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The Impact of 'Meaning' on Students' Ability to Negate Statements

Tony Barnard
King's College London

This paper reports on a study to investigate students' capabilities for handling
logical structures in mathematics, in particular in negating statements
involving quantifiers. Undergraduates, both at early and later stages of a
university course, were asked to negate a variety of statements set in everyday
and mathematical contexts. It was found that, even after two years at
university, one in three students could not negate apparently simple
statements. Comparison of the performances of the two groups showed that the
ways in which they differed reflected characteristics of the parallel transitions
in the nature of the mathematics encountered and in the intellectual
development of the students.

Introduction

Mathematical discourse at university is permeated with structures of the form "Suppose
A is not true. This is the same as saying that B is true". Consideration of equivalent ways
of expressing the falsity of a given statement, such as "for all x > 0, a < x" or "p divides
ab implies p divides a or p divides b", occurs abundantly in both exposition and
construction of mathematical proofs. Thus the ability to negate statements correctly is
fundamental to meaningful mathematical communication at this level. Students who
have difficulty with such structures may willingly accept, learn and reproduce instances
of these in a mathematical argument, but they will be missing the point of such an
argument in that it will have contributed little to their overall understanding of what is
going on in the mathematics.

In an attempt to gain insight into the difficulties students have with 'negations', lists of
statements of the following kinds were drawn up.

1. x satisfies P, for all x in X.
2. x satisfies P, for some x in X.
3. x and y satisfy P.
4. x satisfies P and Q, for all x in X.
5. A implies B.

6. There exists x in X such that S(x,y) is true for all y in Y.
7. Given x in X, there exists y in Y such that S(x,z) is true for all z in Z (the

`limit' definition structure).

These statements were set both in everyday contexts and mathematical contexts, and
students were tested on their ability to negate therh. The students were drawn from two
groups: students in the first term of their first year, and a mixed group of second and
third year students who had completed at least one year of formal mathematics.
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The most notable finding was perhaps the sheer number of wrong answers, even with
what many lecturers would regard as "just common sense". Thus for statements 2, 3 and
4, generally less than half of the first year students tested gave the correct answer. For
statement 6, the number of correct answers was less than 1 in 4. The performance of the
second and third year students was markedly better: generally 2 in 3 correct for each of
statements 2, 3 and 4, and just under half correct for statement 6. However, the
prevalence of such errors among students engaging with the more advanced mathematics
of an undergraduate course was still far from ideal.

Subsequent interviews with students and consideration of the most common incorrect,
answers suggest that among the underlying causes of difficulty in performing negations
are the following:

logical structure,
lexical representation (language, symbols),
contextual influences,
level of abstraction,
degree of complexity.

It will be argued that ability to cope with these difficulties is related to progress in the
transition from a descriptive view of mathematics, grounded in a practical domain in
which objects and meanings of words are the dominant constructs, to one of definition
and deduction, grounded in a theoretical domain in which symbols and words themselves
are predominant. This aspect of mathematical ability is discussed in (Tall, 1994).

The test

Six lecturers in the mathematics department of a UK university were asked to run the test
with their classes in the first term of the academic year. The total numbers of students
involved were 78 from the first year and a further 78 from the second/third years. Before
distributing the papers, the lecturers gave an explanation/reminder of the meaning of the
word 'negation', following a prepared briefing sheet of notes and examples. Each
student was then given a paper containing the following three sets of questions (figures
1, 2, 3).

12
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For each of the following statements, circle the letter beside the statement below it
which is its negation.

1.1 All people living in Chdltenham watch 'Neighbours'.
A. No people living in Cheltenham watch 'Neighbours'.
B. Some people living in Cheltenham watch 'Neighbours'.
C. All people living in Cheltenham don't watch 'Neighbours'.
D. Some people living in Cheltenham don't watch 'Neighbours'.

1.2 Some students stay awake at lunchtime.
A. All students stay awake at lunchtime.
B. Some students fall asleep at lunchtime.
C. No students fall asleep at lunchtime.
D. All students fall asleep at lunchtime.

1.3 Linford Christie and Sally Gunnell can run fast.
A. Linford Christie and Sally Gunnell cannot run fast.
B. Neither Linford Christie nor Sally Gunnell can run fast.
C. Either Linford Christie or Sally Gunnell or both can run fast.

. D. Either Linford Christie or Sally Gunnell or both cannot run fast.

1.4 Long John Silver always has a briefcase and an umbrella.
A. Long John Silver is sometimes either without a briefcase cr without an umbrella or without both.
B. Long John Silver is always either without a briefcase or without an umbrella or without both.
C. Long John Silver is sometimes without a briefcase and without an umbrella.
D. Long John Silver is always without a briefcase and without an umbrella.

1.5 What goes up must come down.
A. What goes down must come up.
B. What goes up must stay up.
C. If something doesn't go up, it needn't come down.
D. If something goes up, it needn't come down.

1.6 There is a station on the London Underground whose name contains no letters of
the word 'MACKEREL'.

A. There is a station on the London Underground whose name contains some letters of the word
'MACKEREL'.

B. There is a station on the London Underground whose name contains all the letters of the word
'MACKEREL'.

C. There is no station on the London Underground whose name contains all the letters of the word
'MACKEREL'.

D. For any station on the London Underground, there is a letter of the word 'MACKEREL' which
is not in the name of the station.

E. For any station on the London Underground, there is a letter of the word 'MACKEREL' which
is also in the name of the station.

1.7 For any lecture room, there is a time of day such that all students able to attend
lectures at that time can fit into the room.

A. There is a lecture room such that, for any time of day, there are students able to attend lectures
at that time who cannot fit into the room.

B. There is a lecture room such that, for any time of day, all students able to attend lectures at that
time can fit into the room.

C. For any lecture room and any time of day, there are students able to attend lectures at that time
with cannot fit into the room.

D. For any lecture room, there is a time of day for which there are students able to attend lectures
at that time who cannot fit into the room.

Figure I : Negating statements in everyday contexts
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For each of the "following statements, circle the letter beside the statement below it
which is its negation.

2.1 For all integers a, a2 0.
A. There does not exist an integer a satisfying a2 2 0.
B. a2 < 0 for all integers a.
C. There exists an integer a such that a2 < 0.
D. There exists an integer a such that a2 2 0.

2.2 There exists a real number x such that log(x) = -1.
A. There exists a real number x such that log(x) x -1.
B. There does not exist a real number x such that log(x)*-1.
C. Log(x) = -1 for all real numbers x.
D. Log(x) * -1 for all real numbers x.

2.3 Sin(x) > 0.1 and cos(y) < 0.9.
A. Sin(x) 5 0.1 and cos(y) < 0.9.
B. Sin(x) 5 0.1 and cos(y) 0.9.
C. Sin(x) 5 0.1 or cos(y) z 0.9.
D. Sin(x) > 0.1 or cos(y) <0.9.

2.4 For all x E X, x2? 1 and x3 < 8.
A. Given x E X, either x2 < 1 or x3 > 8.
B. There exists x e X such that either x2 < 1 or x3 > 8.
C. There exists x E X such that x2 < 1 and x3 > 8.
D. For all x E X, X2 < 1 and x3 > 8.

2.5 If u > 7, then v = 3.
A. If u 5 7, then v *3.
'B. If u> 7, then v*3.
C. 'et > 7' does not imply 'v = 3'.
D. 'a 5. 7' does not imply v = 3'.

2.6 There exists a positive integer m such that m + 5 for all positive integers n.
A. Given any positive integer m, there exists a positive integer n such that m+ n < 5.
B. Given any positive integer m, there exists a positive integer n such that m+ n 2 5.
C. There exist positive integers m and n such that m+ n < 5.
D. There does not exist a positive integer m such that m+ n < 5 for all positive integers n.
E. There exists a positive integer m such that m+ n < 5 for all positive integers n.

2.7 Given a prime number p, there exists an integer x such that pa < x for all positive
integers a.

A. There exists a prime number p such that, for any integer x, there is a positive integer a
satisfying pa <x.

B. There exists a prime number p such that, for any integer x, there is a positive integer a
satisfying pa x.

C. Given a prime number p and an integer x, there exists a positive integer a such that pa
D. Given a rime number there exists an inte er x such that sa ?_x for some ositive inteer a.

Figure 2 : Negating statements in mathematical contexts
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For each of the following statements, write its negation in the space below it.
3.1

3.2

3.3

3.4

3.5

3.6

All people living in Neasden have black hair.
Some TV programmes are good.

Kylie Minogue and the Loch Ness Monster can sing.
Donald Duck always wears glasses and a hat.
Where there's a will, there's a way.
There is a tree in England whose number of leaves is not equal to the number of
words in any book.

3.7 For any textbook, there is a price above which the number of students who can
afford the book is less than the number of copies in the bookshop.

Figure 3 : Formulating the negation of statements

Responses of the students

In each of the boxes in the tables below, the upper italic figure relates to the first year
students and the lower figure relates to the second and third year students.

1 2 3 4 5 6

Section 1
58 46 .44 37 60 24 32

81 76 65 60 68 49 50

Section 2
53 50 53 42 32 18 40

73 65 67 65 50 42 44

Section 3
60 62 35 31 33 24 12

82 79 69 54 55 32 29

Table 1 : Percentage of students giv ng correct response to each section

1.1 1.2 1.3 1.4 1.5. 1.6 1.7 2.1 2.2 2.3 2.4 2.5 2.6 2.7

A
7 10 15 29 8 25 25 18 15 2 10 15 14 4

5 5 6 47 6 11 39 9 13 3 4 8 33 7

B
11 27 26 7 11 16 9 12 17 26 33 29 7 .31
4 10 17 8 8 7 3 10 11 17 51 18 4 34

C
15 4 2 16 12 10 12 41 7 41 12 25 8 15

5 3 3 11 9 9 18 57 2 52 11 39 8 8

D
45 36 34 26 47 6 27 7 39 9 20 9 26 21

63 59 51 10 53 6 6 2 51 4 10 12 13 14

19 /7
38 14

Table 2 : Number of students choos ng each option (N=78)
(correct responses in bold)

BEST COPY AVAILABLE 2 7
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The most common underlying error was that of negating a single part of the statement
which had, for the student, a dominating presence. For the statements set in everyday
contexts, this point of focus was often the section of the main verb. For example, in 1.2,

by far the most common error was to solely convert "stay awake" to "fall asleep".
However, in 2.2, where the section corresponding to "stay awake" was the less tangible
"log(x) = 1", the errors were more evenly distributed between solely converting "log(x)
= 1" to "log(x) 1" and solely converting "There exists" to "There does not exist".
Similarly, in 1.6, 53% of the first year students and 23% of the second year students
solely converted "contains no letters" to either "contains some letters" or "contains all
letters", whereas in 2.6 the logically corresponding errors, C and E,- were exceeded in
popularity by the error of choosing D, the statement which converted "There exists" to
"There does not exist" as well as "m + n 5" to "m + n < 5". This behaviour was also
widespread in section 3 where the students had to construct their own statement. For di:,
negation of 3.6, 21% of the first year students changed only "not equal" to "equal", and
even a very high proportion of the 'correct' answers consisted merely of the replacement
of "a" by "no" after "There is".

Where students operated on one component of the statement with no relation to the
others, and this was not a negation of the main verb, it was usually a transposition of two
quantifiers. On being asked why they were focussing on just one part of the statement,
typical student responses were "I was going for something a bit different", "I just want to
make it not true ... minimum statement to make it false". This is the kind of behaviour
that might be expected from students operating in the unifocal (Case, 1985), or
unistructural (Biggs and Collis, 1982), mode of a developmental stage.

A possible explanation could be related to the opposing needs for coming to a
conclusion, and for conclusions to be consistent. Students operating at a higher level of
sophistication, for whom consistency was a factor of relative concern, were less likely to
jump to hasty conclusions.As might be expected, the students' difficulties were greater
with those statements which were more complex logically, such as statements 6 and 7
which were longer and had more than one quantifier. With a short term working memory
of limited capacity, successful operation with these statements may require a chunking
strategy and/or use of symbolic notation to mentally compress the components. As one
student put it, "I think there was too much in that one"! However there were also
complexities not related to logical structure. For example, "stay awake at lunchtime" in
1.2 was more complex linguistically than "are good" in 3.2. This variation was likely to
be less significant to students more proficient in abstract reasoning, and could partially
explain the different relative performances of the two groups at 1.2 and 3.2. For the first
year students the percentage of correct answers for 3.2 was 35% greater than that for 1.2,
while for the second and third year students the corresponding figure was only 4%.

16
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Contextual influences

It will be noticed that the increases in success rates of the second and third year students
over the first year students for the first four statements of each section were greater for
sections 1 and 3, where the statements were set in everyday contexts, than they were for
section 2, where they were set in mathematical contexts. (The increase for 3.2, which
was slightly less than that for 2.2, may be related to the remarks of the previous
paragraph.)

A possible explanation for these phenomena may lie in the role played by truth value.
Students with less facility in abstract reasoning are generally less able to throw off the
`real world' true/false dimension when contemplating a given statement. For example,
they are more comfortable writing down a statement they know to be true than one
which they know to be false. A student comment on 1.5 and 3.5 was "I found them hard
because they were phrases that you knew". For such students, more grounded in the
practical than in the theoretical domain, the truth or falsity of a statement was a matter of
relative importance and probably had a greater influence on their perfomances at
negating statements than it did for students with a greater facility in abstract reasoning.
Furthermore, this differential effect was likely to be greater with statements set in
concrete everyday contexts than with more abstract statements where, for students whose
abstract thought was more fragile, the true/false dimension had less immediacy.

Relative difficulties with statements set in everyday contexts and those set in
mathematical contexts with concise symbols were also reflected in the following
contrasting student remarks. While discussing her difficulty with 2.7, one student said,
"It is harder with numbers than with the worded sentences because you've got the
mathematical language as well, that you have to be thinking of. At the same time you
have to think what pa < x actually is, rather.than in the common sense case." On the
other hand a second student, whose best performance was on sheet 2, said, "(There was)
less to keep in mind".

There is one final statistic which, though not surprising, does have its merits. Five
lecturers were also given the 21 statements. While the percentage of students who gave
correct answers in all 21 cases was 1%, the percentage of lecturers who achieved this
was 100% !

Conclusion

Although the statements were chosen to have the same logical structure from section to
section, there was no significant correlation of logical structure in the students'
responses. The error patterns that did emerge arose rather from factors such as (a)
complexity, (b) single, or unrelated multiple, operations, and (c) links with meaning via
doniin'int phrases and truth value. For students at an early stage of development in
detached theoretical thinking, the various components of a statement were likely to have
attached weightings of importance, or presence, derived from a network of associations
and meanings in their base of experience. They were less able to shake off logically
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irrelevant associations than students who had progressed further in the transition to the
stage where it is the weightless words themselves which are the dominant feature.
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A Study on the Secondary Teaching System
about the Concept of Limit

Lorena Espinoza and Carmen Azcarate

Mathematics Education Department
Universidad AutOnoma de Barcelona, Spain

The mathematical knowledge of 'limit' and the transformations it undergoes in order to be
taught are studied in this paper; also, the mathematical activities performed with limits and
the mathematical models used around this concept are described. The results obtained in this
phase make an analytical instrument to allow us to approach in better conditions the teachers'
knowledges and teaching methodologies, so that some didactic phenomena which are present in
secondary teaching and learning of limits can be identified, explained and even predicted.

1 Introduction
The present report accounts for the results of the first part of a research aiming to study the
mathematical secondary teaching system for the concept of limit.

Most researches undertaken in mathematics teaching related to this concept have focused on
the study of the students' conceptions and on the epistemological problems linked to its learning
process. Especially remarkable in this area are the works by B. Cornu, 1985 and A. Sierpinska,
1987, [5],[6],[7],[8] 414],[19],[20],[21],[22],[23]. Our own research has been developed under a
systemic standpoint and out of the three main components of the complete teaching system,
i.e., knowledges, teacher and pupil [13], it mainly focuses on "the mathematical knowledge of
'limit' itself' and on "the teacher".

This work follows a research line which takes mathematics education as "the science of the
specific conditions for conveying those mathematical knowledges which are useful for human
institutions to operate" (Brousseau, 1993). In this view, it is concerned with the study of
mathematical knowledge involved and with the transformations it undergoes in order to be
taught, as well as with the mechanisms and operations employed for the mentioned conveying
[2], [4]. Here is where the variable Teacher assumes a remarkable importance since it is her/him
who will, in the end, transmit to the pupil the decisions taken towards a teaching goal by the
institution [4].

2 The Conceptual Framework
We take as a starting point the fact that in order to understand and interpret how the sys-
tem of mathematical education works, how disfunctions are generated and developed within
it, and also how to detect some didactic phenomena, it is first necessary to study the mathe-
matical knowledge actually taught by the teaching systems [6]. To this purpose, the specific
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mathematical activity carried out by the didactic systems has to be analysed: This implies
selecting an epistemological model for the mentioned activity [15]. In our hereby account, we
use the anthropological model of the mathematical activity proposed by Chevallard [11], or
more generally, of the institutionalised mathematical practices, the one which considers them

as a human activity of studying the domain of mathematical problems, putting forth an
interrelation between creation and evolution of the problems' domains, the building of mathe-
matics study techniques and the recursive development of the associated theories. Furthermore,
we use some concepts of the theory of didactic transposition [9], of the relationship with knowl-
edge [10] and of the didactic momentums [13], as analytical tools, as developed by the same
author.

The kernel theory which supports this standpoint considers that mathematics actually
taught at school is different from the one built up or used by the specialists; this late en-
during a series of transformations and adaptations in order to be taught [9], [16]. The distance
between an object of mathematical knowledge and its "correspondent" teaching object is often
very large and, even some times surprising. Without the analysis of the mathematical knowl-
edge actually taught and not having in hand good and explicit epistemologicalmodels which
would allow this analysis, it comes to be very difficult to visualise any phenomena, and any
didactic phenomena, in particular [1], [4], [15].

3 Design of the Study Program for Research
During the phase of the work we are presenting here, the strategy aimed at analysing the
mathematical activity developed about limits in secondary education textbooks, as related to
the concept of limit, targeting at:

1. Different contexts in which the concept occurs

2. Description and classification of the studied and proposed techniques

3. Correspondence between the theoretical tools appearing in textbooks and the actually
performed activities .

4. 'Highlighting those activities not actually developed which could nonetheless be developed
using the proposed theoretical tools

5. Elicitation of those mathematical models implicit within the activity performed with
limits

6. Identification of some didactic phenomena actually present in this development.

Finally, using the results derived from this analysis, formulating some conclusions and expla-
nations about the spotted didactic phenomena, which will serve as hypothesis for the research
on course.

4 Study Methodology
Three official Spanish textbooks are selected in order to be analysed by means of the study
program proposed by Dr. J. Case On [16], based on some theories developed under the same
didactic paradigms, consequently matching the model of the mathematics activity sustained in
this study.
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5 --Main Study Results-
From the analysis of the selected textbooks we have developed the following sections:

1. Kinds of Problems: Description of the techniques employed and delimitation of the Fields
of Problems

Three grand classes of types of problems were essentially found within the global activity:

(a) Algebraic handling of limits
This is the first and Most important, in view of the amount of exercises covered
within this field of problems and of the time dedicated to them. The technique
consists of: Tl: producing a result by means of consecutive algebraic handling of
a given expression and by applying different theorems about limits. The algebraic
handling bears more importance or interest than achieving a result, not only for
grading purposes, but basically because should the expression be not "adequately"
handled the result would be almost impossible to draw.

(b) Graphical representation of Functions. These functions are in general continuous
except in a finite set of discontinuities (in most cases, a maximum of 3), and they
have an algebraic analytical expression. The technique consists of: T2: Algebraic
handling of a functional expression (almost always algebraic) in order to locate the
points of discontinuity. Then, calculating the limit on those points. Last, drawing a
graphical representation of the function.

(c) Study of "slightly different" Functions. These functions are often absolute values,
integer parts and functions which are defined in slices. The technique consists of:
T3: Reducing those expressions to handling able algebraic expressions and then
calculating the limits.

2. What id not done but could be done with limits? Some unrest arises to see how the
theoretical developments explicitly shown by textbooks would be good enough to perform
various activities which are not actually performed, although, by some mysterious reason,
they are highly valued as far as learning evaluation is concerned, bath in secondary
education system and in cognitive education researches:

(a) Related to Graphics: There is a lack of elementary reading technique to read a graph
of which the analytic expression of the function is not known.

(b) Related to Discrete condition and Successions: Being limits a powerful tool for the
purpose, no relationship is built up between continuous and discrete. No work is
done with the succession of function images, which would allow to link succession
and function, through limits, even though the mathematical model which eases this
relationship is elicited during the theoretical discourse.

(c) Related to Numerals, Real numbers: No work is done with the conception of real
numbers as limits of successions, even though the body of real numbers is char-
acterised as ordered and complete (density property). No work is done with the
idea that 3.999.:. equals 4 and with the idea that three points following a numeral
actually represents a limit.

3. Some Didactic Phenomena.
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During the didactic analysis some quite surprising, and even contradictory, facts and
situations arose. Those situations seem to

indicate the presence of some phenomena, since they appear under the same aspect in all
three textbooks:

(a) While dealing with limits, various theoretical models about this concept are explicitly
presented which will never be required or used later on, while developing the actual
mathematical activity proposed to the students. Those models appear to be purely
ornamental, only meant to emphasise the fact that the matter been studied and
worked about limits is complex, abstract, and consequently, important.

Along with the theoretical development various activities could be performed, which
would enhance the usefulness and meaning of this mathematical tool, and it would
also help to justify introducing those rigorisms in secondary school; nevertheless,
they are nor performed.

The actually performed mathematical activity is very clear and simple. It lacks any
complexity: the exercises do not contain any e, 6, notation nor any deep abstractions;
problems deal basically with calculation of limits solvable by means of techniques
which are clearly explained during the theoretical discourse.

(d) The techniques being taught and being used for the mathematical activity bear
such a severe rigidity that it almost blocks any work linking one with the other, or
modifying them to derive one from the other. They are so much specific that the
study activity about fields of problems comes to be atomised and restricted to just
a few fields, leading to the loss of an integrated sight [15], [13].

(e) There is only one mathematical environment where the Concept of limit is developed:
the study of functions. No relation with numerals is shown, as opposite with what
was done up to the seventies [18]. The concept is not presented as a suitable tool
to read a function graph of which the analytical expression is unknown. Most of
the functions are of algebraic nature, except some transcendent and trigonometrical
ones.

(b)

(c)

(f) Formalising the concept of limit in mathematics emerges as a need in order to provide
real numbers with continuity [17]. It moulds a tool associated with continuum, with
convergence. By contrast, textbooks systematically portray it as linked with the
concept of discontinuity.

4. Some possible explanations for those phenomena.

The premise implied states there is an implicit model of function in the secondary teaching
system which forces the limits to be considered as sheer algebraic computing, and con-
sequently, free of any difficulty coming from its analysis, that is: Function iisynonymi,i,
Algebraic Expression Any intricacy in its study derives from the algebraic handling itself..
This is the reason why a function is different from a graph and also different from a real
situation. Also, there is the other implicit model which deals with limits as synonyms of
function limits. In this case, limits will be limits of algebraic expressions and they are
approached as solving an algebraic problem.

As a result, the following facts are drawn:
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(a) The relationship between function and graph is of consequence nature, not by defi-
nition. That is: given a function, we can elicit its graph, but a given graph does not
represent nor has any associated functional feature.

(b) There are no functions without algebraic analytical expressions, consequently, since
numbers are not functions, no such things as 3.999... = 4 are considered.

(c) The students consider the following expressions as analytically different:

1 x #1 and x + 1, x #1
x 1

(d) On building a graph, the students engage themselves in calculations and building of
tables; they do not use discontinuity points nor asymptotes, in order to create the
graph. These are studied as something unrelated to the drawing technique.

(e) Almost absolute lack of any activity related to the continuity of functions (just one
exercise appears among the recapitulation problems).

5. Some epistemologic and didactic obstacles

(a) In order to formulate the concept of limit the concept of real number is required,
but in order to define the real number the concept of limit is required as well [17].
Limit (convergence) refers to items which do not yet exist since they have not been
defined.

(b) From an epistemologic standpoint the idea of limit cannot be conceived as unlinked
from the idea of real number; both ideas were formalised almost simultaneously.
Nevertheless, in secondary teaching system numerals can only be scarcely approached
(limits of numeric successions) since it would mean to approach real numbers, which
are still a mysterious matter in secondary teaching [3], [8), [14], [19], [20], [23].

(c) From a mathematical standpoint, limit of a succession is a simpler thing that limit
of a function, since it is a discrete item. From an education standpoint, limit of a
function is simpler since it is easier to be elicited.

6 Some Final Conclusions and Remarks
1. The techniques being taught bear a severe rigidity in solving problems about limits. The
fields of problems being studied are atomised and almost completely mutually unlinked, making
it difficult to engage into a deep study of those problems [15].
2. There is a uniformity in both theoretical and practical activities as far as the concept of
limit is concerned.
3. There is a conflict between: what the secondary teaching system states that should be
taught and learned in mathematics, as can be seen in the theoretical discourse of textbooks,
and what is actually done, as can be detected through the activities submitted by those same
textbooks to the students.

As a possible explanation to these phenomena, the suggestion is put forth that there is
a hidden mathematical model of limit not elicited because it is considered as very limited
and scarcely analytical, although it is the actual concept being used and also the one which
characterises the kind of activities developed in the classrooms: that is: limit as synonym of
function limit, and even more, function as synonym of algebraic expression. This way, what is
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really studied is the limit taken as an operator assigning a number to each function. Nothing,
aside from algebraic expressions is being considered as study object.

Finally, one of the important contributions to research in mathematics teaching being
brought up by this section of the study, is the' elicitation of how knowledge to be taught con-
stitutes a new construction being produced under different paradigms and interests. Models of
mathematical knowledge do not match with models of taught knowledge, and consequently it
embraces a new epistemology, an epistemology characteristic of mathematics education. There-
fore, although there exists an interdependence between epistemologic and didactic problems,
the weight of mathematicians in designing a teaching participation must be conditioned and
supervised by teachers.
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This paper reports the effects of teaching mathematical analysis to students
who are to be teachers of elementary school children, yet who take analysis as
the final summit of their mathematical studies at university. The students
concerned divided into three groups. A tiny minority understood the
formalities of the subject and the need for logical proof, the majority attempted
to learn definitions by rote but in the main failed to understand the underlying
concepts, and the remainder used inappropriate concept images from earlier
mathematics. This paper questions the rationale of teaching formal analysis at
degree level for those who are not specialist mathematicians.

