). Learning Mathematics: The Cognitive Science Approach to Mathematics
Education. Norwood, NJ: Ablex Publishing Company.

Kaput, J.J. (1987). Representation systems and mathematics. In C. Janvier (Ed.), Problems of
Representation in the Teaching and Learning of Mathematics. (pp. 19-26). Hillsdale, NJ:
L.E. Erlbaum, Associates.

Lave, J. (1988). Cognition in Practice. Cambridge, England: Cambridge University Press.

Lesh, R., Post, P. & Behr, M. (1987). Representation systems and mathematics. In C.
Janvier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics. (pp.
33-40). Hillsdale, NJ: L.E. Erlbaum, Associates.

Maher; C.A. (1987). The teacher as designer, implementer, and evaluator of children's
mathematical learning environments. The Journal of Mathematical Behavior. 6(3), 295-303.

Maher, C.A., Alston, A., & O'Brien, J.J. (1986). Examining the heuristic processes of mine to
twelve-year old children in small group problem-solving sessions. Proceedings of the Tenth
International Conference of the Psychology of Mathematics Education. (pp. 369-374).
London, England: University of London Institute of Education.

Steffe, L.P. & Cobb, P. (1984). Children's construction of multiplicative and divisional
concepts. Focus on Learning Problems in Mathematics, 6, (1 &2), 11-29.

Wood, T. & Yackel, E. (1990). The development of collaborative dialogue in small group
interaction. In L.P. Steffe & T. Wood (Eds.), Transforming Early Childhood Mathematics
Education: an International Perspective, (pp. 244-252). Hillsdale, NJ: L.E. Erlbaum,
Associates.

10



ALGEBRAIC SYNTAX ERRORS: A STUDY WITH
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ABSTRACT.- This paper reports on a study carried out whtth 221

Secondary School children of the State of Mexico. Paper and
pencil tests were administered in order to detect the

presence and frequency of albebraic syntax errors previously

reported in other studies CBooth C 1 .7, Hato C 8 .7, Kieran

5,6 2, Kilchemann C 7 2, Collis f 2 2, Trujillo f 9 2,

Filloy/Rojano f 3 2). Some of these results were confirmed

for the mexican data, particularly those concerning

interpretation and manipulation of algebraic symbols,

symbolization of generalizations, equation solving and word

problem soloing. Other kinds of errors appeared which can be

interpreted as teaching effects.

Introduccion.- De acuerdo a las investigaciones de L. Booth

1 1 y D. KUckemann C 7 1, los niflos entre 11 y 16 aSos de

edad pueden tener distintos niveles de interpretaciOn de los

simbolos literales, cuando estos aparecen en expresiones alge-

braicas Cpor ejemplo, la letra comp objeto, comp incognita

especifica, coma ntimero generalizado o come variable). Estas

interpretaciones con frecuencia conducen a tipos especificos

de errores en el desempeflo do tareas algebraicas. Por otro
lado. el trabajo de M. Matz C 8 1 proporciona elementos

tedwicos que sugieren la presencia de procesos mentales tales

comp la extropolaciOn y la generalizaciOn, capaces de generar

en el Algebra, tanto las respuestas correctas come las inco-

rrectas. Tal es el caso de la bien conocida tendencia a apli-

car linealmente todo tipo de operadores Cpor ejemplo, en
Ca + 1:0

2 se obtiene a
2+ b2D, al carecer de criterios de

discriminacion entre un dominio de extrapolacion vAlido y uno
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de los items del examen de Algebra del estudio Strategies and

Errors in Secondary Mathematics CBooth [ 1 1), para cubrir la

section correspondiente a aritmetica generalizada. Tambidna se

incluyeron series de items para abarcar los temas de

simplification de expresiones algebraicas, resolution de

ecuaciones y resoluciOn de problemas verbales, para lo cual se

adoptaron preguntas de los trabajos de Kieran [51, Matz [83

Trujillo [ 9 y Filloy/Rojano [ 3 1 y se elaboraron items

exprofeso para la parte de sistemas de ecuaciones lineales.

Se completaron 23 preguntas C42 items) para la version

definitiva del cuestionario, algunos de los cuales se inciuyen

a continuation , a fin de ilustrar los temas considerados.

1. ,0111iie significa mn? Subraya todas las respuestas que cress

son correctas:

a) m

b) m X m

c) m + n

a> z5 + 26

m) 25 X 26

f) Si tienes otra respuesta, por favor escribela

2. LCOmo escribirias 3 aumentado a 5v ?

6. Reduce, cuando

a) a + a + 3b +

b) 4 + 3y =

c) 2a + 5b + 3a

d) 5y - 2t =

eD Ca b) + b =

sea posible, las siguientes expresiones

5a =

=

9. LS4 puede obtener de la ecuacion 1 la ecuacion 2 ?

No

+ 6

19'

Escribe Si o

1) 2x 6 =4

2) 2x - 6 + 6 = 4

1) 3a + 5 + 4a =

2) 12a = 19

27
12

BEST COPY AVAILABLE



no-vAlido.

En otro orden de ideas, °studios teericos y empiricos han

revelado que el transit° de la aritmetica al Algebra, requiere

que cambios profundos en el nivel conceptual t.engan lugar

CFreudenthal [43, Filloy/Rojano [27, Kieran [6] 3 Ya que, de

no lograrse tales cambios, el anclaje en la manera aritmetica

de pensar genera cierto tipo de operaciones aberrantes on

Algebra Ccomo por ejemplo, la operation defectuosa de la

incognita, en 16 x = 2 x + 5 -> C3 + 53 23 -> 16 8 =

-> x = 2 o la redistribution del error, al afirmar que x + 37

= 150 tiene la misma soluciOn que x. + 37 - 10 . 150 + 103.

Uno de los propOsitos del trabajo que aqui so expone es

el de verificar, hasty que punto, los errores algebraicos mAs

frecuentes, reportados en los estudios mencionados anterior-

mente, estAn presentes en la poblaciOn estudiantil de las
escuelas secundarias de una parte del sistema educative

mexicano y confronter los resultados obtenidos en este contex-

to y nivel oscolar con los resultados de otras investigaciones

de la misma naturaleza. Otro de los propOsitos es Ilevar a

cabo un.analisis de los tipos de error detectados, en terminos

de a) la interpretacien de los simbolos y operaciones

algebraicas, per parte de los estudiantes; b) los procesos

mentales que pueden generar las respuestas erreneas; c) los

efectos que la enseFanza puede llegar a tenor en la generacion

y/o rectification de los errores tipicos.

Ya que los trabajos segalados con anterioridad se comple-

mentan unos a otros, en cuanto a dar explicaciones plausibles

de la presencia y uniformidad de los errores algebraicos.

algunos aspectos de dichas investigaciones se tomaron on

cuenta para conformar un marco teerico para el anAlisis de

los datos recabados en el estudio aqui resegado.

METODOLOGIA Y PASOS DE LA INVESTIGACIOM

ElaboraciOn y AplicaciOn del Cuestionario

Para la elaboration del cuestionario, se adoptaron algunos
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14. LCuando es verdadera la siguiente expresion?

L +N+N=P+ N
Siempre Nunca Algunas veces

18. Resuelva las siguientes ecuaciones

aD 3x 4 = 8

1:06x-3 = 2x + 1

20. Plantea la ecuacion que conduce a la solucion

del siguiente problema; no se requiere que des la so-

1 uci 6n.

a) El doble de u n ntimero disminuldo en 12 es igual a

26 LCual es ese ntimero?

22. Simplifica, cuando sea posible, las siguientes expre-

si ones:

2x 2x + 3y

Para una administracion preliminar del cuestionario a

una poblaciOn pequeRa de estudiantes, se hicieron ajustes de

algunos items en relaciOn al programa de estudios vigente y al

lenguaje utilizado en los libros de text° usuales en la

regi6n. Una version definitiva del examen fue aplicada a 221

niflos del segundo grado de la ense?anza secundaria, provenien-

tes de cuatro escuelas de zonas urbanas y sub- urbanas en el

Estado de Mexico. Se verific6 que, en Ese momento, los ni.Eos

ya hubieran estudiado los temas del cuestionario, incluyendo

la resolucion de sistemas simples de ecuaciones lineales.

Analisis de los resultados.

Se Ilevaron a cabo dos tipos de analisis de los resul-

tados, uno, cuantitativo, el cual permiti6 clasificar los

items del cuestionario en cuatro niveles de dificultad: en

el primer nivel se incluyen los items de menor dificultad,

con un porcentaje de error entre lg' y 44%; en el sequndo

14
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niv21, los items con porcentaje de error entre 48 y 64%,en el

tercero, los de porcentaje de error entre 67 y 84%; y el

cuarto nivel, el de mayor dificultad, los de porcentaje de

error entro 86 y 100 %..

Los items que resultaron ''mas faciles" para esta poblacion

corresponden a la resolution de enunciados verbales tipo

abbaco U'encuentra un nfamere tal que su doble sea..."3 que

corresponden a ecuaciones lineales simples con ura ocurrencia

de la incognita; resolution de ecuaciones de "un solo paso-

C6 x = 4 -> x = 4/63 y simbolizacien de operaciones con

nOmeros y letras C4 sumado a 3n). En las franjas de

-dificultad media", se encuentran items de substituci6n

numerics de la "variable" en expresiones simples; reduction de

expresiones, agrupando terminos semejantes; verificaciOn de

equivalencia de ecuaciones; equivalencia de expresiones con

notation literal; resolucion de ecuaciones entre un nilmero y

un binomio, traduccion a ecuaciones de enunciados verbales

simples; interpretaciOn de expresiones como 5n; expresiOn de

perimetros de poligonos con use do letras. Finalmente, la

franja de mayor dificultad, la conforman 19 de los 42 items

considerados para el analisis cuantitativo e incluye tareas do

reduction de expresiones como a+ a+ 3b+ 5a y 4+ 3y;
simbolizacien de -perimetros generalizados-; simplification

de expresiones rationales como 2x 6 2 x+ 3 y
x. x + y

6

2 x x
2

resolucion do sistemas de ecuaciones como

6 x = 1

y = x + 3 ; operaciones entre binomios.

2 x + y = 1

x 2 y = 8

AdemAs del cuantitativo, se neve a cabo un analisis
cualitativo de los tipos de error cometidos en cada item.

Del analisis de las respuestas erreneas mss frecuentes

encontradas en este estudio se desprenden, basicamente, dos

hechos:

a) La aparicion reiterada, en la mayoria de los items, de

15
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respuestas que manifiestan dificultades reportadas en

los estudios de Booth, Matz, Kieran, Trujillo,

Filloy/Rojano. A continuation se muestran algunas de

tales dificultades, exhibiendo ejemplos, para cada

una de ellas.

Concatenation de simbolos: mn = m + m

Sn = 5 + n

J + p = JP

- InterpretaciOn de las letras:

+ Letra no usada

A = 5 x 2

+ Asignacion de valores a las letras segOn el alfabe-

to:
mn = 25 x 26

+ Asignacion de valores espocificos diferentes a

letras diferentes:

Nuncat+M+N es iguala L+ P+ N

- AplicaciOn de la regla -sumar nameros y anotar las
letras-:

3 + 5y = By

4 + 3y = 7y

2 + 5a = 7a

4 + 3n = 7n

Ausencia de significado para los parentesis:

5C 2a + bD = 10a + b

- Ambiguedad notational:

4a = 43, si a = 3

Incapacidad de.generalizacion:-

Este poligono tiene n lados, cada lado mide 2.

31_
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Empl eo de metodos' primi.tivos en la so) uci On de

ecuaciones y problemas, como ensayo y error y he-
chos numericos.

Traduccian algebraica deficiente de enunciados:

+ Expresan 3 aumentando a Sy como 35, 35Y, ..5y

+ Expresan m+ 5 multiplicado por 3 como m + 5 x

+ Expresan el "triple" de un nOmero disminuido en

18 es iqual a eso mismo numero come. 3x 18 = 19.

b) La manifestacien repetida del empleo exagerado de ex-

presiones en forma de potencies:

a + a + 3b + Sa = 5a3 + 3b

2a + Sb + 3a = 5a2 + r+b

h +h+h+h+t= h4
x + x + 5 + 5 + 6 = x2 +- 52 + 6

21 °2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2.=

lo cual puede ser atribuido a la enseanza reciente de la

notacion exponencial.

CONCLUSIONES

En relation a los propOsitos del estudio, puede decirse

que la confirmacion do la presencia de dificultades ya

reportadas en la literatura de investAgacion, nos remite a las

explicaciones teoricas de distintos autores, tales come, la

existencia de niveles do interpretaciein simbolica en algebra;

el anclaje on la aritmetica cuando se abordan tareas de

resolucion de problemas y ecuaciones; la presencia de procesos

mentales de extrapolacien, que producen entre otras cosas, la

hipercieneralizacion de la linealidad entre operadoros; y la

necesidad de una semantica de la producciOn de simbolos com-

puestos Cletras y numeros) on las tareas de traduccien al

algebra de problemas verbales. Explicaciones que, en una

primera aproximacion a los datos recoloctados, pueden ser

aceptadas como plausibles. Esto, por otro lado, no cancola

la posibilidad de pJantearse el atacar ostas dificultados, on

el ni vel do la ensenarza, ya quo la poblaciOn ostudi ada la
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conforman niFlos que se inician en el estudio del Algebra

para quienes puede tenor sontido crear acercamientos de

enseflanza que contemplen los aportes que las investigaciones

recientes nos han proporcionado.
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THE DEVELOPMENT OF CONCEPTUAL STRUCTURE AS A PROBLEM SOLVING ACTIVITY

Victor Cifarelli

University of California at San Diego

This study examines the development of conceptual structures in problem solving

situations. Nine college freshmen were interviewed as they solved a set of similar

algebra word problems. All interviews were videotaped and written transcripts of the

solvers' verbal responses were prepared. Analysis of the solvers' solution activity

yielded four increasingly abstract levels of structural knowledge.

INTRODUCTION

The notion of conceptual structure underlies many goals for instruction in mathematical problem

solving. Mathematics educators who have as their goal the development of "intellectual autonomy" (Kamii,

1985) in the problem solving actions of their students view conceptual structures in terms of their

interpretive qualities, as a means by which solvers can organize their problem solving experiences "with a

view to making predictions about experiences to come" (von Glasersfeld, 1987) (e.g., making conjectures

about one's potential solution activity in new situations).

Despite universal agreement about the importance of solvers developing such structural knowledge,

current work in situated cognition suggests the need to reexamine the traditional view of conceptual

structures as "decontextualized formal concepts" which are transferred across learning situations (Brown,

Collins, and Duguid, 1989). The idea that learning and cognition are situated suggests that learners build

up their conceptual knowledge in the context of ongoing activity. As a result, concepts continually evolve

with each occasion of use, "because new situations, negotiations, and activities inevitably recast it in a

new, more densely textured form ". According to Lave (1988), a solver's articulation of structure in a

problem solving situation generates learning oppportunities in which exploration of "the plausibility of

both procedure and resolution in relation to previously recognized resolution shapes" can lead to a

restructure of one's prior solution activity. This paper will argue that solvers construct such conceptual

organizations while performing mathematical problem solving activity and that further development of the

structure is a process of reconstruction resulting from subsequent problem solving activity.

OBJECTIVES

The purpose of the study was to acquire an understanding of the processes of constructing conceptual

knowledge during mathematical problem solving. The study focused on the internal activity of the learner

with particular emphasis on the ways that learners elaborate, reorganize, and reconceptualize their solution

activity while engaged in mathematical problem solving.

Solvers face problematic situations in their mathematical activity when they can't see any way to
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achieve their goals (Pask, 1985). When problem solving is related to one's goals as such, a variety of

situations qualify as genuine problem solving situations. For example, solvers might face a problematic

situation when they attempt to make sense of or understand statements that describe a specific algebra word

problem. Alternatively, the solver's problem might be to understand why a particular solution method led to

unanticipated success or why two different solution methods led to the same result. These situations arise

in the course of goal directed activity and can serve as learning opportunities for solvers (Pask, 1985;

Cobb, Yackel, & Wood, 1989). Successful resolution of such situations can be viewed as the construction of

conceptual understanding in the context of ongoing activity (Vergnaud, 1984; Lave, 1988) with the result

being that the solvers build structure for their current solution activity (or restructure their prior

solution activity). Hence, the goals of the study were to provide clarification for these ideas by

observing solvers as they experience and resolve a range of problem solving situations and to characterize

their subsequent growth in structural knowledge.

METHODOLOGY AND DATA SOURCE

Subjects came from calculus classes at the University of California at San Diego. Nine subjects

participated in the study. Subjects were interviewed as they solved a set of similar algebra word problems

(see Table 1). The interviews were videotaped for subsequent analysis. In addition to the video protocols,

transcripts of the subjects' verbal responses as well as their paper- and pencil activity were used in the

analysis.

Table 1: SET OF LEARNING TASKS

TASK 1: Solve the Two Lakes Problem

The surface of Clear Lake is 35 feet above the surface of Blue Lake. Clear Lake is twice as deep as Blue

Lake. The bottom of Clear Lake is 12 feet above the bottom of Blue Lake. How deep are the two lakes?

TASK 2: Solve a Similar Problem Which Contains Superfluous Information

The northern edge of the city of Brownsburg is 200 miles north of the northern edge of Greenville. The

distance between the southern edges is 218 miles. Greenville is three times as long, north to south as

Brownsburg. A line drawn due north through the city center of Greenville falls 10 miles east of the city

center of Brownsburg. How many miles in length is each city, north to south?

TASK 3: Solve a Similar Problem Which Contains Insufficient Information

An oil storage drum is mounted on a stand. A water storage drum is mounted on a stand that is 8 feet taller

than the oil drum stand. The water level is 15 feet above the oil level. What is the depth of the oil in the

drum? Of the water?

TASK 4: Solve a Similar Problem In Which the Question is Omitted

An office building and an adjacent hotel each have a mirrored glass facade on the upper portions. The hotel

is 50 feet shorter than the office building. The bottom of the glass facade on the hotel extends 15 feet

below the bottom of the facade on the office building. The height of the facade on the office building is

twice that on the hotel.
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TASK 5: Solve a Similar Problem Which Contains Inconsistent Information

A mountain climber wishes to know the heights of Mt. Washburn and Mt. McCoy. The information he has is that

the top of Mt. Washburn is 2000 feet above the top of Mt. McCoy, and that the base of Mt. Washburn is 180

feet below the base of Mt. McCoy. Mt. McCoy is twice as high as Mt. Washburn. What is the height of each

mountain?

TASK 6: Solve a Similar Problem Which Contains the Same Implicit Information

A freight train and a passenger train are stopped on adjacent tracks. The engine of the freight is 100 yards

ahead of the engine of the passenger train. The end of the caboose of the freight train is 30 yards ahead of

the end of the caboose of the passenger train. The freight train is twice as long as the passenger train.

How long are the trains?

TASK 7: Solve a Similar Problem that is a Generalization

In constructing a tower of fixed height a contractor determines that he can use a 35 foot high base, 7 steel

tower segments and no aerial platform. Alternatively, he can construct the tower by using no base, 9 steel

tower segments and a 15 foot high aerial platform. What is the height of the tower he will construct?

TASK 8: Solve a Similar Simpler Problem

Green Lake and Fish Lake have surfaces at the same level. Green Lake is 3 times as deep as Fish Lake. The

bottom of Green Lake is 40 feet below the bottom of Fish Lake. How deep are the two lakes?

TASK 9: Make Up a Problem Which has a Similar Solution Method

The nonstandard format of the tasks provided opportunities to observe solvers as they faced problematic

situations. For example, even though solvers might construct a solution to Task 1, they could conceivably

face problems while solving later tasks despite recognizing that similar solution methods are involved

(e.g., solvers could face a problematic situation while solving Task 3 if they try to do exactly the same

thing as they did in solving the earlier tasks). Hence, such situations provide opportunities for solvers

to develop greater understanding about their solution activity. In addition, the similarity among the tasks

allowed opportunities to observe how the solvers' newly constructed conceptual knowledge influenced

subsequent solution activity in similar situations (i.e., development of control of solution activity).

Using the written and video protocols, the analysis proceeded from detailed observation of the ways the

solvers resolved situations they found to be genuinely problematic while solving the tasks. The solvers

were inferred to have experienced such situations when their initial anticipations of what to do in solving

a particular task proved incorrect when solution activity was carried out and novel activity was required.

In this way, the analysis focused on qualitative aspects of the solvers' solution activity (i.e., changes in

their anticipations and reflections) which indicated that constructive activity had occurred. Based on the

results of the qualitative analysis, detailed written case studies of the solvers' performance were prepared.

RESULTS

Analysis of the solvers' solution activity indicated a gradual building up of their structural knowledge as

they solved the tasks. Procedures constructed while solving the earlier tasks were elaborated upon as

solvers solved later tasks. This constructive activity was characterized in terms of distinct levels of
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solution activity. Four increasingly abstract levels of solution activity were inferred from the solvers'

performance. The levels are summarized in Table 2.

Table 2: Levels of Solution Activity

LEVEL OF ACTIVITY DEFINING ATTRIBUTES EXAMPLES

Structural Abstraction Solver can "run through" Solver can draw inferences

potential solution activity in from results of potential

thought and operate on its activity without the need to

results carry out solution activity

Re-Presentation Solver can "run through" prior Solver can anticipate

solution activity in thought potential difficulties prior

to carrying out solution

activity

Recognition Solver encounters new Solver recognizes diagrammatic

situation and identifies analysis activity as appropriate

activity from previous tasks as for solving Tasks 2-9

relevant for solving current task

Instrumental Solver demonstrates fragmented, Solver uses mechanical coding activity

unreflective solution activity as part of a translation strategy

The following paragraphs include episodes from the case study of solver KB and serve to illustrate

examples of the different levels of structural knowledge demonstrated by the solvers.

The solver's performance during the interview can be summarized in the following way. The solver

struggled to construct a solution to Task 1. She initially pursued a strategy where she coded all

information contained within the problem statements. When this approach did not lead to a solution, she

pursued an alternate solution method incorporating a gecnetric approach (i.e., diagrams of the lakes were

constructed and relevant lengths from the diagrams were translated to a vertical axis which served as a

reference aid in constructing relationships). This solution activity led to a correct solution and resulted

in the construction of an initial recognitionary structure. Solution activity performed while solving Tasks

2-9 enabled the solver to elaborate and refine the initial structure, achieving higher levels of abstraction

and control with each successive task. The following paragraphs describe this development.

The solver's initial attempt to solve Task 1 could be described as an unreflective, instrumental

approach (i.e., she did not appear to reflect on or think about the nature of potential solution activity

Prior to carrying it out). She initially interpreted the task as a routine algebra word problem and

proceeded to code all information without attempting to develop a deeper understanding of the situation.

S: That strikes me as an algebra problem with 2 variables. So the first thing I should

do is assign variables to everything that is important.

She constructed a diagram and proceeded to generate all possible algebraic relationships. Symbols
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representing variables were manipulated in a mechanical fashion as the solver tried to code and relate

everything in the problem without reflecting to the extent necessary to consider whether such assignments

were relevant in finding a correct solution to the problem. This activity resulted in the generation of

algebraic equations which she later found to be inappropriate.

S: I have 4 unknowns and 3 equations. And that's not good enough for me to solve an

algebra problem.

The solver realized she faced a genuine problem and proceeded to pursue an alternate method of solution.

She abandoned her unreflective approach (where symbols were manipulated mechanically without regard to

possible relationships) in favor of a more relational approach (where reflection upon entities signified by

the symbols led to the construction of a viable solution method). This reflective approach was indicated by

the solver's conscious intention to use the drawing as an interpretive tool that would aid her

conceptualization and elaboration of potential relationships.

S: I am going to look for a geometrical relationship for my drawing which I am going to

redraw because this is not accurate.

S: This is the bottom, this is the surface of Blue Lake and this is the bottom of Blue

Lake. This distance is 12 and this distance is 35. And this whole distance is

twice that whole distance. (LONG PERIOD OF REFLECTION HERE)

S: Okay, if I label this whole distance X ... I can say ... that 12 plus X plus 35,

which is the height of Clear Lake, is going to equal twice X. And that's the

relation in one variable I can solve.

S: And the relation I was missing here is the fact that I'm looking at differences in

height, not absolute height.

This constructive activity culminated with the generation of an appropriate algebraic equation for the

problem, albeit an incorrect one (i.e., she made an error in her diagram). This algebraic relationahtp

expressed a viable cohesive solution method rather than isolated relationships that corresponded to

fragments of the problem statement. Upon discovery of an error in her diagram, the solver reconceptualized

the problem and generated a new algebraic equation which led to a correct solution.

S: The bottom of Lake, ... and this lake is 12 feet above

the bottom of that lake. So I didn't draw it that way. I drew it 12 feet below.

S: That means that my geometrical solution is probably off.

S: So, the distance between these two is still 35. The distance between these two is 12.

S: Yeah, but X doesn't mean the same anymore.

S: So, 35 plus X equals 24 plus 2X. So 35 minus 24 equals ... X.

S: So Clear Lake is equal to 35 plus X which is 46. And Blue Lake is equal to 12 plus

11 which is ... 23. That's the solution!

The solver's solution activity for Task 1 involved the construction of novel relationships which

expressed an initial conceptual structure. This activity was novel in the sense that it involved meaning

making activity in genuinely problematic situations. The result of this novel activity was that the solver

structured her solution activity. Given this initial implicit initial structure, solution activity
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performed while solving Tasks 2-9 gave rise to opportunities for the solver to elaborate and

reconceptualize the relationships she constructed while solving Task 1.

To say that the solver constructed a conceptual structure for her solution activity while solving Task

1 is evident from her initial anticipations as she solves Task 2. At this point her structure was primitive

in the sense that while she could recognize the appropriateness of using similar solution activity, she

could not anticipate a potential problem suggested by the additional information contained within the

problem statements.

S: The first thing that strikes me is that this problem is alot like the previous one.

S: And ... I think it would serve me well to start off in this one by just drawing a

picture.

The gradual discovery of the superfluous information puzzled the solver, suggesting that her initial

anticipation was based on a recognition of the relevance of activity similar to that which she had just

completed (i.e., at best she could only recognize diagrammatic analysis of the type performed in Task 1 as

appropriate to the new situation and could not anticipate potential difficulties). She paused to reflect on

the situation.

I: What are you thinking?

S: I'm thinking that this line drawn due north doesn't seem to have anything to do with

the problem.

While the situation appeared to constitute a minor problem for her, she was not able to state with certainty

that the added information was indeed irrelevant. She eventually chose to ignore the information ("So I'll

just look at the other relationships first") and constructed a solution.

Solution activity performed in Task 3 indicated that additional constructive activity had occurred and

that the solver had reorganized her structure. After reading the problem statements, she proceeded to

construct a diagram. The solver initially anticipated that she would use the same procedures that she had

used while solving earlier tasks. However, she anticipated a potentially problematic situation soon after

constructing a diagram yet prior to carrying out the solution method.

S: And here's the water level, here's the oil level.

S: And the water level is 15 feet above the oil level.

S: So solve it ... (ANTICIPATION) ... the same way. ...(ANTICIPATION) Impossible:

The suddeness with which she was able to anticipate potential difficulty suggests that she had attained a

level of reflective activity not demonstrated while solving prior tasks (more precisely, she had "run

through" the potential solution activity in thought and could "see" the results as being problematic).

Further, this reflective activity served as a driving motivation for subsequent solution activity.

39 1:,
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S: It strikes me suddenly that there might not be enough information to solve this

problem. So I better check that. (LONG PERIOD OF REFLECTION HERE) .

S: I suspect I'm going to need to know the heights of one of these things.

S: But I could be wrong so ... I'm going to go over here all the way through.

The solver spent much time and energy pursuing the elusive information. She finally concluded that the

problem, as stated, could not be solved.

Tasks 2 and 3 presented opportunities for the solver to reflect on, elaborate, and generalize the

procedures she developed while solving Task 1. In each case, the solver gave initial meaning to the task

she faced by assimilating the new situation to a conceptual structure that functioned at the level of

recognition (i.e., she recognized that the activity she performed in solving Task 1 was relevant for solving

Tasks 2 and 3). In resolving problematic situations while solving Task 3, the solver was inferred to have

reorganized the structure at a higher level of abstraction (i.e., at the level of Re-Presentation). The

solver appeared to further develop her structure as indicated by her solution activity in subsequent tasks.

The solver demonstrated this more abstract structure while solving Tasks 4 and 9.

Task 4 required the solver to construct a problem she could solve. In constructing a problem to

solve, the solver reflected on potential solution activity in a powerful way which was not evident in

earlier tasks.

S: The things they could ask for are things like ... (ANTICIPATION) ... the height of

one of the buildings but ... (ANTICIPATION) ... there's not enough information to

get that. ... (ANTICIPATION) ...

S: The only thing we have information about is ... (ANTICIPATION) ... Ah, the relative

heights of the two facades.

S: So, if I were ... if somebody wanted me to solve any. problem, that's probably what

they're asking for.

This episode illustrates the solver's developing flexibility and control of her solution activity. This

development continues throughout the remainder of the interview. The solver's solution activity in Task 9

indicates that she had reorganized her stricture (i.e., at the level of Structural Abstraction) to the

extent that she could reflect on her potential solution activity and anticipate its results without the need

to carry out the activity. The task required the solver to construct a novel situation which had a similar

solution method to the prior tasks.

S: Okay, ... (ANTICIPATION) ... I'm thinking of something with different heights.

S: Oh, ... (ANTICIPATION) ... bookshelves in a bookcase.

S: No, ... (ANTICIPATION) ... that's no good. ... How about hot air balloons!

The solver ran through potential solution activity for the particular situation she proposed (i.e.,

bookshelves) and anticipated its results (i.e., that it would not work for "bookshelves" but that she could

solve it for "hot air balloons"). So, her structure allowed her to run through potential solution activity
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in thought, produce its results, and draw inferences from the results. She routinely constructed

appropriate algebraic relationships and completed the task.

CONCLUSIONS

The study was exploratory and future work needs to focus on the following areas. First, the

characterization of conceptual structures as actively constructed by solvers suggests the importance of self

generated solution activity. Problematic situations were not given to solvers. Rather, they were self

generated in the sense that they arose as solvers tried to achieve their goals and purposes. In addition,

the solvers' ability to transform initial conceptual structures into more abstract forms was made possible

by the solvers' ability to generate new material to reflect on when they faced such situations. Second, the

results of the study suggest a relationship between cognitive and metacognitive activity. The cognitive act

of expressing their structure in new situations and the ways that they resolved problematic situations that

they faced along the way had a powerful influence on the solvers' subsequent solution activity performed

while solving later tasks. More precisely, they were able to anticipate what it was they were to do and the

result of doing it before they carried out the activity. In metacognitive terms it can be said that

planning and monitoring activity (i.e., anticipations about potential activity) developed as a result of the

solvers performing specific cognitive acts (i.e., the expressing of their structural knowledge in new

situations and the resolution of problematic situations in which they found themselves). The crucial point

here is that their developing ability to monitor and plan their solution activity was made possible by their

cognitive advances. This calls into question the notion that metacognitive skills can be treated as a

separate level of cognitive functioning (Brown, 1988).
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FROM ARITHMETIC TO ALGEBRA: NEGOTIATING A JUMP
IN THE LEARNING PROCESS

Anibal CORTES, Gerard VERGNAUD, Nelly KAVAFIAN

How can teacher and students negociate the move from
arithmetic to algebra during the very first phase of introduction
to algebra. The first problems that can be put into equation and
solved by algebraic means can also be solved by arithmetic.
Therefore some scaffolding and tutoring must be offered to
students for them to accept to deal with equations; unknowns, and
the transformation of equations.

INTRODUCTION

The learning of algebra constitutes a significant
epistemological jump for secondary school pupils. By this we mean
that the pupil has to shift suddenly from one state of
mathematical knowlege to another by rapidly assililating new
notions and procedures: (unknown, variable, equation, function,
graphic representation...) which build on previously acquired
knowlege but which require entirely new types of thinking.
Passing from elementary arthmetic to algebra, pupils will have to
substitute for the iterative treatment of problems stated in
natural language, the manipulation of algebraic expressions
according to explicit rules ( a procedure which gives rise to a
succession of equations).

How to start teaching algebra? with which types of
problems? The answer is not immediate. In the course of a
previous experiment, we set pupils simple problems which put in
the form of equations; led to equations of the type a+x=b, ax=b
and ax+b=c. These problems are, in fact, easily solved through
arithmetic. Therefore, putting problems into equation form and
the algebraic treatment of equations is initially a response to
the teacher's request. Pupils learn, for sure, but the
introductory process is slow and rests entirely on the pupils
acceptance of the didactical contract.

Algebra takes on a much clearer meaning in the solution
of problems which are insoluble or difficult to solve trough
arithmetic. Problems with two unknowns are generally good
examples by may be it would be setting too high a hurdle to start
the study of algebra with this type of problem.

Problems with one unknown which in the equation form
require an equation where the unknown appears on both sides (of
the type ax+b=cx+d) gives rise to serious difficulties for
beginners (we shall treat them only in the second didactical
sequence). Consequently we have chosen an intermediate approach
by starting the study of algebra with a problem with one unknown
giving rise to an equation of the type ax+b=c followed quickly by
problems with two unknowns. The present paper es concerned only
with the very first phase of introduction to algebra. We propose
to make a detailed analysis of the observed processes in 7th-
grade (28 pupils) and 8th-grade (30 pupils).

Which are the conceptual difficulties encountered when first
working with algebra?

The concept of the equation: the fist step in solving a
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problem algebraically is to express it as an equation. This
consists in making explicit the mathematical relationship between
the unknown and given data in order to find a value for the
unknown. This tool-like characteristic of the equation may be
visible to the pupil when the equation is put in the form x....
it is not visible when x is incorporated in the analytical
expression of the relation ax+b=c.

Most pupils are not familiar with the concept of the
equation. For them an equation is an abbreviated way of writing
the terms of the problem: a summary. The purpose of the equation
largely escapes them. Arithmetic formulations are generally used
as a mnemonic device for arithmetic calculations. This cannot
easily be applied to algebra since it es necessary to work with
an unknown.

The concpt of the unknown: The concept of the unknown
is closely related to the concept of the equation. These two
concepts are constructed in parallel. One gives meaning to the
other and vice-versa. A broad definition of the unknown would be:
"what is not known in the terms of the problem". But one tacitly
calls "unknown" something that was to be calculated by jumping
over the problem of intermediate unknowns. In algebra the unknown
is symbolised by a character which represents an unknown number
(in the solutions of problems one should rather speak of an
unknown magnitude). One can see that characters written by pupils
can sometimes symbolise an object or a unit rather than a number
or a magnitude.

The meaning of the "=" sign. The "=" sign may have
several meanings:

a) It introduces a result. The "=" key of a pocket
calculator carries this meaning (it serves the purpose of
introducing the result by making it appear). Similarly; in the
most common usage of formulas, in V= L.l.h, for example, the "="
sign introduces the way to calulate V. For many pupils the "="
sign exclusively carries this meaning, which can sometimes lead
to writing incorrect equalities. For example, in 70-25 = 45+47 =
92-52 =.40, the number following the "=" sign is the result of
the algebraic sum expressed on the left.

b) Equivalence. In algebraic equations the "=" sign has
the following meaning: what is on the right of the "=" sign is
equivalent to what is on the left for an appropriatly selected
value of the unknown. This meaning takes shape at the same time
as the concept of equation and unknown.

c) Identity: For example, in the transformation of
literal expressions.

d) Specification or definition. For example, in
f(x)= 2x + 52, the "=" sign introduces the analytical expression
of this function.

The homogeneity of the equation: in the expression of a
problem (of physics for example) the homogeneity of the written
terms of the equation is controlled. Now, it is not at all
obvious to secondary school pupils that the terms of an equation
must be homogeneous; addition of values of the same kind (same
units, same meaning). We chose to ask our pupils to write the
units of the data from the very first session of study; this
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constitutes a first approach to the control of homogeneity. Later
these pupils will be confronted with problems in which control of
the units is not sufficient: for example, one does not add prices
and profits, neither weights and prices.

Numbers, the treatment of numbers: An average 7th-grade
pupil is supposed to be capable of operating within the D+ set;
he hardly knows fractions and directed numbers. In the 8th grade,
pupils are supposed to have become acquainted with fractions and
directed numbers. Nevertheless they also have many problems. Now,
the processes of putting into equation form and solving equations
algebraically call for a thorough grasp of operations with
numbers, especially with directed numbers. For example, it might
be necessary to multiply or divide by a negative number.

Algebraic calculation the "detour" behaviour. One of
the most important aspects of the jump between arithmetic and
algebra is the acceptance of the "detour" behaviour: the pupil
must accept not to attempt immediatly to calculate the unknown or
intemediate unknowns (to put the problem into equation), accept
to forget the meaning of values and relationships represented by
algebraic expressions (succession of intermediate equations)
accept to rely on operations on written symbols which may not
have an arithmetical meaning, and nonetheless trust that the
solution thus found is both interpretable and correct:
conservation of the equality and the solution throughout the
algebraic calculation.

FIRST SITUATION

Putting into equation the first problem and solving it
algebraically require the use of concepts and procedures which
are barely understood or entirely misenderstood by our pupils
(equation, unknown, succession of equivalent equations,
conservation of the equality...). The gap between the problem to
be solved and the pupil's knowlege creates a paradox which can
only be resolved through the teacher's tutorial activity.

Tutorial activity: here the tutorial activity offered
to pupils consists in braking down into stages the process. This
way of providing guideposts for the task is designed on the one
hand to help define the steps in the process and on the other
hand to discourage the search for an arithmetic solution. At each
stage the pupil will be faced with a particular difficulty while
the observers will have the opportunity of establishing a
discussion with him. During the experience each class is
distributed into groups of four pupils (five groups in 7th-grade
and four en 8th-grade); a larger group is under the
responsability of the principal teacher (8 pupils in 7th-grade
and 14 pupils in 8th-grade).

The terms of the first problem are the following: On a
pair of scales in equilibrium, we have identical marbles and
weights labelled thus:

nrn000 1 f vi I
soos 50,_ ,13.. 200 Qt0 SO4a a--
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Item a) Write the equation which you think represents
this perfectly balanced pair of scales. The unknown in the
problem which we are going to calculate is the mass of a marble.

Most pupils launch themselves into an arithmetic
solution. The observer-teacher then ask the pupils in both
classes to write the equation. Most pupils then produce (and
think of) the equation as a summary of the terms of the problem.
To the question "what is the use of an equation?" most pupils
reply "it translates a text", "it simplifies like a shorthand"...
Nonotheless, a few pupils recognise the equation's properties as
a tool: "the unknown can be put on one side and it is possible to
calculate it more quickly". The results obtained are the
following:

Algebraic equations 8th 7th
6x + 500g + 50g = 1Kg + 200g + 200g + 50 g 7 6

6x + 550g = 1450 g 9 2

6x + 500 + 50 = 1000 + 200 + 200 + 50 2

6x + 550 = 1450 1

'TOTAL 19

Neither 8th-grade nor 7th-grade pupils have ever solved
problems through algebra. However, 8th-grade pupils are more
capable of writing algebraic equations. The degree of elaboration
of the written mathematical expression is greater in the 8th-
grade as well: 10 pupil write a reduced form of the equation.

We cannot be sure that the written characters (x,y,z,a)
have a correct meaning in all cases. Indeed the pupils can use
such symbols due to acquired training without for all that having
a correct representation of the unknown (the mass of a marble).
We have noticed that the pupils who write "x" have a tendency to
read their equations as an equivalence between values
(equivalence of masses in our case). On the other hand, pupils
who use a symbol which is "closer" to the object referred in the
terms of the problem ("marbles, "m" or a drawing) seem to
interpret their equation as a simple juxtaposition of objects of
different kinds. For example:

"Juxtaposition" of objects 8th 7th
6m + 500g+50g=1Kg+200g+200g+50g 3

6 marbles+500g+50g=1Kg+200g+200g+50g 2 5

000 000 +500g+50g=1Kg+200g+200g+50g 2

These symbolisations of the unknown can prove
operational in an arithmetical treatment (which is performed
closer to natural language) but can produce a shift of meaning in
an algebraic treatment. For example, the pupil whose algebraic
calculation results in: "one marble = 0,15 Kg" wants to signify
that "the mass of a marble is equal to 0,15 Kg". This pupil has
navigated between the object (marbles) and the property of the
object that we wish to calculate (the mass of a marble).

Equivalence of masses 8th 7th
6 masses of a marble +500g+50g=1Kg+200g+200g+50g 3

550g (6x) = 1Kg450g 1

6x+500g+50g is equal to 1Kg+200g+200g+50g 2

6y+(M=500g) +(M=50g) = (M=1Kg) + (M=... 1

.. 1,450Kg. On the other we have 550g and 6x 1
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The first equation is an equivalence of masses and very
probably the others are too; but algebraic notation is missing.
The second equation serves as the base for an arithmetical
calculation; in the third, the pupils resort to natural language
to express the equivalence. The new meaning of the "=" sign is
unknown to them. The fourth and fifth expressions are close to
natural language.

Absence of the coefficient of the unknown 8th 7th

x +500g+50g = 1Kg+200g+200g+50g 1

x 550g 1 1Kg450g 2

x = 500g+50g+1Kg+200g+200g+50g 1 1

o + 550g = 1450g 1

The "x" in the first equation represents the mass of
six marbles: the pupil is therefore using an intermediate
unknown. The second expression resembles a "reduced" drawing and
serves as the base for an arithmetical calculation. The third
line is particularly interesting because the expression resembles
a formula: on one side theme is the unknown that we wish to
calculate; on the other are all the terms of the problem; in the
middle is the "=" sign which introduces a result. In order to
solve the problem, this pupil has to write a mathematical
expression which he is not familiar with; he prefers to write the
mathematical expression he knows while neglecting the meaning of
the equality.

Four 7th-grade pupils calculate the value of the
unknown and then write a numerical equality: 900+550 = 1450.
These pupils have been able neither to make use of the adult's
tutoring nor to calculate the unknown by algebraic means. This
demonstrates the relevance of our thesis: it is necessery to
discourqge solutions by arithmetical means. Finally, a 8th -grade
pupil writes a false equality because he does'nt state the units
of the date: 6x + 500 +50 = 1 + 200 + 200 + 50

In their intuitive approach to the concept of equation
as a shortened of the problem, most pupil state units. We have
tried to include writing units in the didactical contract: with
the aim of intoducing control of the homogeneity of the equation.

Item b) Express all the terms of the equation in Kg.

The observers point out to the pupils that the equation
has to be reduced in order that it can be used to calculate the
unknown and that the reduction of the equation requires that all
its terms be expressed in the same units. We chose to calculate
the unknown in Kg in order to emphasize the constraint imposed by
homogeneity by means of a conversion of units which requires a
certain degree of elaboration. Several pupils make mistakes in
converting which we will not mention! The observers also point
out that the equation represents an equivalence of masses. The
pupils then write the following equations:

Algebraic equations 8th 7th
6x+0,5Kg+0,05Kg = 1Kg+0,2Kg+0,2Kg+0,05Kg 13 5

6x+0,55Kg = 1,450Kg 8 7

6x+0,5+0,05 = 1+ 0,2+0,2+0,05 2 2

6x + 0,55 = 1,450 1

6m+ 0,5Kg+ 0,05Kg = 1Kg+0,2Kg+0,2Kg+0,05Kg 4

TOTAL 23 19
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Compared to the previous item there is a certain
elaboration of the mathematical expression, expecially in the
7th-grade: a larger number of pupils write algebraic equations,
in particular reduced equations.

The meaning of the unknown (mass of marble) in
discussed within the groups of pupils. We notice that those who
were using the "m" symbol do not change it. On the other hand
three 7th-grade pupils doo not use the word "marble" anymore;
they now write: 6 masses of one marble +
0,5Kg+0,05Kg=1Kg+0,2Kg+... (five 7th-grade pupils at all).

Tutorial activity is more effective in small groups of
four pupils than in larger ones which are under the
responsability of the principal teacher. The following expression
belong to pupils from larger groups.

8th 7th
6 marbles+0,5Kg+0,05Kg=1Kg+0,2Kg+0,2Kg+0,05Kg 2 2
000 000+0,5Kg+0,05Kg = 1Kg+0,2Kg+0,2Kg+0,05Kg 2
6x = 0,9 ; x=0,15 2
0,5Kg+0,05Kg = 1Kg+0,2Kg+0,2Kg+0,05Kg 1

6y+(500g=0,05Kg)+(50g=0,005Kg) = 1Kg+(200g=0,2Kg... 1

Some pupils retain symbols which are "close to the
object in spite of the teacher's remarks about the meaning of the
unknown. Two pupils who had previously solved the problem
arithmetically in grams write teir calculations in Kg (third
line). One pupil connot manage to write an equivalence with an
unknown (he had previously written x=500g+50g+1Kg+200g+200g...).
One 7th-grade pupil introduces the conversion of units into his
expression; he remains close to natural language.

The equation with units ( which could be called a
physical equation since it expresses a relation between
magnitudes) raises the problem of the treatment of units in
algebraic resolutions. It es necessary to be able to proceed to
equations without units.

Item c):Write the equation of the problem expressing
each term in Kg without stating units. Let "z" (for example) be
the unknown. The unknown number.... stands for.... expressed in...

Proposing the letter "z" to denote the unknown gives
rise to a debate about the relevance of the symbols used; non-
algebraic expressions ("marbles", "mass of a marble" and drawing)
are replaced by "z". The effect of the terms in which this item
is stated goes beyond what is desirable since many pupils who had
symbolised the unknown by a letter also change.

The expression "unknown number" draws the attention of
the pupils to the fact that the unknown is a number. The mayority
of the pupils complete the blanks in the sentence by: The unknown
number z stand for the mass of a marble expressed in Kg.

Algebraic equation 8th 7th
6z + 0,5 + 0,05 = 1 + 0,2 + 0,2+ 0,05 and

6z + 0,55 = 1,450 11 9
6z + 0,55 = 1,450 14 16

TOTAL 25 27
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The passage to an equivalent reduced equation is not
obvious; several pupils link the two equations with an"=" sign at
the end of the first. There is therefore a shift of meaning: the
two distinct equations become a succession of transformations; a
kind of algebraic sum. The conservation of the equality (the
passage to another equivalent equation) gives rise to serious
difficulties:

6x+0,55 = 1+0,2+0,2+0,05
6z+500+50 = 900+500+50 =

= 6x+0,55
1,450

= 1,45
8th 7th

1

1

6z+0,5+0,05 = 1+0,2+0,2+0,05 = 0,55+1,45 = 1,85 1

0,5+0,05 = 1,0,2+0,2+0,05 = 0,55 = 1,45 1

6x+0,5+0,05 = 6x+0,5+0,05 = 0,55 ; x = 0,55/6 1

0,9+0,55 = 1,450 1

Both equations are written on the same line (first line). A
7th grade pupil (second line) writes the left hand side again
replacing the unknown with its value in grams, and comes to a
"result" in Kg (the right hand side). One pupil (third line)
groups together all the reduced numerical terms after his
equation and comes to a number: a shift towards an algebraic sum.
One pupil (4th line) is not capable of reducing his equation in
the presence of the unknown. One pupil (following line) is also
unable to operate on the numbes in the presence of the unknown;
he detaches the numerical part and puts forward for "x" the value
which solves for the equation 6x = 0,55. One pupil writes a
reduced equality without unknown (last line).

Algebraic solution of the equation. Item d): By substracting
0,55 from each side of the equation a new equation is obtained.
Which one?

The required notation (6z + 0,55 0,55 = 1,45 0,55 ; 6z =
0,9) leaves a trace of the algebraic working, it allows the
pupils more easily to check their work; it permits the
construction of a script-algorithm which is used to provide
guidance in the very beginning, when resolution strategies are
lacking. This notation does not appear naturally it has to be
required; it has to be constructed.

After the definition of the word "side" and "term" the
observers justify the algebraic operation (mathematically or by
refering to the scales) which the pupils can check by arithmetic.
The work on the equation, the passage to an equivalent equation
and the required notation raise problems (the observers
occasionally have to write it). Some pupils use this notation,
others write the resulting equation directly:

6z+0,55-0,55 =
6z = 0,9
6z = 1,45-0,55

1,45-0,55 ;

;

6z

6z

=

=

0,9

0,9

8th 7th
15
6

8

9

1

Besides the notation, some
distinct equations:

6z+0,55-0,55 = 1,45-0,55 = 0,9
6z +0,55 -0,55 = 1,45-0,55 =
6z = 1,45 - 0,55 = 0,9

pupils

; 6z =
; 6z =

33

have problems

0,9
0,9

writing

3

1

2

two

-

4

1
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Many pupils propose to treat each side of the equation
separately, some of them write it as :

6z+0,55-0,55=6z ; 1,45-0,55 = 0,9 ; 6z = 0,9 2 4

Two pupils substract 0,55 from the coefficient of the
unknown:
5,45 x = 0,9 1

5,45 Z + 0 = 1,395 1

This type of error (related to a misunderstanding of the
order in which operations must be carried and to the weakness of
the concept of the unknown) occurs frequently in the beginning
and desappears rapidly afterwards.

item e) Divide each side of the equation by 6. What new
equation is obtained?

The proposed notation (6z/6 = 0,9/6 ; z = 0,15) and its
justification are quickly accepted because they shed lighjt on
the step to the final equation: z = 0,15. The equation 6z = 0,9
is easily solved through arithmetic; pupil may therefore rely on
it as a mean of checking their work. Most of the pupils write
required notation others do not.

8th 7th
6z/6 = 0,9/6 ; z = 0,15 17 21
z = 0,9/6 ; z = 0,15 2

z = 0,15 11 6

6z/6 = z ; 0,90/6 = 0,15 ; z = 0,15 1

TOTAL 30 28

Later, in the course of the experiment, the majority of the
pupils adopt this notation.

CONCLUSION: We have dealt with the detailed analysis of the first
hour of the sequence rather than treating the whole of the 15
hours superficially. This first problem shows the beginning of a
conceptual construction which stretches over several years of
learning.

It seems important to point out the part played by the
organisation of the mathematical concepts in a conceptual field
(here, we have treated a small part of the whole). The study of
the conceptual field together with the epistemological approach
and the data concerning the pupils'difficulties allowed us to
analyse the mathematical contents as proposed to the students and
viewed by them; it also helped us to understand their behavior
and to build didactical sequences while keeping control.

A good collection of papers can be found in "The ideas of
algebra, K-12 ; 1988 ; National Council of teachers of
mathematics USA, (especially the paper of Carolyn Kieran and the
paper of Zalman Usiskyn). We have also used the ideas of Y.
Chevallard and E. Filloy.
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CONTINUOUS ANALYSIS OF ONE YEAR

OF SCIENCE STUDENTS' WORK, IN LINEAR ALGEBRA,
IN FIRST YEAR OF FRENCH UNIVERSITY

DORIER JEAN-LUC

Equipe de Didactique des Math6matiques, GRENOBLE (France).

Abstract
Linear algebra is one of the newest fields students discover in their first year at

university. Its abstract nature is often a problem for them. We wanted to know if notions in

basic logic are prerequired to succeed in linear algebra, and if yes what kind of previous

abilities are needed. We wanted as well to have a better appreciation of what teaching linear

algebra consists of and what kind of effects it produces on students. In the following article

we describe the methodology employed to analyse results of standard first year science

students in a pretest about basic logic and algebra notions, and in all the tests given to them in

linear algebra during a year. Then we try to answer the questions raised above with help of

this analysis and its statistical results. Finally we will propose a new organisation of teaching

linear algebra according to our hypotheses.

1- Introduction
The research presented in this paper is based on the analysis of results of the tests given

all the year through, in the field of linear algebra, to students in their first year at a French

university.

Our main goals were :

To better determine what teaching linear algebra consisted of, especially through the

analysis of tasks proposed to students, within the questions given in the tests.

- For a standard section of first year science students with a fairly standard teaching of

linear algebra, we wanted to determine the methods, procedures and mistakes of students in

relation to the tasks proposed to them and relatively to their individual previous abilities in

basic logic and algebra notions.

- Being then able to draw a diagnosis on the different effects of this teaching, we may

propose some hypotheses for its possible change.

2- The methodology and the hypothesis
We analysed copies of eight different tests.

We first took eighty-four copies from a pretest on basic notions in logic and algebra.

This had been given to students in their first weeks at university, before any specific teaching

in these fields. The evaluation of this test gave us the individual level of acquisition to what

we thought may be prerequired for linear algebra.

For the analysis itself, we used a methodology introduced by A. Robert and F.
Boschet, in their work on the acquisition of real analysis notions in first year at a science

university ( [1] et [2] ).
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Among the questions on the test, we sorted out four main types : quantification (QA),

implication and equivalence (EQ), numerical algebra (AN) and algebraic structure (AS). For

the first two types we distinguished three different levels, in the tasks induced by the
questions. The first one is a purely formal setting, but seen from the outside, since it is asked

to say whether a proposition expressed in formalised language is true or false (QA1 and

EQ1). The second one is formal as well, but the task is this time internal, since it is asked to

give the negation of a formalised proposition.Only the QA-type of questions appeared at this

level (QA2). The last level corresponds to an interplay between the formal setting and another

setting, in the meaning introduced by R. Douady [3]. The questions, this time, consist in

translating a proposition from a formalised language into an every-day or a graphic
formulation, or vice-versa (QA3 and EQ3).

So we obtained seven different types of questions, which we can associate to seven
different bodies or "blocks" of knowledge.

The hypothesis we made and which is induced by Piaget's work, is, in outline, that the

acquisition of new knowledge is usually made possible by the destabilisation of old
knowledge followed by its reorganisation through complex cognitive mecanisms of
destabilisation/reequilibration. The necessary destabilisation is not usually part of the explicit

teaching, and the process described above is then of course unconscious. Yet, R. Douady [3]

showed that (at least for primary school pupils), didactical situations, in which a notion,
meant to be taught, may be seen in at least two different settings, in which the pupils have

different levels of ability, is suitable to start this dialectical process in good conditions.

After A. Robert's and F. Boschet's work ([1] and [2]), we think that former
knowledge, efficient in different settings, may be a better guarantee for the acquisition of a

new notion. More precisely we may raise such questions as : will a student who is very good

at formal logic (EQ1, QA1 and QA2) but not very good at dealing with the interaction
between formal and natural languages, learn linear algebra less well than a student , who is

globally of the same level in logic, but having more homogeneous abilities ? For every

prerequired block of knowledge, is there a minimal threshold of acquisition beyond which

the probability of success is much higher ?

To be able to answer these questions, we have defined for every block, three different

states : full (2), half-full (1), empty (0), according to a mark given to the questions related to

it. We have also considered the parameter B, giving the number of empty blocks, which
mesure the number of gaps in previous abilities

We then obtained nine different variables (the global mark of the test, the seven blocks,

and the number of empty blocks), which evaluate the level of acquisition of basic logic and

algebra notions, for each student. A statistical study of the results of the tested population,

led us to build a new block Q, with the QAi, to summarise the level of different abilities in

questions dealing with quantification.

We finally kept only the following nine variables, which we show to be the most
significant ones : the global mark N, the number of empty blocks B and seven variables
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(being 1 or 0) for the blocks : EQ1 (2) (full), EQ3 (2), EQ3(0) (empty), Q(2), Q(0), AN(2),

AS(2). This seemed to be, with minimal loss, the best way to keep information compact
enough and suitable to our further purpose.

Nevertheless in addition to the specific methodology developed here, some restrictions

about the test itself, are to be considered, to give the real value of this evaluation, which is of

course only a partial way of considering the contents as well as the level of acquisition of

preriquired notions in basic logic and algebra. Indeed, if the questions about logic, in the

test, seem to be suitable, although necessarily incomplete, the ones about algebra appeared to

be less satisfaying : numerical questions were a bit too imprecise to give a good evaluation

and the ones about structure were too "cultural" to give a real idea of the level of acquisition

(for instance : asking someone to give an example of a group is not enough to evaluate his

knowledge about groups).

The seven other tests were : four "ordinary" two-weekly tests, the mid-term and the

final exam, and a special mid-course true/false-test. Except for the last one all these tests
included questions on real analysis subjects.

For each of these tests, we made an a-priori analysis, which includes a explanation of

the tasks induced by the questions and the different procedures that could possibly be
developed by students. We then gave the statistical results, with marks given to every
question and codes to identify special procedures, which we gathered in a table, whose
arrays represent the students. We also obtained a global mark for each test. We divided every

sample into three categories, according to these marks, we managed to balance the
distribution numerically.

We analysed, in this order, thirty-nine papers from the first ordinary test (T1),
seventy-four from the mid-term exam (El), forty-six from T2, fifty-eight from the
true/false-test (TF.), fifty-eight from T3, fifty from T4 and seventy-three from the final exam

(E2). Apart from the mid-term and final exams, none of these tests were compulsory, besides

we had to photocopy the papers in the short time while the correctors had them ; those two

material reasons explain the difference in numbers of papers analysed for each test. In the

end, we got unfortunately only nineteen complete sets of papers of the eight tests.Each paper

analysed corresponds to a student whose pretest we have analysed anyway, so that the
students analysed at each test form a sample of the main population analysed for the pretest.

For each test, we made a short analysis of the new data obtained for the pretest with the

new sample. We compared the mean-value of marks, their standard deviation, the
percentages of students having EQ1(2), EQ3(2), EQ3(0), Q(2), Q(0), AN(2), AS(2), B=0,

B.1; 1352, with the equivalent data for the whole population. In each case, we noticed only

little variations, which always have rather obvious explanations. The samples imposed on us
under material circumstances seem then to be representative enough of the whole population,

to give a certain validation to our general conclusions.

For every test we finally gave a crossed table, giving for each of the three different

groups of students defined by the mark of the test, the mean value and standard deviation
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from the pretest, and the distribution of the same ten variables as above. We gave a table with

percentage on the line and one with percentage on the column, which gave an easily read

representation of the correlations between each test and the pretest.

Finally, we analysed more precisely the results of all the tests (including the pretest) for

the nineteen students, whose eight papers we had . We made several factorial analyses

(Analyse en Composantes Principales) of some of the different characters definied on the

sample, although the small number of students did not allow us to make a real statistical

analysis. Nevertheless, we got quite a lot of information on every students, which would not

have been possible with too many students. More over, we took the results as they appeared

in a real teaching situation, with all its complexity. This kind of analysis, for linear algebra

had not been made before, as far as we know, in France. So we claim that our work, was a

necessary step before carrying out a statistical analysis over many more students. To be able

to look at the correlations between the different components of the knowledge in linear

algebra over a large statistical population (a few hundred), we have to be more familiar with

the contents of the teaching, the different tasks and procedures involved in linear algebra, and

we must be able to draw some hypotheses that will help us to build tests according to them.

We hope that the kind of analysis, we propose, meets these aims.

3 - The results

a - Global analysis of the contents of the teaching
In most French universities, first year students in science classes follow a

two-hour-a-week course over one semester, which represents more or less a fourth of their

annual teaching in mathematics. The course usually starts with the axiomatic definition of a

vector space, and finishes with the results about diagonalisation of matrices. This is of course

an average estimation. In fact linear algebra having completely disappeared from secondary

teaching, even for geometry, a new tendacy consists, in first year at university, of teaching a

bit less abstact linear algebra and a bit more linear algebra for geometry.

The abstract part of this teaching is usually feared by students, because of its esoteric

nature and by teachers, because of the bare obviousness of most reasonings, which leaves

them without arguments faced with their students' incomprehension.

On another hand, a historical study (cf also [4]), has confirmed us in the idea that linear

algebra is a simplifying and unifying concept. For this reason, it is usually very difficult, if

not impossible (?), to find "the suitable problem" to introduce a notion related to it, as we
would like to do according to G. Brousseau's "Theorie des situations" [5] or R. Douady's

"Dialectique outil/objet" [3]. There is no problem, except a few, far too complicated for

students, for which linear algebra is an absolute necessity. Besides, even if linear notions

give a more elaborated or a more general answer to a problem, it is often too subtile for

students to realise, because they already have many difficulties in using concepts, which they

are not familiar with, to be able to have a critical look at their work.

This nature, quite specific to linear algebra, leads to a dichotomous attitude in teaching,

which is reflected in two different kinds of problems.
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The problems of the first kind present applications of linear notions to questions about

polynomials, functions or series... They include interplay between different settings, and

change of point of view. Most of them are both real problems and good illustrations of the

simplification and generalisation given by solutions using linear algebra, but only to someone

who has first no difficulty in using linear notions and who is secondly quite familiar with the

subject involved. For instance most of the problems of interpolation with polynomials have

very elegant and generalisable solutions with use of the theory of vector spaces, but one
needs to have quite a lot of calculations to do, to see the simplification given. Besides, in

those problems one usually needs to obtain a lot of results, before being able to reach the first

questions really concerning linear algebra. So if such problems are given to students, one
may have to deal with the following two difficulties :

1) The use of linear algebra will be only an effect of the didactical contract, as it is not

absolutely necessary to solve the problem and the students cannot appreciate the
simplification it provides. Students will follow the process of resolution induced by the
questions even if they see a solution not using linear algebra.

2) The first questions necessary to approach the linear questions may need so many

abilities in different fields that only a few students will manage to answer the questions

dealing with the notions of linear algebra. The evaluation of the result of such problems is

then more on these questions than on linear algebra.

In the second kind of problems, linear concepts are used in a formal setting without

interplay with any other setting. Those might be either very formal and difficult questions

about subtile notions, such as supplementary spaces..., or on the contrary mechanical use of

algorithms such as the search of eigenvalues and eigenvectors of a matrix... In the first case

they give useful results, although very hard to obtain, in the second case they are only
training for calculation and easily evaluated contents for tests!... These problems do not use

"real" vector space, but very general ones, mostly 1Rn.

In our analysis, tests T1, El and T2, are of the first kind.

El is a typical example. The goal of the problem was to obtain Gregory's formula,

which gives a polynomial in terms of the values of the P(n+1) - P(n) (n=0 to deg(P)). There
is a very attractive solution, through the study of the operator D : P --> Q s.t.
Q(X)=P(X+1)-P(X). Yet it is quite long and difficult, it is then really useful only for
theoritical reasons or if you need to calculate quite a lot of polynomials. In fact, most of the

students didn't succeed in proving all the steps leading to the formula, mostly through lack of

technical ability in algebraic calculations. But when they were asked in the last question, to
find the polynomials of degree less than three, whose values in 0, 1, 2 and 3 were given,
although Gregory's formula had been given, they used a direct method and solveda system
of four linear equations with the four coefficients of the polynomial as unknown!

In T1, the question was to find the polynomials of degree less than four, whose values

in 0 and 1, as well as the ones of the derivated polynomial were given. The solution induced

by the test, was to first find the polynomials, whose all four known values are 0, and then to
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deduce the general solution by addition of any solution, for instance the one of the third

degree. Of course the first question is obvious, for such polynomials can be divided both by

X2 and (X-1)2, but most of the students did not realise that, and again solved a system of

four equations with five unknowns! As they have to solve another system to find the solution

to the third degree, they ended with more calculations, plus a theoritical proof, than if they

had directly solved the system of four linear equations given by the conditions.

In T2, the questions preparing the linear solution were so technical (they used
polynomials with two variables), that hardly no students had a chance to answer any question

about linear algebra.

It is clear that there is a real difficulty here.We think that such problems should be

introduced by explicit metamathematical approach and that the "technical" points they raise in

the field of algebraic calculation or logical reasonning should not be under-estimated.

TF, T3, T4 and E2 are of the second kind.T3, T4 and E2 are mostly applications of

numerical algorithms about the search for eigenvalues and eigenvectors, diagonalisation or

reduction to a triangle form of matrices ... But in T3 and E2, we find also some very
theoritical questions. The true-false test is typically about abstract notions, although nearly all

of them refer to R3. It would be too long here to develop all the results to this quite specific

test, it shows in outlines that formal questions about basic notions of linear algebra such as

linear independance, generating subsets, supplementary etc... bring to light some sharp

misunderstandings from students.

Generally one of the most obvious difficulties for students in all tasks about linear

algebra is to be able to keep control of what they are doing. This goes from the confusion

between variables and parameters in the resolution of linear systems and leads to one of the

best illustrations of it : in E2, students were asked to find an orthogonal basis of
eigenvectors, after they found three eigenvectors of two different eigenvalues, they proved,

in all details that they were independent, without shortening the proof to the independance of

the only two of same eigenvalue, and then that they were orthogonal.

b - The main statistical results
The factorial analysis on the seven series of marks (all but the pretest's) for the nineteen

students reveals two sets of tests : Tl, E2 and T4 on one side and T2, TF and T3 on the other

side, E2 being just between those two groups.

This is a different distribution to above. These two groups separate the calculating tasks

from the more conceptual tasks. Indeed in the first group of tests there were quite a lot of

resolutions of linear systems, asked explicitly (Tl and E2) or appearing as the suitable ways

to solve questions (determinations of polynomials, eigenvalues or eigenvectors...). T4

consists mainly in the use of algorithms for calculations with matrices. T1 and E2 use also

algebraic calculation notions for polynomial or integral. On the other hand T2 and T3 and

mostly TF deal with more conceptual problems. The final exam seems to be quite a
well-balanced compromise of the two.
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This separation is given by the second factorial axis of the analysis, the first one
separates the globally successful students from the ones who failed. The distribution of

students on the first factorial plan is quite harmoniously spread out, which seems to induce

that both numerical and conceptual abilities are useful, but independent, to succeed in linear

algebra. For instance, it shows that students can globally succeed in linear algebra, without

having a good conceptual basis. For instance they can find the triangle form of a matrix

without having a good knowledge of the concept of supplementary subspace, although it is a

basic notion for the theory of matrices' reduction. This points out a contradiction in teaching

linear algebra. The choice made in most French universities' curricula to teach linear algebra

from the definition of a vector space to the diagonalisation of matrices all in one year, induces

a restriction in the teaching of basic concepts to the benefits of more easily taught and
evaluated notions such as reduction of matrices. This is of couse the effect of the difficulties

and the failure encountered in the teaching of abstract notions.

c - Correlations with the pretest
The correlations with the pretest are globally quite strong. The main correlation appears

with the number of empty blocks. This confirms our hypothesis about the existence of a

minimal threshold in the acquisition of previous abilities beyond which chances of success in

linear algebra are greater. The AN and AS blocks are not very correlated, and among the

blocks related to logic, Q is the most correlated of all. These results seem to show that a

certain level of previous abilities in basic logic, mainly abilities in the use of quantification, is

required to reach a minimal success in linear algebra.

But some results of the more detailed correlations are a bit surprising.

For instance in the true/false test, there were the two following propositions given for

any linear map f : IR3--> IR3 :

- If (U,V) are two independent vectors of R3, then (f(U), f(V)) are also independent.

If (f(U),f(V)) are independent, then (U,V) are also independent.

Many students got mixed up in the use of the definition of independent vectors so that

they say exactly the contrary of what was true. It first seemed to be a difficulty related to

logical notions about quantification and implication. But it appeared that it is only slightly

correlated with the results to the pretest. Other similar phenomena may be noticed in our

analysis. This leads us to think that logical difficulties specific to linear algebra might exist,

and cannot be solved by any former teaching in logic.

The last step in our analysis was to reorganise our data in terms of several tasks as well

as procedures in the different fields of linear algebra. We defined 23 variables and made

factorial analyses on several groups of them. This gave us answers or enlargement to local

hypotheses and the results, which could not be easily summarized, and would take too long

to be developed here. We'll try to fill in this gap during the oral presentation.

4 - Conclusions - Outlook
Presented in so few pages, this work may seem very disorganised and partial. It

compiled quite a large amount of data and had to deal with a field, which was nearly
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unexplored by didacticians, so if the conclusions it drew are incomplete, it is nearly by

necessity.

We have now to answer our last goal. If notions in basic logic seem to be prerequired

for linear algebra, it seems that prerequistes extend to more general abilities in different areas

of algebraic calculations such as polynomials, integral or differential calculus etc... which are

not necessarily part of standard mathematical teaching for first year science students, and may

have specific aspects in linear questions. As some logical problems seem to be specific to

linear algebra as well, we propose the following reorganisation of the teaching of linear

algebra.

The first step would be to teach only basic notions but over a longer period and quite

separated in time from the calculations with matrices, which could be only a further part of

the teaching, not necessarily in the same year.

This first part should be illustrated through the solving of several problems dealing with

varied vector spaces. In those problems, there should be an explicit metamathematical
approach, in which the student should have an active participation (like comparing two or

more different ways to obtain the same solution with or without linear algebra). It should

include as well the explicit teaching of logic and algebraic calculation notions useful to solve

the problems.

We think that this could help to reduce the difficulties raised by abstraction as logic

would be part of the explicit teaching. Finally it seems to be a more satisfaying approach

from the epistemological point of view, as basic concepts would really appear as unifying

and simplifying notions used in various fields in which the students will be given sufficient

abilities.

The content of this paper is developed in our doctoral thesis, that should be defended

and published by the end of the year. This thesis will also include a historical presentation of

the emergence of linear algebra basic concepts and some elements for a new teaching

approach.

References and bibliography :
[1] F. BOSCHET and A. ROBERT : " Acquisition des premiers concepts d'analyse sur

R dans une section ordinaire de premiere annee de DEUG." Cahier de didactique des
mathematiques n°7. IREM de Paris VII.

[2] A. ROBERT : " Rapport enseignement /apprentissage (debut de l'analyse sur R).

Fascicule 1 : analyse dune section de DEUG A lere armee (les connaissances anterieures et

l'apprentissage).Cahier de didactique des mathematiques n°181. IREM de Paris VII.

[3] R. DOUADY "Jeu de cadres et dialectique outil-objet". These d'etat. Universite de

Paris VII-1984. Or in Recherche en Didactique de Mathematiques, Vol. 7-2, pp 5-31, 1986.

[4] J. ROBINET : "Esquisse dune genese des notions d'algebre lineaire enseignees en

DEUG" . Cahier de didactique des mathematiques n°29. IREM de Paris VII. Mai 1986.

[5] G. BROUSSEAU : "Fondements et methodes de la didactique des mathematiques".

Recherches en Didactique des Mathematiques, Vol. 7-2, pp 33-115, 1986.

42

57



AVOIDANCE AND ACKNOWLEDGMENT OF NEGATIVE
NUMBERS IN THE CONTEXT OF LINEAR EQUATIONS.

AURORA GALLARDO and TERESA ROJANO
Centro de Investigation y de Estudios

Avanzados del IPN Mexico

Abstract.- This paper reports on the difficulties with negative
numbers displayed by 12-13 year olds in a clinical studyonlinear
equation solving. As a methodological counterpart, we describe
acknowledgment and avoidance manifestations concerning negative
numbers in two cultures: the chinese and the greek one. In the
conclusions, a first hypothesis is outlined with regards to possible
causes of avoidance and conditions underwhich acknowledgment arises
in individuals.

Introduction.- In the last few decades, outstanding efforts have
been made in the research field trying to elucidate the problem
of misconceptions and operative deficiencies associated to negative
numbers. Such efforts have developed in different directions,
towards: the teaching field [e.g. Bell, A. 1,2], the psychology
[e.g. Resnik, L. et al 13], the history [e.g. Glaesser, G. 9].
In the present work we appeal to history in order to find out
explanative elements of the observations made in the clinical
study "Operating on the Unknown" concerning negative numbers.
Thus, once this history analysis is carried out, the methodological
cycle: epistemological level-clinical observation- history level
will be completed. This methodology characterizes our research
since its very beginning, seeing that the clinical stage was
preceded by a history investigation about the pre-symbolic algebra
methods (XIII-XV centuries) for equation solving [3]. This article
comprises three sections:
1.- Difficulties with negative numbers in the study "Operating
on the Unknown". 2.- Negative numbers in two antique civilizations.
3.- Conclusions.