Introduction
This paper considers the almost insignificant effect that a course in analysis had in
changing the quality of mathematical thinking of a group of students who, training to be
elementary and secondary school teachers, follow the course as a high point of their
university degree programme. Evidence from written assessment and individual
interview shows that only a tiny minority of the students are moving in a direction that
would eventually enable them to utilise the formal aspects of mathematics. The majority
did not recognise the need for formality. It was a surprise to find some students, even at
this level, attempting to generalise from the particular; despite their extensive work with
real numbers, their concept image had not expand to take in the notion of the concept
definition. Knowing the concept definition by heart did not guarantee that they
understood the concept (Vinner, 1992). Their experience prior to meeting the formal
definitions not only affected the way in which they formed mental representations of the
concepts (Tall, 1992), but frequently became manifest through their efforts to resolve
problems with an inappropriately "evoked concept image" (Tall & Vinner, 1981).

A high proportion of pre-university mathematics teaching tends to emphasise calculation
and manipulation of symbols to get "answers". In such an atmosphere the acquisition of
the concepts has an intuitive basis which is founded upon experience (Tall, 1992). Such
a paradigm contrasts starkly with that utilised to develop advanced levels of
mathematical thinking; formal definitions give rise to concepts whose properties are
reconstructed through logical deductions.

The study of analysis may be seen as an attempt to introduce the student to the formality
that is the hallmark of the working mathematician; the general thought patterns of the
students are encouraged to change from a mode which relies extensively on the
formation of concepts through the encapsulation of process as concept (Gray & Tall,
1994), to a mode which is structured within the realms of concept definition. However,
the transition from one form of thinking to the other is a difficult one. Though
mathematicians use definitions and formal language in a meaningful way to compress
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mathematical arguments, the learners method of thinking about mathematical concepts
can depend on more than the form of words used in a definition.

Vinner (1992) has outlined students possible responses to cognitive tasks associatedwith
the implied use of definition: the desirable one in which the student is not supposed to
formulate a solution before consulting the concept definition, and a more usual model
vihere the respondent is unaware of the need to consult the formal definition but places
emphasis on a concept image. In the instances considered in this paper we show there
was little very little evidence of the former but a considerable emphasis on the latter. But
perhaps it is impossible to avoid the mathematical tensions that arise between the
mathematcs tutors' desire to introduce students to the rigour of mathematical proof and
the student perceptions that may be dominated by other considerations:

"When I got the piece of work back my main concern was with what I had got. Unfortunately

being so preoccupied with other things l'am doing....I am fully aware of the fact thatthe things I

did last year and even last term are going to be out of my head unless I think about them again.

What I said to you earlier about relating everything, well it just goes against that philosophy...

basically I have a problem of relating..." (Third year undergraduate student)

The context

At the end of a first course in Analysis, 20 students, all following a four year course
leading to a teaching degree with mathematics as their main 'subject, were given written
tasks that required a demonstration of their understanding of the use of definitions
introduced during the course. Though there were three items within the package of
assessed work we will consider student responses to the first, a problem which focused

on the their understanding of real functions and the definitions associated with
differentiability and continuity. As a result of the analysis of the students efforts seven
students were invited to take part in mord detailed individual interviews.

This first item invited students to:

Explain why the function
x2 x rational

f(x)= is discontinuous for all x 0,
0 x irrational

The students written responses showed that the majority of them tried to avoid as much
as possible the use of formal language; they worked mainly with an image and/or tried to
use a dynamic or procedural version of the definition. In their responses it was possible
to identify the coexistence of these characteristics with older images that had remained
unchanged by the new theory. In other instances it was possible to identify "incorrect"
images constructed on a misunderstanding of the theory.

Image using
Though all of the students had been taught the concept definition, only one student used
it to solve the problem. By far the greater majority of students provided evidence of
attempts to reconstruct a proof through a concept image, without reference to the concept
definition; in some cases with verbal reconstruction (Figure 1):
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Figure 1: Verbal reconstruction of the proof for continuity

One attempted to be more explicit about the image (Figure 2):
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Figure 2: An evoked concept image of continuity

Though this student was interviewed later, no further insight into his image was
forthcoming. However, some was gained from the interview with another student. Asked
to draw, pictures of functions that could not be differentiated this student drew the graphs
shown in Figures 3 and 4.

Figure 3. Student image of a non-
differentiable and discontinuous function

28

As she drew Figure 3 the student commented:

"I still think if you could differentiate at a point
[pointing to a cross]... if you joined those together
[joining up the crosses] like that you could still
find the gradient at a certain point....you can have
the gradient between two of those points, that
would be the gradient if it was a straight line."
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Figure 4. Student image of a non-
differentiable and discontinuous function "I can't remember. It wasn't exactly that [Figure

3] it was similar. It had lots of little bits there [in
the calculator] and then got wider."

Three isues would appear to arise from the students ,efforts to compensate for their
inability to providere the appropriate concept definition:

The image associated with the "linked points" of a graph prevents any
formal association between the concept definition and an appropriately
formed concept image.

Such an image may be reinforced by misconceptions that arise from an
automatic use of graphic calculators and computer programs; initially
students may not associate the relationship between the graph, the defined
function and the associated procedure (see also Hunter, Monaghan &
Roper, 1992).

Students learn images and intuitive ideas by rote; some seem not to worry
about basic foundations upon which to relate knowledge meaningfully.

Reconstructing the definition

As she drew the second graph the student was
asked if it was possible to join the points:'

"No... because I've seen one similar to that
[Figure 3] on a graphical calculator, and I've
seen that one as well [Figure 4]"

The student was asked if she could provide an
example of the formula for the function she had
seen drawn in the calculator, but she replied:

The images some of the students constructed differed significantly from the ideals that
mathematicians' would wish to be constructed from the definition. The statement
"Between two rationals there exists an irrational; between two irrationals there exists an
irrational" was translated by some students to mean:

"since there is always an interval around each rational p/q where x is an irrational..."

"there is always an interval around some rational x where x is irrational and,."

Such representations provide an example of student's imprecision in the use of
mathematical language and their difficulty in dealing with quantifiers which may arise
from interpreting theorems in such a way.

Helped by a "redefined" model:
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one student simplified his arguments to prove that the function given in the first question
is continuous at x=0. This student could conclude:
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During the interview this was placed into a context by the student:

"We had worked out in class that between any two rationals you always find an irrational,
between any two irrationals you'll always find a rational, so from that I deduced that if you took
two rationals you'll always be able to find an irrational in between, so I put down on my
assignment that it was alternating between rationals and irrationals, which is wrong I
think...Why do I think it is wrong? To be absolutely honest with you I haven't really looked at it
properly to work it out which I know I should, but all I remember is thinking that I was right
when I did the question."

Such a student would require some considerable time to synchronise his model with the
proposed theoretical model. These students will not have this time.

The individual interviews confirmed the evidence received from assessment. Each
interview started with a series of common questions to establish students understanding
of the formalities and central concepts arising from the analysis course. The students
selected for interview (N=7) were drawn on one hand from those whose written work
had shown evidence of the interplay between personal description and a concept image
and those who, on the other, displayed the inappropriate use of a concept image.

Space precludes presentation of the "formal" questions but the following synthesis will
allude to them and highlight the most important issues that arose from the interviews.

None of the students gave the formal definition of continuity and neither
could they state how to calculate correctly "the derivative off at a point in
the domain D where f:D -4 IR.".

Since the student's examples of differentiable and non differentiable
functions were the same as those given for continuous and discontinuous
functions, it is hypothesised that their concept images of these notions
were the same (Vinner & Tall, 1981). Their confusion over these two ideas
could be seen even when they attempted to provide a formal definition:

" A function is continuous if it can be differentiated at every point within a range"
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"A continuous [function], you can differentiate that if you have two points on it, it
is continuous between the two points then you can differentiate that"

Whether or not a function could be defined at a point determined whether
or not it was continuous for some students

"...where you pick two points and a point between can be defined as well. You've got
a curve which continues because whichever point you pick there's always another
point on the line, there's no gaps in the curve."

"Continuity is every single point has another value"

Some others had a confused image that they could not synthesise in words:

"I don't know the definition but I know that it's where all the points if you drew them in a graph
all points well they are not up and down all over the place".

1. You've got a basic line
like that

2.... with the things
going up and down

3....and at some point the
line reaches there and breaks

it continues from
somewhere else in a
.fertical plane but not the
horizontal so it stops there

\._\. 5....and continues
from there....

%Unable to write the
definition of continuity
one student indicated
that the images of
continuous function she
possessed were from
graphical work (Fig. 5):

"I can vaguely describe
what a continuous
function is on a graph".

Figure 5: A students evoked concep image of a continuous function

This student's attempt to describe such a function with her graph. were almost
indecipherable. However, she did indicate that

"I am just remembering a few things but it is not coherent at all".

Discussion
It seems that a great problem in dealing with mathematics lies in the fact that the theory
was constructed upon aims that students do not achieve. Partially, this is because the
composite theory is not made explicit but hidden behind the formal language and
apparently clear hierarchies which mathematicians use to present the subject matter.
Students have difficulty linking the language and the sequential steps of the hierarchies
to form an overall theory encompassed within an understanding of the reasons for its
formation. Many, destined to acquire definitions by rote learning, attempt to support
these through intuitive ideas and the reproduction of procedural aspects of the theory.
Even though they may be given intuitive experiences to support the formal aspects,
being unable to understand the relationship, they evoke previously established concept
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images which are not good enough to build upon. They acquire definitions with no
supporting content; they evoke images from within the school mathematics curriculum.
Additional evidence for such an hypothesis could be found in the students' efforts to
classify numbers as rational or irrational. One student who had no understanding of the
difference and who made little effort to obtain, any, stated that:

"I always look these up when I need to know what they are. I've got a list of all the different
symbols and what things mean and I usually refer to that when I need to know, but it hasn't
stuck yet."

Another, though aware of the definition, preferred to use a concept image when
analysing 0.9:

"If you rounded that up it would be a rational number."

His explanation of this comment indicated that he did not understand what one means:

"I don't know, it's just like .999... is too close to I but I don't know whether that makes any
difference to a rational or an irrational number being so tiny. I'm just guessing."

A third had difficulty classifying zero as rational or irrational but even though he
attempted to work- with the formal definition he failed because the latter was
misunderstood.

"...zero isn't it ? I don't know...Maybe it's an irrational. I'm not really sure whether you can have
division by zero....Zero divided by zero, normally you can't have zero on the bottom of a
division line because it's undefined, so therefore it can't be defined as p over q so it must be
irrational."

This evidence of students rote learning, both of the definition and the concept image,
must be placed alongside additional evidence which illustrates that students knowledge
of mathematical concepts may take on a variety of identities (Duffin & Simpson, 1993).
We suggest that though such variety may be strongly associated with students
conception of real numbers, the real numbers may still not be natural in the sense used
by Duffin & Simpson even for students at this level.

Conclusion
This paper presents some evidence that arises from the mismatch that can occur when
students who are not candidates for advanced mathematics are faced with the rigours of
advanced mathematical thinking. The vignettes serve to support the evidence provided
by Vinner (1992) but we would wish to look more closely at the longer term prognosis
for the mathematical development of the students considered. Although only one student
provided evidence of a reasonable understanding of the place of concept definition in
analysis, all of the students described within this paper achieved at least pass grades in
their assessed worklargely through a kindly interpretation of the marks.

From the evidence of the assessment and the individual interviews the students may be
seen to fall into one of three groups:
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A very small group (N=2) which seemed to be moving towards a formal
understanding of the subject matter using the formal definitions
meaningfully or recognising the need for formal language and logical proof.

A second, much larger group, (N=10) who, though they evoked the use of a
concept image to support personal description, did not effectively use formal
definitions. The majority of these students revealed that they had initial
difficulties interpreting problems in the context of the theory. Such
difficulties could be manifest through the limited considerations they gave to
crucial aspects of the problems, for example, considering rational cases but
not irrational ones, or arguments augmented with superfluousin the sense
that they provided more than the necessaryrepetitive considerations.

A third group of students (N=8) used inappropriate concepts images formed
from earlier mathematical conceptions which remained largely unchanged as
a result of the course in analysis. Such students attempted to establish a
formal result by generalising from specific cases or they displayed an
inability to link procedural and conceptual images of function and graphical
representation.

The laudable desire to lead these students towards the formality of mathematics was
thwarted for two reasons. Not only do they not appear to be ready to start the course
and thus the assumptions underlying the move to formality were not metbut, more
importantly, they will have no opportunity to consolidate their knowledge to the point
where concept definition and concept image have appropriate associations. When faced
with formal aspects of a theory which they do not construct for themselves, students can
ignore not only its convenience but also the arbitrary and respective reasons for each
theoretical construction and each definition; important links can be missed and such
deficiency will give way to a collection of fragments which bear little relationship to
each other.
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REASONS TO BE FORMAL:
contextualising formal notation in a spreadsheet environment

Janet Ain ley

Mathematics Education Research Centre
Institute of Education, University of Warwick

This paper addresses the early stages of children's introduction to the use of variables in
formal algebraic notation. We conjecture that some of the difficulties encountered by
children in this area may be accentuated by their lack of appreciation of the purpose or
power of formal notation. A teaching approach is described which aims to situate the use of
formal notation in meaningful contexts. Case study evidence from children working with
this approach, using graphical feedback in problem solutions, is used to suggest links to
other areas of cognitive research, and to refine questions for _future study.

Background
In a recent survey of the learning and teaching of school algebra, Kieran (1992) cites a number of

research findings which indicate the relative success of computer-based environments in

developing children's understanding of variable in the early stages of learning algebra. Kieran

attributes this success largely to the procedural nature of the programming involved. The use of

variables in Logo is mentioned particularly as being accessible because it lends itself to procedural

interpretations. Kieran also comments on the fact that although there has been a great deal of

research into children's learning of algebra, there has been little research into the teaching of

algebra or the content and presentation of what is taught. This paper reports on research which

involves an innovative approach to the introduction of the use of variables to primary school

children which may suggest an additional explanation for the relative success of children working

in computer-based environments. We conjecture that the lack of any sense of purpose for the use

of formal algebraic notation in traditional approaches to beginning school algebra may contribute to

children's difficulties in accepting formal notation. Activities based around working with a

computer often involve pupils in using variables, for example within Logo or BASIC

programming, in order to achieve particular effects, so that the algebraic notation is a means, rather

than an end in itself.

Approaches to contextualising algebraic notation
The idea of contextualising formal notation is not, in itself, a new one. Word problems offer a way

of both giving meaning to algebraic expressions, and linking work in algebra to children's

experiences of arithmetic problems. However there is considerable evidence that representing word

problems as formal equations presents major difficulties for pupils. (Kieran (1992)). Generally

such word problems have a single solution, which may be found through a number of different

approaches. Describing the problem situation in an algebraic form may be high on the teacher's

agenda, but not on that of the pupils.
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'Investigations' offer another approach to introducing formal algebraic notation in meaningful

contexts. Typically in such an activity the child might be required to explore a number pattern

arising from a practical situation, and then asked for the hundredth number in the pattern, or a

method for finding any term in the sequence. The aim is to encourage the child to generalise the

pattern in the form of an algebraic expression. This approach has been characterised by Hewitt

(1992) as 'train spotting', since the learner's attention is generally focused on pattern spotting

rather than on the situation from which the investigation arose. From the child's point of view, it is

difficult to see any purpose in formalising the pattern in algebraic terms: a verbal description of the

pattern, or a generic method for calculating values, may seem just as efficient for giving the

solutions required.

An alternative approach to formalising
One focus of our research in the Primary Laptop Project has been children's use of spreadsheets as

a mathematical tool. Early studies indicate that the children's ability to interpret and understand

graphs has been enhanced through working in a spreadsheet environment (Ain ley (1994)). In order

to exploit this potential, we have developed a teaching approach (illustrated crudely in Figure 1)

which we have called active graphing (Ain ley and Pratt (1994a)). Children are encouraged to enter

data they collect in experimental activities directly into a spreadsheet, and graph this data regularly

during the course of the experiment,

thus enabling the graph to be used as

an analytical tool. This means that the

physical experiment, the tabulated

data and the graph are brought into

close proximity. Research evidence

from data-logging projects (e.g.

Mokross and Tinker (1987)) supports

our conjecture that this proximity is

important in supporting children's

understanding of the conventions of graphing, and their ability to interpret complex graphical

representations by relating them to the activities from which they arise (Pratt (1994)).

collect
initial data

make a--0 study graph and make
graph or refine conjectures---f--. .,

[ collect data 1.4sidecide what further
idata is needed

fi
[ draw conclusions

when you are ready!

Figure 1: The active graphing process

Since the spreadsheet is an environment in which an algebra-like notation is used, we were

interested to explore whether an active graphing approach could be used to introduce children to the

power of generalising through formal algebraic notation. In order to do this, we selected activities

which lent themselves to this approach, having a practical element so that children could begin by

collecting data, but in which the underlying mathematical structure was accessible to the children.

Two other key features of the activities were that the outcome was not obvious, so that there was

some point in using the active graphing approach, and that the practical activity was rather tedious,

so that children would be encouraged to look for short cuts.
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With these criteria in mind we selected a

number of optimising activities. We have

reported elsewhere (Ain ley and Pratt

(1994b)) on the use of one of these as a

whole class activity which gave us some

insights into situations which prompted the

need for formal notation. Here we focus

on one pair of children working on a

second activity, known as The Sheep Pen,

shown in Figure 2.

A farmer has 30m of flexible fencing.
She wants to make a rectangular pen for
her sheep against a stone wall.

What length and width should she make it
to enclose the largest area?

What if she had a different length?

Figure 2: The Sheep Pen Activity

Methodology
In this stage of the Primary Laptop Project our research is essentially exploratory, rather than

addressing clearly focused research questions. We are interested in exploring the range of

mathematical activities that are possible for children who have continuous and immediate access to

computers, and identifying areas for more focused research in the future.

The case study material used in this paper was collected in a research setting removed from the

classroom. Eight pairs of children (chosen by the researchers) worked on the activity with one of

the researchers acting as 'teacher', introducing the activity, responding to the children's questions

and occasionally intervening. The sessions were recorded on video tape, with the second researcher
also taking field notes.

Jordan and Stellios were both aged eleven and in their final year at primary school. They were

described by their class teacher as being of average ability, but neither of them were particularly

highly motivated in mathematics. They had not been introduced to formal algebraic notation; but

they were familiar with using a spreadsheet and had experience of an active graphing approach in
the context of experimental work.

Working through the active graphing process
Like most of the pairs we observed, Jordan and Ste llios began by working practically on the

activity, using an art straw cut to 30 cm long to model the fencing. They bent the straw, measured

the length and width of the pen, and set up columns on the spreadsheet to record their results. They

knew that they could use and replicate a formula to calculate the area of the pen, and since the focus

of the activity was not on understanding the calculation of area, we helped them where necessary to
get this formula working correctly.

When they had collected several pieces of data, the researcher intervened to encourage them to look

at a graph, shown in Figure 3. Jordan was able to discuss the meaning of the graph but at this stage,
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his attention was on particular points, rather than on the relationship between length and area.

However, it is clear from the boys' responses to further questions that they were aware of the

overall shape and pattern of the graph.

STEL If I put eight and a half, where would that be?
How would we write that?

RES: Where do you think 8.5 would appear as a
cross?

Stellios points between 8 and 9 for the width, and at
about 100 for area. They put in 8.5 as the width, and
Jordan bends the straw and measures the length as 14.
The area appears on the spreadsheet.
STEL Highest! That's the best so far!
Jordan makes a chart again to check the position.
The length is actually measured incorrectly, so this
point looks higher than 8 or 9.
JOR: There it is (pointing to the graph)
STE (pointing lower) I thought it would come

around there.

A

R

E

A

120 -
'110 X x

X
100 X X

90
80
70 -X
60
50
40
30 yC
20

2 4 6 8 10
WIDTH

Figure 3: Graph of measured data

The boys were confident to make predictions based on the graph, but they had not yet seen the

shape of the graph clearly enough to realise that some of their measured data was inaccurate. For

some other pairs, irregularities in the graph. provided feedback which stimulated them to question

their results, and either re-measure, or change to calculating the length of the sheep pen for a given

width. For Jordan and Stellios, looking at extreme values was the stimulus to use calculate data

rather than measuring. This was a pattern which we came to recognise in other pairs. It is quite

awkward to bend the straw accurately for such a small width, and also the small numbers involved

make the calculation relatively simple.

STE Try a width of point 5.
JOR: What's the length?
STE Oh er 19, 29
RES: How did you work that one out Stellios, because you didn't measure that one did you?
STEL If the ruler's 30, half and half is one and the rest is 20, no 29.

Once Stellios had described his method, the boys wanted to use it to check the other values they

had already entered. Thus the method used initially for finding a single value developed into a

generic method which they could use repeatedly. At this point the researcher intervened to suggest

that the boys might 'teach the computer' their method for calculating further data. This was a

metaphor which was familiar to the children from their work with Logo.

RES:. .. What you are trying to do is to tell the computer how to work the length out, given some
width. (pointing to cell 811 in the width column) So if you knew what that width was,
you're trying to work that length out (pointing to cell All, in the length column.)

JOR: You have to add these together (pointing vaguely at the length and width column).... double
it (pointing to the width).

STE How do you double it? ..
JOR: and then you work our the length.
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STEL zero point five add zero point five or something
JOR: .. yeah but they don't know .. (pointing at width cell)
JOR: I know B eleven, (typing) B 11, B11, .... right B 11, add, ... B11 add, oh no, B11 times 2.
STEL oh yeah times 2
JOR: so then that doubles it , and
STEL add A 11
JOR: B11 times 2 add ..
STEL. add All equals C11
JOR: No we need to ...if there's 30 in the ruler right, it's all doubled though, we need to tell it how

to work out what's left.

The boys' initial attempts to formalise their method show a number of significant features. Jordan

has a clear picture of the calculation he wants to express, but has to overcome two hurdles in order

to formalise it. The first is to express 'double it', which he quickly resolves as 'times 2'. The

second is more difficult. Having doubled the width, he then needs to find a way to express 'what is

left' from the original 30 cm. In working on this, the boys quite confidently use `B11' as a

placeholder for a width which they don't yet know. This step in formalising does not seem to

present an obstacle for them, but as they try to resolve the problem of how to find 'what is left'

Jordan reverts to a generic example. His use of the cell reference as a placeholder is not yet secure.

The boys continued to work on their problem for several more minutes, occasionally touching the

keyboard, but mainly trying out ideas verbally. At one point, they deleted the formula they had

typed, and the researcher took the opportunity to ask them to recap what they have done.

JOR: So far we've got, from here we've got B11, anything that's in B11
STEL: times it by 2
JOR: times it by 2 so it doubles it
RES: ...OK
JOR: We need to tell it like, we want to tell that there's 30 over there, if we times, say it was 5,

times by 2 it becomes ten, and what, and tell it to know how much is left on the ruler.
RES: Right . How do your calculate what's left? What do you do when you do it in your head?
JOR: Well if it was, if it was ...
STEL What's left ...is it that little r thing? Is it remainder?
JOR: if it was, if it was 7, you double the 7 to 14 it would go in there but there's 16 left ...
RES: What have you done to work that 16 out?
JOR: 1 know that 14 add 16 is 30

Here we see that although Jordan still reverts to a generic example when he cannot resolve the

problem of finding what is left, his grasp on B11 as a placeholder has changed. He spontaneously

talks about anything that is in B11, indicating he has some understanding of the cell reference as a

variable. It is interesting that each time he goes to a generic example he chooses different values to
work with.

Stellios' interjection about remainder at first seems confused, and indeed we watched the tape

several times before we noticed what he was saying. He seems to be making a link between the

phrase 'what's left over' and memories of division problems, where he has learnt to record the
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remainder' with a 'little r', e.g. 25 + 3 = 8 r 1. He seems to be using a direct-translation approach

(Chaiklin (1989)), but the translation is not from a given word problem, but from the boys' own

verbal formulation of their calculation method. This direct-translation approach continued to prove

an obstacle in their attempt to devise a formula.

About ten minutes later, they decided they needed to include 30 in their formula. They typed

=30 B11*2 - . They seemed to have a sense here that they must start with the length of the straw,

but they were trying to translate 'take it away from', and they could not see which operation to use.

They quickly deleted this formula and typed =B11*2-30

STEL: .. You can't take 30 from ...um
JOR: times it by 2 take it from 30
STEL: times it by 2 and take it from 30
They try putting in 13 for the width and get length -4 and area -52.
JOR: its probably 52
STEL: the minus, shouldn't have put the minus in
JOR: I don't know
JOR: B11 times it by 2 take it from 30... but this looks like take away 30, and we don't ... It

should have been 4, so its nearly right .

At this point, the boys had been working on the problem of teaching the computer their method for

around thirty minutes. It is tempting to interpret their position at this point as failure to move from

their generic method to a formal algebraic expression. However, from the language that Jordan

uses it would seem that he has accepted the cell reference as a variable which he can operate on.

We felt that his difficulty lay in attempting to make a direct translation from their verbal

formulation, which cannot be reconciled with the arithmetic structure required by the spreadsheet.

Their verbal formulation for the method of calculation followed closely the physical process which

they had gone through, choosing the width and bending the straw this amount at both ends (1311

times 2'), then measuring the length of straw left between the two folds ('take it away from 30').

We decided to intervene, offering them a slightly different physical model with the aim of

redirecting their attention from the verbal formulation and back to the physical situation. The

results were dramatic.

RES: Let's think of it in a different way ... Here's our length of fencing, which is 30 (holding up
straw). Let's imagine cutting off our two widths. So we're starting with the 30 and instead
of folding, lets cut them off ...

JOR: If we start with 30, take away B11 times 2
At this point Jordan typed in the correct formula ( =30 - B11 * 2), filled down the column, and they
began to enter more values for the width.
JOR: we virtually did that, but it was the other way round.

The boys then worked excitedly, entering values to try to find the maximum area, and using

decimals to home in on where they thought it would be. In a second session the following day, they
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worked on the more general problem, using different starting lengths, and enjoying producing
graphs showing smooth curves.

Discussion
In analysing the work of Jordan and Stellios, and of other pairs working on the Sheep Pen task, we

see a number of factors which seem to contribute to their success in formalising. Their familiarity

with the spreadsheet environment enables them to accept a cell reference as a placeholder in

increasingly sophisticated ways. Initially, they used it as little more than an alternative name for

the value of the width. Later, Jordan at least used it as a placeholder for a potential number soon
to be realised, (JOR: ... yeah but they don't know .. (pointing at width cell)). Finally, he seemed to
be using the cell reference as a placeholder for a range of numbers, that is, as a variable (JOR: So

far we've got, from here we've got BI I, anything that's in B11). It is worth noting that these

children were familiar with entering and immediately replicating given formulas. As a result, they

tended to see these as two parts to the same process. Thus they have an image of a physical

location not only for the cell into which they will enter a particular number, but also for the column

of cells into which they may enter a whole range of numbers.

Tall (1992) refers to a formal algebraic expression of a relationship as a template, a potential

arithmetic relationship waiting to be realised. Some children may only be prepared to accept the

use of a symbol as placeholder within the template if that potential can be immediately realised, i.e.

it can be immediately turned into a number. Later, children, may accept a greater distance between

the use of symbolisation and its realis'ation as a number. Such children are further on the way
towards reification, when they must accept that the symbolic expression is itself something that can

be manipulated and used (as if the distance between potential and realisation had become infinite).

When working with a spreadsheet, it is difficult to identify those children who have reached this

final level of sophistication in their thinking, since those with more limited views of the nature of
the cell reference may also be able to successfully create a formula to model their rule. We

conjecture that the extent to which children are able to express a verbal generalisation of the rule

they are trying to formalise may give some indication of whether or not they have taken this final

step in their thinking. In the Sheep Pen problem, such a verbal generalisation might be signalled by

describing their rule in terms of the width of the pen, rather than by using generic examples. Much

of Jordan and Stellios' discussion of the problem focuses on creating a formula: they repeatedlyuse
the cell reference, and so it is often unclear how far they have moved towards such a generalisation.

In analysing the tapes of pairs working on this activity, we were impressed by the perseverance the

children showed in working towards a formalisation of their rule. Jordan and Stellios spent about

thirty minutes on this stage of the activity without noticeably losing motivation or moving off task

for more than a short period, even when their attempts were apparently unsuccessful. Although
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they often talked in terms of operating on numbers or cell references, their hand movements

indicated that their thinking was clearly grounded in images of folding and measuring the straws.

Even when situated in investigations or word problems, formalising is often a separate process from

the main activity which has been externally imposed by the teacher. In contrast, within active

graphing activities, formalising has a clear purpose: to generate more data. This larger quantity of

data enables you to work on the problem, and the accuracy of this data can be seen from the

feedback given by the graph. We conjecture that such activities give children a sense of the

purpose and the power of formalising. They realise that unlike their teacher, the spreadsheet simply

will not be able to interpret non-formal rules, such as 'take away from'. It is our belief that this

experience of using formalising contributes to children's success in understanding variable. In

common with other computer based environments, children's thinking is supported by feedback

given by the computer on their attempts to give a formalisation. Further, there isan external
referent, the physical situation in the case of the active graphing problems, or the functioning of the

program in the case of programming. This broader context allows for alternative formulations to be

developed, and so offers an escape route from the trap of direct translation from a single
formulation.

Our analysis also raises a number of questions which we hope to address in further research.

How do children perceptive of the nature of the cell reference in their formalisations?

How interactions with the spreadsheet support them to move towards generalisation?

What are the factors which influence children's ability to transfer from spreadsheet notation to
traditional algebra?

What kind of activities might support this transfer?

References
Ain ley, J. (1994), Building on Children's Intuitions about Line Graphs, in da Ponte, J.P. & Matos, J.F. (Eds),

Proceedings of the Eighteenth Annual Conference of the International Group for the Psychology of Mathematics
Education, Lisbon, Portugal

Ainley, J. & Pratt, D. (1994a), Runaway Cars, Micromath, 10.2
Ain ley, J. & Pratt, D. (1994b), Unpacking Max Box, Micromath, 10.3
Chaiklin, S. (1989), Cognitie Studies of Algebra problem solving and learning, in Wagner, S. & Kieran, C. (Eds),

Research Issues in the learning and teaching of algebra Reston, VA: NCTM; Hillsdale, NJ: Lawrence Earlbaum.
Hewitt, D., (1992), Train spotters' paradise, Mathematics Teaching 140
Kieran, C (1992), The Learning and Teaching of School Algebra, in Grouws, D.A. (ED) Handbook of Research in the

Teaching and Learning of Mathematics, New York, Macmillan Publishing Company.
Mokross, J.R. and Tinker, R.F. (1987), The impact of microcomputer based laboratories on children's abilities to

interpret graphs, Journal of Research in Science Teaching, 24
Pratt, D. (1994), Active Graphing in a Computer-Rich Environment, in da Ponte, J.P. and Matos, J.F. (Eds)

Proceedings of the 18th Annual Conference of the International Group for the Psychology of Mathematics
Education, University of Lisbon, Portugal

Tall, D.O. (1992, September), The transition from arithmetic to algebra: Number patterns or proceptual programming.
Paper presented to the Reseach Workshop on Mathematics Teaching and Learning: From Numeracy to Algebra,
Brisbane, Australia.

33 4 I



ARTICULATION PROBLEMS BETWEEN DIFFERENT SYSTEMS

OF SYMBOLIC REPRESENTATIONS IN LINEAR ALGEBRA

Marlene Alves Dias, Michele Artigue, Equipe DIDIREM, University Paris 7

Abstract: This article deals with the issue of flexibility between the cartesian and parametrical
viewpoints in linear algebra. Firstly, we present the notions of setting, register of representation
and viewpoint which constitute the theoretical basis of this article. Then we come to our project of
research and the methodology we have set up to analyse flexibility. Finally, through the analysis of
a written test, we show the difficulties first year students encounter before the flexibility issue. We
also shod that for problems that can be solved by only manipulating techniques, the lack of
flexibility both technical and conceptual leads the students to mistakes which show important losses
of meaning.

I. INTRODUCTION

The disappearance of linear algebra rudiments from secondary school programmes in France (since

1989), has resulted, at the university, in an awareness of learning difficulties in this field. Since 1987

studies on the analysis of these difficulties as well as experimentation of didactic engineering were

developed (Robert & Robinet, 1989), (Dorier, 1990), (Rogalski,1991). Some of the identified
difficulties can be formulated in terms of flexibility, a notion which is now recognised in
mathematics didactics as a key element of conceptualisation.

It seems necessary, here, to distinguish two types of flexibility, according to whether or not flexibility

operates within cognitively hierarchical structures.

the first type corresponds to a hierarchical flexibility. It is the case, for example, in E. Dubinsky's

research (Dubinsky, 1991) which is built around the "process-objet" duality of mathematical
concepts and where "encapsulation" and "disencapsulation" processes allow mathematical work to

sail between the two levels. A.Sfard's research (Sfard, 1991) similarly emphasises on the double

dimension "operational" and "structural" of mathematical concepts and the necessary flexibility

between these two dimensions, even though, the first dimension is the necessary preliminary to the

second one.

We can also find this kind of flexibility in D.Tall's research who underlines the two reading levels

which can be associated to the same mathematical symbol via the notion of "procept". One can

finally find it at stake in the three levels distinguished by Hillel and Sierpinska (Hillel & Sierpinska,

1994) in the reference to Piaget and Garcia's work in a recent research on linear algebra.

The second type corresponds to a non-hierarchical flexibility. Such a flexibility is particularly

considered through analysis in terms of "setting" as introduced by R.Douady (Douady, 1986, 1992)

or in terms of "register" as introduced by R.Duval (Duval, 1993) as well as in terms of "changing
viewpoint " used by a few authors, (Rogalski, 1991) for instance.

Our research in linear algebra situates within this global problematics of cognitive flexibility. More

particularly, our interest will be focused on the second aspect of flexibility: the one of non-
hierarchical flexibility.
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II. SUITING, REGISTER AND VIEWPOINT NOTIONS

1. Setting notion

This notion was introduced by R.Douady in her thesis and based on an epistemological analysis

emphasising on:

- the duality of mathematical concepts, first implicit then explicit tools of mathematical activity

before they take the status of object and are studied as such;

-the role played by changes in settings in the mathematical production activity.

This epistemological analysis leads her to transpose these features into the didactic field through the

notions of tool/object dialectic and setting games (Douady, 1986,1992)

Therefore, a setting is defined as being "made of objects of some mathematical branch, of
relationships between these objects, of their eventually various formulations and of mental images

associated with these objects and relationships [...] Two settings can comprise the same objects and

differ in mental images and/or in terms of developed problematics". The change in settings " is a

means to obtain different formulations of a problem that, though not necessarily equivalent, allow a

new access to the difficulties encountered and the elaboration of means and techniques which did not

appear necessary in the first formulation. Anyhow, translating one setting into another often leads

to unknown results, to new techniques, to the creation of new mathematical objects, in fact to
the improval of the initial setting and the other intermediary settings used".

Setting games, as organised by teachers, are didactic transpositions of these processes. They are seen

in the developed theory as privileged means to raise "cognitive desequilibrium" and also to allow the

overcoming of these and the reach of higher equilibrium.

Therefore, the setting notion emphasises the idea that the same concept is meant to function in

various environments and that its functioning in each one of these environments offers specific

features. The existing differences are just means and tools of mathematical creation.

As far as linear algebra is concerned, introducing the first concepts (generated space, linear
dependence and independence, equality and intersection of subspaces) is often made by only using

the R° subspaces. Moreover, teaching favours the two and three dimensions which allow an
emphasis on the game between the algebraic and geometrical settings and give way to cognitive

flexibility which later become more metaphorical in higher dimensions or in more general spaces. In

our study, we consider two settings: the algebraic one and the geometrical one.

2. Register notion

The setting notion is about the whole functioning of a mathematical concept while the register
notion, which comes from the linguistic area, is more particularly about the symbolic representations

according to which it can be represented and studied. R.Duval underlines the role played by this

semiotic dimension in the conceptualisation process. In other words, the distinction between object

and semiotic representation, which depends on the possibility to associate to the same concept many
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different representations and to carry out conversions between these representation systems, is
considered as a strategic knot in the conceptualisation process.

For Duval, the semiosis, that is to say the semiotic representation's apprehension or production, and

the noesis, that is to say the conceptual apprehension of an object are inseparable. He defines a

representation register as "being a semiotic system which makes possible the three basic cognitive

activities that are linked to semiosis.

1 - Forming a representation identifiable as a register representation. This implies selection of

features and data in the represented content, selection which is done according to the units and
forming rules of the register in which the representation is produced.

2 - Treating a representation, that is to say transforming this representation in the same register
where it was formed.

3 - Conversing a representation, that is to say transforming it into a representation of another
register while keeping the whole content of the first representation or only a part of it".

R.Duval underlines that, as far as teaching is concerned, activities concerning the formation and

treatment of representations are present but conversion activities are often neglected, as if
conversion tasks between two registers were automatically mastered by someone who knows each
register, separately.

In our study, the following registers of semiotic representations will be more particularly considered:

intrinsic symbolic representation, coordinates representation, equation representation, matricial
representation.

3 - Viewpoint notion

Mathematicians' work requires other kinds of flexibility, particularly, what we call "changing
viewpoints" and is not so easy to define in a general way. Therefore, linear algebra seems to require

flexibility between what we call the "cartesian" viewpoint and the "parametrical" viewpoint.

Such flexibility acts both in the geometrical and the algebraic settings and, even if it relies on
flexibility between semiotic representations, it does not seem reducible to a mere semiotic flexibility

as it involves more global aspects. For instance, the vector subspace notion may appear under a

parametrical viewpoint with a stress on generating elements which characterise the subspace
elements or under a cartesian viewpoint with a stress on algebraic equations which characterise the
subspace.

Of course, in that case, the cartesian/parametrical flexibility puts at stake flexibility between
representations, particularly between:

intrinsic parametrical representations, such as: A = lin(a,b) = {v/ v =aa +fib);

explicit parametrical representations under the form of a table, such as:

A = lin{(1,0,0), (0,1,0)) = {(x,y,z) E /23 I x =a , y = /3);

intrinsic cartesian representations, such as: A = { v/ T(v) = 0 }, T being a linear operator;

explicit cartesian representations (by homogenous and linear equation systems), such as:
A= ((x,y,z) E z = 0).
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But we hypothesise that flexibility between the parametrical and cartesian viewpoints, which involves

for instance the idea of duality, goes beyond a mere control of these semiotic conversions.

4. A study on linear algebra focused on cognitive flexibility between registers

K.Pavlopoulou's thesis (Pavlopoulou, 1994) is directly situated in the prospect developed by
R.Duval. Its deals with the learning of elementary vector notions: linear combinations, linear
dependency and independence in R2 and R3. Three semiotic representation registers are considered:

the graphic register (G): in which a vector is represented by an arrow in R2 and R3;

the symbolic writing register (S): in which a vector is represented by the linear combination of

any two or three vectors in R2 or R3;

the table register (T): in which a vector is represented by a column matrix with two or three lines.

An analysis of beginners' linear algebra textbooks shows that, in general, different registers coexist

but conversion problems between registers are not explicitly set up in terms of learning. Moreover,

there are kinds of conversions highly privileged.

K. Pavlopoulou organises a didactic sequence with students in difficulty (those who have failed their

traditional programme). Her purpose is to emphasise the co-ordination between registers by
following a classical experiment scheme: experimental group, control group, pre-test, post-test. She

confirms the difficulty of a spontaneous building of conversion knowledge and proves the positive

effect of the experimental didactic sequence, positive effect which goes beyond pure conversion
tasks.

III. OUR RESEARCH PROJECT ON FLEXIBILITY IN LINEAR ALGEBRA

In our research, we try to study, more particularly, articulation problems between different systems

of symbolic representations in linear algebra in the frame of the global study of flexibility between

two viewpoints: the cartesian and parametrical viewpoints.

This project is based on a first piece of research (Dias, 1993) concerning the evaluation of a didactic

engineering product (Dorier, Robert, Robinet, Rogalski, 1994) on linear algebra for first year
university students. Our evaluation was focused on the central notion of the experimental teaching:

the rank notion. Our attention was, then, draw to the difficulties students had found with the
articulation of cartesian and parametrical viewpoints required to solve problems of determining

vector system ranks and vector space representations. These difficulties were at the root of our
present problematics.

1. The global project

In order to tackle these problems, we cross different approaches:

I - an a priori mathematical analysis of both technical and conceptual knowledge linked to this

flexibility, for the different notions and tasks involved in a first course of linear algebra;

2 - an analysis of the way these flexibility problems are taken into account through a study of
curricula and textbooks, including a comparative study of the French and the Brazilian situations;
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3 - a study of the cognitive functioning of students aiming at the identification of key-stages and

difficulties in this area;

As far as methodology is concerned, our research is based on an analysis table of flexibility, issued

from the first part of the research and on diagnostic tasks which aim at evaluating the students

capacities concerning flexibility.

Our research is meant to emerge to a didactic engineering project aiming at a more efficient
management of these issues since the first year at university.

2. The analysis table of flexibility

The purpose of this table is taking into account, as we said before, the flexibility between cartesian

and parametrical viewpoints. It is obvious that this flexibility is based on flexibility between the

different registers of representations associated to these viewpoints. It is also based on quite a
number of conceptual and technical knowledge.

The analysis table is meant to be a tool useful for analysing the knowledge linked to the flexibility

which is necessarily or potentially at stake in elementary linear algebra:

according to the involved linear algebra notions;

according to the tasks that are usually encountered at this level;

according to the variables of these tasks, particularly the representation registers at use.

At the level of notions, we distinguish the following notions:

- vector space;
- vector subspace and operations between subspaces (including linear combination, generated
subspace, identity, intersection, sum, direct sum of subspaces, supplementary subspaces);
- basis and dimension (including linear dependence and independence, rank);
- linear application (including kernel and image, isomorphism, linear operator's matricial
representation);
- linear equations system.

At the level of tasks, for instance, as far as the notion of vector subspace and of operations
between subspaces are considered, we distinguish the following tasks:

- Check with the definition whether a vector space's subset is a subspace or not;
- Describe the solution's subspace of a linear and homogeneous system;
- Determine whether an object defined in a certain way belongs to a subspace defined in another way
or not.
- Demonstrate that a vector is or is not a linear combination of some given vectors;
- Check whether a vector belongs to the subspace generated by other vectors or not;
- Characterise the subspaces generated by given vectors;
- Find a generating part of a set of given vectors or a given subspace;
- Move from a kind of representation to another;
- Demonstrate that a subspace is included in other one or that they are equal;
- Determine the intersection of two subspaces;
- Determine the sum of two subspaces;
- Demonstrate that two subspaces are in direct sum;
- Demonstrate that two subspaces are supplementary.
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And at the level of the variables of the task, for instance, for the task: "Demonstrate that two

subspaces are equal", we distinguish the following variables:

- type of space: R2 and J? , , R° isomorphic spaces, others;
- types of given representations: parametrical or cartesian with sub variables in order to take into
account the different kinds of possible representations en each category (cf.11.3);
- types of required representations: idem
- dimensions of space and subspaces involved :
- flexibility: compulsory or potential
- flexibility knowledge: with distinction between technical and conceptual knowledge (see below)

3. Analysis of University first.year exam.

The context: We have used this analysis table of flexibility in order to analyse a written exam

taken in 1992/93 by 113 students after their first semester course, at the university of Lille. The

linear part of this exam consisted of four questions:

In le are given the following vectors:
a = (0,-1,1,0); b = (2,1,1,0); c = (0,0,3,1);
d = (2,0,-1,-1); e = (1,0,1,1); f= (1,0,0,1)
1) What is the rank of the vector system {a,b,c,f}?
2) Give a parametrical representation and a linear equations system for lin {a,b,c,d).
3) Determine: ) lin {a,b,c} n lin {a,e }; ) [lin {a,e)+Iinfa,c,e)] fl lin {a,b,c };
4) The system {2y+2t = a; -x+y = /3; x+y+3z-t = 7; z-t = (5, have a solution for all (a,(3,-y,(5)? Justify
your answer without any calculations.

In this report, we have chosen to analyse questions 2 and 4 because they are more significant in
showing the difficulties of flexibility both at technical and conceptual level.

For question 2, the variables of the task are the following:

- type of space: le;
- tyk of given representations: 4 vectors represented by their coordinates in the canonical basis and
an intrinsic symbolic notation of the generated subspace
- type of required representations: a parametrical representation and a cartesian representation;
- space and subspace dimensions: 4 and 3
- compulsory/potential flexibility: If the expression "find a parametrical representation" is understood
as: "find a minimal parametrical representation", flexibility is strongly necessary. But students can
produce the trivial parametrical representation {xa+yb+zc+td=0/ x,y,z,t E R} and solve the
associated linear system (xa+yb+zc+td=v, in order to find the condition of a y +36 =0 for
v = (a,(3,7,6)) which gives directly the cartesian representation. If so, flexibility remains necessary
but it is reduced.
- flexibility knowledge: here it appears tightly linked to knowledge related to the resolution of linear
systems, more precisely to the relations made between resolution conditions/cartesian representation,
rank of the linear system/rank of the vectors system, number of necessary parameters/number of
necessary equations with the fundamental theorem linking these two numbers.
Moreover this necessary flexibility can function at different levels. It can function at a technical level,
encapsulated in some way in algorithmic processes or at a more conceptual level.

The same type of a priori analysis can be applied to question 4 but, in this question, as the answers

have to be justified without any calculation, a conceptual level of flexibility is required.
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The data analysis

Question 2: For this question, 34 different procedures were identified. Here, we shall focus on the

procedures P and Q which are in some way the typical erroneous procedures and correspond to 38%

of the answers. With some local variations, the procedure P is the following:

- to write the matrix whose lines are given by the coordinates of a,b,c,d;
- to write the associated linear system: {-y+z = 0; 2x+y+z = 0; 3z+t = 0; 2x-z-t = 0}, seen as a
cartesian representation of the subspace;
- to apply the familiar Gauss method to this system. This leads to a parametrical representation
depending on one variable, as there are infinite many solutions, for example: x = z, y = z, t = 3z.

These cartesian and parametrical representations are internally coherent but they are incoherent with

the results of question 1 (rank(a,b,c,f) = 4) and the obvious independence of each pair of vectors.

The erroneous procedure Q is similar (with columns instead of lines) and it leads to similar results.

The procedures described in the a priori analysis represent only 38% of the answers, that is to say 43

students, half of them just giving the trivial parametrical representation.

It is worthwhile noticing that among the 57 students who first looked for the rank of {a,b,c,d} and

correctly found 3 by using the familiar Gauss technique, very few were able to correctly exploit this

result in order to give a minimal parametrical representation. Some of them, for instance, give the

relationship: d = a+b-c as a cartesian representation of the subspace, or this one: d = ax+by-cz as a

parametrical. Most of them jump to P or Q procedures.'

We have found only 6 students who tried to check their final results, that is to say, the number of

parameters to be used and the number of equations to be found, as expected by the didactic contract.

Among these students, only one had got the correct representations but he failed to identify which

one was the parametrical representation and which one, the cartesian representation. So, he provided

the following wrong justification: "We are in k, where lin{a,b,c,d} is represented by three
independent linear equations therefore dim(lin{a,b,c,d}) = 1. Only one parameter is sufficient". The

five other students which had used P and Q procedures also found: dim(lin {a,b,c,d }) = 1. They

suggested the relation: dim(lin{a,b,c,d}) = n-r as a means to justify such a result, n being the
dimension of R4 and r the rank of the vectors system.

Question 4: Only 20 students gave correct answers to question 4 and once more we were surprised

by the variety of procedures used by students. Among them, 55 recognised the given system as

associated to the equation: xa+yb +zc +td = 0, but many did not know how to use this result to give a

right and justified answer. This is understandable, taking into account the results obtained for
question 2 and the fact that a conceptual flexibility was compulsory here. The attachment to Gauss

technique was so important that 13 students used it explicitly and 7 students used it implicitly
without respecting the instructions.

IV. CONCLUSION.

These results confirm our conviction that flexibility between cartesian and parametrical
representations has a fundamental role to play in the learning of elementary linear algebra and that

this flexibility cannot be reduced to abilities of a mere semiotic type. It has both conceptual and

48 2 -40



technical components which intertwine in the solving process, the conceptual dimension playing an

essential role in anticipation, control and interpretation processes.

These results also show that this flexibility is not of an easy access and that students tend to reduce it

to its most algorithmic aspects and, as a consequence, to be trapped by all kinds of possible formal

skid. This confirm our hypothesis that flexibility competencies cannot be left to the student personal

effort. They have to be explicitly taken into account in the teaching process and managed in the long

run. The ambition of our research project is to provide tools in order to better understand how this

flexibility is or can be at stake in a first course of linear algebra and to manage it more efficiently.
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ANALGEBRAIC INTERPRETATIONS OF ALGEBRAIC EXPRESSIONS

- FUNCTIONS OR PREDICATES?

Hava Bloedy-Vinner

Hebrew University, Jerusalem, Israel

Abstract: Algebraic language is analyzed and compared to natural
language. The term analgebraic is defined. A conceptual framework
is suggested for students' interpretations of algebraic
expressions. New explanations for various phenomena, including
the "students and professors" reversal error, are given,
illustrated by students' written response and interviews.

1. Introduction

This paper presents a part of a study which suggests a

conceptual framework for dealing with phenomena related to

students' difficulties with the symbolic language of algebra.
Kaput (1987) discusses the influence of natural language rules on

translation errors in algebra. In my study I try to systematically

analyze the structure of algebraic language, compare it to the

structure of natural language, and learn about the influence of the

latter on the understanding of algebraic language.

The term analgebraic (Bloedy-Vinner 1994) will be used to refer

to modes of thinking related to improper use of algebraic language.

The.word algebraic here will refer to correct use of algebraic

"language. The definition of analgebraic depends on the mathematical
context. In this paper I will discuss analgebraic mode of thinking

in the context of interpreting algebraic expressions.

2. Comparing algebraic and natural language

As we shall see, analgebraic interpretations of algebraic
expressions are related to erroneous analogy between algebraic and
natural language. To explain this analogy let us start with a
comparative analysis of both languages. The structures to be
analyzed and compared are natural language sentences e.g. "She
likes Bill's friends", and equalities and inequalities as x-2=8y or

2+52>3. The constituents of these structures in both languages are:

1. Primitive nouns like "she", "Bill" in natural language, and
numbers or letters like 2, 5, x, y in algebraic language.

2. Complex nouns like "Bill's friends", x-2, or 2+52, which contain
other nouns as constituent parts. When some of the constituent

nouns are replaced by empty places, e.g. "_'s friends", -2, or
2, we get functions. Functions create complex nouns when
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substituting nouns for the empty places. In algebra we use letters

instead of empty places and get algebraic expressions, which are

functions and create numbers (complex nouns) when substituting

numbers for the letters.

3. When we replace nouns in a proposition by empty places we get

predicates, like "_called ", " likes ", = , and <

(Relation is another term for two-place predicate.) predicates

state something about nouns which are substituted in them.

The structural similarity we have seen points to some correct

analogy between natural and algebraic language. To describe the

erroneous analogy made by students, we need to look at some

differences between both languages. We shall look at two aspects:

1. The aspect of richness: Natural language is rich in noun types

and in predicates, while algebraic language has one noun type only,

numbers, and two (two-place) predicates, equality and inequality.

When we use natural language to make algebraic statements, we have

many additional predicates like " is positive", " is even" etc.

To express these verbal predicates with algebraic symbols, we have

to do with algebra's two predicates. The richness of algebraic

language, on the other hand, is obtained from its ability to

compose functions, and to create nouns which are much more complex

than those of natural language.

2. The aspect of precision: Natural language can be ambiguous and

has vague meanings, while algebraic language is unambiguous and

precise.

It turns out that students often make an erroneous analogy and

use algebraic language as if it had the properties of natural

language with regard to both aspects of richness and precision. In

the following sections we shall see this erroneous analogy and how

it results in analgebraic interpretations of algebraic language.

3. Analgebraic interpretations of algebraic expressions

In this section I will discuss one form of analgebraic

interpretation of algebraic expressions. As we shall see, this

interpretation can explain phenomena related to students'

difficulties with pure algebraic tasks as well as with word problem

translation tasks. This form of analgebraic interpretation

consists of two misconceptions which are related to each other:

1. When we consider an algebraic expression as a function, the
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origin and the image should be conceived as two separate entities.

Instead, students sometimes identify these entities and see them
vaguely as one entity, being changed by the function, like a
growing child, or an object which is painted but remains the same
object. For example, in the expression Ix' the origin and the

image are vaguely conceived as one changing entity (rather than a

pair of separate entities), so that x becomes positive by the
function, and still remains x. The vagueness here is one example
of erroneous analogy between the languages.

2. An algebraic expression should be interpreted as a function
which creates a new number. Instead, students may interpret it as

a (one-place) predicate, stating something about x. For example,
lx1 is interpreted as a predicate stating that "x is positive".