1.- Difficulties with negative numbers in the study "Operating on the
unknown".
This clinical study was carried out in the period 1981-1986 and
analyses transition phenomena from arithmetic to algebraic thought
[4,5,6]. It consists of 22 videotaped interviews with 12-13 year
olds, who face for the first time simple linear equations with
occurrences of the unknown on both sides. A previous classification
of children in three pre-algebraic proficiency levels was made
(upper, medium and low level). Among the results reported in other
papers [6,7,8] we will refer to those related to different difficulty
areas in the learning of algebra, in particular, we will focus on
the specific area of negative numbers in which, manifestations of
avoidance are present, for instance when a negative solution is
not conceived in an solving equation process. Such an avoidance
appeared in different ways in the interviewees; for example:
1) Interprating the symbol 'X' as a positive number, cancelling
in this manner the possibility of solving equations of the type
X+1568=392 (children of all levels). 2) Changing the equation's
structure: when the written equation (in the item above-mentioned)
is read as "I have to find out a positive number such that added
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to 1568 sums 392", some children tended to replace the operation
sign '+' by another one. 3) Assigning different numerical values
to different occurrences of 'X' in the same equation. For example,
with the aim to achieve to a numerical identity in 4x+6=2x some
children anticipated that the 'X' on the left hand side would be
smaller than the 'X' on the right (children of the medium level).
Besides the avoidance manifestations, cases of avoidance
acknowledgment of negative numbers were detected, for example:
a girl (of the upper level) was taught to solve equations of the
type Ax + B = Cx + D (where A, B, C and D were particular natural
numbers) by means of translating the equation's elements into a
geometric situation, where figures with equivalent area were
involved:

equivalent to

A

Once the geometric model was understood by the student, she -

spontaneously extended it to other mode of equations, including
those with negative constant terms (Ax + B = Cx - D). She interpreted
the "negative term" as an action of "removing a piece of the
figure with an area equivalent to D". This interpretation corresponds
to considering those terms as subtrahends.
Thus, the geometric translation of 9x + 33 = 5x - 17 Was:

9

The pupil carried out the following actions in the model:

331
4

which led to the reduced equation (with one occurrence of 'X'):
4x + 33 + 17 = 0. Nevertheless, at this point of the solving pro-
cess, the student showed an avoidance syntome, she kept quiet for
a few minutes because of the presence of a negative solution.
This, as it can be seen in this case, although the elements of
the equation are provided with geometric meanings and the negative
terms as well as its transposition are interpreted as removing,
adding and composing actions, this does not result in a total
acknowledgment of negative numbers. There exists an essential
difference between interpreting a negative number as subtrahend
(a b) and conceiving it as an isolated number (possibly, as a
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,negative solution of an equation).

2.- Negative Numbers in two Antique Civilizations

We start with the fiu zhang suanshu (Nine chapter of the
mathematical art), one of the earliest mathematical text in
China [11]. The various mathematical concepts and techniques
embodied in the nine chapters of the text were, in fact, the
culmination of knowledge and practical experiences of chinese
mathematicians prior to the beginning and the early year of the
Christial, era.* Let us examine the eighth chapter entitled fang
cheng. Just like the other chapters in the text, the present
version of the fang cheng chapter contains a number of problems
together with their respective solutions. Firstly, we find in
the chapter the use of negative numbers, showing that the ancient
Chinese had a clear concept of them and were able to apply it in
mathematical considerations as we would do nowadays. Secondly,
the fang cheng chapter shows the formulations and solution of
simultaneous linear equations of up to five unknowns. Thirdly,
the fang cheng chapter introduces the methods of solving equations
by tabulating the coefficients of the unknowns and the absolute
terms in the form of a matrix on the counting board, thereby
facilitating the elimination of the unknowns, one by one.

In explaining the content of the chapter, we shall be using modern
notation. However, it must be emphasized that ancient civilization
had no ready made sets of notations. Conceptualizations were in
a verbalized form, though the Chinese took a forward step when
they used rod numerals to convert concepts onto the counting
board.

An overview of the fang cheng chapter. There are only two methods in
this chapter. The first, called fang cheng or calculation by
tabulation, is on solving a set of equations. The second method
called the positive negative rules (sheng fu shu), comprises
of rules for the subtraction and addition of positive and negative
numbers.

Fang Cheng The method of calculation by tabulation. Lui Hui defines
the term fang cheng as the arrangement of a series of things in
columns for the purpose of mutual verification. The number of
columns to beset up is determined by the number of things involved.
Each column has two sections; the top section consists of the
quantities a.. (i j = 1,2,...,n) of the various things while theij

bottom one shows the absolute terms b.(i = 1,2,...,n). Such an
arrangement on the counting board can be shown as follows:

*Neither the author non the date of the composition of this text is known to us. Liu Hui's
commentary remained the principal source of the study for the fiu zhang.
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Top

Bottom

Left Right

a0 a21
all

ant a
22 a 12

ann a
2n a.

b, b2 b1

Thing 1

Thing 2

Thing n

Absolute terms

The whole process of operation is done on the counting board
using the rod numerals to represent the various quantities**
The unique place value feature of this method of computation
renders the use of symbols unnecessary. In each column of things
of the counting board, the space between alm and b., has the
implicit function of an equal sign.

The former matrix arrangement is transformed in such a way that
all the numbers in the upper side of the main diagonal are equal
to zero (only columns are operated on). This transformed matrix
corresponds to a diagonalized set of equations, from which all
the unknowns are successively determined.

One can see that it is essentially the usual method in present
day algebra.

Zheng fu shu The positive negative rules. Since the process of the
fang cheng solution is the succesive elimination of numbers
through mutual subtraction of columns, there could be cases when
a number to be subtracted from in one column is smaller than the
corresponding one in the other column. The opposite result
obtained has to be indicated and certain rules have also to be
established in order to continue the eliminating process. This
gives rise to the creation of names: the term fu to indicate the
resulting opposite amount to the term zheng for the normal
difference. The concept of zheng and fu seems to have evolved
from such ideas as "gain" and "loss" as clearly shown in Problem
8 which reads: "By selling 2 cows and 5 goats to buy 13 pigs,
there is a surplus of 1000 cash. The money obtained from selling
3 cows and 3 pigs is just enough to buy 9 goats. By selling 6
goats and 8 pigs to buy 5 cows, there is a deficit of 600 cash.
What is the price of a cow, a goat and a pig? "The text considers

** There are two types of numerals as shown below:

A 1 11 111 lilt 11111 T IT TT Tlir
_L J_ 1 1_

EE

The A type numerals is for representing units, hundreds, ten thousands, etc., while the

B type is for tens, thousands, etc.
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the selling price zheng because of the money received and the
buying price fu because of the money spent. The surplus amount
is considered zheng and the deficit fu. Liu Hui points out that
these terms are merely names to.indicate the nature of numbers.
For the purpose of computation, numbers described bythese terms
have to be transcribed into a concrete form. He tells us that
there are two ways of doing this with rod numerals. If different
colored rods are used, then red ones represent zheng and black
ones represent fu. Alternatively, if the rods are of one color
only, the fu numeral is indicated by an extra rod placed diago-
nally across its last non-zero digit. He explains: when anumber
is said to be negative, it does not necessarily mean that there
is a deficit. Similary, a positive number does not necessarily
imply that there is a gain. Therefore, even though there are red
and black numerals in each column, a change in their color -

resulting from the operations will not jeopardis the calcula-
tion. Liu Hui's exposition on'negative numbers shows that he
conceptualizes them as a class of numbers in the mathematical
sense that is familiar to us today. The concept of positive and
negative, which initially evolved from opposing entities such as
"gain and loss", "add and minus" and "sell and buy" , is now
detached from linguistic associations. Its development has resulted
in negative numbers being regarded as one group of numbers with
properties which are connected with the other group of "normal"
or positive numbers. These properties are defined by these posi
tive-negative rules [12] which may be represented in modern -

symbols as follows:

substraction

for addition

Suppose A > B > 0, then for

t A- (t B)=±(A-B),

t A- (-7- 13)=t(A+B),

o - ( t A ) = +A

t A+(tB) =t (A+B)

t A+ (-TB) =t (A-B)

0+ (tA)=t A

Problem 8 involves selling and buying which equate to the concept
of positive and negative respectively. The corresponding set of
equations in tabulated form becomes:

5, 3 2.

6 - 9 5

8 3 - 13
600 0' 1000

As it can be seen, the fin zhang has provided substantial evidence
that, by the first century, the Chinese not only accepted the
validity of negative numbers but understood their relationships
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with positive ones and were able to formulate rules and to compute
with them. Outside China, the recognitions of negative numbers
as a separate class of numbers came much later. The first
mention of these numbers in an occidental work is in the Arith-
metica of Diophantus [10], where the equation 4x + 20 = 4 is
spoken of as absurd, since it would give x = - 4. On the other
hand the greeks knew the geometric equivalent of (a b) 2and
of (a + b)(b - a); and hence, without recognizing negative
numbers, they, knew the results of the operations (-b)(-b) and
(+b).(-b). In fact, we could assert that with the greek culture,
a history of avoidance of negative numbers is initiated and, it
was not until the 15th century that these numbers were gradually
accepted in their own right.

Conclusions.- The eight chapter of the fiu zhang gives the earl-
iestgeneral method of solving a system of linear equations. By
tabulating numbers in an array, the Chinese invented a notation
and raised this branch of algebra from a rhetoric form to a
notational one. When the fan cheng method was applied to the
various problems, it was inevitable that this led to the concept
of a class of numbers different from the class of numbers that
was known. Thus, the negative numbers emerged from this comput-
ational language, freed from the concrete meanings that they
used to have in the context of specific word problems. On the
other hand, in the greek culture, the numeric domain of the
solutions of an algebraic equation was restricted to positive
numbers (probably due to their geometric interpretation of the
elements of the equation). This led to avoidance manifestations.
Nevertheless it can be said that the greeks had a partial
acknowledgment of these numbers, since the geometric language
admitted the subtraction of areas. The different conceptions
extracted from these two cultures provide elements to build up
hypothesis worthy of being proved at the level of individuals,
concerning the possible causes of avoidance and the conditions
which may further a full acknowledgment of integer number.
Considering the clinical evidence as well as the history find-
ings, up to the moment , we can conclude that the kind of
language conferred to the elements of the equation determines
the acceptance of a negative solution. Further studies at both,
the clinical and the history levels, will provide new elements
of analysis to the problem initially stated.
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INTRODUCING ALGEBRA: A FUNCTIONAL APPROACH IN A COMPUTER

ENVIRONMENTI

Maurice Garangon, Carolyn Kieran and Andre Boileau

Departement de mathematiques et d'informatique

Universite du Quebec a Montreal

In the first phase of a long-term project, we have been studying a functional approach to

introducing algebra in a computer environment. The 13- and 14-year-old students have been

learning to represent algebraic word problems in the form of computable algorithms, which

serve as intermediate representations in the process of developing standard algebraic
representations, and which also permit guess-and-test numerical strategies. In a study of trial-

and-error numerical strategies in a computer environment, we found that the students: 1) do

not refer to the context of the problem to help them in their numerical search, 2) operate on

the implicit hypothesis that the function is increasing, and 3) rely on partial pattern-matching of

the digits. A second study that investigated the algorithms used by students to represent
algebra problems showed that a functional approach, based on separating the situation from

the question, was extremely accessible to all students; it also helped to avoid some of the

difficulties that are traditionally exerienced by students when translating problems of the type

ax ± b = cx ± d into equations.

Theoretical Framework

As the first phase of a long-term project, we have been studying for the past few years a functional

approach to introducing algebra in a computer environment. At PME-XI we described part of the

theoretical framework supporting this research (Boileau, Kieran, Garangon, 1987); however, since

1987, we have not presented any update at international PME conferences. We have therefore
decided to present at this time a summary of our work over the past three years.

The students have been learning to represent word problems as computable algorithms, a form of

representation which we believe constitutes an intermediate step in the development of standard,

algebraic representations. A characteristic of this approach is that the development of the algorithms is

based, at first, on the students' operational knowledge of arithmetic and that the resulting sequence of

instructions is also operational, in that it can be executed in the computer environment.

To support this approach, we may cite several recent studies which have shown that, for a given

concept, operational representations are more accessible to novice students than are structural

representations.

1This research was supported by the Quebec Ministry of Education, FCAR Grant #89EQ4159,

and by the Social Sciences and Humanities Research Council of Canada, Grant #410-88-0798.

We thank Anne Luckow for translating from French to English.

Une version frangaise de cet article est aussi disponible aupres des auteurs.
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In a theoretical paper, Sfard (1989) presents an analysis of different mathematical concepts (number,

function, and others) to show that abstract notions may be conceptualized in two fundamentally
different ways: structurally (as objects) and operationally (as processes). For example, the notion of

natural number may be conceptualized as a counting process, or at the other extreme as the cardinality

of a class of equivalent sets. Likewise, a function may be seen operationally as a calculation process or

structurally as a subset of the Cartesian product of two sets. Sfard also shows that from an historical

perspective, operational conceptions generally preceded structural ones, and suggests that there may

be a parallel development at the psychological level. In fact, in a study (Sfard, 1987) of sixty 16- to 18-

year-old students who had a good knowledge of the concept of function, and in particular its structural

definition, she found that the dominant conception remained operational rather than structural. In

another part of the same study, 96 students aged 14 to 16 years were asked to translate four word

problems into equations, and also to give verbal algorithmic descriptions to calculate the solutions to

the same problems. Results showed that the students were much more successful in the verbal

description task.

In the same vein, the work of Clement, Lochhead, and Soloway (1980) shows that for certain word

problems, students find ft easier to arrive at a correct algorithmic representation in a computer language

(BASIC in this case) than to formulate an algebraic equation. The authors attribute the difficulties

encountered with algebraic equations to the absence of a procedural interpretation of these
equations.

Representing word problems by computer programs presents other attractive features. It enables the

students to use trial-and-error and successive approximation techniques, both of which are linked to

the arithmetic experience of beginning algebra students and which also favor a functional view of

algebra. Such techniques have been recommended for the early teaching of algebra (Fey, 1989).

The Computer Environment
1. Writing the algorithms

Our approach to introducing algebra uses CARAPACE, a computer environment specially created to

meet our research objectives. CARAPACE is a tool to aid in the solving of algebra problems, allowing

the writing and computing of algorithms.

To be computable in CARAPACE, an algorithm must be specified in terms of independent variables

(input variables) and the functional relations among variables. These functional relations must be

ordered such that a variable needed to evaluate another variable must have been previously identified

as an input variable or evaluated by a preceding relation. For writing these algorithms, CARAPACE

provides a screen divided into three parts. In the first part, entitled "Ask for the following values," the

input variables are entered, so that upon execution CARAPACE will ask for trial values of these

variables with which it will execute the algorithm. The second part of the screen, "Carry out the

following calculations," is for entering the functional relations, ordered from top to bottom, one per line.

The third part is called "Display the following results," and indicates the names of the variables which will

be displayed at the end of the execution.

It should be noted that the only restrictions on naming a variable are that it not begin with a number, nor

contain any arithmetic operating symbols. For example, "The price of the 3rd house" is perfectly
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fAsK for the following values:)

cerny out the followina calculations:)

IDisolau the followino results:1

admissible. This allows for the creation of algorithms that retain a significant portion of the semantics of

the original problem.

The writing of the functional relations is done without using the equal sign, in order to avoid confusion

with its different meanings (indicating an equivalence or the result of a calculation). Instead we use the

word gives (accessible with one touch of a key), to indicate that this is a calculation which gives a

result. The functional relation, then, is a calculation involving variables, constants (the givens of the

problem), and operators (+, x, 4-, exponent, parentheses), followed by the word gives and the name

of a variable. An example is presented in Figure 1.

The oroblem

The situation: The town of

Verval has twice the number

of inhabitants as Beaubourg,

and Beaubourg has 87 654

inhabitants fewer than
Montclerc.

The auestion: If the total

population of these three

towns is 567 890, what is

the population of each town?

Programming Editing Executing
Program al

Beaubourg

Beaubourg 2 gives Verval
Beaubourg Verve! gives Population of two towns

Beaubourg 87 654 gives flontclerc

tiontolerc Population of two towns gives Total population

Total population

Figure 1. A problem (left) and the corresponding algorithm entered by the user

Once the algorithm has been written, the syntax and algorithmic structure may be verified by
CARAPACE, and if the algoritm is not "executable", CARAPACE gives a message indicating the

nature of the error.

CARAPACE offers six levels of use which impose restrictions on the accepted level of generality of the

algebraic expression. The first level allows only one operation per line (in addition to gives). The

students are therefore required to name (using semantically-laden variable names) the intermediate

results of every calculation. Difficulties associated with the order of operations are therefore temporarily

delayed. The first level is the only one that we have actually used in our experimentation. Therefore, a

description of the other levels will be very brief:

- The second level allows more than one operation per line on the left hand side, as long as the

expression is completely parenthesized.

- The third level allows partial use of parentheses. For example, a + b + c is admissible, whereas at the

second level, we would have to write a + (b + c) or (a + b) + c. On the other hand, a + b - c is not

accepted and would have to be written (a + b) c or a + (b - c).

- At the fourth level, the traditional order of operations is observed.

At the fifth level, implicit multiplication before parentheses is accepted.

- Finally, at the sixth level, implicit multiplication is accepted throughout, on condition that one-letter

variables are used. This is a necessary restriction in order to distinguish between the product ab and
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the variable name ab.

These levels have been enumerated according to an increasing order of generality such that an
algorithm which works at one level will also work at any of the higher levels, with the exception of Level

six which requires single-letter variables.

2. Executing the algorithms

Once an algorithm has been written in CARAPACE, its execution may be presented in two different

modes, one a detailed calculation and the other a table of values. The execution always begins with a

request for values for the input variables. The detailed calculation mode simultaneously presents a

step-by-step rewriting of the algorithm and an evaluation of the variables and expressions of the

functional relations, taking into account the order of operations and parentheses, if necessary. The

second mode of execution presents a table of values with the variable names as column headings. As

soon as an input variable is entered, a new line is added to the table. No calculations are shown.

At any time in the execution, the user may switch from one mode to the other, and the input and output

values (as well as all intermediate values that may have been named in the 'Display the following
results" zone) of the last 15 executions are always available for review in the table of values. (See
Figure 2.)

Programming Editing Programming Editing

Beaubourg
10 000

INPUTS
Beaubourg

'Carly out the following calculations:I
Beaubourg 2 giyag Verve!

10 000 2 glIsi 20 000
Beaubourg Venial elves Population of two towns

10 000 20 000 30 000
Beaubourg 87 654 gives

10 000 87 654 glues

125 000
120 000
122 000
120 240
121 000
120 010
120 100
120 090
120 020
120 030
120 040

587 654
567 654
575 654
568 614
571 654
567 694
568 054
568 014
567 734
567 774
567814

Figure 2. The execution of the algorithm of Figure 1. On the left a partial view of the

detailed calculation mode in which the user has entered the value of 10 000 for
"Beaubourg". At a signal from the user, the value of "Montclerc" will be calculated, before

going to the next line. On the right : the tabular mode, in which a new value for "Beaubourg"

is awaited. The goal is to obtain 567 890 for "Total population" (see the problem of Figure 1).

Pedagogical approach used in this environment
1. Separating the question from the problem

Consider a word problem which may be symbolized as F(X) =Y. On one hand, we have a situation

involving X and Y and the relations between them symbolized by F, and on the other hand we have a

question. If the question is to find X given Y, we have an algebraic problem which involves (if possible)
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inserting F. If, however, the question is to find Y given X, we have an arithmetic problem which simply

requires the evaluation of F using X.

It is this simple remark that forms the basis of our approach to initiating students to the representation of

word problems by algorithms and to their solution by successive approximation. The main idea is to

separate the question from the problem situation, to model the situation by posing questions which

generate arithmetic problems, and to represent these solutions in a progressively more generalized

way.

Consider this problem as an example: "Corinne works part-time selling magazine subscriptions. She

earns 20$ per week, plus a bonus of 4$ for each subscription sold." The question is: "How many

subscriptions must she sell in order to earn 124$ in a week?" During the first session, the situation is

presented without the question, and the "interviewer" asks questions like "How much will she earn if

she sells 3 subscriptions?,... 5 subscriptions?,... 8 subscriptions?,... etc." Note that in order to answer

these arithmetic questions, the student must possess an operational understanding of the implied

functional relations. The next step is to have the student formalize these functional relations. He/She is

asked first to verbalize and then write his calculations, line by line, as follows (for 8 subscriptions):

8 X 4 aives 32
32 + 20 aives 52

(Note that from the start we encourage the use of "gives" to demarcate the result of a calculation.)

After a few calculations of this type, with different numbers of subscriptions, we ask the student to

create a table of all the trial values and the corresponding values calculated. The goal of this exercise is

to encourage the student to consider names for the table headings by engaging him/her in a
discussion aimed at recognizing and naming variables; these variable names in turn serve as input and

output variables in CARAPACE. Typical variable names in our example might be "number of
subscriptions," "salary," and "salary with bonus."

Once this exercise is done, the students are asked to write a series of generalized instructions (with no

given value for the number of subscriptions), using the table headings as names, to arrive at something

like this:

number of subscriptions X 4 alveg salary
salary + 20 alveg salary with bonus

We now have an algorithm which may be entered into CARAPACE and executed, once we have

identified "number of subscriptions" as an input variable.

2. The numerical search for solutions

Once the algorithm has been written in CARAPACE, we can now return to the original problem and ask

the student the planned question: "How many subscriptions must she sell in order to earn 124$ in a

week?" As it stands, the algorithm allows the calculation of "salary with bonus," given the "number of

subscriptions." The question may now be reformulated as follows: For what value of "number of

subscriptions" will "salary with bonus" have the value of 124? The student then tries different values for

"number of subscriptions," with CARAPACE calculating the corresponding "salary with bonus." The

resulting tabular display shows the student how different values of "salary with bonus" are functions of

"number of subscriptions." Usually the target value of 124 is not achieved on the frst try; the student
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must reevaluate his choice before making another guess. The students' strategies become apparent

as they gradually refine their guesses to ultimately arrive at their goal. This is the solving process that

we call numerical trial-and-error search.

Study of Numerical Searches Used in CARAPACE (Kieran and al., 1988)
During the 1987-88 school year, we worked with two 13-year-old students of slightly above average

mathematical ability. Our goal was to document both their numerical search strategies and the influence

of a known problem context on these strategies. We used two methods. In the first, the student began

with a word problem and created his own algorithm in CARAPACE before proceeding to a solution

search. In the second method, the problem and corresponding function were hidden, and the student

attempted to arrive at a target output with a series of trial input values. For both methods, the students

used the tabular display mode.

The results:

Effect of Context: When the students began to solve their problems on paper, their input values
reflected their knowledge of the context of the problems (with respect to both external semantics, like

the price of an object, and internal semantics, like choosing an even number when there was a division

by two and the result had to be a whole number). However, once the work was at the computer; we

noticed no difference in the numerical search strategies, whether the context of the problem was
known or hidden.

Search strategies: We recorded two main strategies which we call increasing and decreasing. An

increasing strategy is: If the result is too small (or respectively, too large) with respect to the target

value, then increase (or respectively, decrease) the trial value. This strategy was associated with such

substrategies as: bisection, comparison of variation, asymmetry, digit-by-digit, additivity, and partial

additivity. Certain expected strategies were not employed, notably proportionality, interpolation and

reliance upon the given relations of the word problems.

A decreasing strategy is: If the result is too small (or respectively, too large) with respect to the goal,

then decrease (or respectively, increase) the trial value. The students generally had difficulty using this

strategy, and even in the case of decreasing functions, frequently returned to their preferred
increasing strategy.

Our subjects were reluctant to choose a truly random value in their first trial. They tended to choose a

number that was the solution to a previous problem, or they would calculate a value from the givens of

the problem, knowing full well that their guess was most likely incorrect.

Study of Algorithmic Representation Processes in a Functional Approach (Kieran
and al., 1989)
In this study during the school year 1988-89, our subjects were 12 seventh-grade students of average

mathematical ability. We divided the research into three phases, according to the algebraic structure of

the word problems. In the first phase, the students were introduced to CARAPACE using the
functional approach described earlier in this paper. The problems were structured in the form a x ± b =

c, and the problem situation was presented without the question. The major finding which emerged

from this phase was the facility with which the students were able to develop ordered algorithms and

transpose them to CARAPACE. On the other hand, as soon as the students were given the question
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which completed the algebra problem, most of them attempted to use inverse operations to solve the

problem directly. The algorithm which they had just developed did not seem to provide any useful

purpose for them.

In the second phase, the students were presented with the complete word problem (both situation

and question). Problem types included: a x + x = c, b - (d x + e.a x) c, x+ax+bx = c, x + a x + (x +
b) = c. At the beginning, we noticed that many students persisted in using inverse operations (but this

time unsuccessfully) to attempt to find the solution directly from the text of the word problem,
bypassing completely any intermediate written representation. After several sessions, however, they

began to realize that their success with inverse operations was diminishing as the problems became

more difficult. They then decided to use CARAPACE to represent the problem situations and to help

them in their numerical search.

For the third phase, complete problems were presented, and most were of the type a x ± b = cx ± d.

Note that In order to solve these problems using CARAPACE, where equality does not exist, the

student is required to produce two functional representations of the forms a x ± b and c x ± d, and give

trial values for x, with the goal of obtaining the same result for both functions. Representing these

problems in algorithmic form presented no difficulties for the students, and with these problems, no

one attempted to use inverse operations.

Our results go in a different direction from those of Filloy and Rojano (1984), who have proposed the

existence of a "didactic cut" between problems of the type ax + b = c and the type ax + b = cx + d; they

have suggested that the first type can be solved arithmetically (with inverse operations), whereas the

second type require an algebraic representation involving direct (or forward) operations. Our students

represented both kinds of problems with equal facility using the algoritmic approach of CARAPACE.

Research to come
In her analysis of the passage from operational conceptions to structural conceptions of a mathematical

notion, Sfard (1989) identifies three phases which she calls interiorization, condensation and
reification. Our goal In 1989-90 is to study the phases of interiorization and condensation for the

concepts of variable and algebraic expression. By working at the higher levels of CARAPACE with

word problems of increased algebraic complexity, the subjects of our study will gradually approach the

formal algebraic notation of equations. In particular, we will be observing the roles of a) parentheses,

b) the ordering of operations, c) the shortening of variable names to arrive finally at single-letter

variables, and d) implicit multiplication, in making the transition from procedural representations to more

standard algebraic representations. We will also be looking at the nature of those situations which

provoke the use of inverse operations directly from the word problem statement, as well as those

situations in which the use of inverse operations would be useful.

In 1990-91, we plan to study a representational form which traditionally has presented difficulties to

students: Cartesian graphing of algebraic relations. To provide continuity with our current projects, we

will be adding a graphing module to CARAPACE which will give an algorithmic and dynamic character to

graphic representation. In this new environment, the student will be able to draw a point or series of

points on the graph, with the possibility of specifying and following step-by-step the calculations and

geometric constructions carried out, at the student's own chosen level of detail. In this way, we will be
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able to study the effects of this student-controlled construction mechanism on the qualitative and

quantitative interpretation which the students bring to the graphs they produce. The data will be
analyzed in terms of operational and structural conceptions of graphs (Sfard, 1989), in addition to the

nature of the links made by students among graphical, procedural, and algebraic representations.

In 1991-92, we will examine the problem of algebraic manipulations. Often these manipulations are

carried out mechanically, without any consideration of the numerical models on which they are based.

We plan to Create a computer environment which will allow the students not only to do algebraic

manipulations but also to interpret them numerically. From this, we hope to acquire a better
understanding of the interaction between meaningful manipulations of expressions/equations and

students' conceptions of these mathematical objects. We also hope to be able to document the kinds

of learning engaged in by beginning algebra students when using our modified form of symbolic

manipulator.
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Lan TO TEACH THE CONCEPT GIF FUNCTEDN .

Dominique GUIN et Ismenia GUZMAN - RETAMAL
Institut de Recherche de Mathemafigue Avancee,

10 rue du General Zimmer ,
67084 Strasbourg Cedex , France

Summary : Our aim is to elaborate teaching situations with a constructivist approach underlying

the various aspects of the function notion on one hand , on the other hand the relationships between

them.We assume that a computer environnement can give an efficient contribution to our goal in two

different ways: programming activities in an applicative language LOGO , and using microcomputer as a

tool We present some teaching situations and first issues on a comparison of productions with a

traditional teaching in an other classroom : there are significant differences between the two groups

according to the concerning aspects of the function concept . After these first results , we have altered our

didactical situations for a new experiment : we discuss similarities and difficulties about it . The research

concerns twenty.14 -15 years old students , having a LOGO experience prior to the study .

OBJECTIVE :

Objectives of french curriculum on functions are:

- Recognition of a function in various situations ( graphical, algebraic , common life ).

- Manipulating functions .

- Applications to equations of lines .

Our objectives are to contribute answering the questions raised in ( Tall D.( 1987 ) I in the

restricted domain of teaching the function notion :

- In what ways can multiple links representations be integrated into the curriculum for

learning, teaching problem solving ?

- In what ways can computer environments be designed an used to provide intelligent support to

the learning process ?

- In what way are programming and the use of prepared software ( computer as a tool)

complementary , and what constitutes an optimum combination of the two in terms of understanding and

efficiency ( time on task) ? "

To find an answer for these questions , it is necessary to elaborate and experiment teaching

situations underlying :
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- the various aspects of the notion of function ,

- the relationships between them .

A computer environnement can give an efficient contribution in two different ways :

- programming activities in an applicative language LOGO ,

- and using microcomputer as a tool .

LOGO language has been chosen for its good adaptability to programming activity for

problem solving because of its procedures , and to work on functions because it is an applicative

language. Functional programming languages such as Logo are very close to the language of

mathematics [ Klotz S. (1986) ] .

THEORETICAL FRAMEWORK :

Vinner already introduced a distinction between two aspects of the function notion : concept-

definition and concept-image [ Vinner S. ( 1983 ) .

A function is not just a :

a table of values

a graphical representation

a formula

a correspondence

it is all of them at once . It seems necessary to define different registers that I. Guzman

[Guzman I. ( 1989) displays in this way :

Algebraic

Graphic

( Conceptual )

(Language)
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a) registers of processing on the same plane : the algebraic (formulas) ) , the graphic, table (of

values ) and programming activity LOGO .

b) registers of conceptualization ( relationship , correspondence ) and language which

allows communication between registers .

We have noticed that usually , in France , the teacher gives the function definition (relationship

or correspondence between two sets ) . Then , the exercises are essentially calculus on algebraic

expressions and graphic representations of functions . Links between different registers are rarely

explicited ( for example , the link graphic <--> algebraic ) and the use of these registers to analyze

empirical situations is left out .

Our cognitivist and didactical hypothesis :

1) Constructivist hypothesis : mathematical knowledge is constructed by problem
solving .

2) The use of a programming activity in mathematical teaching requires a real
alphabetisation in Computer Science [ Rogalski J. ( 1985 ) .

3) An appropriate use of computer as a tool can underlie links between different
registers.

Several studies were carried out in this way :

- Link algebraic register <--> graphic register, [ Dreyfus T. , Eisenberg T. (1987)],

[Goldenberg E. ( 1987 )] , [ Zehavi N. , et alii (1987)1.

- Link algebraic register <--> LOGO programming register , [ Leron U., Zazkis R.

(1986)].

METHOD

The LOGO project ( 87) :

In french curiculum , it is the first teaching on the function notion .We had to build didactical

situations favouring interactions between different registers optimizing the use of a
microcomputer environment :
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1) Introduction to the function notion as a procedure linked to a table of values This activity

deals with the table and LOGO programming registers dealing with the conceptual aspect

(correspondence).

- introduction of vocabulary on fonctions : image , domain of definition , etc...

- large scope of examples ( empirical situations ).

F : length of a word

X

F

F(X)

Cat Chicken Dog Elephant Stork Marmot

2) Experiments with the function notion :

- with various examples according to the curriculum of such students ( constant , linear and

affine functions ) .

- by investigations on hidden functions [ Leron U., Zazkis R. ( 1986)) : students have to

find out the LOGO procedure-function with an experiment on different values of the variable.This activity

deals with table , algebraic , LOGO programming registers , language and empirical
situations .

3) Introduction to graphic representation of a function as an execution of a procedure

representing the set of points with coordinates ( x , f ( x) ) . This activity deals with table , algebraic ,

graphic and LOGO programming registers , language and empirical situations . This process

points out the role of parameters a and b in the expression f(x)=ax+b through a systematic

variation of these parameters .

Experiment environment :

This experiment took place in a classroom ( 20 students, 14-15 years old ) with the participation

of the mathematic teacher. The fifteen sessions occured within 4 weeks . There was 7 micro-computers

in the classroom . Functional programming requires a good level of programming abilities . It is the

reason for having choosen students with a LOGO experience of more than one year :
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I - Basic teaching of LOGO programming turned to structured programming [ Dupuis C.,

Egret MA., Guin D. ( 1988) ( 6 months ) .

2 - Teaching on recursion [ Dupuis C. , Guin D . ( 1988) - Gain D. ( 1986 ) ) , ( 6 months).

First results :

A test was submitted to a reference classroom [ Guzman I. ( 1989) , leading to the following

observations :

1) first erouo z The answers which are better in the reference classroom are essentially related

with conceptual register and its link with language register :

- In the recognition task of a function from empirical situations , the vocabulary on

functions (as domain of definition , image ...) is rarely used in the experiment classroom : It points out a

weakness between conceptual register and empirical situations .

- In the recognition task of a function from a graphic representation , the students of

the reference classroom used a graphic criterion : the function notion was introduced in this classroom

from conceptual and graphic registers . In the experiment classroom, the link graphic register <-->

conceptual register was not enough emphazised

During the mathematics lesson , the teacher asks for examples of functions and receives the

followinganswers from his students :

- Alain proposes weight as function of size for all the students of the school .

- Bernadette proposes weight as function of age for a child between 0 and 5 years old .

- Claude proposes size as function of age for an adult between 0 and 40 years old .

In your opinion , are these examples good or bad and tell why?

****************************************************** ********* *******************

- In the experiment classroom , the function notion is seen as a way to calculate one object

from the other , if there is not such a possibility , there is no function : its points out an unbalanced

practice between LOGO programming and conceptual registers .

Common language was not used for recognition of a function : students do not handle

key-words related to function concept , for example : dependence , although they have feeling of it .

A specific work on conceptual register and links with language and graphic registers in
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empirical situations seems to be lacking . For this it is important in analysis of tasks to locate the

words linked to conceptual aspects ( conceptual register ) necessary to build models on empirical

situations .

211gcordzroulu The answers which are better in the experiment classroom are essentially

related to production tasks . We can conjecture that these results come from an active practice on

empirical situations , functional programming , table registers and links between them

with are rarely tackled in traditional teaching : for example , there are no attempts from students in the

reference classroom to find a correspondence between graphic situation and algebraic expression ( link

graphic register <--> algebraic register ).The functional vocabulary as " linear or constant function

" etc... is more used in experiment classroom . The answers which are better in the experiment

classroom are also related to application tasks using properties requiring that a relationship or a

correspondence be set up , but also in producing or recognizing algebraic expressions .

The graphic project ( 88) :

According to the first results , we are aiming to alter our didactical situations :

1) Simultaneous introduction in graphical register ( as in traditional process ) and table

register of function notion .

2) Introduction in graphical register of functional vocabulary

3) Recognition activities which point out the correspondence aspect of a function in table

and graphical registers which allowed students to find out by themselves the graphical criterion .

4) Investigations on hidden functions with microcomputer : during this second experiment ,

students had too weak a level in LOGO for programming activities , they only used

microcomputers as a tool .

5) Investigations on graphical representations with microcomputer .

A comparison between the graphic project ( 88 ) and the logo project
(87):

Between these two experiments there are differences and similarities. The differences which

are external to the structure of the project are relative to the training of the students : class 88 was

weaker and had not enough abilities in LOGO programming. Therefore, the programming register has
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only been implemented as a tool, especially in the work sheets hidden function " and " graphic

representation ": Programming activities requires a real alphabetisation in LOGO.

The two projects have the same aim as far as teaching is concerned : to bring into play all the

registers involved in the concept of function. External factors were the cause of a modification in

methodology. In order to present the concept of function , the logo 87 project has highlighbed the

programming register and has presented a function as a procedure. The table register has also been

simulancously brought in , with a work on functional vocabulary . On the other hand , the graphic 88

project presents the concept of function in the graphic register pointing out intuitively the

correspondence aspect by developing a graphic criterion used to identify a function. Therefore , the

first work sheet about "Functions" is different in the two projects. The "Hidden Functions" work sheet

and the "Graphic Representation" work sheet are almost the same one . The fourth work sheet which is

entitled "Affine Functions and Lines Equations" is different because the lines equations in 1988 were

taught before the function chapter .

Discussion

_ Results arc only relevant on the qualitative level because the populations in the two

experiments were very different .There are still a few variables that we did not grasp such as training of

students for example . From a qualitative view point the following facts were pointed out :

- A slight improvement at the conceptual level in the experimental class 88 in relation

to the experimental Class 87.

- The link between the graphic and algebraic registers did not improve during the first

experiment ( in 1987 ). The behaviour of students in the experimental and control class was the same one

. In others words, their behaviour was the classical behaviour of students at this level. We do not have a

didactical explanation for this fact. During the second experiment ( 88 ) , we have discovered that

students have great difficulties in linking the algebraic and graphic registers . They stumbled in

interpreting the algebraic expression of a function and translating it using tables and graphs.

Nevertheless , the inverse operation of interpreting graphs and graphic representations was more

successful! that in the traditional process . It is obvious that the graphic strategy used by the

students of class 88 has not been transferred to the others registers.

To conclude :

- In the first experiment ( hight level ) , there were very good results for manipulations

and very poor results at the conceptual level .
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- In the second experiment ( low level ) , there were an improvement at the conceptual level

and very poor results for manipulations .

This leads us to ask the following question : Is there an independence between the

understanding of the conceptual aspect of correspondence of a function and the manipulation of

this correspondence in the others registers and their links ? To answer this question , we have to find

good conditions of comparison .
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THE CONCEPT OF FUNCTION :CONTINUITY IMAGE VERSUS DISCONTINUITY
IMAGE (Computer experience)

Fernando Hitt
Seccion de Matematica Educativa del CINVESTAV. PNFAPM, Mexico.

SUMMARY

With the increasing use of computers in the classroom and also

of graphics packages, a concept of functions is being

encouraged. This is the concept of function defined by a single

formula, a continuous function. Here we shall consider

functions expressed by more than one formula in a "paper,

pencil and Logo" context, with the aim of developing in

secondary school pupils a broader notion of function than that

which is generally possessed by such pupils.

INTRODUCTION
In previous studies of the concept of function, we find

that the problem of obstacles to understanding has been

approached in a number of ways. One such approach is that of

Tall and Vinner [1981] and Vinner [1983] who interpret certain

obstacles in terms of a lack of interaction between what they

call "concept definition" and "concept image ".

Markovits. Eylon and Bruckheimer [1096] report answers

given by pupils in relation to a graph of a discrete function

that it was not a function, since -the points are not

connected ". In the same study, the authors state: "Only one

student drew the graph of the following function correctly

r.fnatural
J. numbers

(natural
numbers }

fCx) = 3 . Host answers

subconsciously replaced the natural by the real numbers ".

Another study, this time with teachers [Hitt. 1989], we can

see that the teachers showed a strong tendency to think in
terms of continuous functions (spontaneous behavior). Their

concept image is linked to an idea of function continuity

expressed by a single formula.

Our activities related to this work, are designed to

provide the pupil with problems and exercises whereby the
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different variables mentioned above

play a positive role in developing a

MATHEMATICS TEXTS Cdefinition of

As is well known, different

can, in a structured

concept image.

way,

function and images used)

authors introduce the concept

of function in different ways. Generally, we can classify them

into four main definition types CHitt Cidem]). The experience

of teachers and researchers has shown that some definitions are

not all equivalent in an educational context (Malik, 1980].

THE COMPUTER AND THE GRAPHICAL EXPRESSION OF FUNCTIONS

With the use ever-increasing use of the computer and the

production of new graphics software, a new concept image is

being generated which is different from the one being purveyed

in textbooks. We use the phrase "new concept image", because,

unlike textbooks, which show graphs of discontinuous functions,

the software that has been available up to now does not allow

graphical functions defined by more than one formula.

Let us consider another problem. If we take, for example,

the functions: fCxD=
( 3 ifx<0

. and gCx)=4x+8, if xdN. The two
10 ifx>0'

functions are continuous in their definition domain. However,

when the graphs of the functions are shown to the pupils, they

interpret each one in a different way. Some

functions are not continuous C"The pencil

paper when drawing the curve"). Our

will think that the

was taken off the

primary intuition

IFishbein. 1987) prevents us from seeing them as continuous.

What can we do to develop a secondary intuition, in Fhisbein's

sense?.

Another problem is that

computer screens, functions

xdOR-(0>, where the limit at 0

at 0 on the right, appear to

because of the limitations of

such as fCx) =C1 /x)

on the left is equal

sin x ,for

to the limit

be continuous functions in R. In

some cases, for example in Tall (Supergraph, 1985), when the

computer is drawing the graph of

is not defined at one point,

the function and finds that it

the computer makes a beep.

However, the problem with the image on the screen remains.
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To summarize, an unsolved problem with currently available

software is that the concept Cdefinition and image) which they

are implicitly reinforcing can be described as :

* Function defined by a single formula

m Function-continuity

* Continuous domain (connected)

These problems may be resolved in the near future. That is,

new versions of the graphics packages will be produced with the

capacity to overcome these kind of problems.Much work needs to

be done on reconciling textbooks with computer languages and

educational software.

DESIGNING ACTIVITIES WITH PAPER, PENCIL AND COMPUTER

Our aim was to concentrate specifically on graphically

expressing functions, both continuous and discontinuous:

"Functions and Graphs. Logo graphic tasks" [Hitt, 1980]. We

also wished to place special emphasis on the domain and set

image of functions.

It will be seen that the proposed activity is attempting to

build a bridge in the pupils, between the concept of function

and their mental image of it by using the computer. A further

objective was to provide the mathematics teacher with "paper,

pencil and computer" activities for use in the classroom. Thus,

we have attempted to link a language, Logo, and a concept,

namely, that of function.

The development of a secondary intuition in Fishbeins

sense [ibid] would have to be developed through mathematical

activities before making use of graphic software which would

introduce obstacles into the change from one level of intuition

to another.

It is our hypothesis that the proposed activities will help

to bring about this change in the level of intuition. In our

experiment, we only try to prove that no knowledge of Logo

required by the pupil in order to work with it.

Two approaches were adopted in the experiment: a laboratory
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approach, and a normal working situation in the classroom. The

sample consisted of five pupils. The interview with pupil

called 1 was undertaken entirely in the University laboratory

Ctwo and a half hour session). He was 14 year old (end of 3rd

year in secondary school). He had little previous experience

with Logo in the context of Turtle Geometry.

The remaining pupils, aged between 16 and 17, were given

activities to work on in a normal individual work session in

their computer laboratory C2 hours). These pupils were in the

6th year of secondary school. They already had some knowledge

of Basic but had not previously worked with Logo.

We now set up the activities that the pupils were required:

1. Write down the concept of function.

2. Read the definition of function which we would use in

our context and our examples.

3. To write again about the concept of function.4. Draw

graphs of f1,.. .f7 and write down their set image.

E. To discover functions FUNONE, FUNTVO.....FUNSEVEN

8. To write down the function related to the graph showed.

7. To write once again about the concept of function.

ANALYSIS OF THE RESULTS

I. Definition of function Activities 1, 2, 3 and 7.

Pupil 1 wrote that the concept of function was a process

and that function can be represented by a graph. He also gave

an example, 3 =L. 6. This answer suggests that a formal

definition was lacking. The experiment had a strong effect on

the concept image of this pupil. In fact, at the end Cactivity

73 he wrote three pages and provided three graphs of continuous

functions, one graph of a discontinuous function, and two

examples of functions expressed by more than one formula.

Pupil 2 did not remember what the definition of function
was.

Pupil 3 The word -operation- was used by this pupil in the

three definitions that were written by him. In his final

definition, we can see that the functions expressed by more
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than one formula had an influence on his original idea, as

evidenced by the use of the phrase "combination of operations".

Furthermore, he added to his definition the words "there is

only one imago for each number".

Pupil 4. This pupil provided a definition of function which

was associated with activities of differential calculus and

locating maxima and minima.

Pupil 5. This pupil's definition was in terms of

'operation' and 'mathematical process'. In his second

definition there was momentary break influenced by our

presentation. At the end he returned to his original idea,

adding the words 'function contain different operations'.

In the light of the foregoing paragraphs, pupil 1 can be
seen to have assimilated the ideas that were presented to him

much more fully than did the other pupils, owing to being at an

'intuitive stage' . That is. his knowledge of the concept of

function was intuitive rather than formal.

Surprisingly, none of the students, in their first

definition, included any of the graphs they had previously
acquired in the course of their studies.

II. Transfer from algebraic to graphical form. Activity 4.

Pupils were then asked to do some tasks with paper and

pencil, transferring functions written in algebraic form to the

graphical form, and giving an image set for each one.

The five pupils were new to compound functions, saying that

they were used to having functions in the form y =
suggested that they analyze the function in parts. They

answered that this would be sufficient to know what to do.

The main problems arose with functions f5 and fes. Generally

pupils coped with f1, f2, f3, f4 and f7 without difficulty. In

the case of pupils 2 and 4, the concept image is linked to

function continuity, with the result that the curves they drew

were not functions. Pupil 3 shows considerable confusion.
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drawing a correct graph of f4 but then changing this to a

vertical straight line. This same pupil drew an incorrect graph

for f5 (drawing two straight lines which did not represent any

function), and then corrected himself, giving another wrong

answer. It is possible that he failed to read f7 correctly and

inverted the two parts of the function. Pupil 5 followed the

TRANSFER
ALOEBRIC
GRAPHIC

FROM
TO

FORM 1

PUPIL

2

No.

3 4 5

2
f (x).-
5 -2

d
x -2

f (x)..
x.2

if m'So
if x>0

if x:50

if x>0

correct
answer

correct
IP

same procedure as the previous pupil with f5. When this pupil

drew the graph of f6, he must have thought that f(x) =x -2 ,for

x50, would have to pass through the point C-2,03 instead of

(0,-2). And for f(x) =x +2, x>0, he thought that the line should

pass through C2,03. It is important to note that this pupil

realized that at x=0 there was a "change in the function-. It

can in fact be seen that he left a gap in the graph.

III. Transferring an algebraic form (inside the computer) to an

algebraic and graphical form. Activity 5.

At the end of the activity 4, the pupils were asked to work

with functions rumohnt, FUNTWO".., FUNSEVEN (paper, pencil and

computer).

GUESS MY FUNCTION

AND MAKE A GRAPH 1

PUPIL
2

No
3 4 5

f tx)..
-1 if x5o correct correct correct correct

s 1 if x>0 answer answer answer--jf
f (x).

x-1 if x.So correct correct
/

45 x+1 if x >O answer answer
471 /

7

if
if

x9 correct correct
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Pupil 3 made several attempts to find a graph for f6, finally

producing a one which was not a graph of a function. Pupil 4

tried out several relative whole numbers CZ3,and in defining

functions fs, f6 and f7 he did not take account of the interval

C0,13. Here it is worth mentioning that this pupil wrote down

the functions wrongly, committing syntactic errors. It is

possible that these errors had been committed in the past, but

had been corrected when they came up in the course of

activities, but in coming up against a new situation (quite

complicated in some cases] the error appeared again in a new
context.

=
x > 1 = x +x 1

f 5C =
1

f 8C

x < 0 = x
= 1 ; f 7C x.) ={

x > 1 =
x 0 = x-1

A further difficulty with function f7 is that pupils 3, 4,

and 5 interpreted the graph for x53 as if it had to be

positioned beneath the x axis. It may be that when pupil 5 drew

the graphs of functions composed of more than one expression,

was expecting that the two graphs would be of the same type.

IV. Transferring functions from the graphical form to the
algebraic form. Activity 6.

Pupil 1 was the only one who did this part completely

(committing one error), the others did not have enough time to

write down the answers to the functions f11 , f12 , f 13 and f14 .

CONCLUSIONS

Functions defined by a single formula did not seem to cause

any great problem in a connected domain (except as far as the

subconcept image set was concerned). The results show that it

is possible to work with functions expressed by more than one

formula and that pupils could become better at handling these

if they were given more practice with them.

A knowledge deficiency will resurface as errors with the
passage of time. The definition which we provided did not,
except very briefly, replace the definition that had been
acquired by the pupils in earlier years. The results show that
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in only one case were new elements incorporated and only in one

case did the definition help a pupil to recall parts of his

definition that he had forgotten.

If we compare the results of the activity in which

functions were transferred from the algebraic form to the

graphical form Cpapor and pencil). with the results of the

"guess my function" activity Cpaper. pencil and computer), it

is seen that learning has taken place in the course of these

activities. The drawing of straight lines not representing the

graph of any function virtually ceased. Some of the corrections

which the pupils made and the graphs of discontinuous functions

that they produced lead us to believe that some progress in the

mental image of these pupils was made.

The emphasis that we gave to the subconcepts domain and

image set on the coordinate axes Cwhen graphs were shown) dici

not appear to have any positive effect on the behavior of the

pupils.
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ACQUISITION OF ALGEBRAIC GRAMMAR

David Kirshner

Louisiana State University

A new rule of algebra is proposed and evidence for its psychological reality, presented. A
model for acquisition of this rule is explored.

Usually it is presumed that the rules of the algebr'a game are explicitly available; having first

germinated in a mathematical mind, next been transplanted to textbook and teachers manual, and

finally been harvested in the classroom for distribution to the populace. For instance the focus of

Carry, Lewis and Bernard (1980) (following Bundy, 1975) on strategic decisions of selecting and

sequencing rules suggests that the character of the rules themselves is relatively unproblematic.

For Wagner, Rachlin and Jensen (1984) the available rules can be captured by "rote memorization

of formulas and algorithms" (p. 7). Others, (e.g. Matz, 1980) postulate intermediate processes

between the available rules and the rules actually used in solving problems. She proposes that

extrapolation techniques may be required to bridge the gap between the base rules of the

curriculum and problem contexts for which no available rule exactly fits. For instance she

describes how the new situation ax + ay + az might be handled by deriving the needed rule

A.(B + C +...+W)=(A.B)+(A-C)+ ...+(A.W) from the given rule

A '(B + C) = (A -B )+ (A 'C) (p. 104). In all of these instances, however, the rules underlying

successful algebraic performance are introspectively obvious.

Elsewhere (Kirshner, 1987a; 1987b; 1989) I have proposed rules of algebra that are not

introspectively obvious, and argued for a reassessment of traditional assumptions about the nature

of algebraic knowledge. The present paper also proposes a new rule of algebra and offers support

for its psychological reality; however, the focus here is on the possible processes of acquisition of

the rule, and on such characteristics of the human cognitive system as can be inferred from the

acquisition processes.
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THE GENERALIZED DISTRIBUTIVE LAW

The Generalized Distributive Law (GDL) presented here as a psychological theory was first

introduced by Schwartzman (1977) (in a slightly less rigorous form), but as a pedagogical

technique. It is based upon a simple hierarchy of operation levels which groups together inverse

operations:

Level 1 operations are addition and subtraction

Level 2 operations are multiplication and division

Level 3 operations are exponentiation and radical

(If " " is an operation, then " I I" represents its level.)

Using this convention, the GDL can be simply stated:

(a & b) c = (a c)& (b c), whenever 1"I=I&I+1

Note that this generalized rule subsumes eight other rules usually presumed to be discrete entries

in the rule system of algebra:

Level 2 over Level 1
Level 3 over Level 2

(a + b)c = ac + bc
(ab)` b.

(a b)c = ac be
[ a'

b
=

a + b a b

c c c

srciab a b
1

c c
b

The claim is that the GDL is not just an interesting formalism, potentially useful as a pedagogical

rule, but rather an integral part of the knowledge that is acquired in the development of algebraic

skill.

Support for the psychological reality of the GDL involves analysis of the oft reported errors

of the form (a ± b )` = a' ± b` and b = `,/b- (Budden, 1972, p. 8; Schwartzman,

1977, p. 595; Laursen, 1978, p. 194; Davis & McKnight, 1979, p. 37 and p. 98; Matz, 1980, pp.

ilhe rules involving the radical operation appears in surface form to be left-distributive; however, Kirshner (1987, p. 93)
argues that the deep representation of the radical operation is reversed from its surface form.
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98-99; and Smith, 1981, p. 310). These errors can be seen to satisfy the Overgeneralized

Distributive Law,

(a & b)* c = (a * c) & (b * c), whenever I* I > I & I ,

proposed here as a developmental precursor to the GDL. The present analysis is that the

Overgeneralized Distributive Law represents a phase of covert 'experimentation' with contextual

constraints on the application of distributivity. In this account, the GDL results front honing down

distributivity to its maximally permissible context of application: l* I = I & I + 1.

Matz (1980) also has attempted to account for the (a ± b)` = a' ± 6' and 4ct ±b =

-4,72 ± errors as overgeneralization of distributivity rules; but without postulating an

introspectively unobvious rule like the GDL. In her analysis, some normally useful processes for

extrapolating from base rules to new situations has gone awry.

There are a number of deficiencies with Matz's explanation of these errors that are avoided

in the present account. Firstly the extrapolation techniques that are presumed to have gone awry in

the overgeneralization errors are not explicated in her theory. She gives illustrations, but does not

detail the actual mechanisms at work. As a consequence of this lack of specificity, Matz's theory

can be used to describe errors that do occur, but provides no theoretical basis to predict which

error should occur. In contrast, the present theory predicts exactly the observed errors.

What is more, the present theory can extend in its prediction to a range of data that Matz's

theory cannot explain even after-the-fact: Matz (1980, pp. 98-99) notes the occurrence of other

linearity errors including a (bc) = ab -ac , a"" = a'" a" , a"*" = a" + a", and = +
b+c b c

These errors can be described as fulfilling yet more elementary versions of the Overgeneralized

Distributive Law in which right or left distributivity holds, or operations distribute over

themselves. For lack of a more precise analysis, call this Open Context Distributivity. The present

theory, therefore, predicts that the first set of errors should prove more tenacious than this latter

class, since as the student progresses from wider contexts to narrower contexts,

open context l*I>l& I ) I* l=l& I + 1, the latter class of errors falls away before

the former. This prediction, I believe, corresponds with the facts1; facts that Matz's framework

'Unfortunately, longtitudinal records of student behavior are completely absent, and even systematic crosssectional data
are scarce; nevertheless, the anecdotal evidence is strong.
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cannot account for.

The greater specificity, predictive rather than descriptive adequacy, and greater range of

applicability of the present account would seem to make it a far stronger explanation of the

(a ±b)` = ± b' and Nta ±b = ± 46 errors than the account of Matz (1980). But the

existence of introspectively unobvious rules like the GDL raises a host of new questions, among

them questions about rule acquisition, to which we now turn.

ACQUISITION

A variety of approaches to the question of rule acquisition are possible ranging from a

Chomskyan innatist model in which the processes of induction are presumed to lie far beneath

conscious cognition, to Anderson's (1983) ACT* (ACT STAR) theory of learning in which it is

presumed that "all incoming knowledge is encoded declaratively; specifically, the information is

encoded as a set of facts in a semantic network" (Neves and Anderson 1981, p. 60). For the

purposes of coming to terms with the relatively radical notion of introspectively unobvious rules

of algebra, it seems prudent to select the framework that is most compatible with usual

assumptions about mathematical knowledge; namely the ACT* theory.

ACT* has been applied extensively to teaming from direct instruction in such domains as

geometry proof (Anderson, 1983b), computer programming (Anderson & Reiser, 1985), and word

processing (Singly & Anderson, 1985). The approach taken in the theory is to trace processes of

proceduralization and composition whereby new knowledge which enters the system in

declarative form --for instance as text book rules or teacher instructions-- is compiled into

automatically executed procedures as skill is developed.

Generally speaking, knowledge compilation results in the evolution of less abstract rules as

more general declarative structures gradually becomes adapted to the specific conditions of the

task environment. But ACT* does invoke inductive tuning for the creation of more abstract rules.

Inductive tuning involves the complementary processes of generalization and discrimination. In

generalization, conditions on the applicability of a rule are relaxed, resulting in a new version that

applies to a broader range of contexts than the original rule. Discrimination tightens up rules that
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have been overgeneralized. Anderson (1986) illustrates the tuning mechanism with an example

from language acquisition:

Suppose a child has compiled the following two productions from experience with verb

forms:

IF the goal is to generate the present tense of KICK

THEN say KICK + S

IF the goal is to generate the present tense of HUG

THEN say HUG + S

The generalization mechanism would try to extract a more general rule that would cover

these cases and others:

IF the goal is to generate the present tense of X

THEN say X + S

where Xis a variable.

Discrimination deals with the fact that such rules may be overly general and need to

be restricted. For instance, this example rule generates the same form, whether the subject

of the sentence is singular and plural. Thus, it will generate errors. By considering different

features in the successful and unsuccessful situations and using the appropriate

discrimination mechanisms, the child would generate the following two productions:

IF the goal is to generate the present tense of X

and the subject of the sentence is singular

THEN say X + S

IF the goal is to generate the present tense of X

and the subject of the sentence is plural

THEN say X

These learning mechanisms have proven to be quite powerful, acquiring, for instance,

nontrivial subsets of natural language (J. R. Anderson, 1983). (p. 205)
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These processes of generalization and discrimination can be applied to model acquisition of

the GDL. Assume the existence of rules of the following form which capture students applicative

knowledge of the (a + b)c = ac + bc , (ab )e =aebe, and other. "distributive" rules of

curriculum:

IF the goal is to generate an expression that has addition as its dominant operation

and the current expression has multiplication as its dominant operation

and the next-most-dominant operation is the goal-dominant operation (addition)

and the dominant operation is to the right of the next-most-dominant operation

THEN create a new expression with the goal-dominant operation (addition) as dominant

and the previously dominant operation (multiplication) as next-most-dominant

(and assign the subexpressions appropriately)'

the

IF the goal is to generate an expression that has multiplication as its dominant operation,

and the current expression has exponentiation as its dominant operation

and the next-most-dominant operation is the goal-dominant operation (multiplication)

and the dominant operation is to the right of the next-most-dominant operation

THEN create a new expression with the goal-dominant operation (multiplication) as dominant

and the previously-dominant-operation (exponentiation) as next-most-dominant

(and assign subexpressions appropriately)

Generalization across operations would produce the new production:

IF the goal is to generate an expression that has & as its dominant operation

and the current expression has * as its dominant operation

and the next-most-dominant operation is the goal-dominant operation (&)

and the dominant operation is to the right of the next-most-dominant operation

THEN create a new expression with the goal-dominant operation (multiplication) as dominant

1111e dominant (or !exit precedent) operation of an expression is the last one to be performed if variables are assigned
values and the expression evaluated. The next most dominant operation is second -to -last to be performed in
evaluating the expression. Thegoal dominant operation is the dominant operation in the goal expression.
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and the previously-dominant-operation (exponentiation) as next-most-dominant

(and assign subexpressions appropriately)

With such a generalized but undiscriminated rule in place, the student, faced with an

expression like (a + b )2, and having as a goal to generate an expression that has "+" as its

dominant operation, but not yet having mastered the appropriate rule for achieving this goal, will

call upon the (over)generalized rule to derive a2 + b2. Eventually processes of discrimination

would constrain such overgeneralization, achieving the appropriately constrained rule

corresponding to the GDL:

IF the goal is to generate an expression that has & as its dominant operation

and the current expression has as its dominant operation

and the next-most-dominant operation is the goal-dominant operation (&)

and the dominant operation is to the right of the next-most-dominant operation

and I* I = l&I+1

THEN create a new expression with the goal-dominant operation (&) as dominant

and the previously-dominant-operation () as next-most-dominant

(and assign subexpressions appropriately)

Such derivations go some way toward explicating the development of rule structures;

however they are incomplete. A complete theory also must account for the presence of the

original rules, in their given form. In Anderson's (1986) linguistic example (above), the goal

structure "to generate the present tense of HUG" (p. 205) implies that the category of present

tense previously has been abstracted from the child's linguistic experience. Thus a full account of

the present-tense rule would have to explicate this process of abstraction. (It seems plausible that

tense differentiation could be motivated in terms of pragmatic communication needs of the child;

but such an account must be given for the above explanation to be complete.)

In the GDL derivation it can be observed that the operations in the given and derived

expressions of the curricular rules are linked (recall the reference to "goal-dominant operation" in

both the condition and action statements). If this were not so, and the rules were presented as
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IF the goal is to generate an expression that has & as its dominant operation

and the current expression has as its dominant operation

and the next-most-dominant operation is &

and the dominant operation is to the right of the next-most-dominant operation

THEN create a new expression with & as dominant

and as next-most-dominant

(and assign the subexpressions appropriately)

with no mechanism to link together occurrences of & or', the structure would be too complex for

generalization to occur.

Can the richer representation required for generalization be justified in the terms of

traditional cognitive (computer science-inspired) theory? Perhaps not! In standard applications

(e.g. Bundy, 1975; Carry, Lewis & Bernard, 1980), computational production rules are

condition/action pairs with no necessary rational association between the condition and the action.

It is perhaps a peculiarly human form of representation that results in the perception of

(a +b)c = ac +bc

not as a rule for writing a new expression from an existing one, but as a rule for re-forming a

single expression. In this sense, distributivity may be an emergent property of formally fixed

expressions, rather as movement in a motion picture (movie) emerges from individually fixed

stills.

This analysis is suggestive, not conclusive. It appears that the GDL could not easily be

induced by a computer programmed with unembellished condition/action productions, but that it

might be induced by a cognitive system endowed with richer representations. Furthermore, the

human cognitive system would seem to be predisposed to such rich representation, either as an

artifact of visual/perceptual functioning, or perhaps as a result of vast natural-language experience

with syntactic forms identical in structure to algebraic rules:

e.g. (Dogs and cats) are animals) -4 (Dogs are animals) and (cats are animals)
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EMBEDDED FIGURES AND STRUCTURES OF ALGEBRIC EXPRESSIONS

Liora Linchevski and Shlomo Vinner, Hebrew University Jerusalem

In this paper we try to clarify some relationships between success

in the well known embedded figure test and success in what we call a

hidden algebraic structure test. We claim that both tests require

certain visual-analytical abilities. The visual-analytical ability

required for the hidden algebraic structure test is probably a major

component of the ability to handle high school mathematics and

therefore there is a high correlation between success in the hidden

algebraic structure test and a common mathematics test. Analysing our

present research data one can hypothesize that the ability to

identify hidden algebraic structures does not depend on age but does

depend on the immediate algebraic experience in the period prior to

the day on which the test was taken.

In many algebraic tasks it is crucial for the student to identify

certain structures in given algebraic expressions, structures that

sometimes cannot easily be seen on the surface. For instance, when a

student is asked to add 1/(a2 b') + 1/(a4 b4) it is more than

helpful if he or she realizes that a4 b can be considered as

(a')2 (132)2 and therefore can be written as (a2 b2)(a2 + b2). If

he or she should solve: (x + 1)2 7(x + 1) + 12 = 0 it will be much

easier to consider x + 1 as one "entity" and solve z2 - 7z + 12 = O.

It is only natural to hypothesize that this ability to identify

"hidden structures" in algebraic terms is one of the components of

success in school mathematics. Therefore, it is natural to expect a

certain correlation between this ability and success in common

mathematics achievement tests. On the other hand, if you want to

think of a general ability from which the above particular ability is

derived, it seems that this general ability should be the ability to

identify certain simple figures hidden or embedded in a complex

configuration. This ability is measured by the well known embedded

figure test (EFT).

Because of the common way to report about psychological research

(namely, without including the test items), a mysterious predictive

power is associated with the EFT. The reason for this is that the EFT

correlates with too many "things", especially with intellectual

achievements (Witkin (1977), McNaught (1982), El-Famamaury (1988) and
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many others). However, a simple analysis of the EFT items indicates

that it measures the ability to distinguish certain details from

their context. This is a general analytical ability and when implied

in particular situations, which require analytical ability, results

in high success. This was already implied by Witkin and Goodenough

(1981) who associated "field-independence" with being analytical.

We, here, do not wish to involve the entire theory of field

dependence with our research questions. It will be totally redundant.

What we said above will be enough to explain our findings.

Furthermore, we do not wish to elaborate on the dispute whether

field-independence (high success in EFT) is a cognitive style or

ability. We will call it ability being aware that Witkin and

researchers consider it as a cognitive style. Our first task was to

construct a mathematical test that will measure directly the

algebraic ability mentioned above, namely, the ability to identify

certain hidden algebraic structures in given algebraic terms. We

denote it by NAST. Kieren (1988) related to the above situation using

different terminology. She speaks about the surface structure and the

systematic structure of a given algebraic term. The surface structure

is, more or less, what you see on the surface. The systematic

structure is "all the equivalent forms of the expression according to

the properties of the given operations (p. 434). Thus, theoretically,

according to Kieren, the systematic structure of a given algebraic

expression is an infinite set of equivalent algebraic expressions.

However, from a practical point of view, we are not interested in the

set of all equivalent expressions. We are interested only in one or

two expressions which are relevant to our algebraic task. That is the

reason we prefer to speak about hidden algebraic structures and not

about the systematic structure. In addition to that, a hidden

algebraic structure in our approach can be a surface structure in

Kieren's approach. For instance, when considering 5 + 3(x + 2)(Kieren

(1988), p. 434) in a certain context we can claim that 5 + 3z is a

hidden structure of 5 + 3(x + 2) and preserving this structure while

carrying out a certain algebraic task can be very helpful. For Kieren

5 + 3Z is the surface structure. Kieren, of course, formed her

terminology for theoretical purposes different than ours.

Our research questions were:

1. Is there a statistically significant correlation between our MST

and EFT?
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2. Is there a statistically significant correlation between our HAST

and a common mathematical achievement test?

3. Is success in HAST correlated with age?

The first two parts of HAST included items which are taught already

in grade 8. Hence, if the ability to identify hidden algebraic

structure is mainly innate and it is formed basically by the

introduction of the relevant algebraic topic, then elder students are

not expected to do better than younger students. In other words,

algebraic experience will not have a major role in the formation of

the above ability.

Method

1) Sample: Our sample included four grade levels (grade 8 - grade

11), each of them devided into two groups, high level and low level

students. The division was done by the school and as every division

it is not hundred percent reliable. Groups 1, 3, 5, 7 are the low

level students of grades 8, 9, 10, 11 respectively and groups 2, 4,

6, 8 are the high level students of grades 8, 9, 10, 11

respectively.

2) Questionnaire: Our hidden algebraic structure test (HAST) had

three parts. In the first part, after seeing one example, the student

was asked whether a given algebraic expression could be obtained from

a + b by substitution. If the student answered positively, he was

asked to state exactly what should be written instead of a and what

should be written instead of b in order to obtain the given algebraic

expression. Only positive answers with correct substitutions were

considered as correct answers. The algebraic expressions of part A

were:

1) 3x + 2y 2) a2 -b2 3) x2 + 3y + z

4) a + b + c 5) -b + a 6) x2

7) b + 5(c - d) (the items will be denoted by Al A7).

In part B the situation was quite similar with the only difference

that the expression in which the student was supposed to substitute

was: (a + b) (a b). The algebraic expressions of part B were:

1) (1 + x2)(1 x2) 2) (6 + x)(x 6)

3) (-b + a) (-b a) 4) (a + b + c) (a b + c)

5) (b + 462 4ac)(b - .1b2 4ac)

1-00
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These items will be denoted by B1 B5.

The third part of the questionnaire was administered only to grades

10 and 11, since its items were related to the solution formula of

the quadratic equation, a topic which was studied only by the 10th

and the 11th grades in schools where the questionnaire was

administered. The third part started with the following introduction:

It is common to present a quadratic equation with the unknown x as:

ax' + bx + c = 0, where a, b, c are the coefficients that can be

specific numbers but also letters. It is known that the solutions of

the quadratic equation,if exist, are given by:

-b + 4b3 4ac

x1,2- 2a
In the following there are several equations. For which of them it is

possible to substitute in the above formula in order to find the

soultion. When it is possible, please make the appropriate

substitution. You are not asked to calculate the final solution.

The equations were:

1) x2 + 2x + 1 = 0 2) x2 + mx 5 = 0

3) x2 + ax + cx = 0 4) x2 2x + 1 m2 = 0

5) 9x2 3mx - 6x m + 1 = 0 6) -x2 + 7x = 0

These items will be denoted by Cl C6. It is worthwhile to mention

that part B and C included some items that have not been reported

above. These were items with negative answers. Many weak students who

could not see the appropriate substitutions in the positive cases

claim also about these items that it is impossible to obtain them

from the given expression or it is impossible to solve the equation.

We considered these answers as "false positive" and excluded them

from our analysis. The items were: (1 + x)(1 y) and (-x + y)(x y)

in part B and ax + b + 1 = 0 in part C.

The second test which was meant to be administered to our sample was

a simple group form of the embedded figure test. Because of

administrative difficulties only 120 students of the entire sample

(N = 322) wrote this test being a partial population of groups

3, 4, 5, 6 (the 9th and 10th graders). A representative item of the

EFT can be the following:

There is a simple figure (Fig. B).

Does this figure appear in

configuration A and where?

1 0 1
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The student is supposed to draw his answer as in Fig C.

There was also a common achievement test that was administered to all

the 10th graders. It was a classification test which was designed to

distinguish between the low level and the high level students at the

end of the school year.

Three typical questions out of 10 in this test were:

I A two digit number is given. Write 1 at its right side, then

write 3 at its left side and then add the two numbers which were

formed. The result is 598. What is the given number?

II Find the area of a quilateral triangle if the diameter of the

circle inscribed in it is 8 cm.

III Find a, b if it is known that a, b are integers such that

(a + b)(a b) = 41.

Results

Before bringing the data which relates directly to our 3 research

questions we would like to bring some information concerning the

HAST. In the following we will list the questions of each part of the

test according to their difficulty order. In parentheses we will note

the percentage of the correct answers. The number of respondents to

parts A and B is 322. The number of respondents to part C is 179.

A1(88.5),

B1(69.5),

C1(70.5),

A5(71.5),

B3(52.5),

C2(55.5),

A7(50.0),

B5(41.5),

C6(22.5),

A2(47.0),

B2(17.0),

C4(22.5),

A3(42.0),

B4(2.0)

C3(13.0),

A4(35.5),

C5(9.5)

A6(32.5)

Note that only 1/3 of the respondents could see that x2 can be

obtained by substitution from a + b (for instance, a = x', b = 0).

The fact that the plus sign does not appear in the expression was

probably the cause that so many students did not see the hidden

structure a + b in it. The items in part B were harder and even much

harder than the items in part A. Only 17% could see that

(6 + x) (x 0 is equal to (x + 6)(x 6) and therefore can be

obtained by substitution from (a + b)(a b). Only 7 students out of

322 that answered the questionnaire could see that

(a + b + c) (a b + c) is equal to ((a + c) + b) ((a + c) b) and

therefore could be obtained from (a + b)(a b) by substitution. It

is interesting that C6 and C4 had the same degree of difficulty in

our sample. The difficulty in each of them is related to the free

coefficient of the quadratic equation. In C6 the problem is to

identify 0 (which is not written) as the free coefficient. In C5 the

problem is to identify 1 m2, a complex expression, as the free

coefficient, which in the schema of the quadratic equation is denoted
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by a single letter. The three above sequences are Gutman scales

(roughly speaking, almost everybody who answered correctly a given

item, had answered correctly all the items which are easier than this

item). The coefficients of reproducibility are 0.84 for the first

sequence and 0.94 for the second and the third sequences. Additional

information about part C is that only 45.5% thought that the solution

formula of the quadratic equation is inappropriate for solving ax + b

+ 1 = 0 (an item which we only mentioned in the previous section but

did not include in the above sequences). Taking into account the

information in the third sequence it can be claimed that at least 3/4

of the respondents cannot identify the structure of the quadratic

equation when its form is "much" different from the common

prototypical form (items C6, C4, C3 and C5). Only 70.5% of the

students know how to use the solution formula even in the simplest

case (C1). This is amazing because this topic is a central one in the

curriculum and the solution formula itself was given in the

questionnaire. In C2, where a very simple parametric form of the

quadratic equation appeared, the success level dropped to 55.5%.

The coefficients of correlation between HAST and EFT and between HAST

and the mathematics classification test are given in Table 1.

Table 1 Coefficients of correlation between the various tests

Mathematics classification test EFT

HAST

N = 81

r = 0.85

p = 0.001

N = 120

r = 0.75

p = 0.001

Thus the first' two of our research questions are answered positively.
The answer to the third question is not so clear and in order to
relate in a non-superficial way we would like to present to the
reader some tables.

Table 2 Percentages of correct answers and means
to questions Al A7 in groups 1 8

Al A2 A3 A4 AS A6 A7 mean

1(N = 18) 78 11
2(N = 31) 97 38
3(N = 30) 93 43
4(N = 64) 97 69
5(N = 82) 76 39
6(N = 59) 93 61
7(N = 17) 82 24
8(N = 21) 95 38
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17 11 56 6 6 26.4
42 32 71 32 65 53.9
33 33 87 18 20 46.7
45 44 83 61 56 65.0
32 22 60 21 44 42.0
71 63 86 39 78 70.1
12 12 35 29 12 29.4
52 38 67 24 67 54.4
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Table 3 Percentages of correct answers and means to questions B1 B5
Question
Group

B1 B2 B3 B4 B5 mean

1 28 0 11 0 0 7.8
2 74 29 45 0 36 36.8
3 53 7 50 7 3 24.0
4 86 22 77 3 48 47.2
5 59 12 39 0 34 28.8
6 90 27 73 2 81 54.6
7 41 0 18 0 6 13.0
8 76 19 52 10 66 44.6

Table 4 Percentages of correct answers and means
to questions Cl C6 in groups 5 8

Question Cl C2 C3 C4 C5 C6 mean

5 70 49 11 13 5 20 28.0
6 86 78 12 39 15 25 42.5
7 18 6 6 0 0 12 7.0
8 71 57 29 29 19 33 39.7

Table 5 Means of correct answers to parts A and B of BAST
Group 1 2 3 4 5 6 7 8

Mean 18.6 46.8 37.3 57.3 36.5 63.7 22.6 50.3

Table 6 Means of correct answers to the entire HAST
Group 5 6 7 8

Mean 33.7 56.6 17.4 46.8

If we look only at the means of part A, the easiest part of BAST, we

discover that there is almost no difference between either good or weak

students of the 8th grade and the either good or weak students of the

11th grade. There is an improvement in grades 9 and 10 but there is

almost no difference between grades 9 and 10. Our guess is that this

improvement is due to the fact that in grades 9 and 10 a lot of

attention is given to the manipulation of algebraic expressions. Hence,

the experience with algebraic expressions contributes quite a lot to the

ability to identify hidden algebraic structures. On the other hand,

after the period of intensive manipulations on algebraic expressions is

over, the ability decreases and stabilizes around the level it was in

the 8th grade.

As to the means of part B, the picture is even more complicated. There

is an improvement from grade 8 to 9 and from grade 9 to 10. However,

there is a regression from grade 10 to grade 11. These results can be

explained in a similar way to the previous one. The items of part B

belong to a repertoire of exercises which appear very frequently in

grades 9 and 10. These exercises usually disappear from the 11th grade

repertoire. Thus, the ability to discover hidden algebraic structures
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decreases and stabilizes somewhere between the level of the 8th grade

and the level of the 9th grade. The same picture is discovered if you

look at the means of part A and part B together (Table 5). The above

arguments also explain Tables 4 and 6. Namely, immediate experience with

algebraic expressions improves the ability to identify hidden algebraic

structures but the moment this experience stops, the ability decreases

and stabilizes quite close to the point of its function. Note that we

analysed our data as if it were developmental data whereas, what we

really did was comparing different groups of different ages. This is

quite common in educational research when comparing age levels and it is

based on some reasonable assumptions, however it should be noted.

In order to neutralize the effect of immediate algebraic experience on

the ability to identify hidden algebraic structures, perhaps a different

and more sophisticated research design is needed.
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II I . II is it .1 I I I I

Romulo C. Lins
Shell Center for Mathematical Education / CNPq- Brasil

On this paper a framework (the Numerical-Analogical framework) is
proposed in order to provide a reference for investigations (both theoretical and
experimental) on the nature of Algebraic Thinking. The framework is described and
its adequacy is demonstrated by examining: experimental evidence from students'
work (both new and previous findings), the historical development of algebra and
algebra as a subject-matter in Mathematics. A characterisation of Algebraic
Thinking on the basis of the Numerical- Analogical framework is provided. The
belief that Algebraic Thinking can only happen in the context of algebraic
symbolism is shown to be erroneous and misleading.

But neither of them was able to prove the theorem, and Waring
confessed that the demonstration seemed more difficult because no
notation can be devised to express a prime number. But in our opinion
truths of this kind should be drawn from notions rather than from
notations"

C.F. Gauss, on Wilson's theorem, in Disquisitiones
Arithmeticae

j. Introduction

Until now, a substantial amount of information has been gathered on the learning of
school algebra (eg, Collis,1982;KLichemann,1984; Wheeler & Lee,1987; Be11,1987), but
nevertheless, a clear characterisation for "Algebraic Thinking" is still missing (Kieran,1989;
Lee,1987).

As a whole, that research has been strongly focused on investigating Algebraic
Thinking as the mode of thinking that goes with "doing algebra" (either interpreting or
manipulating algebraic statements or using algebra to solve problems and explore situations),
rather than the mode of thinking that allows the development of algebra.. A consequence of this
"content-driven" approach is that the students' "infomml" solutions have been characterised more
in terms of misinterpretations and failure to "understand" and less in terms of what they are
actually doinR .

L. Booth suggested that the sources of those misunderstandings (or lack of
understanding, as it might be more adequate) are to be found in an incompatibility between the
"informal" methods used by the students and the methods of algebra rather than indevelopmental
obstacles (in the sense of Piaget) (see, for example, Booth, 1984). We strongly share this point
of view, and investigating the nature of those -informal"'solutions at the same time we
investigate the nature of "algebraic" solutions, has been the central objective of a set of studies
carried out by the author for the last two years, aiming at identifying possible source(s) for that
incompatibility.

A framework that helps us to understand the twofold nature of this question, is one that
enables us to handle the different meanings that can be attached to the elements involved in the
situation that is being dealt with by the students: numbers, operations and arithmetical and
algebraic symbolism (where they are involved), but also the imagery suggested or provided by
the situation or used as a support for reasoning (the context of "realistic" problems, diagrams,
etc). In speaking of "meaning" we are inevitably led to referentials, and this is what our
framework has to provide in the first place: a description of different fields of reference in
which different interpretations of those elements produce solutions of different nature.

This paper is a result of the work being carried out by the author as pan of his PhD studies, under the
supervision of Dr Alan W Bell, at Nottingham University.
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A first important consequence of thinking in terms of distinct fields of reference within
which the elements of a situation are interpreted, is that our approach is not content-driven: the
same framework can be applied to the analysis of solutions of "realistic" and "purely numerical"
problems, problems set in algebraic language and "verbal" problems. Also of considerable
importance, such framework can be applied to the analysis of the algebra of the "ancients", and
this might shed some new light onto a possible paralellism between the historical development of
algebra and the aqcisition of algebraic thinking by individuals.

In the next four sections such a framework is sketched and support for its adequacy is
drawn from three sources: the historical development of algebra, algebra as a theoretical
discipline and empirical evidence from investigations on students' solutions. On the last section
we return to the framework and its characteristics are fully described.

2.THE NUMERICAL-ANALOGICAL FRAMEWORK

Our framework distinguishes between two basic fields of reference: the Numerical
field of reference and the Analogical field of reference.

To operate within the Numerical field of reference means that only the
"arithmetical" environment is relevant to the process of manipulating or exploring a situation. If it
is the case of solving a problem, the problem is solved through the manipulation of the numerical
relationships contained in or described or allowed by it, and this process is guided by the
arithmetical structure of those relationships and by the principles that are recognized as governing
the arithmetical environment.

To operate within the Analogical field of reference means that a situation is
manipulated or explored by manipulating features of the situation itself. Arithmetical operations
are used to evaluate parts, and the choice of operation to be used is made on the basis of a
qualitative analysis of the situation or problem that is being examined.

The framework we propose here has two fundamental characteristics:

(i) it rejects the idea of a "pre-algebraic" mode of thinking, something that when
extended or further developed leads to an "algebraic" mode of thinking; we use instead the idea of
a "non-algebraic" mode of thinking; the "meaninglessness" pointed out by students is interpreted
not in terms of the "meaninglessness" of algebra itself , but in terms of the shift of referential
that is necessary to operate within the Numerical field of reference.

(ii) the N-A framework is concerned with the process of solution, not with the
problems to be solved or the situations to be structured. As a result, the use of algebraic (literal)
notation does not characterise any of the two modes. Although solving a "purely" algebraic
problem using algebra (eg, formally solving an equation written in symbolic notation) is certainly
an activity that develops within a Numerical field of reference, the same "purely" algebraic
problem might be solved within an Analogical field of reference (for example, modelling it with a
scale balance). Also, the general description of the number of, say, dots on a geometrical pattern
"using letters", for example, is typically Analogical, because the choice of operations to be used
in the description depends only on the way in which the pattern is visually perceived, but a
"purely arithmetical" problem can be handled in a typically Numerical way (eg,
[157+157+157+157+1571 5 = 157 because there are five 157's, etc.).

3.From the historical development of Algebra

Westernly, the historical development of Algebra has been referred to as a succession
of three phases: rethorical, syncopated and symbolic (Joseph, 1988, is a brief but excelent
appraisal of Eurocentrism in Mathematics). The first phase is associated to pre-greek 'algebra',
the second with the work of Diophantus and the third with the work of Viete and Descartes. (eg,
Hogben, 1957). This description clearly corresponds to a development of algebra as a subject
matter, given our modern definition of Algebra as a form of "symbolic calculation", and this is
thoroughly expressed on the usual assertion that Viete was the first to produce "truly" algebra.

Jacob Klein's work (Klein,1968, originally published between 1934 and 1936)
radically departs from this line of analysis. It shows, based on a deep reading of Greek classical
texts and on a careful study of Viete's work and of the cultural and conceptual context
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surrounding him, that Viete's deeper achievement was not simply the development of a symbolic
notation (his, after all, was to some extent still "syncopated" and full of geometrical
suggestions...), but shifting algebra from "solving problems" _to "a method for solving
problems" . Viete himself comments on his work saying "TO LEAVE NO PROBLEM
UNSOLVED". The way in which Viete achieves his goal is by bringing the solution of the
problems entirely into the context of number and for this reason his work is about how to
proceed within a (general) numerical context. Klein's work, however, does not consider similar
developments outside the Diophantus-Viete axis.

The work of arabic mathematicians from al-Khwarizmi (c.800) onwards share the same
Numerical character of Viete's, and if in many instances careful attention is paid to the process of
'translating' the problems into a suitable Numerical form (Rashed,1984, p20), this does not
mean that "solving problems" was the 'raison d'etre' of their work . In fact, the arabic algebra
extends itself over "algebraic" powers, operating with polinomials, normal form of an equation,
polinomial equations of higher degree, and a number of topics in Number Theory, a body of
knowledge that makes Viete's "Introduction to the Analytical Art" look like a first book in school-
algebra . It has to be stressed however, that until at least the 12th century the
arabic algebra is totally "rethorical", and even the work of al-Qalasacli - 15th
century - is still in a "syncopated" form (for example, the use of distinct symbols for x
and x2).(Cajori,1928, items 115,116,118,124)

The nature of the mode of thinking that generates such knowledge is partially explained
in the words of an arabic mathematician As Samaw'al (12th century) who said that algebra
was concerned with "...operating on the unknown using all the instruments of arithmetics, in the
same way in which the arithmetician operates on the known [values]" (Rashed, p27). This
comment is better understood in the context of the process of "arithmetisation" which algebra
underwent after the pioneer work of alKhwarizmi, a process that consisted in restricting the
methods of algebra to those of "arithmetics" (Rashed, p32, but also analysed in many other
places in the book. It is particularly interesting to consider the link that Rashed establishes (p25)
between al-Khwarizmi restricting himself to equations of the 1st and 2nd degrees and his
conception of proof [to a great extent geometrical]). The process of "arithmetisation" undergone
by algebra in this period corresponds, in the context of the epoch, to the process of "abstraction"
that algebra underwent during the 19th and 20th centuries: the substitution of a collection of
procedures for solving "classes" of problems (later: a collection of results about specific
systems, "arithmetical" and "non-arithmetical") by a method that allows us to attack problems in
any of those classes (later: an "abstract" system the results from which can be applied to all those
particular instances of systems). Algebra becomes an autonomous discipline (later: Abstract
Algebra becomes an autonomous discipline).

A less explicit but equally distinctive aspect of the arabic algebra, is the fact that
once a "contextualized" problem is represented in terms of arithmetical relationships, the process
of solution develops entirely within the Numerical field of reference. It is for this reason that
careful attention is given to the process of "translation": from that point on. the "context" would
pot provide a source of reference: if the arithmetical relationships do not accurately correspond to
the problem. the algebraic method could not detect the mistake and the Numerical process of
solution would result in a waste of time (to say the least). This "internalism" is made possible by
the development of algebra as a "theoretical" discipline (Rashed, p20) already clear in al-
Khwarizmi's use of normal forms of equations at the same time it makes possible further
developments in algebra. As Klein points out throughout Part II of his book, this kind of
"internalism" was not possible in Diophantus, especially because of his conception of number
(the conflict between the "pure" number and the "number of things" and the concept of eidos as
the only possible form of "general number").

Those two principles "arithmeticity" and "internalism" are also characteristic of
Viete's work, and to such an extent implicitly taken by him that they become almost transparent
by staying always in the background of the symbolic invention. However "hidden", these are
exactly the principles that support Viete's creation of a "symbolic calculus". (for those who
wishfully think that Vieta's algebra is totally context-free, let us remember that he had different
symbols for subtractions where one number was known to be greater than the other and
subtractions where this was not known)

What becomes evident with this picture in view, is that a content-driven approach to
understanding the Algebraic mode of thinking leads us to miss the point that the "symbolic
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calculus" of algebra was but a consequence of the development of a body of knowledge that
already embodied the calculus (hisab, for al-Khwarizmi) that is progressively made
"symbolic".

We think that it is totally adequate, then, to characterise Algebraic Thinking as the
mode of thinking that produced from the arabic mathematicians on, to our
knowledge the "theoretical" discipline we know as Algebra. As a consequence,
"arithmeticity" and "internalism" are features of thinking algebraically. As we said before,
"abstraction" would replace "arithmeticity" in a more general characterisation, but we will keep
the latter for two reasons:

(i) Our primary interest is in the development of an algebraic mode of thinking; school-
algebra is an algebra of numbers, as Algebra was for a very long period of time ;

(ii) We think that by using "abstraction" one reinforces the idea of an absolute "lack-of-
meaning", which we deny as misleading.

4. From Aleehra as a subject-matter in Mathematics

A simple way of defining Abstract Algebra is to say it is "the study of algebraic
systems", an algebraic system being composed by a set, one or more algebraic operations defined
on it and a set of axioms which have to be satisfied by the operations. An algebraic operation on a

set A however, is a function from A" onto A, and this means that the set A is mentioned
separetely not because its elements are relevant in any sense, but because we want all the
operations to refer to the same set. This is, in a sense, the result of the evolution of the
"internalism" mentioned in the previous section: the operations are defined internally and they all
refer to same set of elements; no other reference is needed. Because we do not want to refer to
anything else "external" (particular), the elements are "abstract", and the only way to do any kind
of manipulation within this system is on the basis of the properties of the operations. This allows
us generality, as operations are "globally" defined. In a very similar way, if one is solving an
equation in a "purely numerical way", one has to do it on the basis of properties of the
arithmetical operations.

This characteristic of Algebra means that in Algebra operations become objects,
ie, they are a source of reference, they have properties. This is true both for "number
algebra" as it is for Abstract Algebra.

When dealing with school-algebra, it is usually useful to think in terms of operators
(eg, "1-2") instead of in terms of bynary operations (Kirshner, 1987), but this does not
essentially alter our point, because the operators are built from the arithmetical operations.
Moreover, as a consequence of Algebra being used as a method, ie, generally applicable, we are
left in fact with only four arithmetical operators (viz., +a, -a, xa, +a).

This analysis of Algebra as a subject-matter helps us to understand an aspect central to
much of the discussion about Algebraic Thinking: that of meaning.

When a problem or situation is modelled in terms of arithmetical relationships, the
objects that provide information on "what can be done to manipulate those expressions" are, as
we saw, the operations and their properties, this corresponding to an algebraic treatment. On the
other hand, when an Analogical model is used the numbers are associated, as "measures" (or
operators operating on "measures", eg, "3 buckets"), to some other object; if one is dealing with
a "purely numerical" problem, the numbers might be associated, for example, to parts and
wholes; those other objects and their "qualitative" structure are the elements which provide us
with information on "what can be done to solve the problem". One knows which operation to
perform and with which numbers because each operation corresponds to an evaluation and the
numbers are "attached" to the parts involved.

What is "lost" in a Numerical process of solution is exactly this Analogical reference on
"what to do with the quantities", and this is the meaning of "meaningless" that could be applied to
an algebraic solution. ("it is meaningless" "I can't see how those elements tell me this is
what I should have done")

I a 11 .1 I 1 1, I.

(I) Harper (1987) analysed solutions to the problem "If you are given the sum and the
difference of any two numbers, show that you can always find out what the numbers are", and
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identified three groups of answers that correspond to "rethorical" (totally verbal), "Diophantine"
(or "syncopated"; symbols only for the unknowns) and "Vietan" (or "symbolic"; symbols for the
unknowns and for the given [general] values) answers.

One has to notice however, that all three kinds of solutions are general, in the sense of
being generally applicable to any sum and difference given and they are thus
undistinguishable from that point of view. Moreover, Viete's answer to the problem
(p88) totally corresponds to the "rethorical" answer presented on p81, apart, of course, the use of
letters (and this is correct even to the extent that Viete's answer is 'I2D t /2B and not 1/2 ID-B1
). Whenever a correct "rethorical" answer is not accompanied by an explanation as to how the
result was obtained (as it is the case with the one presented on p81), one has to consider that the
process of "thinking out the problem" (p80) could correspond to anything, including Viete's
method.

The important point here is that although lacking symbolic generality, "rethorical" and
"Diophantine" solutions might eventually involve much of the same mode of thinking that a
"Vietan" solution does (we emphasised the "eventually" because an Analogical solution is also
possible on all three 'styles' ).

Harper's classification of solutions is certainly useful to describe differences in the use
of mathematical symbolism, but by itself it does not provide a framework that enables us to
distinguish different modes of thinking.

As a consequence we are again led to the necessity of a framework that takes into
consideration the ways in which solutions are produced, ie, which are the sources of reference
used, and this is exactly the focus of attention of the N-A framework.

(II) Lesley Booth's follow-up study of the CSMS survey (Booth, 1984) produced a
number of important findings. Although primarily concerned with situations that involve the use
of letters, Booth's conclusions point out to the necessity of understanding children's "informal"
methods if we are to understand the nature of the gap between non-algebraic and algebraic modes
of thinking.

Of particular interest to us is her characterisation of the "child methods"(p37): "(1)
intuitive, ie, based upon instinctive knowledge: not systematically reflected upon and not checked
for consistency within a general framework; (2) primitivt, ie, tied closely to early experiences in
mathematics; (3) context-bound ie, elicited by the features of the particular problem; (4)
indicative of little or no formal symbolized method; (5) worked almost entirely within the system
of whole numbers (and halves)".

If those "methods" are seen as based on a qualitative analysis of the situation presented
(an Analogical approach), the first four characteristics follow as a consequence: context-bound
because the solution depends on understanding a particular situation and the possibility of
manipulating its elements to perform evaluations; non-systematiized because of the obvious "one-
off" (or even "few-off') character of the solutions; intuitive because non-systematic, but also
probably because the knowledge required to perform the qualitative analysis is not seen as
mathematical knowledge; little or no symbolization both because the strategies actually used to
"think the problem out" comparing, decomposing and recomposing wholes, for example are
easily and accurately described by verbal statements, and because "thinking the problem out"
(using the strategies) is of a different nature than "working the problem out" (the actual
evaluations, the performance of the operations). Symbolic notation might be used to describe
but this does not contribute to the process of solution itself . [This is not the case with a
Numerical solution, because the operations are at one time the source of reference and the
instruments used to manipulate the information: a concise and homogeneous notation which is
intended to be manipulated is adequate and possible] Those "methods" are primitive because the
operations can retain their original role, that of being tools for evaluation. (the latter idea is
also conveyed, in a slightly different form, in the assertion that children see operations as
"something to be performed" [Booth,op. cit. , pp90-91]).

Three of Booth's research findings (pp85 and following) also provide evidence that an
Analogical approach is probably preferential to those students (the item numbers correspond to
the original text):

(1.c) " Some children are confused over the distinction between letters as representing
the value(s) or number(s) relating to a measure or object, and letters as representing the measure
or object itself. ...". From the point of view of the N-A framework, this could be interpreted as a
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consequence of the students operating Analogically, ie, as the numbers are "numbers of things"
and as those "things" are the source of reference on what to do or on bow it works (more
specifically, the qualitative structure involving those "things"), it would be more natural to
represent primarily the "things" and not the numbers that correspond to them.

(3.b.i) "The context of the problem determines the order of operation" and (3.b.ii) "In
the absence of a specific context, operations are performed from left to right". Those two points
indicate the extent to which the operations are not constituted as objects and their use remain
subjected to other sources of reference.

(III) On a exploratory study carried out in Nottingham, England, in 1989 and reported
in Lins(1990), two groups of 3rd year secondary school students and a group of 4th year
primary school students were asked to solve a set of five "verbal" problems and to explain why
they did it that way. Both correct and incorrect solutions, together with the explanations, were
then analysed to determine whenever possible the source(s) of reference used by the students
to work the problems out.

Two of the problems used:

Carpenter: The stick on the top is 28cm longer than the one in the bottom; altogether they measure 160cm.
How long is each of them?

Buckets : From a tank filled with 210 liters of water I took 3 full buckets: Now I have only 156 liters left.
How many liters go into a bucket?

The analysis showed that in many cases the solutions were Analogical (eg, "to take 156
away from 210 to determine how much was taken by the 3 buckets" on BUCKETS), but it also
showed that in those cases where only the calculations were provided they corresponded in all
but one instance to those that would be used with the simplest Analogical solution (for
example, when solving the Carpenter's problem, to begin with 160-28 but not with 160+28 and
never representing the difference as the result of a subtraction [as in xy=28] ). The overall
result of the analysis suggests that: (i) the use of an Analogical approach, as we define it, is
experimentally generally verifiable, and (ii) those students used mainly an Analogical approach.

The following fragments of an interview from another study (Laura , 10yrs5mths)
provide a clear example of the use of an Analogical approach: (the problem is "George and Sam
have £1.60 altogether, but Sam has 38p more than George does. How much does each of them
have?"; the emphasis on the transcription is ours)

int... how did you know that you had to take 38p away and not to add 38p?
Laura: If you added 38p... then... ahnn... if you added 38p then you wouldn't have, ahnn... you would have
more than £1.60 to start off with.., and it says you only have f 1.60.

Int: But if you take 38 away, then you have less than you had...
Laura: yeah... I think I was just trying to_get the 38p out of die wav for a bit ! and then...

Features of the situation act as constraints and source of reference in the process of
solving the problem.

(IV) In another study, we investigated the sources of reference used by six
postgraduate students in the University of Nottingham to validate given symbolic representations
as correctly describing a verbally given situation (a brief discussion is in Lins,1988). One of
them was the well known "students and professors" situation ("In a school tht are six students
for each professor,...", etc.). Two basic strategies were identified: (i) always tol refer back to the
verbalised situation, and (ii) to determine one correct symbolic representation and from it to
derive the correctness or incorrectness of the others on the basis of algebraic manipulation. One
of the students, who otherwise always referred back to the text and adopted as correct the
"wrong" representation 6S=P, when faced with the item 18P=3S simply divided both sides by
3 to obtain 6P=S and concluded it was not in agreement with the verbal description. Moreover,
she proved quite able to solve formally set equations and had no difficulty with the CSMS item
"Which is greater: 2n or n+2". The information gathered by this exploratory study suggests that
using an Analogical approach (in that above case modelling the situation by putting "blocks" into
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correspondence) is not necessarily the result of an inability to deal with "unclosed" or
"symbolic" expressions, but rather the result of structuring the situation using a referential that is
different from the referential that would produce a representation in terms of arithmetical
relationships.

(V) Friedlander et al.(1989) investigated, among other things, differences between
visual and numerical justifications, a distinction that corresponds in the context of the problem
analysed, a "geometrical" problem to our N-A distinction.

7. Conclusion

The N-A framework was developed as part of our effort to provide a clear
characterisation of Algebraic Thinking. On its foundation is the assumption of two distinct fields
of reference (Numerical and Analogical).

Nurnerical Analogical

Operating within the Numerical field of reference means that
only the arithmetical structure is relevant.

the objective of any manipulation is to derive new
arithmetical relationships that, because of its form, bring
with it new information about the initial relationships; In
doing so, one is guided exclusively by the operations
involved and their properties. Operations can have
properties because they are OBJECTS.

because the guiding principles apply irrespective of the
particular arithmetical structure dealt with with the few
canonical exceptions that also apply to arithmetics, like
division by zero, etc operating within the Numerical
field of reference has a strong character of
method; meaning belongs thus to the process as a whole.
(A METHOD TO SOLVE PROBLEMS)_
Limits of the context arc taken as limits for the answer but
not for the process of solution

Operating within the Analogical field of reference means that
the relevant information is provided by the "qualitative"
structure (eg, bigger/smaller, decrease/increase, wholes/parts).

the objective of any manipulation is to make evaluations
possible; this is done through the manipulation of the
elements of the situation; comparing wholes and
decomposing wholes and rearranging the parts thus obtained
are typical Analogical strategies. Operations are the
TOOLS with which the evaluations are carried
out. _
operating within the Analogical field of reference is
an activity bound by the specific "qualitative" structure, and
thus presents itself as a procedure' meaning belongs to
each step of the solution process. as the "qualitative" structure
changes with each new evaluation. (TO SOLVE A
PROBLEM)

Limits of the context are taken as limits for the process of
solution

Other important general features of the N-A framework are:

(1) The use of symbolic notation is not characteristic of operating within any of the two
fields of reference nevertheless, a symbolic notation that is intended to be manipulated is
possible and adequate when operating within a Numerical field of reference but not when
operating within an Analogical field of reference.

(2) The central distinction being made is between ways of interpreting the elements of
problems and situations and not between the consequences of different interpretations;

(3) It avoids the idea of "pre-algebraic" and "algebraic" modes of thinking that is
inherent to the content-driven arithmetical-algebraic distinction; this offers us a perspective of
analysis of the learning process different from that of developmental stages.
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From the point of view of the N-A framework, Algebraic Thinking is naturally defined
as the mode of thinking that enables one to operate within the Numerical field of reference.

Nevertheless, Algebraic Thinking applies to fields of reference other than the Numerical
(applied to sets it might lead for example to Boolean algebra); for this reason it is adequate to use
Numerical instead of Algebraic field of reference, once we are examining the development of
Algebraic Thinking in the context of school-algebra, which is certainly an algebra of numbers.

Also, algebra being the study of the properties of an algebraic system (as defined in
section 3) Algebraic Thinking is the mode of thinking that leads to the development of algebra
and the symbolic system that corresponds to the calculus embodied in the ideas of algebra is a
possible consequence of thinking algebraically, not a characteristic of it.

The N-A framework enables us to examine the development of an algebraic mode of
thinking in more depth, both because it links Algebraic Thinking to a field of reference (and ;hen

as a consequence to what is possible and necessary when thinking algebraically) and because
non-algebraic thinking is characterised in itself and not as "inability-to-think-algebraically". This
positive characterisation of a non-algebraic mode of thinking is essential if we are to understand
the "misconceptions ", "failures" and "rejections" related to the learning and use of algebra. Also,
the NA framework provides a non-circumstancial explanation for the inadequacy of "algebra as
a language", by exposing the impossibility of a "translation" producing by itself the required shift
of reference that takes one into the Numerical field of reference.

Because Numerical and Analogical fields of reference are distinct operating within one
of them cannot be reduced to operating within the other. This means that each of them provide
distinct approaches that are more or less adequate depending on the task in hand; non-algebraic
approaches are not weaker a priori (see, for example, Janvier, 1989 and Fischbein,1988) and the
fact that this conclusion follows from the way in which our definition for Algebraic Thinking is
built is certainly an indication of the its adequacy.
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DEVELOPING KNOWLEDGE OF FUNCTIONS
THROUGH MANIPULATION OF A PHYSICAL DEVICE

Luciano L. Meira

Mathematics Education
University of California, Berkeley

Abstract

In this paper, I discuss the usefulness of algebra instruction that provides
students with dynamic physical systems as models of algebraic notations,
and a curriculum that profits from their intuitions about mechanisms and
causality. I analyze one student's emerging understanding of linear
functions and algebra as he uses mathematical concepts, principles, and
symbols as modeling tools to explore a simple winch machine.

Introduction

By the end of middle school, children are typically introduced to new levels
of mathematical abstraction in the study of algebra and functions. Current

mathematics instruction at that grade level too often over-emphasizes symbol

manipulation in ways that obscures children's understanding of the objects,
both mathematical and concrete, that the symbols are about (Kaput, 1987;
Schoenfeld, in press; Greeno, 1988; Brown, Collins & Duguid, 1989). Physical
referents of mathematical abstractions are typically overlooked, under the claim

that symbol manipulation promotes robust "context-free knowledge." This study

examines learning of algebraic functions fostered by physical operations on a
mechanical winch. I will argue that mathematics instruction characterized by

manipulation of dynamic physical systems provides students with a sense of
mechanism and causal relation that facilitates learning (White & Frederiksen,
1989), and that helps to engage learners in meaningful mathematical activity.

The analysis describes one student's emerging understanding of linear
functions and algebra as he uses mathematical concepts, principles, and

symbols as modeling tools to explore a physical event. The activity discussed
in this paper involves the student's attempts to write equations that model the
functioning of a simple "winch machine."
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Background to the Analysis

The subject was a 12 year old 7th grade student, named CC. Nearly 5 hours

of interviews were conducted in which CC solved problems and manipulated a

winch mechanism. The device consists of two spools fixed in a common axle

(Figure 1). As the axle is turned, the spools drag small blocks, labelled A and

B, along a numbered track. The spools circumference and the blocks initial
positions at the track can be set to several values. Mathematically, the relation
between block position and number of spool turns map to the function y= mx+b

as "Position(final) = Spool Turns + Position(initiao."

Figure 1- The winch mechanism.

Before the study, CC had done some simple work solving one or two-step

equations of one variable, but had not studied intensively either word problems
or modeling of the type described here. The following is an example of the

problems in the learning curriculum: "[The equations "embodied" in the winch

were A: y = 4x+8 and B: y = 6x+3) Would there ever be a point at which block B

is ahead of the other block? (If 'yes') After how many turns? (If 'no':) Why not?"

The curriculum did not include teaching interventions that explicitly dealt with

topics such as formal algebraic structures or strategies to record and/or
interpret experimental data. A micro-developmental analysis of the student's
work on the learning curriculum was conducted. Pre and post-tests were
employed to contrast the student's incoming and final knowledge states. All

sessions were video taped.

Protocol analysis focused on obtaining a microscopic trace of the under-

standings developed by the student. The following activities were considered:

(1) generating equations, graphs and tables; (2) handling the physical device;

(3) describing properties and relationships observed in the device. Two

questions guided the analysis of the reasoning processes underlying the

genesis and evolution of conceptual understanding:
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(1) What aspects of the situation did the subject represent? and

(2) How did these representations evolve?

The segment of protocol discussed below focuses on the student's use of

algebraic notations to record and interpret a physical event. The analysis
illustrates mathematics understanding as a gradual process that depends on

connecting pieces of physical, arithmetic and algebraic knowledge con-

structed in activity.

Analysis

The child first worked a winch word problem (which served as a pre-test)

and wrote a symbolic expression designed to capture the situation described.

He then worked on the physical device solving many practical problems and

managed, by means of the dialectic between his naive algebraic knowledge
and his perception of the device, to evolve an expression close to the correct
equation. I describe below the episodes that formed the basis of the subject's

initial grasp of algebraic notations and meanings in the physical situation.

In the pre-test, CC correctly solved winch word-problems that described a
scaffold used by window cleaners on a building. The problems were similar to
those used in the learning curriculum. His solutions were empirical, using
number sequences. The underlying equation in the described situation was y

3x+2. The subject was then asked to "write an equation to show the relation-

ship between number of spool turns and height of the board in each scaffold."

The following summarizes his answer:

CC: "I know I just have to add 3 onto the next answer... (Writes n+3 =
n) because on my 6th spool turn I found that it was 20 meters
high, and so with that 20 meters I add another 3 meters and
that's my next answer."

In the following session the student worked with the actual winch machine,

which was set up to embody the equation y = 4x+8 correctly solving many
practical problems. For example, when given the question "How many turns

will it take for the block to be at the 72 mark? the subject mentally computed 72
minus 8 equals 64, estimated 16 as the number that multiplies 4 to yield 64

(writing down '4'16 = 64'), and gave 16 as the answer. Requested then to write
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an equation to show the relationship between "number of turns and where the

block is at", he wrote 4n = n:

CC: Tour times the number of turns you want to go/ should I put n in
there?... n, equals n. (It goes) 4 inches every turn, so 4 times the
number of spool turns equals the answer."

Note that the use of a multiplicative relationship is already an advance over

the answer for the word problem (n+3 = n). Note further that the use of the same

literal, n, with different index values in the situation did not seem to confuse CC,

as he managed to keep distinct the assigned meanings. The problem, however,

is to specify the assigned meaning to what he names "the answer." Given the
problem context at this point and other segments of the protocol, "the answer"

seems to indicate 'how far the block goes.' Yet, it remains to be known whether

the subject meant 'displacement' or 'position' of the block.

There also seemed to be important links between the equation 4n = n and

the arithmetic procedures used to solve practical problems with the winch.
Immediately following the segment above, CC provided the explanation

transcribed below:

CC: "(...so 4 times the number of spool turns equals the answer)
...just like down here I did 16 times 4, this will be/ the 4 is right
there (points to 4 in '4n = n'), 16 is the n (first from left to write),
equals 64 and that's the answer."

Having interpreted the reference as including the whole procedure (72-8 =

64; 4'16 = 64), I pointed out to CC that his equation did not include the
subtraction operation. He then proceeded to revise the equation:

CC: "Oh, yeah! ...N would be the place where it's starting, minus
(writes 4n = n-a)... wait, you have to do it first... in order to find
how far we want it to... I'm thinking if I put minus n, the n would
be how far it starts out at... you'd have to find out how far it
would go to be able to minus how far that is..."

Not satisfied with 4n = n-n, he then suggested the expression 4n = n+n:

CC: "I just found that if you added like... This (4n =n) gives you the
answer of how far it would go like this (points to 4'16 = 64), but
then we could add the place where it starts; put another n right
there (completes expression 4n = n to 4n = n+n) and that's the
number of inches times the number of turns you want to go,
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equals the number that its gonna go, and then... in order...
well... and then add the 8 (block initial position)... to it, and
that's your answer. Because like this (4'16=64) it went 64
inches but since it started at 8 it went 72 inches, because you
added the 8 to the 64."

LM: "You said 'that's your answer.' What the answer is? Is it the
number of turns? What is it?"

CC: " Where it would stop; where it would be."

At this point, CC seemed to realize that he had focused on distance
travelled (as in 4n = n or 4n = s-n) rather than final position (as in 4n = at).
Indeed, he then made the first spontaneous reference to final position:

CC: "(4n = n+n) is 4 times the number of turns, equals how far it will
go plus how far it started off, and that gives you where the block
will be at."

This reasoning appears to be robust and sensitive to the situation, though

misleading from a strictly formal stance. The subject is then asked to "check

with the apparatus whether the equation 4n=n+n works." He turns the spool 6

times, which makes the block arrive at the 32 mark. His reaction is transcribed
below:

CC: "Ok, so it's at 32, and then... so you did, 4 times my 6 equals
thirty... yeah, no... yeah, 4 times 6, no... equals 241_ and then...
you added the 8 and that's 32..."

LM: "What are you thinking?"

CC: "...I said 4 times 6 turns equals 24; but I want it to 32, in 6 turns...
but wait... this equation can work with this (device) but you have
to say you did the 6 turns and then added 8 on; so it's like
saying 4 times 6 and you added 8 to it... it doesn't seem right,
because it started at 81"

In this segment, we see a clash among the student's understanding of equa-
tions, of the arithmetic procedures that worked in practical problems, and his
model of the physical mechanism. The equation is then rewritten as 844n1= n.
This time, the last 'n' in the equation is labelled "the overall answer." Note the

match between the position of terms in the equation and the sequence of states

and events in the physical device: (1) block starts at position 8; (2) handle
linked to a 4 inch spool is turned n times; (3) block arrives at position n, the
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"overall answer." We observe that, save for the use of 'n' to represent both the
number of turns and where the block finally lands, nia final equatiortiaGg

Moreover, it was generated by a heavy reliance on the mechanism of the situa-

tion, which did not appear in the paper-and-pencil winch problem in the initial
test.

The change in CC's understanding of the modeling task can also be de-

tected through a contrast between his initial and final assessment tests. Figure

2 shows CC's answers to the scaffold word problem discussed earlier. The

question read as follows: "Draw a graph and write an equation to show the

relationship between number of spool turns and height of the board in each
scaffold (A and B)."

initial Assessment
Target equations- A: y = x+9

B: v = 3x+2
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Figure 2- Pre and post-test answers to the scaffold problem.

Two advances are notable: (1) CC's graphs in the final test are far more

comprehensible and sophisticated than in the initial test; in particular, he has
evolved from bar to line graphs based on data points inferred from the de-
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scribed situation; (2) he is clearly able to apply the algebraic knowledge

developed during the study and analyzed above e.g., compare pa = r to

2+(N31 = H.

Conclusion

In the segments of protocol presented, we observe three elements of the

subject's evolving understanding of the situation: (1) a mental model of the
physical mechanism, inferred from his overt simulations of the functioning of the

device or verbal accounts of its mechanism; (2) arithmetic knowledge, in the
form of calculations of unknowns in specific problems directly involving the ap-

paratus; (3) algebraic knowledge, used to annotate quantitative (and physical)

relationships observed in the situation. The excerpts above present CC's
mathematical understanding as constituted of pieces of physical, arithmetic

and algebraic knowledge.

I interpret the subject's evolving algebraic knowledge as fostered by his
perception of the physical winch. The device provided the means by which CC
could manipulate quantities (as opposed to symbols) and test his intuitions

about patterns and algebraic structures. This case study lends support to White

& Frederiksen's (1989) claim that science learning proceeds from an

understanding of causal principles:

The evolution of knowledge can be captured as a progression of
increasingly sophisticated causal models that are qualitative
early on but that can later be mapped into quantitative models as
students' understanding progresses." (p. 94)

School mathematics too often over-emphasizes symbolic manipulation and

the symbol systems taught have only other symbols as referents. As an

alternative for algebra instruction at the middle-school level, I suggest the
value of dynamic physical systems as powerful aids in promoting students'

understanding of symbol systems and concepts.
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Students' interpretations of Linear Equations and Their Graphs

Judit Moschkovich, University of California at Berkeley, U.S.A.

This study examines data from two algebra classrooms identifying common student interpretations
of linear equations and their graphs. These interpretations are consistent with previous research in
this content area, and arise even after direct instruction and experience graphing lines. Peer
discussions of these alternative interpretations are also analyzed for evidence of resolutions of
alternative conjectures. Lastly, suggestions are made for iencouraging the transfer of authority fror
the teacher to peer discussions.

Introduction

Within a constructivist framework, the mistakes students make as they learn mathematics are a

crucial aspect of instruction. As Lampert (1986) puts it, students "need to be treated like sense-

makers, rather than rememberers or forgetters" (P. 340), or mistake-makers. Students'

alternative interpretations should be taken into account in two ways. First, we need to identify

common alternative interpretations that students generate in different content areas. Second, we

must develop instructional methods to address specific interpretations. This paper explores how

students interpret linear equations and their graphs in different ways than experts do. Previous

research shows that student interpretations include: changing the y intercept moves lines

horizontally (Goldenberg, 1988), and using a three-slot schema which includes the x intercept for

equations of the form y=mx+b (Schoenfeld , Arcavi, and Smith, in press).

Within a Vygotskian framework that views knowledge as socially constructed, classroom

discussions of students' interpretations are crucial contexts for students to develop meaning for

the mathematics they are engaged in. Many researchers have proposed learning through social

interaction, and peer collaboration specifically, as an important element in constructing classroom

environments where students can make sense of mathematics (Resnick, 1989; Brown and

Pallincsar, in press). Combining aspects of the constructivist and Vygotskian frameworks, this

study examines how students in two classrooms generated alternative interpretations of equations

and lines, and how their discussions did or did not resolve conflicting viewpoints.

Linear equations and their graphs

After typical school instruction, students may or may not be able to perform standard procedures

such as graphing equations, solving for variables, or changing the forms of equations. However,

experts' knowledge of functions extends beyond procedural competence (Schoenfeld et al, in
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press; Moschkovich, 1989). For example, an expert's view of this domain includes treating curves

as conceptual objects which can be manipulated and seeing changes in the parameters of

equations as having corresponding changes in the curves. Both of these aspects of expertise are

crucial for using functions in advanced mathematics courses such as calculus. Guided exploration

of functions, their equations, and graphs with graphing software, as opposed to direct instruction

or pencil and paper tasks, has been proposed as a useful tool in the development of this

elaborated view of functions (Schoenfeld, in press).

Subjects and Methods

The site for classroom observation was an urban high school in California where a pilot version of

Math 9, a college preparatory course, is being tested. The students in the two classrooms

observed are 9th and 10th graders following a college track curriculum; that is, they are neither

remedial nor honors students. The curriculum was designed to encourage exploration, discovery,

and discussions of alternative understandings. Thus, the classrooms are an excellent environment

for exploring students' active construction of mathematical knowledge through interaction with

peers or teachers. The curriculum unit observed lasted approximately five weeks. The chapter

included modeling of real world situations with equations and graphs, interpreting graphs, use of

graphing calculators and computer software, and student group work with some class discussions.

The lessons that will be discussed in detail involved graphing on a calculator (Day 13), producing

lines on the computer screen to match lines in a handout using Superplot (Day 14); playing Green

Globs, a game where students use straight lines to shoot random globs (Day 15); and graphing

on a calculator (Day 16). In each of the two classrooms I observed peer group work and teacher-

student interactions. I observed and audiotaped students working in groups during four lessons,

and videotaped four pairs of students working on a computer using Green Globs (Dugdale, 1982)

and Super Plot. The classroom notes, audiotapes, and videotapes were analyzed in terms of two

themes: students' alternative interpretations of linear equations and their graphs, and instances of

peer discussions of these interpretations.

Analysis

Following previous research on students' knowledge of linear functions (Schoenfeld, Arcavi, and

Smith, in preparation), my own pilot work, and recurring themes during these five lessons, I focus
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on four areas of common alternative interpretations: the role of the y intercept, separating x and y

intercepts, slope as location, and separating slope and y intercept.

1. The role of the y intercept is not obvious

In Classroom B, on Day 13 of the chapter, the teacher directed a whole class discussion on the

role of the slope and the y intercept in the equations and graphs of straight lines. The students

had graphed the equations y=2x+1, y=2x-1, and y=2x on their calculators and the teacher graphed

these three lines on the board. The teacher then posed the following question:

Teacher B: Can anyone tell me what the significance was of that number there? (pointing to the 1
in y=2x+1).Does anybody know where this plus one and this minus one came in to play on these
graphs? (silence) Can you see it on there?
Student: Yeah...(silence)
Teacher B: To make along story short, there are little blip marks on the x and the y axis, right?
Mt: Yeah
Chorus: yes
Teacher B: Which little blip mark did this graph go through?
M: Two, the second one.
Students: Two and two...
Teacher B: This one you drew, which blip mark did it go through?
Student: Negative two
Chorus: Negative two
Teacher B: Negative two?
Mt: Yes
M: And positive two.
Student: And negative one...
Teacher B: That one went through here didn't it (pointing to (0,1) on the graph)?
Mt: Yeah
Student: Through the middle
Chorus: It went through the middle.

The teacher proceeded to ask the students what y values were produced for different x values.

However, the students never resolved the question of what the role of the +1 or -1 in the

equations was in the graphs during this lesson. This could be explained by the fact that the

students had not yet had enough experience graphing lines, and thus were not yet ready to

discover the role of the y intercept. However, episodes from subsequent days show that even

with more graphing experience and direct instruction, the role of the y intercept remained

problematic.

In Classroom A, on Day 16, students worked on graphing lines with the same intercept or the

same slope on their calculators. They were asked to answer two questions in their groups: "What

does the number in front of the do to the lines?", and "What does the number being added or

subtracted do to the lines?" The three previous lessons had involved graphing lines with the same

slopes or intercepts on the calculator (Day 13), reproducing on the computer computer screen
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lines given in live exercises (day 14), playing Green Globs (day 15), and a summary by the teacher

on how to rotate or translate lines (Day 15). It seems reasonable that by this lesson students

should have noticed what the y intercept does, and used this knowledge to either produce lines or

hit globs. However, the two students that were audiotaped were again unable to resolve the

second question.

2. The x intercept is important (when using the form y=mx+131

In Classroom B, on Day 15, the students played Green Globs. The teachers introduction to the

activity summarized how to translate lines up and own by changing the b in the equation, and

rotate lines by changing the m in the equation. The following is an excerpt from the video

transcript of two students who had played five games using mostly horizontal and vertical lines.

(Game 6: M and K have tried the equations: y=x-3, y=x-2, y=x=y-3, and x=y-3.)
Mt: Negative y...OK (he types in the equation x = -y -3 and then x = -y)
K: X minus, y equals x minus....y equals x minus 1,2,3,4 (counts along the x axis and keep s his
finger on (4,0)).
Mt: Four...ah yep. Y equals x...
K: Minus four
Mt: X minus...Sure? That won't be up here? (traces a line from the IV to the II quadrant)
K: No..(shakes his head)
Mt: (Types in the equation y= x-4)

In this episode K used the x intercept (4,0) to generate the equation y=x-4. Unfortunately, the line

y=x-4 did hit the globs they had selected. The x and the y intercept for the line they wanted to

produce were respectively (4,0) and (0,-4). Thus, K's use of the x intercept to generate a line was

not challenged by the result on the screen.

After class, on Day 16, I worked with two students (M and C) who had questions about the

previous lessons and their homework. For one of the problems they were working on they had

generated and graphed three lines on the board: y=x, y=x+3, y=x-2 on the blackboard. I asked the

two students if they could write an equation for the top line, y=x+3. One student looked and

pointed at the x intercept, saw it was (-2,0) and generated the equation y=-2x. When I suggested

using a table of values to check whether that was the right equation, the three of us showed that

y=-2x didn't work for the line in question (using a table for y=-2x gave a different line).

3.Slooe and location are related

Returning to Classroom A, Day 16, students D and C tried to determine the role of the m in their

equations.
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D: Ok, one question. The number before x . Hey, what does the number before x do?
C: See, this is y, right, and then this is x...
D: Yes
C: So y equals x is over here, is five. I don't know how to explain it! I know what it means.
D: Try it
C: See here is 1,2,3,4,5 so it's all the way there and you'll run all the way over there. No, that's not
how I would say it. Something like that, I don't know. See like here's the spaces. Here I think I got
it.
See here it is. Over here it's like y equal to negative three x, and it's over here, so this side is
negative and so this side is positive. So over here it's five, like that.
D: Oh, the number before gives it the side like the positive, it starts from the positive side, right?
C: Yeah, like that!

These two students appear to have figured out something about the sign of the slope. However,

they refer to lines as "starting from" somewhere. This is a reasonable result of their experience

with graphing calculators and software. On both screens lines are graphed starting from left to

right. This means lines with positive slope "start" in the Ill quadrant, and lines with negative slope

"start" in the II quadrant. There is nothing inherently wrong with this, if what they are talking

about is a student version of "lines with positive slope rise to the right, and lines with negative

slope rise to the left". However, in the subsequent whole class discussion, this is not the

interpretation of the slope that D presented, or that the rest of the class supported.

After graphing lines on their calculators and discussing the questions in their groups, one student

from each group (7 in all) went to the overhead projector to give their answer to the question

"What does the number multiplying the x (in y=mx+b) do?". Three different students insisted that

the line for y=5x looked like the line for y.x. They graphed it on the overhead projector by

counting from the origin to (-5,-5) and to (5,5) and connecting these two points. Answers to the

question included "it tells the calculator where to draw the line", "it tells where it starts from", "it

directs where the line should start". When prompted to explain why their lines were y=5x, several

students pointed to (-5,-5) as the starting point. None of the students generated any other ways

to prove or disprove this proposition. The teacher then suggested checking what y values were

produced for different x values when using the equation y=5x. Subsequently, two students used

this process to show that the lines they had graphed were in effect y=5x and y=2x.

4. Separating slope and y intercept

In the example presented above in section 2 (Day 16, M and C), not only did the student try to

use the x intercept in the equation, she also tried to place the x intercept in the m slot. Thus,

separating the role of the m and the b in the equation is also problematic. On Day 16, while two

students in Classroom A used Superplot, they also faced the issue of separating the role of the
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slope and the y intercept. On this day students were given a series of lines to reproduce on the

screen (Exercise 1: y=4, y=2, y--1, y=-5. Exercise 2: yzor, y=2x, y=3x, y=-3x, y=-2x, y=-x. Exercise

3: y=2x+3, y=x+3, y=.5x+3, y=-2x+3, y.-x+3, y=-2x+3.) Students S and E worked together on

exercises 1 through 3. They successfully produced four horizontal lines to match the ones in

Exercise , and the six lines for Exercise 2. However, they were stumped when they came to

Exercise 3. They asked the teacher for help in taking the line y=3x and 'putting it more up", that is

changing the y Intercept from (0,0) to (0,3). The teacher helped them to notice that all the lines

went through the point (0,3). After the teacher left, S and E tried the equations y=3.3x and

y=4.4x. The teacher returned and suggested they try ''plus or minus something'. Next, they tried

the equations y=0.3 +5x and y=3+5x. They matched one line in Exercise 3 with this last equation

and attempted to change the slope of this line by changing the b (y=3.5 +5x, y=3.8+5x, y=3.7+5x)

until they realized that this was not affecting the slope of their lines. They finally moved to trying

the equations y=3 +x, y=3+2x, and y=3+3x, as the way to translate lines up and down. Thus, for

these two students, slope and intercept were initially neither independent on the graph nor did

they show up in different places in the equation.

Peer Discussions

Some of the students I observed were engaged In 'finding the right answer (Lampert, in

preparation). They looked to see what other students were doing for inspiration, and asked other

students, the teacher, or the researcher for answers. In their case, conflicting interpretations did

not generate peer discussions. Instead, these students accepted conflicting interpretations or

results, and moved on to another activity. Other students were attempting to make sense of the

mathematics for themselves. That is, they looked for patterns, generated conjectures,

propositions, or questions, and searched for explanations.

For example, S and E above discussed every decision they made, attempted to justify their own

viewpoints when they disagreed, used the computer to check their conjectures, and then modified

their conjectures to be consistent with the computer feedback. In their case, at least at the level of

generating equations, the computer feedback played a crucial role in resolving conflicting

viewpoints. As far as providing explanations of why equations and lines behaved as they did,

however, the computer proved insufficient. For example, while D and Mi where playing Green
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Globs (Day 15), they asked each other to explain why lines with positive and negative slopes

looked the way they did several times. Neither student attempted to provide an explanation or use

the computer to explore this question further.

Summary

Expert interpretations of equations and their graphs are packed with meaning. Experts know that

the variables and parameters In an equation are relevant in different situations (Goldenberg, 1988)

and they know that the m and the b in the equation are the relevant parameters for comparing

equations of the form y=mx+b (Moschkovich, 1989). The classroom and peer discussions outlined

above show that even with experience graphing lines and some direct instruction, students

generated alternative interpretations. The most common ones were: the x intercept is Important

(i.e. it should show up somewhere in the equation); m and b are not independent (i.e. if you

change one in the equation,the other might change in the graph; if you want to translate a line,

change m or b; if you want to rotate a I ine change m or b); slope and location are related (i.e. the

line for y=5x starts from the point (-5,-5)). Students did not seem to parse equations of the form

p.mx+b as y="x +A, that is with m and b as the relevant parameters that rotate or translate lines

lines and make the equations different.

Peer discussion was a good context for generating conjectures, but not for choosing between

different alternatives. In terms of the examples presented above, the fact that b is the intercept

because (0,b) satisfies the equation y=mx+b and (0,b) lies on the yaxis, or the Cartesian

connection (Schoenfeld, Smith, and Arcavi,in press), could have resolved conflicting

interpretations of the role of the y intercept. Again, using a table of values generated by a

proposed equation could have resolved conflicting interpretations of the role of the slope. As

students are introduced to the definition of slope as directed line segments, another element of

the Cartesian connection between the graphical and algebraic representations, students could also

use this piece to resolve conflicts involving slope. These are the sorst of mathematical tools that

Lampert (in preparation) suggests "enable students to make arguments of a substantially different

sort than they would be able to make without them (p. 17)."

Beyond providing students with specific methods such as these, instruction also needs to provide

students with legitimate processes for exploring parameters and choosing between alternative
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conjectures. As Lampert (in preparation) proposes, doing mathematics and thinking mathematically

involves mathematical tools, activities, such as gathering information, organizing it strategically,

generating and testing hypotheses, and producing and evaluating solutions, and discourse

processes. While mathematical tools are a crucial element of doing mathematics, discourse

processes f roe evaluating conjectures through discussions are also essential.

The examples presented above are not meant as evidence of the poor performance of these

students or teachers. On the contrary, many of the students observed were engaged in "sense-

making' (Schoenfeld, in preparation). The teachers encouraged students to talk about their

interpretations and conjectures, and tried to address them in subsequent lessons. Students should

be expected to construct alternative interpretations, even if these Interpretations look

mathematically 'wrong". Moreover, instruction needs to include not only a discussion of alternative

interpretations but also tools, activities and discourse processes for choosing between alternative

conjectures. If students are to move from seeing mathematical knowledge as something that the

teacher possesses and magically transmits into students' heads to evaluating their own

conjectures, we need to consider In detail the activities and discourse processes students can

practice to become 'authorities' in the process of constructing mathematical knowledge for

themselves and with each other.
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AN EXPERIENCE TO IMPROVE PUPILS' PERFORMANCE

IN INVERSE PROBLEMS (*)(**)

A. PESCI, Dept. of Mathematics, University of Pavia, Italy.

SUMMARY

The experimental work intends to improve solution strategies in

problems with inverse procedures with 11-12 year old pupils: The

meaning of "inverse problems" and the steps necessary to solve them

are described: The significance of the use of arrows planned to face

inverse problems is also described: The present didactic plan is

intended particularly to help weak students understand a problem

through different representations of the situation itself:

1. INTRODUCTION

This work is framed in a research, started three years ago, which

plans to study how to improve, in 11-14 year old pupils, solution

strategies in problems with inverse procedures (inverse problems).

Referring to literature on reversible thought, Piaget gave a lot' of

importance to the concept of reversibility: the reversibility of

thought operations, which requires the mobility of mind in the forward

and reverse directions, is placed, in the mental development of the

child, in the period of formal operations. The mastery of such ability

is considered essential for the exsperimental and logical-mathematical

thought (Piaget, p. 334). From a mathematical point of view there are

many activities which require to reconstruct the direction of a mental

process and then to change the direction of the train of thought: for

instance, when we deal with direct or inverse arithmetics operators,

with direct or inverse theorems or with a formula which is to be read

from left to right or from right to left. The psychological basis in

these situations is considered the same (Kruteskii, p. 143).

Several psychological studies proved moreover that the skill to

reconstruct, in a train of thought, two directions, direct and

(*) Research supported by the C.N.R. and the M.P.L. (40%).

(**) The psychologist M.G. Grossi collaborated in this research.
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reverse, is essential to master many situations, not only mathematical

and it is not easily reached by all pupils (Kruteskii, p. 288).

In our work by inverse problem we mean a problem which requires us to

go backwards in a given succession of (arithmetical or not) operators,

when the result of such a succession is known. In simple cases the

succession consists of just one operator.

The solution of an inverse problem requires, mainly, the understanding

of the succession, given in more or less explicit way, the awareness

of the need to go backwards and the skill to inverte, in the right

order, the given path. In what follows we will see, in a synthetic

way, the work plan realized in the last year for 11-12 year old pupils

and what we are doing now for the same age-group.

2. THE DIDACTIC PROPOSAL

The didactic itinerary proposed to 11-12 year old pupils, described in

details in Pesci, deals, essentially, with the concept of arithmetical

operators (+k, -k, xk, :k) as binary relations, with the composition

of arithmetical operators and with the inversion of a composed

relation. All that with the essential use of language of arrows.

The main objectives linked to the didactic plan are the following:

- to use the concept and the visualization of a binary relation and

its inverse to face the usual inverse problems (in arithmetic, in

geometry, in proportionality problems,...);

to stress everytime the structure of a problematic situation,

without taking into account the nature of a numerical data (numbers

with or without point, greater or less than 1,...), so to avoid

misconceptions' influence on the choice of operations (Bell et al.;

Fischbein et al.; Mariotti et al.).

As far as the use of the language of arrows is concerned, it is

important to mention that it has been thought at two different levels

which we call "concret" and "abstract" respectively.

At the first level the arrow represents a situation where it is clear,

in a logical-temporal sense, the starting point, the point of arrival

and the operator in use.

At this level, the dynamics of the situation, explicited on the paper,
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is handling in a concret way and it simplifies the reasoning to go

back to the starting point (when is known, obviously, that +k and -k,

xk and :k respectively, are one the inverse of the other).

At this "concret" level the scheme with arrows is a "diagrammatic

model" which semplifies mental processes (Fischbein, pp. 165-166).

The language of arrows is also important in order to improve the

construction of mental images ("abstract" level).

With arrows a particular simple scheme may be constructed: it can be

transferred into mind as it is and it can be enriched by many other

meanings, at more abstract and more formal levels.

The psychologist widely recognize the power of images' code and its

partial autonomy from the verbal one (Cornoldi, p. 91). Hence the

importance to develop and train abilities of visualization as a basic

skill in young pupils (Lean-Clements; Bishop) and the importance,

therefore, of schemes which for their simplicity can be internalized

as mental images.

3. RESULTS FROM THE FIRST VERIFICATION

To study the influence of the didactic proposal (mentioned in 2.) -on

the strategies of solution of inverse problems, three questionnaires

were given to 2 experimental classes (33 pupils in all) and to 1 class

of control (21 pupils).

Every questionnaire has 8 problems, 4 direct (as distractors) and 4

inverse. The text of the questionnaire, the way of administration and

othe details are in Pesci.

Here I would complete with the final results obtained in the last

year, emerged from the comparison between the exit of the first

questionnaire (before the didactic proposal) and the third one (at the

end of the scholastic year).

In the two following tables, S is for experimental group and C is for

the control group. In table 1 there are the percentages of correct

solutions in direct and inverse problems. But it is more significant,

in order to not take into account the initial situation of the

classes, to look at percentage variations of the correct problems in

the third questionnaire with respect to the first one (see table 2).
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TABLE 1 TABLE 2
DIR.

PR.

INV.

PR.

DIR.

PR.

INV.

PR.

S 45% 18% S +38% +129%

I Q. I-Ill Q.

C 61% 26% C 0% + 59%

S 63% 42%

III Q.

C 61% 42%

Here I limit myself to underlining the positive influence (+129%) of

the didactic proposal on the solution of inverse problems.

Since the result is only indicative, for the low number of tested

pupils, an analogous experiment is now in course, as descibed below.

4. THE PRESENT PLAN

In the present scholastic year the work-plan for pupils of the same

age-group (11-12) has the two following aims:

- to reconfirm the positive influence of the didactical proposal in 10

experimental classes (about 200 "pupils) through the same

questionnaires mentioned above;

- to place particular attention to pupils with difficulty of learning

who have been identified, beyond the teacher's judgment, by a double

tests (see 4.1).

The objective of the activities planned for those pupils (see 4.2) is

to strengthen their ability to represent problematic situations,

working in such a way as to arrive at the necessary skills to use the

language of arrows.

The hypothesis which is to be verified is whether the use of arrows,

as said above, simplifies the reasoning and allows good performance,

also to weak pupils, in inverse procedures.

We think that the work with problematic pupils may make it possible to

characterise better the potentialities of image language versus verbal

language and the complementarity of one language with respect to the

other.

4.1 Test to identify weak pupils

The main objective of the double test, presented to the experimental

classes, was to identify the least able pupils with reference to the
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basic skills which are required to face our didactic proposal centered

on inverse procedures and on the use of arrows.

The first part of the test has 9 items: the first three deal with

logical-temporal sequences, 4 and 5 with the symbolisation and spatio-

temporal abilities, the last three the astraction, namely

regularities' identification and production.

The first 9 items are the following:

1) Every morning Luca, before arriving at school, does the following

actions. Put them in time order, numbering them from 1 to 5: he leaves

home, he pays for the bun, he wakes up and gets dressed, he goes to a

bakery and buys a bun, he arrives at school and greets his friends.

2) Look at the following pictures and put them in time order,

numbering them from 1 to 6.(For sake of brevity pictures are omitted).

3) Write, in the right order, 5 actions you do when you wash your

hands.

4) I have invented a secret code for phone numbers, here it is:

O 1 2 3 4 5 6 7 B 9
A c v 44 4.

What phone number is this II 8 8 II A 7

5) Invent your own secret code and write "we have won".

6) In a game there are obstacles

of different forms:

When a ball meets one of these

obstacles it changes direction

as indicated below and it goes

on until it meets another

obstacle.

: t At 4

Draw the route of a ball which

enters as indicated by the

arrow:

7) Look at the sequence of squares and draw the missing square:

a

a

S
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8) Explain, with your own words, how the following sequence has been

constructed: 5, 8, 11, 14, 17, 20

9) Look at the following picture:

Ka
L _ _ _ J

With which of the following little square would you complete it?

a b

EgE JP

d

ag

The second part of the test has 8 problems, each of them requires only

one operation. They are the following:

1) Today my parents have given me 10.000 lire pocket money and

yesterday my grand-parents gave me 15.000 lire. If in my wallet I

already had 7.500 lire how much have I got now?

2) To make a cake you need 3 eggs. How many eggs do you need to make 7

cakes?

3) To go on holiday I drove 355 Km in my car. Coming back I came a

different way and I drove only 317 Km. How many kilometers did I save?

4) I have to put 120 books on shewes of equal dimensions, each of

which contains 15 books. How many shewes do I need?

5) I would like to buy some pens and I have 8400 lire. If a pen costs

600 lire how many 'pens can I buy?

6) A cork weighs 3.2 gr. How much do 25 corks weigh?

7) For a ring you need 2.5 gr. of gold. How many rings can you obtain

with 35 gr. of gold?

8) In Carla's wardrobe there are 8 skirts and 12 yumpers. In how many

different ways could Carla dress herself?

Table 3 shows the percentages of correct solutions in the first and in

the second part of the test respectively. Tested pupils were 215.
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TABLE 3
1 2 3 4 5 6 7 8 9

I PART 98% 83% 89% 94% 77% 59% 86% 64% 37%

II PART 98% 97% 90% 80% 80% 88% 63% 44%

Given 0 points to every wrong or omited item and 1 point to every

right item, the average score is 6.94 in the first part and 6.45 in

the second one. Pupils for whom reinforcement activity is planned (see

4.2) are those who obtained a score less than 4 at least in one part

of the test and who have been also considered weak by the previous

judgment of the teacher.

4.2 Reinforcement Activity

It can be described, synthetically, in the following way:

a) activity aiming to understand a given text, with the explicit

request to represent in different ways (figural, symbolic or

verbal) the situation given in verbal way or, viceversa, with the

request to construct a text around a situation given in non-verbal

way;

b) activity aiming to strengthen logical-temporal abilities;

c) activity aiming to improve awareness of symbolisation moment.

In every class the most weak pupils (in the sense before mentioned)

have been placed in the same group and an "average" pupil has been put

in their group, not with a leader function but with the aim to favour

the work itself of the group.

Even the rest of the class, divided in groups, works with the activity

described in a), since we consider essential, in learning, to work

with translations from one mode of representation to another (Janvier,

pp. 27-32). In every class the groups of pupils are etherogeneous and

the proposed activities are sometimes differentiated.
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ALGEBRA WORD PROBLEMS: A NUMERICAL APPROACH
FOR ITS RESOLUTION (A TEACHING EXPERIMENT IN THE CLASSROOM)

Guillermo Rubio
Universidod Aut6nomo de Mexico. CCH Sur

Mexico

This paper reports the findings of a teaching experiment carried out
in the classroom. It is a proposal for teaching how to solve algebra
word problems using numerical approaches. The research had two prime
aims. One of them was to investigate if the teaching approach made
students get better results than those obtained in a pre =test. The
other one was to analyze the changes produced in the student's think-
ing by the teaching scheme in the olgebrizotion of the word problems.
In general terms, the proposal was succesful. The students acquired
more flexibility to interpret and to translate word problems to equa-
tions, the latter not being, as usual, in a literal form. The follow-
ing was another important observation of the study: if the students
do not keep track of the operations carried out and the meanings link-
ed with those in a proper numerical interpretation procedure the ol-
gebrizotion process of the word problems is not possible.

The purpose of this paper is to communicate some of the
findings of a study carried out with a group of 28
Senior high School level students (15-17 years old), during
the academic year 1988-1989. The investigation was
focused on the modification of the student's algebra
knowledge acquired at the secondary school; in particular, on
the development of their ability to algebrize word problems
using a numerical approach to solve them. Underlying the
teaching proposal's outline is the intention to intermix
the arithmetic background with algebraic elements in such
form that the teaching process enables to go to-and-fro
between both interpretations. The aim of this procedure is
to visualize and to solve problems, which treated in a
conventional way would need working out a great deal of
algebraic sintaxis and semantics. Within the teaching
experiment described in this paper, the last assumption of
the proposal's outline was not fully verified. A further
investigation will be carried out for that purpose.

Background and Theoretical Framework of the Proposal

Cervantes and Rubio, in 1983, investigated the
posibility to implement an algebra course taking into
account the ideas discused by Piaget (1979) and Aleksandrov
et al (1956) related with the formation process of the
scientific knowledge of Humanity. Later, within the
structuring procedure of the present proposal, it was
considered that, an adaptation of such ideas to the teaching
process is linked with the constructivist psycological current
related to the need to face the individual with problematical
situations that will enable him to construct meaningful
knowledge (Rubio, 1987; 1988; 1989; 1990).

The principal aspect of the teaching proposal, which at
the same time is not common, is the need to make a
numerical interpretation of the word problems. The latter must
lead to a proper algebraic interpretation and its solution.
The assumption is that this numerical interpretationwhich

12
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involves an iterative procedure trial,interpretation,error-is
connected in an epistemological way to the first two stages
described by Piaget (1973). These stages are related to
the assimilation process of the real world to the logical-
mathematical way of thinking within the development of
contemporaneous physics. Piaget argues that those stages
preced the data translation to a system of equations. The
numerical interpretation captures both stages. The first one,
the establishment of facts or data from the real world is
not independent of mathematics modeling such as:
classification, relationships, correspondences, measurement,
etc. The second one, refered to the building of intuitive and
qualitative schemes constitute a core guide towards
formalization. The third stage, the algebraic
interpretation underlies the numerical interpretation of the
problem.

Likewise, this teaching approach takes into account the
students' spontaneous pre-algebraic trends to solve word
problems (see Bell, 1977; Trujillo, 1987). Those trends could
be a consequence of the iterative use of numerical values (and
its operations), made since the primary school, as
abstract representations of physical and geometrical
magnitudes of the real world within the student's
environment. In an attempt to solve a word problem those
numerical values become "thought concreteness". It is a
belief that such process of concreteness enables, in many
cases, the formation and adquisition of the operations'
meanings, which are established between the unknowns and the
problem's data. In this way, the numerical approach can
provide a means to enable the student to face and solve a
problem with a new conceptual framework. This structure is an
organization of the preceding student's conceptual system.

The Teaching Proposal

The following phases are differenciated in the teaching
proposal:

1. The understanding of the problem.
2. Numerical approach of the solution (trial and error

process).
3. The interpretation of operations and relationships.
4. The obtention o the equation derived from the pattern

determined by the trial and error process.
5. Algebraic and/or numerical resolution of the equation.

Illustration using two problems solved in the classroom

Problem 1. A teacher hands out 120 chocolate bars and 192
sweets between the students in a classroom. Each student
recieves three sweets more than chocolate bars. How many
students are there in the classroom?

9
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as4ur,11 bear. posed

Phases 1 and 2 Number of students

Phase 3 :
Nwnbelt of chocolate bars received by each student 120/20 = 6
NwnbeA of sweets received by each student 192/20 = 9.6

, 6 + 3 = 9.6 ?

numbers of sweets = {Numers
e

of}swets
The methodology establishes a proCess to recover the operations
carried out, that is:

120/20 + 3 = 192/20 ?
After the analysis of similar trials, a letter is posed as the
precise solution of the problem ( Phase 4)

120/ y + 3 = 192/y
where y = number of students.