This misconception is related to the previous one: the origin and
the image are conceived as one entity, and an obvious property of

the image, in this case positiveness, is attributed to x. Thus the

expression is interpreted as the predicate "x is positive", rather
than a function creating a new number which is positive.

With this conception, the student borrows algebraic expressions and
uses them as predicates rather than functions. The result is an
"enrichment" of algebraic language by additional predicates. This
is another erroneous analogy between algebraic and natural
language, by which algebraic language is made similar to natural
language, namely, rich in predicates.

4. Method

The purpose of this study was to examine to what extent students

were algebraic or analgebraic in their interpretations of algebraic

expressions in the sense described above. For this purpose I

compiled the questionnaire which is presented in figure 1.

The questionnaire was administered to Israeli students at a

university preparatory course. These students had taken 3-5 unit
matriculation exams in mathematics (a unit is one weekly hour
during 3 years of high school). They answered the questions after
having restudied the related material in the course, at the end of
which they repeated the matriculation exam. By a rough estimate,
more than half of high school graduates are on their mathematics
level or below. Results will be given for two groups: Group SCI
preparing to study science at the university, repeating 4 or 5 unit
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exams, and group SOC preparing to study social studies, repeating

the 3 unit exam. Some students in the SOC group were interviewed

after answering the questionnaire.

Figure 1: The questions administered in the study.

1. Which of the following forms mean "x is negative"?
(you may circle more than one answer):
a. -1x1 b. -x c. x<0 d. -x2 e. -x<0

2. The temperature a tonight was negative, but was still 5
degrees higher than the temperature b of last night. Which of
the following equations expresses the claim made above?
a. a=b-5 b. -a=-b+5 c. -a=b+5 d. a=b+5
e. -a=-b-5 f. -a=b-5 g. None of the above.

3. The teacher asked the students to compose a table for the
function y=0x+2. Danny said that x was always zero and y
was 2. What is your opinion? (correct, incorrect, explain).

4. What are x and y's solutions in the equation: Ox+5y=10 ?
5. What do you think of the following statements:

a. In x+10, 10 was added to x, therefore it is now larger.
b. In 10x, x was multiplied by 10, therefore it is now larger.

6. Write an equation to represent the following statement: There
are 6 times as many students as professors at this university.
Use S for the number of students and P for the number of
professors (Rosnick & Clement 1980).

5. Results

For all questions, answers were classified into 3 categories:

algebraic, analgebraic, and other errors (which may be analgebraic

too, but in a different sense). These categories will be described

specifically for each question. Distributions of answers are

reported in table 1.

Questions 1 and 2: These questions deal with expressions with a

minus sign. For both questions the analgebraic category includes

answers demonstrating the two misconceptions described previously:

first, the origin and the image of expressions with a minus sign

(-1x1, -x, -xi, -a) are vaguely conceived as one entity, as if x

changes and becomes negative. Second, the expression is

interpreted as the predicate "x is negative" rather than a function

creating a new number. (These misconceptions should not be confused

with that of seeing -x as negative re6ardless of the value of x.)

In question 1 the student is given expressions (functions) and

inequalities (predicates), and is required to circle those which

have the meaning of the verbal predicate "x is negative". The

algebraic category includes x<0. All other answers are analgebraic,
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because they interpret expressions as a predicate. Most of the
students chose inequalities and expressions together. This implies
that they understood that the question was about x and not about
the result being negative, and that they did not understand that

expressions were functions and not predicates. Note especially the
answer -x<0 (chosen by 33% in SOC): this response vaguely
combines x<0 and -x; because of the identification between the
origin x and the image -x, the student is not aware of the

contradiction between "x is negative" and -x<0.

Table 1: The distribution of the answers.

question group algebraic analgebraic other errors no answer

1 SCI n=50 34% 66% 0% 0%
SOC n=33 9% 91% 0%. 0%

2 SCI n=49 43% 45% 10% 2%
SOC n=33 21% 61% 15% 3%

3 SCI n=50 68% 32% 0% 0%
SOC n=33 18% 73% 9% 0%

4 SCI n=48 65% 21% 9% 6%
SOC n=34 50% 32% 18% 0%

5a SCI n=49 10% 90% 0% 0%
SOC n=40 17.5% 77.5% 0% - 5%

5b SCI n=49 12% 88% 0% 0%
SOC n=40 12.5% 77.5% 0% 10%

6 SCI n=49 84% 14% 2% 0%
SOC n=33 52% 45% 3% 0%

To see that students really meant to state something about x (and
not about the result of the expression) let us look at some
interviews (S is student, I is interviewer):

Interview 1: (Written response. a. -Ix1 b. -x c. x<0 d. -x2.)
S: In (b) we can see that it is minus x, therefore it is
negativb, x is negative, this is what we're asked about in
problem 1. I: Who? S: The x. I: Yes. S: In (c) it's also negative
because it says that x is less than 0.
Interview 2: (Written response: a. -Ix' b.. -x c. x<0 e. -x<0.)
S: (Pointing at -x<0)...this is also negative: I: What? S: x. I:
Why? S: Because it's less than 0, and negative too.

Question 2 deals with the meaning of -a in the context of
translating a word problem. The algebraic category includes the

response "(g) none of the above, it should be a=b+5 and a<0", and
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"(d) a=b+5" (or (d)+(e) of students who noticed that these were

equivalent). The category of other errors includes the response

"(a) a=b-5" (or (a)+(b)) which is a reversal error (discussed in

section 6.) All responses with one equation with -a are in the

analgebraic category. These students see the origin a and the

image -a as one entity, the temperature, and use the expression -a

to translate the predicate "a is negative". to illustrate this

claim let us look at one of many similar interviews:

Interview 3:, (Written response: c. -a=b+5.)

S: The temperature tonight is -a. I: -a. But is says here that

the temperature was a. S: But it was negative! I: That is why you

wrote -a?. S: Yes. I: a itself represents a negative or a positive

number? S: Negative. I: That's why you wrote minus here? S: Yes.

Questions 3 examines the interpretation of Ox as a predicate

stating that "x is 0", which follows from seeing the origin and the

image as one entity which changes and becomes O. Answers like

"wrong" or "wrong, x can be any number" were included in the

algebraic category. Answers which justify Danny's statement were

included in the analgebraic category. About one third of these

answers gave explicit explanations like: "correct, when we multiply

a number by 0 it becomes 0".

For question 4 the answer x=0, y=2 is.a familiar phenomena. It was

classified as analgebraic. The misconception revealed in question

3 can be one of its, explanations. (Other errors include the

answer: y=2, x has no solution.)

Question 5 examines the meaning of 10x and x+10. Answers to both

parts were classified in the same way: the algebraic category

includes answers like "wrong" or "wrong, x is not larger, the

result of the expression is larger." The analgebraic category

includes answers justifying the given statements (for all x or for

positive x). These statements imply that the origin and the image

of the expression are one entity: x is conceived as changing and

becoming larger. More than half of these answers expressed this

conception explicitly: "true, multiplying x by 10 makes it larger",

or "it's correct only if x is positive. If it is negative, it

becomes more negative", or "When we add 10 it does not change x

because there is no relation between x and the 10; but when we

multiply x by 10 we add x's to it, therefore it becomes larger."

The last quote shows that the student really thinks that x becomes

larger, and that it is not just a matter of vague formulations.
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6. Back to "students and professors" reversal error

The misconception just described may lead to an interpretation of
algebraic expressions which can explain the reversal error in the

"students and professors" problem of Rosnick and Clement (1980)
(see question 6). All explanations proposed in literature before

1993 for this error, were based on interpreting letters as objects,

sets of objects, word abbreviations, or labels rather than numbers,

and on the influence of problem word order (Rosnick & Clement 1980,

Clement et Al. 1981, Davis 1984, Mestre 1986, Kaput 1987).

MacGregor and Stacey (1993) claim that students represent on paper
cognitive models of compared unequal quantities, which do not
depend on problem word order. Crowley, Thomas, & Tall (1994) claim

that the order of symbols in the equation depends on process vs.

concept orientation of the student.

In my study I found evidence for the above explanations of the

reversal error, but also for a new explanation, related to the
misconceptions described in this paper: Letters are perceived as
numbers; in 6S the origin S and the image 6S are conceived as one
entity, the number of students, which is changing and becoming 6

times larger, so that S is now 6 times larger. This leads to the
interpretation of 65 as the predicate "S is 6 times larger". (Note
that this is a vague one-place predicate, not paying attention to
the question larger than what.) The answer 6S=P is interpreted as
a table with the (unequal) numbers of students and professors on
both sides. The answer 6S+P adds up the number of students 6S and

the number of professors P. Both answers include 6S as stating the
predicate "the number of students is 6 times larger". Thus
students who cannot use algebra's predicates to translate the (two-
place) predicate "S is six times as large as P", use 6S as a (one-
place) predicate, erroneously enriching their algebraic language,
making it like natural language.

Unlike other explanations in literature, this explanation works
well for reversals of other arithmetic operations as well.

In question 6 correct equations were classified as algebraic, while
all reversals, e.g. 6S=P,,.6S>P, Q=6S+P, were analgebraic. Other
errors include non reversal like S=P or 6P>S.

Let us look at some interviews for illustration of the above claim:
Interview 4: (Written response: 6S>P.)
S: Here I understood that the number of students is S and that S
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is 6 times as large as the professors, so the number of
professors is P and 6S is larger than P. I: That is, 6S
represents that... S: That this is the number of students.
Interview 5: (Written response: 6S students, P professors,
Q the whole population, Q=6S+P.)

S: I took Q as the whole university population, then it equals
the number of students plus the number of professors. I: OK, and
what is S in this problem? S: The number of students!

7. Conclusion

In this paper I dealt with an analgebraic mode of thinking in

the context of interpreting algebraic expressions. It consists of

two misconceptions: the identification of origin and image as one

entity, and the interpretation of expressions as predicates rather

than functions. We saw how these interpretations explain certain

phenomena, including reversal errors in translation.

The results of the research show that there is a high rate of

analgebraic thinking. We should remember that the study was

performed in a population of high school graduates and that the

questions were administered to them after finishing the algebra and

functions chapters at a university preparatory course. This shows

that normal instruction does not uproot these misconceptions, and

that special treatment is needed. It seems that the conceptual

framework given here can explain the misconceptions and their

origins and set the ground for treatment suggestions.
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STUDENTS' RESPONSES UTILISING THE PROCEDURAL AND STRUCTURAL ASPECTS
OF ALGEBRA

Cannel Coady University of Western Sydney, Nepean

Cognitive research aimed at determining the components of algebraic thinking in students has
become the focus of attention for many mathematics educators. One finding that has seen general
agreement among such researchers is that mathematical concepts may be acquired in two ways: i)
`procedural' (Kieran 1992) or 'operational' (Sfard 1992) or 'process' (Dreyfuss 1990 and
Dubinsky 1991) and ii) 'structural' (Kieran 1992 and Sfard 1991) or 'object' (Dubinsky 1991),
with Sfard stating that a 'deep ontological gap' exists between the two.
The purpose of this paper is to examine this 'gap' by analysing the responses of four students to
two mathematical questions selected primarily because their solutions may be obtained by utilising

either a process' or an 'object' view of algebra. The four students mentioned above were part of a
much broader study of algebraic concepts conducted using first-year university students who had
recently completed six years of secondary schooling. The results obtained from these supposedly
'experienced' students of algebra appear to indicate that, although they have had repeated
exposure to both aspects of algebra, this `gap' still exists with the possibility of a 'bridge' between
the two, in many cases, being extremely remote.

Introduction

It is the firm belief of several educationalists involved in mathematical research that students acquire

algebraic concepts from both a 'procedural' (or process) perspective and a 'structural' (or object)

perspective (see for example Kieran 1992, Sfard 1991 and Dubinsky 1990). For the purposes of this

discussion, Kieran's definitions of these terms have been adopted. She defines the term 'procedural'

to infer "... arithmetic operations carried out on numbers to yield numbers" (p. 392), while the term

'structural' incorporates a set of operations performed on algebraic expressions rather than numbers.

Features of both conceptions are listed by Sfard (1991): "... the structural conception is static,

instantaneous and integrative, the operational is dynamic, sequential and detailed" (p. 4).

The characteristics of the acquisition of algebraic concepts in association with the notion that

'transition' from a 'process' conception to an 'object' conception is not achieved quickly or easily

(postulated by Sfard, cited in Kieran 1992) provided the impetus for the present study. The research

questions formulated were:

58 2 -50



a) To what extent are these two Views of algebra still prevalent in older students who have

completed their fundamental algebraic instruction?

b) Given that both aspects exist, is there empirical evidence that mirrors Sfard's descriptions?

c) To what extent do students appreciate the connection between the two conceptions, or are they

seen as representing two totally separate 'categories' of algebra?

Methodology and Sample

In order to address the research concems mentioned above, one hundred and twenty eight first year

university students were given several questions requiring written responses intended to elicit their

understanding of algebraic concepts from the 'procedural' and/or 'structural' standpoint. Ten

students were asked to attend a follow-up interview of approximately one hour's duration, during

which each was required to repeat the questions while verbalising their reasons. Each of the ten

interviews was audio-taped and later transcribed verbatim. It is not the intention of this paper to

report on the overall results of the entire sample but rather to present four mini case studies that

clearly distinguish between the two conceptualisations being explored.

Frank, Rod, Barbara and Paul, the four students discussed in this paper, were enrolled in

mathematically-based science degree programs. All were 18 years of age and had just completed the

2-unit mathematics course during their final two years of secondary school. This particular

mathematics course consists of substantial calculus and algebra components with students being

exposed to the associated material for six, forty-minute periods (or equivalent) per week. Because

one of the primary goals of secondary school education is to promote and instil in students the

structural aspects of algebra, it seemed reasonable to include in the sample those students who had

completed their elementary algebra training and who had also been exposed to algebraic concepts in

a variety of contexts over several years.

For the purposes of this paper, two questions only have been selected and the students' responses to

these, both written and verbal, are now analysed and discussed in some detail. It must be noted that

both the questions chosen could have been solved quite readily employing techniques involving either

or both aspects of algebra under consideration.
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Results and Discussion

Question 1: Given V = Itr2h.

a) Find V, given It = -22 , r = 2; h = 7

b) Find V, given It = same as in a), r = same as in a), h = double the value in a).

c) Find V, given It = same as in a), r = half the value in a), h = same as in a).

d) Find h, given V = same as in a), IC = same as in a), r = half the value in a).

The four responses given to this question together with some suggested reasons are considered

collectively, as all were identical.

Each of the four students chose to substitute numerical values for the variables V, r and h (where

appropriate). Since all treated each of the four parts of the question separately, tedious and

repetitive calculations became a feature of the responses given. Prompting by the interviewer to re-

examine the question, in the hope that the relationships existing between each part of the question

would be identified, was ignored. The interviewer even suggested that an altemative method of

solution may be applicable. However, this was also rebuffed with the students stating emphatically

that in order to answer the question, numbers corresponding to the conditions stated in each part had

to be used. Hence all students, although actively involved in the processing of an algebraic statement

containing numbers, were completely unaware that their workload would be considerably reduced

had the relationships between the variables used and also within the question itself been identified

and utilised.

Question 2: Determine the effect on the

a) volume of a sphere (V = 4 rtr3)
3

b) surface area of a sphere (A = 4itr2)

if the radius is doubled.
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This question evoked qualitatively dissimilar responses from all four of the students being discussed

here. An analysis of their answers together with the verbal reasoning behind them revealed

distinctive cognitive patterns underlying each response.

Frank

Frank's answer to this question was quite banal - "it will increase". When urged to try and quantify

this response in some way, Frank's denial was insistent:

No we cannot work out by how much unless it [r] is defined.

He made absolutely no attempt to select possible values for r as he was convinced that numerical

values had to be stated in the question before the magnitude of the effect could be determined.

Frank's superficial answer seemed to indicate that he could not fully engage in the processing needs

of the question and, therefore, chose 'the easy way out'. However it could be argued that Frank had

in fact fulfilled the requirements of the question as he interpreted it, since he did state the 'effect' on

the volume/surface area. Furthermore, the fact that additional probing proved futile, appears to

indicate that Frank's logical skills did not extend much beyond the obvious.

Rod

Rod's answer to both parts of this question was that the volume (or surface area) "doubled". When

asked the reason for this, Rod replied (with regard to part b)):

Well ... if the radius of the sphere had doubled, you'd get a larger sphere so
therefore the surface area would be two times as great.

Rod's working showed that he had merely inserted a '2' into the formula. Therefore, although he

had no knowledge (in terms of a numerical value) of the surface area of a sphere with radius r, he

knew that if the radius was doubled, then the sphere became larger by 'twice' the amount. In other

words, he multiplied the original (albeit unknown) volume/surface area by two. Clearly Rod had

seized upon one aspect of the question only and had deduced (incorrectly) a conclusion based on this

single piece of information.
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Barbara

Barbara's method of solving both parts of this question involved the substitution of values for r. Her

choice of this method appeared to be based on intuition as the following extract (also typifying her

response to part b)) indicates:

I would substitute values here, first doubling the radius. OK we'll use r = 2 and
r = 4. [With the aid of a calculator she obtained V = 33.5 and V = 268. .respectively].
So, if you double the radius of a sphere the volume of the sphere is increased by
approximately 8 times.

Of particular interest is the wording of Barbara's conclusion: " ... the volume [or surface area] is

increased by approximately 8 times [4 times for the surface area]". The use of the word

`approximately' obviously results from the computations made with the aid of the calculator. When

asked whether she could state the 'exact' effect on the volume/surface area of a sphere if the radius

is doubled, she replied:

No as whatever values were chosen for r, decimals would be involved and only an
approximate answer could be given.

She appeared uncertain as to whether the approximate value would change given a different set of

values for r and hence was reluctant to pursue this line of thought. The most logical explanation for

this was that she had reached a conclusion that she felt satisfied the requirements of the question and

therefore saw no reason to explore other possible solutions.

Paul

Paul was able to spontaneously generalise the phrase 'the radius is doubled' into symbols (2r) and

then to substitute this expression into both formulae. Furthermore, he was capable of correctly

interpreting his answer, exhibiting complete confidence in his belief that the use of the abstract

`object' 2r would result in the correct answer.

Substitute 2r and square that [(2r)2] equals 41c.4r2 so that just is timesing the
surface area by 4.

62
2 -54



Paul's ability to use and perform operations with the generalised expression 2r, without the need for

a concrete referent such as the substitution of numbers, suggests that he is quite comfortable with the

structural properties of algebra. His immediate recognition of the quantitative effect that doubling

the radius has on the volume/surface area would appear to indicate that his logical skills are relatively

advanced. In order to examine the extent of these skills, Paul was asked to re-do Question 1.

Surprisingly, his response still centred on the use of numerical substitution, even though during this

latter phase of the interview, Paul was again prompted to look for relationships between the different

parts of the question. However, Paul could still not identify any relationship between the parts, nor

did he use a variable expression to obtain a solution. Arguably the cuing effect of the explicitly

stated values for It, r and h may have dominated any impulse to generalise although this appears

contrary to his `object' orientation demonstrated previously in Question 2.

[It should be noted here that Frank, Rod and Barbara were not asked to re-do Question 1 after

having attempted Question 2. Given their solutions to the latter together with their accompanying

reasons, it was felt that any further investigation of Question 1 would serve little purpose.]

Thus it appeared from the responses given by Frank, Rod and Barbara to both questions, that the

manipulation of numbers in some form or another was mandatory if they were to achfeve a

conclusion. However, Paul's responses to both questions indicated a clear dichotomy in terms of the

solution methods used. As stated earlier, this may be attributed to the nature of the questions asked,

although this inference does lose some of its credibility as further prompting failed to elicit any

association between his two solution procedures.

Conclusion

This paper has examined both the procedural and structural aspects of solving algebraic problems

from a student perspective. The discussion above clearly illustrates that both means of acquiring

algebraic concepts exist at this educational level, with the 'procedural' aspect of algebraic learning,

requiring that numbers must be manipulated, predominating.

Frank, Rod and Barbara provided responses to both questions that manifested the features of a

procedural approach as described by Sfard since their answers tended to be dynamic, in that they
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could seemingly 'change' given a different set of circumstances, and sequential, as the solutions were

characterised by step-by-step rather detailed procedures. Frank knew that if the radius increased

then rationally the volume/surface area would increase. However, he was unable to quantify his

conclusion as he was still locked into the procedural stage where he required the substitution of

'given' values for r. Rod's answer could be classified as slightly more sophisticated in that he knew

that the resulting volume/surface area would increase by "double the amount", after having

multiplied the 'unknown' volume/surface area by two. Barbara, on the other hand, while still

needing to work with numbers, was successfully able to integrate all pieces of given information.

This successful integration and hence completion of the problem would also help to explain her

hesitation in corroborating her initial conclusion with any additional numerical support. Finally, with

regard to these three students, it seems reasonable to conclude that, although they each felt the need

to 'process' in order to solve the algebraic problems, they clearly displayed differing degrees of

'procedural' competence. This is evidenced by Frank's and Rod's use of a single piece of

information only in Question 2, while Barbara was able to hold all relevant pieces of information

while formulating an answer.

Paul's responses to Question 2 tended to be static (he did not feel the need to justify his conclusion

any further), and instantaneous (as he was able to spontaneously generalise "double the radius" to

2r) resulting in a complete integration of the question. Once again Sfard's description of the

structural approach to algebraic problem-solving has been verified. However, his inability to use this

method when answering Question 1 is somewhat disturbing, perhaps hinting at the possibility that,

although a 'transition' from one conception to the other may occur, each may then continue to

develop separately with the initial link between them being forgotten or even lost completely. This

adds a further dimension to Kieran's (1992) statement: "The transition from a "process" conception

to an "object" conception is accomplished neither quickly nor without great difficulty" (p. 392). In

fact, as demonstrated by this small study, some students may never accomplish this 'transition',

implying that Sfard's 'deep ontological gap' between the two aspects may unfortunately never be

totally bridged. This is further exemplified by the responses of the fourth student, Faul, who was

successfully able to manipulate numbers as well as algebraic expressions. Hence the 'gulf' between

the procedural and structural aspects of algebraic problem solving appeared to have been 'bridged'

to some extent. However in Paul's case, this could be viewed as a 'one-way' crossing only as he
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was unable to immediately generalise from the particular in Question I and thus reduce the otherwise

necessary but laborious calculations. This hints at the possibility that these two perspectives,

'process-object', may develop independently of each other with a student often becoming proficient

in using either one or the other interpretation but lacking (or forgetting) the two-way connection

between them.

In conclusion, a final point that should be stressed is that the results of this study have at least two

far-reaching implications for the teaching profession. First, it appears that one of the major goals of

secondary school teaching, that of instilling in students the structural properties of algebra, is not

being achieved for all students. Thus the potential for these students to acquire the necessary

thought processes required for advanced mathematical thinking must be limited, at least to some

extent. Secondly, while a thorough development of both the procedural and structural conceptions is

desirable, the affinity between the two should not be de-emphasised once structural competence has

been achieved. Both play important roles in mathematical activity (Kieran 1992) and hence their

recognition and an awareness of the influence of their interconnection should be continually

reinforced so that a deeper understanding of the principles underlying mathematics is secured.
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WORD PROBLEMS: OPERATIONAL INVARIANTS IN THE PUTTING
INTO EQUATION PROCESS

CORTES Anibal
LabPSYDEE, 46 rue St-Jacques, Paris, France

Errors made by 9th and 10th grade students in putting word problems into equation
were analysed and classified. The classification' of all errors recorded during the experiment has
resulted in only three categories: a - Errors in the construction of mathematical correspondences. b
- Errors that concern the concept of equivalence and that of the unnknown. c - Errors in the
construction of a "calculable mathematical object.

The analysis of relationships between errors and the mathematical properties violated
allows the identification of inherent operational invariants for the putting into equation process.

Research in cognitive psychology concerning word problems has often focused on

the analysis of reasoning by analogy, for example Bassok and Holyoak (1989); Clement J. (1988).
In international publications devoted to mathematical education many authors

analyze the resolution of word problems. The passage from natural language to an algebraic
expression was analyzed by several authors in terms of syntactic and semantic translation,
MacGregor and Stacey (1993) have reviewed this research and focus their work on reversal error.

Several authors analyse the mathematical problem posing processes, Silver E.A.

(1993) has reviewed this research.
Other authors construct methods for the resolution of problems, see Filloy E. and

Rubio G (1993). Rojano T. and Sutherland R. (1993) recommend writing intermediate

mathematical expressions and then construct, by substitution, the equation of the problem. The

intermediate expressions become thus explicit, but the cognitive process underlying the writing of

these expressions remains unexplored.

The algebraic solving process is not analysed in this article, because: the solving of

equations or systems of equations is made by means of algebraic transformations that end to other

equations that are not, in general, related with the text of the given problem; there is therefore a

detour behaviour in the algebraic solving process. This conclusion allows us to analyze the putting

into equation process independently of the associated algebraic solving process. The operational

invariants that guide thought in the solving of equations can be found in Cortes (1993).

In this article the putting into equation process (notably the implicit cognitive work)

is modeled in terms of operational invariants.
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The theoretical framework and the experimental work.

Our theoretiCal framework is based on the "Conceptual Field Theory" (Gerard
Vergnaud, 1990). Cognitive behavior is modeled in terms of "schemes". The concept of scheme

was introduced by Piaget and later was further elaborated by Vergnaud, in order to find a model for

the acquisition of complex knowledge, in particular scientific knowledge. According to Vergnaud

(1990): "a scheme is the invariant organisation of behaviour (action) for a certain class of

situations... A scheme is made of four different kind of ingredients: operational invariants,

inference possibilities, rules of action, goals. The representational part is essential". The

operational invariants are mainly: implicit concepts (concepts-in-action) and implicit theorems

(theorems-in-action).

The analysis and the classification of word problems that appear in secondary school

text books, as well as the analysis and the classification of elementary cognitive mathematical tasks

necessary for putting word problems into equation, provide indices on the implicit nature of implied

cognitive processes. The analysis of relationships between errors and the mathematical properties

violated allows for the identification of inherent operational invariants for the putting into equation

process.

The experimental work: for the past several years we have focused our investigations using 7th

through 10th grade students. In this article, however, we will only discuss the results from the 9th

and 10th grade classes: 25 word problems were given to students (5 different tests comprised of 5

problems each) the resolution of which implies the construction of first degree equations.

The resolution of these problems implies: a) The possibility to construct a single-

unknown equation directly. b) The construction of a system of two equations (two unknowns). c)

The construction of a system of several equations that can be reduced to a system of two equations.

d) The construction of second degree equations that can be reduced to a first degree one by
simplification of terms.

For some problems it is necessary to write and to transform formulaes. Problems

concerning inequations and the the study of numerical functions will not be approached in this
paper.