The folllowing shows the different types of equations found
after the numerical approach .to the problem:

120/y 3 = 192/y
(120/y 3) = 192

120/y . 120/y 3 = (120 192)y
192/y - 3 = 120/y

Problem 2. CCH has twice as much students as the Colegio de
Bachilleres and the latter has 87654 students less than the UAM.
The total of students in the three institutions is 567890. How
many students does each institution has? Observation. The
problem does not have a whole number solution.

Phase 1. Setting up the unknowns.
Number of students In CCH.
Number of students In Colegio de Bachilleres
Number of students In UAM

Phase 2. Numerical values were chosen for one of the three
unknowns and afterwards the values of the other two were
computed. The three interpretations which emerged in the
classroom are described in the following paragraphs.

First case. A value for the number of students In CCH Is posed.
quantity

400000 4000002400000 +
2 2

+ + 87654 = 567890?

{Students}
{Bachilleres}

Students 1 students of } { Totalof
{

= number of
of CCH Bachl I leres UAM st udents

Total number of students 1
1 Total

= number ofstudents
After several trials, the process lead to an equation- of the
following type:

x 4. 2 + 87654 = 567890
where X = number of students of CCH

Second case: A value was posed for the number of students of
Colegio de Bachilleres.
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quposedy

L 2(90000) + 90000 + 90000 + 87654 = 567890
{Students). {StVents { Student a of ). Total

= number of
of CCH Beall I leres BMA students

A process several trials conduced to the following equation:

2(x) + x + x + 87654 = 567890
where X = number of students of BachIlleres.

Third case. A group of students in the classroom posed a value
for the number of LIAIN's students.

P:2:11tY

4 120000 + (120000 - 87654) + (120000 87654)2 = 567890
{students}

of LIAM

f students of
Bachl I leres

f students of
CCH

= {number of
total
students

The following equation was obtained from the trial and error
procedure:

x + (x - 87654) + (x - 87654) = 567890
where X = number of students of CCH.

The Word Problems

In the class sessions, twenty two word problems were
solved using the numerical approach. Sixteen of them were
linear problems with one, or more unknowns. The latter type
could be reduced to equations with one unknown. The other six
comprised areas of rectangles, which generated a quadratic
equation. The selection of the problems and the order of
presentation took into account aspects such as: a) the number
of times the unknown appeared in the equation associated with
the word problem, b) the side of the equality in which the
unknown appeared in the equation: on both or only on one side,
c) in equations with more than one unknown, considerations
were made with respect to the difficulty of expressing an
unknown as a function of the others, in order to get a first
order equation, d) equations in which the unknown is a
divisor, e) the use of parenthesis to group properly the
terms of an equation, f) the difficulties to determine the
equivalence relationship.

It is a belief that the preceding elements are related
to semantic and/or sintactic difficulties caused by the
word problem's textual entities. The former .type of
hindrances are difficult to characterize however, it was
observed that students found less obstacles when faced
with problems linked more directly with their "realworld".
The words used in the problem were "meaningful" for the pupil.
Furthermore, it was considered thatalgebraic semantic
difficulties are also prompted by the number of composite
unknowns which are necessary to be generated in a problem
(Trujillo (1987)) (e.g., if x = number of students, "120/x =
number of chocolate bars per student" is a composite unknown
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resulting from the interrelationship of two quantities with
different meaning). Supposedly, this last aspect is linked
with the structure's complexity level of the operations
established beteween the unknown magnitude and the data;
aspect which is originated by the conditions given in the word
problem.
The area problems were thought to be sufficiently meaningful
for the pupils, though, in almost all the levels, they had
several geometrical difficuties. A lack of development of the
ability to "imagine" and represent in a numerical or
algebraic way the dimensions of a rectangle, which are
being increased or diminished, was shown.

The classification tests. Three paper and pencil
tests were applied: a pre-test, a post-test and a delayed
posttest. The post-test was applied immediately at the end
of the teaching sesions (12 weeks), during three week
periods (two of them of 50 minutes and the third one of 100
minutes). The delayed post-test was applied 33 days
afterwards; during this period of time no academic activity
was carried out. The tests used were of the same type. Each of
those was composed by three axis or subthemes of algebra:
operativity (29 items), equations (22 items) and semantic-
resolution of problems and interpretation of word
formulations-(24 items). The experimental group was
classified with respect to each subtheme of the three tests.
Pupils were ordered according to their performance and items
to the order of difficulty. The classification was a means to
prepare tables to record the changes of the students' results
in the three tests. Likewise, to enable the identification
of interrelationships between the three axis in each test, a
further classification was carried out.

The data. The data comprises: the students' answered
tests (pre-test, post-test and delayed post-test), the
classroom annotations of two pupils, the teacher's daily
observational notes, the sequence of 22 written problems
worked out in the teaching sessions during the term and
the aforesaid classification tables.

Development of the Proposal

The group was subdivided in subgroups of 4 pupils and a
problem was posed. The dynamic method of the teaching
proposal consists of encouraging pupils to express the
unknown in a written form (during the course of the
development of several problems pupils were reticent. In
many cases, the prime difficulty encountered in solving word
problems was to have a clear and explicit idea of what had to
be found). Pupils are then urged to pose random numerical
values for one of the unknowns in order to get them involved
in a verifying process of the hypothetical value as a
solution. This procedure comprises a new reading of the
problem and a search for relationships between the
mentioned value and the data, using "meanigful"
arithmetic operations linked with the conditions pointed out
in the problem's formulation and the analysis of the
element's unities which intervene in each operation (e.g.,
multiplying 120 chocolate bars by 24 students would have no
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sense in the sweet's problem to indicate how many chocolate
bars would each student receive).

Once this first mental interpretation is carried out,
pupils are encouraged to perform operations and interpret
the elements of the operations and its results, as well as,
the potencial equivalence relationship which emerges from
the comparative process derived from the problem's
conditions (as shown in problem 1). In each trial, pupils are
asked to write horizontally each operation carried out-to
enable an insight of the actions involved. Furthermore, they
should observe the role of the hypothetical solution value in
the operation. After several trials, students are asked to
search for a proper pattern, for all the trials performed
(by marking the numerical value posed as solution to the
problem). Finally, pupils are asked to use a letter to
represent the "exact" solution of theproblem, by this process
an equation which models it the word problem is obtained. At
this point, two different alternatives are used. For the
first problems of the sequence only a numerical solution is
required; the procedure is to give different values for the
literal and to verify, making further estimations, the
obtention of an equality. In a progressive manner, the
algebraic resolution of the equation using an Eulerian
type process (carrying out the same operations on both sides
of the equality) is taken over.

Results

Results related to the selection of the unknowns. An
attempt was made, in the class sessions, to aid students the
least. The strategy lead pupils to choose unknowns in a
problem to start working out the method trial-interpretation-
error. It was observed that students acquired more flexibility
to interpret a problem without restricting themselves to
literal translation. In several cases, they started to pose
numerical values for the first unknown which appeared in
the problem's formulation. However, in some of the preceding
problems, the pupils selected that unknown which comprised
less mathematical difficultiesin a numerical and sintactical
sensewhen a value was given to it. Understood the problem's
semantics, the pupils got intensively involved in the
numerical resolution. They showed good competence to operate
positive decimal numbers; a vast number of students approached
the solution using various decimal cyphers even without a
calculator.

Results related to the search of an equivalence
relationship. A qualitative analysis of the problems worked
out by the students shows that, the numerical approach
becomes an aid to build up a comprehension of the equivalence
relationship between two sets of operations necessarily
compared while solving a problem. However, this was not
an homogeneous process; the whole population did not achieve
that goal. For example, in problem 7, 30 percent of the
pupils continued comparing the operations separately, that
is, without relating them to the equal sign (the latter was
being used twice as a connective). Nevertheles, in a
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progressive manner, more students established an
equivalence relationship. It is a belief that the numerical
approach, enabling to go to-and-fro from the
numerical interpretation (which gives rise to a
visualization of the equalness between two numbers) to the
algebraic one, generates consciousness of the equivalence
between two expressions. It is easier to capture that
understanding by this procedure since it allows a comparison
between numerical values of two algebraic expressions
(meaningful for the students) derived from the word problem,
which at the same time is, actually solved in a
numerical way.

Results related to the setting up and the resolution of
the equation. Arithmetic operations are not frequently
presented in a horizontal way. At the begining of the course,
that situation caused some resistance of the pupils.to write
or rewrite the arithmetic operations relating the unknown
with the data Similarly, in the process to capture in a
written form X11 the operations carried out to solve a
problem, in order to assign meaning to each operation and
its results, it was observed that some students left out some
of those operations (particularly, when those were mentally
done). As a consequence, pupils obtained equations which
did not represent the problem properly. In the first phase of
the teaching experiment, an algebraic resolution of the
equation derived from the problem was not required. The
purpose was to obtain an algebraic representation. The next
phase aimed at a gradual involvement of the students in a
Eulerian type process showed that the understanding of this
method required a reconsideration of the knowledge acquired
in preceding courses, when these have emphazised a mechanical
use of transposition. From this observation the following
hypothesis emerges: those pupil who are not able to give off
the transposition method face serious difficulties to
understand the equation as an equivalence relationship
and therefore to establish and assign meaning to the
equations derived from the word problem.

Some quantitive results. One of the fundamental aims of
the teaching proposal, mentioned at the begining of this
paper, concerns the semantic aspect of word problem
solving. In quantitive terms, an improvement of the
student's performance for the semantic axis items was
achivied. The comparison of the results between the pre-test
and 'the delayed pos-test showed: a) an increase of the
percentage, between 40 to 80 percent for 15 items, b) an
increase between 15 to 38 percent for 9 items and c) no
improvement in only one item. The error percentage of the
population's mean decreased 36 percent. Even though, a great
impact on the other aspects-operativity and equations-was
not expected in this first trial, the comparison between the
results obtained for the items of these axis in the pre-test
and the delayed post-test showed that the error
percentage of the population's mean decreased 18 percent.

Further studies related to the project. In the preceding
parragraphs, a first analyses of the axis has been
presented. However, a further analysis searching for the
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interrelatioships between different axis should be carried out
to complete this first stage of the investigation. A second
trial is planned, using this teaching proposal as a basis
in order to further understand the building up process of
composite unknowns and the efficient use of the arithmetic
operations immersed in an algebraic setting.
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CHILDREN'S WRITING ABOUT THE IDEA OF VARIABLE IN THE

CONTEXT OF A FORMULA

H. SAKONIDIS and JOAN BLISS

King's College London, University of London

ABSTRACT: This paper presents the analysis of the responses of 394 pupils
from 13 to 16 years old to three questions which consider aspects of the
algebraic idea of a variable via its role in a formula. The results show a
tendency of the pupils i) to focus on the operation rather than on the
variables of the formula ii) to give explanations either through utilitarian
considerations or by focusing on the operation or by restating the given
information and iii) to refer to the idea of a variable at different levels, possibly
dependent on pupils' cognitive level and the nature of the given task.

INTRODUCTION

The concept of a variable is one of the keystones of the discipline of mathematics

because its understanding is decisive for the comprehension and appreciation of a considerable

number of mathematical ideas. Much research has been concentrated on the idea of a variable

and how it is understood in the context of school mathematics. This research shows that

children have considerable difficulties not only with the idea itself but also with its

representation, or both (Kuchemann, 1981, Booth, 1984). Piaget's work also dealt with

variable in the scientific sense and pupils' methods of isolating and controlling variables -

which is seen as a formal level ability. He (1958) argued that children can only conceive of a

variable in late formal operational stage and that this becomes apparent when they start to

reflect upon reciprocal relationships between several variables.

Although the idea of a variable has been investigated, variable set within the algebraic

idea of a formula has been given little attention. However, the importance of this idea and its

particular characteristics are far from any doubt since the development both of the concept of

variable and the interdependence of variables take place in the context of a formula.

This piece of research considers aspects of the concept of a variable as it is taught in

the context of school algebra, examining ways in which pupils write about it through a

consideration of its role in a formula.
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THE STUDY

The focus of this paper is on three questions about different aspects of the algebraic

idea of formula which have been taken from a larger questionnaire on children's ideas about

algebra. 394 pupils between the ages of 13 to 16 years old were involved in the study, taken

from four urban schools: one boys, two girls and one mixed. There were 155 3rd year pupils

( 90 boys and 65 girls), 153 4th years ( 73 boys and 80 girls) and 86 5th years ( 44 boys and

42 girls). All the subjects had at least one year of formal teaching of algebra. The schools were

banded for mathematics and a top and a middle group were taken from each school in the 3rd

and 4th years and a top group only in the 5th year.

In the following, an analysis of the responses in each of the three questions is given

both in terms of the type of mathematical focus of the response and the explanation given by

the pupil for the response. Examples of the pupils' written explanations are given for each

question. Finally, some discussion and conclusions are provided. For each of the three

items, the analysis includes two components:

(i) Mathematical focus: (a) Focus on Variable: when the child focuses on the variable (s) or

the representation of the variable(s) of the problem; (b) Focus on Operation: when the child

refers to the operation relating the constituents of the given formula and (c) Dual Focus: when

the response focuses on both the variable(s) and the operation(s) involved.

(ii) Content focus: Categories specific to each question are described in the relevant part of the

presentation below.

We illustrate below examples of the three types of mathematical focus described in (i)

above. These are all taken from the three questions which are the focus of this study. It is

suggested that reader refers to these when familiar with the question:

Focus on operation: "C is the biggest number because the result must be bigger if

p is being added to something else first" (q. 2); "It tells us that to find the time travelled

you have to divide the distance by the speed" (q. 3).

Focus on variable: "The least helpful answer is Tom's because letters can stand for

different things in formula" (question 1); "C is the largest number because we are

adding a positive number to an undefined number so the result must be larger than the

original" (q.2).

Focus on both operation and on variable: "The new formula' tell us that you
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have to know the values of d and s and then you divide them to find the time"
(question 3); "C has to be bigger because whatever value is given to p, you have to

add 2 to get C" (q.2).

QUESTION ONE

The concept of a formula becomes object of focus through its representation.

Therefore, the understanding of what constitutes an appropriate representation of a formula is

of interest. This question presents to the pupils a well known formula, that of the area of a

rectangle, in three different forms: 1) area = width x length 2) A = a x b and 3) a x b, and

children are asked to make a choice of the most helpful (part one) and the least helpful (part

two) formula, giving each time the reason for their choice.

(i) choice of formula

In part 1, formula 1 is the most frequent choice by the majority of 4th and 5th year

pupils, however for the 3rd years their choice splits almost evenly between formula 1 and

formula 2. In part 2, for the 4th year the choice of the least helpful is clearly formula 3 (67%)

whereas for the 3rd and 5th year the choice is divided between formula 2 and formula 3

(formula 2: 35% and 38% respectively and formula 3: 37% and 49% respectively).

(ii) The mathematical focus

The analysis of the data shows that none of the responses focus on operation. A

number of children refer to the variables of the formula in both parts, with a small increase in

the four year ( for the 3rd year approx.25% in both parts; for the 4th and 5th years about

35% of the responses in part 1 and about 40% in part 2).

(iii) The content of the explanations

The analysis of the data showed that the reasons for choice could classified in the

following 3 categories based on a consideration of whether or not the formula is: (a)

confusing or misleading, (b) sufficiently explicit and (c) efficient, that is, "it allows you to do

things".

In part 1 the responses in the efficiency category are a little more predominant than

those in the explicitness category and this difference between the two increases in the 5th year

(ratio of responses: 3rd year: 7 : 5; 4th year, 6: 5; 5th year 2:1). In part 2 the efficiency and
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explicitness responses have very similar profiles for the 3rd and 5th year pupils, with a

frequency of response of around 40% for both. In the fourth year responses appealing to the

explicitness criterion are a little more predominant than those referring to efficiency in a 3:2

ratio.

Examples of the children's writing to illustrate these categories are given below:

Efficiency: "The most helpful answer is area = width x length because you can work

it out very easily"; "The most helpful answer is A =axb because it is better expressed

and easier to rearrange."

Explicitness: "The most helpful answer is area = width x length because it is very

detailed, all the information you need is there"; 'The most helpful answer is area =

width x length because people can understand what the three components of the

formula are immediately because they do not have to remember what any substituted

letter stands for."

Misleading: "The least helpful answer is A= a x b because the two a's can be
confusing."

Summarising for question one, in both parts, pupils, particularly the older ones, choose

formula 1 to be the most helpful and formula 3 to be the least helpful. The only type of

mathematical focus is on variable (maximum 40%) and the majority of the explanations are

based on criteria of "explicitness" and "efficiency" in both parts. In their explanations pupils

talk about variables as concrete objects where, for example, the variable for length "a" is a

"thing name".

QUESTION TWO

The focus of this question is on the role of the constituents of a formula the variables

- and their interrelationships. Pupils are given a problem where the relationship between two

variables C and p is expressed through the formula C = p + 2. They are presented with an

answer given by a child and which they are told "is wrong". The problem concerns which

variable in the formula represents the bigger number and the imaginary pupil replies "C

because it's on the left-hand side." Pupils are asked to imagine explaining the problem to the

pupil who is wrong.
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(i) The mathematical focus

In all three years, the responses where the focus is on operation, are the most frequent,

with a frequency which is very similar across the years (approx. 45%). However about 30% of

the responses in all years focus in some way on variable.

(ii) The content of the explanations

Four possible explanations which were in fact procedures for comparing the size of variables

- were identified: (a) The response compares C and p+2 but the expression p+2 is seen as

a whole and not in terms of its constituents related by an operation, (b) The response

compares C with p+2, based on the operation which relates p and 2, (c) The answer

compares C and p+2 by focusing on the relative size of the variables and (d) The response

compares C and p+2 either using by substituting values or or by making generalised

statements about the nature of formulae.

In all three years, the most frequent type of explanation is that which compares the size

of the variable through the operation, with about half of the pupils giving this type of

response. The next most frequent type of explanation relies on the relative size of the variables

and is given by approximately 15% of the pupils in each year. Examples of the two most

frequent types of answers for (ii) are:

Explanations using operation for comparison: "C is the biggest number
because if the reverse formula is used (C=p-2) C is bigger because you take off 2

to get C" ;"She is wrong because when you add P and 2 together then you find out

the answer to C".

Explanations using relative size: "C represents the largest number because C is

2 more than P"; "P is always 2 less than C".

In summary, the majority of the responses focus on operation, with a frequency which

is similar across the years. However a focus on variable is observed in about a third of the

responses. The emphasis on operation is reiterated in the children's explanations because the

majority of pupils discuss the interdependence of the variables in terms of the operation which

relates them. In those explanations where variable is referred to it is seen as a 'varying

number' in relation to other 'varying numbers'
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QUESTION THREE

In this third task, the focus shifts to the effects of manipulating the representation of a

formula in certain ways. In particular, the rearrangement of a formula is the subject of this

question. The formula given is a well known one, that of the relation between speed, time and

distance. The formula d=st was presented followed by the rearrangement: t=d/s and the

pupils were asked to explain "what the new formula tell us ".

(i) The mathematical focus

The "focus on operation" type of responses are by far the most frequent, with a

frequency which peaks a little in the 4th year (72%), and which is very similar in the 3rd and

5th years approximately 65%. A focus on variable is only about 15% in all years.

(ii) The content of the explanations

Inspection of pupils' responses gave rise to the construction of the following four

categories of types of explanation: (a) Static approach : When the child does not add anything

new to the given information about the formula, (b) Pragmatic or functional approach : When

the child sees the formula as having a functional purpose, (c) Inter-relational approach : When

the child considers that there is a relationship among the variables of the formula and (d)

Logico-mathematical : When the child sees the numerical solution as dependent on knowing

the values of the other variables.

The category of "static" responses are the most frequent in all years; their frequency is

similar in the 3rd and 5th years and decreases in the 4th year (57%, 46% and 55%

respectively). The"logico-mathematical" type of responses are the next most frequent their

incidence peaking in the 4th year, but staying approximately the same in the 3rd and 5th years

(10%, 28%, 13% respectively)

Examples of the pupils' written responses in these two categories are as follows:

Static: "The time taken can be found by dividing d by s"; "Time is equal to the
distance covered over the speed"; "It tells us that t for time is being made equal with

distance and speed divided."

Logico-mathematical: It tells us the time to travel a certain distance at s speed.
where s must he known in order to get t"; "It tells us that if you know what d and s
equal you then can find t".
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Summarising, the algebraic focus of the answers is again on operation. Also in

children's explanations operation plays a role since in about half of them there is simply a

repetition of the information in the formula which is held together by the operation. There is a

small minority of pupils in all years who use explanations of an "if... then" type of reasoning.

When the pupils refer to variables in their written explanations they treat them again as "thing

objects" denoting either abstract but familiar entities, e.g. time , or more concrete ones such

as distance and speed.

DISCUSSION AND CONCLUSIONS

The main characteristic of the three tasks is that they all deal with the notion of variable

through its role in a formula. Despite this, the results above show a strong persistence on the

part of the pupils to avoid any concern with variables and as in the two last questions to

concentrate on operations. This fairly consistent absence of reference to variables could,

perhaps, be understood in terms of the way in which pupils interpret letter symbols in an

algebraic context.

Although the letter symbols used in all three questions can be seen as variables, the

nature of the given tasks may determine the approach to the notion of variable adopted by

pupils. We would suggest that when the task "takes away" the difficulty and the abstraction

of the notion of variable by providing the means to handle it either as a concrete or familiar

entity or as a "number object", pupils reject the abstract idea of variable, adopting a surrogate

object to deal with it. Thus in question 1 they use the "thing-objects" to approach the task

pragmatically and since all the given formulae have the same linear expression, they do not

have to worry about the relationships between the variables. The same could be the case for

question 3, but now the "thing objects" are linked by an operation which has to be considered.

However, when the task does not provide any means of avoiding the notion of variable at an

abstract level as in question 2, pupils seem to be forced to take a step towards using it . They

adopt a "variable-like" approach, considering the letter as "a varying number in relation to

other varying numbers" .

The above would suggest that in the attempt to overcome or avoid difficulties with the
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abstract notion of variable, children are likely to rely on those elements of the context that will

allow them to go back to previous representations. Piaget argued that concrete thinking

remains essentially attached to empirical reality, whereas formal thought deals with verbal

statements substituted for objects. Mathematical variable is apparently more than a verbal

statement replacing an object; in fact, it is a symbolic statement replacing a value which

makes the notion more abstract. Therefore, it would seem reasonable for children to attempt

to find ways of embedding this idea in a reality which has more meaning. The results support

this general proposition of Piaget in that pupils are seen to be approaching this notion by

resorting either to pragmatic or to familiar aspects of the context of the problem in order to

cope with the abstractness of the idea of a variable.

Clearly it is difficult to compare the content of the explanations since the three

questions are different. However, it appears that pupils see the relationship between the

variables in a formula mainly via the operation which relates them and not in relation to one

another. Pupils only consider variables in relation to one another when the question provides

a framework for doing so. Question 2 is the only question which actually sets out such a

framework of reference but even then pupils do not see the overall nature of the relationship

between variables but rather how in their terms "one variable influences or operates on another

and how that, in turn, influences the next". Furthermore, pupils show little appreciation for

the fact that the mathematical manipulations of a formula give successive equivalent

mathematical statements rather they see a rearranged formula in isolation from the given

formula (question 3).
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OBSERVATIONS ON THE "REVERSAL ERROR"
IN ALGEBRA TASKS

Falk Seeger
Institut fur Didaktik der Mathematik

University of Bielefeld - West Germany

Summary: The aim of the present contribution is first to present new empirical
findings on the wellknown "reversal-error" in algebra tasks. Following this the
implications of these findings are discussed for the more general problem of tasks
in algebra and empirical work. The new empirical findings indicate that "semantic
confusion" might not give an adequate explanation of what is happening when
students adopt the reversal-error-strategy and that the concept of "variable" did not
play an important role. Most of the 549 students in our sample were able to come
to a correct solution with the "wrong" algebraic equation when asked to apply it to
a task that required arithmetical operations. The implications of these findings for
the role of tasks in educational as well as in research settings are discussed.

The empirical studies that will be reported in this paper started from the
wellknown observation of Clement & Kaput (1979) given in their "Letter to the
Editor". Their observation gave rise to a bunch of follow-up studies (e.g. Clement
1982; Clement, Lochhead & Monk 1981; Clement, Narode & Rosnick 1981;
Cooper 1986; Fisher 1988; Kaput & Sims-Knight 1983; Lochhead 1980; Rosnick
& Clement 1980; Wollman 1983). These studies generally confirmed the first
impression by Kaput and Clement that a large proportion of students couldn't give
a correct solution to the following task:

Write an equation using the variables S and P to represent the
following statement: "There are six times as many students as
there are professors at this university". Use S for the number
of students and P for the number of professors.

The solutions to the above task were showing that approximately 50% of the
answers were algebraically "wrong" having the form of "6S=P". This was called
the reversal error. That a similar proportion of reversal errors could be found not
only with students but also with faculty members made this observation still more
astonishing.

In the first part of the present contribution I would like to report some findings
from own empirical studies. In the second part I will add some observations and
theoretical speculations about the role of tasks used in empirical studies and tasks
in math education in general.

141

154



The empirical study

The goal of the empirical studies was to test the following idea: the "reversal"
strategy from the point of view of the subjects that follow it cannot be understood
as totally "wrong". Actually, the reversal strategy makes sense from an arith-
metical point of view: if the equation is understood as establishing a relation
between the set of students and the set of professors.

The most interesting point now was, to what extent students adopting the reversal
strategy were able to carry out arithmetical operations with the "wrong" equation.
Our hypothesis was, that actually the "wrong" equation had nothing to do with
their ability to correctly perform on arithmetical tasks that were related to the
original problem. In order to test the above hypothesis we administered written
test questions to a sample of 549 students. The age of the students was between
13 and 24, 70% being 15 to 17 years old. The tests were completed in class, the
teachers were distributing them, collecting them and mailing them back to us. So
the test situation was very similar like a written examination, but the teacher was
told to explain the purpose of the test to the students.

The tasks

There were four different tasks that were imbedded into a common task context:
the relation of students to teachers as actually recorded in one of the "Lander" of
the Federal Republic of Germany and as projected in educational planning. In the
first task the "classical" question of Kaput & Clement was put, the second task
asked for an application of that equation, the third task required some arithmetical
operations, while the fourth task asked for the equation that expressed the student-
teacher relation in the third task. So, the first two tasks should represent the case
of having an equation and applying it to a certain arithmetical context, in short:
"equation" (task 1) -> "arithmetical application" (task 2), while the third and the
fourth task should represent the inverse case, "arithmetical application" (task 3) ->
"equation" (task 4).

Task 1 "There are twenty times as many students as there are
teachers in Northrhine-Westfalia. Find an equation for this si-
tuation, where S is the number of students and T is the number
of teachers"

Task 2 "There are 1.400.000 students in Northrhine-Westfalia.
How many teachers are there then?' (use the equation from task
1)"
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Task 3 "Educational planning in 1973 was assuming that 1985
there should be 17 students for each teacher. According to this,
how many teachers should there be in the following Lander in
1985? (Fill in the number of teachers below with the help of
your pocket calculator!)"

students teachers
Hessen 385.000
Niedersachsen 627.000
Nordrhein-Westfalen 1.400.000
Rheinland-Pfalz 290.000
Saarland 79.000
Schleswig-Holstein 224.000_

Task 4 "Find an equation that expresses the relation of students
and teachers given in Task 3, where S is the number of students
and T the number of teachers."

Results

The results for Task 1 and 4 ("equation" context) showed a variety of different
forms of equations:

Task 1 Task 4
equation % equation %

20T = S 43.7 17T = S 30.2
T = 20S 28.8 T = 17S 18.4

T:S = 1:20 .7 T:S = 1:17 1.3
S:T = 1:20 .2 S:T = 1: 17
S:T = 20:1 1.1 S:T = 17:1 2.4
T = S:20 14.8 T = S:17 23.5
S = T:20 1.3 S = T:17 1.3

other 5.7 other 12.2
no answer 3.6 no answer 10.6

The results showed a considerable decrease of the reversal error from 28.8% in
Task 1 to 18.4% in Task 4. A correct answer was given by 57.4% in Task 4
compared to 60.3% in Task 1. The equation T = S:20 was used by 14.8% in
Task 1 and T = S:17 by 23.5% in Task 4. For Task 2 it was not very suprising
that 89.6% of the students gave a correct answer. Having used the equation with
the reversal error was no obstacle for coming to a correct arithmetical result. For

143

156



Task 3 the task difficulty across the six subtasks was still lower with 91.4%
correct answers.

In the following table the differences between the use of equations aT = S, T =
aS, and T = S:a are shown in absolute frequencies:

Task 1 Task 4
aT = S 241 166
T = aS 1 5 8 101
T=S:a 91 14 9
other 39 74

no answer 20 59

N 549 549
Chi-Square = 70.48
DF = 4

..p..2;201

The adoption of one of the different equations listed above could be seen as
reflecting the use of different "strategies" by the students. The results indicate that
the use of a certain strategy depended to a considerable extent on task-context. In
our study "task-context" was playing a role in two dimensions: first, as an overall
"applied" context that was relevant for all four tasks leading to a relatively high
proportion of correct answers (as compared to related studies from other
authors), second as a subcontext resulting from the different requirements in task
1 -> task 2 (equation -> application), and task 3 -> task 4 (application ->
equation). In subcontext A (task 1 -> task 2) the equation aT = S was used by
43.7%, going back to 30.2% in subcontext B (task 3 -> task 4). The "reversal
error" also was reduced from 28.8% in subcontext A to 18.4% in subcontext B.
The reduction of the "reversal error" as well as the reduction of the algebraically
correct equation in subcontext B was largely due to the increased use of equation
T = S:a. These equation obviously is very close to the arithmetic procedure that
was required in the "applied" tasks, because it literally describes the order of
procedural steps to take: given a number of students and a multiplication factor to
calculate the number of teachers by dividing the number of students by the
multiplication factor.

Even the students that start with the "reversal error" equation are finding highly
creative - albeit mathematically incorrect ways to transform the original equation
into the form where the number of students is divided by the multiplication factor.
For reason of space only one example from the test is taken to illustrate the
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fundamental clash between the (incorrect) algebraic concept and the procedural
concept:

7.0 1:20

L L Lox occ
-9 70 -Lo

= 70 coo

There was only one case out of 549 where a student was "correctly" filling in the
numbers in the "reversal error" equation reaching a total of 28 million teachers for
1.4 million students. Maybe some kind of wishful thinking was involved here.

Task and context

If we try to explain - as we did - the findings as influenced by the variation of
task-context, it must be said that "context" as an important theoretical construct
was in our study only dealt with on the level of the task itself. That is to say, that
the context or the situation of working on the tasks was not controlled in our
study. If already on such a restricted level, task context is an important factor, it
should be more important on a larger scale. This lead to a critical evaluation of the
design of our study and the tasks that were used. In the following I would like to
sketch some of the apparent shortcomings of our study relating them to important
issues of empirical research in math education. The focal point of interest here is
how tasks are employed in empirical research.

1. We have to ask ourselves how the design of our standard test restricted
the interpretability of the obtained results. It is quite clear that we can say only
very few things about the processes that underly or accompany the solution of the
tasks. Theses processes could only be dealt with in an indirect way, whereas a
clinical interview study or a transcript/protocol analysis could have told more
about that. However, what is gained with one method seems to be lost with the
other one: the insight into the distribution of certain solutions on a large scale
could not be gained when the reconstruction of solution processes via clinical
interview or transcript/protocol analysis is the aim of a study. These two
approaches basically differ in relation to time.
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2. A closer look at the distribution of solution processes in the of the
reversal-error was instructive. It could show that the situatedness of thinking (cf.
Brown, Collins & Duguid 1989; Lave 1988; Suchman 1987) about algebra tasks
could not be understood as a "misconception". Context-boundedness in clinical
interview studies often was seen as a major obstacle to algebraic thinking (cf.
Booth 1984, p. 37). A central problem in clinical studies often seemed to be how
children make sense of the interview situation and consequently on the tasks that
were presented to them. One central problem of standard test situation is that it
nearly automatically is identified with an examination situation followed by the
positive implications on the motivational level this has for some students while it
has negative consequences for others.

3. The results obtained in this study confirm the view that a change in the
very notion of "task" is overdue. The tasks presented to children cannot be
understood as "objective" stimulus conditions being the same for each child. It
rather must be seen that children actually work on tasks that differ from the given
task and from the tasks other children work on. Even for the seemingly simple
case of the division algorithm Newman et al. (1989) could show that children
turn the same "objective" task into very different "personal" tasks. They
understand tasks as "strategic fictions" that arise in social interaction.

4. If our notion of the "task" should change this also entails the notion of
"error". There is important evidence from cognitive psychology (Norman 1987;
Norman & Draper 1986; Seifert & Hutchins 1989) and from the psychology of
work (Wehner & Mehl 1986; Wehner & Stadler 1988) that a strategy that is
designed for the avoidance of errrors might no be as effective as a strategy
designed to exploit the vital importance of errors (cf. Bromme, Seeger &
Steinbring 1990). Errors should be understood as productive and creative
achievements. Consequently, tasks and task systems should be designed "user-
centered" or"user-friendly" instead of following the philosophy to minimize and
avoid errors. The idea is that errors should not lead to a system crash. Repair
strategies (Brown & van Lehn 1980) seem to be a suitable means in this context.

Concluding, remarks

To reconcile the standard test procedure and the methods of clinical interviews
and transcript/protocol analysis is an important issue for research in math
education (cf. Ginsburg 1981). Rather than seeing the different methods as
belonging to different research paradigms, it could be tried to project them onto
different levels of the process-structure of math education. Obviously, in addition
to that, new methods could be adopted that allow for the empirical research of the
"situatedness" of learning.
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GENERALIZATION PROCESSES IN ELEMENTARY ALGEBRA: INTERPRETATION
AND SYMBOLIZATION.

SONIA URSINI
SecciOn de Matematica Educativa

CINVESTAV-IPN

The results obtained through a written test concerning the
symbolization of situations Involving a generalization process
and the concept of generalized number, are reported. 65
children, 11 - 14 years old, starting with the study of algebra
were tested. One of the most interesting results was theregularity of the answers obtained, together with theinstability of a particular individual's answers. This study is
a part of a wider project concerning the feasibility ofdiminishing, in a computational environment, the difficulties
children have with the different characterization of variables.

Children have great difficulties and insecurities when
faced with expressions that involve literal symbols ([1], [3],
[5], [6), [9], [11), [12], [14)). There are a lot of data
concerning the most common errors they commit [1] and very
interesting results on how they interpret literal symbols [6].
The focus of this article is on the way children, starting the
study of elementary algebra, symbolize, on their own, situations
involving a generalization process and the concept of
generalized number. The main objective of the study was to find
out: 1) How children symbolize such situations and if they use
literal symbols for it; 2) If their answers present some kind of
classifiable regularity; 3) If the answers given by a particular
child are stable in a certain class.
Methodology.

To answer the questions mentioned above, a questionnaire
was designed where children were asked to: 1) Interpret literal
symbols representing unknown
2) Symbolize
numbers, (16

situations
items).

that
or generalized numbers, (14 items);
involved unknowns or generalized

The questionnaire was partly based on [2], [4), [8], [10)
and [11]. It was applied to 65 students, aged 11 - 14, entering
the first year of Secondary school in Mexico City and other
mexican towns. None of them had had previous instruction in
algebra. Overviews of results of questionnaire indicated however
that almost the totality had some notion about the use of
literal symbols and considered them as representing unknown
numbers.
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For each item an analysis of the answers obtained was done,
and for each student the answers given to all the items were
analyzed. The results suggest a classification of the answers
obtained, that we will verify further with a wider population.

The main topics of the study, along with the rationale for
each topic and some examples of the items we used to approach
them, are showed in the table (see next page).
Results.
For each topic it has been possible to classify the answers
obtained.
Symbolization of simple verbal statements involving an unknown
or a generalized number. (7 items)

The answers given pointed out that there were children who:
1) Could not symbolize algebraically and gave a numerical answer
to these items; (21/65)
2) Answered writing a single letter; (4/65)
3) Were able to symbolize simple statements that implied writing
an equation where they have only to add to or multiply a literal
symbol by a number; (31/65)
4) Could do (3) and also symbolize statements that implied
writing an open expression, eg. 8N(3+X), using letters, numbers
and brackets; (9/65).
Interpretation of the symbolization of a generalization.
(5 items)

When asked to interpret a letter that represented a
generalized number in an expression, we found that there were
children who:

1) Could not interpret the letter in any way; (19/65)
2) Interpreted it as 'letter evaluated' [6], assigning it an
arbitrary but specific value; (26/65)

3) Interpreted it as 'specific unknown' [6], and without giving
the value they specified that it can have only one value; (2/65)
20 of the 65 subjects showed inconsistency in their answers; in
similar circumstances, they did not interpret the letter in the
same way. Some of them could not interpret it consistently and,
for some items, gave no answer (7/65); others interpreted it as
'letter evaluated' but also as an 'object' [6] (12/65); only 1

child interpreted it as 'letter evaluated' and gave also a- range
of variation interpreting the letter as 'generalized number'
[6]. The interpretation of 'letter as an object' appeared
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clearly when there were letters different from X and it was
possible to relate them with another subject, eg. geometry: 2*p
was thought of as 2 times the perimeter.
Generalization processes and symbolization of a generalization.
(7 items)

To see how children generalize and symbolize a
generalization, two groups of items were given:

a) An already generalized situation with the primary
symbols given (items 10, 11, 12) was presented and children were
asked to conceive the general situation and create a new symbol
using the given one. There were children who could not symbolize
any item (20/65). The others could symbolize one or more items
correctly: 40 of the 65 subjects symbolized correctly the item
10; 19 the item 11; 30 the item 12. The items 10 and 12 were
apparently of the same degree of difficulty, but while the item
12 has only a verbal explanation, the item 10 has also a drawing
schema. It seems that the presence of the drawing helped many
children in their process of generalization and symbolization.
But the number of correct symbolizations diminished
substantially for the item 11, where a partially hidden figure
were shown. This caused confusion in many children, whose
answers to items 10 and 12 were correct. Answers such as L+L or
H+N , which were trying to give the total number of sides
(visible and not) of the figure, were given; some children
ignored the hidden part of the figure, multiplying the number of
visible sides by 2; others gave lis2/2 as the answer.

b) A sequence of geometrical shapes with a sequence of
numbers in correspondence (eg. number of sides) (4 items), were
presented. Children were asked to find out and symbolize a
general rule, which will produce for any further figure of the
sequence its corresponding number. There were children who:

1) Could not answer any item; (5/65)

2) Could generalize only by drawing; (26/65)
3) Could generalize by drawing and by numbers; (8/65)
4) Could symbolize algebraically the simplest item; (8/65).

25 of the 65 children showed inconsistency in their answers,
giving one or another of the previously mentioned answers. Some
of them, besides symbolizing by drawing could also, for some

items, go on with the numerical sequence, but only when small
numbers were involved. (15/65)



In the answers to these items as well as to thOse referring

to the symbolization of simple verbal statements, it was clear

that when faced with a process that involved more than one

operation, the majority considered only one of them. We may
compare this behavior to the partially executed procedures found

by Matz [9), however remarking that in this case we are

referring to the symbolization and not to the solution process.

Interpretation of a functional relation; solution of arithmetic

tone appearance of the unknown) and non-arithmetic (more than

one appearance of the unknown) equations. (7 items)

When asked to interpret a functional relation, there were
children who:

1) Gave no answer; (28/65)

2) Assigned a unique value to X and calculated the corresponding

value for Y; (33/65)

3) Gave arbitrary and unrelated values to X and Y; (2/65)

4) Gave a range of values for X; (1/65)

Some children tested had difficulties when solving an arithmetic

equation. No one could solve the non-arithmetic one; when trying
to do it, almost all of them assigned different values to the

different appearances of the unknown [3).

Interpretation and symbolization of some Known geometrical
concepts. (2 items)

In primary school, in Mexico, children are faced with the
use of literal symbols when dealing with general formulae for

the area and perimeter of geometric figures. To see the extent

of their understanding of these formulae and the meaning they

attached to the literal symbols presented in them, they were

faced with Known geometric figures the dimensions of which were
indicated:

1) With literal symbols; 2) Combining numbers . and letters

In both cases they were asked to symbolize the area and the
perimeter.

When faced with figures where the dimensions were indicated

only by letters, there were children who:

1) Could not give any answer; (15/65)

2) Remembered the general formulae already learned and wrote
them using letters different from those indicated; (25/65)

153

1 6 6



3) Assigned an arbitrary value to the letters and calculated the

area or perimeter, or assigned an arbitrary value directly to

the area or perimeter; (11/65)

4) Were able to symbolize using the given dimensions; (13/65)

Only 3 of the 65 children tested showed some inconsistency:

sometimes they wrote a general formula learned by heart and

sometimes considered the letters given.

When faced with shapes where the dimensions were indicated

by letters and numbers, there were children who:

1) Could not give any answer; (7/65)

2) Assigned an arbitrary value to the letter and calculated the

area or perimeter, or they assigned an arbitrary value directly

to the area or perimeter; (6/65)

3) Remembered the general formulae and ignored the indicated

dimensions; (8/65)

4) Considered the letters as generalized numbers and were able

to manipulate them. They considered the indicated dimensions and

were able to adapt their previous Knowledge to the new

circumstances; (3/65)

35 of the 65 children tested showed inconsistencies in their

answers. For similar questions they gave different answers of

the type listed above. Sometimes they assigned an arbitrary

value to the letter and sometimes they tried to manipulate it

without giving a value and instead invented their own way of

doing it (5/65). Sometimes they assigned an arbitrary value to

the letter and sometimes they ignored the letter and considered

only the numbers (20/65). Sometimes they ignored the letters and

sometimes they manipulated them as generalized numbers (7/65).

It seems that many children when evoking the general formulae,

were unable to consider as a symbol, the letter that indicated

the dimension of the figure. It was clear that for the majority,

the letters that appear in the general formulae did not

represent a generalization but were considered as labels.

Conclusions.

i. The answers children gave confirm some results already

found in other studies: they had difficulties with the use of

brackets [1]; there existed confusion between the signs of

addition ( +) and multiplication 0 [31 they assigned different

values to the same letter when it appeared several times in an

expression [31 they were unable to interpret the conventional
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algebraic notation [5); some of the categories established by
Kuchemann (6) appeared when interpreting the literal symbols.

2. All the children used literal symbols to express
themselves. The great majority interpreted them as specific
unknown when they were asked to interpret a given symbolization.
It was not always so when they were asked to symbolize; in this
case some of them even were able to state algebraically a
generalization (items 10 and 12). However, there was no clear
evidence that they could interpret the letter as generalized
number, nor that they were capable of interpreting the
expression written by themselves, as a general expression and
operate on it.

3. The detailed analysis of the answers obtained led to a
classification of these answers concerning capability in
manipulating situations that involve generalization processes
and their symbolization, and the use and interpretation of
letters as generalized numbers. In spite of the fact that all
the answers given by the children tested fitted into the given
classification, the answers of a particular child were not
stable in any one class. We therefore have a classification of
responSes not of children.

4. Because the sample tested was quite general, including
children from Mexico City and other Mexican towns, and because
we found: a) the presence, albeit in an inconsistent way, of the
literal symbols in children's answers for an unknown or for
symbolizing a generalization; b) the presence of some correct
answers although also incorrect ones to similar items, showing
inconsistencies in children's answers; we consider justified the
hypothesis that children entering the first year of secondary
school, in Mexico, belong to a 'zone of proximal development'
[13) concerning their capabfllty of dealing with the concepts of
unknown and generalized number and their symbolization. We will
investigate this hypothesis in a LOGO environment specially
designed for this purpose, that is we anticipate that in such an
environment in contrast to the common school algebra environment
(see (1)), children can come to learn generalized number by
provision of carefully structured and sequenced activities.
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ABSTRACT

In the research project' to be described here, a transfertest for mathematics was constructed wherein optional help was provided by
means of hints, that were presented on the screen of a micro-computer. The first aim of the project was to investigate the claim,
that the scores on the items, where hints were consulted, would contribute to the predictive validity of the test. This implies that
such scores could be weighted in an objective way and that this procedure would render a more refined measurement of
mathematical transfer capacity, compared to a test where oil items have to be solved independently.
The second aim was to compare the effects of different teaching methods by means of this test. The results show that offering help
in testing situations seems to be a valid approach and adds to the amount of observed variance in transfer capacities between
students, thus indicating more refined measurement. Only marginal differences in effects of teaching methods were found, which
also seem to depend on student characteristics.

Introduction

At the 1985 PME conference we presented preliminary results of a project involving the measurement of mathematical learning
potential of students in secundary education in the Netherlands (see Meijer et. al., 1985). This project fmished in 1987. We will
report about its outcomes at this conference (the delay is due to various circumstances).
The central task which we took upon ourselves at the start of the project was the composition of a transfertest for mathematics,
wherein, contrary to ordinary mathematics tests, students could ask for guiding information ("hints") if they were unable to solve a
test-item independently. In this way we hoped to arrive at more refined measures of mathematical transfer capacity than
measurements resulting from the use of conventional tests, which contain only "all-or-nothing" items. Because transfer of
mathematical knowledge and skills is a very difficult task, such tests usually result in very crude distinctions between, the transfer
capacities of subjects.
The idea was originally derived from Vygotksy's theory (1964), which states that, since learning is'an interactive, social process,
accurate measurement of (mathematical) performance level can occur only if a subject has art-ms to help in any way. In other
words, Vygotsky assumed that measuring independent achievement is.insufficient for predicting future performance. Taking into
account performance levels of subjects given hints when needed will contribute to the predictive validity of a measuring
procedure, if certain methodological requirements, such as reliability and equality of "information impact" on each subject, are
satisfied. The difference between the level of performance one can achieve independently and the level of performance one can
achieve with help, be it from elders, peers, books, charts or even computers, was dubbed "the zone of proximal development" by
Vygotsky. It may be conceived of as "thinking structures in embryonic form" (Ginsburg, 1983).
In the inquest of Krutetskii (1976) concerning the structure of mathematical abilities of schoolchildren such a procedure was
applied. However, since help for subjects was available from experimenters in individual testing situations, the reliability of this
procedure for measuring learning potential is questionable. If rigid psychometrical demands are taken into account, it is essential
that every student requiring help receives the same information. Moreover, this information should have equal value for each
subject, i.e. all subjects should be pushed equally further to the solution of the item by every hint, independent of their initial
ability.
The results show that such strict psychometrical demands could hardly be met. Nonetheless the experiment proved succesful
because its outcomes highlight the possibility of educational use of tests with availability of hints and shed light upon the factors
influencing mathematical performance.
A secondary goal of the research project was to assess the differential effects of teaching methods for mathematics. Recently, so
called "realistic" methods for teaching mathematics have been propagated its the Netherlands (see ao. Treffers, 1987). These
methods are more loosely structured than conventional methods and emphasize "reinvention" of mathematical principles by
students in stead of extensive explanation by teachers.

Concluding, the goal of the research project to be described here was twofold:
1. Development of a test wherein help can he obtained by students if they cannot solve the mathematical problems

independently;
2. Comparison of the effect of teaching methods for mathematics on the mathematical ability of students.

Method

Attainment of the first goal of the project implied the development of a test for mathematical ability with a sufficient level of
difficulty, so that the effect of offering help could be assessed. Since transfer of mathematical knowledge and skills is one of the
most important goals of mathematics education and usually hard to measure, it was decided to construct a transfertest for
mathematics, containing hints. This leads to the opportunity to measure transfer in a more refuted way than conventional tests,
because the inability to solve transfer problems independently can be alleviated by offering help. Partial credit can be given for
correct answers given after consultance of hints.

The project vas partially sponsored by the Foundation for Educational Reeearch, The Mara, The
Netherlands, grant no. 1128. It wan conducted at the Free University of Amsterdam, DO Boelelaan 1115, Amsterdam.
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The question of the usefulness of offering help during a testing situation confronted us with the question of the predictive validity
of the test to be developed. Obviously, measuring mathematical performance when help is available only makes sense if such
measurements contribute to the validity of the measurement of independent mathematical performance level.
In order to be able to judge the usefulness of the testing-procedure, a criterion-test was constructed that was administered six
months alter the administration of the transfertest.
A nrv.Psary condition for transfer of mathematical knowledge is availability of preliminary knowledge. Therefore, it is important
to control for mastery of taught subject-matter. This was done by construction of a mastery test. Items in this test only called
upon knowledge of the subject-matter that was taught, i.e. knowledge structures did not have to be transformed to fmd the
solution. Most of the items in this test were derived from a test, constructed by the Dutch National Institute for the Development
of Educational Tests.

If one wants to compare the effects of teaching methods in a pre-posttest design it is important to control for initial mathematical
aptitude of subjects. No clear operationalization for this latter concept could be found, neither in the form of a definition (see
Meijer et, al., 1985) nor in the form of a test, specifically designed for this purpose.
In view of the lack of tests for initial mathematical aptitude it was decided to administer two tests for cognitive ability, that
correlate high with mathematical achievement. Two subtests of a test for measuring learning progress in secondary education,
constructed by Horn (1969) were used for this purpose. The subtests concerned were a) a test consisting of series of figures. b) a
test consisting of series of alphanumeric characters. In both tests the element that did not fit in the series had to be eliminated by
the subject. Aurin (1968) reports high correlations of both tests with mathematics achievement.

Many problems in the test for measuring mathematical transfer capacity required recognition of the underlying mathematical
structure in a situation that is described in common language. It was assumed that the capability to recognize this structure is
influenced by field-dependency (Witkin Cl. al.. 1977). It was established by several investigations that expertise correlates with the
ability to type domain-specific problems in terms of domain-specific principles in stead of superficial characteristics of the
problem-statement, which novices use to categorize a problem (Chi. Feltovich & Glaser, 1981). This is similar to the ability to
distinguish figure and background, a feature that the Embedded Figures Test pretends to measure. Therefore, the GroupEmbedded
Figures Test was administered in order to be able to correct for initial differences in this ability between students.

The usefulness of offering help during a testing situation can be tested by investigating the contribution to the predictive validity
of scores on items where hints were consulted, compared to a test wherein independent achievement is assessed only. That means
that if we add learning-potential scores to a regression equation containing the criteriontest scores as a criterion and a measure for
independent achievement as a predictor, the beta-weight for this added predictor should be statistically significantly greater than
nought.

Differences between the effect of teaching methods on the abilities of students should strictly be studied by imposing rigid
restrictions on an experiment, in order to prevent plausibility of alternative explanations. In educational research this is hardly
possible. In this research project, we compared the mathematical abilities of students in secondary education, learning mathematics
from different series of textbooks. The contents of each of three commercial series was studied carefully by experts on the
didactics of mathematics (see De Leeuw, Meijer, Groen & Perrenct, 1988). It was concluded that the fast series of textbooks
could be characterized as highly structured, but at the same time only teaching algorithms, "mechanistic', as De Lange (1987)
types it. The second series clearly aimed at insight, but on a very formal, abstract level ('structuralistic'). The final series was
most similar to the 'realistic approach', as mentioned in the introduction. In these methods context-problems are used to introduce
mathematical concepts as well as for application of taught concepts. The teachers role should be to build on the intuitive notions
of students and creating conditions that allow students to discover mathematical solution methods for different kinds of realistic
problems.
It was hypothesized that students using the last method would score highest on the transfertest because they should be most used
to using mathematical solution methods for unacqainted problems. Some of the items in the transfertest required generalization of
known mathematical principles, which was called "vertical transfer' by De Leeuw (1983). It was expected that students learning
from the structuralistic method would show highest performance on these items. Transfer-scores should be corrected for mastery of
subject-matter in testing these hypotheses, since the availibility of knowledge is a prerequisite for transfering it.
Finally, it was hypothesized that students characterized by a high need for prestructuring subject-matter would benefit most from
highly structured teaching-methods and would be disadvantaged by loosely structured teaching-methods. The 'realistic' teaching
method for mathematics can be typed as relatively unstructured, because much emphasis is put on proper construction and
inventions of students, i.e. students have to discover mathematical structures, which are only implicitly present in the context-
problems that serve as subject-matter, by themselves.
On the other hand students that are low in need of prestructuring may be disadvantaged by highly structured methods, because
they will be continuously disturbed by their lack of freedom to impose structure by their own effort. It was assumed that field-
dependency is a good measure for need of prestructuring, since distinguishing figure from background depends oa structuring
activity. In other words, an interaction between teaching method and field-dependency in their effect on mathematical ability was
expected.

Procedure

I. Development of the transfertest

The transfertest for mathematics contained relatively difficult items. We started out with a test of eightteen items, each supplied
with six hints. All items concerned the subject-matter of functions, linear as well as quadratic. All hints were open indications, but
gradually increased in specificity, building on Selz' ideas (1935) about 'kleinst moegliche hilfe", i.e. we did not want to offer
solutions for the problems, but only structuring information. Hints could be made visible by tearing of pieces of paper on the
answer sheet. It appeared that most items were too difficult for our subjects, and that the effect of the hints differed greatly. Also,
the hints did not yield very many extra solutions. The advocated scoring method was to give partial credit for correct answers,
depending on the number of hints used. The main problem was however that there was no way to verify whether a hint had been
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understood by the subject. This implied that credit points would be subtracted unjustfully if subjects did not assimilate or already
were aware of the information that was contained in the hint.
A solution for this problem was found by changing the format of the hints. In stead of offering open ended indications, a
question was being asked with four answering possibilities. As in most multiple choice questions, only one of these answers was
correct, but only two were incorrect. The remaining answer was 1 don't know". This was added to avoid guessing, because
subjects automatically received extra explanation if they chose a wrong answer. In this way verification of assimilation of the
content of the hint was made possible. It was assumed that subjects that answered the hint-question correctly needed no further
information. In this case, only one credit-point was subtracted. If a subject gave a wrong answer or admitted he/she did not know
the right answer, extra explanation was given and two credit-points were subtracted.
Also, it was attempted to make the test-problems easier, mainly by deleting items with very low p-values and adding simpler
ones. Sometimes test-problems were simplified by incorporating the content of a hint in the problem-statement or by clarifying the
structure of the problem in advance.
This procedure was tried in individual testing situations, where experimenters recorded the sessions on audio-tapes. Subjects were
instructed to think aloud while trying to solve the test-items, during independent solving efforts as well as after having been
offered a hint by the experimenter. Hints were presented on slips of paper. Experimenters did not offer any extra explanation by
their own initiative.

After trying the new procedure on this small scale, is was repeated collectively with 210 students in grade four of secondary
education. The items in theirselves had clearly become easier, the percentage of test.problems that was solved independently rose
from 12 to 44. Although the percentage of items that was answered incorrectly notwithstanding consultation of hints declined from
56 to 24, it could not be shown that the effect of the hints had actually increased. The percentage of items that was solved after
using one or more hints remained 16.
The pilot-researches resulted in 15 items, that were deemed suitable for the final version of the test. During the pilot-experiments
it was also made clear that it took quite long to solve the test-problems. One the one hand, this was due to the difficulty of the
problems, one the other hand it obviously takes time to read and process a hint As a consequence, the total test was split up in
seven partially overlapping subtests of five items each.
The final version of the test-problems consisted of open-end questions, presented on paper sheets, that served as answer sheets at
the same time. Hints could be obtained on the screen of a micro-computer. The new procedure for presenting hints was retained,
i.e. depending on their answer on a hint-question subjects received extra explanation. If the answer was correct only one point
was subtracted from the score for the item, if extra explanation was offered after a wrong answer or choosing the alternative "I
don't know" one more point was subtracted. If an item was solved without help five points were obtained. Only two hints could
be consulted, so asking for both hints and answering them incorrectly, but giving the right end-solution resulted in a score of one
point. Wrong solutions to test-problems always yielded a zero score, regardless of hint usage. The final experiment was conducted
on eight schools, twelve classes were involved, totalling 325 students.

2. Administration of the reference tests for mathematical ability

The test for measuring actual mastery of subject matter was administered in the same period as the transfertest. Half of the
subjects first completed the test for actual mastery and then worked on the transfertest. The order was reversed for the other half
of the subjects. This was necessary because there were only sufficient micro-computers available to serve half a class of students.
The test consisted of 19 items. all except one were multiple-choice items. The only open ended item, that was scored by judges,
concerned the quality of a drawing of a graph of a quadratic function.
Both tests were administered in june 1986, when subjects were at the end of their third year in secondary education.
The criteriontest for mathematical ability was administered between decernber 1986 and january 1987, about half a year after the
first testing session. Because of the delay between the testing sessions, the predictive validity of the transfertest could be assessed
in a meaningful way.

The criteriontest consisted of 10 items. Two parallel versions were constructed in order to avoid possible fraude, because students
were arranged in adjoining seats. The test was carefully designed so that items represented subject-matter taught between the
period of administration of the first and second battery of tests. Solutions given by subjects were scored by judges based on
guidelines that were established in advance.

3. Administration of the reference tests for cognitive ability

The test for fieldindependency was administered at the same time as the test for mastery of mathematical subject-matter and the
transfertest. A period of four lessons hours (50 minutes each) was available for this first testing period on all schools. Two
lesson-hours were reserved for completion of the transfertest, while the other two were devoted to four tests in total, ie. the
Group Embedded Figures Test, the mathematical mastery test, a mathematics attitude test and a test measuring achievement
motivation and fear of failure. On the relationship of these latter tests with mathematical performance I will not divert here but a
report of this is in progress (Meijer, paper submitted to the Journal of Educational Research, Meijer, in preparation).
The Group Embedded Figures Test consists of several example-items and 13 test-items. In every item the problem is to identify a
simple geometrical figure in a rather complex drawing. Subjects must answer the problems by stressing relevant lines in the
drawing.

The other tests for measuring cognitive ability (series of figures and alphanurnerics, subtests of the PSB) were administered
simultaneously with the criteriontest for mathematical ability. One of the reasons to use these tests was that their administration-
time is very limited (respectively 8 and 5 minutes). Since there was only slightly more than one lesson-hour available for all tests,
it was important to save time.
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Concluding, the following table shows which tests were administered when:

mathematics tests

cognitive ability

Table 1 Time table for test-administration

june 1986 january 1987
test for actual mastery criteriontest
transfenest
embedded figures test

The hypothesis that performance on items where help could
accounts for independent performance was confirmed.
Scores on the transfertest were divided in the proportion of correct solutions arrived at independently and the proportion of correct
solutions found after consulting hints. Since only five items were administered, independent achievement was operationalized as
the amount of items solved correctly without help, divided by 5. Learning potential scores (operationalized by performance level
when given assistance) were calculated by dividing scores on items where hints were used by 5. Therefore, the maximum
learning-potential score to be obtained was 4 (i.e. 5 items times 4 = 20 divided by 5 = 4). Subjects solving all items without
consulting hints were excluded from the analysis. In this context, the problem with the impeccable performance of such eminent
students means per definition that their learning-potential is nil, which is not very plausible.
Initially 325 students took part in the experiment. Except four students, all of these completed the tests administered in june 1986
(actual mastery test, transfertest and embedded figures test plus some other tests that are not of interest here).
Because the second testing period took place after the selection of students between their third and fourth year in secondary
education, 86 subjects could not participate in the second testing period, due to non-promotion to fourth grade or dropout.
Complete data (on the actual mastery test, the transfer test and the criteriontest) were available for 224 subjects. Table 2 contains
the results of a regression analysis wherein independent achievement and learning-potential scores predict criteriontest performance:

series of figures
series of alphanumerics

Results

be obtained contributes to the predictive validity of a test which also

predictors:
transfertest

1. items solved without help
2. items solved with help

Table 2 Prediction of criteriontest performance

criterion:
criteriontest for mathematical ability

R R' B F p
.329 .108 .289 26.95 <.001
.354 .125 .137 4.34 .038

Obviously, when using the proportion of items solved correctly without consulting hints as a predictor in the first place, the score
on items solved correctly after consulting hints turns out to contribute to the amount of explained variance in the criteriontest
scores significantly. This means that measuring performance when help can be obtained is not only a valid predictor for future
performance (as independent performance), but also shows sufficient discriminative validity. If the correlation between criteriontest
performance and independent achievement is partialled out, there still remains a portion of criteriontest score variance, that can be
explained by learning potential scores. However when using actual mastery test scores as a third predictor, the effects of learning-
potential scores are no longer statistically significant:

predictors:
transfertest
actual mastery

1. items solved without help
2. actual mastery test scores
3. items solved with help

Table 3 Prediction of criteriontest performance revisited

criterion:
criteriontest for mathematical ability

R B p
.325 .105 .227 25.81 <.001
.383 .147 .197 10.49 .001
392 .154 .091 11.85 .175

We must conclude that independent transfer capability of mathematics knowledge and skills is the best predictor for future
mathematics performance, even after controlling for initial mastery of mathematics subject-matter. Measurement of transfer
capability in situations where help can be obtained ("learning potential") can contribute to the predictive validity of tests, albeit
marginally. Apparently partial credit can be given in a very objective fashion.
The results of the final experiment also show that the effectiveness of the hints had increased. The results of the second
experiment showed no improvement in the effectiveness of hints compared to the first experiment (both experiments resulted in 16
% items, solved correctly after consulting hints). In the final administration this percentage increased quite dramatically to 38.
This is probably partly due to the fact that the second pilot experiment took place in grade four, while the final experiment was
conducted in grade three, Because of this, the difficulty of the test problems increased comparatively. Items were relatively easy
for subjects in the second pilot experiment (illustrated by the fact that 44 % of the items was solved without help), while they
were quite difficult for subjects in the final experiment (only 23 % of the items was solved without help). The results show that a
scoring method where the amount of consulted hints is taken into account can be deviced in an objective way and that this
procedure renders a more refined measure for mathematical ability than measuring independent mathematical achievement only.

We will now turn to the comparison of the effect of teaching-methods. Three commercial teaching-methods (i.e. series of text-
books for mathematics) were compared (see Method).
Method A can be characterized by a highly structured approach, leaning heavily on algorithmization, stronly emphasizing practice
in recognizing known problem-types and using the appropriate solving-algorithm.

1

174
62



Method B is typified by a relatively high level of abstraction, aiming at insight. Although algorithmization is also important in
this method, theory is explained extensively before application. Practice in solving many similar problems consecutively is
stressed.
Method C relies heavily on the "reinvention" principle (Freudenthal, 1978), i.e. the capacity of students to construct mathematical
principles and rules by themselves. Context problems are used for developing mathematical solving methods as well as for
applying such methods. The role of students is very important teachers should appreciate solving attempts of students and
instruction should be based on the constructions put forward by students.

The mean scores on the three measures of mathematical ability of students using these three methods are displayed in table 4.

Table 0 Mean scores on mathematics tests per teaching method

Mathematics tests
Teaching methods

Mastery Transfer Criterion
A 9.4 10.4 12.2
B 9.7 10.5 14.2
C 10.8 11.5 11.9

Although students using method C score highest on both tests administered in grade three, their mean score on the criteriontest is
lowest.
Because it was hypothesized that method C would score highest on transfer, after controlling for initial ability (measured by actual
mastery) a covariance-analysis was performed wherein transfertest.scores were the dependent variable, teaching methods were
conceived of as quasi-experimental treatments and actual mastery of subject-matter was the covariate. In order to make sure that
effects of teaching-methods would not be confused with the effect of school-environment or the grouping of students in classes,
groups of students in the same class within teaching methods were used as a nested factor. In this way the effect of teaching
method can be distinguished from the effect of the grouping of students. Table 5 outlines the results.

Table 5 Effects of teaching methods
corrected for initial mathematical ability

SS df MS F p
Within cells variance 9948 308 32.3
Mastery test 2043 1 2043 63.3 <.0001
Teaching methods 3.4 2 1.7 .05 .948
Classes 240 9 26.6 .83 .593

In can be seen that practically all variance in mathematical transfer capability can be explained by initial mathematical knowledge
of subjects; teaching methods and grouping of students in classes hardly matter. The fact that classes hardly make any difference
also points out that the effect of teachers on the development of mathematical ability of students should not be overestimated,
since all 12 classes had different teachers.

One of the assumptions of covariance analysis is that dependent variables regress with equal slopes on covariates in every cell of
the design matrix. This implies that the regression of mathematical on cognitive ability should be equal for all students in all three
teaching methods, in order to fmd out if one of these methods results in a higher mean mathematics achievement of students,
after controlling for cognitive ability.
It was found that several measures for mathematical ability show quite different strengths of the relationship with measures for
cognitive ability in method C, compared to methods A and B. Contrary to our expectations it appears that mathematical learning
results for students using the most loosely structured teaching method hardly correlate with their cognitive ability.
This means that the results of the covariance analysis indicating that there is no difference between the effect of the three methods
should be interpreted with great care. In order to shed more light on the relationship between mathematical and cognitive ability,
and on the differential effects of the teaching methods, an analysis-method proposed by ltireskog and SOrbom (1986) was applied.
A computer program developed by the authors mentioned first (L1SREL, short for Analysis of Linear Structural Equations) was
used to estimate: 1) the regression of mathematical on cognitive ability for each method, 2) the difference in means of
mathematical ability for each method, corrected for mean cognitive ability of students using every method.

On the basis of the covariance matrix and the vector of means of the mathematical ability measures (mastery, transfer and
criterion) and the cognitive ability measures (the Group Embedded Figures Test and the Series of Figures) for each method, the
linear structural model. depicted on page 6, was analyzed.
Eta, and eta, are latent (unobserved) variables, respectively representing mathematical and cognitive ability. Lambda, lambda and
lambdan are the regressions of the three tests used for mastery, transfer and criterion performance on 'true" mathematical ability;
lambda. and lambda. are the regressions of the scores on the Group Embedded Figures Test and the Series of Figures on "true"
cognitive ability.
The variable ksi, is a dummy variable. The parameters gamma, and gamma, represent the difference between means on the latent
variables for the students using the three teaching methods. Since no absolute value for the mean of a latent variable can be
estimated, the mean of one method for these variables is set to nil, so that only deviations from this standard have to be
estimated. Beta. represents the regression of latent mathematical ability on latent cognitive ability.
For estimating the differential effects of the teaching methods on mathematical ability, corrected for cognitive ability, the
parameter gamma, is of interest. If this parameter differs significantly for teaching methods, it may be concluded that students
educated with these methods differ in mathematical ability. The restriction is however that other parameters (the observed means
on measurements of mathematical and cognitive ability and the regression of observed on latent variables) do not differ. Only
differences in the means of the latent variables (unobserved mathematical and cognitive ability) are of interest.
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Figure 1 A linear structural model for estimating differential effects of learning methods

These restrictions do not meet the data. Because of the suspection that the regression of mathematical on cognitive ability was
different for teaching method C and the fact that students using this method also scored lowest on the criteriontest, betas and
lambda were estimated separately for method C. Results are summarized in table 6:

Table 6 Estimated parameters per teaching method for the LISREL model, depicted in figure 1
(standard errors between brackets)

Teaching method:

Parameter:

B A

lambda 1 (.000) 1 (.000) I (.000)
lambda 2.334 (.349) 2.334 (.349) 2.334 (.349)
lambda 1.836 (.289) 1.836 (.289) .632 (.332)
lambda. 1 (.000) I (.000) 1 (.000)
lambda. 358 (.144) .558 (.144) .558 (.144)
beta .689 (.198) .689 (.198) .126 (.127)
gamma, .576 (.425) -.583 (.463) .000 (.000)
gamma, -.395 (.576) .305 (.562) .000 (.000)

(chi' = 48.98, df = 24, p = .002, Goodness of Fit = .885)

Although the model shows only very moderate correspondence to the data. it is obvious that the regression of mathematical on
cognitive ability is not significant for students using method C. while teaching methods A en B show significant influence of
cognitive on mathematical ability. Also the regression of criteriontest performance on latent mathematical ability is much smaller
for method C than for methods A and B.
There appears to be no difference between mathematical or cognitive ability between the three methods, although it seems that
students educated with method B show slightly superior performance. At the same time, they seem to have lower mean cognitive
ability.

However, these differences are statistically insignificant and open to doubt because of the differing values of lambda, and beta.
for method C, compared to methods A and B.

Since the regression of criteriontest performance on latent mathematical ability and the regression of latent mathematical ability on
latent cognitive ability appear to be similar for methods Ay and B, an adequate comparison of the effects of these methods on
mathematical ability by means of this method of analysis may be made. The results of this analysis are summarized in table 7:
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Table 7 Estimated parameters per teaching method for the LISREL model, depicted In figure 1
(standard errors between brackets)

Teaching method:

Parameter:

B A

lambda 1 (.000) 1 (.000)
lambda. 2.153 (.322) 2.153 (.322)
lambda,, 1.763 (.269) 1.763 (.269)
lambda*, 1 (.000) 1 (.000)
lambda. .546 (.145) .546 (.145)
beta,' .711 (.204) .711 (.204)
gamma, 1.224 (.442) .000 (.000)
gamma, -.698 (.565) .000 (.000)

Method A was used as the standard in stead of method C here. i.e. gamma, and gamma, were set to nil for this method. All
other parameters were set equal for both teaching methods. The model fits the data remarkably well (chi' = 10.53, df = 15. p =
.785).
Obviously for both methods mathematical achievement is quite strongly influenced by cognitive ability, as measured by the score
on the Group Embedded Figures Test and Series of Figures. Again, it seems that students using method B start out with a slight
handicap in cognitive ability, but this difference is not statistically significant. In spite of their initial disadvantage these students
perform significantly better on all mathematical tests taken than students educated with method A.

Discussion

The results of the experiment described in this paper show that there is definite perspective in constructing transfertests for
mathematics wherein the twee can obtain help if needed. This is of great importance in the light of the fact that transfer of
domain - specific knowledge and skills usually occurs on a very small scale. It is often only observed in the case of great similarity
between problems.
The lack of evidence for transfer may very well be due to the poor discriminative power of transfertests, wherein items have to
be solved independently.
It was established in this research-project that obtaining help during testing-situations can be scored in an objective way.
Therefore, basic methodological objections against such procedures hardly seem valid. Equal help was available for all subjects,
offered by means of a computer, without the intervention of an experimenter.
Although questions concerning equal impact of information contained in every hint for each subject still remain unresolved, we
think that the development of this type of test could be of major importance for education.

Since there are so many confounding variables involved (for example: social economic background of students, quality of teachers
and school-climate), comparison of the effects of teaching methods is a very difficult matter. Dubin & Taveggia (1968) even
contend that no differences can be found in the effects of teaching students individually, in small groups or in lecturing groups.
involving rather large amounts of students. Therefore, chances of finding differences in mathematical achievement between
students educated by different series of textbooks seem remote. The influence of school environment, teachers, student population,
must be a greater potential source of influence compared to what school mathematics book is being used.
In this study no support could be found for the hypothesis that a loosely structured teaching method (method C) renders relatively
bad learning results for students low in cognitive ability. On the contrary, cognitive ability appeared hardly relevant for students
educated by such a method. This may imply that loosely structured teaching methods are indeed beneficial for all students.
Furthermore a significant advantage was revealed for students using a "structuralistic" teaching method (e.g. method B), compared
to students educated with a 'mechanistic" teaching method (method A).
Therefore, we may conclude that structuralistic teaching methods should be preferred over mechanistic teaching methods. However.
the effect of structuralistic teaching methods depends on cognitive abilities of students equally strong as the effect of mechanistic
methods. In contrast, the relationship of the effect of realistic teaching methods with cognitive ability of students appears hardly
important. In order to ensure optimal results for all students, the application of such teaching methods seems very promising.
At present we are conducting a preliminary investigation into the effects of realistic teaching methods for mathematics in the
Netherlands in different types of secondary education. We hope to be able to present results of this study at future conferences.
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ON LONG TERM DEVELOPMENT OF SOME GENERAL SKILLS IN

PROBLEM SOLVING: A LONGITUDINAL COMPARATIVE STUDY

Paolo Boero, Dipartimento di Matematica, University di Genova

In this report I relate upon a research performed on written texts of 65 grade II

to the grade IV primary school pupils, concerning the development of their

hypothetical reasoning skills in problem solving. Some comparisons are made

on the nature of the problem situations in which these skills appear for the first

time: mathematical or non-mathematical problems; situations contextualized or

not in some "experience field" of our project.

1.Introduction

In the researches concerning applied mathematical problem solving performed during the next

fifteen years,a growing importance is attributed to the "content" of the problem situations,to the

"context" in which they take place and to the children's involvement in the "context " , in order

to interpret both the conceptual and the procedural acquisition of the pupils, and the difficulties

they meet in some circumstances (Carpenter & Moser,1983 ; De Corte & Verschaffe1,1987;

Nesher,1980 ; Lesh,1981 ; Lesh,1985 ) . Carraher's (1988) results concerning the acquisition

("in the street situations") of important problem solving skills of "strategical" type for problems

concerning "money" give further insights in the same direction.

In (Boero,1988) I examined the pupils' "sensitivity" to the "content " and to the "context "of

some problem situations taking place in the Genoa group's project for the primary school.In

(Boero,1989) I proposed a theoretical framework for the "context" problem , in relation to the

experiences of the curricular projects developed by my group and current researches. In that

conference, I advanced the hypothesis that the choice of suitable "fields of experience" might

influence the development of general problem solving skills concerning the "representation"

processes,hypothetical reasoning and metacognition.

Ferrari (1989) considered the hypothesis (derived from the classroom observations of many

teachers working in our group) that the child "who uses properly hypothetical reasoning in
mathematical problem solving is already able to use it properly in other settings".

In this paper I will provide more precise elements to support the hypothesis that children's

involvement in suitable "contexts", in classroom activities, may influence the development of
some general problem solving skills.These elements might also contribute to clarify the

relations existing between the development of general problem solving skills in mathematical

and in non-mathematical problem situations.The research I relate upon concerns some of the

skills involved in generating and managing hypotheses during the construction of strategies in

problem solving . I wish to compare the moments at which these skills appear in written form
during non-mathematical activities,and in contextualized or noncontexualized mathematical

problems, for children followed from the age of 7 to the age of 10.
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2.The educational context

As described in more details in (Boero,1988 and Boero,1989 ) ,the educational context to which

I will refer is a curricular project concerning mathematics and the other main subjects taught in

the Italian primary school.This project consists in a systematic work in suitable "experience

fileds"(Boero,1989) concerning the natural and social reality (for instance: "productions in the

classroom", "history of the family", "economical exchanges", "the sun shadows", and so on).

Most of the mathematical problem situations proposed to the children are inserted in these

"experience fields " .However,the work in each "experience field" also concerns many

non-mathematical activities (for instance,performing experiments and writing reports about

them; studying historical and geographical topics about the experience fields; and so on).These

activities naturally produce many non-mathematical problem situations.

Particular importance is given in the project to the verbalization processes and to the activities

aimed at developing verbal competencies.

Each year,the controlled experimentation of the project concerns about 40 classes of each grade

from the age of 6 to the age of 10.For each grade 4 classes are "observation classes", and these

classes are followed from the first to the fifth grade, usually by the same teachers (according to

the Italian tradition) who collect all the pupils' written texts with detailed information about the

conditions in which they were produced.For the observation classes we have at our disposal,
amongst the others materials, individual written texts concerning: non-mathematical activities

performed in the "experience fields"; mathematical problem solving contextualized in the

"experience fields"; decontextualized problem solving. For each child belonging to an
"observation class" we collect, during five years, about 1000 written texts (about 1 each day)
About 40% of these materials concerns (partly or completely) mathematical activities.

3.Posing the research problem

The structure of the project and the materials we collect in the "observation classes" allow us to

perform some systematic analyses concerning the development of general problem solving
skills and the influence of the "experience fields" on it.However,it is necessary to distinguish
carefully the analyses which may really give a reliable insight to the questions considered For

instance,the materials at our disposal allow us to establish when and in which context some
skills appeared in written form,for the first time,in order to study the transfer to other contexts
and situations, and so on.Then we must focus on the skills whose development we wish to
analyze.With regard to the hypotheses quoted in the introduction, we must choose skills
involved both in non-mathematical and mathematical problem solving activities (and, in this
case, in contextualized and noncontextualized situations).For a first longitudinal studyd
consider in this paper some skills concerning "generatina_and managing hypotheses in problem
solving " in order to ascertain the influence of the context.of the content of the problem situation

and of the teacher's request on their appearance and transfer These skills may be described in
more detail by considering the following two kinds of performances:

TRIALS-type performances : the pupil makes (heuristic) trials and,after analyzing their
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outcome, plans the following activities, in order to reach the solution ( "./ make the assumtion

that...; than I see that...; and so 1 must take...")

BONDS-type performances : the pupil discovers the bonds inherent to the problem situation

and builds a strategy leading to the solution according to these bonds ("I must take into account

that...; and then if ....else...")

These kinds of performances are relevant in many problem solving situations (Ferrari,1989),and

their importance is growing in the computer age.As we will see in the examples,frequently both

performances need to be taken into account in the same problem solving process and in many
cases they are interwoven.

The requests activating the production of the written texts, which reveal the skills we are
considering, may be of three kinds:

(VD) Verbalizing the reasoning "During" the performance(" write down what you are thinking ")

(VA) Verbalizing the reasoning immediately "After" the solution has been attained ("relate about

your resolution of this problem")

(VG) Verbalizing a "General" method of resolution (" explain to a friend of yours how he may
solve this problem")

It is necessary to point out the fact that under one of these requests many children combine

elements referring to the others.For instance in the texts produced under a (VG)-request they

frequently combine (VG) -pieces and (VA)-pieces (especially if children have already solved the

problem in a particular case),In the texts produced under a (VD)- request they frequently insert

(VA)-pieces (because many children prefer to get a partial solution and then to relate upon the

method utilized to get it).We may observe also that in the same problem situation the nature of

the request may pull towards TRIALS-type or BONDS-type performances: in many problem

situations a (VG)- request pulls towards BONDS-type performances which are less important
under a (VD)- request.

As typical problem solving situations demanding the skills we are considering,we may quote
(from our project):

(EXAMPLE 1) To set a wood table in an horizontal position over an "irregular" ground,
utilizing a spirit level.. It is a problem situation which only partially refers to mathematics ( it

will be classified later as a "mixed situation"); in our project this problem situation is
contextualized in the "experience field" of the "sun shadows"; TRIALS-type and BONDS-type

performances are required, the latter especially under (VG)-requests.

(EXAMPLE 2) To relate upon an experience of production in the classroom, demanding to
perform some "controls" and choices consequent to the outcomes of these controls. It is a
problem situation without (or with poor) mathematical content, contextualized in the experience

field of the "class productions", and relevant especially for BONDS-type performances
(particularly under a (VG)-request: "write down the recipe to prepare the cake...")

(EXAMPLE 3) To divide an expense (like 107000 liras) amongstsome children (for instance,
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34 pupils) : before a written calculation technique has been taught, this problem situation (of

mathematical content) demands TRIALS-type performances (Boero, Ferrari & Ferrero,1989);

the problem may be posed as a completely noncontextualized one,or as a question naturally

contextualized in the classroom activities.

Referring to these examples and to the conceptual tools which are utilized during problem

solving processes, we may distinguish (but see also §6 ) three kinds of problems:
"non-mathematical problems", like in EXAMPLE 2; "mixed problems", like in EXAMPLE 1;

and "mathematical problems", like in EXAMPLE 3 .

4.Available materials and utilized materials

I have considered the individual written texts collected in four "observation classes" (73 pupils)

followed by the same teachers during the school years 1983/84 to 1988/89 . I have restricted my

analyses to grade 11,111, and IV (where the activities aiming to develop hypothetical reasoning are

more frequent), and to written texts referring to mathematical and non mathematical problem

situations in which TRIALS-type and/or BONDS-type performances are demanded. With these

restrictions, I have taken into account 5510 texts referring to 128 problem situations (many of

them common to 3 or 4 classes) which may be classified as follows: about 75% contextualized in

some "experience field"(and 25% non-contextualized); about 32% of non mathematical type;

about 20% of mixed type; about 48% (23% contextualized, 25% non-contextualized) of

prevailing mathematical type. All the non-contextualized problem situations are of mathematical

type.This distribution is almost uniform for every grade and for every class considered,and

almost uniform during each year.This "uniformity" may be explained by the fact that the

classes adopt the same project and that the project maintains, at every grade, an equilibrium

amongst the different kinds of activities we are considering.

On every written text considered the teacher noted the conditions in which it was written. The

texts were produced during the first or the third phase of the usual work of our classes on a

given problem situation:

phase I:individual work,with individual writing of a text (under requests of VD,or VA,or VG-

type) ; we will refer to these texts as "Autonomous Without Discussion" (briefly, AWD-) texts

- phase II: discussion of the strategies proposed by some pupils (who illustrate them to the other

pupils); if there are no valid strategies,the teacher gives some suggestions and points out the

inadequacy of the proposed strategies

- phase III: individual work, with individual writing of a text.The pupils having already

produced a good AWD-text are asked some further question (not considered for the aims of this

analysis); the others pupils produce "Autonomous After Discussion" (briefly, AAD-) texts, or

need the individualized support of the teacher in order to produce " Supported texts"

- phase IV: comparison,correction and enregistration on the individual "copybook" of the whole

work performed in the classroom on the problem situation considered.Incidentally [ observe that

the analysis of these "copybooks" may be very useful to reconstruct, after some years, the

conditions in which the texts at our disposal were written and to complete any information
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eventually lacking or ambiguous on the written texts collected.

Examining with the teachers (M.G.Bondesan,A.Carlucci,E.Ferrero, G.Pontiglione, A.Rondini)

the records of the 73 pupils ,we excluded 8 pupils for the following reasons:1 was frequently

absent at grades II and III and followed the activities of another class during five months in

grade IV; 3 had a record containing many scarce and/or confused "traces" (expecially in grades

II and 110;4 revealed a complete mastery of hypothetical reasoning in mathematical and non

mathematical situations already at the beginning of grade II.

Considering the other 65 pupils,we had 4975 written texts at our disposal; by eliminating 1312

texts (unintelligible; or too scarce; or containing strategies not aimed at solving the posed

problems- the greatest majority of these texts were "Autonomous Without Discussion" texts), I

considered the remaining 3663 texts.It must be pointed out that these texts may contain "good"

strategies, or also partly wrong resolutions The reason for this choice is the fact that a partly

wrong resolution may contain a good approach to hypothetical reasoning .

TABLE 1 gives some information about the distribution of the texts which have been taken into

consideration for the following analyses. The percentage is evaluated on the data of each line.

TABLE 1 distribution of the 3663 written texts utilized (65 pupils)

CONTEXTUALIZED

NON MATH.PROB.

(32%)

PROBLEMS

MIXED PROB.

(20%)

MATH.PROB

(23%)

ON CONTEXT.PROBL

(MATH.PROB.)

( 25%)

kWD-texts 463 (35.5%) 298 (22.8%) 283 (21.7%) 261 (20.0%)

k AD-texts 452 (36.0%) 265 (21.1%) 261 (20.8%) 278 (22.1%)

upported

texts

326 (29.6%) 210 (19.1%) 268 (24.3%) 298 (27.0%)

It may be observed that the first line contains only 1305 texts, with a distribution which leaves to

mathematical problems (48% of the total) only 41.7% of the texts; in fact, mathematical
problems (especially the non contextualized ones ,25% of the total) give a larger contribution to

"scarce" or "completely wrong" strategies). It must be pointed out,however,that
non-contextualized mathematical problems are generally not more "difficult" (as far as the

mathematical concepts and procedures involved are concerned) than the contextualized problems

proposed at the same time.Then we find here a first element which indirectly supports the

hypothesis that the "content" and the "context" of a problem situation influence the quality

(autonomy..) of the performances related to hypothetical reasoning.

5.Some analyses performed and their results

We tried to get information pertinent to the problem posed in § 3 from the 3663 selected texts.
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A first analysis was performed on the first occurrence of an hypothetical reasoning
(TRIALS-type or BONDS-type performances) in the "Autonomous Without Discussion"

(AWD) -texts fa in the "Autonomous After Discussion" (AAD)-texts produced by the

pupils.The data obtained is shown in TABLE 2 (2 pupils out of 65 had never produced an

hypothetical reasoning in problem solving activities up to grade IV):

TABLE 2 : first occurrence of hypothetical reasoning

CONTEXTUALIZED

NON MATH.PROB.

PROBLEMS

MIXED PROB. MATH.PROB.

NON-CONTEXT.PROB.

(MATH.PROB.)

AWD-texts

AAD-texts

Some remarks:

7

23

4

13

2

10

0

4

- the 13 pupils of the first line are all considered by their teachers to be "good problem solvers"

in any kind of problems

- amongst the 50 pupils of the second line,we have considered the 19 pupils who needed more

than 3 individualized interventions (registered in "supported texts") before producing an

AAD-text revealing the presence of hypothetical reasoning; they are considered to be "poor

problem solvers" by their teachers.They produced their first hypothetical reasoning in a

non-mathematical contextualized problem in 12 cases, and in a non-contextualized
(mathematical) problem in 2 cases.

Another analysis was performed on the 59 pupils (out of 65) who produced an AWD-text

revealing the presence of hypothetical reasoning before the end of grade IV

TABLE 3 : first occurence of hypothetical reasoning in AWD- texts

CONTEXTUALIZED PROBLEMS

NON MATH.PROB. MIXED PROB. MATH.PROB.

NON-CONTEXT.PROB.

(MATH.PROB.)

AWD-texts 28 16 13 2

We have also performed an analysis about the time delay separating the first hypothetical

reasoning performance from the transfer to other kind of situations in which it occurred; we got

the following results:

transfer from "non- mathematical" to "mathematical" problems in AWD-texts: 26 cases ; mean

value of the delay, 3.4 months (standard deviation: 1,4 months);transfer not realized in 2 cases

- transfer from "contextualized" to "non- contextualized" problems in AWD-texts: 45 cases; mean

value of the delay: 7.1 months (standard deviation:3.1 months);transfer not realized in 12 cases

Other analyses performed concern:

the age at which pupils,on average, reveal for the first time an hypothetical reasoning in an
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AWD-text (63 cases,adding the 4 cases already revealing the mastery of hypothetical reasoning

at the age of 7,evaluated with the age of 7) : we have found an age of 8 years and 5 months,

with a standard deviation of 8 months

- the kind of requests under which pupils produce their first written hypothetical reasoning : for

the reasons considered in § 3, it is not easy to answer this question; considering only 28 pupils

producing a text perfectly coherent with the kind of request, we see that in 24 cases the request

"forcing" the hypothetical reasoning is a (VD)- or an (VA)-request .This result may be explained

in two manners: by the fact that in our classes the (VG)-requests are more frequent at the IV

grade than at the II grade; and/or by the fact that the (VG)-requests are more" difficult" than the

others (pupils need to take into account also "cases" not experienced while solving the problem

in a particular situation).

6.Discussion

The results seem to prove that:

i) the classroom work contextualized in the "esperience fields" of our project anticipates (in

comparison with non-contextualized problem situations) the development of the skills of

hypothetical reasoning considered in this paper.This result agrees (for those problems
demanding TRIALS-type or BONDS-type performances) with the general results quoted by

Lesh (1985) concerning the success of good problem solvers "experts" in a given domain "who

tend to use powerful content-related processes", and the failures of pupils "who do not have
relevant ideas in a particular domain".

ii) the classroom work in non-mathematical,well contextualized problem situations favours

some anticipation in the development of hypothetical reasoning in comparison with problem

situations strongly referring to mathematical contents

Possible limitations to these results may depend on:

the arbitrary classification of problems,both concerning the distinction between
"mathematical", "mixed" and "non-mathematical" situations, and the distinction between

"contextualized" and "non-contextualized" situations (for instance,a problem like EXAMPLE 3

in § 3 may be proposed as a "contextualized" problem in a class working on "class
productions",or as a "non-contextualized" problem one month later...but children may easily

refer the problem to their past experience...).This limitation appears to be intrinsic to the
research.

- the small number of pupils involved (but this limitation might be overcome by extending the

analysis to the other "observation classes" of our group); I observe however that all the results of

the analysis performed on this group of 65 pupils agree with i) and ii)

- the "didactical contract " (Brousseau,1984) taking place in the non- contextualized situations ;

often they are "evaluation tests",and then many pupils consider them in any case as "evaluation

tests" (also if they are proposed without this aim); this might reduce the "acceptance of risk"

which favours the TRIALS-type performances . However we observe that many pupils do not
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transfer the skills already extensively revealed in contextualized situations of lower level of

difficulty to non- contextualized situations

- evaluation of the solving strategies: generally the evaluation is not difficult for the good
problem-solvers ; on the contrary, it may be arbitrary in many cases concerning the low level of

the classes (confused verbal "traces", interference of suggestions coming from the schoolmates

- interpretation of the verbal productions of pupils: generally the syntactic analysis of the verbal

"traces" of the solving strategies is not sufficient to ascertain the presence of an hypothetical

reasoning (which frequently is expressed without an hypothetical period); then it is necessary to

make a semantic type analysis,and this implies (in some cases) rather arbitrary choices.

Keeping these limitations in mind, the internal coherence of the results of the analysis
performed, in agreement with the "impressions" of many teachers of our group who have

observed the same phenomena in their classes , and the external coherence with the results of

other researches on problem solving seem, however, to enhance the validity of the conclusions

(i) and (ii).The next step of the research will be to deepen the analysis of the factors which allow

the "experience fields" to act on the development of the skills concerned in this paper : my

present opinion is that the "motivating" factor is not the most important one, and that ,on the

contrary, to discover the most relevant factors it is necessary to analyze the mental processes

which bring the pupil to a total mastery of the "experience fields" .In any case, the impact of this

kind of research on mathematical education is not negligible, due to the fact that TRIALS-type

and BONDS-type performances are of great importance for problem solving with the computers;

and that most of the problem situations proposed to pupils in our primary school are of
non-contextualized, mathematical type.
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COGNITIVE DISSONANCE VERSUS SUCCESS AS THE BASIS FOR
MEANINGFUL MATHEMATICAL LEARNING

Nerida F. El lerton and M.A. (Ken) Clements

Deakin University, Australia

Abstract
Cognitive dissonance theory has often been advocated as a guide to
mathematics teachers iruerested in creating stimulating learning environments
for their students. This paper contrasts cognitive dissonance theory with the
success-based theory of Karmiloff-Smith, and argues that the latter theory is
more compatible with natural learning environments in the mathematics
classroom. A case study which involved 28 pupils and 2 teachers in a
primary school is outlined. The natural learning environment created by the
teachers enabled significant worthwhile mathematical learning to occur -
learning that contrasted with that arising out of more traditional mathematics
classroom environments.

Learning as a Result of Cognitive Conflict Versus Learning Based on Success

Cognitive Conflict Theory

There is a considerable body of data supporting the idea that children best learn mathematics

by being exposed to their misconceptions before actively resolving their inner cognitive conflict

(see, for example, Bell 1986; Bell and Bassford, 1989). Typically, Piaget's equilibration
principle, with its twin notions of assimilation and accommodation, is called upon to provide a

theoretical basis for this conflict-resolution theory. Concerning the role of the teacher, Piaget

(1975) himself wrote:

The teacher as organiser becomes indispensable in onder to create the situations, and

construct the initial devices which present useful problems to the child . . . he [the

teacher] is needed to provide counter-examples, that compel reflection and
reconsideration of over -hasty solutions. (p. 16)

Vygotsky's (1986) notion of a zone of proximal development is also invoked to support the

theory (see, for example, Brown and Campione, 1984, pp. 145-146). The zone of proximal

development is said to refer to the distance between the level of performance the child can reach

unaided and the level of participation the child can accomplish when guided by someone else

who is more knowledgable in that domain. For a particular child in a certain domain, this zone

may be quite small; that is to say, the child is not yet ready to participate at a more mature level

than his/her unaided perfomance would indicate. For another child in the same domain,

however, the zone of proximal development can be quite dramatically large, indicating that,

with teacher assistance, and sometimes minimal assistance at that, the child can participate much

more fully and maturely in the activity than one might have supposed. In traditional terms,
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these are notions of "readiness," and Vygotsky's theory is invoked to justify the teacher
manipulating a learning environment so that the child will experience cognitive dissonance and,

as a result, move rapidly within his/her zone of proximal development.

Learning Mathematics Naturally

Michael Cole and his colleagues (Laboratory of Comparative Human Cognition, 1983) have

appealed to Vygotskian theory to develop a theory of learning which differs from cognitive

conflict theory. Focusing on Vygotsky's notion of expert scaffolding, and in keeping with his

long-standing in "natural learning," Cole points out that children of many cultures are initiated

into adult work-activities gradually, and without explicit instruction. The adults simply get on

with doing their work, and the children participate, first as spectators, then as novices
(responsible for very little of the actual work), and then increasingly as maturing participants.

They become capable of performing more complex aspects of the work that they have seen

modelled by adults many times before (Brown & Campione, 1984, p. 146). In this situation,

the main agenda is the natural one of getting the task done, and the idea of helping children learn

is less important than the work activity itself; there is no suggestion of a teacher-learner
relationship in the situation, yet the natural learning environment is powerful, perhaps even

more powerful than a cognitive dissonance teacher-guided environment.

Mathematics educators have long taken the idea of a natural learning environment for

mathematics seriously (see Clements & Del Campo, 1987, pp. 4-39), and there is evidence to

support the osmosis theory of mathematics learning (Ellerton, 1988). It needs to be recognised,

however, that the natural learning thesis differs sharply from cognitive dissonance theory. As

Pe led and Resnick (1987) pointed out:

The natural-environmental approach suggests that understanding of a concept

emerges from dealing with real world situations; therefore the exemplifications

should be the situations themselves, rather than a representation of the abstract
mathematical entities. The structural approach, on the other hand, treats the
abstract mathematical entities and their mathematical senses as the reference of the

exemplification. Real world situations, according to the structural approach, should

be introduced instructionally only after the formal system has been established.
(p. 185)

Pe led and Resnick (1987) went on to argue that the natural approach is not necessarily superior,

from a learning perspective, to the more structured approach. They outlined an investigation in

which they defined numbers and operations first, and only later introduced real world situations

(p. 189).

Success rather than cognitive dissonance as the basis of learning. The cognitive
developmental psychologist, Annette Karmiloff-Smith, is another who has questioned some
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aspects of the cognitive dissonance theory of learning. Karmiloff-Smith (1984, p. 40) has
argued that neither failure nor economy are the major motivations of developmental change. In

her view, cognitive change, in an individual, stems from a constant motivation for control, both

over the external environment and over one's internal representations - in this respect she is in

line with cognitive dissonance theory. However, she focuses on the gradual process of gaining

such control, demonstrating how children spontaneously go beyond initial success, achieved

through their adaption to environmental feedback, to working subsequently on their internal

representations as a form of problem solving in its own right. Success, and not failure, she

argues, is the essential prerequisite of fundamental developmental change; in fact, failure is

rarely the prerequisite of representational change. According to Karmiloff -Smith (1984):

Failure generates behavioral change during which the system evaluates, and

narrows the distance between, the child's goal and the child's present output. By

contrast, representational changes are the result of representational
reorganizations, the prerequisite for which is not failure, but procedural success.

(p. 40).

Thus, Karmiloff-Smith (1984, p. 40) claims, "once children have obtained a robust initial
success, they go beyond it and try to understand why certain procedures are successful,
unpacking what is implicit in them, and unifying separate instances of success into a single
framework."

Cognitive Conflict Versus Success-Based Mathematics Classrooms

The previous discussion outlining the differences between learning theories based on
cognitive dissonance and "success" theories has important implications for mathematics
classrooms.

Cognitive dissonance classrooms. In these classrooms, it is the role of the teacher to arrange

for learners to experience cognitive conflict situations at just the right time. It follows that

teachers need to be constantly assessing what experiences need to be provided for different

learners, and trying to ensure that the appropriate conditions for these experiences are present in

the classroom.

A likely consequence of the cognitive dissonance approach is that teachers will make most

of the decisions concerning what, how, and when individual children should learn. In such

circumstances, it could hardly be claimed that the children "own" what they are learning; rather,

the teacher and the textbook writer are likely to be seen by the students as the controllers of their

mathematical destinies. The quest to understand becomes an individual pusuit, and is therefore

more likely to be a competitve, rather than a collaborative act.
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Success-based classrooms. Here it is likely that teachers will be more accepting of what

students do. Consequently, adult-imperfect responses will be accepted as appropriate provided

they are consistent with perceived cognitive growth. The teacher's focus will be more on what

children can do, and less on what they cannot do. The classroom environment is likely to be

closer to a so-called "natural" learning environment. In a success-based classroom, the teacher

will not feel the need to assess constantly what the child is ready to learn, or what conflict

situation needs to be imposed to ensure maximum learning. Therefore, learning from other

children, both through the process of osmosis and through discussion, is more likely to take

place. The "ownership" of knowledge is not seen as resting with the teacher or the textbook,

and the quest to understand can be seen as deriving from a combination of individual and group

activities.

Strathbogie Primary School: An Example of a Success-Based Mathematics Classroom

Videotapes were made of 28 children, aged 5 to 12, involved in mathematical activities with

two teachers in two composite grades (covering the whole range of early childhood and primary

schooling) in a small rural school in Strathbogie in north-eastern Victoria. The teachers (one

male, one female), each with eight ye.ars' teaching experience, were totally committed to a

success-based approach. Our observations of the children doing mathematics in their
classrooms convinced us that, not only were the teachers respected by the children, but the

children realised that they themselves were responsible for their own learning of mathematics.

The children themselves decided what aspect of mathematics they would investigate on any

particular day, whether they would work individually or in a group, whether they needed
equipment, what books they wouli use, and how they would record their findings (no student

questioned the need to record). The students also decided whether they wanted to consult with

their teacher about what they were doing.

Importantly, both teachers believed that their role was to be seen doing mathematics that was

relevant to them (i.e. the teachers) personally (see Waters & Montgomery, 1989, for a more

detailed statement of how the teachers saw their role). They worked quietly on their own

mathematical problems (on a particular day, one teacher worked on the costing for a school

camp that was imminent, and the other on the meaning of the Richter scale for earthquakes).

The children did not expect the teachers to move around the classroom asking them questions.

There was a definite impression that they, and not the teachers, owned the mathematics they

were doing.

We interviewed some of the children on videotape, and in every case their responses were

delightfully fresh, creative, and unihibited. They were unashamed of learning from others either

by questioning or by observation; there was no sense that it might be "cheating" to watch how

someone else approached a problem.

We do not wish to give the impression that initially, at least, some of our observations did

not cause us concern. We wanted to correct the child who consistently reversed digits (though

she read them correctly); we wanted to intervene and create cognitive conflict (in fact, we
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attempted to do so on a few occasions); and we continually asked ourselves "how well do these

children know their basic mathematical facts?"

Yet, on reflection, we are certain that, if we had attempted to find out how well the children

their basics by administering a standard, norm-referenced, pencil-and-paper test of basic
mathematical skills, we would have been raping a system which had given children confidence

to explore, to ask, to cooperate, to feel comfortable, and to learn mathematics. Probably, such a

norm-referenced test would have found the class below the mean. However, we believe that the

international mathematics education research community needs to question the validity of such

an assessment for classroom situations such as the one we have described. Validity, of course,

is related to objectives, and we believe that a willingness to explore, ask, and cooperate in

mathematics, and a spontaneous enjoyment reflect higher order objectives than do skill-based

objectives.

The Teachers' Perceptions of their Task

In a jointly authored article about the Strathbogie mathematics program, the two teachers

commented that they had drawn together what they knew about learners and what they knew

about mathematics in developing strategies aimed at assisting the children in their care to

become better mathematicians (Waters & Montgomery, 1989, p. 81). In describing the
program, they explained that some children work in pairs or in groups, but most work
individually; there is constant discussion, often between an older and a younger child. The

children ask each other for assistance regularly, and usually "some children are working in the

classroom, some in the corridor/kitchen area, some are in the office, and some are outside" (p.

82). After stating that the children generated their own mathematical tasks, the teachers gave

examples of activities that took place. These included:

* Drawing shapes with a ruler and measuring the corners with a protractor (Tristan, aged 6)

* Measuring the dimensions of a football (Jason, aged 7)

* Trying to cram a matchbox with the maximum number of different items (Roslyn, aged 11)

* Using a bead-frame to record sets of counting (1, 2, 3, ..., 10) while timing a minute using

a stopwatch (Ben aged 6, and Shannon aged 7)

* Writing a description of what is understood of a short division algorithm (Loretta, aged 10)

* Measuring the distance from one set of goalposts to the other [in the school grounds]

(Maren, aged 6)

* Making a scale model of the monkey bars using wire (Robyn aged 9, and Terry aged 10)

* Recording subtraction equations that give a negative number display on a calculator (Ryan,

aged 7)

Waters and Montgomery (1989, p. 81) added that at 10.30am the children pack their equipment

away and write individual descriptions of their work. The teachers also do this.

BEST COPY AVAILABLE
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Among a series of individual "snapshots" provided by Waters and Montgomery (1989, p.

84) was the case of Bernadette, aged 11, who wanted to investigate how much burning time

one box of matches would provide. She worked at the sink with a box of matches, holding one

match at the very end with a pair of tweezers. For a while she experimented, lighting some

matches and seeing them burn. She then asked Roslyn (aged 11) to help her for a few minutes.

Bernadette had Roslyn used a stopwatch to time the burning of one match. There was much

discussion over when to start and stop timing. "From the time the flame starts till the time the

flame dies." They ran five trials, and Bernadette recorded each time.

Bernadette took her workbook back to the classroom. She had five various burning times

between 31 and 33 seconds. She used these two measurments as minimum and maximum
burning times, and disregarded the other three times. She then multiplied both numbers by 50

(there are 50 matches in a box) using a standard algorithm. To convert her answers from

seconds of burning time to minutes, she divided both numbers by 60. To do this she used a

calculator. Bernadette found that a box of matches has a burning time of between 25.83 and
27.50 minutes.

After this, Bernadette wrote about the mathematics she had done. "Today I burnt a match

right to the bottom with a pair of tweezers, and timed it to find out how long it would take to

burn a whole box of matches, one after the other. "33 x 50 = 1650, 31 x 50 = 1550."

At the conclusion of their article on the Strathbogie mathematics program, the two teachers

said they believe that to be mathematics teachers, they must be practising mathematicians. That

is why they themselves always do their own mathematics alongside their students. By doing

this, they model both the scope of the mathematics course, and what it is to be a healthy learner

of mathematics - self-motivated, self-directed and self-regulated. They said that they attempt to

create an atmosphere that is "risk-free": learners' attempts are valued. When their pupils talk to

them about mathematics, they are particularly interested in whether the pupils:

- see themselves as mathematicians;

want to take responsibility for their own learning and to make sense of what they

are learning;

- use mathematics frequently without inhibition

believe that making mathematical sense of the world, and learning more

mathematics isn't hard work, but is engaging and exciting;

- are willing to seek help from the Strathbogie Primary School community of

mathematicians (pupils and teachers) which responds to their challenges,

frustrations and successes (p. 85 )
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A Concluding Comment

Recently we claimed that "despite the universal rhetoric about school mathematics being

integrally linked to scientific, technological and economic development . . . the main lesson
learned by most school leavers after year of being forced to study mathematics is that they can't

do it" (Ellerton & Clements, 1989, p. vii). It is possible that all around the world there needs to

be a reconceptualisation of what school mathematics should be about (the "why"), what
mathematics should be studied in schools (the "what"), how it should be presented and how it

should be assessed (the "how"). Our observations of mathematics being done in a small rural

school, some of which we have captured on video (Ellerton & Clements, 1990), suggest that a

success-based theory of mathematics learning, linked with "natural" classrooms, might offer

children far more, so far as their future mathematical growth is concerned than do traditional

cognitive-conflict, teacher-textbook-owned approaches to school mathematics.

Perhaps there needs to be a whole new approach to mathematics curricular design (see

Steffe, 1989). We are concerned that mathematics teachers and educators around the world,

bolstered by the high status accorded to the subject they teach, have burried their heads in the

sand and therefore remain oblivious to the irrelevance of an adult-defined, adult-monitored,

adult-assessed, middle-class, largely male-inspired school mathematics agenda.
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TIME AND HYPOTHETICAL REASONING IN PROBLEM-SOLVING
Pier Luigi Ferrari, Dipartimento di Matematica, University di Genova, Italia

Hypothetical reasoning plays an important function in problem-solving and, in particular, in

resolution processes of complex problems. Many clues suggest that hypothetical reasoning

cannot be analysed without taking into account the role of time. For example, I have

observed that the 'if P then Q' construction has, for children, a meaning which is contiguous

to the meaning of constructions such as 'when P, Q' and, in problem-solving, the ordering

of the steps of the solving procedure is related both to time and logical consequence.

I try to explain the role of time in hypothetical reasoning as regards both the interplay

between the logical and the chronological structure of events and the situations which allow

a more frequent production of hypothetical reasoning. This may be related to some findings

regarding the role of space-time representations in problem-solving.

1.Introduction
In (Ferrari, 1989] I discussed the role of hypothetical reasoning in problem-solving at the

age of 8-10. It seems to be crucial as regards relatively complex problems, which need the

construction of a strategy with 2 or more steps. Examining more closely this issue I have

observed a lot of phenomena which emphasize the importance of the variable 'time' in problem

situations and the role of children's mental time when constructing a procedure. In particular,

many clues suggest that the management of hypothetical reasoning is strictly related to the

management of mental time by the child.

At this regard, out of the phenomena I have noticed, I report:

al) Children very often use connectives related to time (as 'when', 'till when' and so on) in

order to denote hypothetical reasoning.

a2) In most of arithmetical word problems with all necessary data explicitly given in the text

of the problem, children, when asked to record 'a posteriori' their procedure and reasoning,

perform it with a wide use of other connectives related to time (as 'then', 'so', 'after' and so

on), but without explicit hypothetical constructions.

a3) The situations in which the explicit production of hypothetical reasoning seem more

frequent are those which allow the children to reflect about their own (or other children's)

reasoning and to work in conditions of cognitive detachment. Situations like those allow

children to use time freely as a basis for simulation (leaving from real time).

These observations are included in a wider frame of phenomena regarding the role of time in

problem-solving. I am not going to examine them closely in this report but I shall refer to them
on many occasions:

b ) more or less 'expanded' management of problem-solving strategies (in particular,

division strategies); the child, after understanding an algorithm, uses it without reconstructing

in his mind the 'expanded' procedure which has generated that algorithm (e.g. the Greenwood
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algorithm for division, which in our curriculum is introduced as a natural outlet for more and

more organized and effective trial-and-error strategies see [Boero, Ferrari, Ferrero, 1989]).

In this way there is a sort of time-contraction which seems to affect even children's
reasonings as they are expressed.

b2) Specific difficulties children usually get into in problems involving time as a physical

variable and correlations between problem-solving skills and space-and-time-managing skills.

The main aim of this report is, in short, to explain the role of time in hypothetical reasoning

as regards both the interplay between the chronological and the logical structure of events and

the situations which allow a more frequent production of hypothetical reasoning (in
a 'spontaneous' and explicit way). As far as this last aspect is concerned, I shall refer to some

findings regarding question b1 related to the effects that the contraction process seems to

generate on children's behaviour, on the management of problem-solving procedures and even
on the kind of reasoning recorded.

2.The context
In this section I provide some information essential to understand the paper. A further

information on the educational frame in which the research is included can be found in
[Boero,1988], [Boero,1989], [Boero - Ferrari Ferrero, 1989], [Ferrari, 1989].

In our project, 'experience fields' are strongly stressed; in particular problem-solving is dealt

with mainly in 'experience fields% children are often asked to build, in a context providing

meaningful constraints, strategies in order to calculate arithmetical operations (as division) and

the management of trial-and-error strategies is strongly enhanced.

- A. wide space is assured for activities such as verbalizing, reflecting on the meaning of

connectives (if...then..., while, whereas, when, till when, ...), analysing and describing
complex machines and procedures.

The didactical context provides, anyway, many occasions of cognitive detachment, as, for

example, when comparing different strategies or distinguishing between "how the machine
works" and "how we can use the machine",...

3. Methodology of the research
We have a lot of materials from 'observation classes' (from which we gather, from grade 1

to grade 5, all texts individually produced by each child) and 'assessment tests' (administered at

the half and at the end of the school-year) from alla the classes. As regards connectives, most of

the protocols are 'spontaneous' productions by children. By 'spontaneous' we intend to refer to

texts produced freely by the child, without any direct intervention by the teacher or his
schoolfellows, but in a learning context which is planned to guide him towards a wide usage of
complex syntactical constructions.

197 186



When examining children's 'spontaneous' productions it is necessary (as will be shown) to

deal with the problem of the relationship between children's thought and the text which

represents it.

Furthermore, when selecting and analysing children's spontaneous productions, it is

necessary to take into account the time when verbalization has been performed; particularly,

when the verbalization is performed while a problem is being solved, a wider presence of
hypothetical reasoning and other syntactically complex forms has been observed; if it happens

after a resolution procedure has been found, I have observed a great amount of sequentially-

structured texts, with a wide usage of connectives as 'so', 'then', 'hence', ..., which are
referred to both time-ordering and logical consequence. The ways in which the verbalizations

are usually elicited fulfils the conditions stated by Ericsson & Simon [1980] not to affect child's

mental process.

As regards the kind of materials, I have selected and analysed:

- normal working protocols, referred to situations in which the child is at ease but may be

influenced by the teacher, on the ground of verbalization, since in our curriculum in some

occasions the teacher 'lends the words' to the child in order to support him in expressing his

thoughts.

- assessment protocols, which are produced in somewhat unnatural situations but are useful,

related to the usual working conditions in class, to analyse children's behaviour without direct

and immediate influences.

In this study I shall refer to these materials:

m1) materials related to arithmetical word problems, with verbalization performed by

children while (possibly with a tape-recorder) or after solving a problem.

m2) written descriptions of everyday-life processes (e.g. how to prepare a coffee) and of the

working of a machine (e.g. a slot-machine);

m3) reports of discussions performed in class about the strategies each child has built in

order to solve a problem (not necessarily a standard problem);

m4) non-numerical word problems administered as assessment-tests at the end of primary

school;

m5) non-mathematical texts (e.g.: "Describe everyday-life in the Middle-Ages and tell if you

would like living in the Middle-Ages").

The study will refer to materials selected among those produced in 2 classes of grade 4 and 2

classes of grade 5; for any grade considered there is 1 class from the suburbs of a big town and

1 class from a little town in the neighbourhood of another big town. Nevertheless, part of the

findings I am going to present are supported by a greater amount of data, as it will be specified
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everytime. For example, the findings related to materials m1 are supported by data from about

20 classes.

4. Some data from the analysis of the protocols
In various situations children use connectives as 'when', 'till when' and so on to express

hypothetical reasoning:

a) When describing the working of complex machines (e.g. a slot-machine ) children uses

either 'if... then...' or 'when' to express conditional controls; this seems not to be random,
because to test each coin all children who insert a conditional control at that step use the form

'if... then...' ( "if the coin is 'good', the machine ..."), whereas to test the total amount of the

coin already inserted some 80% of the children who insert a conditional control use 'when'
("When the amount of the coin inserted is 400 lire, the machine ..."). Such a different usage
might be accounted in relation to the different meanings the two controls assume for children.

But it is not possible to claim certainly, without further evidence, that the usage of different

linguistic forms is a signal of different ways of thinking, even if many of the materials I have

examined seem to exclude that the usage of either of the forms should be random. The problem

of the relationship between children's thought and linguistic forms they adopt to report them
will not be examined closely in this report.

b) When describing other processes (e.g. the preparation of a cup of coffee) about 40% of

the children uses almost once constructions such as "when P, Q" or "P till when Q" (e.g.,
"when the coffee-pot is ready, put it on the fire" or "put water into the coffee-pot till when it is

full"). About 40% uses almost once 'if P then Q' (e.g. "if the water is not yet boiling, wait a
bit"). About 15% of the children (all good problem-solvers) use both constructions. These

children, when take into account the final amount of coffee use 'if...then...' ("if the coffee is
not enough, 1 must put more water, if it is too much 1 must put less water"), whereas 'when' is
mainly used related to more 'intrinsic' steps of the process, which are more difficult to master
from the outside ("when water boils, / must put the fire out"). About 35% of the children
(generally, poor problem-solvers) do not use any of the constructions I have mentioned, not
making explicit any conditional control but introducing constraints in other ways (e.g. "you

rnuct put enough of water into the coffee-pot, in order to prepare the ri2ht amount of coffee").

c) The same children of example 1 and 2 have been invited to describe the aspect of Middle-

Ages everyday-life most striking for them, and to tell if they should like living in the Middle-

Ages. About 50% of the children uses properly the 'if P then Q' construction almost once, and
about 60% uses properly a conditional form with 'when; the first group is contained in the
second. Among children who use either form I have observed that constructions with 'when'

are mainly used to speak of normal or unavoidable facts ("when there was a war, many
peasants would be killed"), and those with 'if...then...' mainly to speak of facts more
dependent on free choice of people or related to everyday-life ( "if a slave did not work, they
punished him").
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d) When discussing in class children's strategies and reasonings, about 80% of them uses

almost once a construction with 'if...then...'. About 45% uses also a construction with 'when'.

A very interesting example is the following. Reporting a discussion (performed in class) on the

criteria proposed by the pupils to know whether a pin picked into a wooden board is vertical,

Simone (a 4th grader, good problem-solver) writes: "It is not true that daze pin is vertical, then

the 'shadow' is long; it is quite the contrary, when the shadow is long, the pin is not vertical."

Here, if the verbal forms adopted by the child reflect his thoughts, it is likely that the first

construction ( "j.[ the pin is vertical... then the 'shadow...") is referred to a proposition to be

falsified and the second ("when the shadow is...") to a procedure to be performed ("everytime

I find a long shadow, I can argue...").

A general remark which can be done correlating the analysis of the protocols with a general

information on the children who have produced them is that the children who never use any of

the constructions mentioned are generally poor problem-solvers.

Related to the linguistic constructions used in the protocols, I have not found significant

differences between 4th and 5th graders.

When solving problems with numbers, explicit forms of hypothetical reasoning can hardly

be found if children already know an algorithm they can apply effectively to compute
arithmetical operations; in conditions like these, in almost all the problems examined, no child

uses explicitly a construction with 'if...then...' or 'when; only a 10% of children uses in more

than one problem constructions such as 'P since Q', which could be related to hypothetical

reasoning. In most cases, the text is organized in an inferential, not hypothetical way: true

statements are inferred from true statements and almost never explicit hypotheses are stated.

The style is mainly procedural: children mainly connect and organize their actions ("then I

do..., and so I find..., after that 1 compute...") and hardly connect properties of objects with

other properties of objects (e.g. number facts). Nevertheless, it is likely that even an inferential

organization of the text may hidden forms of hypothetical thinking.

5. Space, time and hypothetical reasoning in problem-solving
I have found that, in the resolution of problems with numbers, children use widely

hypothetical reasoning when they are forced to invent a strategy to compute an arithmetical

operation (in particular, division). Nevertheless, (as already remarked at the end of section 4)

these forms are no longer used when children can apply more contracted algorithms, which

need not rebuilding every time the complete reasoning, though they can understand the meaning

of what they are doing.

In my report at PME XIII I provided some examples which may contribute to a better

explanation of these phenomena. In example 3 [Ferrari, 1989, p. 262], a child designes a

resolution strategy for a division problem (to represent on a wall of the classroom a given

period of time), organizing, with a wide resort to hypothetical forms, a trial-and-error strategy
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in which the child's spatial representation of the situation play an important function, as well as

the representation of the procedure in a sort of mental time the child can manage quite easily.

Protocols like this suggest that making hypotheses is strictly related to the mastery of mental

time which allows the child to simulate in mind the possible developments of the situation.

Another example is the following: at the end of primary school, children have been asked to

design a general procedure to order alphabetically an arbitrary set of surnames. In the texts

produced by the children I have found a wide presence of reasonings grounded on space and

time, where the spatial representation of words (e.g. written from the left to the right) and the

flexible management of time related to making different hypotheses (in a sort of mental
experiment) play an important function.

The main findings of the analysis of the protocols of the primary school pupils who
experiment our curricular project at this regard are the following:

= all good problem-solvers can design resolution procedures in which space and time

dimensions and their interplay seem to play a major role, and manage very well this interplay in

a sort of 'game of hypotheses';

= the ability of designing resolution procedures with hypothetical reasonings strongly

grounded on space and time is strongly correlated to the ability of dealing, in an effective way,

with problems in which time appears as explicit variable in the text.

With regard to this last finding, Boero, Ferrari and Ferrero [1989] have discussed some

examples of phenomena of this kind; for example, with similar numerical values, it is much

harder for children to state "how many times this has become as big as before" than to state

"how many times this is as big as that", and the strategies adopted are clearly different.

Analogous phenomena have been observed also in the classes of comprehensive school
which experiment the project we have designed for this kind of school.

6. Discussion

From the data and observations reported in sections 4 and 5 the following conclusions can
be drawn:

= Explicit forms of hypothetical reasoning in problem-solving are not produced in a
spontaneous and uniform way, but mainly in particular contexts which can induce 'cognitive

detachment'. In these contexts the child must be able to manage consciously the procedure and

to take into account different alternatives.

= In problems with numbers, the child seems to meet with difficulties in describing objective

relations among the elements of the problem and prefers to describe the organization of his

actions ("I do..., then I compute..., so I find..."). In other words, the relations and properties

among the elements of the problem are implicit in his resolution procedure. Procedures are

customly represented as chronologically ordered sequences of operations, and then it is quite

natural for children to ground their reasoning (and even the 'logical' - or arithmetical or
geometrical ...- relations they may have found) on time. Then a statement such as "I compute P
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and then I find Q" represents both a relation of logical consequence (computing P implies that Q

can be found) and a chronological ordering (before I compute P and afterwards I find Q").

These meanings seem to be joined in the child's mind.

= Also in the descriptions of procedures or of the working of machines there is some
connection among hypothetical reasoning and time. Children who use hypothetical reasoning

clearly seem to prefer 'if...then...' in the situations in which both alternatives are noteworthy

and the control is related to something external to the machine or the procedure. The fact that

slot-machine could refuse a coin (or that the coffee could be not enough, and so on) is a real

possibility for children. The control on the amount of money they have inserted into a slot

machine is not regarded as meaningful before they have inserted all the coins requested: to

insert the exact amount of money, if they have already it in their hands, is only a problem of

time for them. In the same way, a child knows that if he put a coffee-pot on the fire, it must

boil, sooner or later; it is only a question of time.

= The analysis of the texts on the 'Middle Ages' corroborates these results. Also in this

context, among the children who use both constructions, forms with 'if...then...' are preferred

to describe events which may or may not happen (as the premature death of a slave) or
depending upon people's will (as the flight of a slave), whereas forms with 'when...' are
preferred to describe events children regard as ineluctable or more strictly related to time (as

wars, hunting, seasons).

= Two different forms of reasoning, which are referred to the presence of alternative
hypotheses, could be seemingly singled out when analyzing the children's protocols: in the first

form (strongly guided by the context), though in general there are two or more alternatives, the

context allows to single out which is true, and then the others are not even taken into account.

On the linguistic ground, this form of reasoning is verbally represented without explicit

hypothetical constructions. The second form of reasoning can be found in situations in which

both the alternatives must be taken into account. It is clear that the task (e.g. comparation of

different strategies, simulations, ...) or the particular situation (e.g. a complex situation, with

the necessary data not all explicitly given) prevent the 'contraction' of this kind of reasoning

(i.e. the 'evaluation'of the alternatives and the elimination of those which do not happen).

Nevertheless, it seems clear that the important role of time (related to the reconstruction and

development of alternatives) and of the context prevent any identification between the mastery

of hypothetical constructions in verbal language and the formal management of the proposition

'P implies Q' based on classical propositional logic.

= The strong dependence on time and meanings of the management of hypothetical
constructions can contribute to explain some difficulties widely reported in literature about the

learning of conditional sentences (regarded as sentences defined by means of truth-tables) [e.g.

O'Brien et al., 1971; Johnson-Laird, 1975; Markovits, 1986].

In particular, the findings of Markovits on the effect of pictures in some tests on implication

can be regarded in this way, because pictures as far as they neglect time and point out the
statical aspects, may hidden more than verbal language the chronological dimension.

191 202



REFERENCES
Boero, P. - Acquisition of meanings and evolution of strategies in problem solving from

the age of 7 to the age of 11 in a curricular environment, Proceedings PME XII, 177-184,
Vezprem: OOK (1988).

Boero, P. - Mathematical literacy for all: experiences and problems, Proceedings PME -

XIII vol.1, 62-76, Paris (1989).

Boero, P., Ferrari, P.L., Ferrero, E. Division Problems : Meanings and
Procedures in the Transition to a Written Algorithm, For the Learning of Mathematics, 9-3
(1989).

Caron, J. - la comprehension d'un connecteur polysemique: la conjonction "si", Bulletin

de Psycologie, tome XXXII N°341.

Ericsson, K.A., Simon H.A. - Verbal reports as data, Psycological Review vol.87
(May 1980), 215-251.

Ferrari, P.L. Hypothetical reasoning in the resolution of applied mathematical problems

at the age of 8-10, Proceedings PME - XIII vol.', 260-267, Paris (1989).
French, L.A. Acquiring and using words to express logical relationship, from

S.A.Kuczaj & M.D.Barrett (Eds.), The development of word meaning, Springer-Verlag, 1985,

303-337.

Johnson - Laird, P.N. - Models of reasoning, in Reasoning: representation and process

in children and adults, R.J.Falmagne and N.J.Hillsdale eds., Lawrence Erlbaum ass., 1975.

Laborde, C. Longue naturelle et ecriture symbolique, These- d'Etat, University de
Grenoble, 1982.

Lesh, R. - Applied Mathematical Problem Solving, Educational studies in mathematics,
vol.12 (1981), 235-264.

Lesh, R. Conceptual Analysis of Mathematical Ideas and Problem Solving Processes,
Proceedings P.M.E. , 1985, 235-264.

Markovits, H. - The curious effect of using drawings in conditional reasoning problems,

Educational studies in mathematics, vol. 17 (1986) 81-87.

O'Brien, T.C.; Shapiro, B.J.; Reali, N.C. - Logical thinking language and context
Educational studies in mathematics, 4 (1971) 201-219.

Rumain, B., Connell, J., Braine, D.S. Conversational comprehension processes
are responsible for ..., Developmental Psycology, vol.19 (1983), 4, 471-481.

Vygotsky, L.S., Mind in society: the development of higher psychological processes,
Harvard University Press, 1978.

203 192



THE INTERPLAY BETWEEN STUDENT BEHAVIORS AND
THE MATHEMATICAL STRUCTURE OF PROBLEM

SITUATIONS - ISSUES AND EXAMPLES

JRina Hershkowitz Abraham Arcavi
Department of Science Teaching

Weizmann Institute of Science
76100 Rehovot, Israel

In Friedlander et al (1989) we analyzed the mathematical behavior

of seventh graders in generalization and justification processes.
The analysis of the data presented there and additional data led
us to focus our attention on the interplay between aspects of the
mathematical structure of the problem situations we designed and
the spectrum of observed student behaviors in these problem
situations. Our aim is to tackle this issue by analyzing some
epistemological aspects of problem situations in the first part of
this paper. In the second part, we analyze the "traces" of the
mathematical structure of the problems on student behavior.

The epistemological aspect
There are several epistemological aspects in the light of which problem
situations can be examined. We would like to concentrate on the
relationships between single examples of the problem situation domain (and

actions one can perform on these examples), and processes of
generalization and justification. In order to sharpen our description we will
proceed to make a distinction between two "extreme cases".

Type 1 problems.
The general process of justification is based on actions and processes which

are analogous to the processes and actions carried out on one single
example.

Suppose one asks the following question:

"Solve 1/2 1/3= , 1/3 1/4= , 1/4 - 1/5= . Do you observe any pattern?

Can you generalize? Can you justify your generalization?"
The process of formal justification of the general pattern [by means of
algebraic manipulations of 1/n 1/n+1=1/n(n+1)] is completely analogous to

the arithmetic process by which one solves any single example, as follows.
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Single example 1 1 _2_ = 1
7 8 56 56 56

1 - n+ 1 -
Formal justification

_1_
n n+1 n(n+ 1 ) n(n+ 1 ) n(n+1 )

Even when the generalization and justification is not expressed by means of
mathematical symbols, it will still be no more than a reflection of one
particular arithmetical process. In other words, the justification can be
"carried on the shoulders" of the single example, if one just looks at the
single example with "general spectacles".

Type 2 problems:

The processes of generalization and justification in the problem situation are
completely different from the actions on a single example of the problem
situation.

Suppose one asks the following question:

"What can you say about the numbers resulting from the differences between

the third power of a whole number and the number itself [n3 - n]?" (This
problem is also used in the study by Fischbein and Kedem, 1982). By trying
different numbers, one may notice that all the differences are multiples of 6.
But, in order to provide a universal justification of this generalization (or, in
other words, to prove this conjecture formally) one needs some extra steps,
in this case: i) the appropriate algebraic manipulations, and ii) their
interpretation.

In other words, to produce:
i) the factorization n3 - n = n(n-1)(n+1), and
ii) its interpretation: the factors are always three consecutive numbers; at
least one of the three consecutive numbers will always be even (divisible by
two), and one of them will be always divisible by 3, therefore the product will
always be divisible by 6.

Here, the numerical examples, no matter how many of them one may
produce, are not "transparent": they will not let the general mechanism be
seen or appreciated. Again, as in the Type 1 problem described above, the

algebra provides us with the appropriate "general" spectacles for the general
justification, but this time it does more than that. It enables us to see and
express general relationships between numbers by laying down the
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structure of these relationships. Such a structure is invisible through
numerical examples.
Most of the typical problems in an Euclidean Geometry course are of this
type. Current educational software (e.g. The Geometric Supposer, the
CABRI) are excellent tools designed to support for conjecture-making of
general properties, an aspect much overlooked in traditional courses. These
computerized tools indeed sustain conjecture-making by providing easy and
"cheap" ways to experiment by measuring, constructing quickly and
efficiently several examples, and manipulating those constructions. But in
order to produce a ,general justification of the conjecture, one usually needs,

also here, extra steps, which in this case consist of a deductive reasoning
chain, probably some auxiliary construction of general validity, and perhaps
a good dose of insight to put things together. These extra steps seldom arise

during the empirical phase of conjecture-making.
Consider for example the sum of the internal angles of a triangle. One can
easily measure different types of triangles and conjecture quite quickly that
the sum is 1804 (or about 180 °). However, in order to prove this conjecture
one has to take extra steps: an auxiliary construction (a line parallel to one of
the sides of the triangle through the third vertex, and a translation of the three

angles) not present in the conjecture making process.

Our above description deliberately utilized "extreme cases" for the purpose
of clarification. Obviously each problem has its own peculiarities, but
elements from the above distinction can be identified as intertwined in the
problem's "fabric". Consider the following.

A- The same problem situation can be "attacked" in different ways.
For example, one may notice that the general justification is, by virtue of its
generality, obviously reducible to any of the single examples. In the case of
the sum of the internal angles of a triangle, it is certainly possible to make the

auxiliary construction needed for the proof while playing with a specific
triangle. As a matter of fact, the general proof is usually accompanied by the
drawing of "any" triangle (which can always be regarded as one specific
example) and applying the "general" construction to it. However, in the case

of n3-n, it is quite unlikely to "discover" the structure of say 73-7 as
7(7-1)(7+1) and thus to have a glimmer of the general justification.

Here we need to notice one central difference between generalization and
justification processes in school algebra and school geometry. General
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processes in geometry rely on seeing one single example as representative
of a whole class, whereas algebra resorts to a symbolic language. This
language enables handling "general" patterns and also laying down the
structure of relationships, which are invisible from single examples.

B- There can be a more or less "smooth" transition from working on single
examples to the general justification of the generalization.

Consider the following problem situation: "Find the sum of the internal angles
of a polygon". One can proceed to work with, say, pentagons first, and start
measuring the angles, and arriving at the conclusion in the same way we
described for the triangles. If one generates the extra steps of dividing the
pentagon into three triangles (whose sum of angles is already known) by
means of the diagonals from one vertex, the general justification for all the
pentagons arises: one has to multiply 180Q by the number of triangles. And if
one wishes to generalize further for the case of all polygons, an additional
extra step is required, whose outcome will relate the number of sides (or
vertices) of the polygon to the number of triangles (or diagonals) created.

We suggest that, in spite of the complexity raised by our distinction, the
elements observed in the "extreme cases" are useful in shedding additional
light on understanding student behaviors.

Student behaviors

The situations we describe in this section are borrowed from existing studies.
We expect to bring to our oral presentation additional data from the study we
are currently running.

I The example as "judicial evidence".

A typical student behavior, while making general arguments and trying to
justify them, consists of placing a single instance as "judicial evidence": like,
in court, clear-cut evidence is necessary and sufficient to convince a jury
about the certainty of an event'. In other words, a convincing justification is
regarded as the presentation of a fact (an example) which confirms the
general claim at stake. K., one of the seventh graders in our study, expressed

This can be reinforced by the language. For example, the Hebrew word for "proof" is used
both in mathematics and in law (as evidence). Seventh graders, who have rarely met the
mathematical connotation of proof, may associate its meaning with that of "legal evidence", a
well known word frequently heard in everyday life.
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it very clearly: "I think that to prove something means to show some
examples".
In such cases, the students confer to the single example, as a "prover of a
general claim, the same status conferred by mathematical standards to a
counterexample as a "disprover" of a general claim.
In a more elaborated version of the example as "judicial evidence", we found
students who check evidence from different domains of examples (small
versus large numbers, different types of triangles, etc.) in order to make the
"evidence" more convincing for themselves and/or others.

In any case, when students are requested to justify a general claim (given by
others or even produced by themselves), they return to an example, or to
domains of examples, which by their mere existence provide the justification

requested.
This use of the example as "judicial evidence" is a justification tool in the
hands of many students regardless of the epistemological type of the
problem situation on which they work.

II. Beyond " judicial evidence" - the role of examples in Type 1 problems.

Once a generalization of a Type 1 problem (like the subtraction of two
consecutive unit fractions) is achieved, and the student is requested to justify,

(s)he does not resort to the example as a confirmation, but as a prototype
from which a general property or mechanism can be abstracted. The
following quotation is from a pre-algebra student (a seventh grader),
attempting to justify verbally the general statement 1/n -1/(n+1)=1/n(n+1),

by "riding on the shoulders" of the single example 1/8 -1/9=1/72 .

"...each time we have, let's say, 72 divided by 8 we get 9, and when we
divide by 9 we get 8... one number less the other is always 1... that's clear.
The phrases "each time", "let's say, 72 divided by 8...", and "one number less

the other" are indications that, for lack of any other appropriate tool, the

particular values of the example are not invoked as such, but as tokens or
potential placeholders involved in a general mechanism. For some students,
this use of the example is an intermediate step towards an example-free
verbal formulation of the justification.

In sum, the very nature of Type 1 problems seems to encourage the use of
examples as generators of justifications.
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III. Beyond judicial evidence" - the role of examples in Type 2 problems.
The following vivid anecdote will illustrate this point. During an in-service
teacher training course in our department, teachers were presented with the

curious equality 62x39=26x93. Generating more examples of two-digit
multiplication convinced them very quickly that reversing the digits of the
factors does not always lead to the same result. Puzzled by this rarity they
were invited to investigate for which two-digit numbers the phenomenon will

take place. Among those who did realize that they need to resort to algebra
was one teacher who seemed the brightest of the group and who had no
trouble producing the algebraic manipulations and reaching the right
conclusion (the equality will take place when the product of the tens equals
the product of the units of the two-digit numbers). However, when we noticed

that she was checking for additional numerical examples after she
completed the proof, we were puzzled. When asked, she told us that she was
not checking in order to see whether she obtained the right result with the
numbers, because the general validity of the algebraic tool was obvious to
her. However, in light of the algebraic justification she had produced, she
needed to Ilk what happens when one translates the mechanism of the
algebraic general justification "to actual numbers", namely how do they
combine and how do they behave as compared to letters.

It seems that mathematically-able people, in their search for meaningfulness
would often use examples in this way, in order to get a feeling of those extra
steps that they themselves (or somebody else) were able to generate.
We conjecture that this use of examples would be rarely encountered in
Type 1 problems, in which the general proof is based on a repetition of the
mechanism of a single example.

IV. The struggle for the extra steps.

In Friedlander et al (1989), we described a pair of pre-alaebra students
working with the following problem. They were given a calendar sheet of a
given month, for example:
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1 2 3 4 5

8 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29

The students were requested to observe general patterns and to justify them.
One of the students conjectured that, in any 2x2 cell arrangement, the
difference between the two products of the numbers located in the diagonals
is 7. In the process of trying to produce a general justification, they were able
to express the products of the diagonals using letters [namely ax(a+7+1)
and (a+1)x(a+7)]. At this stage they substitute different numbers for a and
confirmed empirically their conjecture.
One of the students was quite happy with the algebraic "machine" they had
created, and since this "machine" generated the expected numerical result,
he though that the task was completed. He considered the creation of the
algebraic "machine" as the justification sought. However, the other student
expressed his dissatisfaction by saying that he still wanted to "show it [the
justification of the general pattern] with letters". Since this is a Type 2
problem, and the extra steps needed required algebraic manipulations, he
could not make progress. The lack of knowledge of algebraic manipulations
needed for producing such justification, namely to prove that ax(a+7+1) and

(a+1)x(a+7) differ by 7, did not prevent him from feeling its necessity.

Epilogue
We suggest that aspects of the epistemological nature of a problem may turn
out to be crucial variables in understanding and possibly predicting student
behavior. If further studies confirm this view, the findings can have important
instructional implications regarding the kinds and timing of the problem
situations students should encounter in order to foster the need for general

justifications and proofs.
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Paradigm of 'Open-Approach' Method in the Mathematics Classroom Activities

-Focus on Mathematical Problem-Solving---

Nobuhiko NOIIDA, University of Tsukuba, Japan

Jerry P. Becker, SIU at Carbondale, USA

Sunnary

Our study on analyzing students' strategies and difficulties in problem

solving is considered indispensable to improve teaching and learning in

mathematics classroom activities. It seems that these strategies and difficulties

are influenced greatly by some social and cultural factors, such as languages,

symbols and representations etc.. This study is planned in order to make exact

the effects of teaching and learning of teacher and students who engage in

problem-solving by means of the 'Open-Approach' method, particularly with

reference to share [mathematical ideas of problem and use of mathematical patterns

involved in problem solving. We have to become more aware of the information

processes which consist of the communications and interactions between the

teacher's explanations and pupil's approach to problem-solving.

The sixth-grade class (Kale; 18, Female; 22, Totale; 40) we used in this

study was composed of pupils in amnia elementary school near Tsukuba City. Ms. K.

Mashiko is an excellent teacher, who had come to University of Tsukuba for

studying mathematical problem-solving for about three months, three years ago.

The lesson was held on January 26, 1987.

I. Mathematics Classroom Activities

Several difficulties concerning problem solving are, in our opinion, due to

the narrow and isolated conceptions of the basic didactical. category on Imoblem-

solving'. We, therefore, attempt to reveal the global and relational character of

problem solving', which is to call attention to the necessity of dealing with a

broad spectrum of activities related to Japanese culture and society.

These new demands can be found in Christiansen and Walter (1986), which

necessitate changes in the teacher's role and moves:

1. changes in the distribution of emplmsis on the different types of activity,

2. changes in the types of teacher's moves and in the sequencing of these in

the teaching pavers,

3. changes in the ways in which the teacher serves as a mediator of

mathematimal meaning.

The process of problem-solving becomes evident when teaching is seen as a

process of interaction between the teacher and learner-and among the learners-in

which the teacher attempts to provide learners with access to mathematical.

thinking in accordance with given problems. This teaching/learning process (like
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all processes between learners) is influenced by a number of social and

developmental aspects and factors which can be included in problem solving. The

carmunication between teacher and learner is thus nest only conditioned by formal

decisions about goals, content and teaching methods, but it is also strongly

dependent on even more informal aspects in initiative stages of problemrsolving,

such as the teacher's words and explanations to the problem-solver, and the

students' motivation to solve the problem and to he concerned with it.

We will cite an example of the problem-solving activities between teacher and

learners (Fig.1). Some of the roles of the teacher at different stages of the

teaching/learning process arc: instructor to teach mathematical knowledges and

skills (Top-Down);'teacher to help students in problem- solving (Bottom-Up): and

decision maker to judge whether teaching goes ahead or not. The teacher' s

explication of such roles is integrated with his specific actions and serves in

establishing his background and context for the interactions between his

students' actual and inner activities in connection with their subjective words.

Social-

Background

Teachers' Experiences

Helle-Teacciing

Top-Dawn

Teacher's Instruction

Problem-Solving

Activities

T

Students' Learning

tural

Background

Bottom-lip

I

Hetp-leau?ning

Students' Experiencm

Fig. 1 Problem-Solving Activities

The above sentences illustrate the essential and relational character of

communications between teacher and learners. Accordingly. coammication through

Ineblem-solving' as an organizing principle in Japanese mathematics learning
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calls for meta-learning under the teacher' s support. This communication is
considered mathematics classroom teaching as controlling the organization and
dynamics of the classroom activities for the purloses of sharing and developing
nothemat I cal thinking.

2. What is the open-approach?

The aim of open-approach instruction is to foster both the creative
activities of the students and the mathematical thinking in problem solving
simultaneously. In other words, both the activities of the students and the
nothmatical thinking Riga be carried out to the fullest extent. Then, it is
necessary for each student to have the individual freedom to progress in
problem solving according to their ()um abilities and interests. Finally, it
allows them to cultivate mathematical intelligence. Class activities with
mathematical ideas are assumed, and at the same time students with higher)
abilities take (Art in a variety of mathematical activities, and also strulents
with lower abilities can still enjoy unthernti cal activities according to their
own abilities.

By doing so, it enables the students to perform the mathenotical problem

solving. It also offers than the oHoetunity to investigate with strategies in
the manner they feel confident, and allows the possibility of greater
elaboration within nothearntical problem solving. As a result, it is possible to
have a richer development in mathematical, thi.nki»g, and at the same time,
foster the creative activities of each student:. This is the idea of the 'opon..

approach', which is defined as an instruction in which the activities of
interned-On between nothmoties and students are open to varied problem solving

appLoaches.

Next, it is necessary to make clear that the meaning of the activities of
interaction between nothenot Ica] ideas and students' behaviors are open in

problem solving. This has been explained from three aspects:

(I) Students' activities are developed by the open-alio/weir

(2) A problem using the open-approach involves nothenotical ideas

(3) Open-approach should be in harmony with intersection activities

between (1) and (2)

3. Chruneterizatiors of the `Oiren-Approach' problem and method

We hope to become more aware of the informtion processes which consist in
the Open-Approach of relationships between the problem and method. We use here

'Open Approach' problan as like non-routine problems: problem situations, process

problems and open search problems (Christiansen & Walter, 1986). in actual
practice, each teacher will have to take his or her own classroom ()rotations and
tencbtog objectives into consideration. The, method we use in 'Open-Approach'
depends on the problems which consist of problem situations, process probleos and
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open-ended problem, and procedures of these problems inrludiog classroom
conditions and teaching objectives (No hda, 1903, I986).

We use here the problem: [trebling situations, process problem and open-ended

problems. We define a problem as follows: A problem occurs when pupils are
confronted with a task which is usually given by the teacher and there is 1/0
pr icribed way of solving the problem. It is generally not a problem when it can
be immediately solved by the students. Problco situations, process problems and
open-ended problems are defined as follows:

Figure 2. Open-Approach Problem and Itching!

On going lesson

*

Regining of LeS5.011 R Solving of Problem C. Fuld of lesson

Original Problem(s) Solut New Problem(s)

Problem Sii:uatiotrs

Solution(s) --- New Problem(%)

Solution(s) New Problem(s)

Process* Prelrlerns Genereti ye Pt ebl ems;

Open-approach teaching differs from ordinary problem solving teaching.
lime we use the problem as open-approach pi-11AM; mentioned above. Treatments

of these problems will depend on the teacher's intentions for his "her
objectives:

A. What kind of problem does the teacher want the strulents to formulate fulmi

given problon situations ? (Relation with Problem Situations)

R. Row many ways of thinking does the teacher want the students to solve
the problem given ? (Relat ion'witli Process Problems)

C 1Lat kind of advanced problem does the teacher want the students to site

flog the oriel-tat preblon ? (Rola,. ion with Generative Problems)

1. Actual problem-solving activity in sixth-grade classroom
In every day life, pupils are confronted with many problem-solving as

problem situations where they can take a variety of solution. The method for
solving the problem of daily life, seem to Include some regular rule or
procedures.

To foster their mathanatical thinking, mathematics teacher should emphasize

problem-solving, in which pupils would discover better way of drinking through
discussions of their various solutions of the ploblem.

Here is used the process problem. The sixth -grade class (t ble: 18. Fenele: 22,

Totale; 10) we used in this study was composed of pupils in a coral elementary
school near Tsularba City. Hs. K. Hashilio is an excellent teacher, who had orie to
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no for studying mathematical. problem-solving for about three

ago. The lesson was held on January 26, 1987.

(1) Teach& s plan of problem solving

(a) Original problem in Japanese textbook

Squares are made by using swill bars as shown

in figure 3. When the number of squares is 8,

how army small bars are need ? Fig. 3

(b) Change Problem to Process Problem

Squares are constructed by using small bars

as shown in figure 4. Men the number of
squares is 10, bow many small bats are used ?

Find the lots of ways of counting of the

snail bars. as possible. Fig. 4

(2) Actual lesson of problem-solving: First class, sixth-grade

(a) She started as follows: (5 minutes)

Each pupil was given a picture of 'small bars' and the teacher asked

months, three years

the

',evils flow many squares are there in this figure?" and she put the real snail

bars on the blackboard. She explained some notions to them; "Arrange the sonll
bars to shape two squares like Figure 4 and count the number of stroll bars one by

one" as follows:
(b) Give hints to help pupils of lower abilities urwlerstand the problem.

(5 minutes)

T: When the number of squares is 2, how runny siert bars are used ?

P: 7 bars

T: When the timber of squares is 4, how nwmy small tors are used ?

P: 12 bars

T: O.K., you come up with various ways of solving the problem.

After she explained the problem pupils worked on the problem individually.

(c) Let's find various ways of counting on the sheet given.

Answer: 27 bars "' (15 minutes)

(1) One to one counting

II431 nn
1---n1

(ii) 7x3 +3 x2
7 3 7 3 7

I I I I I I

(iii) 4 x10 (Wrong) (iv) 4x6 +3

1_1 I_I I I FolTri 1:12_III1H
BEST COPY AVAILABLE
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(v) 5x3 + 6x2 *(vi) 2+ 5x5 *(vii) 7+ 5x4

il-4"Fer"fel fel-1-171
1Tirfel

(d) Discuss pupils' hays of counting. Which one do you think is the hest way ?