Errors in the putting into equation process

All the errors observed in the putting into equation process can be classified into the

following categories:

a - Errors in the construction of mathematical correspondences.

b - Errors that concern the concept of equivalence and that of the unknown.

c - Errors in the construction of a "calculable" mathematical object.
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a - Errors in the construction of mathematical correspondences.

After reading the problem text students are faced with the construction or with the

identification of useful mathematical functions: a number (given or unknown) corresponds to only

one number (given or unknown). Each of these correspondences is a particular case of a numerical

function in which the algebraic expression is not known. The search for these correspondences is

guided by the necessity to construct one or several equations that will allow to solve the problem.

For example: A person has 120F more than a second person. When they have both

spent 360F, the first person has twice as much money than the second one. How much money did

each person have before making their purchases?

26% of students succeed: y + 120= x ; x-360= 2 (y-360) (x represents the money

of the first person and y represents that of the second person). The problem makes reference to

additive processes that unfold in time, in which there are initial states (x and y) which, after the

expense of money (transformation), will correspond to the final states (x-360 and y-360). The

conceptualization of these processes is necessary to construct a correspondence between these
states. For example: the initial state y for the second person will correspond to a state x, greater

(120F more) than the first; the functional relationship remains to be constructed. We observe that a

correspondence (sometimes evident) built correctly in natural language, can drive to an erroneous

numerical function. For example, many students propose x + 120= y instead of x= y + 120

30% of students make errors in the construction of these correspondences and write

false equivalences, for example: x + 120= 360* 2

or a system of equations 120 + x-360= 2y ; x-360= y

The next error: x + 120 + y-360= 2x + y clearly shows the meaning of the "summary of the
problem text" of the written equation: some students do not make a rupture with natural language.

Sentences are sometimes perceived in an ambiguous manner, for example: One pays a sum

of 1750F with 24 bills of 50F or 100F. How many bills are there of each kind? Some students write

the following equations: 24x= 1750 and 24y= 1750. This particular analysis of the problem leads to

absurd numerical solutions: the students do not check the plausibility of the results obtained.
Written equations do not translate relationships of the problem and thus the meaning of the symbols

x and y shift from the meaning of a number to that of a unit: "bills of 50F and 100F" respectively.

Conclusion: These errors always lead to a false equivalence: it is the written trace

that one analyzes. Therefore, in the analysis of implicit processes of thought it is necessary to go

beyond the written equations. The identification of relevant correspondences implies the respect of

the fundamental constraint of mathematical functions: only one image. Consequently, there is an

operational invariant: the concept-in-action of mathematical function expressed in terms of
correspondences between sets (modern definition of function). The students have never seen this

definition; a concept-in-action designates implicit operational knowledge.
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b - Errors that concern the concept of equivalence and that of the unknown.

Once pertinent correspondences (contained explicitly or implicitly in the problerit
text) are identified, students are faced with mental construction (implicit) and with writing the

equations. The introduction of the "equal" sign establishes a rupture with natural language. Each

equation has, in general, the meaning of an equivalence between magnitudes, and the terms of this

equivalence must therefore respect a constraint of homogeneity: to have the same units and the
same meaning.

An equivalence can be constructed: a) By the equality of two functions. b) By the
substitution of given numbers into a function. c) By the substitution of given numbers and functions

into another function. The mathematical functions giving origin to a first degree equation are, in
general, also of the first degree and of one or several variables; for example: y= 3x, y= 5x-20, 3x +
4y= z

b -1 - The functional relationship between variables is not constructed.

For example in the problem: One pays a sum of 1750F with 24 bills of SOF or 100F.

How many bills are there of each kind? From the first sentence one can construct a correspondence:

24 bills corresponds to a sum of 1750F; a numerical function can not be immediately constructed. It,

is necessary first to conceptualize that there is an unknown number x of 50F bills and an unknown

number y of 100F bills; and that the number of bills will total 24, mathematically expressed as: x +

y= 24. Moreover, the total sum (1750) must contain two sums of money: Si comprised of 50F bills

and S2 of 100F bills (the equation is: S1 + S2= 1750). It is also necessary to construct that S1
corresponds to x number of bills following the numerical function Sl= 50 x, similarly S2= 100 y.

Equations that model the problem are constructed from these numerical functions. This cognitive

work is generally implicit. Several students write the following equations:

50x + 100y= 1750 ; 24 (x + y)= 1750 (instead of x + y= 24).

The second equation "summarizes" a correspondence between sets (24 bills corresponds to 1750F):

the function z= 24= x + y (total number of bills) is not constructed. Also, the equation
24(x+y)=1750 does not respect either the homogeneity of the units and the significance of all its

terms, or the homogeneity of the significance of symbols inside a system of equations: x can not be

a "object or a unit" in an equation and a number of objects in the other.

Another exemple: A rectangular piece of land has a perimeter of I 10m. By
decreasing its length Im and increasing its width 1m, its area is increased by 4m2 What were its
initial dimensions?

30% of students succeed: 2x + 2y= 110m, (x-1) (y + 1)= xy + 4m2. An analysis in terms of initial

and final states can also be made for this problem. There is a correspondence between linear
measures and perimeter and there is another correspondence between linear measures and area. The

corresponding numerical functions are formulaes that the student is supposed to know. Some
students write: (x-1) + (y + 1)= 110 + 4.2. In this example 4.2 represents 4m2: for some students a
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length and an area have the same unit. There is therefore a failure in their concept of area and in the

conceptualization of the relationships involved in the problem. In this equation areas and perimeters

are processed indiscriminately: these errors are conceptual. This is similar for the following errors:

(x-1) + (y + 1)= 110 + 4 or x-1 + y + 1= 4m2 or (x-1) + (y + 1)= xy. These equations are not

equivalences because they do not respect the constraint of homogeneity.

Another exemple: A gardener wants to plant a surface with tulips, in which there

would be 3110 yellow tulips, 2110 red tulips and 30 black tulips. How many yellow tulips did the

gardener buy? Some students write "x number of yellow tulips; y number of red tulips" and then

the equation: (3/ 10)x + (2/ 10)y + 30= n. In this equation the significance of the unknowns shifts to

that of objects or a unit "tulips" and the numerical fuctions x= (3/10)n and y=(2/10)n are not

constructed. This type of error is very frequent.

b - 2 - Some errors are due to a failure to check the functional relationship between variables.
For the sentence "the length is 20 m greater than the width" many students propose L + 20= 1

(instead of L= I + 20), this equation has the meaning of the "summary of the problem text". To

check the validity of the written equation implies checking the functional relationship between
variables by means of numerical examples: the student (or the expert) will give to variable I a

numerical value (for example10) and then calculate the value of L and verify that "L is 20m greater

than 1". These errors are due to a failure to check: the numerical function underlying the equation is

not constructed.

b - 3 - The homogeneity constraint of units is not respected.

For example: A rectangular field has a perimeter of 5.28Km. Calculate its dimensions knowing that

the length is 220m greater than the width?

Some students, starting from the following equivalences (often implicit):

y= x + 220 and 5.28= 2 (x + y)

write: 5.28= 2 (2y + 220).

The homogeneity of units is not respected; in most cases these errors are due to a failure to check.

Conclusion: The equation concept, taking the meaning of equivalence between

magnitudes, is an operational invariant in the putting into equation process. The numerical
function concept necessary for the construction of equivalences is also an operational invariant.

In the construction of numerical functions and equivalences, thought is guided by the

principle: the respect of the homogeneity of terms that constitute the equation. This principle is

also an operational invariant.
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c - Errors in the construction of a "calculable" mathematical object.

The construction of correspondences, numerical functions and equivalences is
motivated and guided by the necessity to construct an equation or a system of equations (in
examples analyzed here). Furthermore the writing of a mathematical object will be the outcome of

the putting into equation process because it allows the calculation of the numerical value of an
unknown or several unknowns: it is, in this sense, a "calculable" mathematical object. The choice to

construct a particular mathematical object implies conceptualization of the mathematical properties

(of this object) concerning the possibility to provide the type of numerical result that one seeks to

calculate. The construction of a "calculable" mathematical object is an operational invariant.

c - 1 An erroneous substitution in the construction of a single-unknown equation. The
construction of a single-unknown equation often implies the substitution of an unknown by a

function. For example in the problem: A rectangular field has a perimeter of 5.28Km. Calculate its

dimensions knowing that the length is 220m greater than the width? The substitution of the function

is made, sometimes, in an erroneous manner: one constructs a function y=f(x) and then f(x) takes

the place of x instead of y; it is a conceptual error, for example:

y= x+220 , 5,28=2(x+y) which leads to 5.28= 2 (x+220+2y)

one ends thus with a two-unknown equation: a mathematical object non relevant for the solution. A

failure to check can lead to the following error:

y= x + 220; 5.28= 2 (x + y) leads to 5.28= 2 (2y + 220)

c - 2 - Errors that concern the concept of system of equations

c-2-a) The writing of two identical equations. For example in the problem: One pays a sum of

1750F with 24 bills of 50F or 100F. How many bills are there of each kind? Soine students write a

system with two identical equations: 50x + 100y= 1750; 50x + 100y= 1750.

In their concept of system of equations students lack mathematical knowledge that would allow

them to decide if the written system makes it possible (or not) to calculate the unknowns. The

former is a conceptual error.

c -2 -b) Impossibility to solve an "unusual" system of equations .

Students from 9th and 10th grade know the single-unknown equation and the system of two
equations as tools for solving word problems. A large number of students are able to solve systems

of equations, but only if they are written according to the "usual" script: ax + by= c; a'x + b'y= c';

they then apply quasi algorithmic procedures to solve them. These students stop after the
construction of an "unusual" system of equations, for example:

y=x+ 2x+ 4x+ 8x ; y=x+(x+ 22)+(x+44)+(x+ 66)
or y= (3/ 10)x , (2/ 10)x + y + 30= x or L=1 + 220 ; 5280= 21 + 2L

Some of these systems can be solved by the substitution of an equivalence into the other. The use of
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the linear combination method can imply the rewriting of an equation by means of an algebraic
transformation well known by students (for example L= 1 + 220 becomes L-I= 220). This type of

dead-end appears in classes where the teaching is focussed on the resolution of systems of the type:

ax + by= c; a'x + b'y= c'.

c -2-c) Dead-end in front of a system of equations the resolution of which mplies algebraic

transformations.

In the algebraic treatment of word problems, the detour behaviour can begin with algebraic
transformations that lead to a mathematical object that one is able to calculate. However, students

often construct equations with several unknowns that they do not transform (in order to put them in

the form that they can process). For example: (x + 5)/ (y + 5)= 9/ 11; (x-5)/ (y-5)= 2/ 3

or x + y= 50; y + z= 29; z + x= 35

Conclusion: These errors show: First, a limited conceptualization of the
mathematical properties of written equations (concerning the possibility to provide the type of
numerical result that one seeks to calculate). Second, the absence of the checking process.

Cognitive model of the putting into equations process.

Our cognitive model is the functioning of the scheme which governs the putting into

equation process. Some aspects of this model can be found in Cortes A. (1994).

The resolution of word problems has a purpose: the calculation of the numerical
value of unknown magnitudes by means of the construction of a relevant mathematical object: a

single-unknown equation (if one wants to calculate the value of only one unknown); a system of

two equations (if one wants to calculate the numerical value of two unknowns); a function; an

inequation... The choice to construct a particular mathematical object implies the conceptualization

of the mathematical properties of this object. The construction of a "calculable" mathematical

object is a principle that guides thought in the resolution of word problems. This principle provides

a means to select relevant mathematical relationships among the whole range relationships.

After reading the problem text, students are faced with constructing or identifying

useful mathematical correspondences: a number (given or unknOwn) corresponds to only one

number (given or unknown). Each of these correspondences is a particular case of a numerical

function in which the algebraic expression is not known. Consequently, there is an operational
invariant: the concept-in-action of numerical function.

Then, students are faced with the implicit or explicit construction of equations that

have the meaning of equivalences between magnitudes; the introduction of the "equal" sign
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establishes a rupture with natural language. The concept of equivalence is also an operational

invariant. However, the terms of numerical functions and written equations must have the same

units and the same significance and the coherence of the resolution process implies that symbols

have the same significance all through the solution process. Consequently we can define a fourth

operational invariant, a principle: the respect of the homogeneity of equation terms and symbol

significance. This principle guides the transformation of correspondences (natural language) into

numerical functions and allows then the construction of equations as well as the checking of the
validity of these equations: it establishes therefore an essential link between the conceptualization

of reality and mathematical modelization.

Conclusion:

Classifying errors according to the mathematical property violated, allows us to

classify errors that have different scripts into the same caterory. The type of teaching influences the

occurence frequency of certain errors, as well as their script.

The cognitive model that we propose takes into account the most important
conceptual aspects of the putting into equation process. The infuence of the teaching process is not

analyzed in this article, and neither is the checking of the numerical results and other processes.

The construction of a cognitive model of the putting into equation process is
intresting from a theoretical point of view and also from a practical one (e.g. teacher's training).
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A CASE STUDY OF ALGEBRAIC SCAFFOLDING: FROM BALANCE SCALE TO
ALGEBRAIC NOTATION

Jorge Tarcisio DA ROCHA FALCAO'
Universidade Federal de Pernambuco (BRASIL)

Graduate Program in Cognitive Psychology

A experience of introducing algebra to a group of 11 low-class and poorly-schooled
children from Recife (Northeast of Brazil) by a group of researchers coordinated by the
author is reported in terms of case study. This experience consisted in the proposal of a
didactic sequence covering a semester, and including four sets of activities: introduction of
the two-pan balance scale in order to make explicit some basic principles, passage to
symbolic representation and introduction of a new contract (represent first, solve later),
"scale-cleaning" using symbolic representation, and simbolic depuratim, with rewriting.
Clinical data suggest important acquisitions in terms of a new representational tool, for
which the two-pan balance scale has served as preparatory metaphor.

The experience reported here was conducted by the author during the period from August to
early December 1994, in the context of a larger project of assistance to poor children in Recife,
Brazil. This project has been supported by grants from European non-governmental organizations,
and consists in offering a professional training coupled with school-like activities in language and
mathematics. Professional activities offered include the crafting of marionettes and giant puppets,
bread production in bakeries, artisenal fabrication of candies and formation of waiters (for boys
only). The essential aim of the project is to offer these children an alternative to the streets, by
offering them an opportunity of learning a professional tool and having some school support. The
activities in mathematics mentioned above were conducted by a group of researchers and students of
the Graduate Program in Cognitive Psychology - UFPE, and consisted of three main topics, the first
two having been exaustively negotiated with the group: 1. new Brazilian currency (R$, real) and
decimal number system; 2. algorithms of subtraction and division and 3. introduction to algebra.
Activities concerning topics 1 and 2 were conducted by two associated researchers, assisted by
graduate students; topic 3 was under the coordination of the author of this report. The group of
researchers was offered complete autonomy in proposing mathematical activities during the
semester: there was no mathematics teacher to "negociate" with, no program needs to cover, no
curricula prescriptions nor specific time-table to take into account. We developed the complete
experience (three topics) in mathematics in 16 meetings that took place once a week, on tuesdays
afternoons, in the rooms of the CECOSNE Fondation at Recife. The group of 11 children (6 boys
and 5 girls) who participated in the experience reported here was heterogeneous both in age (12 to
17 years) and school level (6th grade to high school); this last aspect, by the way, must be considered
cautiously, since high-school students showed poorer level in elementary mathematics in a previous
evaluation than elementary 6th and 7th grade ones. Only two among all of the children ventured, upon
questioning, to offer a meaning to the word "algebra": the first one, a clever 15 year-old boy, 8th
level at elementary school2, stated that "Algebra... é o bicho!" (local popular slang corresponding
roughly to: Algebra... it's the boogie man!); the other one, a 16 year-old girl, 1' high-school level,
wondered if algebra wasn't "... uma coisa que tem a ver corn asa-delta" (something concerning
hang-gliders [called in Brazilian Portuguese asas-delta (delta-wings) because of their delta-shape]).
We discussed with the group the possibility of starting a set of mathematical activities concerning
algebra, without offering any previous definition of it (in spite of their insistence in having such a
definition). They agreed in starting studying algebra, provided that it wasn't too boring. We
proposed, in the next meeting, the first of three main sets of activities, all of them described below.

This study was sponsored by grants from FACEPE (Fundacao de Amparo d Ciencia e Tecnologia) and CNPq
(Conselho Nacional de Desenvolvimento Cientifico t Tecnologico).
2 In Brazilian public school system, algebra is frequentlly introduced by the end of the 7th grade.
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The experience with algebra covered 10 weekly meetings of aproximately two hours and a half each,
and were all registered by a research assistant.

1. Facing a certain problem and introducing some activities with the two-pan
balance scale
1.1. At the first meeting, the following problem was proposed to the group:
Joao had 5 bags of marbles and 2 more marbles, and his friend Pedro had 3 bags of
marbles of the same type of Joao's and 6 more marbles. The two boys had, in all, the same
number of marbles. How many marbles were there in each bag?

This problem sparked a lively debate between two blocks of opinion in the group: the first one, under
the leadership of S., a 15 year-old girl, grade/high school, stated that the whole problem was a
trick, since it wasn't possible to have two people (Joao and Pedro) owning each one a different
number of bags and extra-marbles and, concomitantly, having the same number of marbles; the
second block of opinion proposed that it was possible to find out the number of marbles, provided
that we were very patient and lucky and tried a lot of possibilities (a small "sub-group" inside this
block of opinion stated that, in fact, we could not find out a precise number, since there wasn't a
precise operation to do in order to calculate the number of marbles). In spite of this second bloc of
opinion, none of their members tryed to "patiently" find out the number, and the first meeting was
over without any answer at all.
1.2. At the second meeting, we proposed to postpone the debate about Joao and Pedro's problem,
and to start thinking about a series of situations concerning the use of the very familiar two-pan
balance scale. Five basic situations in the two-pan balance scale were then explored and discussed
with the group during this and the next two meetings. It is important to mention that these situations,
represented pictorially in the table I, were presented to the children with an actual scale. Among the
set of five situations, situations 3 and 4 were especially discussed, since for many of the children they
displayed an inproper, messy set-up, caused by two violations of the two-pan balance scale canonic
lay-out: 1. known weights in both pans (situation 3); 2. unknown weights in both pans (situation 4).
The group was then motivated to discuss a strategy of "cleaning" the scale, in order to be able to
find out the unknown weight. A basic theorem-in-action (Vergnaud, 1985) concerning the
fonctioning of the two-pan balance scale (), with its logical consequence (*), was previously
explicited in the form of a principle : [Principle 1] we have to have equal weights in each of the two
pans of the scale in order to have these pans in equilibrium; * [Consequence] if the pans of a two-
pan balance scale are in equilibrium, then there are equal weights at each pan. By the end of the
fourth meeting, a small sub-group proposed that the right way to proceed, in situation 3, was to take
away the 20g weight in the right pan of the scale; the violation of the basic principle of the two-pan
balance scale was resolved when a complement of the proposition above was produced in the
following terms: we take away 20g from the right pan of the scale, and [Principle 2] we do the same
in the left pan, in order to keep the pans in equilibrium. The (proposital) lack of a 40g weight
forced the group to propose an important complement to the most recent principle: in the absence of
concrete weights to put in the pans of the scale, we can make believe the substitution was done.
Despite this important and consensual achievement, the transfer to situation 4 was not direct and
immediate, since many of the subjects stated that this situation was very different of situation 3: "In
situation 3, we know the weights, so we can take them away or just to imagine we've done so; in
situation 4, we don't know the weight of the corn packages, and we can't do anything upon
unknown things!" (S., 15 year-old girl, grade/high school, the same girl who stated the
impossibility of solving Joao & Pedro's problem). The debate sparked by this restriction was very
interesting and intense. In fact, S. didn't have a good answer to the important question.asked by a
little 6th grade 12 year-old boy: "WHY can't you take way one. corn package from each pan if you
know the scale will keep the balance?" The group was then convinced that the principle of taking
weights away (factually or making believe) could be extended to situations where the weight of the
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package was unknown, provided that principles 1 and 2 were respected. Situation 5, a combination
of difficulties of situations 2 and 3, provoked an unexpected discussion on "procedural order" taken
seriously into account by the group: when we have to "clean" known and unknown things in the
scale, by which one we begin: knowns or unknowns? They decided, as a social contract (not strictly
respected, in fact), to begin always by known things. Once these two important principles (1 and 2)
explicited.and refined by the group, we started the second set of activities, described below.

Table 1 : Set of basic situations explored in the two an balance scale
1

0 Nei

2

3

0
60g r

4

90g
li,It 6611)4'11

5

0
70g

0

s I 1111®' n=?

2. Describing scale dispositions and installing a new contract: represent first, try
to solve later
2.1. At the fifth meeting, the subjects were introduced to a new activity, consisting of representing,
in a diagram prepared by the author (see reproduction in figure 1 below), a new set of situations in
the two-pan balance scale. This activity was presented to the children as a scale-dictation, in analogy
with the familiar situation of class-room dictations; they were asked to represent, in the paper, four
situations proposed in a real scale, using known and unknown weights. These situations
corresponded to the following algebraic structures: x + a = b; 2x +y+a=b+y+ x; 2x y + z +
a=2x+y+b andx+y +a+b=y +c
At the very begining of this activity, a new contract (Brousseau, 1988; Schubauer-Leoni & Perret-
Clermont, 1985; Schubauer-Leoni, 1986; Perret-Clermont, 1992) was for the first time introduced:
avoid trying to find Out the value corresponding to the unknown weigth, trying instead to initially
represent the situation, with the aid of the scale-diagram. Although everybody gently and
immediately seemed to agree, we soon realized how difficult it is, in fact, to postpone the resolution
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Figure 1: diagram proposed as auxiliary paper and of a problem or problem-like situation, "wasting
pencil tool for the representation of scale-situations time with drawing and writing", as one of the

subjects said. It is very comprehensible: they
were under another implicit, older and stronger
contract which states that the longer someone
spends in finding the solution gf a school-
problem, the more "burro" (stupid) he/she is.

As a consequence, the new contract (concerning the priority of representation over resolution) had
to be re-taken plenty of times. We also discussed the meaning of the equal sign ( = ) in the auxiliary
diagram above mentioned. They accepted without discussion that this equal sign, in this particular
context, did not represent an identity between the content of each scales's pans, but rather the
equilibrium of the pans caused by the equality of weights in each pan of the scale. The third and
equally important point of discussion concerned the representation of unknown weights in the
diagram. Since the group was especially worried about time-spending in the task-solving procedure,
it was easy to negociate the introduction of a simplified representation for the known and unknown
entities in the scale: we proposed small geometric figures (circles, triangles and squares) to represent
the packages (unknown weights), and numbers to represent known weights. This very question of
codification generated a very important debate, since one of the subjects (A., 6th grade) decided to
use squares as simbolic representation for unknowns, and represented by the same symbol (the
square) different packages (corn and flour) put on the scales's pans. This proposal was criticized by
L. (Id grade, high school), who called the attention of the group to the non - differentiation of
different entities in A.'s representation. L. proposed, then, an alternative representation where
different packages were coded by different symbols (squares and a triangle: see figure 2 on the next
page). A. argued that "the teacher had allowed the use of any symbol to represent tin/mown things"
[what is true] , and he had the right of choose the squares, but he and the rest of the group was easily
convinced to adopt L.'s representation. We explaned, then, our third principle: [Principle 3] different
things must be represented by different symbols in the scale diagram. Later, this principle was
refined after a debate caused by some troubles in the representation of a complex scale lay-out:
sugar, salt, salt, corn, known weight (first I an), corn, sugar, known weight (second pan). One of the
subjects decided, coherently with principle 4, to utilize three different symbols in the left pan, but
violated the correspondence food package +4 symbol in the right pan (triangle for sugar in one pan,
square for sugar in the other). The debate led the group to refine principle 3 with an addendum in the
following terms: [Principle 4]: once a .symbol is chooser, for representing something unknown, this
symbol cannot he used to represent another unknown entity, and the relation previously established
between symbol and thing represented cannot he changed in the context qf a particular scale-
diagram: The group was, then, able to represent many situations proposed in the two-pan balance
scale; we passed, then, to another set of activities, consisting of representing not more scale-
dispositions, but problems, in the same scale-diagram.

2.2. The first problem proposed' is reproduced below:
Amanda and Tiane like to collect samples of stationery. Amanda's collection is composed by 70
especially-decorated individual sheets of paper, Tiane. has 10 individual sheets and two similar
blocks of sheets given by her father. We know that the two girls have the same number of
individual sheets of stationnery. How many sheets of stationnery are there in each of Tiane's
blocks?

The transposition from scale representation to problem representation required the group to work
upon two aspects: I. To discuss once more the contract giving temporal priority to representation
over problem solving procedure; 2. To forget the two-pan balance scale itself, and start considering
the derivated diagram, since the group was facing situations concerning other equalities (e.g.,

3 This problem is part of a set of problems proposed originally by Lins Lessa, I994,and adopted in this study.
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number of stationnery sheets) than weight equality. After having represented these problems, we
passed to another group of activities, consisting of solving the situations represented (values of
unknowhs in scale dispositions and solutions in problems) through "scale cleaning-up".

Figure 2: Scales's disposition and respective A. and L. propositions of representation.

flour corn flour corn

Scale's original disposition

+ 20 40 +' +2g 4g+

11,

Representation proposed by A. Representation proposed by L.

3. The "scale cleaning-up" activity and symbolic depuration
This set of activities covered the three last meetings, and consisted of a symbolic

transposition from motoric, effective activity of 'taking away packages from the pans of an actual
scale to an activity of eliminating icons (representing unknowns) graphically, taking into acount
principles I and 2 (Figure 3 reproduce the activity of scale cleaning proposed by R., 5th grade). All
representations previously proposed were then given back to their proposers in order to be "cleaned-
up". A four-point procedural sub-contract was stablished for the cleaning-up procedure: I. Make
explicit which icon-unknown would have its value searched; 2. Keep in mind principles I and 2; 3.
Rewrite the new scale set-up after each round of scale cleaning-up; 4. Reach a final line of rewriting
with the format icon = value. The piece of protocol on the next page (Figure 3) illustrates well
these points. After this activity, many problems were then proposed in order to be represented and
then cleaned-up. It's important to mention that, at this phase of new problems, the auxiliary diagram
proposed was first reduced to a simplified form, and then reduced to the equal sign, as shown in
figure 4. We tried, at this phase, avoid mentioning scales explicitly, talking instead about principles
(especially principles I and 2) aplicable to representational situations. We also discussed ways of
refining representational propositions, and the group was able to propose two main refinements: I.
Substitution of a series of icons of one type by a numeric coefficient folowed by the icon (e.g., 30
instead of 0 0 0 ); 2. Substitution of the connector "and" by the operator + (plus), in the
transposition from natural language to representational language.. We proposed to add a final
procedural item of contract in combination with the two itens above: representing the familiar icons
(triangles, circles and squares) by some specific letters, those at the end Of the alphabet: X, y and Z.
This substitution was very well accepted by some of them, since they realized that their
representations had rejoined those in mathematics books. The whole work was then completed by an
invitation to bring to class their algebra books, in order to work over some algebraic expressions and
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problems considered very difficult by themselves. Because of time limits, only one meeting (the last
one) was dedicated to this activity, during wich S. was also invited to reconsider the problem of Jam
and Pedro, in order to verify if it had a solution: after having represented the problem, she easily
cleaned it up and solved it, with a shy smile of satisfaction.

Figure 3 : reproduction of R.'s protocol

Figure 4 : simplification of auxiliary representational diagrams offered during the didactic
sequence

Auxiliar diagram 1 Auxiliar diagram 2 Auxiliar diagram 3
Scale-disposition dictations and Problem dictations and New problems, cleaning-up

cleaning-up cleaning-up and rewriting

4. Discussion
This work represents an incursion of the author in the terrain of mid-term didactic projects

directed to school-like groups, without the methodological comfort provided by experimental and
quasi-experimental designs.

A certain set of ideas presided the didactic sequence reported here in its main traits. First of
all, the idea of an epistemological gap between arithmetic and algebra (Vergnaud et al., 1988). This
gap (which dialectically shares epistemological relevance with the idea of continuity (Da Rocha
Falcao, 1992; 1993)), can assume many aspects, one of the most important concerning explicit and
implicit contracts undergoing arithmetic and algebraic procedures. In fact, the arithmetic procedure
implies an immediate search for solution, represented by the calculation of intermediate values in
order to reach a final answer. Algebraic procedure, differently, postpone the 'very activity of
solution's search and begins by a formal transposition from empirical domain or natural language to
an specific representational system. Because of this, much entIrgy was directed in the didactic
sequence presented here to the negociation and installation of a new contract: represent first, try to
solve later.

Symbolic representation is a key psychological aspect in the development of algebra and
many other conceptual fields (Vergnaud, 1990) in mathematics because of two points: first, it is not
a result or superstructure of Operational structures, as *proposed in the context of Piagetian theory
(Piaget, 1970; 1975) but rather a constituent of concepts, with operational invariants and situational
links that gives socially shared meaning to knowledge (Vygoisky, 1985)); second, it opens to a
particular individual a wide range of symbolic cultural tools that, as cultural amplifiers (Bruner,
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1972), enables one to access new instances of conceptual construction. So, representations provide
metaphors that can be useful as pedagogical tools in the context of an effort of didactical
engineering (Artigue, 1988); these metaphors help in amplifying pre-existing schemes (Vergnaud,
op.cit.), since they provide semantic links between structured knowledge and new pieces of
information. In this process of enrichment of meaning, a quite important psychological sub-process is
represented by the explicitation of theorems-in-action (Vergnaud,1994), upon which are established
many practical competences exercised in daily life. The proposal of the two-pan balance scale
represents an effort of offering a metaphor of algebraic equivalence between equations, based in the
conservation of a pre-stablished fonctional equality between each side of an equation. The
construction of meaning for the equivalence of equations (essential aspect for the comprehension of
algebraic algorithms) is initially connected to the familiar idea of equilibrium, in the context of a
culturally familiar artifact, the balance-scale. This idea of equilibrium is frequently poorly explicited,
although people can make a competent use of a two-pan balance scale in order to sell or buy fish in
Brazilian popular markets; nevertheless, equilibrium as theorem-in-action is based upon two
explicitable principles (see section 2. As a metaphor, the balance-scale offers a context of cultural
fonctionning where complex mathematical concepts (algebraic equivalence and algorithmic
manipulation) can be initially rooted in competences and theorems-in-action (Schliemann and cols,
1992), enriching pre-existing schemes. The balance-scale also offers a support for symbolic
representation, which semantically and syntactically sets the fondations for the introduction of
algebraic formalisms. This is one of the reasons why we have passed, very quickly, from the actual,
concrete balance-scale to a scale-diagram and to an even more abstract diagram (figure 4). This
passage is also important because of a central point concerning the use of metaphors in general: if it
is valuable to introduce metaphors in the effort of scheme enrichment, it is equally important to leave
them behind as soon as possible, in order to avoid an undesirable over emphasis on the scaffolding,
so to speak, at the expense of hiding the architectural structure one is interested in analyzing. I other
words, the concept of algebraic equivalence can not be reduced to the idea of balance on a two-pan
balance-scale. I would finally say, quoting once more G.Vergnaud, that "(...) symbolic systems can
be "conceptual amplifiers" (...), provided we never forget that they can be misleading, that their use
raises specific difficulties, and that they ale not the real thing in mathematics" (Vergnaud, 1987,
p.232).

The reflection above leads to the last point to be discussed here: what did the children learn
after this semester-long work? Did they understand algebraic equivalence? Did they build up the
concept of algebraic variable? Was the passage from principle 2 to algebraic script-algorithm of
equation processing sucessfull? Is the competence shown in algebraic problem solving at the last
meeting indicative of effective scheme improvement? These are complex and important questions.
First of all, scheme improvement cannot be assimilated to the simplistic, false dichotomy of being or
not being able to do something; a scheme, as an invariant organization of behavior for a certain class
of situations, made of operational invariants, goals, expectations, anticipations, rules of action and
inferences, cannot be reduced to a frozen competence disconnected from its socio-cultural ecology,
its situated meaning (Meira, 1993). It is time for cognitive psychology to leave behind "general
problem solvers", universal algorithms and "central" heuristics: cognition is not an intransitive,
decontextualized entity (Lave, 1988). So, there is not an easy and unique answer for the question
that opens this paragraph: a careful, multi-task and long-term evaluation must be done in order to
assembly elements of answer. Nevertheless, clinical data immediately available seems to allow the
following two points in terms of possible achivements due to the didactic sequence reported here:
I. A new contract (represent first...) was established; it does not mean that other contracts were
simply substituted, but we seem to have succeed in negociating their social allowance for a new one.
2. A new representational tool (the diagram), their two operational principles and procedural sub-
principles are now available for a certain class of problems.

These two points touch the very core of a new, incipient and workable scheme, upon which
the pedagogigal effort of teaching the basics of algebra goes on.

80
2 -72



REFERENCES

Artigue, M. (1988) Ingenierie didactique. Recherches en Didactique des Mathimatiques, vol. 9, 3,
pp.231-308.

Brousseau, G. (1988) Le contrat didactique: le milieu. Recherches en Didactique des
Mathimatiques, vol. 9, 3, 309-336.

Bruner, J.S. (1972) The relevance of education.. Middlesex, Penguin Books
Da Rocha Falcao, J.T. (1992) Representation du problime, icriture de formules et guidage dans

le passage de l'arithmetique a Palgibre. Unpublished doctoral thesis. Paris, University Paris-V
/ Sciences Humaines - Sorbonne.

Da Rocha FalcAo, J.T. (1993) A algebra como ferramenta de representacao e resolucAo de
problemas. IN: Schliemann, A.D., Carraher, D.W., Spinillo, A.G., Meira, L.L. & Da Rocha

J.T. (1993) Estudos em psicologia da educaglo matenuitica. Recife, Editora
Universitaria UFPE.

Lave, J. (1988) Cognition in practice. Cambridge, Cambridge University Press.
Lins Lessa, M.M. (1994) 0 use da balanca na iniciacdo do ensino de algebra: vantagens e

limitavdes. Unpublished master thesis. Recife, Universidade Federal de Pernambuco.
Meira, L. (1993) 0 "mundo real" e o dia-a-dia no ensino de matematica. A Educacdo Matematica

em Revista, 1, I, pp. 19-27.
Perret-Clermont, A.-N. (1992) Transmitting knowledge: implicit negociations in the student-teacher

relationship. IN Oser, F.K., Dick, A. & Patty, J.-L. (Eds.) (1992) Effective and responsible
teaching: the new synthesis. San Francisco, Jossey-Bass Publishers.

Piaget, J. (1970) L'Epistimologie ginitique. Paris, Presses Universitaires de France ("Que sais-jer
n° 1399).

Piaget, J. (1975) L'Equilibration des structures cognitives. Paris, Presses Universitaires de France.
Schliemann, A.D., De Avelar Brito Lima, A.P. & Lins Santiago, M.M. (1992) Undestanding

equivalences through balance scales. Proceedings of the XVI Annual Conference of the
International Group for the Psychology of Mathematics Education, Durham, New Hampshire.

Schubauer-Leoni, M.L (1986) Le contrat didactique: un cadre interpretatif pour comprendre les
savoirs manifestos par les eleves en mathematique. European Journal of Psychology of
Education, (1),2,139 -153.

Schubauer-Leoni, M.L., Perret-Clermont, A.M. (1985) Interactions sociales dans l'apprentissage de
connaissances mathematiques chez l'enfant, in: MUGNY, G. (ed) (1985) Psychologie sociale
du diveloppement cognitif. Berne, Peter Lang, pp.225-250.

Vergnaud, G. (1985) Concepts et schemes dans une theorie operatoire de la representation.
Psychblogie Fran faise, 30 - 3 / 4 pp.245-251.

Vergnaud, G. (1987) Conclusion (Chapter 18) IN: Janvier, C. (ed) (1987) Problems of
representation in the teaching and learning of mathematics. Hillsdale, Lawrence Erlbaum
Associates.

Vergnaud, G., Cortes, A. & Favre Art igue, P. (1988) Introduction de l'algebre aupres de debutants
faibles: problemes epistemologiques et didactiques. IN: Vergnaud, G., Brousseau, G. & Hulin,
M. (1988) Didactique et acquisition des connaissances sciendfiques (Actes du Colloque de
Sevres - mai/1987). Paris, Editons La Pens& Sauvage, pp.259-280.

Vergnaud, G. (1990) La theorie des champs conceptuels. Recherches en Didactique des
Mathimatiques, 10-23, pp. 133-170.

Vergnaud; G. (1994) Le role de l'enseignant a la lumiere des concepts de scheme et de champ
conceptuel. IN: Artigue, M., Gras, R., Laborde, C. & Tavignot, P. Vingt ans de didacdque des
mathimatiques en France: hommage a Guy Brorusseu et Girard Vergnaud. Grenoble, La
Pensee Sauvage.

Vygostsky, L.S. (1985) Pensie et langage. Paris, Messidor.

2 -73 81



THE ABSOLUTE VALUE IN SECONDARY SCHOOL. A CASE STUDY OF
"INSTITUTIONALISATION" PROCESS.

Marie-Jeanne Perrin-Glorian
Equipe DI DI REM, Universite Paris 7

Abstract
The present research intends to study the process of "institutionalisation", i.e. all that the teacher

uses to give to the mathematical knowledge of the students a status according to what is expected by
the institution at this grade of school, and to identify relevant variables on the side of students and on
the side of teachers, in relation with the knowledge at stakes. Here the knowledge is the absolute
value. We analyse the change in the French curriculum, the choices of two teachers, and we compare
the same lesson done by the same teacher, in the same week, for 2 different classes : a "good class"
and a "weak class", we look for differences in the students'work, differences in the discourse of the
teacher. An effect of the differences in the knowledgre of students and in their work is that the same
lesson of the teacher can be a clarification for some of them and an abstract discourse getting very few
links with their own activity for others.

1. Problematics and methodology
1.1.The problem

In our previous researches (1990, 1991, 1993), we identified from observations of classes and
interviews with teachers and students, some phenomena especially perceptible in "weak" classes,
namely :

- something like an opposition between a logic of learning and a logic of success : the desire of
getting a short-range success for the students may impede learning and long-range-success ; it looks
like the teacher gives to the students the ways to solve exercices instead of obtaining a real learning
from them.

- the difficulty to find a balance between the construction of the sense of the mathematical concepts
and the acquisition of basic mechanisms as algorithms

the inclination of teachers to reduce mathematical teaching to teaching of algorithms.
Those phenomena are related to contrainsts (time, students themselves who ask for algorithms,

the need for the teacher to get some successful results for the students and so on) and lead to the "no-
learning" of some students. The contrainsts affect especially institutionalisation (Brousseau 1987),
namely all that the teacher uses to give to the students' mathematical knowledge a status according to
what is expected by the institution at this grade of school.

This process of institutionalisation is on the teacher's responsability. It takes various forms and
appears on several occasions in the class : during the lecture, conclusions of problem solvings,
remarks, recalls, but also for instance through the choice made by the teacher of the exercices given,
especially for evaluation.

A very important point is the articulation between this institutionalisation and the sense actually
involved by the students during activity of problem solving. Even if students use with sense in
problem solving some tool that we can identify as a mathematical concept, the choices for the teacher
are quite tightened : without institutionalisation, most of the students remember only the context of an
activity and cannot use the same concept to solve another problem, but after the lesson, when
definitions and formalisms are given, we may often observe a loss of sense for some students.

For example, on the one hand, after an activity to learn fractions from sharing rectangles, some
students think that they learned to share rectangles, so it is not surprising if they did not use those
'fractions to deal with lengths for instance, but, on the other hand, after the lesson, when fractions are
written with numbers, we can observe errors like "one sixth is the double of one third" and so on.

The present research intends to study this process of "institutionalisation" and to identify relevant
variables on the side of students and on the side of teachers, in relation with the knowledge at stakes.
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On the side of the knowledge, we study its place in the curriculum, in handbooks (which knowledge
is aimed to, what types of exercices are offered, what relationships with other knowledge in the same
grade, in previous grades, in future grades) and the evolution of this place. We study also the choices

of the teachers : organization of their teaching, types of exercices, evaluation...
On the side of students, we pay attention to the links they make between problem solving and the

teacher's lesson : we try to identify the knowledge used by students in problem solving, by
themselves or with the mediation of the teacher, how this knowledge is modified by interactions
between students or under the influence of the teacher. We also pay attention to home work, the way
students prepare the tests, how they learn for these tests and by these tests and we search a possible
relationship between specific successful problem solving for instance and global successduring the

school year.

1.2. Methods
In order to do this study, we have chosen to make some cases studies by observing several

classes on the same mathematical topic. We are collaborating with a sociologist to study the
interaction of cognitive and social factors.

We have chosen the 10th grade (15-16 years old) because it is in France the first year of "lycde"
(10th to 12th grades) and the last year before orientation into scientific, literary or economic sections.
We have taken into account three variables : the mathematical topic, the teacher and the class.

We selected two mathematical topics that are new at this level : the absolute value (including the
absolute value function) and homothety. The first one is a bit marginal in the curriculum at this level.

The second one has a more important place : it is an opportunity to use the vectoriel calculus which
has been introduced two years before, about translation but only with addition : the multiplication of a
vector by a number is new in this class.

For the teacher, one variable which we selected is his experience : for the mathematical topics
selected, we planed to observe teachers who are used to teach in lower grades and others who are
used to teach in higher grades with the hypothesis that the first ones will be more attentive to the
consolidation of previous attainments and the second ones to the preparation of future knowledge.

For the class, we intended to observe the same teacher in two classes of the same grade but not
with the same knowledge : one considered as a "good" class and one as a "weak" class.

We have got observations in the classes, students'tests, interviews with teachers and with
students...

The research is still in progress and here we present one topic : the absolute value (analysis of the
new curriculum, choices of 2 teachers) and the observation of one lesson of the same teacher in two

classes of different levels.

2. The teaching of the absolute value
2.1. A new presentation of the absolute value in the French curriculum.
2.1.1. The classical teaching of this topic before 1990.

In the precedent curriculum, the term "absolute value" was introduced (up to 1986) in the 6th
grade in the same time as relative numbers : it was defined as the number without the sign, namely a
relative number has a sign and an absolute value, a number and its opposite have the same absolute
value. In the 6th and 7th grades, it was used to express the rules of operations on relative numbers,
but it was (up to 1988) actually studied and used on and after the 8th grade (13-14 years old), with
regard to relative numbers and points marking on a graduate line, but also functions (that were
introduced on the 8th grade too), solutions of equations.

It was introduced and treated from a numeric and an algebraic point of view. The definition of Ixl

was given in one of the following ways: "the positive number among x and -x", or "Ix1= x if x Z 0
and Ix! = -x if x 5 0." It was used to make some exercices a little more difficult, for instance
resolution of equations and inequations. We found in 8th grade exercices like
"Find all the real numbers x such that Ixl< 3 ; 1 < Ixl< 2 ; Ixl> x ; Ix! < x ; lx - 11 < 2 ;

12x +91 < 3,5 ;14x-5I = 3". Sometimes, it was required to place these numbers on a graduate line.
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There were sometimes more difficult exercices even in 8th grade, like :
2xx:32"Calculate the rational numbers x such that = 2" or "1233:---(-132 5 2" ;

"Find all the x such that 1x2 -41 + lx-21= 0", "Ilx-11-11= I", "Ilx-11-11 5 1"
"Interpreting absolute values as distances between points on a graduate line, find x such that lx-21 +
1x-31 = 5", lx-21 + lx-31 > 2".

The notion of function was introduced in this grade and we found also exercices like :
"Consider the function f defined by f: IR -- IR f : x lx-21

1) Calculate f(2) ; f(-5,5) ; f(--15-) ; f(0) ; f(-1)

2) Let x be a real number superior or equal to 2. Compare real numbers (x-2) and lx-21
Prove that the real number 3,5 is the image by f of one and only one x superior or equal to 2 ; find
this x.

Same question for
3

; 5,5 ; 1

3) Let x be a real number inferior to 2. Compare then real numbers (x-2) and Ix -21
Prove that the real number 3,5 has one and only one antecedent inferior to 2 ; determine this
antecedent.

Same question for
3

; 5,5 ; 1.

4) Is the function f a bijection from IR onto Ile ?"

In the 10th grade, the properties of the absolute value were restated at the same time as
approximations, but in the exercices on approximations, expressions with inequalities were more
used than the absolute value. Nevertheless, there was a large use of the absolute value in the exercices
about functions : " Study and draw the graph of the functions f(x) = 1-2x2+5x+31 ;

f(x) = x2-1x1 ; f(x) = 149x1 ; f(x) = r,T_T[ f(x) = lx1-nT2rc-41 ; f(x) =

However, the official instructions and commentaries on the curriculum of 10th grade precised
since 1982 about the absolute value : "the essential point is to be able to interpret lb-al as the distance
between the points a and b, relations such that lx-2k1 or lx-21<1/100 with intervals the centre of
which is 2, to be able to do some simple majorations using the triangular inequality... The sudy of
some piecewise affine functions is a reasonable objective. Other examples accumulating absolute

values, as the study of the fuction 1x-1x-111 or the solution of the equations 11x1-31 + 12+1x11 = 1 or 12i-cx_+,51

= 4.(2x-E-5)2 are dependant on gratuitous technics and can do nothing but repulse students."

2.1.2. The new curriculum
The absolute value caused a lot of errors for students many years after its introduction (see for

example Duroux, 1983 or Chiarugi, Fracassina, Furinghetti, 1990). In particular, students hardly
accept that lx1 may be -x, and when they have to study lx-21, they distinguish the cases x>0 and x<0.
These errors seemed to be related to the early definition of the absolute value as the number without
sign. So this notion has been considered as difficult and of no real use for this grade, and now,
students (the first were those who began secondary school in 1986), meet the absolute value for the
first time in the 10th grade (since 1990), as a distance on the real line and as a particular function (the
theme of functions is important for this grade and it is also new : before, there are linear and affine
functions but the notion of function is no longer introduced in the first years of secundary school).
Exercices like those above have disappeared from 8th grade, we now find some of them in the 10th
grade. Some others cannot be offered even in this grade because there is no longer definition of
function, bijection and so on and the only functions composed with an absolute value thatare now to
be studied in this grade are of the type lx-al + b.

In the new handbooks, the absolute value is defined as the distance between x and 0. The
distance between numbers is said to be the usual distance between the points getting these numbers as
abscisses on a graduate line : "the largest minus the lowest"). Some handbooks define la-bl as d(a,b)
before defining lal as the particular case where b = 0. They don't speak of invariance of distance by
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translations to justify that the two definitions given for lx1 when x=a-b are the same. According to the
official instructions, the links between absolute value and definitions of intervals are reinforced,
equations and inequations like lx-al =b or Ix -al sb are first solved in a geometric way.

Does this new curriculum allow to avoid the difficulties described above ? It is difficult to know.
We have some informations by the evaluation made by APMEP' (1991). But as the competences
expected from students at the end of 10th grade are quite low, there are few questions about the
absolute value. The relationship between absolute values and distances seems better. Nevertheless,
students succeed the translation from distances into absolute value for the definition of intervals the
center of which is positive but the other cases and the translation in terms of inequalities are not yet
mastered : among 1800 students,
- 86% can tranlate d(x.,7) 5 3 in lx -71 s 3 but 48% only can tranlate the same in 4 5 x s 10 ;

- 42% can tranlate lx+515 1 in d(x;-5) 5 1 and 29% in -6 5 x 5 -4 ;
- only 29% can translate -2 < x <2 in d(x;0) < 2 and 28% in !xi< 2.
This evaluation took place the first year after curriculum had changed and perhaps teachers had not
yet completely changed they way of teaching this notion which was not new in this grade before.

Chiarugi and al. found only 39% students 14 years old but 80% 17 years old able to draw on
the real line the interval such that Ixl < 3.

It is difficult to compare the other questions, except the better success in numerical questions
than in algebraic ones : 41% gave a right answer for the 4 questions (yes, no, I don't know):
if a = -5 ; b = 25 ; c = -13, then la-b1= 20 ; Icl = -12 ; a + lb-cl = 33 ; la-bl - la+bl = 10,
but only 20% gave a right answer for the 4 questions : whatever reals numbers are a and b, we can
say that la-bl s a ; la+bl z a+b ; la+bl a lal + Ibl ; la+bl s !al + Ibl.
For the function aspect of the absolute value, 60% can draw the right graph for g defined by g(x) = Ix!
and 53% can complete the variation table
x -5 7
g(x)

2.2. What type of problems is the absolute value a suitable tool for ?
The absolute value is a tool to have shorter formulations, to define functions with only one

algebraic expression, instead of several ones, as an example it is a convenient way to express square
roots : (1117-0)2 = If(x)1 or positive magnitudes as distances, areas... but one may always avoid it by
considering several cases. Moveover, to solve equations or inequations, you have to remove the
absolute value and distinguish cases. But, since there is no longer formalisation of the notion of limit
in secondary school, the expressions the students have to consider can often be written easily without
the absolute value; so it is not very useful for problem solving. So, the status of this concept makes it
difficult to introduce as an implicit tool to solve a problem. Morever, it is nearly impossible to find a
problem which is not given in a mathematical form and for which the absolute value is a suitable tool
for solving it (see for instance the problem analysed in 3.1.). If we want that the students use this
concept, we are nearly obliged to ask them to do it by exercices which need translations between two
langages, for instance intervals defined by their ends or by their centre and radius like these :

I Association of teachers of mathematics
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valeur absolue distance droite des reels encadrement intervalle
lx-215 3 d(x; 2) s 3 -1 s x s 5 x E [-I ; 5]1."`15- 91f,,y,,,s-,
Ix! s 7

Ix -115 3/2

d(x; 5) s 9/2

lsxs4
x E [-7 ; -2]

lx+3/21s 2

1,4 s A/2 s 1,5

A/3 E [1,73 ; 1,74]
In 22/71s 10-2

In other exercices as study of functions, the function o study is given with an absolute value
and the student has to distinguish different cases to study it. It is difficult to find a problem in which
the student has to use absolute value to define a function because it is always possible to do it whitout
the absolute value, except if the student has to enter this function in a computer or a calculator, for
example to'draw the graph. The absolute value provides also means to make counterexamples : it
gives the only function studied at this level that is continuous and not differentiable everywhere. For
this, it is used, as square roots, to produce functions more difficult to study and to give the
opportunity of studying the sign of algebraic expressions, as we saw in the analyse of handbooks.

2.3. The choices of two different teachers
We observed the lessons prepared on this topic by two teachers : teacher A has a long experience

of teaching in the first years of secondary school : he had teached for nearly 20 years in a "college"
(6th to 9th grade) and 2 years in a "Iycee" before the observation ; teacher B has always been in a
"lycee" (for about 18 years) and he teaches in "Terminale C" (the beginning ofcalculus, the last year
of secundary school for students who wants to begin scientific section) since many years. The 2
teachers said that they follow the official instructions and define absolute value from distance.

Teacher A started from distance in various situations, namely "in space, (then in a plane, on a
line, on a graduate line), you have a point A, the unit of length being cm, find the points M (resp. M',
M") such that AM = 3 (resp. AM's 4,5, AM" > 2)" and calculation of some gaps between
temperatures.

Then he defined d(x,y) as the distance MN where M and N are respectively the points the
abscisse of which are x, y and precised d(x,y) = x - y if x > y and d(x,y) = y x if y > x. He gave
"technical" exercices (some like the one above and resolution of equations and inequations, both from
an algebraic and geometric point of view).

Then the students had to solve 2 problems in small groups: "M. Dupont" (see below) and
another one about distances and geometric transformations (asan example one question was : "On the
graduate line (d) with the reference (0, I), A has an abscisse 3 and Man abscisse x, P is the symetric
of 0 around M, write the distance AP as a function of x"). In these problems, students met the
absolute value as a function. Students also played on a computer with a game of targets in which they
had to guess an interval. Lastly, properties of the absolute value were studied.

Teacher B started from the distance only on a graduate line. First, he studied only the numeric
and algebraic aspects of the absolute value, with its properties, he gave the same definition as teacher
A and insisted too on the geometric way of resolution for equations and inequations. The absolute
value as a function was studied two monthes later in the chapter about functions. At this moment, the
problem "M. Dupont" was given to solve at home.

For the evaluation, their choices were not the same to test the numeric and algebraic aspects of
absolute value : teacher B asked to complete a table of 4 columns (absolute value, distances, intervals
and drawings, inequalities: some exercice like in § 2.2). Teacher A asked questions about distances
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and graduate line in a previous test but without absolute value. Both of them gave equations and
inequations to solve but teacher A asked questions with numerical difficulties, unlike teacherB, who
used entires numbers or 2,5 ; 1,5 ; 0,25 ...

Moreover, the 2 teachers gave a problem that needed more research from the students : teacher A
gave a problem which looked like "M. Dupont" and teacher B one which looked like the one above
about geometric transformations.