And Why ? What happens when the number of squares increases ?(I5 minutes)

T: Which is the easiest way to count when we have 20 squares ?

P: *(vi) 2+ 5x5 or (vi) *(vii) 7+ 5x4
(e) Formula expressed i.n words: (5 minutes)

[Two squares + [5 Imslx [Sets of = [Total number]

with 7 bars] increase number]

7 I- 71 5x (5 1) = 27
Ans. 27 Inns

(f) Give open-ended problems to ptipils: (Iloinewor.k)

(i) When the number of equilateral. triangles is 8,
how irony small hats arc used?

Ans. 2 x 8 + = 1 7

(ii) When the number of squares is 7,

how twiny small bars are used?

Ans. 3 X 7 4. 1 2 2

(iii) When the number of squares is 15,

how irony snod.1, bans are rased?

Ans. 7 x 4 1 0 = 3 8

PI obl ern variations of fomula

(i) 2 x8 t 1

3 +2 x7
3 x8 --7
others

3 x7 +1

-91

Ptrle(18)

3 (3)
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4 +3 x6 14 (14) 8 (8) 22 (22)

1 x8 +7 x2 2 (2) 2 (2)

others 1 (0) 3 (1) 4 (I)

(iii) 7 x5 +3 3 (3) 4 (4) 7 (7)

10 +7 x4 8 (8) 5 (5) 13 (13)

5 x4 +3 x6 1 (1) 0 I (I)
others 6 (0) 13 (0) 19 (0)

Note ( ): Number of corrects

(3) Disseussion on sixth grade problan-solving

The variations of strategies used in this problem-solving were as follows:
No pupil used one by one though they often used strategy in the lesson. Ilost

pupils used the equations adjusted to the structure of the problem. This was
dependent on the following cannunication between the teacher and the pupils: The

teacher advised the pupils who could find the suitable configuration of the
problem. We are impressed that pupils have a real appreciation of sharing the

inthematiesil structures through communications among pupils themselves under

the teacher's orientation and understand the mathematical formula through the

results of pupils' homework. Dr. Jerry P. Becker gives the torment as follows: I

have found that challenging problems bringing students together in thiking
about: the situation. searching to understand the problem and then trying to

solve it. Sometimes 1 almost seise that a "spirit of community" ensues with
students reflecting and building on each other's ideas this is a heathy state
of affairs.
5. Instructional inplications

The instructional implications from our study of the elementary school
level in the context of problem-solving in the rrnthematies classroom consist of

the following:

a. In the study of pupils' strategies and difficulties in problem-solving,
we should concentrate on both the structure of the problem and the mode of the

pupils' acts of problem-solving. We suggest here that the pupils need to
initially act by themselves to solve the problem and then through convonication

establish matharntical structures in the modification of their initial, acts: for
example, pupils rake the equation as like 74- 5x4 flan 7 x 3 + 3x2.

b. Some excellent pupils can solve the problem by finding the nnthenotical
structures underlying in the problem. The teacher has to support these pupils to

promote their more advanced solution after they use the teacher's primitive
method. They are willing to independently find the advanced solutions. The
excellent cournunication is the most important for the teacher. Thus, they become

the good problem solvers for the future.
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c. Many normal pupils cannot solve the problem at hand. In these situations,

the teacher has to advise them to be ready for their ['manlier problems which
they have solved in the past. After they feel an appreciation for carrying out
the problem-solving individually, they are able to solve the problem in the
near future. This is the effect of the classroom activity supporting them by
the teacher.
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REFLEXIONS SUR LE ROLE DU MAITRE DANS LES SITUATIONS
DIDACTIQUES A PARTIR DU CAS DE L'ENSEIGNEMENT A DES ELEVES

EN DIFFICULTE
Marie-Jeanne PERRIN-GLORIAN
IREM Universit6 PARIS 7

We worked in mathematics with classes mainly made up of pupils (9 - 13 years old)
meeting with difficulty at school in many subjects, most of them coming from lower classes.
Basing ourselves on results coming from cognitive psychology, sociology, social
psychology..., we ay to interpret difficulties in mathematics of these pupils in the theoritical
frame of didactics of mathematics as it has extented in France. In particular, we draw the
constrain= bearing on negotiation of the "didactic contract", and coming from teachers as well
as from pupils. This leads us to reconsider the part of the master in the theory of didactic
situations. We study more specially processes of "devolution" and "institutionnalisation" of
knowledge. This study induces us to identify a kind of situations, called here "recall situations"
that seems to us particularly important for pupils who are in trouble at school. The matter is, for
pupils, to account orally for a situation of action which has taken place in a previous session,
when action is no more possible

Introduction et cadre theorique de reference.
Nous nous placons dans le cadre theorique de la didactique des mathematiques tel qu'il

s'est developpe en France et a déjà ete evoque dans les rencontres de PME (R. Douady, PME 9

et 11, C. Laborde PME 13). Nous utilisons plus particulierement la theorie des situations
didactiques elaboree par G. Brousseau (1987) et les notions de jeu de cadres et dialectique
outil-objet introduites par R. Douady (1987). Cette theorie s'est developpee en adoptant un point

de vue epistemologique qui donne une grande importance a la resolution de problemes, aussi

bien dans la construction du savoir que comme critere du savoir. Cette position n'est pas
toujours conforme aux conceptions sur l'enseignement et l'apprentissage des professeurs qui

utilisent les resultats des recherches. Les Cleves ne sont pas non plus toujours prets a engager

leur responsabilite dans une resolution de probleme. Ces distorsions s'observent
particulierement lorsqu'il s'agit d'enseigner les mathematiques a des eaves en grande difficulte

scolaire, issus pour la plupart de milieu social defavorise. Pour les Ctudier, nous empruntons

avec A. Robert et J. Robinet (1989) le cadre theorique de la representation sociale (Abric,
1987).

Dans ce texte, nous donnerons d'abord les grandes lignes de l'interpretation que nous
faisons, en nous servant de ce cadre theorique, de l'echec d'eleves en grande difficulte a l'Ccole.

En relation avec cette interpretation, nous analyserons ensuite des aspects qui nous paraissent

importants clans le role du maitre.

Interpretation des difficultes des eleves.
Absence de creation de representations mentales et de projet implicite de reinvestissement.

Nous avons constate qu'il y avait souvent, chez les enfants en difficulte, un divorce net

entre les situations d'action qui devaient servir a donner du sens aux notions enseignees et
l'institutionnalisation qui est faite ensuite par le maitre : au tours de l'action, dans les premieres

situations qui permettent d'aborder une notion nouvelle, on ne voit pas beaucoup de differences

entre Cleves. En revanche la difference s'accentue trios vite des qu'il s'agit de reutiliser les
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connaissances nouvelles clans d'autres situations. Le savoir institutionnalise par le maitre, meme

dans le cas oir il est memorise, semble coupe des situations d'action qui lui ont donne naissance

et ne peut etre utilise pour resoudre de nouveaux problemes.

Une des principales explications que nous avancons est que les eleves qui ne rencontrent

pas ce genre de difficulte ont un projet, meme implicite, de de.contextualisation des le moment ou

ils travaillent sur la situation d'action. Us savent qu'il y aura peut-etre lieu de reutiliser
l'experience acquise. Ils se creent des representations mentales non seulement pour resoudre le

probleme pose actuellement mais pour pouvoir en rappeler et riutiliser des elements dans
d'autres occasions. Ceci leur permet de reinvestir partiellement une connaissance, meme si elle

n'est pas encore totalement identifiee. Pour d'autres enfants, ce "transfert" ne se fait pas parce

qu'ils ne font que resoudre le probleme pose, dans les termes oir il est pose, sans avoir de projet

de connaissance. Il n'y a pas creation de representations mentales qui ont déjà valeur
symbolique et sur lesquelles on pourra travailler ensuite. II n'y a pas non plus de mises en

relation, "d'accrochage" 3 l'ancien pour le renforcer ou le remettre en question. Tout ceci
empeche la capitalisation et la memorisation des connaissances. Ainsi, chaque experience est

nouvelle, ou plus exactement, seul le contexte est feconnu : "on a plie des bandes de papier, on a

&coupe des rectangles"...

Manque de fiabilite des connaissances anciennes.

L'absence de connaissances anterieures solides auxquelles se referer contribue d ce manque

d'organisation et d'integration des savoirs nouveaux : pour certains enfants, rien n'est sill-, tout

peut toujours etre remis en question, puisqu'ils ont l'habitude de se tramper.

Absence d'identification de l'enjeu des situations didactiques.

Une autre cause nous parait etre la non reconnaissance du veritable enjeu des situations

proposees en classe et l'absence d'identification de l'objet du travail propose par l'enseignant :

par exemple, si celui-ci propose des decoupages de rectangles pour travailler sur les fractions

alors que, pour l'eleve, it s'agit d'apprendre 3 partager les rectangles, il n'y a pas de lien entre

cette activite et le pliage de bandes de papier. Ainsi, les fractions utilisees dans les deux
contextes n'ont pas de rapport entre elles, l'eleve n'a donc pas de souci de coherence.

Cela a des consequences au niveau didactique, par exemple l'usure rapide des situations :

les eleves qui identifient la situation a son contexte se lassent avant qu'on puisse avoir une

identification et une clecontextualisation locale des savoirs en jeu suffisantes pour permettre leur

reinvestissement ulterieur. Nous allons voir que cette usure participe 3 l'enclenchement d'un

cercle vicieux renforce ensuite par les choix des maitres.

Simplification des situations et enclenchement d'un cercle vicieux.

La difficulte de reinvestissement des eaves est particulierement grande dans le cas de
situations complexes oil it y a a identifier un probleme connu a l'interieur dune situation oir

interviennent d'autres eldments. Cela renforce l'idee qu'on facilite l'apprentissage en simplifiant

le probleme, en mettant des paliers intermediaires. Cela entrailie aussi, chez les enseignants

comme chez les eleves, le desir de recourir le plus possible a l'apprentissage de procedures de

traitement stereotypees, plus securisantes. En effet, les eleves en difficulte quetent l'approbation
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du maitre a chaque pas des qu'ils sortent de la routine. Bs reclament des algorithmes. Par
ailleurs, du cote des maitres, on fait moins confiance aux eleves, on a tendance a les aider
davantage et on pense leur dormer ainsi des moyens de reussir au moins quelque chose.

II est vrai que les algorithmes eux-memes sont souvent insuffisamment memorises par ces

&eves. Ceci entrain une charge en memoire insupportable lors de la resolution de problemes,

leur fait perdre le fil de la resolution et encourage donc l'enseignant a dormer plus de place
encore A l'apprentissage des lecons et des algorithmes.

En outre, avec les eaves en difficulte, les professeurs ont tendance a se concentrer sur le

cadre numerique en negligeant des activites geometriques ou graphiques qui pourraient dormer

d'autres references.) Comme un changement de point de vue est toujours difficile, Hs pensent

generalement que, pour ces eleves, it faut faire le moins de melanges possible. Cela contribue

accroitre le deficit de connaissances solides dans des cadres differents et empeche le
fonctionnement de jeux de cadres, ce qui diminue encore les occasions d'apprendre h mettre en
relation differents savour.

On assiste ainsi l'enclenchement d'un processus "boule de neige" : les eleves ne se
representent pas les actions, ne pert oivent pas les enjeux > les eleves ne memorisent pas >

le professeur se concentre sur l'apprentissage des resultats du cours et de savoir-faire
algorithmises > les situations proposees aux eleves se resument a la repetition de problemes

de contrede stereotypes > les eleves ne se representent pas, ne mettent pas en relation >

et l'apprentissage se resume au renforcement d'algorithmes dont les situations d'utilisation ne
sont jamais maitrisees.

Autres aspects

Nous ne pouvons divelopper ici d'autres aspects importants dans l'enclenchement du
cercle vicieux dont nous avons parle :

Les problemes de langage, expression et lecture, sont aussi bien sOr d l'origine de
difficultes en mathematiques, de trois facons au moins : au niveau de la prise d'information, au
niveau de la conceptualisation, an niveau des productions.

Une autre difficulte tient a la capacite d'interpretation du niveau de discours du maitre.

Dans le deroulement de l'enseignement, en effet, le maitre utilise plusieurs niveaux de discours

qui sont souvent assez imbriques et que l'eleve doit reussir a decoder avec leur signification
dans la situation. II doit etre capable de reperer ces changements de niveau et de tirer profit du
discours non mathematique - que nous appelons ici un peu rapidement, metamathematique mais
qui recouvre de nombreux registres que nous n'avons pas la place de distinguer ici - pour
s'approprier plus facilement le discours mathematique du maitre et des autres eleves.

Les situations du quotidien avec lesquelles les eleves ont une certaine familiarite, utilisent
souvent des modes de raisonnement non conformes a ceux qu'on attend clans un cours de
mathematiques. II peut ainsi s'installer un veritable malentendu et une communication absurde
entre le professeur et certains eleves. Ceci ne veut pas dire que l'experience des enfants dans la

vie quotidienne ne peut pas 8tre utilisee, mais faut alors batir, comme le font par exemple
certains chercheurs italiens autour de P. Boero (1989), des situations qui s'appuient sur la rialite
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familiere et permettent de la depasser en posant aux enfants de veritables problemes theoriques.

Rapport de l'eleve d recole, d son metier d'eleve. Plusieurs des explications que nous venons

d'avancer sons a relier au plan plus general des attentes et des representations sur recole, a la

presence ou a l'absence de projet general, et a ce que Y. Chevallard (1988) appelle le rapport a

recole, au métier d'eleve... Par exemple, un clove peut trouver illegitime qu'on lui propose un

probleme dont on ne lui a pas enseigne la reponse et refuser cette responsabilite.

Rapport de l'enseignant d son metier d'enseignant.

L'idee que l'enseignant se fait de son métier et de revaluation des eleves peut parfois
l'amener a vider l'enseignement de son contenu, en particulier clans le cas ou it s'adresse a des

eleves en difficulte. 11 peut etre ainsi conduit a "surinstitutionnaliser" des resultats ou des
methodes rencontres dans des resolutions de problemes et a remplacer le veritable enjeu de

renseignement par des intermediaires introduits pour faciliter racces a une connaissance.

Les representations des enseignants sur les capacites des eleves se conjuguent avec celles qua

renseignant sur la bonne maniere d'apprendre, ce qu'est une formation mathematique, le
contenu vise. L'enseignant choisit en fonction de ces representations qui lui font estimer le coat

par rapport a la rentabilite attendue, les methodes qui lui paraissent convenir compte tenu du

contenu et du public.

Representation de soi de l'eleve. Leur situation d'echec a recole contribue donner aux eaves

en grande difficulte une image d'eux-memes devalorisie. Cette image et la representation gulls

se font de leur place par rapport aux autres &eves de la classe ont des repercussions sur toute

leur vie scolaire, y compris racceptation de certaines formes de travail (en groupes, notamment)

Le role du maitre.
Le role du mitre dans la thiorie des situations.

Dans la theorie des situations didactiques telle que la developpe G. Brousseau (1987) et

que nous schematisons ici, le role du maitre dans les situations didactiques se situe
essentiellement a trois niveaux : choix d'un probleme et dune situation a-didactique et
determination des variables didactiques de facon a mettre en jeu la connaissance visie,
devolution de cette situation a l'eleve et institutionnalisation des connaissances. La premiere

phase nest pas forcement entierement a la charge de l'enseignant qui peut avoir recours a des

trays= d'ingenierie didactique. Nous nous interesserons dans la suite aux deux autres phases.

Nous laissons volontairement de cote revaluation qui intervient aussi de facon importante dans

rinstitutionnalisation des connaissances et clans les representations que les eleves se font des

concepts mathematiques et des mathematiques en general.

La &volution.

Pour que reeve construise un savoir, il est necessaire, d'apres G. Brousseau (1987), qu'il

produise ses connaissances, les false fonctionner ou les modifie comme reponses aux exigences

du milieu et non au &sir du maitre. Pour cela, it faut que releve accepte que la resolution du

probleme soit de sa responsabilite, qu'il accepte de prendre en charge ce que Brousseau appelle

une situation "a-didactique'', c'est-a-dire une situation depouillee de ses intentions didactiques.
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L'eleve dolt faire sienne la question posee et chercher a la resoudre sous sa propre
responsabilit6, sans essayer de deviner les intentions du maitre ni chercher a lui faire plaisir. La

devolution est alors un processus necessaire parce que l'acces de l'eleve a la situation
a-didactique ne va pas de soi car elle est au depart tres imbriquee a la situation didactique qui la

contient : "La situation a-didactique finale de tiference, celle qui caracterise le savoir (...) est une

sorte d'idial vers lequel it s'agit de converger" (p.50)

La question que nous nous posons est donc la suivante : qu'est-ce qui permet a l'eleve de

converger vers la situation a-didactique, qu'est-ce qui fait qu'il met un savoir mathematique en

jeu en tentant de resoudre le probleme pose par le maitre ? G. Brousseau donne lui-meme par

avance une premiere reponse a cette question : "L'eleve salt bien que le probleme a ete choisi

pour lui faire acquerir une connaissance nouvelle mais it dolt savoir aussi que cette connaissance

est entierement justifide par la logique interne de la situation et qu'il peut la construire sans faire

appel a des raisons didactiques" (p. 49). La devolution est essentiellement ce qui le lui fait savoir

et it est vrai que c'est une condition pour que l'eleve fonctionne de fagon scientifique et non en

reponse a des indices extCrieurs. Mais it nous semble que l'affirmation de la premiere pantie de in

phrase "l'eleve salt bien" n'est pas Cvidente. Suivant leur origin culturelle ou leur experience

scolaire anterieure, certains Cleves savent bien en effet qu'il y a toujours un objectif
d'apprentissage dans ce qu'on leur propose et on a l'habitude dans l'enseignement de faire
comme si cette evidence Ctait partagee. Or nos observations sur les Cleves en difficultC nous

laissent penser qu'elle ne Pest pas. La question didactique qui se pose alors est de savoir de quel

projet faut-il faire devolution a reeve avec le probleme (ou avant pour permettre ensuite la
devolution du probleme a l'eleve), ou, en d'autres termes, comment faire devolution a l'eleve de

la prise en charge de son propre apprentissage ? Cette question se pose, pour le maitre, dans la

nCgociation du contrat didactique a plusieurs niveaux : au niveau general de l'enseignement des

mathCmatiques clans la classe considCrCe, au niveau de l'ensemble du processus d'apprentissage

d'un concept donne et au niveau de chacune des situations composant ce processus.

L'institurionnalisarion.

Ceci nous amen a considCrer l'institutionnalisation comme un processus qui se dCroule

tout au long de l'enseignement, un moteur de l'avancement du contrat didactique et du temps

didactique et non comme une phase en fin de processus on le maitre fait son cours.
L'institutionnalisation des connaissances commence pour nous des le tout debut de la devolution

puisqu'il faut déjà que le maitre donne a fileve, s'il ne l'a pas, le projet d'acquerir ces
connaissances. Evidemment, nous trouvons IA un des paradoxes du contrat didactique que
Brousseau a mis en evidence : le maitre ne peut pas parler de la connaissance nouvelle puisque

c'est justement l'enjeu de l'apprentissage, it peut au plus dire qu'on va apprendre quelque chose

de nouveau et Cclairer les Cleves sur les connaissances anciennes a mobiliser pour "accrocher"

cette connaissance nouvelle. En fait le maitre tend a l'institutionnalisation tout au long du

processus : s'il veut que l'institutionnalisation puisse se faire pour les Cleves dans de tonnes

conditions, avec du sens, it ne peut aller droit au but mais l'a toujours present a l'esprit pour
mCnager des le depart et tout au long du processus d'enseignement les conditions qui vont lui
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permettre de negocier le contrat didactique dans ce sens.

Avec des eleves en difficulte, les contraintes qui pesent sur l'institutionnalisation sont

particulierement visibles et on se sent comme un funambule sur son fil : si is la suite de la

resolution d'un probleme, aucune decontextualisation nest amorcee par le maitre, les eleves ne

retiennent rien et ne peuvent parler que du contexte du probleme et non de son enjeu, s'il y a

decontextualisation par le maitre, on assiste a un derapage formel qui amen les eleves 3 prendre

les &Mures mathematiques sans les crediter du sens qu'elles pouvaient avoir dans le probleme

traite. L'equilibre est difficile a trouver. Nous en deduisons que, pour certains eleves au moins,

l'institutionnalisation ne peut se faire que de facon tits progressive avec de nombreux cycles

contextualisation - decontextualisation.

Ceci nous amen 3 distinguer des etapes dans ]'institutionalisation

- institutionnalisations locales dans divers contextes, au sens de R. Douady (1987)

- reinvestissement d'un contexte dans un autre

- cours construit par le professeur au sens traditionnel, donnant un statist d'objet mathematique a

certaines des notions rencontries.

Ces etapes ne correspondent pas entierement it un ordre chronologique, le reinvestissement

se placant tout au long, avec des ciegres de decontextualisation differents : des que les eleves ont

rencontai une premiere situation sur la notion, ils peuvent reinvestir des pratiques en
reconnaissant une analogie entre deux situations, jusqu'apres le cours oir ils pourront peut -titre

reinvestir le savoir en tant qu'objet mathematique.

Les situations de "rappel ".

Un des temps forts dans le processus de depersonnalisation et decontextualisation des

savoirs construits en classe se situe au cours des bilans qui suivent une phase de recherche des

eleves. Des chercheurs ont analyse le role du maitre dans ces bilans et distingue a cote des
moments d'institutionnalisation, des moments oil le maitre cherche a homogeneiser la classe et

oit s'effectue une premiere depersonnalisation des procedures mises au point par les eleves clans

la phase de recherche. Nous avons, pour notre part, identifie un autre type de situations qui

nous semblent jouer un role important dans ce processus de depersonnalisation et
decontextualisation, a deux moments au moins : d'une part elks vont permettre d'adapter
finstitutionnalisation locale aux conceptions actuelles des eleves ; d'autre part, avant le cours

proprement dit, elks vont permettre d'accrocher les notions qu'on va exposer aux problemes qui

ont permis de leur donner du sens.

Nous les appelons pour le moment, et faute d'avoir trouve un meilleur terme, des situations

"de rappel". 11 faut tout de suite dissiper un malentendu possible : it ne s'agit pas de revision ni

de rappel par le maitre de ce qui a ete fait, it s'agit plutot pour les eleves de se rappeler une ou

plusieurs situations déjà traitees dans des seances precedentes sur un m8me theme, avec un peu

de recul donc, de faire un retour par la pensee et la parole sur ces seances. En essayant de dire

collectivement ce qui s'est passe, quel probleme on a traite, les eleves sont amends a repenser le

probleme, les procedures de traitement envisagees dans la classe. Les eleves qui ne se sont pas

construit de representation mentale au cours de l'action trouvent la une nouvelle occasion et une
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raison de le faire puisqu'ils vont devoir parler de ce qui s'est passé et le decrire sans pouvoir

agir a nouveau. II se peut que pour certains eleves l'action soit a nouveau necessaire mais elle est

alors placee clans une nouvelle perspective : it faut agir non seulement pour trouver une solution

mais aussi pour pouvoir en parler.

Dune part it se produit alors une depersonnalisation des solutions dans la mesure oir elles

sont reprises et exposees par d'autres eleves que ceux qui les ont trouvees, d'autre part it se

produit une pre-decontextualisation : en reprenant a froid ce qui s'est passe, on elague les. details

pour identifier ce qui est important. A cette occasion, le sens cache, le role pour rapprentissage

de l'un ou l'autre des problemes poses peut se reveler a certains eleves. De plus, s'il y a une

suite de problemes sur un theme, chacun des problemes traites est integre dans un processus, II

est interiorise avec un sens nouveau. Au cotes d'une telle situation, les formulations evoluent,

on peut avoir des retours sur des &bats de validation qui ont deja eu lieu ou rencontrer la
necessite de nouveaux. On n'est pas a proprement parler dans une situation de formulation oe ii

s'agit de produire un nouveau langage, ni dans une situation de validation, mais on retravaille

les formulations et les arguments deja produits. En meme temps, par le retour reflexif sur
l'action que ces situations supposent, elles favorisent la construction de representations naentales

par les eleves.

Darts ce type de situation, le role du maitre est tres important. Le choix de donner la parole

a un eleve plutot qu'a un autre donne a la situation une signification toute differente : s'il veut

que la fonction d'homogeneisation et de depersonnalisation soit remplie, it va donner la parole

aux eleves qui n'ont pas trouve de solution ou qui n'ont pas abouti pour verifier qu'ils suivent et

reprennent a leur compte les methodes utilisees, s'il veut avancer dans la decontextualisation et

la formulation, ii va davantage donner la parole aux "leaders", quitte a faire reprendre les

nouvelles formulations du probleme par l'ensemble de la classe dans le courant de la seance ou

ulterieurement. On voit ainsi une evolution par rapport a la phase de bilan oir ce sont plut8t les

"leaders" qui exposent les methodes de resolution qu'ils ont trouvees, les "suiveurs" se
contentant d'ecouter ou d'intervenir sur des points de detail qui sont dans le domaine de
l'ancien. Ses marges de manceuvre se situent aussi dans le choix des questions, dans ce qu'il
reprend ou non des interventions des eleves, dans ses commentaires.

II peut agir sur ces marges pour ancrer "le nouveau" dans les connaissances anciennes et

dans ce que les eleves ont reellement fait ou faire avancer la connaissance en s'ecartant un peu

du probleme reellement traite, en proposant un debut de generalisation ou de reinvestissement
dans un contexte legerement different.

Le role du maitre est essentiel dans le processus d'institutionnalisation, quel que soit le

style d'enseignement. II doit notamment choisir ce qui est a retenir dans chaque séance et decider

en mEme temps quel "ancien" remobiliser, que reprendre dans les activites des eleves, jusqu'oe
aller dans la decontextualisation.

Ces decisions vont dependre de ce que les eleves ont reellement fait et de revaluation qu'en
fait le professeur : est-ce que ce qu'il considere comme ancien est reellement acquis par
suffisamment d'eleves, est-ce que ('appropriation des methodes de resolution est suffisamment
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generalisee dans la classe... Il s'agit la dune evaluation globale, intuitive des eleves, qui a des

liens avec revaluation officielle realisee par ailleurs mais qui ne s'y reduit pas (cf Perrenoud

1986). Cette lecture par le professeur du travail des eleves va faire intervenir les representations

gull a sur le savoir vise ainsi que sur la maniere d'apprendre,,sur son role clans l'apprentissage

des eleves. De leur cote, les eleves sont inegalement prets a suivre le maitre dans une
decontextualisation de ce qui a ere vraiment traite. II revient encore au maitre de laisser ou non la

possibilite de refaire ce chetnin a d'autres moments pour ceux qui n'etaient pas encore prets.

Conclusion
En analysant les clifficultes d'eleves de 9 a 13 ans en echec scolaire et le fonctionnement

didactique, nous avons rencontre des phenomenes qui peuvent provoquer, a notre avis, le

renforcement de rechec de ces eleves. Une question didactique importance est celle du choix de

situations de complexite optimale pour ces eleves. Une autre, que nous avons commence a

etudier id, est le role du maitre clans le processus d'institutionnalisation des connaissances. A

l'issue de ce travail, il nous parait important d'approfondir cette etude, en particulier dans les

situations que nous appelons "de rappel" car elks nous paraissent un lieu possible pour briser le

cerele vicieux qui maintient ces ayes en echec.
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DIAGNOSIS AND RESPONSE IN TEACHING TRANSFORMATION
GEOMETRY

Alan Bell and Derrick Birks
Shell Centre for Mathematical Education, University of Nottingham, UK

In a comparative teaching experiment involving two classes taught reflection
geometry by the same teacher, a conflict and discussion method showed superior
initial learning and good retention over two months, while a widely used scheme
of individual guided-discovery booklets shows very poor retention. The
development through piloting of the conflict method involved discarding easier
tasks and retaining those harder ones which provoked discussion. These led to
an analytic awareness of the essential properties of reflection as distinct form a
global perception of 'balance'.

Among the topics treated in previous . researches on pupils'
developing mathematical concepts and on the design of diagnostic modes
of teaching which make use of this knowledge, geometry has been
somewhat under represented. The main part of this paper will help to
redress this balance. It will bring into play a different set of didactic
variables and a somewhat different way of designing tasks from, for
example, the experiment reported last year on the teaching of fractions.
(Bell and Bassford, 1989). In that study, the learning tasks consisted mainly
of challenges embodying the fundamental notions concerning fractions -
finding many ways of displaying half a square, finding all the fractions
equivalent to a given one, finding how to compare 3/4 and 4/5, then any two
fractions, finding how to add fractions - the essence of the challenge being
to decide the meaning of the question and to choose suitable
representations in which to seek an answer. The main didactic variable,
which was manipulated to provoke generalisation, was the size of the
integers comprising the fraction. The present study concerns the
transformation of reflection; a quite different set of didactic varibles arises,
and different ways of generating the field of examples.

The range of problems considered, and most of the misconceptions
observed are illustrated by Figure 1, part of the last worksheet of the
teaching sequence. The aim was the construction of plane reflections in a
line and the identification of the lines of reflective symmetry in plane
figures. Previous research by Kidder (1976), Schultz (1978) and Kiichemann
(1981) had identified as relevant variables
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1. the direction of the mirror (horizontal, vertical, 450, other)
2. the complexity of the figure being reflected
3. the presence of a grid
4. the size of the figures and distance from the mirror.

The first three of these were incorporated by Kiichemann in a
structured sequence of questions. He identified levels of response as global,
semi-analytic, analytic and analytic-synthetic. In global responses the object
is considered and reflected as a whole with no reference to particular parts,
angles or distances; in semi-analytic responses, a part of the object, usually
an end point, is reflected first and the rest drawn from it matching the
original in shape and size. In fully analytic responses, the object is reduced
to a set of key points, each reflected individually. These are connected and
the result accepted even though sometimes the image looks wrong. In

analytic-synthetic responses, the analytic and global responses are
co-ordinated so that the final image is accurate and also looks correct.

The present study consisted of interviews and a pilot teaching
experiment with a mixed ability secondary school class aged 11 to 12 years,
followed by a comparative teaching study with two other parallel classes of
the same age. We shall report here the main misconceptions found in the
interviews, the design of the materials for the teaching experiment, noting
particularly modifications made following the pilot work, and finally give
the results of the comparative teaching.

Pupils' Concepts
The first group of misconceptions comprised beliefs that horizontal

objects must have horizontal images and vertical objects vertical images or
that horizontal objects have vertical images and vice versa. These can be
seen in questions 2, 4, 5 of Figure 1.

Approximately 40% of the sample made errors corresponding to one
or more of these misconceptions during the pilot testing. The next
misconception consisted of associating reflecting with various pairs of
opposites such as forwards and backwards, towards and away, left and right,
upwards and downwards. For example, one pupil producing a response
somewhat like that in number 2 of Figure 1 said,

"this one is on the left and points up so that one must be on the right
and point down".
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The following worksheet was given to Edward Green for Homework. Mark the work,
correcting all the mistakes. In your book, explain where Edward is going wrong'

1

4.....

-yr

1

i

4 A

a .*.

C 6

0

A....:

Figure 1

298

Figure 2

Such verbal descriptions of the relation between object and image
which might be derived initially from some correct observation, are thus
transferred to other situations to which they do not apply. In a similar
way, the term 'straight across' was in some circumstances interpreted by
some of the sample in a way dependent on the nature of the object and/or
the presence of the grid and/or the slope of the mirror line. Thus the term
might be used in item4 of Figure 1, and in cases like that shown in Figure 2,
where axes 2 and 4 are taken as lines of symmetry.

The somewhat unexpected misconception that there could be more
than one possible correct image was displayed by some 14% of the pupils
interviewed; all of these were pupils who saw reflection as a mirror image,
rather than as a folding and they often justified their conclusion by
showing how the mirror could be moved, still standing on the same line,
to produce a movement of the image. The same connection with physical
mirrors rather than folding gave rise to another misconception, that the
image might simply be similar to the original object and not necessarily
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congruent to it (Figure 1, No. 6). Over-generalisations of verbal statements
were also used to justify erroneous placings of lines of symmetry on, for
example, the letter N or as a diagonal of a rectangle; the shape was held to
have a line of symmetry if it could be split into two equ'al parts even if they
were inverted or displaced. Pupils said, for example, "it is the same on both
sides". Another difficulty arose when a fairly complex figure might have
symmetry if certain details were ignored. It would seem important that this
type of example should be given, and pupils encouraged to give alternative
statements about its symmetry according to whether or not various details
are considered (figure 4).

Teaching Experiment
The experimental teaching occupied 10 one hour lessons for each of

the two groups. In the diagnostic method the pattern of each lesson was
that pupils, in groups of about 4, discussed the problems on a given
worksheet and arrived at agreed conclusions. Following this, there was a
class discussion in which the conclusions from each group were
contributed and defended and conflicts among the various interpretations
were resolved. Extract from the worksheets for lessons 1, 3, 5 and 10 are
shown in Figures 3, 5 and 1.

4 0
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Figure 4

111

30 pupils were asked to find the point that
was straight across from A. Ten different
suggestions were given and are shown above.
Circle the point that you think is correct or
suggest another point if you do not agree
with any of their answers

Figure 5

Some modifications were made to the sheets and to the mode of
conduct of the lesson following the pilot work. These were as follows:

1. Certain easier tasks were omitted (marked 0 in Figure 3). These
were answered correctly by most pupils, which left some of them
with the impression that they were doing reasonably well and did
not need to change their strategy even if they in fact possessed serious
misconceptions causing errors on the harder questions.

2. The worksheet following Figure 5, which asked the pupils to write an
explanation of why their choice in Figure 5 was correct. Some groups
responded with rather weak explanations. In the modified lesson,
the teacher intervened by playing 'devil's advocate' and so
provoking them to produce more cogent arguments.

3. More time was taken at the beginning of the teaching to discuss the
positive aspects of making errors, the importance of explanation and
of listening skills, and the need for mutual respect of other's
opinions.
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B4B2 Copy these on spotty paper.
Draw each reflection with the help of mirror.

(a) (b) (c)

3 This lizard has reflection
symmetry when he stands
like this.

You need triangular spotty paper (or these.
Check each one with mirror.

(I) (b) /

...

Ile does not have reflection
symmetry when he stands
like this.

Check with your mirror.

Figure 6

The alternative teaching method was based on two booklets on
Reflections (from the SMP 11-16 course). These were in use in the school as
part of an individual learning scheme during the first two years. The
pedagogical method embodied in these is that of examples with
explanation, followed by questions for individual practice. The first booklet
concentrates on reflection as mirror images, the second booklet on folding.
The questions become increasingly complex, but the learners are not asked
to devise their own methods and none of the situations demands a high
level of thought or enquiry. This contrasted with the diagnostic method, in
which the aim was to lead pupils, through the discussion of difficult
questions, to recognise and to state explicitly and carefully the general
properties of reflection. The booklets were well received and enjoyed. In
this group, the teacher was fully occupied in managing the issue of the
booklets and administering the review and check tests, and in answering
pupils' individual questions relating to the material. An example of the
material is given in Figure 6.

Results
A 23 item test containing a mixture of items of the types illustrated

here from both types of teaching was given to both groups before and
immediately after the teaching and again 10 weeks later.
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The graphs in Figures 8 and 9 show the performance of each pupil in
each of the two groups. The superiority of the experimental method for
retention, and correspondingly the long term inadequacy of the booklets
teaching, is very evident. For a full report, see Birks (1987).

Scores of pupils in booklets group

Figure 7

At'
fat rstr

Scores of each pupil in diagnostic
group

Figure 8
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Implications
Teaching of the type represented by the booklets method in this

experiment is currently very common. It can best be characterised as
'guided discovery'. The initial explanation shows the pupils how to
approach the questions, and as these are worked through different aspects
of the embodied principles are called into play. Two elements commonly
missing are (a) feedback and (b) awareness. Errors made are not generally
discovered until sometime later when responses to the whole set of
exercises are checked by the teacher or by reference to answers and at that
stage, a score of 60 or 70% correct is regarded as satisfactory. Thus
misconceptions brought into play by the remaining questions remain
untreated, indeed, they are reinforced through the act of use. These
materials also ignore the importance of making the correct principles, and
the way in which they are manifested in various contexts, explicity through
discussion. Other research has shown that what is actually learnt from
studying a given piece of material is strongly influenced by the learner's
orientation towards it, and this depends on the learner's expectation of the
use to which this learning is to be put; for example, whether a factual
recall test will be given or a test requiring comprehension of the material,
or its application to fresh situations (Mayer and Greeno, 1972). In many
current classroom environments, the expectation of future testing is
minimal and, in some cases non-existent, and the pupil's orientation is
towards the completion of assignments and the attainment of grades based
on successful work. The distinction between doing and learning is often
not made by pupils, nor sometimes by teachers, successful performance
being what is rewarded rather than the acquisition of new knowledge or
skills not possessed before, or the eradication of erroneous conceptions.
These considerations suggest that metacognition, in the shape of pupils'
awareness of their learning processes, is an important field for study and
development at the present time. We intend during the next two years to
make a study of pupils' learning concepts in a number of typical and
innovative mathematics classroom environments, to develop approaches
aimed at improving pupils' self awareness of learning, and to study the
effects of the implementation of these.
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CHILDREN'S RECOGNITION OF RIGHT-ANGLED TRIANGLES
IN UNLEARNED POSITIONS

Martin Cooper
University of New South Wales, Australia

Konrad Krainer
Universitat Klagenfurt, IFF, Austria

Are children better able to identify right triangles in orientations
in which they have been learned or does the horizontal-vertical have
an over-riding effect? Austrian primary school children were taught
to recognize right triangles in particular orientations. On testing,
they were able to identify them better when the shorter sides were
horizontal and vertical, even when the triangles had been learned in
other orientations.

In classrooms and geometry textbooks, right triangles are

frequently presented standing on one of the non-hypotenuse

sides a "standard" orientation. Indeed, school children

often experience difficulty in identifying figures such as

squares when they are presented in non-standard orientations.

Cooper and Shepard (1973) found that when university

students tended to take longer to say whether non-symmetric

numerals and upper-case letters were "normal" or laterally

inverted as the angle of inclination of the characters to their

usual upright became greater. This suggested that people

identify a tilted test character by mentally rotating an

internal representation of the character into congruence with a

long-term memory representation (a schema) of the character.

Cooper (1975) found similar results with unfamiliar random

angular forms. Herschkowitz et al (1987) have shown that

children are able to recognize right triangles best when they

are presented in "the upright position as usually drawn", have

less success when the triangle is rotated through about 45°,

with success decreasing "drastically" when the right-angle is

at the top". Eley (1982) found that children were able to

identify letter-like symbols with more accuracy when the

symbols were presented in orientations closer to the trained

orientation.

It may well be that when children are taught the definition

of a particular figure by means of illustrations presented in a

standard orientation they, too, form a mental image, or schema,

of the figure in this standard orientation. When later faced
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with the same figure in a non-standard orientation, the child

may then mentally rotate an internal representation of the

figure into congruence with the already internalized

standard-orientation representation.

Herschkowitz has suggested that the horizontal and vertical

sides of the page on which a triangle is drawn may act as a

"surrounding field" from which many people have difficulty in

isolating the triangle. The effect is observed also in the

case of isosceles triangles, the accuracy of recognition being

greatest when the "base" is horizontal and at the bottom of the

figure. Both Hart (1981) and Grenier (1985), mention this

effect in relation to plane reflections when a

vertical-horizontal grid is used as the background.

The purpose of the research presented in this paper was to

investigate the variation in accuracy of recognition of a right

triangle, learned in certain standard and non-standard

positions, when later viewed in a set variety of orientations.

METHOD

Twenty-four 35 mm slides were prepared for use in both the

learning phase and the testing phase. Each slide depicted a

clear circular disk set against a black background, the disk

containing a triangle drawn in black. Half the triangles

(Set R) were identical right triangles; the other half (Set N)

were matching isosceles triangles having the same area and the

same shortest-side length as the right triangles. The

triangles in each set were oriented so

030 y that their shortest sides were

respectively inclined at 0, 30, 60, 90,

120, 150, 180, 210, 240, 270, 300 and

330 degrees (clockwise) to the

left-hand horizontal. For ease of

reference, the slides were encoded as

Rxxx or Nxxx, where the first character

denotes the set and the 'xxx' stands

for the angle of orientation. The

R-set orientations are shown opposite

Fifty-five 7-8 year-old children from three primary

schools in Klagenfurt (Austria) took part in the study. All

000

4)1Adl.
ISO

49.0k150
k0 i%0.0

300

010

120
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were familiar with triangles and all had been taught to recog-

nize right-angles. Children were interviewed individually.

In the initial, screening phase, the researcher questioned

the child to ensure that he or she could recognize a

right-angle. The child was then shown drawings of a right

triangle and an isosceles triangle (both in standard

orientation) and asked what the figures were called. All

subjects said that they were triangles. The researcher then

pointed to the right triangle and said that it was a special

triangle because one of its corners was a right-angle (pointing

to it). It was demonstrated that none of the corners of the

other triangle was a right-angle. Again referring to the right

triangle, the researcher told the child that a triangle having

a right-angle in one corner was called a "right triangle".

After the child had repeated the term, he or she was asked

whether the isosceles triangle was a "right triangle" or not.

All children gave the correct answer, many describing the

isosceles triangle, later, as a "false" triangle.

After passing the screening phase, each child was randomly

assigned to one of four methods in the training phase:

Method trained orientations orientation group

A 000, 090, 180, 270 [twice each] "mod 000"
B 030, 120, 210, 300 [twice each] "mod 030"
C 060, 150, 240, 330 [twice each] " mod 060"
M 180, 240, 300, 330, 150,1090, 060, 030 (mixture)

In each method, 16 slides (eight right triangles in the

"trained orientations" mixed with the eight corresponding

isosceles triangles) were projected on to the white wall in

front of the child. For each of the first eight slides

("assisted"), the researcher told the child whether or not the

triangle was right-angled, either pointing out the right-angle

or demonstrating that none of the angles was a right-angle, as

appropriate. After a short pause, the second sequence of eight

slides ("unassisted") was screened, the child being asked to

say whether or not the triangle was right-angled and, if so, to

indicate the right-angle. If the child gave an incorrect

response, the preceding slide was re-screened and the sequence

continued from that point. If any child gave more than three
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incorrect responses, it was considered that sufficient learning

had not taken place, and his or her results were discarded.

After a short pause, each child who successfully completed

the training phase entered the testing phase and was shown the

entire series of twenty-four slides in the following order:

R000, N090, R180, N270, N060, R150, R270, N120, R030, N300, R120, N180,

R300, N030, N210, R240, R330, N150, R210, N000, R090, N330, N240, R060

For each slide, the child was asked to say whether or not the

image represented a right-angled triangle and, if so, to

indicate the right-angle. In this phase, neither assistance

nor reinforcement was provided.

RESULTS

Training phase

The number of children entering each of the training phase

methods and the number and percentage successfully completing

it, were as follows:

method A

number entering 10

number (%) completing 10 (100%)

8

15

9 (60%)

C

17

10 (59%)

M

13

8 (62%)

all

55

37 (67%)

About two-thirds of the children successfully completed the

training phase. There was a large difference between those who

experienced Method A (100% completing) and those who

experienced Methods B, C or M (about 60% completing).

Testing phase

The numbers and percentages giving correct responses to the

"R-set" slides triangles in the respective methods were:

orientation 000 030

Method N 10 4
A % 100 40

Method N 7 7

B 78 78
Method N 10 6

C % 100 60
Method N 8 5

M % 100 63

total N 35 22

240

060 090 120 150 180 210 240 270 300 330

3 8 5 4 8 5 5 9 4 5
30 80 50 40 80 50 50 90 40 50
7 7 4 6 8 6 5 6 7 8

78 78 44 67 89 67 56 67 78 89
7 7 7 8 8 4 6 8 6 8

70 70 70 80 80 40 60 80 60 80
8 7 6 6 7 4 7 7 5 7

100 88 75 75 88 50 88 88 63 88

25 29 22 24 31 19 23 30 22 28
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INSPECTION OF DATA AND DISCUSSION

Individual methods

Method A trained orientations: mod 000 (000, 090, 180, 270)

The average success rate in the trained orientations was always

80% or greater. These orientations represent local maxima of

performance, or "peak performances". For untrained

orientations, this group identified between 30% and 50% of the

right-angled triangles.

Method B trained orientations: mod 030 (030, 120, 210, 300)

Average performance peaked at none of the trained orientations

(although that for 030 was part of a plateau).

Method C trained orientations: mod 060 (060, 150, 240, 330)

With the exception of orientations 000 (100%) and 210 (40%),

all correct-identification percentages lay between 60% and 80%.

None of the trained orientations shows a peak, although 060 and

150 belong to plateaux. The untrained mod 030 orientations

have the worst results.

Method M trained orientations:

030, 060, 090, 150, 180, 240, 300, 330

On average, the horizontal mod 000 (000 and 180) and trained

mod 060 (060, 150, 240 and 330) orientations show good results

(about 90%). No easily discernable pattern is evident.

It is not surprising that when 7-8 year-old children are

taught to recognize right-angled triangles in the standard mod

000 orientations, it is subsequently very easy for them to

identify such figures in such orientations (100% of the

research sample successfully completed the training). On the

other hand, it is much more difficult for 7-8 year-olds to

identify right-angled triangles in non-standard orientations,

in spite of training in these positions under the same temporal

conditions (only 60% completed the training). Thus, the

training items were generally "easier" for children who

experienced Method A than for those in Methods B, C or M.
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Combinations of methods

Below,

responses

orientation

Methods if
B+C+M 1

Methods f
A+B+C+M

we present the numbers and percentages of correct

for "non-A" method groups and for all groups:

000 030 060 090 120 150 180 210 240 270 300 330

N 25 18 22 21 17 20 23 14 18 21 18 23
% 93 67 81 78. 63 74 85 52 67 78 67 85

N 35 22 25 29 22 24 31 19 23 30 22 28
% 95 59 68 78 59 65 84 51 62 81 59 76

A graph of percentage of correct responses against angle of

orientation is given below for Method A and for Methods B, C

and M combined.

A glance at the table and graph given above suggests that,

even for non-A methods, performance tends to be biased in

favour of mod 000 orientations. For the Method A group,

performance was very good at the trained orientations but

relatively poor at all other orientations. The possibility of

mental rotation between the mod 000 orientations cannot be

ruled out. For all other method groups combined, subjects

tended to perform better when the right triangles were

presented in the "mod 000" orientations (apart from a small

perturbation at orientation 090), even though these

orientations were not trained ones. It is clear that the mod

000 orientations are more easily identified than any other

group of orientations irregardless of which orientations were

used in the training. The results for each of the mod-group

orientations are summarized below:
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method
mod 000

00,03,06,09
(A)

orientations
mod 030 mod 060

01,04,07,10 02,05,08,11
(B) (C)

all
combined
(A+B+C)

A 87.5% 45.0% 42.5% 58.3%
B 77.8% 66.7% 72.2% 77.2%
C 82.5% 57.5% 72.5% 70.8%
M 90.6% 62.6% 87.5% 80.0%

B+C+M 83.6% 62.2% 77.4% 77.4%
A+B+C+M 84.6% 57.9% 68.7% 70.4%

The last line in the above table suggests that, without regard

to the method of training, the orientations may be classified

into three groups: those which are most accurately, moderately

accurately, and least accurately identified as right triangles.

The most accurately recognized group contains the triangles

whose shortest and longest sides are horizontal and vertical.

Of these, the triangles whose shortest sides are horizontal

fare better than those whose shortest sides are vertical. In

each of these subgroups, the triangle with the third vertex at

the top is recognized with greater accuracy than that with the

third vertex at the bottom. The "000" triangle and the "090"

triangle - respectively the most and least easily recognized

figures in this group - differ in both these characteristics;

the "000" triangle has the shortest side horizontal and the

response
rate orientation

horizontal location
or vertical of top or

side(s) bottom vertex

33
35 000 short

si
top

de
31 180 horizontal bottom

30 270 short top
side

29 090 vertical bottom

28 330 top
25 060 no Ode top

horizontal
24 150 or vertical bottom
23 240 bottom

22 120 hypotenuse top
horizontal22 300 bottom

22 030 hypotenuse to
19 210 vertical bottom

acute angle at the top, whereas the "090" triangle has the

shortest side vertical and the acute angle at the bottom.

The second most accurately recognized group consists of the

triangles with no side either horizontal or vertical. Within
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this group, triangles with the acute angle uppermost fare

better than those with the acute angle at the lowest position.

The least accurately recognized group consists of

triangles having a horizontal or vertical hypotenuse. Within

this group, one triangle is recognized less accurately than the

others (which are all identified equally accurately). This

triangle (orientation 210) has a vertical hypotenuse and the

acute angle is the lowest position. Indeed, this triangle is

the least accurately recognized triangle of the complete set.

In conclusion, the research shows that only a few 7-8 year

old children can recognize right triangles in non-standard

orientations. Even when they have been trained in these

orientations, they can generally recognize right triangles

better in the untrained, standard orientations than in the

trained ones. It appears that children's natural body-axis

direction (Piaget et al, 1972) over-rides any training of the

sort given. "Upward-pointing" triangles tend to be easier to

recognize than "downward-pointing" ones; again, children's

natural standing orientation is upward from the base.
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THE ROLE OF MICROWORLDS IN THE CONSTRUCTION OF

CONCEPTUAL ENTITIES

Laurie D. Edwards

University of Washington

This paper discusses the learning of a small group of middle-school children in a
mathematical domain which was new to them. Their learning is described in terms of
the construction of new "conceptual entities" which corresponded in important ways
to the mathematical entities introduced during instruction. These mathematical
entities, specifically, certain transformations of the plane (translation, rotation,
reflection and dilation), were presented to the students in the context of an interactive
computer micro world. By using linked visual and symbolic representations of the
transformations in the microworld, the students were able to build their own partial
understandings of these entities, and then go on to use them in problems-solving
activities of various kinds. In addition, the microworld provided the feedback
necessary for the students to "debug" or refine these conceptual entities so that they
became increasingly close to the correct mathematical versions of the transformations.

Introduction

In a traditional textbook-based curriculum, students are often introduced to a new

mathematical topic or domain by means of definitions and teacher-centered demonstrations. This

kind of introduction is often followed by extensive practice with the new concept or procedure, and

may culminate in actual applications or use of the concept in problem-solving. As an example,

transformation (or motion) geometry is introduced in two recent textbooks as follows:

Definition of Transformation
A transformation is a one-to-one mapping whose domain and range are the set of
all points in the plane (Bumby & Klutch, 1982, p. 440).

The motion of an elevator is called a translation. You may think of a translation as
a motion along a straight line without any turning (DeVault, Frehmeyer, Greenberg &
Bezuska, 1978, p.290).

In the research reported here, children were introduced to transformation geometry in a very

different way. Instead of presenting definitions and asking the students to apply these definitions,

the researcher began by physically modeling simple motions of the plane in a very concrete manner

(specifically, using cut-outs and transparencies on an overhead projector). She then elicited the

students' own descriptions of the motions, and introduced a simple vocabulary for naming the

transformations which was clearly related to what the students had seen and described. The

remainder of the work with transformations took place as the students interacted with a computer-

based "microworld" for transformation geometry. This microworld, called TGEO, linked the
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newly-introduced vocabulary (symbolic representation) to a dynamically-changing graphic display of

the transformations (visual representation).

This paper will present the results of research carried out over a 6-week period with twelve

middle-school children who used the TGEO microworld, and will discuss the role played by the

microworld in the children's construction of new knowledge about transformations. Preliminary to

presenting the details of the study and the results of the research, I will present a brief clarification of

the terms " microworld" and "conceptual entity."

A microworld can be thought of as an embodiment of some abstract or idealized domain in a

concrete or semi-concrete form which is accessible to new learners. Papert describes the microworld

of the Logo graphics turtle as defining "a self-contained world in which certain questions are relevant

and others are not" (Papert, 1980, p. 117). Microworlds typically present multiple, linked

representations of the objects and operations in the domain. For example, in the Newtonian

microworld known as the "dynaturtle" (diSessa, 1982), the motion of a graphical turtle on the

computer screen is linked to "kicks" input from the keyboard. The turtle reacts to the kicks as if it

existed in an idealized, friction-free Newtonian universe. Thus, the laws of Newtonian dynamics

are embodied in the dynaturtle microworld; however, rather than being spelled out to the students as

explicti laws, they are left implicit, waiting to be discovered. In creating an instructional context for

using microworlds, activities must be designed which can help students to encounter the regularities

in the domain, and to construct their own understanding of these regularities. It is the thesis of this

paper that an important component in understanding a new domain lies in the construction and

refinement of conceptual entities corresponding to the idealized mathematical or scientific entities of
interest.

The term conceptual entities is introduced by Greeno (1983) in a discussion of problem-

solving in mathematical and scientific domains. Greeno talks about the "ontology" of a domain, by
which he means "the entities that are available for representing problem situations" (ibid., p 277.).

Such mental "objects" are contrasted with attributes, relations, and operations which make use of the
objects. As Greeno uses the term, "conceptual entities" refers to "cognitive objects that the system

can reason about in a relatively direct way, and that are included continuously in the representation"

of a problem or situation (loc. cit.). In the context of the research described here, the "system" is

the learner, it is in the learner's mind that new conceptual entities are constructed. It is proposed here

that when learners encounter a new domain, a significant part of their learning involves building new
conceptual entities for the domain, distinguishing these entities from similar existing mental objects,

and refining their understanding of the characteristics of the conceptual entities. The thesis of the

research reported here is that a well-designed computer microworld can provide the conditions under

which students can construct and "debug" conceptual entities in a new domain.

236

246



Objectives of the research

The study was both an exercise in the principled design and evaluation of a new computer

microworld for mathematics and a detailed qualitative investigation into children's learning in an

intellectual domain which was new to them. The objectives of the research were to:

(1) design and implement a microworld for transformation geometry which would be

effective in supporting students' learning in the domain; and

(2) to investigate the nature of children's learning as they interacted with the microworld.

The aim was both to build a detailed qualitative model of what the students learned, and also to

propose conceptual mechanisms which could at least partially account for the learning that occurred.

The students' learning was assessed both via quantitative measures (performance on paper

and pencil worksheets and on a final exam) and by gathering extensive qualitative data (videotape

and computer records of the students' interactions with the microworld, with the investigator, and

with each other). This combination of quantitative and qualitative measures was intended to provide

a sufficiently rich empirical base to at least begin to answer the following questions:

(1) Was the microworld and its associated curriculum of activities effective in helping the

children to construct an initial understanding of the domain?

(2) How did the microworld support this learning? What were the characteristics of the

microworld itself and the children's use of it which contributed to the students' learning in this new

mathematical domain?

Methodology

The study was carried out with twelve middle-school students, ages 11 to 14, from a private

school in Oakland, California. There were nine boys and three girls in the group; of the group, one

boy was Asian-American, one African-American, and the remaining children, Caucasian. The

students worked in pairs after school in the computer lab one hour a week for a period of six weeks.

Thus, their total exposure to the microworld was limited to about seven hours (including an initial

introduction to the microworld in a whole-class setting).

The microworld itself is illustrated in Figure 1. Three euclidean (distance-preserving)

transformations were instantiated in the microworld, called SLIDE, ROTATE/PIVOT and

REFLECT/FLIP, as well as change of scale transformations (SCALE/SIZE).
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Slide 10 -20

Reflect 20 0 45

[1,

Rotate 25 25 45 Pivot 45

;

Flip

Figure 1: Transformations

Scale -20 -20 3

The students were introduced to the transformations concretely, as described in the

introduction. They were then immediately placed in a problem-solving situation, in which they

were asked to use the transformations to play a game, called the Match game, on the computer. The

purpose of the game is to apply a sequence of transformations in order to superimpose two

congruent shapes on the screen. To succeed at the game, the students needed to understand each of

the transformations, and in order to get the best score (by using the smallest number of moves) they

also needed to compare the transformations with each other so as to find the most efficient sequence
of moves.

Thus, the initial activity of the curriculum involved the students in problem-solving iAkgi the

transformations (as contrasted with a more traditional approach of learning definitions and then

practicing procedures with paper and pencil exercises). Later activities during the study asked the

students to investigate inverses and combinations of the transformations and to use the vocabulary

of transformation geometry to describe the symmetries of geometric shapes. The overall goal of the

curriculum was to present the students with a range of increasingly-challenging contexts in which to

use the transformations. This emphasis on using a concept as the initial step in learning is

consistent with the Using-Discriminating-Generalizing-Synthesizing model proposed by Hoy les and

Noss (1987). Not only was it hoped that these active, problem-solving contexts would be

motivating for the children, but it was hypothesized that their understanding of the new

mathematical entities would be richer and more flexible if they were constructed by the students

themselves while solving problems.
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Results

The results of the study, in brief, indicated that the students were successful in using the

microworld and the curriculum to build an initial and generally correct understanding of the euclidean

transformations, and in applying this new understanding to problems in the domain. In the written

final exam, which consisted of 12 tasks identical to those used in a British study (Hart, 1981), and

12 additional tasks, the students performed above the average for Hart's population on 10 of the 12

items. Thus, this group of students, who had a total of about seven hours of experience with the

microworld, performed at a level comparable to the students in Hart's study, who were taught the

topics of transformation geometry, as one part of their mathematics curriculum, over a period over

several years.

In addition to this quantitative measure of the students' learning in the microworld, detailed

protocol analysis was used to create a "learning paths chart" tracing the development of the students'

understanding of the transformations. The students progressively discriminated more of the

properties of each of the transformations as they worked through the curriculum, and they also

showed development in their general and specific problem-solving strategies. The portion of the

learning paths chart dealing with specific knowledge of the euclidean transformations is shown in

Figure 2.

Slide Knowledge Rotate Knowledge

Slide as way to
change location of
shape

In specific, can use
slide to superimpose
starting vertices

Disambiguate
positive/negative
directions for slide

Can use 0 appropriately
for horizontal or
vertical slide

Use of screen Info. to
accurately determine
slide amount

Rotate/Pivot as way to
change heading of shape

In specific, heading of
target shape can be read
off from screen Info.

Disambiguate relative change
in heading from absolute
heading (used in Reflect)

Rotation as composition of
slide and pivot (Rotate Bug)

I
Rotation as
whole-plane motion

Reflect Knowledge

Ruling out reflection
when sense doesn't
change

Necessity of reflection
to change sense

Required heading for
reflection can be
calculated (JJ only)

Odd and even number
of reflects (Dan only)

Figure 2: Learning Paths Chart
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An example of a refinement of a conceptual entity is found in this learning paths chart, in the

progression of the students' understanding of rotation is noted. An early misconception or

alternative conceptualization of rotation (the "Rotate Bug") was found in 3 out of the 4 pilot subjects

and 2 out of the the 12 main study subjects. In this conceptual bug, students believed that the

rotation command was actually a combination of a translation and a pivot in place, rather than a

turning of the whole plane around a single fixed center point. This bug was found much less often

during the main study, when the transformations were introduced by using rotating sheets of acetate,

rather than directly on the computer (as happened with the pilot group). In both cases, however, it is

important to note that the students discovered and corrected this conceptual bug for themselves,

when they found that their expectations about how ROTATE worked were not met in the

microworld. In other words, they were able to use the visual feedback from the microworld in a

process of conceptual "debugging" during which they refined their emerging conceptual entity for

the rotation operation.

This process of constructing and refining conceptual entities is central to what makes the

microworld effective as a learning environment. I will cite only one additional example of this

process before turning to a discussion of some general characteristics of conceptual entities and

microworlds.

In addition to constructing conceptual entities corresponding to each transformation, the

students were asked to investigate new mathematical entities, including inverses, compositions and

symmetries. The development of the students' understanding of inverse is another example of the

construction of a conceptual entity, this time at a rather more mathematically-abstract level.

In the context of transformations of the plane, the inverse is the operation which "undoes"

the previous mapping or motion. Thus, for example, the inverse of SLIDE 50 30 is SLIDE -50

30, the inverse of a rotation would be a rotation in the opposite direction, and the inverse of any

reflection would be the same reflection again. The term "inverse" was not introduced to the students

until the second session, when they were asked to find the inverses for the various transformations,

and to generalize by writing them as "formulas" (for example, the inverse of SLIDE A B would be

written SLIDE -A -B). Even though inverse was not introduced explicitly in the early sessions, the

students did use inverses while playing the Match game. If they missed the target shape, a common

strategy was to invert the previous move, and re-enter a closer guess. In this case, the students were

implicitly using the concept of inverse, but they showed no signs of being aware of inverse as a

separate, identifiable conceptual entity. They did not have their own name for "undoing" operations,

and they were unaware of any general characteristics of such operations. In other words, for them,

the concept of inverse lacked both indexicality (having a name or way to refer to it) and internal

structure.
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When the Finding Inverses worksheet was given to the students, the opportunity was present

for them to construct "inverse" as a conceptual entity. That is, once the students had worked at

finding inverses explicitly, the idea of an "inverse" could be reasoned about directly, both in special

cases and in its generalized form. The students were also able to determine the characteristics of

inverses for each of the different euclidean transformations. They used the microworld to enter and

test their candidates for inverses, and were successful at completing the worksheet and finding

general versions for each of SLIDE, PIVOT, ROTATE, FLIP and REFLECT. In later activities,

they were also able to use inverses in specific problem-solving situations. And finally, during a

transfer task involving two new transformations, SIZE and SCALE, the children were asked to find

the inverses for each operation. They understood this task immediately, and were able to carry it out

easily (even though the inverses for size and scale were multiplicative rather than additive, as

previous inverses had been).

Without a longer-term follow-up, it is impossible to assess the robustness of the students'

construction of inverse. However, the children's work with this concept in the microworld showed

a nice developmental sequence, from an implicit and informal use of inverses in playing the Match

game, to an explicit focus on the term and its meaning for euclidean transformations, culminating in

transfer of the idea to the context of a new set of transformations, SIZE and SCALE. Thus, in

addition to constructing the individual transformations as a conceptual entities, each with its own

name, internal structure and place in the children's reasoning processes, the students were able to

construct and use an entity corresponding to an important and more mathematically-general concept,

that of inverse.

Discussion

In conclusion, I have proposed that it is through the construction of conceptual entities that

learners made sense of their new experiences in the TGEO microworld. Greeno has stated that

conceptual entities are objects about which people can reason directly, and which exist continuously

in the representation of a problem situation. I would also propose that important characteristics of

conceptual entities include indexicality, a representable internal structure, and a place in an emerging

reasoning system. Conceptual debugging, in the context of the right set of curricular activities, is the

process whereby students construct and refine conceptual entities. These entities, if they are
productive, will be:

useful in the immediate problem-solving or game-playing context;

increasingly connected to other entities in the domain;

ideally, more in line with standard mathematical entities; and

the roots for the construction of new conceptual entities at the next level of abstraction.
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The process of conceptual debugging is supported by a microworld environment because of

a number of characteristics incorporated into its design. These include multiple, linked

representations of the mathematical entities, which are presented in a way which is accessible to the

new learner at his/her current state of understanding. The use of visual feedback is particularly

effective in assisting students to "see" the differences between their emerging models of the

transformations and the correct versions embodied in the microworld. Problem-solving activities

centered around a computer microworld create a context where new entities are needed in order to

succeed. And finally, a microworld which presents a symbolic system for representing mathematical

operations and entities also provides students with a vocabulary, a way to attach names to the new

conceptual objects which emerge as they interact with the microworld.

Paths for future research in this area will investigate commonalties among microworlds in

different domains. Are the characteristics listed above essential for supporting learning in

microworlds? What are the strengths and limitations of these interactive learning environments? In

particular, an important issue concerns the difference between the kind of exploratory, inductive

reasoning which is easy to do in a microworld, and an approach to discovery in mathematics which

is more rigorous, analytic, and sensitive to the requirements of deductive proof.
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THE COGNITIVE CHALLENGE INVOLVED IN

ESCHER'S POTATO STAMPS MICROWORLD

Rina Hadass, Oranim, University of Haifa, Israel;

Nitsa Movshovitz-Hadar, Technion, Haifa, Israel;

Yehoshafat Give'on, Beit Berl, Kfar Saba, Israel.

Abstract

This paper presents the preparatory stage of a
study of the challenges embedded in computerized
Escher-game environment. The instrument and the
background are described, and results of a small
scale pilot study of children operating in that
environment are presented.

Introduction

It is widely accepted that there are both practical and

theoretical reasons for taking an interest in geometrical

transformations. Usiskin (1974) has given a number of reasons

for adopting a transformation approach to high school
geometry. He claims that transformation approach is
especially well suited for slower students. Kiichemann (1981),

who carried, within CSMS, a study of children's understanding

of transformation geometry claimed: "The fact that the
transformations can be defined in terms of actions (folding

and turning), and their results represented in a very direct

manner by drawings, means that the topic is ideally suited to

a practical and investigative approach... in ways that are

meaningful to most children." (Ibid p. 157).

The ultimate goal of our present work is to study slower

students' intellectual functioning in an investigative

environment of geometrical transformations. This is, within

the framework of a curriculum designed for this population

(Hadass and Movshovitz-Hadar, 1989; Movshovitz-Hadar, 1989).
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The Environment

In developing the investigative environment, we were

inspired by a game with engraved potato stamps invented in

1942 by the mathematician-artist M.C. Escher (Ernst, 1976).

Escher's son, George, described a simplified version of this

game, with which his father used to entertain him in winter

evenings (Coxeter et als, 1986). We developed a computerized

version of that game.

In our software, the potato stamps are replaced by
squares. Each "stamp" has a different "engraved" pattern, and

the various stamps are of such design, that when they are

placed side by side, the lines connect to each other, and

thus form beautiful "carpets". Twenty different stamps are

stored in the computer memory (see appendix). Each can be

called to the screen by a numerical code. The user can take a

look at all the twenty stamps at one time, or see each of

them separately.

The software enables a variety of activities:

(a) Changing the basic stamps by transformations of rotations

and reflections. E.g. by entering "4R" we get stamp

number 4 rotated by 90° to the right:

4
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(b) Generating a carpet from a selected 4-tuple of the

stamps, or their rotations and reflections, according to

the user's choice. E.g.

1 8

7 13

(c) Detecting the basic stamps in a carpet, created randomly

by the computer. E.g. Which 4-tuple of stamps generates

the following carpet?
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Operating the software can stimulate an investigation of

many mathematical issues. For instance:

Which basic stamps won't change under rotations or
reflections and why?

How many different stamps can be created from a given

basic stamp by rotations (of 900, 1800 and 2700)

and by reflections?

What is the influence of symmetry on the number of

distinct stamps obtained by rotations or reflections?

How many different carpets can be created from four basic

stamps by changing their order?

How does the symmetry of the basic stamps affect the

number of distinct carpets? The symmetry of the carpet

obtained?

In addition, the software has the potential to introduce to

students some basic notions of computer literacy.

Preliminary Findings

We confine this report to findings obtained during the

first exposure of nine children aged 11-17 to the software.

Each child was given about 30 minutes to operate the
software, in the presence of one researcher. All nine
sessions were recorded. The reactions were then analyzed

according to children's expressions, which can be attributed

to intellectual functions. We bring here a few representative

examples:

(1) Questioning the flexibility of the environment:
D. (17 year old), after looking the first time at the twenty
basic stamps followed by a demonstration of a carpet created
from 4 of them, by the researcher, asked:
- Is it possible to create new stamps?

Other children asked:
Can I use more than four basic stamps to create a carpet?
Is it possible to enlarge a given basic stamp?

G. (12 year old) commented also:
It would be interesting if each stamp had a different
sound.
It would be nice if one could create additional stamps on
the given ones or inside them.
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A. (13 year old) suggested:
- It's worthwhile adding a colour to each stamp or to the

whole carpet.

(2) Investigational behavior:
K. (13 year old) tried a carpet out of the basic stamps
6,7.6,7, and said:
- If we take 6,6,7,7, it will give another carpet, I guess.
She then confirmed it on the screen. Then she tested the
differences between 4,4,7,7 and 4,7,4,7. She tried additional
carpets and said:
- I am looking for non-symmetrical shapes. On the other

hand, I think that with symmetrical stamps maybe the
carpet will look nicer. That's why I keep trying.

(3) Concrete Observations:
After demonstration of a reflection of stamps 7 and 12,
T (11 year old) was- asked:
Q: What happens to stamp 15 by reflection?
A: You won't be able to notice any change, because the stamp

is the same from all sides.
0Q: And if I rotate stamp 15 by 90 ?

A: You won't be able to notice anything either, because the
stamp is the same from all sides.

Q: In which other 8tamps you won't notice a difference in
rotation (by 90.)?

A: In stamps 2 and 20.
Q: What about stamp 1?
A: In reflection you won't see a difference, but in rotation

(by 90 ) you will see a difference, as it's long here
and short there (pointing at the right places in the
stamp, respectively).

(4) Generalization:
O. (12 year old) said:

Symmetric stamps remain the same under rotation and
reflection.

A. (13 year old) said:
I know why each stamp can be connected to another one:
it's because each side of the square is divided into
three equal parts, and the connecting lines start out
from two fixed points.

(5) Attitudes:
One girl, who seemed to be very practically oriented, said at
the end:

It's fun, but it lacks a defined aim.

After trying to discover the stamps from which a carpet was
created, G. (12 year old) said:
- It's interesting, but difficult because the stamps

interlock. If I spent one day playing with it, I would
know whatever there is in it.

A. (13 year old) said:
You can play with it as much as you like. There are 1001
possibilities.
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K. (13 year old) said:
You can make greeting cards out of it.
You should write which combinations you prefer, so that
you will be able to return to them, whenever you wish.

D. (17 year old):
It's beautiful for textile designing.

Summary

Our preliminary observations indicate that Escher-
inspired computer environment, we created, provides fertile

ground for a variety of intellectual activities. Moreover, it

can make the topic of transformation geometry enjoyable,

thus following Lesh (1976), giving a response to critics who

charge that laboratory activities tend to "make fun topics

important rather than making important topics fun".

The learning experience in this micro-world is different

from the routine learning in school, and its advantages and

limitations should be checked for the use of populations of

students having different qualifications. It would be

especially interesting to check whether low achievers, having

a history of failure in school, can profit from this
software. This study is in progress now.
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A STUDY OF THE DEGREE OF ACQUISITION OF THE VAN HIELE LEVELS IN

SECONDARY SCHOOL STUDENTS *

Ade la JAIME and AucteLELIERBEZ.

Depto. de Didactica de la Matematica. Universidad de Valencia (Spain)

Abstract
In this report we describe a method for assessing the degree of

acquisition of every Van Hie le level of thinking by the students Our core
assumption is that for an accurate assessment of the students' level of thinking
it is necessary to observe their way of using every thinking level.

We have administered a test on plane Geometry (namely on polygons) to a
group of Secondary School students The test has been analyzed according to the
mentioned method and we discuss the results This way of working allows us to
recognize different interesting students' behaviors

The knowledge of the students' level of reasoning plays an important role
in most research carried out on the Van Hiele model, as it provides a way for
checking the theoretical hypothesis of researchers. It seems, therefore,
Important to define a method of evaluation which gives a good idea about the
students' thinking level.

In this work, we have considered the Van Hiele levels 1 to 4, and we have
excluded level 5. You can find a detailed description of the Van Hiele levels in
several of the main references; see Gutierrez, Jaime (1989) for a complete
compilation of this references.

The existing literature about the Van Hiele model shows that, up to now,
the methods of evaluating a student's thinking have resulted in the allocation of
one level to the student. This has some problems, as there are students whose
answers reflect the presence of various levels. In this paper we present a way
of evaluation of the Van Hiele levels which considers such situation.

* This paper is part of a research project funded by the "Concurso Nacional de
Proyectos de InvestigaciOn Educativa" (1989) of the Spanish Ministry of
Education and Science.
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There are two main points to consider:

1) The student's answers to several activities often reveal different Van
Hie le levels of reasoning. This probably means that the acquisition of the levels
Is not absolutely linear (as stated in the theoretical descriptions of the Van
Hie le model) but that the student is making progress within more than one level.

We do not reject the hypothesis of the hierarchical structure of the Van Hie le
level, but we propose to consider it in a wider meaning.

2) The acquisition of a thinking level by a student does not happen
suddenly, but progressively. This progress can be recognized by the way how the
student uses the thinking types specific to the level, from an initial period of
lacking of awareness of the abilities of the level (no acquisition of the level of
reasoning) to a complete mastery of the corresponding way of thinking
(complete acquisition of the level), with several intermediate behavior patterns
easily recognizable in the student's answers to problems. Of course, this comes
in support of the hypothesis of continuity of the Van Hie le levels.

This progress towards the acquisition of the level is considered in our
method of evaluation by means of the determination of a "degree of
acquisition" of this level by the student. Therefore, the evaluation of a
student's reasoning results in four values which reflect the student's degree of
use of each Van Hie le level of reasoning. If we quantify the process of
acquisition of a level of thinking, by representing it as a graduate segment from
0% to 100%, figure 1 shows the various periods of the progress through the
segment divisions (acquisition of one level) that we have identified. The
specific values of the partition are subjective and can be modified according to
the researcher's point of view.

No Low Intermediate High Complete
acquisit. acquisition acquisition acquisition acquisit.

0% 15% 40% 60% 85% 100%

Figure I

In order to determine a student's degree of acquisition of the Van Hie le
levels, first we have to determine the Van Hie le level of each student's
answer (levels 1 to 4). But the completeness of the answers and their
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mathematical accuracy should be taken also into account. We concrete these
aspects of the answers by assigning each one of them to one of eight types of
answer. To determine to which type an answer belongs, it is necessary to
consider it from the point of view of the Van Hie le level it reflects; that is, the
answer could be correct according to the requirements of a level, but incorrect
according to the requirements of a higher level. Any answer to an open-ended
item may be assigned to one of the following types:

Type 0: No reply or answers which cannot be codified.

Type 1: Answers which indicate that the learner has not attained a given level
but which give no information about any lower level

Type 2: Wrong and insufficiently worked out answers which contain incorrect
and very reduced reasoning explanations but give some indication of a
given level of reasoning

Type 3: Correct but insufficiently worked out answers which contain very few
explanations or very incomplete results but give some indication of a
given level of reasoning

Type 4: Correct or incorrect answers which clearly reflect characteristic
features of two consecutive levels of reasoning.

Type 5: Incorrect answers which clearly reflect a level of reasoning.

Type 6: Correct answers which clearly reflect a level of reasoning, but which
are incomplete or insufficiently justified.

Type 7: Correct, complete, and sufficiently justified answers which clearly
reflect a level of reasoning.

Conseguently, these types of answer may reflect the various periods of
acquisition of the Van Hiele levels of thinking represented in figure 1: Types 0
and I indicate no acquisition; types 2 and 3 indicate low acquisition of the
level; type 4 indicates an intermediate acquisition; types 5 and 6 indicate a
Nab acquisition; and type 7 Indicates a complete acquisition.
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Thus, we assign a vector OM to each answer, where 1 is the level
reflected by the answer and t is the type of answer (the component I is empty
when t = 0). By weighting the types of answer t in terms of the percentage of
acquisition of the reflected level of reasoning (from 0% to 100%) and by
considering the vectors (1,t) of all the questions which could have been
answered at each level, we obtain the student's degree of acquisition of the Van
Hie le levels.

Application of the method of evaluation to a specific test

As a part of an ongoing research project aiming the evaluation of the Van
Hie le levels of thinking of students in Primary and Secondary Schools, we have
administered a test on polygons to a group of secondary school students, and we
have determined their Van Hie le levels with the method that we have just
described.

Sample: The test was administered to 19 secondary school students (aged
15-16) in a Spanish Professional Training School.

The test: It was a paper and pencil test which consisted of nine open-ended
items. Each sheet contained one item and they had a lot of blank space;
furthermore the statement of the items encouraged the students to explain
their answers. The questions dealt with several plane geometry topics:

Triangles, quadrilaterals and polygons in general. Each student had a ruler and a
protractor.

Items 1 and 2 are intended to identify specific sorts of figures: Regular,
irregular, concave, and convex polygons in item 1; square, rhombus, and
rectangle in item 2. The students were presented several figures and they had
to identify them; they were also asked several questions aimed to know their
ways of identification. Item 2 had also several questions about classification
of figures, like: "Write whether there are quadrilaterals being rhombi but not
squares. Justify your answer".

Item 3 began with formal definitions for "square" and "rectangle" that had
to be used to answer to questions of identification and classification similar to
those in item 2.
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items 4 and 5 were based on the definition of a polygon (not a known
polygon) called ANLA. Item 4 was similar to item 1, and item 5 consisted of
questions about classification of ANLAs and other kinds of polygons.

In item 6 students were given a list of properties, and they had to select
all those which were true in an obtuse triangle; they had also to select two
minimal sets of conditions which enabled to define an obtuse triangle.

Items 7 and 8 were based on the sum of the angles of a triangle. In item 7
students were asked to prove that property for an acute triangle; students were
provided with several hints so as to help them to write the proof. In item 8
students were given a complete proof for acute triangles and they were asked
to prove the property for right and obtuse triangles.

In item 9 students were asked to prove that the diagonals of a rectangle
have the same length and that the diagonals of a rhombus bisect and are
perpendicular.

We do not evaluate the statement of the items (as done by Usiskin (1982)
and Mayberry (1983)) but the students' answers (as done by Burger, Shaughnessy

(1986) and Fuys et al. (1988)); then each item was assigned to a range of levels
where it could be answered by the students (table 1). Fro'rn our prior knowledge
of the students, we suspected that most of them would have level 2 or perhaps
level 3; therefore most items were intended to cover these levels. This
assignation was first made by the researchers, and later it was improved by
pilot testing.

Item Levels Item Levels

I 1,2 4 2,3
2 1, 2, 3 5 2, 3

3 2, 3 6 2, 3

Item Levels

7 2, 3, 4
8 2, 3

9 2, 3, 4

Table 1. Range of levels where the items can be answered.

The administration of the test: It took place in two sessions as a part of
the class of mathematics. The students were allowed to take as long as they
needed to answers the questions (time ranged from 25 to 45 minutes per
session).
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The evaluation of the test: We have assessed the students' level of

reasoning by applying the twofold method described above (Van Hie le level and
type of answers). First each researcher has assigned levels and types
separately, and later we have compared our assignations, looking for a

consensus when they were different.

To obtain the degree of acquisition of a given Van Hie le level, we weighed
the student's answers to all the items which could have been answered in that
level, according to the range of levels shown in table 1; that is, for level 1 we

have considered items 1 and 2, for level 2 all the items, for level 3 items from
2 to 9, and for level 4 items 7 and 9.

Analysis of the results: Here we are not trying to generalize the results
from the point of view of the general reasoning of the students, as the sample
is restricted to one group of one High School. Our aim is rather to show how our
proposal of considering the degree of acquisition of each Van Hie le level results
in a more detailed information about the development of the students' reasoning
than the classical assignation of one level of reasoning to the students.

The different patterns of acquisition of the Van Hie le levels obtained from
the sample are shown in table 2, which depicts the acquisition of each level
according to figure 1. Figure 2 shows graphs of the degrees of acquisition of the
levels by students of groups A to F.

Level 1 Level 2 Level 3 Level 4 4' of stud.
A Complete Intermed. Low 3

B Complete Low 9

C Complete 2

D Intermed. Low 2

E Intermed. 1

F Low 2

Table 2. Number of students and their acquisition of each Van Hie le level.
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Figure 2. Patterns of the students' degrees of acquisition of the levels.

The classical assignation of a single Van Hiele level of reasoning would
probably have resulted in the assignation of level 1 to the students in groups A
to C and no level (or level 0) to the students in groups D to F; or, perhaps, it
would have resulted in the assignation of level 2 to the students in group A,
level 1 to the students in groups B to E, and no level to the students in group F.
Anyway, it is clear that such kind of assignation implies an oversimplified view
of the students' thinking abilities.

On the contrary, table 2 and figure 2 provide an evidence of important
differences among the students: Some of them (group F) need strong instruction
directed to the attainment of level 1, whereas other students (groups D and E)
only need a reinforcement to complete the acquisition of level I; the rest of the
students (groups A, B, and C) has completely acquired level 1 and they need
instruction for attaining level 2, some from the very beginning (groups B and C)
and some from a more advanced point (group A).
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Another interesting point that can be observed in table 2 is, referring to
groups A and D, that a significant number of students begins the acquisition of
the abilities of a thinking level before they have completely acquired the
previous one. This Is a situation certainly caused by the curriculum of
mathematics and the way students have been taught, which has to be identified
and investigated.

In short, this kind of assessment of the Van Hie le levels provides an
accurate and detailed picture of the current students' thinking abilities.
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Spatial Concepts in the Kalahari

by Hilda Lea

University of Botswana.

Abstract.

Hunters and herdsmen in the Kalahari, who have never been
to school and who have lived in very remote areas all their
lives, were interviewed on two occasions to ascertain how far
their spatial concepts have developed. When asked how they
recognised animal footprints, and how they found their way in
the desert, they were seen to have a very good visual memory,
and to be aware of the minutest detail in recognising shapes.
When given a visual thinking test, they performed with a high
degree of skill on items related to their environment.

Introduction.

Before Independence in Botswana, people's lives were largely untouched
by the technological world, and many of those in remote areas of the
Kalahari have been living all their lives in the same way and in the same
environment as generations before them. It was therefore felt to be
useful to investigate how far their spatial concepts have developed, as a
result of the interaction with their particular environment.

Hunting in Botswana is carefully controlled, though Batswana can hunt
non protected animals for food in areas where they live, during specific
periods..
Seventy per cent of the national herd grazes in the Kalahari. Cattle do not
normally stay near villages but are kept at cattle posts which are usually
a long way off. Herdsmen spend their time in the sandvelt looking after
cattle belonging to other people.
University students interviewed hunters and herdsmen known to them,
at cattle posts in the Kalahari.

Spatial ability is a complex set of interlocking skills. Good visual memory
requires an ability to retain, recall and manipulate information
concerning shapes and spatial relationships. Visualisation depends on the
degree to which the perception, retention and recognition of the
configuration is seen as an organised whole. Orientation is an ability to
manipulate a shape, to transform it mentally by moving or enlarging it or
seeing it from a different point of view.
Skills include aspects of distance, direction, perception, movement, and
relationship of part to whole and objects to each other.

259 268



The Commonwealth Secretariat (1970) commissioned a review of
research in different countries relating to difficulties students face in
pictorial perception, in various cultural settings. Literature was reviewed
on the subject and case studies discussed regarding the acquisition of
particular skills. Eskimos were shown to have a high level of spatial
ability (Berry 1966, 1974). In Papua New Guinea students from rural
backgrounds were shown to have a highly developed visual memory
(Bishop 1977). South Pacific studies on the navigation skills required
when travelling by canoe among the islands, showed a highly developed
sense of direction. Gladwin (1964) analysed the navigation skills of
Trukese adults, which showed a concrete level of thinking. Navigation is
by the stars, wind direction and wave patterns, and on a dark night by
the sound of the waves and the feel of the boat. The Trukese knows
where he is in relation to every island though cannot give a verbal
account.

Lewis (1972) identified mental mapping in the orientation behaviour of
Aborigines in Australia in finding the way. They seemed to have a
dynamic mental map which was constantly updated in terms of time,
distance and bearing, and realigned at each change of direction. The
Aborigine also seemed to have Treamings* related in some way to paths
which aiss crossed the land, which ancestors had followed. They had
great acuity of perception of natural signs and an ability to interpret
them, and almost total recall of every topological feature of any country
they had ever crossed.

ResearCh shows that each society develops its own way of understanding
and adapting to the environment. Different groups do not necessarily
follow the same development path, since their particular goals and
requirements are different. Visual memory is seen to be highly
developed in many pre technological societies.

In Botswana, work has already been done on informal mathematics (Lea
1990), looking at mathematical activities in traditional daily life, and in
the way of life of the Bushmen. This study looks at spatial abilities in the
Kalahari to identify spatial skills acquired in the daily life of hunters and
herdsmen, and to see how far these skills can be transferred to more
structured situations.
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fjcperiment 1.

Method.

During the Christmas vacation 1988, students carried out interviews with
hunters and herdsmen in the Kalahari outside the game reserves, to
ascertain a) how animal footprints are recognised b) how people find
their way in the desert and c) if prints can be recognised when on paper,
42 subjects were interviewed of whom 26 were Bushmen.

Results.

a) Though people live in an area where there are large herds of wild
animals, it is still quite difficult to find them and to track them.
The hunters explained with words, sand drawings and hand gestures
how they know the difference between footprints. They said they
sized them with their eyes and looked for distinguishing features
such as presence of claw marks, distance between front and back
prints, distance between toes and paw, distance between the two
parts of a hoof, the depth and overall structure of the footprint.

Prints of hyenas and jackals are similar though differ in size. Their
claws mark the ground but jackals' claws dig a little deeper.
Leopards and lions have similar marks and do not show their claws.
The leopard leaves tiny fur marks because its claws are hidden in
their sheaths and covered with fur, and a lion's footprints are
preceeded by a mark of fur as it tends to drag its paw. The general
shape of the leopard's footprint is more circular than the lion's.

loved animals have similar prints as all have sharp pointed hooves
except wildebeest and buffalo. Zebra prints are like a donkey's only
larger. Buffalo and cows make similar marks but the hooves of the
buffalo have an opening in the middle and make deeper marks. The
four footprints of one animal never show the same mark.

They commented 'Point to any spoor on the ground whether old or
new, and the answer will be certain'.

b) The Kalahari is a vast and desolate area, and those unaccustomed to
the desert would find it apparently featureless. This is not so for the
people who live there. Important features to be noted are particular
trees, particular vegetation and vegetation under trees, and if
travelling in unknown territory, these must be remembered in the
correct order. The sun, shadow and direction of a breeze can help
also.
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Those interviewed said they would not get lost nor would they lose
the track of animals they were trailing. Some said that if really
lost, they would go to sleep and in the morning when the mind
was refreshed they would know the way. Some said that a good
method of finding the way back by donkey was to ride it without
controlling it, and it would retrace the path followed earlier. Some
said they would wait till night till the donkeys cry. Others said
that if they were really lost when walking, they would look for a
very straight tree with few branches, climb up and go to sleep, and
in the morning the tree would tell them which way to go. Another
said that when lost, shout "Beee.ee.ee.' and if anyone hears he will
come. Of those interviewed all had been to unfamiliar places and
no one had ever been lost. One said 'It may be easy to get lost in
a city or village, but not out there, not in the wilderness'.

c) Pictures of footprints were shown in three forms -- on sand coloured
paper, solid black prints on white paper, and black outline on white
paper. In each case there was no problem and all were identified.
There was some argument over tiny detail for example that one
print should be more pointed than another, or more curved at the
edges.

Discussion.

In any society, abilities best developed are those necessary for a way of
life. Whilst most of those interviewed have little use for the printed
word or picture, they were nevertheless able to recognise footprints
irrespective of the context.

Mental mapping seems to be used in finding the way. Instead of
referring to a map on paper at a particular time, positions and
orientations are carried in the head, and these are realigned after every
change of direction.

In Piagetian terms it would seem that thinking is at the concrete
operations level, having no need to move to abstract thinking. In the
concrete - iconic - symbolic mode of intellectual development, thinking is
at the iconic stage because there is no need to move to the symbolic
mode. The level reached is determined by the need of culture and
environment.
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Experiment 2.

Method.

During the Christmas vacation in 1989, students gave the "X test on visual
thinking' to 70 herdsmen in the Kalahari, from 8 different regions. The
test contained 38 items requiring recognition and manipulation of shapes.
Items 1 12 were chosen as having some relationship to the immediate
environment, comparing lengths, tracing paths, following mazes,
unravelling knots, and identifying right and left hands: Items 13 - 16
required the identification of animals from composite pictures from
'Signs of the wild'. Items 21 38 were more formal and were taken
from Dale Seymour Set B visual thinking cards. Concepts tested were
congruence, direction, geometric shapes, magnitude, part whole
relationships, patterns, similarity, and rotation and position. All items
gained 5 marks.

Discussion.

Performance gave an overall of 56%. Questions related to the
environment, Nos 3 - 18, 22 and 25 averaged 64%. Other questions which
were more structured, many not having been encountered before,
averaged 51%. This suggests that the subjects had a very good visual
memory, and had acquired skills which were transferred to new
situations.

As topological shapes do not have rules regarding length, number of sides
and size of angles, they can probably be identified more easily, such as 32
simple figures, 29 key, and 25 irregular piece. 36 jig saw piece was more
difficult as it had to be mentally rotated.

Knots questions were easy because a common activity is setting snares.
21 chain question would seem to be related, but this was nota high score.
22 arrows was done well though 35 arrows was not as many of the
subjects considered the arrows or the spots, but not both together.

7 and8 hands were easily identified though 9 and 10 to identify the odd
one out was more difficult.
3 and 4 were following pathways by eye when ten paths intertwined. 23
faces would seem to have some similarity to footprint identification, but
scores were not high. Perhaps the instructions were confusing.
20 embedded figures was well done.
18 orientation had quite a good score.
38 did not have a very high score, because unless turns were exactly
through ninety degrees the cumulative effect of small errors gave a
wrong direction.
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27 completing a lino pattern gained a higher score than 28 completing a
zebra type pattern.
34 matching triangles gained a high score, but 33 to find triangles of the
same shape and different size, was difficult.
13 - 17 animal pictures were enjoyed though not done particularly well.
Two of these were composite pictures of animals in a group, where it was
necessary to identify them in a holistic way.

Shapes with two variables were easily compared, though there was
greater difficulty with three variables. With more than this, some sort of
classification is needed to compare in a systematic way. Those
interviewing said this was a problem with 31 where there were different
arrangements of curved outline, circle, octagon and crossed lines. It was
surprising that 24 had a high score as there were twelve, pieces to choose
from. These were coloured and this seemed to have made a big
difference.

Items made use of spatial or visual imagery, and required the perception
and retention of visual forms, and / or the mental manipulation of
shapes, as well as a skill in making logical comparisons.

Summary.

This paper attempts to show a relationship between cultural and
ecological characteristics of a particular group of people, and the
perceptual skills developed by that society. As in other cultures, certain
perceptual skills must be developed for survival. The similarity to visual
thinking of the Aborigines, Eskimos and others supports the idea that the
development of perceptual skills is embedded in the individual's total
environmental and cultural context.

It is clear that those who live in remote areas have highly developed
spatial skills necessary for their way of life. In trying to measure the
nature of these abilities, it would appear that they have excellent visual
memory in identifying footprints, and the context in which these are
presented is not important. They have a good sense of position and
direction in their environment, and have a mental map which they can
update quite easily. Performance was good on the visual thinking test,
and it would be interesting to compare results on the same test given to
secondary school pupils.

An abstract analytical way of thinking may be considered to be better in
a technological society but not in a non technological society where visual
thinking is very necessary. People tend to assume that those who have
been to school are more intelligent, but this is not necessarily so. The

type of intelligence differs and so does the experience.
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INTEGRATING LOGO IN THE REGULAR MATHEMATICS'
CURRICULUM. A DEVELOPMENTAL RISK OR OPPORTUNITY?

Tamara Lemerise, Ph.D.
Departement de Psychologie

Universith du Quebec a Montreal

Summary

Logo is at a turning point th its history Certain tyucial chokes must be made
in order to assure the development if not the survival of Logo in the current
educational system. On the 0/119 hates Logo still needs to penetrate more
deeply into the educational milieu. maftiplvkg its agents and its
contributiOns On the other hand certain fflAaSZifeS must be taken to aSS111-e
that the fundamental link between Logo and mathematics he maintained
ThiS rep.rt examines the extent to Whie:h the current trend favoring the
integration of Logo into the school curriculum responds to these .11e&S.
Theoritkal considerations ba..grld on experimental data are presented

The adolescent period of Logo

It has now been nearly fifteen years that Logo has been known and used in
primary schools for the purpose of creating an educational context that
favors the development of mathematical thinking. Although it would be an
exaggeration to say that Logo is currently undergoing an "adolescent crisis",
it would not be farfetched to suggest, given the fundamental questions that
one encounters nowadays, that Logo is very much in search of its identity.
Among the many questions that have arisen, three in particular stand out.

(1) What is going to be the impact of Logo on the educational system?
Will it be seen as the trigger that set off a revolution or as a factor of
evolution in the educational system at large and especially in the field of
mathematics?

(2) What is the connection between Logo and school mathematics? Is
Logo a_new_way. of _doing_mathematis:s to the exclusion of the old? a
mathematical alternative that is complementary to the traditional one? or a.
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lifebuoy_ that has come to the rescue of a sinking traditionnal mathematics
curriculum?

(3) Is the growing variety of ways of using Logo, which are actually
observed in the schools, a sign of development and enrichment for Logo? a
mere survival measure? or the premonition sign of an imminent death?

The impact of Logo: revolution or evolution?

It is by now obvious that the initial goal of revolutionizing the educational
milieu will not be achieved in a straightforward manner. It is more likely
that any revolution that actually took place will be consolidated through the
slow process of evolution: through successive waves of pedagogical changes
that, step by step, embrace an ever increasing pool of active agents and
significant educational topics. What data are available that support the
hypothesis that Logo is a factor of evolution in the educational system?

On the one hand, there is clear evidence that Logo already went and is still
going through important developments. Logo-Writer and Lego-Logo, to
name but two recent innovations, are arms newly developed by Logo to help
it reach out in the educational environment (Weir 1987). So in the last
decade, not only have we witnessed the continuous technical sophistication
of the early Logo but, more importantly, we have also seen Logo linked to
different kinds of abilities that were not initially easely accessible to it:
writing, mechanical and physical abilities with both theoretical and practical
applications (diSessa, 1982, Weir, 1987, Weir, in press.). With this trend
Logo tends to be more and more multidisciplinary slowly infiltrating its way
into new fields after its initial start in programming and mathematics.

Parallel to this phenomenon of outward expansion, another kind of expansion
can be observed, a more inward and subtle phenomenon, namely the
development of cleaner and clearer connections with the mathematical
universe. Such well-known authors as Hoy les, Noss (1987) Hi llel, Kieran &

Gurtner (1989) and Gurtner (in press) have recently underscored the
pernicious possibility of children doing Logo without ever really getting in
touch with mathematical entities or mathematizing the solution. There is a
current today that favors a tighter and surer link to mathematical thinking.
It is no longer enough to make loose associations between Logo and problem
solving abilities or turtle geometry; special care must now be taken to assure
direct and solid connections with authentic 122.-71VitvziatAul types of solutions.
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In its quest for rapprochement with the mathematical domain, Logo finds
itself more and more in contact with elements that are already covered by
the traditionnal mathematics' curriculum . A review of the literature points
to an increase in the nature and in the frequency of the interaction. The
extent to which these new liaisons with traditionnal mathematics can be
beneficial to Logo or could constitute dangerous liaisons -- is an important
question that need to be clarified in a general discussion of Logo's role in the
evolution of the educational process.

The relation between Logo and the traditionnal mathematics'
curriculum: a risk or an opportunity?

Simply stated, the risk of making tighter and tighter links between Logo and
traditional mathematics is that Logo could be gobbled up by the traditionnal
approach. This is often called the recuperation phenomenon. The old system
annihilates the innovative approach by slowly adapting it to its own. Logo
would then be treated, for example, as one exercice among others, an
element of the curriculum mechanically "covered" by the teacher, which is
what often happens to other mathematical topics. More tragically, the Logo
spirit and philosophy could be muzzled for many years to come. Were Logo
to be so ensnared, all hope would be lost for Logo as an active agent of
change in the learning and teaching of mathematical thinking.

On the other hand, the opportunity that arises from forging tighter links to
the traditional curriculum has to do with some Logo's contemporary needs.
How, for example, could the insertion of Logo into the mathematics
curriculum foster a real mathematical spirit and context when doing Logo.
How could it favor the evolutionary role of Logo in contemporary education.
Let us examine the opportunity and how the risks might be minimized.

The link to the nmtliem3tics' curriculum. Away o f mattrematiIng litro

As stated above, Logo does at times encounter difficulties in bringing
children to think mathematically. Gurtner (in press) uses the metaphor of a
tunnel to express how characteristics of Logo situations sometimes make
"students miss nice view-points on mathematic and geometry"; and he asks
that windows be opened in the Logo tunnels in order for children to have a
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perspective on related realities while working on specific Logo tasks. At the
same time, Gurtner notes the need for bridges that permit students to go
back and forth actively between Logo actions and basic mathematical
principles, laws or notions. In order to avoid progressive isolation, Logo
needs to be consolidated and enriched by significant links to the field of
mathematics. As Cote (1989) emphasized when writing about his new
microworld of two turtles' "les deux tortues" -- many interesting
connections can be made to concepts already in the primary and secondary
mathematics' curriculum. Hoy les & Noss (1987a) have already start to work
in this direction. Thus, from a general point of view, links with traditional
mathematical content could be benefical to Logo.

In a way, Hoy les & Noss (1987a), de-dramatise the necessity for Logo to link
up with mathematical concepts. The whole of mathematics' teaching seems
to suffer from a similar but stronger malaise : "the separation of any sort of
meaningful activity and the separation of pupil's conceptions from their
formalisation'. A first response to such a malaise resides in a general
awareness of the need for links, concrete and abstract, for whatever
problem-situation is being worked on. Many authors ( Cote & Kayler 1987;
COW, 1989; Gurtner, 1988; Hillel et al 1989; Hoyles & Noss, 1987a) have
Proposed the creation of mathematical microworlds as an interesting solution
to this particular problem for Logo and to the more general problem of
mathematics' education. The microworld notion can, of course, present
subtle difference of definition from one author to the next, but what is most
important is the view of working on a given topic from different points of
view and with different kinds of tools (computer, paper and pencil ruler,
compass -, etc.). If that were done for all pertinent mathematical concepts
(number, measure, area, variable, operation, function, etc.) the future of Logo
and the future of mathematics would be in better hands! In sum, the
confrontation of Logo with the mathematics' curriculum could be benificial to
both, but especially to Logo given its chances of influencing the whole of
mathematics' teaching.

The link to m3thematks' curriculum.: A way to support the evolutlOnary
role of Lego

Historically, Logo has now reached the point where progress in the evolution
of the learning and teaching of mathematics is, for the most part, in the
hands of the teachers. In the beginning, Logo was actively supported by a
nucleus of keyed up teachers and by a lot of researchers; then, after a short
period of adaptation that in many cases brought along better infrastructural
school support (more equipment, direct support in class, better information
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and training), a larger group of teachers became active in Logo. Today, with
Logo having more direct links to a content that is known and judged
important by teachers, a larger group could become positively involved with
the Logo approach. This is the successive wave phenomenon mentionned
above. Such a phenomenon is not particular to Logo and has often been
observed in the past with other kinds of innovation. In the end what
matters is that the spirit and crucial philosophy underlying the innovation be
not lost in the successive phases of implantation and adaptation.

Authors who favor more direct links with the mathematics' curriculum ha ,*
described the necessary conditions for not losing contact with the Logo
philosophy (C8t4, 1989; Hoy les, Noss 1987a; Hoy les, 1985; Gurtner, in press).
What appears essential in implementing Logo in schools is not the form of
presentation but the spirit in which it is presented, and the maintenance of
specific pedagogical goals in whatever modality is chosen.

The growth of variety in employing Logo what counts?

What evidence do we have that what counts is the nature of the goals
pursued rather than the external means of presentation? An apparently
"good" way of presenting something does not guarantee the respect of
important goals: it is not because Logo is offered in an open non-directive
environment that such developmental goals as the acquisition of autonomy,
mathematical knowledge and thinking skills are neccessarily attained. Nor
is it because Logo is offered in a relatively structured environment that such
goals are not attained. As such ecologists as Bronfenbrenner (1979) and
Garbarino (1982) have said : it all depends!

There is a wide variety of contexts in which Logo is offered today. A
supervisor can choose basic Logo or opt for an expanded version such
asLego-Logo. The context can be open, that is, centered on childrens*
projects, structured in such a way that the situations are chosen in advance,
or semi-structured, which alternates the two. It is possible to focus on
aspects of visual art, programming and/or mathematics. Promoters of a
mathematical framework can either choose to link it to mathematics
curricula or find another way of assuring the process of mathematization .
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Although it was once seen as heresy to do Logo in way different from what
Papert (1979, 1980) first proposed, many now see it as a favor to Logo to
vary its type of implementation. Of course it all depends on how it is done.
Hoy les (1985a, 1985b) and Hoy les & Noss (1987a) have clearly described
the needed conditions for an adequate integration of Logo in the school
mathematics' curriculum. Research by Lemerise (in press), and Hoyles &
Noss (1987b) has showed that a structured approach can facilitate the
realization of many Logo goals.. Cote (1989) and Weir (1987) even talk
about "structured exploration" and "structured discovery" as a way of
reaching some of Logo's goals; the pedagogical agent makes certain
predetermined choices in order to favor exploration or discovery in a
particular domain or situation. Some data now exist (Lemerise, in
preparation) on how 4th, 5th and 6th graders behave in a specific
microworld (COte's (1989) "two turtles") that is tightly related to their school
mathematics' curriculum. In a class' context where work on computer
alternates with paper and pencil's work children construct, explore, compare
and generate laws. Sometimes, of course, the way certain tasks are presented
can trigger reactions of dependance, or guessing, but such problems arise in
all contexts. What matters is that they are flushed out and dealt with
intelligently.

Variety, in conclusion, is more often a strengh than a weakness, rigidity
more deadly than flexibility. A revolution tends to be totalitarian, evolution
more democratic.
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Young Children Solving Spatial Problems

Helen Mansfield and Joy Scott
Curtin University of Technology

Western Australia

In our research with young children, we have begun to explore young children's actions when they

are engaged in spatial problems. Our interest has not been so much in whether children are

successful in solving the problems we pose to them, nor in tracing the success rates of children of

different ages. Rather, we have been interested in exploring the procedures that children who are

successful are able to use, and in trying to identify differences between the procedures employed

by children who are successful in solving the problems and those who are unsuccessful.

Our research falls within the general framework of a constructivist view of learning. One aspect

of this framework is the belief that the form taken by new knowledge constructed by learners is

dependent on the form of the knowledge they already possess. Young children who already possess

appropriate procedures and use them successfully on simple spatial problems seem likely to use

those procedures more readily and successfully in subsequent more difficult problem-solving

situations than children who do not already possess such procedures.

One of our basic assumptions is that children construct their own mathematical realities, which

may differ significantly from the reality of the adult researcher. While there may be an

inherently logical structure to a problem as it is perceived by adults, the structure the child

imposes on the task may be different.

Lester (1983) has suggested that three main questions constitute the core of all mathematical

problem-solving research:

(1) what the individual does, correctly, incorrectly, efficiently and inefficiently;

(2) what the individual should do; and

(3) how individual problem-solving can be improved.

The goal of the research reported here was to improve our understanding of how young children

solve simple tangram-like problems. We were, therefore, interested in exploring the first of

Lester's questions within the context of some simple spatial tasks.

In the tasks that we used, the children were requested to use two or three cardboard shapes to

cover completely a region drawn on card. Clearly, these tangram-like puzzles require simple

shape and size recognition and discrimination abilities. In particular, as well as recognizing the

overall shape configuration of a region, children must be able to judge angles as equal and line

segments as equal.
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.e children may also draw on some planning skills to enable the tasks to be carried out

successfully. Initially, there may be several ways that the first piece can be placed on the target

egion. Usually, only one of these placements leaves a region that is the correct shape for the

remaining pieces to cover it. Other initial placements cannot lead to a correct solution. The child

then must recognize that the first piece prevents a solution and must be willing to remove it and

place it again in a different position. The recognition that the first placement is unfruitful

therefore requires further shape and size recognition and discrimination as well as willingness to

remove and re-position a piece that seemed correct initially.

When children place a piece on the region, they may pick up the piece to be placed and by chance

position it appropriately. If this does not occur, the child may be able to position the piece

appropriately by removing it and trying again, or by rotating, reflecting, or translating the piece

until it does fit satisfactorily. We speculated that children who are able to rotate or reflect the

pieces before placing them on the region, or after they have been placed on the region, are more

successful at solving the tangram-like problems that we presented to them. We also hypothesized

that children who are able to recognize an incorrect placement and who are willing to remove a

piece and try to find alternative placements are also more likely to be successful in solving the

problems than those who do not display these behaviours.

The research reported here is exploratory. Our purpose was to observe children in a clinical

situation as they attempted to solve a variety of tangram-like tasks, with a view to documenting

the children's actions. We sought to identify the sequence of actions the children used, and to

identify those actions that were efficient or successful. We also attempted to identify planning

skills employed by the children.

The samples

We worked with three groups of young children.

1. Pre-school children. This sample consisted of 4 boys and 3 girls. These children were

interviewed on one occasion. Their ages ranged from 45 months to 56 months, with a mean age of

52 months.

2. Pre-primary children. This sample consisted of 6 boys and 2 girls. These children were

interviewed on two occasions. At the time of the first interview, they ranged in age from 55

months to 63 months, with a mean age of 59 months. At the time of the second interview, the

mean age was 66 months.
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3. Year one children. This sample consisted of 6 boys and 4 girls. These children were

interviewed on one occasion. Their ages ranged from 70 months to 85 months, with a mean age of

75.5 months.

Procedure

The two questions whose results are described here were questions three and four in a five

question sequence. In the first two questions, we explored the children's knowledge of the names

of common geometric shapes, presented as regions or as boundaries. In the fifth question, we

explored whether the children were able to construct common geometric shapes from a variety of

sticks of different lengths. Only the results of questions three and four are discussed here.

For questions three and four, the child was first presented with a set of geometric shapes made

from pieces of card. The set consisted of congruent right isosceles triangles, congruent squares,

congruent rectangles, and congruent equilateral triangles. Each square could be covered exactly

by two of the right isosceles triangles, and exactly by two of the rectangles. The child was invited

to handle the pieces and to sort them according to shape. Most children in fact did this without our

asking them.

For question three, the child was then presented with four shapes drawn on card. Each of these

shapes could be covered by two of the cardboard pieces which the child had already handled. There

were diVisions drawn on the shapes which represented the boundary between the constituent

pieces and were intended to provide a clue to the placement of the required pieces. The child was

asked to find the required piece from the set already sorted, or if the child did not know the name

of the shape, the child was given the two pieces that were required. The following question was

then asked: Can you put the two shapes on top of this shape (shape on card indicated by gesture)

so that they cover it exactly?

A similar procedure was followed for question four. In this question, nine shapes to be covered

were presented to the child on cards. The shapes were shown without divisions drawn on them to

indicate the boundary between the pieces to be placed on them. Each shape could be covered by two

or three of the cardboard pieces.

Results

Reported here are the children's responses to questions three and four. Table 1 shows the number

of children who were unable to complete the various problems presented in questions three and

four.
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Table 1

Numbers of Children who were Unable to Solve Problems in Questions 3 and 4

Question 3 Question 4

1 2 3 4 1 2 3 4 5 6 7 8 9

Sample 1 1 3 6 3 2 5 2 4 3
Sample 2(1) 2 2 1 2 1

Sample 2(2) 1 1

Sample 3 1 1 1 2 2

The figures given in Table 1 suggest that the shapes that caused the most difficulty were shape 4

in question three, and shapes 1, 6, 7, 8, and 9 in question 4.

Shape 4 in question three consisted of a right isosceles triangle, presented with its longest side

horizontal and at the base of the figure. The internal marking showed the boundary between the

two smaller right isosceles triangles with which it had to be covered. Shape 1 in question four

also consisted of a right isosceles triangle, with its longest side horizontal but at the top of the

figure. Some of the youngest children's actions in attempting to solve these two problems are

discussed in some detail below.

In question four, shape 6 was a parallelogram that could be covered by two right isosceles

triangles, shape 7 a rhombus that could be covered by two equilateral triangles, shape 8 required

a square and a right isosceles triangle, and shape 9 required a square and two right isosceles

triangles.

The results summarized in Table 1 also show that the youngest sample (sample 1) had the

greatest difficulty in completing the problems presented to them. While the table shows that most

children in the other two samples were able to solve the problems, observation of the children as

they attempted the problems showed that the older children did not necessarily find the problems

easy to solve. Indeed, some of the problems proved to be quite difficult, but the children in

samples 2 and 3 were very persistent in trying to reach a solution, and were also more prepared

than the children in the youngest sample to remove and re-position a piece whose initial

placement prevented completion of the problem.

A simple tally of success or failure at completing the problems also masks the quite different

approaches the children used. The responses of four of the children from sample 1 as they

attempted to solve the two isosceles triangle problems illustrate four quite different sets of

actions.
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Laura, who at 45 months was the youngest child interviewed, was successful at solving both the

isosceles triangle problems, that is problem 4 in question three, in which the internal

boundaries of the constituent triangles were shown, and problem 1 in question four, in which no

boundaries were shown. In solving the first of these problems, Laura rotated one of the given

right isosceles triangle pieces in the air until it matched one of the regions drawn on the target

shape. She held the cardboard piece by its right angle, and appeared to match the other two angles

of the piece to its region. In the second of these two problems, she was not told which two pieces

to use, but picked up one of the correct right isosceles triangle pieces immediately. Again, she

rotated the piece in the air until she was satisfied that it matched half of the target region before

she placed it in position. She then easily placed the second piece.

Murray was unsuccessful at solving either of these problems. In the first problem, he placed a

right isosceles piece so that its right angle matched the right angle of the target region. In doing

this, he appeared to ignore the boundary drawn as a clue on the region. He then placed another

triangle at the base of the target region, matching their two base angles. He was then left with an

uncovered region for which there was not a matching shape. He chose a rectangle, and placed it so

that it covered all of the remaining region but overlapped the boundary. It seemed that for

Murray, the important objective was to cover all the region, without necessarily matching the

shape of the target region. Apparently, the internal boundaries were no help to him. He also

seemed to operate by matching congruent angles. In the second of these problems, he chose the

same three pieces and placed them in the same way.

Jesse was successful in solving the first of these two problems but unsuccessful in the second. In

the first problem, he initially tried an equilateral triangle, but after recognizing that the angles

did not match, he chose a right isosceles triangle and was able to place it without difficulty. The

second triangle piece was then easily positioned. In the second problem, he placed a triangle piece

so that its base angle matched one of the base angles of the target region. He then considered the

trapezoidal region that remained, and declared that it would not work, since there was not a shape

like that available. He then re-positioned the first triangle piece so that its right angle matched

that of the target region. Again, faced with a trapezoidal region remaining, he was unable to find a

piece to match and made no further attempt at a solution. Jesse was able to recognize when a

solution was not possible by considering the remaining region and attempting a match with the

available pieces. He also attempted to re-position an initial placement, in contrast to Murray,

who was unable to recognize that an initial placement did not enable a further correct placement

to be made.

Teneka was also successful on the first of these problems but unsuccessful on the second. Teneka's

approach seemed to be more arbitrary than that of the other children discussed here. In the first
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problem, she picked up the correct triangle in an orientation that by chance matched the target

region. She seemed to recognize immediately that this piece was correctly placed. She then

picked up and discarded a succession of triangle pieces until one that she picked up was in the

correct orientation for the remaining region and she was able to complete the problem. She did

not attempt to rotate the triangles, either in the air before placing them or after they had been

positioned on the target region. In the second problem, Teneka made an initial placement of a

triangle so that its base angle matched the base angle of the target region. She then tried a

succession of triangle pieces, discarding those that did not fit in the way she had picked them up

and selecting another. In this problem, she appeared to be matching the lengths of the second

piece selected to the first piece she had placed on the target region. She appeared not to recognize

that her first move could not lead to a correct solution, and was unable to re-position a piece that

appeared initially to be correct.

The responses of these four young children show that they each used different sets of actions in an

attempt to solve the two problems discussed here. One action that was used by Laura, who solved

both problems, was rotation of the pieces. We ranked the children in all three samples according

to how many of the problems presented in questions three and four they were able to solve. The

children in the second sample, who were interviewed on two occasions, were entered twice in this

ranking. Of the children who were ranked in the top ten according to the number of problems they

solved, eight used rotation of the pieces in their solution attempts. Of the ten children who were

ranked in the lowest ten according to the number of problems they solved, only two used rotations

in their solution attempts.

The four children from sample one whose problem solving approaches we have described above

used different procedures and had varying rates of success on these problems. From an adult

perspective, Teneka's principal strategy of picking up and discarding pieces seemingly at random

until they matched the target region was inefficient, and seems unlikely to enable her to solve the

more difficult spatial problems with which she will be faced in her schooling. Yet Teneka was

eventually successful at solving all the problems in question three and six of the nine problems in

question four. There is no very compelling reason from Teneka's point of view to find a more

efficient strategy. When we return to interview Teneka in a few months time, we will be

interested to find whether she has retained this strategy or whether she has been able to or needed

to find another strategy.

One question in which we were interested was whether young children continue to use the same

procedures for similar problems over an extended period of time, that is whether the procedures

they have developed well before starting school are persistent. It was to explore this question

that we interviewed the children in sample two twice, seven months apart.
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Our study of the actions of these children revealed some interesting features of their problem-

solving strategies. At the time of the second interview, they were even more persistent than they

had been in the first interview, and were generally willing and able to re-position a piece that

would not allow a solution. As Table 1 shows, they were also more successful at solving ,the

problems. We were also struck by the similarities that most children showed in their actions in

the two different interviews.

In her first interview, Jessica was unsuccessful in the first triangle problem and successful in

the second. Throughout her attempts at both problems, Jessica had both pieces she was trying to

place on the puzzle in her hands. She would rotate and place one piece, then try to place the

second. When that was unsuccessful, she would remove the first piece and rotate it to a new

position. She appeared to be matching the lengths of the sides of the two pieces she was using,

while also trying to cover the target region. At one stage in the second problem, she placed the

first piece so that its right angle matched that of the target region and then placed the other

triangle so that they formed a square.

In her second interview, Jessica was successful at solving both problems. Her actions were very

similar to those she had used in her first interview. She had both pieces she was trying to place

in her hands throughout, and placed first one and then the other, rotating them to try to place

them. Again, she appeared to be matching the lengths of the two pieces, and she even constructed a

square in the same way she had in the first interview. Perhaps the most obvious difference in her

two interviews was that in the second, she did at one stage turn one piece over, which she had not

done in the first interview.

While the similarities in the two interviews with Jessica were particularly striking, we noticed

marked similarities in the actions of the other children in this sample. For example, Will more

than any other child turned the pieces over several times in both interviews. He also placed the

same pieces in the same inappropriate positions in the two interviews. However, by the time of

the second interview, he also rotated the shapes in order to place them successfully.

Conclusion

Our interviews with these young children showed that they had already developed some procedures

for solving the problems we presented to them. Naturally, some of the children were more

successful than others, and the youngest children were the least successful. The children who

were successful showed an ability to recognize when a shape would not lead to a solution and a

willingness to reposition pieces. Generally, the children were quite persistent in their efforts
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to solve the problems, with the children in the older samples being more persistent than those in

the youngest.

Even though we interviewed only a small number of children, we found many quite different

procedures used by the children. We also found that the actions of individual children who were

interviewed twice were remarkably similar in the two interviews. The changes that were noticed

were additions to the repertoire of actions that the children employed.

Our observations suggested to us that children who rotated the pieces were more successful at

solving the problems than those who did not. Very few of the children actually turned the pieces

over. It seems likely that children who try to rotate or turn pieces have developed actions that

are particularly useful in these spatial problems. What we do not know is whether most children

learn these actions for themselves or whether and how these actions can be taught.

Some children in all three samples used actions that from an adult perspective were inefficient.

If we believe that children construct the procedures that they will eventually employ in solving

spatial problems by trying out actions for themselves, then some children may retain their

inefficient initial procedures over a long term, and may not construct the more efficient

procedures that their peers are able to employ.

In the next phase of our work, we will be returning to interview the young children we

interviewed here. We will be looking to see whether the procedures they display as they become

older retain resemblance to the ones they have already used. We also want to work with older

children to see whether the great variety of procedures we observed with these children are also

observed with older children and whether older children are able to employ different procedures.

We will also be exploring the procedures used by young children in a variety of other spatial

problems, particularly three-dimensional problems. This work is directed towards gaining a

greater understanding of how young children solve spatial problems and observing the genesis of

the correct, incorrect, efficient, and inefficient strategies that older children use.
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THE ROLE OF FORMAT IN STUDENTS'

ACHIEVEMENT OF PROOF

W. Gary Martin

University of Hawaii at Manoa

The two-column proof format is widely used in high school geometry in the USA.
While many have suggested that alternative formats be used, little investigation of the

impact of using other formats on students' ability to write proofs has been under-
taken. The preferences of a class of 30 high school geometry students for two-
column, flow, and paragraph formats were investigated, as was the relationship
between the format used and success in writing proofs. This study suggests that,
when given a choice, most students develop a marked preference for a particular
format of proof, while others prefer to use a mix of formats. More students
preferred two-column proofs than the other formats. The format of proof used was
not found to be related to achievement in writing proofs.

Developing students' ability to write and understand proofs has been one of the important

objectives of high school geometry in the USA throughout the past century. However, for many

students this objective is not being satisfied. Senk (1985) found that less than a third of high

school students in proof-oriented geometry courses in the USA have "mastered" the ability to

write proofs. Moreover, evidence exists that students frequently do not see a proof as a series of

logical connections that guarantee the truth of a conclusion, given a set of hypotheses. For ex-

ample, Martin and Harel (1989) found that many students base their judgment of the validity of a

mathematical argument on whether it appears to be a proof, rather than on an analysis of its cor-

rectness. Fischbein and Kedem (1982) found that even students who accept a proof as being

correct may not believe that this guarantees the universal truth of the statement.

One explanation for this lack of understanding, at least for students in the USA, may be the

manner in which proof writing is presented. In the USA, proof has traditionally been presented

to secondary geometry students using a rigid two-column format, in which the left column con-

tains inferred statements and the\ right column contains reasons, generally definitions or theo-

rems, to support each statement. Farrell (1987) describes the "awkward complexity" of the two-

column proof. The typical high school geometry proof relies on modus ponens;

[(p q) A p] q. In the two-column format, the particular antecedent(s) (found in the preced-

ing statements of the proof) are first presented, then a particular consequence (in a statement of

the proof), and finally the general implication on which the inference is based (in the reason for
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A GIVEN: LABC is isosceles.

/1\ PROVE:

AM bisects LBAC

AM 1 BM
B M C

CBM bisects LABC)

i
Def. of bisector

( AABC isosceles )

Def. of isosceles
( BC a AB )

S.A.S. princip e
( AAMB 6,AMC )

C. P. T. C.
( LAMB a LAMC)

Algebra
(LAMB & LAMC

are right angles

Reflexive

A linear pair is supplementary

Def. of perpendicular

BM1 AC )
Figure L. A sample flow proof, based on a student response.

the statement). This ordering does not follow the logical flow of modus ponens. Furthermore,

the two-column format does not emphasize the logical connections between statements as the

antecedent(s) for an inference are not specified but rather are buried in the preceding steps; this

may prove confusing to students beginning the study of proof in geometry (MacMurray, 1978).

The use of two-column proofs has also been criticized on curricular grounds. The

Conference Board of the Mathematical Sciences (1982) advocated "playing down" two-column

proofs. The Curriculum and Evaluation Standards for School Mathematics, developed by the

National Council of Teachers of Mathematics (NCTM, 1989), suggests that use of the two-col-

umn format should be greatly decreased. In particular, the document suggests that verbal para-

graph proofs be emphasized and that the use of a particular format not be enforced.

Several alternative formats to the two-column proof have been suggested, in addition to

paragraph proofs. For example, Retzer (1984) advocated adding numbers corresponding to the

statements on which an inference relies to the "reasons" column of a two-column proof.

MacMurray (1978) suggested the use of a "flow proof," in which logical connections are dia-

grammatically represented; an example produced by a student of this study is shown in Fig. 1.
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Despite advocacies of increased attention to proof formats other than the two-column for-

mat, little attention has been given to the implications particular formats may have for students. If

given a choice, will students prefer using paragraph or flow formats over the two-column for-

mat? Will they consistently use the same format? Why do they choose to use one format over

another? Is use of a particular format associated with better achievement of proof? This study

addresses these and other questions with respect to a class of students who were enrolled in a

high school geometry course.

Subjects

A class of thirty tenth-grade students enrolled in a high school geometry class at the

University of Hawaii Laboratory School (UHS) formed the subjects for this study. By state

mandate, UHS is maintained for the purpose of curriculum research and development. In order

to create curricula that are reflective of the needs of the students of the state, the student body is

representative of all students attending public high schools in the state, based on intellectual abil-

ity, ethnicity, and socioeconomic level. The class participating in this study consisted of the top

thirty of fifty-eight tenth-graders with respect to performance in previous mathematics classes at

UHS and scores on standardized tests. Thus, students in the study were representative of aver-

age and above-average students of the state of Hawaii.

The class was conducted as a pilot study of an on-going curriculum research and develop-

ment project in high school geometry. The emphases of this project include developing problem-

solving processes (Rachlin, 1987), developing important concepts of geometry in accordance

with the van Hie le levels (van Hiele-Geldof & van Hide, 1984), and developing concepts of

proof. Proofs were initially introduced the third week of the course by having students write

informal paragraphs justifying why certain properties should be true for a given figure; this is

consistent with the suggestions of the Curriculum and Evaluation Standards (NCTM, 1989, p.

144). Proof writing was not explicitly addressed until the fifth week of the course, when the

given versus to-be-proven parts of a statement were discussed, along with general strategies for

developing proofs. In the seventh week of the course, flow proofs were introduced. While two-

column proofs were never formally presented in class and were never modeled by the classroom

teacher, students were exposed to the two-columri format in a textbook provided to them for ref-

erence. Students were initially required to use either the flow or paragraph format (or both

285

29:1



formats) on several examples. They were later allowed to use the format of their choice on both

homework and tests.

Method

Three data sources were used in answering the questions of the study. Firit, four written

assessments of students' proof writing were made at intervals throughout the school year; a

follow-up assessment was made at the beginning of the second semester of the following year.

The proofs were rated from two perspectivesthe proof format used and the "correctness" of the

proof. Correctness was rated on a 0-4 scale adapted from Senk (1985), as follows: 4a proof

reflecting all necessary aspects of the proof, with only minor omissions or errors; 3a proof

which is generally right, and has only one serious omission or error; 2a proof which has a

sequence of correct inferences but which is based on a faulty premise or fails to support the final

conclusion; 1a proof which includes one correct inference; 0a proof with no correct infer-

ences. Each response was independently rated by the investigator and a research assistant.

The second data source consisted of the complete written work of several students covering

the entire school year. The work of five of these students was analyzed to provide a more de-

tailed view of the impact of proof format on students' proof-writing. One proof was chosen for

analysis from each week of the course in which proof was considered; the proofs were again ana-

lyzed by proof format and by correctness. In addition, the formats used in all homework prob-

lems throughout the school year were tabulated.

Finally, students were given a questionnaire concerning their preferred proof format in the

third month of the course and again in the fifth month of the following year. In this questionnaire

they were asked to identify their favorite proof format and why they liked or did not like each of

the formats.

Results

Responses from the five assessments of proof-writing were categorized by the format of

proof used and by correctness; see Table 1. In the first assessment, taken early in their experi-

ences with proof, most of the students still used paragraph proofs since this was the initial format

introduced. By the second assessment, a distinct shift had taken place; the majority of the stu-

dents were now using two-column proofs. This preference for two-column proofs was generally

consistent throughout the remainder of the assessments, with relatively few students using
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paragraphs and almost no students using flow proofs. In the follow-up assessment the following

school year, only five students used paragraphs and only one student used a flow proof. Note

that missing scores are due to student absences from class.

Table 1. Achievement of Proof by Proof Format

Testing date

n

Total

Proof format

Flow Proof Paragraph Two-column

Mean n Mean n Mean n Mean

Year 1, Month 3 29 2.76 4 3.50 19 2.53 6 3.00

Year 1, Month 5 25 3.04 2 3.00 5 2.20 18 3.28

Year 1, Month 7 28 2.29 2 2.00 8 2.50 18 2.22

Year 1, Month 9 30 2.63 2 2.00 8 2.50 20 2.75

Year 2, Month 5 27 2.78 1 2.00 5 3.00 21 2.76

Total Responses 139 2.69 11 2.73 43 2.65 83 2.77

To provide a view of how individual students' usage of proof formats changed over time,

the consistency of the formats they used in these assessments was also analyzed, as seen in Table

2. The minimum possible agreement is 40%, in which case the student would have used one

format once and the other two formats twice. More than two-thirds of the class had a consistency

of use of 80% or above, with a third being completely consistent in their use of a format. Thus,

a picture of relatively consistent use of a particular proof format for a given student emerges, with

most of the students using two-column proofs.

Table 2. Frequencies of Consistency of Use of Proof Formats

Agreement Total

Format

Flow Proof Paragraph Two-column

60% 8 1 0 7

80% 10 0 1 9

100% 12 1 4 7

Total 30 2 5 23

The correctness of the students' proofs does not appear to be related to the proof format

used. In each of the assessments given, the mean scores for the formats appear to be very close
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to each other, as do the total mean scores for the formats. A similar result was found when com-

paring students' proof scores to the proof format they predominantly used; see Table 3. A

Kruskal-Wallis analysis yielded H = 0.68, with p > 0.71, for this table.

Table 3. Relationship of Achievement of Proof to Preferred Proof Format

Proof Format

n Mean

Flow proof 2 2.51

Paragraph 5 2.71

Two-column 23 2.71

The complete written work of five students was considered to obtain a more detailed view

of the role of format in students' ability to write proofs. One proof from each week of the course

was analyzed by format used and by correctness; see Table 4. Furthermore, the formats for all

attempted proofs were tabulated. All the students initially used paragraph proofs, as this was the

first format introduced. Several distinct patterns of use of and success with the various formats

can be identified. Note that inferences relating format used to success must be viewed with cau-

tion since variables such as maturation may confound the inferred relationship.

Table 4. Use of Proof Formats by Individual Students

Format

Subject Flow Paragraph Two-column

n Mean n Mean n Mean

M. 1 4.00 20 3.70 2 4.00

S. 0 12 2.67 8 3.38

K. 0 15 2.40 8 2.88

L. 2 3.00 13 2.54 3 2.67

B. 1 3.00 10 2.50 12 3.83

Three of the students showed a clear, long-standing preference for using a particular for-

mat. M. continued using paragraphs throughout the course, with infrequent deviations. M. was

very successful in writing proofs; no differences in his use of the formats can be inferred. B.

began using two-column proofs during the twelfth week of the course, after which he rarely used
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any other format. B. tended to be more successful with two-column proofs than with para-

graphs. K. used paragraph proofs almost exclusively through the eighteenth week of the course,

when he switched to primarily using two-column proofs, along with an occasional paragraph

proof. K. tended to be somewhat more successful with two-column proofs. None of these three

students used flow proofs more than four times in all of their written work.

The other two students used a more mixed set of formats. S. began using two-column

proofs the twelfth week of the course and used them heavily for around a month; she also wrote a

number of flow proofs during the twelfth and thirteenth weeks. By the sixteenth week she was

again primarily using paragraph proofs, with an occasional two column proof. She also some-

times used a mix of the two formats, a two-column proof in which reasons were presented as

short paragraphs. She was somewhat more successful writing two-column than paragraph

proofs. L. began using two-column and flow proofs during the thirteenth week of the course.

Like S., L. continued to use some paragraph proofs. She rejected the use of flow proofs by the

fourteenth week and never used another after that time. By the nineteenth week, she was again

primarily using paragraph proofs. Unlike S., L. eventually completely abandoned the two-col-

umn format, never using it after the twentieth week. L. was equally successful in using the two

formats. Both of these students experimented with flow proofs early in the course, but rarely

used them later in the course.

The students were given a questionnaire the fourth month of the course and again the fol-

lowing year, asking them to identify the proof format they prefer and why. Their self-reports

closely matched (p<0.001) the formats they used in their workx2=21.86 (df=4) and x2=35.96

(df=4), respectively. Explanations for their preferences fell into the following categories.

Preferences for two-column proof focused on organization ("Easier to organize my thoughts"),

readability ("It's easy to read because it is like a list"), and understandability ("I can understand

why what makes what"). For paragraph proofs, reasons focused on a flow of consciousness ("I

just write it as I think it out") and a preference for writing ("I sort of like to write things out").

Several students expressed the opinion that flow proofs were especially good for short proofs;

one student mentioned its adaptability ("Can adjust arrows, less erasing"), while others pointed

to its quickness ("Much faster when you're short of time").
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Discussion and Conclusions

The data of this study suggest that, when given a choice, most students develop a prefer-

ence for a particular format of proof, while others continue to use a mix of formats. Contrary to

what might be expected, most students preferred to use two-column proofs. This is unexpected,

both based on an analysis of the two-column proof from a student point of view and on the lack

of emphasis on two-column proofs in their geometry course. Further, students produced plau-

sible reasons for preferring the two-column format, including organization, readability, and

understandability. The format of proof used was not related to achievement in proof-writing.

Many people have advocated a major deemphasis in the use of two-column proofs. This

study seems to imply that such a change cannot be justified on the basis of student preferences or

on the basis of achievement of proof-writing, although other reasons for the deemphasis (such as

curricular considerations) may still be valid. In any case, given the strong preferences that stu-

dents may develop for a particular format (such as.M., who wrote "I love the paragraph, I like to

thoroughly explain myself..."), the advice of the NCTM Curriculum and Evaluation Standards

(1989) to not enforce a particular format for writing proofs seems particularly appropriate.

Bibliography

Conference Board of the Mathematical Sciences (CBMS). (1982). The mathematical sciences
curriculum K-12: What is still fundamental and what is not. Washington, DC: CBMS.

Farrell, M. A. (1987). Geometry for secondary school teachers. In M. M. Lindquist (Ed.),
Learning and Teaching Geometry: K-12 (Yearbook of the National Council of Teachers of
Mathematics, pp. 236-250). Reston, VA: National Council of Teachers of Mathematics.

Fischbein, E. & Kedem, I. (1982). Proof and certitude in the development of mathematical
thinking. In A. Vermandel (Ed.), Proceedings of the Sixth International Conference for the
Psychology of Mathematics Education (pp. 128-131). Antwerp: International Group for the
Psychology of Mathematics Education.

MacMurray, R. (1978). Flow proofs in geometry. Mathematics Teacher, 7/, 592-595.
Martin, W. G. & Harel, G. (1989). Proof frames of preservice elementary school teachers.

Journal for Research in Mathematics Education, 12, 53-62.

National Council of Teachers of Mathematics (NCTM). (1989). Curriculum and evaluation
standards for school mathematics. Reston, VA: NCTM.

Rachlin, S. (1987). Using research to design a problem-solving approach for teaching algebra.
In Proceedings of Fourth Southeast Asian Conference on Mathematics Education (pp. 156-
161). Singapore: Singapore Institute of Education.

Retzer, K. A. (1984). Proofs with visible inference schemes. School Science and Mathematics,
84, 367-376.

Senk, S. L. (1985). Flow well do students write geometry proofs? Mathematics Teacber, 78,
448-456.

van Hiele- Geldof, D. & van Hiele, P. M. (1984). English translation of selected writings of
Dina van Hiele-Gehlof and Pierre M. van Hide. Washington, DC: NSF.

290

298



L'INFLUENCE DES ASPECTS FIGURATIFS DANS LE RAISONNEMENT

DES ELEVES EN GEOMETRIE

A. L. Mesquita*

DEFCL

Lisbonne - Portugal

La geometrie est un domaine des mathematiques dans lequel on fait en permanence appel a trois

registres, celui du registre figuratif, lie au systeme perceptif visuel, avec des lois d'organisation

propres a ce sisteme, celui du langage nature], avec ses possibilites de description et d'explicitation

du statut des &tomes et celui du langage symbolique, avec ses possibilites propres d'ecriture et de

recours a des formules. Parmi ces registres, ce sont surtout les deux registres de langage qui ont ete

etudids dans les recherches en didactique des mathematiques (C. Laborde, 1982). Les recherches

qui ont pour but analyser les difficult& soulevees par les problemes en geometrie euclidienne se

sont principalement focalisees sur les differences entre le mode de raisonnement des Cleves et les

exigences propres au raisonnement mathCmathique. Tel est le cas de A. Bell (1976), de M. Stein

(1986) et de N. Balacheff (1988), par exemple.

On a beaucoup moins prete attention au role _loud par la figure dans les problemes en gdometrie.

Examinons brievement ce role des figures. Dun point de vue mathCmatique, la question des figures

semble etre clair : un mathematicien sait ce qu'une figure peut lui apporter. Frenkel (1973) exprimait

bien cet apport : "les figures permettent de mobiliser simultandment les multiples relations que la

parole ou l'ecriture - qui se dCroule linCairement dans le temps ne peuvent enoncer que
successivement".

Les mathematiciens tout en reconnaissant ce role, reconnaissent aussi que les figures sont
dispensables. "On s'en passe fort bien" (J. DieudonnC, 1964). L'absence des figures, prone dans

l'Cpoque des mathematiques modernes est un "manque" toutefois bien suppled par les
mathCmaticiens. Bien entendu, les mathCmaticiens utilisent habilement ces trois registres et les
aruculent convenablement.

Pour les Cleves, contrairement aux mathCmaticiens, le role des figures peut etre ambigu 1. En effet,

a) ou bien les &yes ne parviennent pas a voir sur la figure ce qui peut amener a une solution, b) ou

alors les figures attirent leur attention sur des pistes qui n'ont rien a voir avec le probleme (et dans ce

cas, la figure est un obstacle au dCveloppement du raisonnement) ; c) ou alors les figures
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remplissent un role heuristique pour le probleme en question, et risquent de suggerer les demarches

de raisonnement qui peuvent etre selon les situations, correctes ou inconipletes.

D'un autre cote, les informations issues de ces trois registres ne sont pas necessairement les

memes. Le passage d'un registre a l'autre peut ne pas se faire directement. 11 peut exiger alors une

ou plusieurs transformations intermediaires : c'est le phenomene de la non-congruence qui
provoque un coin cognitif et qui constitue un obstacle pour les &yes, comme l'a montre R. Duval

(1988a). D'un autre cote, due a la pregnance relative de l'information figurative, celle-ci domine

naturellement l'information issue des autres registres (A. L. Mesquita, 1989a).

Nous presentons ici des criteres d'un modele d'analyse de figures qui vise a expliquer le pouvoir

heuristique dune figure dans un probleme et qui cherche en particulier a determiner des facteurs qui

pour une situation mathematique dorm& font que les elements dune solution soient plus ou moins

visibles sur une figure ; par d'autres mots, qui cherchent a &gager les conditions de visibilite et de

reorganisation dune figure. Ces conditions de visibilite sont tits variables, comment le suggerent

les recherches de J.-W. Pellegrino et R. Kail (1982). Ces auteurs ont mis en valeur le coat des

operations elementaires (tels que la rotation et le &placement) requises dans la recomposition dune

figure : les temps de reaction dans des Caches de reconnaissance sont variables, pouvant atteindre dix

secondes dans le cas les plus complexes (ceux ou la rotation et le &placement sont mis
simultanement en jeu).

D'un point de vue de la geometric et des figures, la distinction suivante, déjà signalee par
Merleau-Ponty (1945), a la suite des gestaltistes, a une importance fondamentale pour les
traitements exigeant une reorganisation de la figure : "une ligne objective isolee et la meme ligne

prise dans une figure cesse d'être, pour la perception, la meme. Elle nest identifiable dans ces deux

fonctions que pour une perception analytique qui nest pas naturelle'(ibid., p.18). Cette distinction
est a la base de notre modele d'analyse de figures.

Pour notre analyse, nous prenons aussi en consideration des criteres lies a l'articulation entre les
registres impliques par les traitements. En particulier, nous mentionnons ici des criteres lies a
('articulation entre le registre figuratif et le registre de langue naturelle. R. Duval (1988b) a montre
l'importance de ce type de congruence, semantique, entre ces deux registres, en mettant en evidence

la difference de resultats obtenus dans une meme Oche (presentee en deux versions, l'une
congruente, l'autre non) : la tiche non-congruente obtient un taux de reussite moins eleve.

Cette articulation entre le registre figuratif et le registre de langue naturelle est a la base de deux
criteres importants2.

Un premier critere est le role de la figure. 11 nest pas le meme dans tous les problemes de
geometrie. Ce role peut etre soit descriptif, quand it se reduit a une apprehension synoptique des
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proprietes en presence, soit heuristique, si la figure agit comme un declencheur de demarches.

Le role de la figure est en general associe a ce que R. Duval (1988b) appelle une apprehension

operatoire de la figure, c'est-a-dire, a une forme d'apprehension centree sur les modifications

possibles de la figure et a sa reorganisation en des sous-figures autres que la figure de depart.

L'apprehension operatoire permet de mettre en evidence l'existence de figures fondamentales

suggerant des traitements. Par exemple, dans le probleme suivant, le role de la figure est
heuristique:

Dans la figure suivante, AI est Ia diagonals du rectangle ASIE.
Comparer les airs des dcux rectangles hachures OURS et LUNE .

(cocker la case correspondanle a la reponse)

OURS a l'aire Los dcux aims LUNE a rake
la plus grandc sons egales Ia plus gran&

A a

E

A

La reconnaissance de deux reconfigurations, l'incluante et la complementaire, sont des facteurs

indispensables pour une justification complete de l'egalite des aires (A. L. Mesquita, 1989a). La

non-reconnaissance de ces deux reconfigurations est alors un obstacle heuristique.

Si la figure privilegie une certaine forme d'apprehension, cela peut mettre d'cmblee sur des
&marches de resolution, correctes ou non. Ainsi, nous avons vu (ibid.) que ce que nous avons

appele d'identification analytique de la figure -celle qui se centre sur les parties elementaires-

suggere naturellement l'operation de reunion (fig.l). Une identification globale -celle qui se fonde

sur le partage de la figure- oriente plutot vers le passage au complementaire et les traitements

soustractifs (fig.2).

(fig.1)

(fig2)

Notons que l'utilisation de la reunion ne permet pas d'obtenir directement l'egalite des aires des

rectangles hachures. Un raisonnement par l'absurde ou par contraposition est alors necessaire. Ces
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formes de raisonnement ont ete utilises par deux binomes de 10-11 ans :

A: Je sais! ga c'est la meme aire que ga ...donc ils
sont pareils3 les 2 rectangles (...) disons que ga,
c'est 2, ga c'est 1, des deux cotes, done ca fait (...)
3, it faut qu'en tout, ca fasse 4, disons...(...) it est
oblige que les 2... fassent 1 cm ... sinon un est
plus grand que I'autre... et vu que c'est bien
divise en 2... c'est forcement pareil des 2 cotes...

refs. 1 et 6, 3 et 4
refs. 2 et 5 ; 3 et 4
ref. 1 et 6

ref. 2 et 5
ref. R

Un autre critere que nous avons considers, le statut de la figure, est lie au type de traitement admis.

La figure peut avoir un statut d'objet , si les relations geometriques utilisees pour sa construction

peuvent etre reutilisees. Nous disons que la figure a un statut d'illustration quand on ne peut en

extraire directement aucune relation geometrique. Meme si certaines relations d'incidence et
d'alignement, par exemple, semble respectees.

Ces distinctions ne sont pas automatiquement pet-cues par les eleves. D'ob une non-congruence
possible entre le statut de la figure tel qu it est engendre par la ache, et 1' interpretation de la figure

tale qu'elle est percue par chaque eleve.

Par exemple, dans le problertie suivant, le statut d'illustration de la figure n'est pas pet-v.1 par les
eleves qui utilisent la mesure et la proportionnalitei, procedures incorrectes pour une figure avec un
tel statut :

Paul regarde, d'en bas, unecathtdrale. II fait le croquis ci.dcssous, ou it dessine cc qu it a obscrvd. II note aussi les
indications suivantes, prises aux archives de la cathedrale:

LF

FG

CD

I est un triangle Equilateral;
2 est un rectangle;

- 3 et 4 sons des carres:

- la figure form& par 3, 4 ct 5 est tin carrel;
- la longueur de AC est dc 12m.

D'apres ccs indications. que pcut-on dire des longucurs suivantcs?

Kocher la use conespoodanle n la reponse)

C'cst 12 m Cc West pas 12 m

El

Ccst 12 m Cc West pas 12 m

Ccst 12 m Cc West pas 12 in

O t=1
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On ne pcut pas savoir

On nc pcut pas savoir

On nc pcut pas savoir

CATHEI

CATIIE2

CATIIE3



Les resultats des reponses des eleves a cette question le montrent bien :

Tableau I : Les faux de reussite lechec a

CATHE1 CATHE2 CATHE3

Reussite 64 50 37

Echec 31b 42C 57d

Non-reponse 5 8 7

Note:
a en pourcentage
b 20% des reponses concement LF*I2
c 24% des reponses concement FG-* i2
d 48% des reponses concement CD*12

Le statut d'illustration est d'ailleurs la difficulte majeure de ce probleme. Une fois &passe cet

obstacle, les substitutions necessaires pour sa resolution sont facilement faites. Notons que la

figure a ici un role descriptif : neanmoins, l'apprehension des proprietes exige une correcte
interpretation du statut d'illustration de la figure.

En guise de conclusion

Ces criteres nous donnent une base objective pour ('identification de certains obstacles lies aux

problemes. Ils apparaissent comme des criteres efficaces pour une analyse de taches et en
particulier de leurs difficultes. Les aspects figuratifs ont, en effet, une influence dans le
raisonnement et les criteres riper& contribuent a reclaircir.

La distinction entre les types d'apprehension semble etre un moyen indispensable pour effectuer

une analyse utile des taches geometriques. Cette distinction ainsi que les concepts utilises
constituent des premiers elements dune theorie cognitive de la resolution des problemes de

geometrie. Ils se presentent comme des outils dont la finalite est double. D'un cote, ils permettent

d'etablir une gradation des difficult& de resolution de problemes de geometric en fonction du statut

et du role des figures et des criteres de congruence. Dans ce sens, une hierarchic de difficult& peut

etre etablie. Dun autre cote, en choisissant convenablement ces criteres, on peut, par sa variation,

s'attendre a que certaines questions revelent des differences individuelles dans les reponses des
eleves5.

NOTES

I II nest pas alors etonnant de constatcr que dans l'enseignement des mathematiques la place des figures a change
avec le temps. Ce changement reflecte le role variable et ambigu que les figures peuvent avoir pour les eleves.
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2 Nous developpons en A. L. Mesquita (1989b) le modele d'analyse mentionne. Id, nous nous occupons
specialement de quelques criteres de ce modele, et de leur influence sur le raisonnement.