We saw that technical exercices were easier in class B than in class A and so the results were
better. In the "good class" of teacher A (see below), 12 students on 32 (37,5%) succeed (except
perhaps errors on numbers) for lx -1/3 +11= 3*10-2 ;13*105 - xl < 5*10-5, 8 make an error on signs,
12 make errors on powers, 7 make errors linked to absolute value. We see that, when the geometric
representation is not easy to draw and to read, many students fail.

In class B (a "good class" too), for the table, on 33 students, 18 (54,5 %) do at most one error
(9 have no error in translations, 9 fail only in the translation of d(x,1) a 3 by inequalities), among the
others, 9 do an error with sign. But, as there was 21 answers to give, on the whole (i.e. 693), 96%
are corrects. For equations lx -21 = 3 ; Ix +51 = 2 ; lx+0,51 = 3,5, 26 students on 34 (76,5%) have 3
right answers. For inequations lx-31 5 1,5 ; lx+11 5 3, 27 students on 34 (79,4 %) have 2 right
answers, 23 (67,6%) succeed the 5 questions.

3. Observation of the same lesson, by the same teacher, in two classes :

a "good class" and a "weak class".
3.1. The problem and the actual aim of the lesson.

The following problem was given by the same teacher, Teacher A, in the same week, to the
students of his two classes of 10th grade, one of good level and one of weak level.

Mr Dupont works in a society, the head office of which is in Paris and which has branches in Rouen,
Yvetot and Le Havre, all located, in. this order, along the same road from Paris to Le Havre. The
distances are : Paris-Rouen : 110 kms, Le Havre-Yvetot : 50 kms, Le Havre- Rouen : 85 kms.
On Monday and Saturday, Mr Dupont has to go in the head office,
on Tuesday and Thursday, he must go in Rouen,
on Wednesday in Le Havre
and on Friday in Yvetot.
He comes back home every night.
Where should Mr Dupont live if he wants to drive the less as possible ?

This teacher has a somewhat innovative practise in the 2 classes : during one session, students
are offered problems involving the new concepts as implicit tools ; they areorganized in small groups
to solve them. During the next session, the teacher directs a synthesis, and, at the same time, gives
the lesson : definitions, explanations ...

The problem "Mr Dupont" was given just after the definition of the absolute value from
distances. Students were organized in small groups of 3 or 4, half a class at a time. They got about
one hour and forty five minutes for solving this problem in which a first question required "how
many kilometers has Mr Dupont to drive if he lives in Paris ? if he lives in Barentin, 17km West from
Rouen ?" and there were two other questions with a different organization for the week of Mr Dupont
(with in particular a case in which the minimum was reached on a whole interval).

This problem involves distances on a line and seems a good problem to use absolute value. It
was the reason why teacher A chose this problem. But an a priori analysis shows that students are
sure to find the good answer even if they try only the given towns. It is not because the problem is
bad, but a necessity of this type of problems : if you considere a sum of absolute values of
polynomials of first degree, you have a piecewise affine function and there is necessarily an end of an
interval where the minimum or maximum is reached. The best you can do is that this minimum is
reached on the whole of one interval. One needs to express the function only to prove but not to find.

So, if you want that the students define a function, you have to require it. Anyway, when
defining the distance covered by Mr Dupont during one week, students have no reason to use
absolute value : to prove, it is easier to have the function defined on intervals on which it is an affine
function. It is only in the case where you need only one algebraic expression, for example to use a
computer that the absolute value will be an economical way.
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We now analyse the realization of this situation in two classes.

From the synthesis realized in another lesson by the teacher, we can see that he was going
towards two objectives : first, to use the sense of variation of affine functions in a proof and restate in
this occasion the difference between affine and linear functions, second to introduce a table to present
the different algebraic expressions for the distance.
If the origine of the graduate line is in Paris and x the abscisse of Mr Dupont's home :

Monday

Paris Rouen

2x 2x

Yvetot

2x

Le Havre

Tuesday 2(110-x) 2(x-I10) 2(x-110)
Wednesday 2(195-x) 2(195-x) 2(195-x)
Thursday 2(110-x) 2(x-110) 2(x-110)
Friday 2(145 -x) 2(145-x) 2(145-x)
Saturday 2x 2x 2x
week 1120-1120-4x----680-4x+240 820 8x-340 1220

3.2. Development of the students' research in different groups.
Three groups of four students were observed during their research, each ina different half-class,

two in the "weak class" and one in the "good class".
For the students the main difficulty was to put the problem in a mathematical form. They drew a

line and place the towns, but did not think of using a variable for the abscisse of the house. In fact,
they thought that Rouen was the good place (and it was) and, after some tests, tried to find a symetry.
But the symetry was good if you were not too far from Rouen (in fact as far as Yvetot : 35 kms) and
was wrong after.

It was the teacher who asked a mathematical proof and said that the house will be represented by
a point M with an abscisse x. This order of evolution was somewhat similar in the three groups but
the development in time was quite different : in the good half-class, the intervention of the teacher
Came after about half an hour when in the weakest of the three half class, it came about one hour later.

All groups thought of representing the road by a graduate line because the precedent lessons
about distance insisted on this representation, but the weakest groups spent plenty of time to discuss
how to do that (choice of origin, unit...). So the three groups spent very inequal time to try to write
the distances with "x", and the work was to complete at home. But, on the next lesson, theweakest
students had not done it, so the synthesis made by the teacher came after an actual research for the
best students and nearly nothing in the algebraic domain for the weakestones.

3.3. The synthesis of the teacher in the two classes
When observing the same teacher in two classes, we started from thehypothesis that the teacher

fits to his students and we were expecting some differences.
We detected two main differences between the 2 classes in the synthesis :

time is not managed in the same way : there are more digressions in the class of lower level.
Moreover, in this class, those digressions are caused by an error or an insuffisantly accurate answer
of a student ; they give an opportunity to restate previous lessons. In the other class, they give an
opportunity to anticipate further lessons: Paradoxically, more difficult questions may be asked in the
class of lower level.
For example, a student said that a curve like this was a parabol because it
had a symetry, the teacher expected that this proposition would be refused
because the equation was of degree 1. It seems that the students were not
able to say that, in the other class, one student gave this argument so a little
time was spent for this question but we don't know how many should have
been able to do it.
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- there is more heuristic discourse in the class of lower level, but it is more algorithmized.
We said that this teacher has an innovative practise. Moreover, he gives much place to heuristics in
his discourse. We studied the non mathematical discourse in the two classes during the synthesis of
the session "Mr Dupont" with the method presented in PME in Assisi by C. Chiocca, E Josse and A.
Robert We were expecting the rate of explanations higher in the good class. In fact it was a little
higher in the weak one but it was cut in smaller units and more repetitive, we said more
algorithmized.

Conclusion
About a marginal content as absolute value, we saw that the choices made by teachers, who said

to follow the official instructions, were quite different, including evaluation. We are now going on
this research by observing 5 teachers, including teachers A and B in 5 classes, on absolute value,
equations, inequalities. We are going to construct a common test for these five classes, and see the
evolution in the different classes of some students getting the same results at the beginning of the year
in numeric and algebraic domains, with reference to the test that, now, in France all students pass at
the beginning of 10th grade.

Another question is the differences in the way the same teacher conducts the class, according to
the level of students. Here, we have a case study. Will the differences observed be the same for
another mathematical concept ? for another teacher ?

Nevertheless, WE think that we may retain as a general fact the important differences in the
actual work of students during activities aiming at giving sense to mathematical concepts : for some of
them, the work during the class prepares the understanding of the lesson , for the others, it is far
from this... Then, what help to give to students during their research for making it more suitable, but
without reducing this research to nothing ?
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THE GAP BETWEEN ARITHMETICAL AN ALGEBRAIC TYPES OF REASONING
IN PROBLEM-SOLVING AMONG PRE-SERVICE TEACHERS

ABSTRACT: The management.of teaching situations means that teachers
are confronted with a number of choices as to the approaches they are
to favour in an introductory algebra context whereby connections to
arithmetic are put to good use. The choices a teacher makes are
strongly influenced by the relationship which he or she maintains
from the outset with these two fundamental areas of knowledge. Three
groups of future teachers (164 students) were questioned with a view
to analyzing to what extent these students were able to shift back
and forth between these two areas of knowledge within the particular
context of problem solving. Interviews on either an individual basis
or in a dyad format were conducted with a number of subjects, and
have served to bring out the gap which emerges as the different types
of reasoning are deployed.

RESUME: L'enseignant, dans la gestion des situations didactiques, est
aux prises avec des choix a poser en regard des situations et
approches a privilegier dans le contexte d'une introduction a
l'algabre et d'une saine articulation avec l'arithmetique. Ces choix
sont fortement marques par le rapport que lui -me:me entretient a
priori avec ces deux domaines de connaissances fondamentaux. Trois
groupes de futurs enseignants (164 etudiants) ont ete interroges en
vue d'analyser le passage qu'ils sont a meme ou non de faire entre
ces deux domaines dans le contexte particulier de la resolution de
problemes. Des entrevues individuelles et dyadiques conduites aupres
de quelques sujets pointent l'ecart qui existe entre les
raisonnements mis en place de part et d'autre.

A dissociation between arithmetic and algebra has been observed

to varying degrees among students who have received instruction in

algebra (Lee and Wheeler, 1989); such observations have served to

show that these students do not in any way appear to see the

relevance of algebra for arithmetical situations that could call for

this other type of reasoning, no more than the same students appear

to see the importance of making use of arithmetic for occasionally

determining the un -truth of an algebraic statement. This necessary,

functional dialectic involving two areas of knowledge that are

essential to any meaningful grasp of algebra (Chevallard, 1989-90)

thus appears to go completely unnoticed by students.

The dissociation, among students, which arise between these two

universes obliges us to examine not only the nature of the teaching

situations involving arithmetic and algebra which students undergo

but also the relationship which the teacher him-or herself maintains

with these two basic areas of knowledge in which he or she is called

on to act and interact. The choices which a teacher makes concerning

the structuring of classroom learning situations depend among other
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things on the relationship which he or she has with the knowledge to

be taught (all forms of knowledge reinterpreted according to the

postulates and cognitive experiences of the person). It is through

such choices that the instructor thus refers to the play and

interplay of issues underlying the didactic contract present in the

classroom setting to organize the operations whereby a student takes

hold of knowledge. Thus the relationship to knowledge manifested by

the instructor inescapably produces an impact on the relationship

which the student maintains toward the knowledge being taught, in

this instance arithmetic and algebra. But what exactly does the

relationship to the field of algebra involve? And what, then, those

relationship to the field of arithmetic entail? And are teachers

capable of establishing a dialectic between these two fields?

In this study, we have chosen to take a closer look at the

future teachers with whom we have been in contact. On the other hand,

algebra as a whole encompasses too large a field to serve as a

subject of research for us. Hence, we have narrowed down our choice

to problem-solving for two reasons: 1) the importance which has been

attached to this area of activity in, precisely, the development of

algebra in elementary and secondary teaching programs; 2) the

experience which future instructors have acquired in these two

fields.

OBJECTIVE OF THIS RESEARCH

The fundamental objective of this research is concerned with

examining the modes of problem-solving which student instructors make

use of in arithmetical or algebraic contexts to identify the

resistances and eventual difficulties which arise in the shift from

one type of approach to the other. Do student instructors perceive

the relevance of moving on to algebra? Does arithmetic appear as a

useful tool to fall back on on occasion? The following questions have

guided our research: are pre-service teachers capable of easily

moving back and forth between each type of reasoning (from arithmetic

to algebra and vice versa) and can they do so spontaneously according

to the different problems which justify using one mode or other or

when called on to do so? Do they provide evidence of resistances in

this movement from one type of handling to the other?

METHODOLOGY

With the foregoing in mind, during an initial phase we presentee

a written test made up of eight problems (four "arithmetic" problems
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and four "algebra" problems) to students from three different teacher

education programs (future elementary school teachers (n =66),

secondary school teachers (n=33) and remedial teachers (n=65) who

will be called on to work with students having learning problems in

both elementary and secondary school settings). The schema which

Bednarz and Janvier (forthcoming publication) elaborated to analyse

problems was used to develop the test. This first step enabled us to

sort out those students who essentially relied on arithmetic to solve

the eight problems contained in the test from those who mainly used

algebra, as opposed, finally, to those who mixed their use of

arithmetic and algebra. Eight students from each of the three groups

were then selected to participate in an individual interview. In

addition, in a later phase, a number of subjets were requested to

participate in dyadic interviews in which one student with

"arithmetical tendencies" and another student with "algebraic

tendencies" were involved together in problem-solving. The latter

type of interview is useful in that it offers, on the one hand, a new

angle from which to view the distinctions between arithmetical and

algebraic types of reasoning evidenced by the misunderstandings

characterizing each partner, and serves, on the other hand, to shed

light on the difficult articulation of these two fields among pre-

service teachers. We shall return to a number of the observations

which we have derived from these interviews once an overview of the

results of the written test has been presented.

RESULTS

The results of the written test provide evidence of a dichotomy

between arithmetic and algebra among pre-service teachers. Thus, the

great majority of future secondary school teachers (SEC) confine

themselves to algebra, even when dealing with "arithmetical" problems

(see fig. 1).

On the other hand, few students from the group of future

remedial teachers (REM) make the shift to algebra whenever the

situation requires it (see fig. 2), altough their duties will

eventually involve them with students with learning difficulties, in

connection with algebra in particular. Finally, the group of futur

elementary school instructors (ELEM) appear to be the best prepared

for playing off both of these fields.

When the interviews are used to examine the gap between the

"arithmetical" students from their "algebraic" counterparts, the

2-84

92



KEY: arithmetical procedures 111111 algebraic procedures

L other (no answer or ambiguous answer)

REM group ELEM group

4111

29,A

III

SEC group

Figure 1

Average percentage of arithmetical and algebraic procedures used

by each group for solving "arithmetical" problems

REM group

Iii

19,5,5

ELEM group SEC group

Figure 2

Average percentage of arithmetical and algebraic procedures used
by each group for solving "algebraic" problems

resistances which arise in the shift from one field to the

otherbecome easier to make out. These resistances can be grouped

according to: 1) the nature of procedures used to solve problems in

arithmetic and algebra, and 2) the kind of control which is brought

to bear on both situations.

1. Reasoning based on states versus reasoning based on
relationships

Our research has enabled us to better understand the gap which

exists between algebraic problem-solving procedures and a number of

arithmetical procedures used by pre-service teachers, principally

involved in problems having no affixed states (see the problem of

"Luc and Michel" in the appendix). To solve this problem, Mirielle,

for example, an "arithmetical" subject, will basically focus on the

differences which occur between the amounts ascribed to Luc and

Michel before and after transformation of these sums, an approach

wich Eric, the "algebraic" subject, will have great difficulty
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understanding, as is shown in the following excerpt taken from a

dyadic interview:

Excerpt of a dyadic interview:
Eric (EC), "algebraic" subject; Mirielle (MV), "arithmetical" subject

L M (notes taken down by Mirielle
3.50 4.% on her sheet of paper)

4.20 .40 4,

3.10
1.10
4.20

MV: Ok. "Luc has $3.50 less than Michel does" (writes down L, M and
3.50, as above). Now to start with, I suppose that...

EC: Michel has at least $3.50.

MV: Well, let's say..., yeah, you could say that. Ok, "Luc doubles
his money"..., Well, when you get down to it, I go about it more
using the difference between the two. I know that he, here,
there's 3.50 separating them. Uh, "Luc doubles his money whereas
Michel increases his money by $1.10." So I know that here there'
was an increase of $1.10. But I don't know that here. Here, I

don't know the amounts that they had (writes down the two "?"
(question marks)).

EC: Ok.

MV: What I do know is that there was a difference and that
afterwards, I've got Luc who's now got 40 cents less than Michel
(writes down ".40"). So I know that the difference between these
two (draws an arrow between $3.50 Pnd $.40), is $3.10.

EC: $3.10, you say...

MV: A difference of $3.10, and I know already that... $1.10, here
there was an increase of $1.10. So normally that should give the
amount...

EC: ...that Michel had.

MV: Here, that Luc had.

Whereas Mirielle reasons in terms of the gap between Luc and

Michel's respective amounts, Eric on the other hand tries to fix the

states involved, particularly the amount belonging to Michel, as may

be seen when he comments, "Michel has at least $3.50". In contrast

with the reflections of her algebraic counterpart, Mirielle provides

clear demonstration of the quite explicit distinction which she is

able to make between what Eric's interpretation and her own mode of

reasoning: she works off of differences whereas he thinks in terms of

states. The "structural" type of arithmetical reasoning adopted here

and which has been previously identified among certain students in

the study prepared by Bednarz and Janvier (forthcoming publication),

appears to be completely beyond the grasp of the algebraic subject,

who is unable to comprehend the underlying logic of this procedure:
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"I could see (her do it), but I don't understand why she did that and

I don't understand why it worked. I mean, where did she come up with

that? Like, the way she takes $.40 from $3.50, I don't get it"

(Schmidt, 1994, p.377). We had the opportunity in another dyad to

observe how misunderstanding of what is involved in an arithmetical

type of reasoning based essentially on relationships can lead an

"algebraic" subject to reinterpret a solution derived from this kind

of reasoning in terms of states:

Excerpt of a dyadic interview:
Jacinthe (JL) "algebraic" subject; Nadine (NL) "arithmetical" subject

JL: She (meaning Nadine) assumes that Luc is equal to 0. In other
words, it's as though Michel had 0 plus three-fifty. All right.
Then she adds a dollar-ten. Luc has got 0.

NL: But it's not that... When you get down to it, I'm not saying
that Luc is equal to 0. What I am saying is that Michel starts
out having three-fifty more (than Luc) and then adds a dollar-
ten, which gives him four-sixty. If Luc had gone the same way as
Michel, he should have had three-fifty less, really, but instead.
he's come up only 40 cents short (of Michel)...

JL: Uh huh, that gives him four-twenty to start with...

NL: To start with... Does that make sense to you?

JL: Yeah, because, look here. You said that Michel wound up with
four-sixty, all right? You know that he's got 40 cents more than
Luc. So... You know he winds up with four-sixty but that he's
got 40 cents more than Luc, so then you have to say that Luc's
the one who winds up with four-twenty.

NL: But to start with...

JL: Sure, I can tell you it works, but... It's like you found the
amount Luc winds up with. All right. It's as though you were
saying that Michel winds up with four-sixty and Luc winds up
with four-twenty.

NL: I'm not saying thaht Michel winds up with four-sisty. He's got
40 cents less, I mean more than Luc...

Play with relationships does not figure in the mode of reasoning

demonstrated by the "algebraic" subject, and when she was required to

explicate the procedure of the "arithmetical" subject, she tended to

transform the stated relationships into states: "Luc is equal to 0",

"Michel had 0 plus three-fifty", "Michel winds up with four-sixty

and Luc winds up with four-twenty". The type of reasoning at work

here is in keeping with algebraic-type problem-solving which, by

positing "x", fixes states and organizes relationships around this

symbolic substitute but also operates at some remove a "structural"

type of reasoning which is capable of developing independently of

states.
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Observations involving various students have shown us that

"arithmetical" subjects do not shift easily to algebra, for they do

not perceive the relevance of this field for problem-solving.

Conversely, th "algebraic" subjects we interviewed do not make the

shift back to arithmetic easily, and are unable to comprehend the

meaning and consequences of the operations performed solely on

relationships or transformations by "arithmetical" subjects.

2. The kind of control which is brought to bear in arithmetic
and in algebra

A comment by an "algebraic" subject who was required to state

his views concerning an arithmetical and an algebraic solution to the

"arithmetical" problem of "The pool" (see apendix) provides a clear

illustration of what distinguishes the kinds of control which are

made use of arithmetic and algebra:

"Now, with this one (the arithmetical solution), 400 litres
divided by 40 minutes gives you a flow of 10 litres per minute:
seeing as how the first faucet produces 24 litres per minute
and the second 14 litres per minute, it would seem... to be a
comprehension problem. To her way of thinking, it's as though
she sees... I imagine a pool that's being filled and is going
to overflow. You've got to drain it. Now, with this one (the
algebraic solution), (24 X 40) minus (x X 40) = 400, the answer
is less obvious (to come by), because you could take away this
problem and deal with any other problem you want.

Whereas, the other one (arithmetical solution) seems tome
stick more to the problem. This one (algebraic solution) is
more abstract. Once you've got that down (pointing to the
equation), you could forget the problem for-all intents and
purposes... You know, it's easier to see you're just doing
math... you're just replacing it by algebra... Whereas here
(arithmetical solution), you're referring to the question the
whole time."

In arithmetic, contextual meanings serve to guide the approach

adopted in problem-solving and to reassure subjects as to the
correctness of the types of reasoning used. In algebra, meaning

relating to context appears to play less of a role, if any; the

subject has no choice but to develop new criteria of validity. But do

subjects actually do that when they move on to algebra? What elements

contribute to the certitude among algebraic subjects that the right

types of reasoning have been used? Our observations have led us to

distinguish between two types of "algebraic" problem-solvers among

pre-service teachers: 1) those who embark upon an instability as to

the meaning they give to variables and a lack of relective

involvement in the way they handle problem-solving, and 2) those who

bring constant control to bear on the development of algebraic
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calculations and who themselves readjust according to certain errors

they have made. Whereas the behaviour of the first group of subjects

presents a lack of control (the reasons for this remain to be

determined), these results lead us to examine the type of control

exercized by the second group of subjects and offer a number of new

research paths in this field.

CONCLUSION

Our research shows that dissociation of algebra and arithmetic

exists among many future teachers. It is possible to explain this

phenomenon in part on account of the gap which exists between the

types of reasoning deployed in each of these areas (particularly so

between the "structural" type of arithmetical reasoning and algebraic

reasoning). These results give us pause for reflection on the

capacity of these future teachers to comprehend the strategies

students make use of in introductory algebra, to reckon with these

strategies, and to install a productive articulation between

arithmetic and algebra among students throughout their secondary

school studies.

APPENDIX

Problem "Luc and Michel": Luc has $3.50 less than Michel. Luc doubles
his sum of money whereas Michel increases his by $1.10. Now Luc has
$.40 less than Michel. How much money did each have to begin with?

Problem "The pool": To fill a pool with a capacity of 400 litres, two
faucets are opened simultaneously: one to fill it and the other to
empty it. With the two faucets working, it takes 40 minutes to fill
the pool. How many litres per minute can be emptied by the second
faucet if the first faucet pours out 24 litres per minute?
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THE INFLUENCE OF PROBLEM REPRESENTATION ON ALGEBRAIC

EQUATION WRITING AND SOLUTION STRATEGIES

Kaye Stacey and Mollie MacGregor

University of Melbourne

This paper investigates the possibility that the mental model which a student constructs of a
problem situation affects the equations written and the solution strategies used. A series of
problems was presented to 166 Year 9 and 10 students in such a way that different mental
models of the same problem situation were constructed. Success rates and strategies for
solving were affected by the mental model, and a psychological set could be induced which
tended to affect the perception of subsequent problems. As they worked, many students
extended their mental models to encompass further features of the mathematical structure.
For this reason, students' use of algebra was not hindered by initial construction of a mental
model incompatible with algebra.

As teachers and researchers know only too well, the formulation of algebraic equations to

represent a problem situation is very difficult for many students. However, if students are to derive

any real power from the algebra they learn in school, they must be able to take a problem situation

and formulate useful expressions and equations from it. Only after this step has been completed

correctly can the routine algebraic procedures which they are taught be used for solving the problem.

Research relevant to students' difficulties in formulating equations comes from several

sources. The extensive research on one-step arithmetic word problems (for summaries, see Fuson,

1992 and Greer, 1992) has established that the semantic structure of problem situations influences

both task difficulty and children's strategies, even amongst sets of problems which only involve one

mathematical operation (e.g., subtraction). Although there has been a good deal of research and

theory-building in the field of one-step arithmetic problem solving, there is no general agreement

about the nature of the knowledge and processes involved in modelling a situation mathematically

(Fuson, 1992). As Greer (1992) has pointed out, "psychological complexity" (p. 276) frequently

underlies what on the surface appears to be a simple relationship..

An increasingly sophisticated series of studies has linked aspects of the verbal presentation of

word problems (mainly arithmetic problems for young children) to task difficulty. For example,

factors such as the numbers involved, problem length and readability, and the degree to which the

semantic relations between the quantities in the problem are made explicit and easy to process (De

Corte, Verschaffel & De Win, 1984; Lewis & Mayer, 1987) are known to affect success rates.

Cognitive psychologists have investigated comprehension processes for algebra word
problems, concluding that students sometimes use schema-driven approaches which direct them to,

identify information to fill "slots" in the schema, sometimes make direct translation of words to

symbols, and sometimes "read" information from various forms of mental representation of the

problem situation (Hinsley, Hayes & Simon, 1977; Paige & Simon, 1966). MacGregor and Stacey

(1993) showed how "reading" information from intuitive mental representations of comparisons of

two quantities explains one common error in formulating algebraic equations. An extension of this
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earlier work to the study of the effect of mental models on algebraic equation writing and the selection

of solution strategies is described in this paper.

Different verbal descriptions of the same problem situations were used to encourage students

to form different mental representations of the same problems. One set of mental models is
compatible with algebraic solutions of the problems; the other is not. The study set out to explore:

(a) whether different verbal presentations of the same situation could lead students to construct

different mental models;

(b) to what extent students moved between the models;

(c) how the mental models affected students' success in obtaining answers, the strategies they used

and the equations which they formulated.

OUTLINE OF THE INVESTIGATION

Procedure

The items shown in Figure 1 were included in two forms of a pencil-and-paper test. The test

was given in two schools to 166 students in Years 9 and 10 who had been learning algebra for three

or four years. Test papers were randomly distributed in each of the seven classes participating, half

the students receiving Test A and half receiving Test B. At the beginning of each test paper there

were instructions to write an equation for each item and to solve it.

Construction of the items

The four items each describe problem situations where the size of a part is to be found, given

information about the total amounts and various comparisons between the parts. Items 1, 2 and 3

have the same underlying mathematical structure; Item 4 is a variation. Items lA and 1B (see Figure

1) are both valid, simple, complete natural language descriptions of the same problem situation. They

pose the same question and are designed not to differ on any readability characteristics. Item IA

describes the problem as a sum of parts. It was expected that students would construct from this

description a mental model reflecting the sum of parts structure and as a consequence begin to solve

the problem by noting that two equal quantities plus 5 give 47. The first step towards a solution

based on this model is to subtract 5 from 47. The sum of parts model is totally compatible with an

algebraic solution, such as x + (x + 5) = 47, so 2x = 47 - 5, etc. It also involves easy arithmetic.