Ont la meme aire. A voter aussi que nous utilisons'ici le codage introduit dans les figures preadentes.

4 II s'agit de reponses d'eleves de 14 ans.

5 L'analyse de ces differences individuelles donne lieu a une typologie des comportements des eleves en geometric,
que nous decrivons en A. L. Mesquita (1989b).
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CHILDREN'S UNDERSTANDING OF CONGRUENCE ACCORDING

TO THE VAN HIELE MODEL OF THINKING

LILIAN NASSER

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO - BRAZIL

KING'S COLLEGE UNIVERSITY OF LONDON. - ENGLAND

In this work, descriptors for the van Hiele levels of
thinking in the concept of "congruence of -shapes" are
suggested. Four activities were designed and used in
clinical interviews with English and Brazilian students
aged 13 to 16 years. In Brazil congruence is taught for
malty, in a Euclidean approach, while English students
learn congruence informally, through transformations.
The analysis of the interviews give evidence that, de
spite the approach used, the responses fit the leveT
descriptors suggested, and that the levels are hierarchical.

The van Hiele model of thinking in Geometry establi

shed by Pierre van Hiele and Dina van Hiele-Geldof in the late

50's (van Hiele, 1959) has been investigated according to seve

ral points of view in the last decade. Some research studies

addressed the relation between the levels achieved by a student

in different tipics of Geometry (Mayberry, 1983; Gutierrez and

Jaime, 1987; Nasser, 1989). Usiskin (1982) and Senk (1985) in

vestigated the relation between the van Hiele level achieved

by a student at the beginning of the year with his (her)

achievement on Geometry tasks during the year, while Fuys,

Geddes and Tischler (1988) studied the effects of instruction

modules on students' van Hiele levels. Burger and Shaughnessy

(1986) provided a characterization of the van Hiele levels of

development in Geometry based on responses to clinical inter

view tasks concerning triangles and quadrilaterals, and sugges

ted that the same kind of investigation should be carried out

concerning other geometric concepts.

This work is part of research to investigate if the

learning and understanding of "congruence" by Brazilian secon

dary school students can be improved when the instruction is

based on the van Hiele theory. To obtain a picture of how the

concept of "congruence" is acquired, this work was developed
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with the purposes of:

(a) Suggest descriptors for van Hiele levels in "congruence";

(b) Develop activities fitting the descriptors in (a) to be used

in clinical interviews;

(c) Through the analysis of the interviews, check if the leyel

descriptors suggested in (a) are acceptable.

The topic of congruence is taught in different ways

in England and in Brazil. In England, through a transformation

approach, congruence appears informally, as "the same shape and

size". There is no attempt to prove the congruence of triangles,

but transformations that preserve length can be used to justify

the congruence of shapes. On the other hand, in Brazil, through

a traditional approach to Euclidean Geometry, congruence is

taught using deductive reasoning. Students are asked to write

proofs based on the cases of congruence of triangles (SSS, SAS,

ASA) to justify other properties of shapes.

Analysing the descriptors of the van Hiele levels

given for traditional Geometry by van Hiele (1959), Hoffer

(1983), Burger and Shaughnessy (1986) and Fuys, Geddes and

Tischler (1988), the following descriptors can be suggested for

the van Hiele levels in congruence:

Basic level - Recognition of congruent shapes only based on

appearance. Orientation is considered as a relevant attri

bute for congruence. Corresponding elements of congruent

shapes are not yet perceived in isolation.

Level 1 - Recognition of congruent shapes relying on measure

ments and/or fitting on top of each other. Orientation is

seen as irrelevant. Properties of congruent shapes are

analysed (necessary conditions).

Level 2 Establishment and understanding of sufficient condi

tions for the congruence of triangles. No attempt to justi

fy formally the congruence of shapes.

Level 3 - Ability to reason logically, in order to justify the

congruence of triangles. Informal proofs can be attempted

(using the cases of congruence or transformations).

Level 4 - The importance of rigour in demonstrations is

understood. Ability to write a formal proof using the
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cases of congruence or triangles or transformations.

Four activities were designed fitting the level des

criptors above. The activities are described in detail bellow

together with the expected responses to them.

Activity 1 - Recognition of congruent shapes:

The five cards on fig. 1 were shown to the student,

who was asked if the pair of shapes in each card was "congruent"

(or "the same shape and size") or not, and to explain.

DD N]

\D
Fig. 1: Cards used in Activity 1

Students were offered measurement instruments or, if

the possibility was mentioned, they could use tracing paper or

fold the card to check if the shapes matched. Expected respon

se: Basic level-recognition relying only on appearance, orienta

tion considered to be relevant; Level 1 - recognition relying

on measurements or transformations.

Activity 2 - Sorting congruent triangles:

The material for the second activity consisted of ten

cutouts of triangles numbered, and with different colours in

each face (fig. 2).

Fig. 2: Triangles to be sorted (Reduced size)
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The student was asked to sort the triangles in groups

of congruent triangles and to mention common properties

exhibited by congruent triangles. Expected response: Basic level

- sorting based only on appearance; Level 1 - the strategy

superimposing the shapes is used to justify the sorting;

ment of necessary conditions for the congruence of triangles.

Activity 3 - Establishment of sufficient conditions:

of

state

In this activity, the student was asked whether it was

possible to draw triangles with different shapes having the

features shown in each card (fig. 3).

Sides measuring 3 cm

5 cm

A 60° angle and

a side measuring

7 cm '5 cm

Sides measuring 4 cm and 7 cm

forming Fig. 3: Cards

a 50° angle Used in Activity 3

If the student could not answer promptly, (s)he was

encouraged to try drawing one or more triangles fitting the

features on each card and, then, answer the question. Expected

response: Level 2 - at the end of the activity, sufficient con

ditions for the congruence of triangles (cases of congruence)

could be established by the student, when required by the inter

viewer.

Activity 4 - Logical explanation:

This task was designed in order to evaluate students'

logical reasoning and ability to justify the congruence of two

triangles in a more complex figure. The task is shown in fig. 4.

Explain why AABC is congruent to LSCDE.

Given: BC = CE

AC = CD

A
E

_

Fig. 4: Task requiring a logical explanation
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Expected response: Level 4 - rigorous proof for the

congruence of the triangles; Level 3 - informal, but logical

explanation for the congruence. Acceptable answers at this lev

el could vary from showing (with tracing paper) that one

triangle was the image of the other after a rotation, or to

observe that angles AeB and OD were opposite angles, having

the same measurement, and using activity 3or the cases ofcongruen

ce, conclude that the triangles were congruent.

Sample: The sample for the interviews was composed of

15 English and 10 Brazilian students of varying attainments

aged 13 to 16 years.

Results of the interviews: Only two students have con

sidered orientation as a relevant attribute for congruence (one

English and one Brazilian). All the others could correctly

solve the first activity. One English student used folding to

verify the congruence of the shapes in cards one and five, while

all Brazilian children used measurement. The sorting activity

was easily solved by all students. The strategy of superimposi

tion was used by all the English children, and by three Brazi

Tian ones. The other seven measured the sides of the triangles.

When asked about the necessary conditions for the congruence of

triangles, all students mentioned the same lengths of sides.

Some necessary but not sufficient conditions were mentioned:ten

English and six Brazilian students mentioned the equality of

the angles, and four English students said that the triangles

had the same area. Activity 3 was more demanding for the stu

dents without a formal Geometry course. Only seven of the Eng

lish children could come to a conclusion about the sufficient

conditions for the congruence of triangles. For the seven Bra

zilian students which had already studied the cases of congru

ence, the answer should be easy, but three of these could not

remember anything. On the other hand, two students without a

Geometry course could reason based on the triangles they had

drawn and conclude the cases of congruence. Only three students

in the English sample could give an acceptable explanation for

the congruence of triangles in activity 4. Some students at

tempted to explain using tracing paper, but failed to conclude

the task. From the Brazilian sample, five students with a Geom

etry course tryed to answer activity 4, but only two

BEST COPY HAMA or.
LE
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succeeded. The others had some ideas of how the proof should be

written, but could not organize them clearly.

Comments: The responses obtained seem to fit the lev

el descriptors, despite the approach experienced by the student.

Also, the levels appear to be hierarchical, since, in general,

students performing at a certain level were sucessful in tasks

demanding a lower level performance. The only exception were

the two students who considered shapes with different orientati

ons as non congruent, but could solve activity 2 at a level 1

performance. English and Brazilian students used different stra

tegies to solve the tasks due to the approach to Geometry they

had. The low familiarity of the Brazilian students with manipu

lations and concrete materials was shown by the strategies they

used to solve the tasks. Although used to manipulations, the

English students very seldom used transformations when solving

the activities.
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PROSPECTIVE PRIMARY TEACHERS' CONCEPTIONS OF AREA

Cornelia TIERNEY, Leslie College, Cambridge MA, and Phillip Institute of Technology, Melbourne

Christina BOYD, Philip Institute of Technology, Melbourne

Gary DAVIS, La Trobe University, Melbourne

Area misconceptions of a population of prospective primary students were examined. Relations with

other studies of area misconceptions are drawn, and use is made of the notion of cognitive

"signpost" to explain what it is that the students do in their work on area. The emphasis in the

student tasks was on comparison of regions lry cut and past methods prior to judgements about

numerical values of area.

Area seems to be one of those concepts that is so intuitive and deeply embedded in everyday life that

attempts to formulate carefully what is meant by it are seen as pedantry by a majority of elementary

student teachers. Student teachers expect that what they learned, or imagine they were taught, in high

school is an adequate base for their teaching of area concepts to children. However, as soon as one

begins to probe their understanding of area one discovers that there are significant numbers of them

who have no mental image of area at all, depend on memorized formulas, and incorrectly use linear

measures for computations of area.

Deborah Ball (1988) writes about her concern that mathematics educators themselves take for

granted that prospective teachers are well enough prepared in school mathematics content from material

they dealt with when they last studied these topics in school. In practice these future teachers reveal

some basic misconceptions that would make it difficult for them to to teach correct applications of

formulas, let alone concepts. Ball uses as an example the prospective teachers' lack of knowledge of the

relationship between area and perimeter. By asking students to respond to a hypothetical pupil's

conjecture, she found that 80 percent of primary teacher trainees, and an even greater proportion of high

school mathematics teacher trainees, believed that area always grows with perimeter and they were

satisfied that a single example "proves" such a conjecture.

We have recently looked at the views of area and perimeter held by two populations of prospective

primary teachers, those from a university where the entrance standards are reasonably high as well as

those from a teachers' college where the entrance standards are somewhat lower. Responses of our

university students to a question similar to that of Ball's was one of the things that drew our attention to

the inadequacy of their conceptions of area and perimeter. Those of us who teach at the teachers'

college had noticed many different occasions when our students demonstrated misconceptions about

area in their college mathematics work or in designing curriculum for primary students. Some examples

are:

Students frequently generalized the formula for finding the area of a rectangle to plane figures other

than rectangles.

Many students think area is "Length by Width". When we asked our college students what they would

teach a ten year old child about area, 80% of them drew a rectangle and wrote "L X W" or "L by W"

near it. Some of these students placed arrows around a rectangle in a way which denoted perimeter
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rather than area. The 20% of the students who did not mention Length x Width mentioned no formula:

they were the only students to draw or name figures other than rectangles and they defined area as the

space inside a figure.

Many students who used the Length x Width formula for calculation did not move from linear units to

square units. They either presented their answer in terms of the formula, without a numerical result, as

in "the area of the board is 1.2 metres by 2.4 metres", or they labelled answers with linear units.

Students often generalized changes in linear dimensions to changes in area. In responding to

questions about the effect of halving or doubling the lengths of the sides of a square, most students said

that the area was also halved or doubled.

It was common for students to use whatever numbers were available (often lengths of sides when an

altitude was appropriate) to get answers. When numbers were not available students would count

something such as the nails or squares around the perimeter of a shape.

As we discussed our observations from the two populations of students, we realised that them was

evidence to indicate that a very high proportion of elementary student teachers do not have an

understanding of area which would support their teaching of it even with the aid of a reasonable

textbook. In one class from the college, all of the five students who chose area as a topic to teach to

children directly taught incorrect interpretations of area. For example a student-teacher demonstrated, to

a grade six class, Length x Width as the way of finding area and then asked children to find areas of

some rectangles and some non-rectangular parallelograms for which she provided measures of sides but

not altitudes.

We believed that the situation is as Ball describes. However, the task of mathematics educators is

not only to extend the concepts developed by students in their pm-college schooling but to undo much

of what students mistakenly believe to be true. If our students had any informal primary school

experiences which allowed them to develop concepts of area and perimeter, these have largely been

replaced by strongly held beliefs based on the Length x Width area formula for rectangles.

SIGNPOSTS

In talking about these misconceptions we began to call them "signposts... We chose the term

signposts because it refers to the things on which students focus attention when they feel lost.

This notion of signpost is an analogy. It stems from our own experience that in travelling around a

large and only partially familiar city some individuals are comfortable in heading in the general direction

of where they want to be, discerning where they are in relation to their starting point by certain

signposts. These signposts are most commonly landmarks, but may also be less obvious things such as

the quality of housing in, the style of dress in, or general affluence of, a region. These signposts assist

an individual in feeling.comfortable that they are heading towards their goal and, just as important, that

they can get back to where they started. For other individuals a detailed map is a necessary aid, and the

route needs to follow a prescription worked out from the map. Similar signposts occur in all intellectual

and physical activities. The question is one of orientation and a feeling of balance for an individual: that

they can relate where they am to where they began and where they want to be, and that they do not feel
unbalanced or out of control.

In our view it is this feeling of disorientation that students try to overcome in unfamiliar

mathematical settings by reverting to familiar signposts, as irrelevant as these signposts might appear to
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an observer. The question of how close a student is to a solution of a mathematical problem is not

something that can be judged objectively by an observer. The very notion of distance from a goal is a

subjective notion, different for different people, and depends on how far someone feels that they have

moved towards the goal and away from familiar signposts. Signposts for the teacher may have no use

to the student. For example, to respond to a question about the area of a square formed by doubling

the sides of a square of area nine, one student dutifully drew two squares, labelled the sides of one 3

and 3, and the other 6 and 6, but concluded, apparently without considering the drawings, that the new

square would have an area twice that of the smaller square, or 18.

When students try to calculate the area of an irregular quadrilateral, for example, by using the length

by width formula, what they are doing we postulate is returning to a familiar scene around which they

feel comfortable and do not feel disoriented. It is for the student not at all a question of whether the

formula is inappropriate, but rather a question of how, emotionally, they could move into uncharted

territory without new signposts to help them orient themselves. This view of the way students approach

problems has considerable implications for curriculum and the role of a teacher.

The signposts which the students most frequently in their area work were Length x Width, measures

of sides of figures, and counting. We found we could not separate these misconceptions and deal with

them individually. They were, and perhaps always are, interconnected into a unified construction of

what area might mean to these students. For example, for many students:

area is a measured by the formula Length x Width

to apply the Length x Width formula , one needs to know the measures of the length and width (or of

two adjacent sides) and as these linear measures are in centimetres or other linear units, so the answer is

in the same units

when measures are not given, one should count something (nails or pins, or squares around edges of

figures, for example) in order to get numbers.

These signposts all represent actions which can be taken immediately - namely multiplying,

measuring, counting - and they all result in a numerical answer. However their salient point is that they

are actions with which the students feel comfortable: they are cognitive signposts that prevent them from

feeling lost.

THIS STUDY: PRE-NUMERIC AREA COMPARISONS

We were able to look more closely at the occurrences of the students' use of these signposts in a

mathematics content course at the teachers' college. We spent approximately six hours on tasks related

to perimeter and area of closed figures. After each session students wrote journals about what they had

done and what they had learned and at the end of the work, they did a written 'test' paper. The

observations discussed in this section are of the students' responses made in class and in their journals

to the exercises described above and to the test questions.

The lessons were not planned from the beginning but in the way we usually plan our teaching, by

continually responding to our observations of students. Instead of attacking each of these overused

signposts separately, we tried to move students to a broader conception of area which would include

representations built from experience as well as those learned as social conventions from previous

teaching.
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A mature quantitative thinker's view of the area of a planar region is as a number. This number is

obtained by discovering how many standard unit regions usually squares exactly cover the region

whose area is sought. Of course this might require infinitely many ever smaller copies of the unit, and

so the number that gives the area measure might be quite a sophisticated number - such as 7t. A notion

that is historically anterior, and seems to be also cognitively anterior, to this relatively sophisticated

numerical notion of area measure is that of area comparison of two planar regions: one region has

smaller area than another if it can be moved by rigid motions (or more generally by other area

preserving transformations) so as to lie inside the other region. More generally one allows certain "cuts"

of the first region before rearrangement: these cuts are in practice usually straight line cuts, but could, in

principle, be something more general.

For many students the situation is often quite different. They want to find area as a number, but

often any number at all will do. For example, one of our students told us that she was counting the nails

around the sides of a geoboard so that she would have a number. Another told us that area had never

existed for her because we have no tool to measure it. Of course calculating area is a number task: it is,

as we have indicated above, the task of finding how many standard unit regions, or small copies of a

unit region, it takes to cover the region whose area is sought. A major difficulty for students is that they

confuse what it is that they are counting in order to find area, and they confuse what it is they count

when they measure length. They also appear to have no mental perception that there is a region to be

covered. Without this they seem to count or compute whatever they see. Thus, our first goal in this

study was to encourage students to pay attention to the region whose area was sought, as well as to a

measure of that region. We thought it plausible that if students learned to work with area directly by

covering a region with unit squares or partitioning into regions of known area, they would not be so

dependent on formulas which involved linear measures. We were really asking them to address the

question: "Which of these regions has larger area?" without calculating the area of either region as a

number.

We believe that in order to make sense of formulas, our students need to construct a mental image of

the area as a region which they could focus on and talk about before attaching a number. We wanted

them to change shapes and compare areas to see when the amount of area stayed invariant, when it

halved, and which relationships of area to linear lengths stayed invariant. We wanted them to have the

kind of experience generally provided for primary school children of finding areas directly without

formulas by partitioning regions into measurable rectangles or triangles or covering them with unit

squares and, when helpful, by moving portions of shapes.

We first posed a problem which we believed would require the students to attend to area without

attending to the length of the sides. The problem was this: "Without using a ruler, put some cardboard

shapes in order by area." The shapes which became the focus of attention were a square and a

parallelogram which had the same area (and same base and height) but different perimeters. We

expected that students would compare areas directly by placing one shape on top of another and by

mentally "cutting and pasting" to test if the shapes were congruent.

3 1 6
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JDENT RESPONSES TO SOME COMPARISON TASKS

Instead of placing shapes on top of another, about half the students held the cardboard shapes edge

to edge to compare perimeters. They were attempting to measure shapes not with unit squares as we

suggest but with linear measure of the edges . They seemed to believe that if a shape has a larger

perimeter it also has a larger area.

In trying to order the cardboard shapes by area, students who held shapes edge to edge noticed in a

square and a parallelogram, with the same area, that the lengths of two sides of the parallelogram were a

bit longer than the sides of the square. Other students showed the parallelogram and square to have the

same area by placing them on top of one another and showing the congruence of the pieces which

extended beyond the overlap. After much discussion, a number of students were convinced that a

shape can be the same in area, and at the same time different in area, to another shape depending how

they placed one shape on top of the other. While they agreed that two shapes appeared to have the same

area, they thought that if one of the shapes were rotated ninety degrees, the two shapes would no longer

have the same area. A student supported her theory that longer sides meant larger area pointing out that

"one sticks out longer". Thus these students maintained their belief that if the side lengths were longer

the area would be larger, while at the same time agreeing that if two shapes are held in a certain way one

can see that they have the same area.

This activity exposed confusions between area and perimeter which we had not expected. These

confusions were riot just a matter of word usage. The students had not just reversed the two labels. I n

fact, they had not distinguished for themselves two separate entities which would require two separate

labels. Some students, like Robyn, commented on this: "This was a successful learning experience for

me because before the class I could not distinguish area from perimeter." Others like Kylie didn't seem

to have a concept of area at all: although she writes "area" we suspect that she is equating the word

"area" with the boundary of the shapes. Kylie said: "It helped me understand how different areas can

really equal the same area."

The disequilibrium created by trying to assimilate new notions of area is described by one student

Cloe in her journal:

"We were given a number of shapes and told to organize them according to their area. It was

difficult because we weren't allowed to calculate the area because of a few factors [we did not

allow students to use rulers ] and sometimes when you thought you have them correctly

ordered, you placed two shapes on one another and came up with a different answer. I also

learnt that the perimeter calculations sometimes don't account for anything....I was still unclear

and confused how to work out the area if you can't always calculate length of the object by the

width. I walked out of the class knowing that Length x Width is not always true but was

unsure what to do to come up with the answer to fmd the area of an object if the situation arose

again."

The issue of sorting out differences in perimeter from differences in area came up again when

students were asked to compare the areas of a set of different shapes with a unit square. The set of

shapes included a parallelogram A which increased the length of sides and maintained area as in the

previous example, and another parallelogram B which maintained perimeter instead. Students most
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often concluded that both parallelograms had the same area as the unit square since the first comparison

activity "convinced" them of this.

To demonstrate the difference between A and B we put a "straw" square with pins in the corners

onto an overhead projector and demonstrated what happened when the square was gradually collapsed

to the smallest possible area. When asked at which point the area got smaller they agreed with one of

the most confident students that it was half way down, but found it difficult to decide at which point the

area became smaller in tilting the square a little. Students could see that the area was smaller at the

extreme when there was an obvious visual difference.

As we read the students comments about their understanding, we noticed a pull between what they

observed and what they expected or thought logical. Errors occurred when they were guided by only

their observations or only what they thought logical. Effie, for example, doubted her perceptions when

she measured and found that her ruler and school diary had the same perimeter, but the diary appeared

to her to have a larger area: "I also learnt that shapes can be deceiving. The perimeter may be the same

but the area of the ruler is more smaller or appears to be ? For example because of its boundaries."

Later, when she had made a triangle, a trapezium, and a parallelogram from three identical rectangles of

paper and measured all of the perimeters, Effie was convinced by her logic that the figures must have

the same perimeter as well as the same area. She did not believe that she or her classmates had measured

the perimeter accurately:

"It was good because we were involved in making these shapes and also finding out that all had the

same perimeter [we think she means areal because they were originally the same rectangle. The

perimeter was also the same apart from the errors in cutting the paper and having a slightly bigger or

smaller piece of paper."

Stella, in responding to the same activity, tried to combine her sense that the shapes must be the

same because they were made with the same size piece of paper, with her sense that some of them were

bigger

"The point of the activity was to make us decide whether the area of all the shapes were the

same. The areas were the same, but some larger shapes, e.g. larger trapeziums, gave larger

areas....The trapezium can be 32 square centimetres because the area is still there, its just

structured in a different way."

In the final written test, nearly all of the students described area as the minority of students had at the

beginning--as the space inside a bounded figure. Although the students now expressed agreement with

the instructors in viewing area as a region, some still used Length x Width as the way to compute area

for all polygons. The majority however attempted to integrate their new notion of comparing areas of

regions with area as a fomiula. Some created more complicated routines than multiplying length by

width which however still did not work , for example they multiplied lengths of all the sides of a figure.

Thus, although most students did not integrate notions of comparisons of areas of regions with area

formulas, or correct their confusions about relationships between area and perimeter, they no longer

accepted Length x Width as the all-encompassing solution to finding area. They had apparently given up

some signposts without constructing new ones which would give them more success in finding area.
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DISCUSSION

It seems that three kinds of data are entering into students' responses to these area questions:

social knowledge in the form of a formula their teacher taught them: Length x Width

their visual perceptions

their own supposed logical arguments.

The cut and paste argument makes sense to many students in that they see that if a piece is only

moved rigidly then its area has not changed . This is a part of so called conservation of area as defined

by Piaget and coworkers. Invariance of area under the group of rigid motions is a key basic feature of

area. Indeed it was just this feature of area that Piaget took as the basis for his studies of conservation.

What is not so obvious however, is that there is in fact no external reality of the concept of area to

which we can refer, independent of its invariance under a group of motions, that tells us that it should

be so invariant. In other words if people come to conserve area, as some seem to do, and if we take this

conservation of area to mean its invariance under rigid motions, then they must have constructed this for

themselves as part of their building of the concept of area. A curious question arises here however. If

students accept "conservation of area" under rigid motions yet still imagine that shapes with the same

perimeter have the same area, then is it really area, in the numerical sense, that they are conserving, or is

it just a notion of equality of figures that are equivalent under rigid motions ?

When we saw that students tried to use perimeter to rank shapes by area, we posed questions to

direct their attention to the lack of constant relationship between area and perimeter. Students seem to

confuse area and perimeter and refer to "size" and "big" for both of them. It is entirely possible that the

only perceptual cue they have is the perimeter. We believe that many of them cannot focus on the

region whose area they have to compare or find, and they have learned to associate perimeter with a

formula for area. An often expressed point of view is that the area of a region is the "amount of stuff in

that region". This idea leads naturally for many people to a conviction that if the length of the boundary

of a region is kept fixed as the shape of the boundary is changed then the area stays constant because:

"the amount of stuff hasn't changed". This indicates a failure to understand area as the number of

standard unit shapes needed to cover a region.

Hart (1984) deals with children's understanding of area in her chapter on measurement. She has a

discussion of some nice experiments with 12 14 year old children that tease out apparent confusion

between area and perimeter. These results must however be considered in light of the results in the

doctoral thesis of Izzard (1979). He reports clear indications that perceptual boundary cues of shapes

used in area and perimeter questions have a strong influence on a child's view of which feature is

salient. Many of the secondary school children's misconceptions of area detailed by Hart are paralleled

by our observations of student teachers' misconceptions of area.

This makes us suspect that we are seeing in these young adults a resurfacing of misconceptions that

have lain dormant and unchallenged for a number of years. The recourse to numbers and formulas by

these students is critical in their understanding, or rather their misunderstanding. It is critical in their

ability to adapt their understanding of concepts taken for granted. New situations for learning require

that students at this level synthesize intuition, experience, and logical deduction.The misconceptions

have appeared, perhaps for the first time, in high school use of area formulas. This raises the issue of

mathematical judgements depending on social authority, especially the authority of numbers and
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formulas, intuition and experience, and logical deduction. These students may not have been asked to

consider area in primary school when it might have been acceptable for them to depend on their

perceptions. Perhaps, on the other hand, they feel that only logical reasoning is acceptable, and if they

can't develop their own then they must accept someone else's, in the form of what teachers tell them.

They no longer test their assumptions with perception. Rather, they perceive what they decide to

believe.

Hirstein, Lamb and Osborne (1978) discuss the results of interviews with 106 grade 3, 4, 5 and 6

children, designed to study how children incorporate numbers into their judgement of area. Several of

the misconceptions they observed involve counting units without awareness of the unit's space-

covering character. Analogously, children also counted lengths by counting marks between units of

length, this time showing no awareness of linear units. These authors include a graph depicting the

growth of the concept of area showing that children up to fourth grade gradually acquire a concept of

the unit counting approach to determining area of a figure and children above sixth grade develop a

multiplicative approach, but that there is a gap in between with no apparent connection made between

these methods. Our work with prospective primary teachers indicates that this gap still exists. This then

is a challenge for researchers and teachers - to understand the apparently different mental processes

involved in these stages of dealing with area, and to devise problem solving situations that help students

connect the actions and images of covering, cutting and pasting, and counting with the formulas for the

various figures.
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PROBABILITY CONCEPTS AND GENERATIVE LEARNING THEORY

Ole Bjorkqvist
Abo Akademi, Vasa, Finland

Earlier research findings on probability concepts are interpreted
within the framework of the generative learning model. The
interpretation is made with reference to the processes of the model,
to the function of long term memory, or to compartmentalization of
long term memory. The social constructivist philosophy is adhered to
through emphasis on viable knowledge.

Introduction.

The generative learning model (Osborne & Wittrock, 1983) is an attempt to
express constructivist views of learning, including some general aspects of the
information processing models of the brain. The emphasis is on the meanings
children (learners) actively construct for words and phenomena. The process of
construction, located in short term memory, involves the generation of links to
long term memory, which is a store of images, episodes, propositions, and skills.
After successful testing of tentative links between sensory information and
memory, meaningful understanding is reached, and the results are subsumed
into long term memory.

The most significant use of the model is in science education where it proposes a
frame for the study of alternative concepts of phenomena in science. It also links
the study of conceptual structures to real world teaching.

In mathematics the subject area of probability shows similarity to elementary
science. It involves concepts that have been constructed in an informal way
before systematic teaching, common-sense thinking, counter-intuitive
phenomena, a mixture of induction and deduction, and, above all, quantification
of properties and relations that present themselves qualitatively in much of
everyday life ("impossible", "more likely than", "good chance", etc). In most
countries the mathematization of the concepts of probability belongs to the
secondary school curriculum, and many students will not experience it
systematically within the school buildings.

In the absence of a precise language in which the learner can describe his
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personal constructs, the alternative concepts of probability constitute a rich world
to explore. One may start from the corresponding mathematical structures and a
theory of their development (Piaget Sr Inhelder, 1975), from the application of
generalized cognitive processes to probability (Fischbein, 1975), or from the
application of probability as compared with other influences in human decision-
making (Tversky Sr Kahneman, 1974, 1981). It would seem that the framework of
the generative learning model is just as natural.

Some philosophy.

According to radical constructivism (Lerman, 1989) it is beyond the power of an
outsider, such as a teacher, to know that a learner has come to an understanding
of a concept. Understanding is subjective, a sense of freedom from
contradictions sometimes coupled to a sense of completeness of knowledge. A
learner therefore needs a way of comparing his knowledge with standards that he
accepts, i.e., objectivity is located in the social domain rather than the
transcendental. The process of teaching is essentially communication of world
views and appropriate organization of the environment of the learner, to make
active construction of meaning possible.

The remarkable homogeneity of world views in areas like science and
mathematics can be explained with a darwinistic argument. The world views
that have survived are judged to consist of viable knowledge (von Glasersfeld,
1987). "Viability can be construed as a continuous variable, which in science and
mathematics is almost dichotomized (viable knowledge equalling truth or a good
model). The difference in terminology may be of less consequence to a scientist
who is not philosophically inclined, but, interpreting alternative concepts in
elementary science and mathematics, "viability", as assessed by the teacher,
provides the criterion of quality sometimes needed to justify educational
decisions.

On an individual scale, the generative learning model locates knowledge in long
term memory. Viable knowledge is a set of images, episodes, propositions, and
skills that will survive repeated testing when the individual actively generates
links between sensory information and long term memory.
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Interpretations of earlier findings.

The study of probability concepts has produced a vast amount of information in
the form of test results and observational records, very often in connection with
gambling. The analyses, even though starting from different theoretical
viewpoints, have produced some similarities in the form of heuristics and biases
that are repeatedly encountered (Hawkins & Kapadia, 1984; Hope & Kelly, 1983;
Wagenaar, 1988; Walter, 1983). Many of those findings, even if paradoxical, can
be given quite satisfactory interpretations within the framework of the generative
learning model. The analysis will here be divided into interpretations that refer
to the processes of the model itself, to the function of long term memory, and to
compartmentalization of long term memory.

It can be noted that the generative learning model implies an intrinsic search for
coherence, if meaningful understanding is to include freedom from
inconsistencies at an individual level. This is akin to the "quest for certainty"
basic to science itself. The possibility of reaching a state of coherence or certainty
seems evident to anyone who has had intuitive cognitions, which have intrinsic
certainty as one characteristic (Fischbein, 1987).

Probability concepts are sometimes classified as either intuitive or formal. This
is not appropriate, as even highly formal concepts share many of the
characteristics of intuitions, primarily the factors contributing to immediacy,
namely visualization, availability, anchoring, and representativeness. However,
probability concepts are not intuitive unless they exhibit intrinsic certainty, self-
evidence, perseverance, and coerciveness (if you accept the definition of
Fischbein), and this is rarely the case.

The immediacy of probability concepts is related to the process of testing
tentative links between sensory information and long term memory. The
extensive use of heuristics, whatever their nature, is similar in the sense that it
speeds up the processing. Heuristics also tend to reduce uncertainty and thus
give partial coherence. Obviously probability concepts are in no way unique here,
neither with respect to immediacy nor to the function of heuristics.

Some of the specific biases discussed by Wagenaar (1988) in connection with
gambling behavior can be interpreted with reference to the processes of the
model.

Confirmation bias, the preference for information that is consistent with one's
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own views or even disregard of evidence to the contrary, exemplifies the search
for coherence at the stage when sensory information is only being received. In
general, a biased learning structure, the tendency not to analyse the existing
alternatives according to their statistical or theoretical weight, reflects parsimony
in the generation of links. Gamblers often develop their strategies from
incomplete analysis of information that maximizes the hope for confirmation of
conjectures.

In retrospect, people are not surprised about what happened, and even believe
that they did predict the outcome. This is the hindsight bias, which can be
associated with the last phase of subsumption in the generative learning model.

One of the best known common characteristics of probabilistic reasoning is the
view that prediction of an event cannot be detached from the outcome of similar
independent events in the recent past. In gambling this is the sequential bias or
the negative recency effect. The dependency on recent empirical evidence is
connected with the temporal correlations between sensory experiences which are
so often found in physical science and in everyday life, and which also constitute
the basis for causality. The tests of tentative links to long term memory follow
time-dependent patterns.

Among the factors contributing to immediacy, representativeness, or the
tendency to judge single events as exemplars of categories of events, can be seen
as crucial to the generation of new links. Representativeness can thus be a
positive heuristic. It can, however, be used to infer unwarranted properties in
the hypothesized category of events.

Turning now to the function of long term memory, both representativeness and
the other factors of immediacy, availability, anchoring, and visualization,
imply the superiority of a rich store of images, episodes, propositions and skills.
For example, a formal conceptualization of probability requires propositions
usually acquired in school. In other cases, skills may have been acquired without
formal education (Acioly & Schliemann, 1986). The specific linguistic problems
often associated with probability concepts (Carpenter et al., 1981) may be seen as
deficiencies in the extent or organization of the memory store, as may the
concrete information bias, characterized by vivid or conspicuous incidents
dominating abstract information, i.e., the attribution is to specifics rather than
generalities.

The problem framing often has decisive influence when one is chooses a
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strategy for solution.The images and episodes saved in long term memory serve
as sources of meaning when similar problems arise. Reliance on habits can be
interpreted with reference to skills or episodes. Episodic memory also has a
central role in the establishment of illusory correlations, exemplified in
superstition, which is a frequent element in gambling situations or in layman
weather forecasting.

Much of the memory store may be non-efficient, in the sense that the modeling
of probability is mathematically deficient. For example, people tend to confuse
conspicuous events with low probability events, and also to make probability
estimates on the basis of absolute rather than relative frequencies. However, the
memory store may represent viable knowledge on a personal level in spite of its
mathematical shortcomings.

The compartmentalization of long term memory, finally, can be seen as a key
factor in the interpretation of some other phenomena in accordance with the
generative learning model.

In gambling, there is a tendency for people to have an illusion of control over
the game, even if they on another level are completely aware of the negative
mathematical expectations. Others exhibit flexible attribution, with successes
due to their own skill and failures due to chance or bad luck. It has been shown
(Wagenaar,1988) that many people regard skill, chance, and luck as three quite
different concepts which together determine the outcome of gambling. As a
consequence of this, people accept unfavorable bets or continue gambling after
losing, which constitutes paradoxical behavior.

The switching of problem solving strategies, not specific to probability but very
much in evidence, can be seen as the result of the attempts to generate links
searching through one compartment after another in situations where the
problem type is unfamiliar.

As a mathematical concept with three different theoretical starting-points
(classical probability, empirical frequencies, and axiomatic probability) it seems
logical that probability concepts should refer to more than one compartment in
long term memory. There have been interesting test designs to study the
interconnections of the conceptual aspects (Koops, 1981), but remarkably little is
still known. More basic research in this area would be beneficial to the
development of curricula and teaching methods.
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Conclusion.

This attempt to interpret earlier findings about probability concepts within the
framwork of the generative learning model aims at a natural description in the
spirit of constructivism with a social twist.

It is only applicable as far as the earlier research findings apply to a given person.
In particular, many children do not have a rich memory store with which to link
sensory information. The immediacy they presumably exhibit when interviewed
about probability concepts may easily be forced immediacy, and in such case any
tendencies observed are likely to be generalities with little specific connection to
probability.

Alternative concepts are somewhat easier to accept in science than in
mathematics. Alternative concepts in mathematics have primarily been studied
to establish the nature of "misconceptions" and ways to overcome them, which
in effect has become error analysis. To accept truly alternative concepts one must
know enough about them to judge how viable they are. One needs a model
showing how they are constructed. It is suggested that the generative learning
model is a good one for concepts like probability, if and when the empirical
foundation is comparable to the empirical basis for elementary concepts in
science.
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In this work we examined the consistency of answers to

groups of questions along the analysis of a discrete random

situation posed to British children aged 10-11 and 14-16 years.

In the experimentation, the situation was presented to the

pupils in two slightly different contexts: For the older

children, another variable was whether or not they had had a

previous introduction to Probability. Among our general

hypotheses there was the influence of the context in the

answers to groups of questions concerning impossible, certain,

.complementary and compound events and conditional probability.

This report concerns part of a study carried out in order

to throw light on some aspects involved in the learning of

Probability at pre-university levels.

Usually, the teaching of Probability is based on the
solution of specific problems demanding an interpretation using

the techniques taught, mainly in the basic grades of education.

In this part of the study we did not ask the students different

questions referred to different problems, and these last

referred in their turn to different contexts. Instead, we posed

a random situation, and through a Calthough very restricted)

set of questions, pupils were led to its analysis.

One of the variables included in this study was the

context in which the situation is presented Cthat is how the

situation is referred). We proposed two discrete contexts

differing in what one of them can be considered more familiar

to pupils than the other. The contexts posed were the throw of

two dice, usually known from everyday games, and the other

This study VOA supervised by
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based on the urn model, which is generally introduced at school

for didactical purposes. In particular we wanted to see whether

pupils' preference for one result dominated their prediction of

the most probable event.

We were also interested in pupils' answers according to

whether they had received a previous instruction on

Probability. Answers to questions about impossible, certain and

complementary events were of interest to us.

Along the questions posed we were interested in verifying

some results obtained from other research having different

characteristics, such as the one concerning causal and

diagnostic reasoning studied by Kahneman and Tversky [1982].

These authors found that people judging conditional probability

assign higher probabilities to the conditioning event when this

concerns the causes of a random result (causal reasoning) than

when it refers to its effect (diagnostic reasoning, that is

reasoning about a posteriori probability).

Some questions were posed about the idea of

exchangeability Obchangeabilita) for the analysis of compound

events. This idea was studied by Lecoutre and Durand [1988],

without the intervention of random variable.

Unlike the last study quoted, in this pupils were asked to

consider the situation posed through a random variable. The

main purpose was to look at the aspects pointed out above, not

in a local perspective, but from a more general point of view.

We wanted several notions of Probability and their

interrelations to be considered in the analysis of the

situation. Our framework was Heitele's [1975] proposition. This

author considered ten fundamental ideas to be the guide for a

curriculum in stochastics. These ideas are

* To assign a number from (0,1] to a random event to
express its probablity of occurrence

* Sample space
* The addition rule
* Independence
* Equiprobability and symmetry
* Combinatorics
* The urn model and simulation
* Random variable
* The law of large numbers
* Sample.
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Heitele suggested the introduction of these ideas by posing

complex examples in which not only basic notions could be

studied, but their interrelations as well Csee Ojeda, (1985]).

Heitele's ideas constituted the framework for our study of

the variables already mentioned involved in the learning of

Probability.

THE POPULATION AND THE METHODOLOGY USED

A questionnaire was given to 63 students aged 14 -16 years

and 23 pupils aged 10-11 from three different British schools.

29 of the older pupils had already received an introductory

course of Probability and were considered as a top set

according to their general mathematics performance at the

school. The remaining pupils had not yet been taught

Probability

The questionnaire consisted of two parts, but the aspects

concerning this report correspond to only the first one.

Two forms of the questionnaire, called A and B, were

designed by only varying the context of the situation proposed.

In Form A the context was

Two ordinary dice. one white and one red, are thrown at
the same time. The number of dote on the top faces are
added.

The situation in Form B was stated as

Two cloth bags, one white and the other red, each hold
six squat sized marbles, labelled i to O.
In each bag the marbles are vett mixed.
Without looking, two marbles are taken out, one from each
bag. The numbers drawn are added And then, each marble is
put back into its bag.

Within each form, all the questions we referred to corresponded

to the same context. Other than the context, the situations,

questions and their order were exactly the same for the same

age.

Most of the questions were multiple choice although some

open questions were posed for getting more information. The

questionnaire was a little different for the younger pupils as
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we wanted to avoid additional difficulties duo to fraction

numbers in the options proposed rather than to probability

notions. So, some questions posed to the older pupils were not

included in the questionnaire for the younger children, who

were posed 25 questions instead of 27. As the vocabulary used
did not include technical terms it was expected to be

understood by children aged 10-11 years.

The questionnaire was passed during mathematics class time

in the Spring of 1989. The two forms were given in alternate

form according to the registration list of the class.

GENERAL STRUCTURE OF THE QUESTIONNAIRE

Although the situation posed in the questionnaire may seem

simple, in general its understanding requires a method for
organising the ideas. So after a few questions with a

qualitative approach, pupils were asked to fill in a table to

produce the sample space so as to have it at hand. This was

followed for a quantitative approach. There were several

relationships between the different questions in order to see

the consistency of the performance.

The distribution of the questions according to the

fundamental ideas and some of the objectives are shown in Table

1.

FUNDAMENT.
IDEAS

QUESTIONS

10-11 14-16

QUESTIONS

10-11 14-16

Norm elief 2,3,4,5 2,3,4,5
Impossible

event 8,12 3,12

Samplespace 6 6
Certainevent 2,19 2,19

Additicgt.
10 S.P C"PLOTNI 9,16 9.10.20

Independ. 11,14 11,14 Exchange 9.1617 17:13,
10

gA3'4W,,:. 14 14 cign5ttign: 19,20 21,22

COMbi.n010. Ileiel4L, Wiral,io ..=17-_______on. 21,22 28,24

= Ttgn. FORM B FORM 8 IgTIflOnC 20 22

St,ntilti: 0,0,10 0,9,17f.18 TABLE 1. Distribution of
the Questions according to
the Objectives!

LawnLACM 29,24 25
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RESULTS

Younger children did better on eighteen questions in Form

B Curn model) than in Form A (dice), although the difference

was bigger than 20% in questions 8, 11, 14, 17 and 22. Only

the question 13 (certain event) was correctly answered by more

than 20% of the pupils with Form A than with. Form B.

The older children who were not taught Probability

performed better in questions 8, 0. 10 and 11 (complementary

event and sample space) with Form A than with Form B. in more

than 20%. There was a significant difference in performance,

better with Form B than with Form A. in questions 7 (sample

space) and 13 Ccertain event).

Pupils who received an introduction to Probability did not

show, in general, a difference in their answers according to

the context, except to questions 10 and 13 concerning with the

sample space and the certain event, which were better succeeded

with the urn model.

The questionnaire began asking pupils for their preferred

Question 27 C25 for the younger pupils), at the end of the

analysis proposed, asked pupils to predict the sum of one trial

of the situation posed. About 20% of the younger children

answered this question correctly and almost all those with a

previous instruction, both with Form A and B. There was a

difference of 15% in the correct answering of this question,

better Form A than B, in the older children without a course in

Probability.

Table 2 shows the coincidence of the correct prediction,

its justification (question 253 and the prefered sum:

AGE 4 10-11 14-15
NO COURSE COURSE

FORM A 15% 6% 50%
FORM B 0% 21% 36%

TABLE 2. Coincidence between the most probable sum, its
justification and the prefered sum.
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Table 3 shows the success for the sets of questions

concerning the concepts we were interested in. The changes in

the numeration of questions according to the age of pupils were

put into brackets. COND- stands for conditional.

QUESTIONS'

4
AGE4 410-11

FORM A

14-16
NO-COUR

4
COURSE

4

10-11

4

FORM B

14-16
NO-COUR COORS

IMPOSSIBLE 3,12 46% 63% 100% 50% 71% 93%

CERTAIN 2, a3 '23% 6% 29% 0% 29% 50%

le,te,zoCOMPLEMENT (0, 10) 31% 25% 79% 40% 20% 56%

EXCHANGE i15,16,17 31% 25% 64% 50% 14% 79%

EXCHANGE 1 10,20 0% 14% 7% 7%

EXCHANOE-COND 21,22
(10,20) 8%. 13% 57% 0% 14% 64%

CAUSAL-corm!i2a,24(21.22) 23% 44% 03% 60% 50% 100%
.

DIAONOSTICi 22
COND: (20) 23% 25% 71% 10% 43% 64%

TABLE 3. Comparison of the success in some of
the objectives.

There is a great difference in the results of questions

concerning impossible events and those referring to certain

events. Questions 2 and 13 asked about certain events. Question

2 posed a qualitative approach, whereas Question 13 was

13. What io the chance of getting a slum between 1 and 13?
a) 0
b) .1

c) 13 (

d) Non, of these [

This question was expected to be difficult for younger pupils

and those without an introduction to Probability, mainly

because of the assignation of number 1 to the certain event

might not seem natural to them. Nevertheless, the results from

pupils who had been taught Probability would seem to suggest

that the difficulty is rather the recognition of the certain
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event.

For the older pupils, questions 9, 19 and 20 concerning

the complementary events of those introduced in questions B,

17, and 19, respectively, were better answered than these last.

In particular, question 19, which posed an event defined as

. . . getting only one 8 from any of the two dice (bags.. . .

was as difficult for pupils who had done a course C14% correct

answers with Form A and 21% with Form B) as for those who had

not C19% correct answers with Form A and 14% with Form M.

Questions requiring the idea of exchangeability

(permutation between the elementary events composing the event

under consideration) were difficult for children without an

introduction to Probability.

Unlike the younger pupils, the children aged 14-16 showed

an ordered; gradual improvement in performance, which referred

to conditional probability, that is, questions 21, 22, 23 and

24 (corresponding to 19, 20, 21 and 22 for the younger

children).

Finally, questions appealing to causal reasoning were

better answered than those requiring diagnostic reasoning by

all the population.

FURTHER RESEARCH

Although there appears to be a better performance of

children (mainly the younger) with the questionnaire using the

urn model than the context of dice, the difference was not

significant, despite the length of the context with urns, which

could be a reason for a poorer performance. Nevertheless, therie

is still the doubt of whether they can transfer Cor rather

repeat) a correct answer given to a question posed in one of

the contexts to a similar question posed in the other context.

In spite of the success shown by children previously
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taught Probability, the review of the consistency of the

answers given to groups of questions concerning the same

notions appears to reveal that even after an introductory

course, elementary notions of Probability, such as certain and

compound events, are difficult to handle.

REFERENCES

Heitele, D.: 1975, 'An epistemological view on fundamental

stochastic ideas', Educational Studies in Mathematics 6,

187-205.

Lecoutre, M. P. and Durand, J. L.: 1988, 'Jugements

probabilistes et Modeles Cognitifs: Etude d'une situation

aloatoire', Educational Studies in Mathematics 19. 357-368.

Ojeda, A. M.: 1987, 'Ideas Fundamentales y Actividades Modelo

en la EnseHanza de la Probabilidad. Nivel Medio Superior'.

Cuadernos de Investigation, PNFAPM, Mexico.

Tversky, A. and Kahneman, D.: 1982, 'Causal schemes in

judgments under uncertainty', in "Judgment under

uncertainty: Heuristics and biases" CKahneman, Slovic and

Tversky, Eds.), Cambridge University Press, 117-128.

337 334



RESEARCH PAPER FOR PRESENTATION AT P.M.E. 14 - MEXICO

AUTHOR: ROBERT PEARD
TITLE: GAMBLING AND ETHNOMATHEMATICS IN AUSTRALIA

Summary

The phenomenon of gambling is widespread throughout Australian society. Thus

we have an identifiable subgroup of the population for whom gambling,

particularly on horse-racing, constitutes a form of "ethnomathematics". Children

from this group bring probabilistic knowledge with them to the school

environment. This study researches what this knowledge is, how it is

constructed and used, and the implications of this in the school system.

Introduction and Rationale

This study will involve research in two broad, independent, yet interrelated

fields of mathematics education. The first of these is what may be ldosely

defined as "ethnomathematics" within Australian culture. This part of the

study will involve the exploration of culturally-based mathematical knowledge in

probabalistic and related concepts of a segment of the society for whom the

phenomenon of gambling is inherent in their culture.

The second field employs the ideas of "constructivism" in the learning of

mathematics. In this section, the research will explore how this knowledge is

used to construct mathematical procedures and concepts. In addition, the

relationship between these constructs and present classroom instruction in the

topics will be researched in order to determine how such knowledge may be

meaningfully incorporated into classroom practices.

If we view Australian society as a changing, developing multicultural mixture

any ethnomathematical concepts will of necessity be confined to various sub-

groups. In this study the term "ethnomathematics" will refer to the inherent
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Those who reasoned in this manner effectively constructed their own "common

denominator" algorithm and employed this to questions of the type of number 1.

Others reasoned:

"3 gives 4 or 7 gives 9 ", so 6 gives 8, 7-6 =1, 1 gives 8/6, so 7 gives 8 +

8/6 = 9 2/6 which is greater than 9 so 4:3 is better ".

It is interesting to note that although those using this procedure sometimes

made errors both computational and procedural - none was consistently

incorrect and none used the incorrect "additive" algorithm reported to be common

amongst children 12-16 by researchers such as Hart (1984) "erroneous reasoning -

referred to as the incorrect addition strategy" (p.4).

Such reasoning here would go

"3 gives 4 or 7 gives 9, if 3 gives 4, 7 gives 4 + 4 = 8 which is less

than 9"

Non-gamblers employed a variety of techniques including'the finding of a common

.denominator and conversion to decimals for the first type of question and were

generally unable to attempt the second.

CO The concept of equal likelihood of occurrences.

Sample Questions;

1. When a single die is rolled are all numbers 1 to 6 equally likely? Is,

say, a "six" harder to get than any other?

(4) The concept of independence.

Sample questions

1. When a fair coin is tossed it is just as likely to land heads as tails.

If a fair coin is tossed three times and lands heads each time, is it

still just as likely to be heads as tails on the next (fourth) toss?
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(a) 2:9 = 10 : x
(b) 4:7 = 5 : y

2. (a) If $10 is bet at odds of 9:2, how much can be won?

(b) If $5 is bet at odds of 7:4, how much can be won?

Analysis: The "gamblers" consistently employed the same algorithm in all

questions, in nearly all cases successfully. Typical reasoning was:

"2 gives 9, 10 is S x 2, so 10 gives 5 x 9 = 45"

"4 results in 7

4 is one less than 5

This additional 1 gives x 7 = 7/4

So 5 results in 7 and 7/4 = 8 3/4"

"Non-gamblers" were generally unable to attempt the second question but answered

the first using more traditional school-taught algorithms, though not always

correctly. It would appear that in this situation the gamblers do construct

their own algorithm and apply it in traditional non-gambling situations.

Further research will be conducted in this area.

(2) Equivalence of fractions and comparison of "odds".

Sample Questions

1. Which is the larger, 3/5 or 5/8? Why?

2. Which are the better "odds" 4:3 or 9:7? Why?

Analysis: Again, the gamblers constructed their own algorithm, though not as

consistentlk, as in the first instance. Some reasoned:

"3 gives 4 or 7 gives 9

'So 7 x 3 gives 4 x 7 or 3 x 7 gives 3 x 9

21 gives 28 or 21 gives 27

28 is greater than 27, 4:3 is better".
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This research will therefore employ the use of a number of case studies as the

dominant research methodology.

Research Questions

This research is currently in progress. Twenty case studies are being conducted

with upper secondary pupils. Ten of these come from a social background in

which gambling practices are commonly accepted. The most prevalent of these

practices is betting on horseracing and trotting, though gambling on card games

is also evident. The other ten pupils are from a similar socio-economic

background but are unfamiliar with such practices.

The research questions include:

What mathematical knowledge (both concepts and processes) do pupils from a

gambling background bring to school with them?

How is this knowledge acquired?

Does this knowledge transfer to use in classroom situations to perform

traditional, related mathematics?

To what extent do these procedures parallel or differ from those employed

by non-gamblers and traditional classroom practices.

Students from both groups were each asked a number of questions in a clinical

interview situation. The full report will contain the questions, responses,

analysis and implications of the results to the date of the presentation but

some preliminary results from five areas of study are presented here for

discussion.

Results and Implications to Date

CO Algorithms employed in calculations involving proportions.

Sample questions:

1. Complete the following proportions:
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Clements.(1988) "it needs to be remembered that often in Australia there are

unique. factors influencing how children learn mathematics" (p. 5).

Secondly, that the phenomenon is inherently mathematical in nature. Bishop

(1988a) notes that developing ideas about chance and prediction are important

mathematical activities (p. 106) and that gambling games are part of modern

western society at present (p. 112). Investigations in our mathematical culture

include experimental probabilities (p. 117). D'Ambrosio (1985b) has stressed the

need for incorporation of ethnomathematics into the curriculum in order to

avoid the "psychological blockade" that is so common in mathematics.

The interrelation between ethnomatics and constructivism results from the use

of the learners' experiences which are culturally determined, to construct

mathematical concepts. As Davis (1989) notes:

It is now far from a new idea'that mathematical ideas and concepts are

actively constructed by individual children and older people alike (p. 32).

This research will explore how probabilistic ideas and concepts are actively

constructed by individuals in, as Davis says as "intelligent responses to their

environment" (p.32).

Leder (1989) refers to "the growing adoption by contemporary mathematics

educators of constructivist perspectives" (p. 2).

Higginson (1989) refers to constructivism as a conception of knowing and

learning with its emphasis on the active involvement of the learner (p. 11).

Harris (1989) argues that:

The mathematical meanings acquired in the classroom are the personal

constructs of each individual learner and that they are strongly

influenced by past experiences and the social context of the school (p. 81).
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mathematical ideas related to the probabilistic concepts in gambling that some

of the population possess and that might be reasonably expected to be brought to

school by the children of this segment. This working definition is in keeping

with that employed by other researchers in the field. Beth Graham (1988) in

researching the ethnomatics of Aboriginal children of Australia uses the term

to refer to "the mathematical understandings that the Aboriginal children bring

to the educational encounter ... the mathematical relationships inherent in their

own culture". (p. 121). Gerdes (1988) uses the same definition to describe the

intuitive mathematics of the native culture in a post-colonial society.

Carraher (1985) in Brazil uses the term to refer to the knowledge of "the

everyday use of mathematics by working youngsters in commercial transactions"

(p. 21). D'Ambrosio (1985a) first coined the term to refer to "mathematics which

is practiced amongst identifiable cultural groups" (p. 45) and it is in this

context that the term is employed in this study.

The rationale for the selection of the phenomenon of gambling relies on two

major factors:

Firstly, that the phenomenon is widespread within the culture and is related to

the culture in a unique way. Award winning Australian author Peter Cary (1987)

in refering to the social history of Australia commented "It was as if the

colony were founded on gambling" (p.263). In the Australian Newspaper (2613(89)

Phillip Adams refers to Australia as "the gold-medal country of gambling" (p.42).

Statistical evidence showing the monies bet on legal gambling - TABS and

casinos per capita of population supports this, as does the observation of social

phenomenon such as "Melbourne Cup Day".

Thus it may be that in researching the concepts employed in gambling the study

will add to factors unique to our culture. The need to do this is supported by
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2. If it is equally likely for a new-born child to be a boy or a girl. Which

sequence is more likely when a family has four children.

(a) BBBG, (b) BGBG, (c) both equally likely

Shaughnessy (1981) refers to the use of "representativeness" in this estimation

(p.91). This study will explore the comparative use of "representativeness"

amongst the "gamblers" and "non- gamblers".

(5) Combinations and Permutations in Probability Estimations.

Sample Questions

1. A student has eight books at school and decides to take two home. In how

many ways can this be done?

2. There are .eight horses in a race. To win "the double" you must select

the first two (i.e. first and second but not necessarily in the right

order). How many selections can be made?

3. A committee is to' be selected from ten students. Which of the following

committee sizes would result in more possible committees:

(a) 8, (b) 2, (c) no difference between 2 and 8.

Shaughnessy (1981) refers to the use of "availability" in making this type of

estimation (p.93). Again, this study will compare the use of this by "gamblers"

and "non-gamblers".

The results of the questions of item (3) to (5) are presently incomplete. These

and other data are to be presented for discussion and reaction.
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A Mathematization Project in Class as a
Collective Higher Order Learning Process

Hans-Georg Steiner

The Institute for the Didactics of Mathematics.(IDM)

University of Bielefeld, F R Germany

Various positive classroom experiences with a mathematization program related to mathe-
matical modelling of situations and problems in the social-political domain of decision
making by voting (voting bodies) provide us with a learning context for students in grades
11 12 and an educational setting in which social cognition and social learning, metacogni-
tion, learning about learning, communication about communication play a significant role
and can be made a matter of in depth didactical investigations. It is considered impor-
tant that, in the context and setting specified, these factors are not seen independent from
the content and its epistemological structures. Rather they are viewed as being profoundly
connected with the constitutive interrelation between theoretical concepts, applications,
knowledge development and social interactions in the broad field of mathematics-related
activities in science, education and practice, understood as a socio-historical reality. The
paper is concerned with interpreting the observed classroom processes from these epistemo-
logical and socialcognitive points of view and identifies further research questions.

1. The Learning Context

The learning context is a developing and expanding one and grows out of discussions in
class about situations and problems related to the role and functioning of bodies in various
domains of society that reach decisions by voting (Steiner 1986a, 1988). The students
immediately provide a number of examples and find more of them and more specific
information by searching in the library or talking to people inside and outside of school:
the Federal House of Representatives, a city council, a jury, an examination board, the
Security Council of the United Nations, a stockholders' meeting, their own class when e.
g. electing a class-speaker etc. Problematic situations and special concerns among the
students come up when trying to describe such voting bodies in general terms like the
given vote distributions (v) on the set of voters (V) and the majority quotient (q), or when
interpreting particular situations like the position of a chairperson in case of a tie, the very
unusual regulations for the Security Council etc.

Stimulating points and questions of debate and personal involvement in the beginning phase
are e. g.: Meaning of and reasons for unequal vote distributions; can there meaningfully be
a member with 0 votes?, meaning of and reason for majority quotients like 2/3, 3/4, i. e.
different from 1/2 (simple majority) or 1 (unanimity); does the generalization 1/2 < q <
1 make sense?, can we describe the decisive role of a chairperson in case of a tie by
giving him or her a bigger number of votes?, can the number of votes be meaningfully
used as a measure of power?, why does the Security Council SC = F v T, consisting of
the Big Five F and the Small Ten T, have such strange by-laws, saying that in nonpro-
cedural matters a proposal is carried if at least 9 of the 15 members, including all big five,
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vote for it?, can we replace these unusual regulations, which do not apply any vote distri-
bution and majority quotient, by assigning a certain vote distribution to the members and
determing an appropriate majority quotient?, what power do the Big Five and the Small
Ten have?, can we explain or define power positions like veto-power, powerlessness,
dictatorship?

Dealing with these questions and problems in the collective learning process goes together
with the development of an enriched theoretical framework starting out from empirical
conceptualizations, based on concrete voting sets, vote distributions and majority quo-
tients and the definition of the (normal) voting body to be a triple (V, v, q) with v being a
mapping from V into the set N of natural numbers, including 0, different from the con-
stant 0-mapping, and q being a rational number with 1/2 < q < 1. The understanding of
V, v, q as variables is the first step to creating a theoretical model which can be put in a
dynamic relation to concrete cases and related problems.

The next step consists in the introduction of concepts like winning-, losing-, and blocking
coalitions, first described as derived concepts with respect to normal voting bodies (V, v,
q) by saying that a subset C of V is called a winning coalition, if it is strong enough to
carry any proposal, i. e. if v (C) > q v(V) in case of q = 1/2 and v (C) > q v(V) in
case of q > 1/2 (and for the losing- and blocking-coalition correspondingly).

By flexibly using the term winning coalition also with respect to non-normal voting bodies
like SC, by e. g. saying that the above identified subsets with 9 elements are the minimal
winning coalitions in SC, the concept winning coalition is also made a variable for a
possible richer theory and a larger domain of applications. In this anticipating way the
concept is creatively used by the students, e. g. to define concepts like "x is a powerless
member" by means of "x does not belong to any minimal winning coalition" or "x has
veto-power" by means of "x belongs to all minimal winning coalitions". The need to
further elaborating the theory and giving it firm foundations appears in connection with the
problem whether all voting bodies of the SC-type can always be weighted, as was found
by the students to be the case for SC itself (by e. g. putting v (I) = 7, v (t) = 1 for all f
a F and t e T, and q = 13/15). This leads to an axiomatic definition of a voting body (V,
IV) of the Security Council type in which W is a non-empty set of subsets of V, called
winning coalitions, and in which the concept of winning coalition W is implicitly defined.
A big breakthrough and an expansion of the context is then made by proving that there
really exist voting bodies of the SC-type (from 5 elements up) which cannot be weighted.
Thus the new theory turns out to be the more general one and gives reason for further
applications and for total reorganization of the developed body of knowledge by embedding
the old knowledge into the new conceptual framework.

We can only mention here that in the course of further explorations some situations appear
which seem to be covered by the theory developed thus far but actually create a kind of
paradox and crisis which lead to an even more extended theory that we called the theory of
a-, 13-voting bodies (Steiner 1969b). We should also mention that the core of the learning
context described can be extended into various directions which have been pursued by
specials groups of students on their own: different theories of power, relations between
non-measurable voting bodies and finite geometries, relations to the theory of games
(Steiner 1976b, 1986a, 1986b, 1988).
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2. The Setting, Goals, Activities, and Processes

The classroom experiences were made over several years in gradses 11 and 12 of
West-German high schools (Gymnasia and comprehensive schools), and in grades 9 and 10
within the gifted student program of the Comprehensive School Mathematics Program
(CSMP, at Carbondale Ill.) and the ongoing project Mathematics Education for Gifted
Students in Secondary Schools (MEGSSS at Ft. Lauderdale, Fl.) (see also Steiner 1966,
1969a, 1969b, 1976a). This present report is referring to specially arranged settings in
West-German classrooms in which the mathematization program was made a matter of a
project-type teaching-learning activity lasting for about 3 weeks with a total number of
about 15 classroom-meetings of 45 minutes each. The social organization of students' work
changed between all class discussions, group work and individual work. Each project was
taught by one teacher (including the author) and observed by another; the explorative
teaching was done by the author. The analysis and interpretatiOns are based on observa-
tions, related notes, papers produced by students, a kind of individual diary kept by the
students and two kinds of essays written by the students at home at the end of the whole
process when the students had to choose between a systematic deductive presentation of the
knowledge developed in the project and a genectic description of the actual processes in the
course of creating the theory.

As for the goals, the project was explored and designed to give students a special opportu-
nity to experience how in a collective activity a mathematical model related to a relevant
problem domain originally situated outside of mathematics can be developed. They should
learn by doing, that such a model is not to be taken as ready-made mathematics but can be
created in a process of mathematization in which the students themselves can actively play
different roles. First, they are people concerned with the situations and problems in the
political domain of voting and decision making, with related values, interests and expecta-
tions they may hold themselves and which via social interaction and communication should
go into criteria for acceptability and adequacy of the model, thus representing an important
(the external) aspect of the social dimension of mathematics. Second, they are having the
role of mathematizing mathematicians, i. e. of experts, as which all of them should be
accepted and respected, though at the same being learners, yet somehow sharing this with
searching mathematicians. Especially in this role they have to take into account the con-
cerns related to the problem domain and be in communication with others. But they should
also experience that the more internal mathematical problems of the model construction are
often matters of social interactions and negotiations among mathematicians, which repre-
sents another (the internal) aspect of the social dimension of mathematics (see Steiner
1988).

As an example of the second aspect experienced in class the following phenomenon can
count which happened in almost all relatizations of the project: When trying to define the
concept of dictator within the conceptual framework of the not yet fully elaborated theory,
usually several suggestions are made, among which the following three almost always
appear: (1) a dictator is making all other people powerless, (2) a dictator is by himself a
winning coalition, (3) a dictator belongs to all minimal winning coalitions. Reactions are:
that only one of the definitions can be "true" which causes debates about the nature of
definition: not being true or false, but useful, adequate etc.; that the suggested definitions
may be logically equivalent, which would be an indication of adequacy since different
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experts have different intuitive ideas but are logically saying the same. The first suggestion
can be interpreted as expressing a kind of pitiful attitude towards what a dictator does to
other people, the second one as representing a kind of egoistic position. The students then
get very much involved in trying to prove or disprove logical equivalences, and in doing
so, proof becomes a matter of social interest and communication and is no longer some-
thing the teacher is giving to them as an order. They find that (1) and (2) are indeed
logically equivalent and that (3) is actually saying something different, which they identify
as veto-power. When standardizing the definitions, again arguments are being exchanged
and the preference of (2) is usually based on the agreement about its simplicity in directly
referring to the fundamental concept of winning coalitions, whereas (1) is rejected as
using powerlessness as a more complex derived concept. The equivalence of (1) and (2) is
then turned into a theorem saying that x is a dictator if and only if x makes all other
members powerless. This again is a matter of social acceptance in relation to building up a
collectively owned theory.

Social interactions also play an important role in coping with epistemological obstacles (see
Sierpinska 1989). A profound obstacle is coming up for the students in connection with the
implicit definition of winning coalitions within the axiomatic definition of voting bodies of
the SC-type because of the circularity involved and the contrast to the concrete empirical
meaning given to this concept in normal voting bodies. The broad bases laid in the total
learning context together with intensive social interaction and communication among the
students in which many aspects and views of the problem are expressed, contributes to a
dynamic attitude and a flexible relation to possible applications which is the adequate way
to handle and develop theoretical concepts (see Jahnke 1978, Steiner 1990).

The content of the project does not belong to the obligatory normal school topics and is
not meant to have this status, in particular it is not thought of as learning material to be
spread in bits and pieces over longer periods of time. Its strength and potential lies in the
concentration during a limited project time on a dynamically coherent and surveyable
context which is rich in different kinds of activities, interactions and reflexions and is put
by the students themselves into a dynamic relation to their previous learning experiences in
mathematics and to other mathematics-related contexts they may meet in the future. Becau-
se of this intended biographic role, the project is purposefully placed at grade level 11 or
12.

In this way the project creates a kind of distance to the normal mathematical classroom
which causes reflexions and transfer. The role of definitions, proofs, theorems, problems,
applications etc. is comparatively discussed by the students, sometimes in a spontaneous
way and at a local level: definition, theorems, proofs in geometry, applications of algebra
and calculus etc.

In describing the overall project work at the end in two different ways, the systematic
reorganization of all knowledge gained from an axiomatic point of view on one hand, and
the genetic reconstruction of the developmental processes and events on the other hand, the
students become aware of several styles to talk about and to present mathematics. They are
trying, now at a more global level, to characterize how other parts of school mathematics
have been taught to them and they are wondering why these parts have not been developed
in the same genetic and inductive way as experienced in the project. They want to know
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how mathematics is taught at the university and they begin to make differentiations between
research and learning, between different learning styles, they bring in aspects of time and
time economy etc.

Already during the project it could be observed that most of the participating students
deeply changed their attitude towards mathematics in a positive direction. This particularly
holds for girls, a matter which deserves special attention and further analysis. It has also
been found in later conversation and interaction with students who participated in the
project that they had very much internalized their project experiences and used them as
guiding references for their appreciation of mathematics. Interestingly several of them
declared that becoming mathematics teachers might be the best way to learn more about
and to professionally enjoy unexpected aspects and dimensions of mathematics they had
experienced in the project.

3. Theoretical Concepts, Applications, Social Interactions, Knowledge Development, and
Higher Order Learning

In order to design and execute more specified research in relation to teaching and learning
in a context and setting as has been indicated with respect to the mathematization project, it
seems important to have a sufficiently developed theoretical background. The author sees
substantial and relevant components for this background in socio-historical and epistemolo-
gical studies in mathematics and the empirical sciences (Sneed 1971, Jahnke 1978, Steiner
1989, 1990) on one hand and in the presently very dynamically growing research charac-
terized by terms like "Zone of Proximal Development" (Vygotsky 1978), "Construction
Zone" (Newman et al.), "Learning by Expanding" (Engestrom 1987) on the other hand,
both components being essentially interrelated. The interrelation consists in the analysis of
the mutual interdependence between theoretical concepts, applications, social interactions
and communications, knowledge development, and higher order learning (see also Seeger
1990).

Engestrom (1987) and Newman et al. (1989) are both referring to the so-called "learning
paradox", formulated by Fodor (1980), as a challenge to cognitivists, as follows: "There
literally isn't a thing as the notion of learning a conceptual system richer than the one that
one already has" (p. 149). They both are criticizing Bereiter's (1985) interpretation of the
paradox as basically being a problem to understand how a learner can internalize more
complex cognitive structures located in the culture while not knowing how internalization
actually takes place, which means dismissing Vygotsky's cultural-historical position as a
solution.

Newman et al. (1989) are responding: "Internalization need not be the construction process
which creates the more powerful structures. We are pointing to the social interaction in the
zone of proximal development as the more central locus for constructive activity in the
Vygotskian framework" (p. 68). Engestrom (1987) who is reacting from his concept of
learning by expansion as transcending given contexts, based on Leont'ev's (1978) activity
theory (see also Steiner 1987), linked with Bateson's (1972) complex hierarchy of learning
processes, is also considering the general problem of how the new is generated from the
old as well as Davydov's searching paradox. He points out that "the new is not generated
from the old but from the living movement leading away from the old" (p. 164).
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Jahnke (1978) who is concerned with the problem how justification and development of
knowledge, especially in mathematics, are related, is referring to the paradox of the proof
and the dilemma of the theorist which have a structure similar to that of the learning
paradox and can also be related to the problem of the relation between reflective and
simple abstraction in Piaget's genetic epistemology or the dual-control-problem in artificial
intelligence research (see also Otte 1980). From his profound historical and epistemological
investigations applying Sneed's (1971) clarification of the nature of empirical theories and
theoretical concepts as well as Churchman's (1968) systems approach and philosophy of the
maximal loop, he makes clear that the kernel of the problem lies in the dialectic relation
between sign and signified which turns out not only to be the crucial point in relating
theory and applications from a developmental point of view but also to be deeply connected
with social contexts and communication as indispensable components of understanding the
problem. With respect to the dynamically inseparable connections between justification and
application, Jahnke comes to the conclusion that "justification (evidence) is, so to say,
placed into the future. The more general, more extended, more developed theory is
founding and justifying the less general theory" (pp. 108-109).

Engestram (1987), Newman et al. (1988) and others have designed research methodologies
to study learning in the construction zone and learning by expansion. At the IDM in
Bielefeld research on classroom interactions (Bauersfeld et al. 1988) and on the epistemo-
logy of school mathematics (Steinbring 1984) are now being put into closer relation (see
Seeger 1990). It seems important to do more detailed empirical research based on these
theoretical. and methodological developments particularly in contexts and settings with
respect to existing observations as have been sketched in this paper.
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