In contrast, Item 1B describes the same situation as a division into parts. If was expected that

students would construct a different, but equally correct, mental model and consequently tend to

solve the problem by a strategy of "share equally, then adjust". They would first allocate Mark and

Jan equal amounts (usually $23.50 each) and then try to adjust the amounts by giving some of Jan's

money to Mark. The first step in a solution based on this mental model is therefore to divide by 2.

This method of solution is not compatible with a solution by algebraic equations. The arithmetic

necessary is harder than for the sum of parts model. It was predicted that students working from a

sum of parts model (Test A) would find the problem easier than those working from a division into

,parts model (Test B),. Evidence as to which mental model students constructed would be obtained

from the first symbols they wrote down or the first calculation they did: subtraction for the sum of
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parts model, division for the division into parts model.

TEST A

1A. Jan has $..r. Mark has $5 more than Jan has. Altogether they have $47. How
much has each person got?

2A. A group of scouts did a 3-day walk on a long weekend. On Sunday they walked 7
km farther than they had walked on Saturday. On Monday they walked 13 km farther
than they had walked on Saturday. The total journey was 80 km. How far did they walk
on Saturday?

3A. Jeff has to wash 3 cars. The second car takes 7 minutes longer than the first one,
and the third car takes 11 minutes longer than the first one. Jeff works for 87 minutes
altogether. How many minutes does he take to wash the first car?

4A The three sides of a triangle are different lengths. The second side is 3 cm longer
than the first side, and the third side is twice as long as the first side. The side lengths add
up to 63 cm altogether. How long is the first side?

TEST B

1B. $47 is shared between two people, Mark and Jan. Jan gets $x. Mark gets $5 more
than Jan gets. How much does each person get?

2B. A group of scouts walked a distance of 80 km on a 3-day weekend. On Sunday
they walked 7 km farther than they had walked on Saturday. On Monday they walked 13
km farther than they had walked on Saturday. How far did they walk on Saturday?

3B. Jeff has to wash 3 cars. The second car takes 7 minutes longer than the first one,
and the third car takes 11 minutes longer than the first one. Jeff works for 87 minutes
altogether. How many minutes does he take to wash the first car?

4B. The three sides of a triangle are different lengths. The side lengths add up to 63 cm
altogether. The second side is 3 cm longer than the first side, and the third side is twice as
long as the first side. How long is the first side?

Figure 1. The two versions of the test

Items 2A and 2B, and 4A and 4B, were also designed to prompt construction of different

mental models (sum of pans versus division into parts) for the same situation, although with three

parts rather than two. In these items, the sum of parts model is again compatible with an algebraic

solution and also leads to a solution by arithmetic reasoning with first step subtraction. However, no
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solutions readily follow from the division into parts model: no algebraic solution is available and the

arithmetic reasoning required to find out how to adjust equal amounts to meet the conditions is very

difficult. (In fact it was achieved by only one student, Martin whose work is shown in Figure 2.) In

both Items 2 and 4, the prompting of the division into parts model was lessened a little, deliberately -

the key word "shared" was not used, and in Item 4 the first statement ("The three sides of a triangle

are different lengths") might suggest that division into three equal lengths is not a good way to start.

Of course all items can (eventually!) be solved by a guess and check strategy, with either or neither

mental model, and it was expected that some students would use this when other methods were not

immediately obvious to them.

Items 3A and 3B are identical. It is possible that a "mental set" created by the previous two

problems on Test B would affect students' perception of its structure and consequently their choice of

first operation. On the other hand, if students did not perceive Items 2 and 3 as having the same

structure and hence did not transfer the previous solution method, Item 3 should be equally easy in
both forms of the test.

RESULTS AND DISCUSSION

Table 1 shows the percentages of correct answers for each item for each test, regardless of the

method used. Table 2 shows the number of students carrying out subtraction or division as their first

written operation on each item, and whether or not their final answer was correct. Some students
began an item in one way (e.g., dividing 80 by 3 in Item 2B) and then changed strategy (e.g., to a

sum of parts subtraction or a guess and check method) to obtain their final answer. However, as the

purpose of Table 2 is to help identify mental models prompted by problem descriptions, only the first

operation written down was used to classify responses. We acknowledge that, in some instances,

students had probably already replaced their first mental model by another more promising one before

they began to write.

Table 1
Success rates on four items (N = 166)

Version n Item 1 Item 2 Item 3 Item 4

A 83 73% 73% 73% 61%
B 83 . 67% 64% 63% 63%

Evidence for different mental models

Evidence that the different forms of presentation of items did indeed lead students to construct

different mental models is obtained by comparing overall success rates and the first operations

written. As shown in Table 1, there were more correct answers in Test A than in Test B. Combining

data in Table 1 for all items, the chiLsquare test shows an association significant at the 5% level
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between the test version and success on these items [x2(1, N = 664) = 4.17, p = 0.04]. Since the two

groups were well matched, it is reasonable to conclude that the difference in difficulty was due to the

different presentations.

Table 2

Numbers of correct and incorrect solutions related to first operation written down and version of test

Test A Test B

Subtract Divide Othera Subtract Divide Othera

x ../ x ../ x x x x

Item 1 34 3 18 15 9 4 22 0 30 27 4 0

Item 2 42 8 3 3 16 11 37 9 5 14 11 7

Item 3 44 6 3 3 14 13 38 5 2 11 12 15

Item 4 34 5 4 3 13 24 31 6 4 11 17 14

aCategory "Other" includes answer only, guess-and-check method, method not clear, and no answer.

Nise. For Item 4, initial division by 3 but not by 4 is classified as "Divide".

Table 2 links the problem presentations to the mental models constructed. It shows that 104

responses to Test B indicated division as the first operation whereas only 52 responses to Test A did

so. Similarly, subtraction was indicated more often for Test A (176) than for Test B (148). The
association between the test version and the first operation chosen is highly significant [x2(1, N =

366) = 18.6, p = 0.0001]. This finding supports the hypothesis that problem presentation is a factor

influencing which mental model is constructed.

Moving between the different mental representations

The results above support the hypothesis that the different test forms promoted the
construction of different mental models. However, as Table 2 shows, over one third of Test A

students appear to have used the division into parts model in Item 1. On the other hand, many Test B

students worked with a sum of parts model, particularly in Items 2B and 3B. We propose that the

inability of the division model to provide satisfactory answers to the more complex items encouraged

students to extend their division representation to include sum of parts aspects. As students continued

to confront the mathematical structure underlying the set of problems, their mental model of the

structure was further elaborated and other aspects became dominant. Mental models are fluid rather

than static, and take on extra features as the solution process continues.

The approximately 10% difference (8 students) in success rates on Items 1, 2 and 3 shown in

Table 1 can be seen as being due to the greater persistence of the division into parts model by the Test

B students (see "Divide x" columns in Table 2). Analysis of the incorrect answers leads us to

propose that students for whom the division into parts model was strong were more likely to be
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satisfied with incorrect answers such as $23.50 and $18.50 for Item 1, and (80+3)-7-11 for Item 2.

Since the wording of Item 3 is identical in both tests, the discrepancy between success rates

on this item (see Table 1) is likely to be caused by the psychological set favouring the division into

parts model induced by the two previous items. The written working on the test papers shows that

most students had used the same procedure for Item 3 that they had used for Item 2, often written in

exactly the same format. Examples of students' work are shown in Figure 2. These and other Test B

students perceived Items 1, 2 and 3 as having identical structures, although the first two were
presented as a division into parts and the third was presented as a sum of parts. This is further

support for the fluidity of mental models.
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On Item 4, despite the "sum of parts" format of the previous item 3B, and the statement that

the three sides of the triangle were different lengths, many Test B students showed continuing
evidence (see Table 2) of the division into parts model. It is therefore puzzling that Item 4A was not

easier than Item 4B. Some students with a sum of parts model for Items 2A and 3A did not adapt it

for Item 4A. Another puzzling feature is why so many students chose division for Item IA. Possibly

the fact that the problem is about two people and a sum of money prompted them to think immediately

of the action of sharing.

Use of algebra

Despite the explicit instruction to write an equation for each item, there were only 49 equations

(or sets of simultaneous equations) written for Test A and only 41 for Test B out of a possible total of
664 equations (4 x 166). The small number of equations written (14% of the possible total) make it

unwise to draw firm conclusions whether students doing Test A (which prompted the model compatible

with algebraic solutions) found it easier to construct equations than students doing Test B. However,

there appears to be no difference. There was no evidence in the equations or attempted equations written

by Test B students of any tendency to try to express algebraically a "share equally then adjust" strategy

based on the division into parts model. It seems that the students who were prepared to write equations

were able to access mental models incorporating the sum of parts, as is required for an algebraic
solution.

Knowledge of algebra, or willingness to use it, varied considerably between classes. In one

of the two schools, most students avoided algebraic methods. In the other school, an equation was

written (but not necessarily used) in approximately 25% of responses. However even in this school,

Test A students were no more inclined than Test B students to try to use algebra. In these relatively

simple situations, there were frequent difficulties with algebra which seemed unrelated to the mental

model chosen. Some students omitted one or more terms when writing an equation, for example,

writing A + 7 + A + 13 = 80 in Item 2A or 2B. Students frequently used algebraic letters only to

record information, (e.g., A + B + C = 80) and then used unrelated processes (arithmetic reasoning

or guess and check) to solve the problems. It seems that some of these Year 9 and 10 students see

algebra as a language for expressing mathematical relationships but only a few realise that it is also
useful for problem solving.

CONCLUSIONS

The different presentations of the problems tended to cause students to construct different

mental models, evidenced by statistically significant differences in solution strategies as well as in

success rates. We have also shown that a mental set or schema induced by one problem can affect the

perception of subsequent problems. There is evidence that as students worked with the same

mathematical structure through the series of problems, most of them readily extended their mental

representations to encompass other features of the structure. Our data support the view that
comprehension and problem solving are intertwined processes - comprehension is not a first isolated
step.
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As predicted, the group of students who were more likely to have constructed the mental

model unhelpful for algebra wrote slightly fewer equations, but the data were not conclusive and

further investigation is required. There were no instances where students tried to write equations

based on the inappropriate model. Regardless of the test version, students who wrote equations had

access to the sum of parts model; indeed the routine of the algebraic solution may itself prompt it.

The investigation of mental models related to common mathematical structures is a useful

direction for future research. Within even simple problem situations such as the ones used here, there

is a complex web of relationships between quantities which different students will perceive with

different emphases and interpretations. It is important for teachers to appreciate the variety of mental

models their students may construct and to appreciate that routine procedures (such as solving linear

problems algebraically) are compatible with only some of these models. Students need to know that

there are alternative models of a situation, and that their initial perceptions of underlying structure may

not be the most useful.
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THE DEVELOPMENT OF ELEMENTARY ALGEBRAIC UNDERSTANDING

Elizabeth Warren

Australian Catholic University, McAuley Campus

The role of reasoning skills per se in the learning of mathematics has received little attention.
Yet the importance of such processes in mathematical learning has been often acknowledged. In
the algebraic domain, a recent approach for introducing elementary algebra involves
generalising from both visual patterns and tables of data. The difficulties that children
experience with these generalising processes have been well documented. But there remains a
need to explore not only the contribution these generalising abilities make to understanding the
variable concept but also the specific reasoning processes that are associated with this
particular mathematical learning. This paper begins to explore these issues. A number of tests
were administered to 355 students. Logical reasoning, analogical reasoning, patterning and
spatial visualisation all contribute to the algebraic domain. The results also indicate that both
generalising abilities contribute to predicting understanding of a variable concept, with the
ability to generalise from tables being more accessible to most students.

INTRODUCTION

A recent approach for introducing the variable concept has focused on the developmental

patterns that represents the transition from arithmetic to algebra (Mason, Pimm, Graham, &

Gower, 1985; Pegg & Redden, 1990). This approach entails introducing algebra by looking at

patterns, creating tables, describing the pattern, and "short handing" these descriptions into

algebra. A number of research projects have reported the difficulties students experience with

this approach. For example: in their attempts to generalise most children could not express a

generalisation, disregarded all patterns when trying to generalise, and tended to use a procedural

approach in reaching a solution (Ursini, 1991); students experience many difficulties when

expressing relationships clearly in either natural language or algebraic notation (MacGregor &

Stacey, 1993); and arithmetic incompetence and fixation with a recursive approach seriously

obstruct progress (Orton & Orton, 1994). The focus of many researchers in the algebraic

domain has seemed to be on how students' specific knowledge, especially that of the novice,

influences the nature of the processes they use.

Many researchers contend that mathematical competence requires both comprehensive

knowledge structures and general reasoning processes (e.g. Champagne, 1992; English, 1992).

The importance of fostering general reasoning processes in all areas of mathematical curriculum

has been widely documented. Such processes allow one to learn more mathematics, and to solve
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mathematical problems throughout life (Fennema & Peterson, 1985). Yet there has been a

paucity of research focusing on the role of these reasoning processes, especially in the learning

of algebra. It seems that different modes of algebraic representation involve developing an array

of powerful reasoning processes. The exact nature of these processes and the identification of

those associated with particular mathematical learning needs to be explored (Champagne, 1992).

This paper reports on part of a larger study, which explores childrens' understanding of

early algebraic concepts. This paper begins to investigate how developmental patterns relate to

understanding the variable concept, and the reasoning processes students apply in algebraic

learning, with a particular focus on those used in interpreting, and translating symbolic and

visual representations. In mathematics, Lipman (1985) claims that spatial thinking, analogical

and logical reasoning, classifying and hypothesising, and an ability to perceive patterns and

generalise from them, all influence mathematical learning. A preference for a visual or

symbolic approach to solution is also claimed to play a role (Presmeg, 1986,1992). Thus this

phase of the study was exploratory in nature and attempted to identify any relationships existing

between students' general reasoning processes (namely spatial .visualisation, spatial orientation,

logical analogical, patterning, and a preference of a visual or symbolic approach to solution),

and their understanding of pre-algebraic and early algebraic ideas (namely, generalising from

visual patterns and tables of data, and understanding the variable concept).

THE STUDY

Methodology

Since the aim of this study was to explore relationships between general reasoning

processes and understanding pre-algebraic and early algebraic ideas, a correlational research

design was utilised (Isaac & Michael, 1985). Seven written tests were developed. These

consisted of six reasoning tests, including one test for ascertaining a preference for visual or

symbolic approach to solution, and one algebra test. Each test measured a different process and

understanding.

Logical reasoning, analogical reasoning, and pattern generalisation were each measured

by a separate test, each comprising ten items. Since spatial reasoning, according to Tarte

(1990), consists of two distinct component, spatial visualisation (the ability to mentally

manipulate, twist or invert a visual stimuli) and spatial orientation (the ability to change ones

perceptual perspective when viewing an object), two tests were used to measure these aspects of

the spatial reasoning process. All items for these five tests were adapted from a wide range of

2 -99 107



commercially available materials (e.g. Kit of Factor-referenced cognitive tests).

The test for measuring preference for visual or symbolic approach to solution was

developed from a number of well established sources (e.g. Krutetskii, 1976; Moses, 1982;

Suwarsono, 1982). The problems demanded a minimum application of mathematical knowledge

but relied heavily on students' general reasoning processes. All items could be solved by both

visual and non-visual means, and each solution was scored accordingly with a score of 0

awarded for a non-visual solution and 2 for a visual solution.

To test children's algebraic understanding, a number of different item types were

developed. These items tested children's ability to: complete patterns and tables and generalise

from this data to an algebraic expression, and understand the variable concept in a variety of

contexts. Questions were drawn and adapted from a range of sources (e.g.Kuchemann, 1981;

Quin lin, 1992). An earlier study, (English & Warren , in press) reported that there was no

significant correlation between the ability to generalise from a pattern and understand the

variable concept. This was an unexpected result in need of further probing. It was felt that

perhaps the original algebra test was either too short or too narrow. As a consequence, the

algebra test, for this study, was expanded and modified, with a greater emphasis placed on the

measurement of the patterning component.

Nature or the sample

Since the study was concerned with children's development of beginning algebraic

concepts, children were chosen from Grade 8 and Grade 9 (mean age 13 years and 4 months) as

these are the two grades when algebra is formally introduced in the Queensland curriculum. The

sample comprised of 355 children drawn from two coeducational schools in the Brisbane

metropolitan area. Children attending both of these schools are representative of diverse socio-

economic and cultural backgrounds. All seven tests were administered to each student.

RESULTS

Reliability of the tests

The reliability of each test was determined by calculating the Cronbach alphas. Table 1

presents a summary of these results.
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Table 1

Reliability analysis scale for the tests

Component No of items Cronbach alpha

1.Logical 10 .61

2.Analogical 10 .55

3.Patterning 10 .84

4.Spatial visualisation 10 .64

5.Spatial orientation 20 .60

6. Visual approach 10 .52

7.Algebra (patterning) 16 .86

8.Algebra (tables) 16 .86

8.Variable concept 28 .89

Considering the number items in each test these reliability coefficient were regarded as

more than adequate.

Intercorrelations among the variables

As each test measured different reasoning processes and understandings, the aggregated

results from each test were used to ascertain relationships between these variables. A Pearson

correlation analysis was used to identify any intercorrelations.

The algebra test consisted of three distinct components: generalising from visual

patterns, generalising from a table of numbers, and understanding the variable concept. Given

the emphasis on students' ability to generalise from patterns and tables of data in their early

algebraic learning, it was considered important to investigate the extent to which these skills

relate to each other and to understanding the variable concept. Correlations were carried out to

identify any interactions between these components. Table 3 summarises the results.
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Table 2

Intercorrelations Between the components of the algebra test

Component 1 2 3

1. Algebra (patterning) .67* .54*

2. Algebra (tables) .63*

3. Variable concept

* p < .001

As shown in Table 2 there were significant correlations between all components of the

algebra test. The significant correlation between the ability to generalise from patterns and the

ability to generalise from tables was not unexpected, given that these two processes comprise a

number of similarities. Of particular interest to this study was the correlation between the

variable concept and the ability to generalise from tables compared with the correlation between

the variable concept and the ability to generalise from patterns. A stepwise multiple regression

analysis was carried out to ascertain the role each generalising skill plays in predicting

understanding of the variable concept. Table 3 summarises the results of this analysis.

Table 3

Summary of Stepwise Regression Analysis for Variables Predicting Understanding the Variable
Concept (N=3551

Variable B RE B BETA

Step 1
Algebra (Tables) .48 .05 .49

Step 2
Algebra (Patterning) .19 .05 .21

Note le = .39 for step 1. delta Ie = .03 for step 2
(p at each step is below .05)

The score for the ability to generalise from tables was selected first, accounting for 39%

of the variance. The independent contribution of the ability to generalise from patterns
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accounted for 3% of the variance. Thus both the ability to generalise from tables and the ability

to generalise from patterns are both related to an understanding of the variable concept, with the

ability to generalise from tables being a stronger predictor of success.

Various reasoning processes correlated with the three components of the algebra test.

Table 4 summarises the results of this analysis.

Table 4

Intercorrelation among the Reasoning Processes and the Components of the Algebra Test

1 2 3 4 5 6 7 8 9

1.Logical .35 .31 .35 .38 .38 .36

2.Analogical -* .30 -

3.Patterning .38 .30

4.Spatial Visualisation -- .31 .33 .32

5.Spatial Orientation

6.Visual approach -

7.Algebra (patterning) .67 .54

8.Algebra (tables) .63

9.Variable concept

* Correlations below .3 have been omitted

The spatial orientation reasoning process and a preference for a visual approach to

solution failed to correlate significantly with any components of the algebra test. Both logical

reasoning and spatial visualisation correlated significantly with all three components of the

algebra test. Analogical reasoning was significantly correlated with an ability to generalise from

tables, and patterning with an ability to generalise from patterns.

DISCUSSION

This research raises a number of issues regarding the teaching of. algebra. Firstly logical

reasoning, analogical reasoning, patterning and spatial visualisation seem to have some bearing

on success in the algebraic domain. Yet little opportunity exists in our current curriculum for

development and fostering of these reasoning processes.

Secondly, even though the ability to generalise from patterns contributes to an

understanding of the variable concept, the ability to generalise from tables is a stronger

predictor for success. In fact, there seems to be. considerable overlap between these abilities
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with the ability to generalise from tables being the more accessible of the two (Both tests

comprised a total of 24 marks with the mean score for the patterning component being 11.77

and the mean score for the table component being 13.49). Thus generalising from tables is

perhaps a more feasible means of introducing the variable concept. Once understood, this skill

could be subsequently drawn upon when generalising from patterns.

Thirdly, generalising from tables and generalising from patterns have specific reasoning

processes that need to be developed and fostered. Both draw on the logical and spatial

visualisation reasoning processes. But specifically, the development of Analogical reasoning

seems to be related to interpreting and generalising tables and the development of the patterning

reasoning process seems to be related to generalising from visual patterns.
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ALGEBRAIC THINKING IN THE UPPER ELEMENTARY SCHOOL:
THE ROLE OF COLLABORATION IN MAKING MEANING OF 'GENERALISATION'

Vicki Zack, St. George's School and McGill University
Montreal, Canada

Twenty-five children in a Grade 5 elementary school classroom worked alternately alone and
together to solve one pivotal non-routine problem and other assigned related problems. Guided
by the teacher who was observing their reasoning, nudging and learning with them, a number of
the students came to see the structure of the problem, identified key ideas, and were able to
express them algebraically.

The creators of the National Council of Teachers of Mathematics (NCTM)
Standards envision classrooms in which students take charge of their learning,
debate alternate solutions and develop connections and meanings as they speak
together. Vygotsky's famous concept, the zone of proximal development, suggests
that "skills ... and understandings are achieved in interaction with others before the
children can do them on their own" (Newman et al, 1989, p. 15). For the past six
years I have been a homeroom classroom teacher and researcher in a Grade 5
elementary school classroom (10-11 year olds). The students in our school have been
tackling non-routine problems throughout their elementary school years. In this
paper, I would like to describe how in the 1993-1994 year, a number of children
working together progressed further than had children in my class in any previous
year, in regard to algebraic thinking.

I will suggest some possible reasons for the difference. In the 1993-1994 year,
when I assigned a problem I had presented in prior years, a new strategy was put
forth and a few of the children were seen to use each other's ideas as springboards to
a greater extent than had been the case previously. I endeavored to build upon the
children's emerging ideas by providing other problem-solving challenges, aiming
thereby to promote reflection and connections. Also, due to my participation in a
graduate course on algebra taught by Lesley Lee (January to April, 1994, Concordia
University), I had exposure to ideas about algebra I had not reflected upon
extensively before, such as algebra as generalised arithmetic (Mason et al., 1985) and
different definitions of what algebraic thinking might be (Davis, 1985), and to ideas I
had not encountered previously, such as Bednarz's distinction between educators
she calls algebra types, i. e. those who always think in terms of equations, and those
who are arithmetic types, i. e. those who endeavor to connect with children's
(hopefully) rich experience with arithmetic and to use it as a foundation for learning
algebra (Nadine Bednarz, personal communication, February 2, 1994). The focus of
the paper will be on the evolution of the children's understanding as they worked
on figuring out the number of diagonals in a decagon. Specifically, I will discuss the
algebraic expressions which some managed to generate for a number of the
problems. Aspects which are integral but which can only be touched upon briefly in
this paper are those dealing with my own growth in awareness, and with the
mediating roles played by peers for each other, such as rephrasing, interpreting,
highlighting, resisting closure, and serving as a receptive audience.
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Classroom set-up, and assigned problems

St. George's is a private, non-denominational school, with a middle class
population of mixed ethnic, religious, and linguistic backgrounds; the population is
pre-dominantly English-speaking. The total class size in the 1993-1994 year was 25;
however I always work with half-groups (12 or 13 children in each group) of
heterogeneous ability. Problem solving is at the core of the mathematics curriculum
in my classroom; non-routine problems are drawn from various sources.
Mathematics class periods are 45 minutes each day (and are at times extended to 90
minutes). Problem solving is the focus of the entire lesson three times a week. In
class the children often work in heterogeneous Groups of Four selected by the
teacher. The children work first with a partner (2-some), and then when the pairs
are 'ready', two pairs discuss the solution to the problem together as a 4-some.
When the Groups of Four teams have all completed their deliberations, the entire
group (12-some) meets to discuss the problem.

In addition to the in-class problem-solving sessions, each week the children
also work on one challenging problem at home (Problem of the Week), and are
expected to write in their Math Log about all that they did as they worked the
problem. The children present their Problem of the Week solutions to a partner, to
their 4-some, and to the group of twelve. The focus in this paper is on a series of
connected, and increasingly demanding, Problem of the Week problems. The
wording and sequence of the assignments were as follows:

Tunnels: 'Nine prairie dogs need to connect all their burrows to one another
in order to be sure that they can evade their enemy, the ferret. How many
tunnels do they need to build?' (Moretti et al, 1987, T-81, revised) (February 7,
1994)

Decagon Diagonals: How many diagonal lines can be drawn inside a figure
with 10 sides? (April 25, 1994)

3 sides
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25-Sided- , 52-Sided Polygons: How many diagonals would there be in a 25-
sided polgon? in a 52-sided polygon? (May 16, 1994)

Tunnels revisited: Can you write a number sentence or general rule for the
Tunnels problem? (May 25, 1994)
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The children are videotaped on a rotating basis as they work in their groups
of two and four. All the presentations done at the chalkboard are also videotaped.
Much of the class session is conducted by the children. Data sources include: focused
observations, videotape records, student artifacts (copybooks), teacher-composed
questions eliciting opinions (written responses), and class discussions regarding
research topics. In the 1993-1994 year, after each problem-solving discussion was
concluded, I sounded out the students' reactions via a response sheet I used (the
Helpful Explanation sheet) in which I asked the children whether they found a peer
explanation of the solution helpful (Zack, 1994).

From drawing & counting, to detecting patterns, to a generalized algebraic
expression: Solving the Decagon Diagonals Problem

The pivotal focus in this paper will be upon the solution to the Decagon
Diagonals problem. I will indicate briefly how the students progressed and made
connections to the other problems. I have assigned the Decagon Diagonals problem
for the past 3 years. Every year but this one there have generally been three strategies
(S) used:

S#1 (used by most of the children): drew all the diagonals and counted them; the childrenoften
used different colours to help them distinguish diagonals belonging to each vertex.
(Sometimes, the students make an organized list charting all of the combinations, and count
them.)

S#2 (used by some): drew some diagonals and then saw a pattern in the number of diagonals
within one polygon (for example for the 10-sided one you would have: 7, 7, 6, 5,4, 3, 2, 1, 0 = 35).
The children continued the pattern without continuing the drawing of the diagonals,and added
the numbers together.

S#3 (used by only 2 to 4 children each year): saw a pattern of differences between the number of
diagonals contained in each polygon

triangle square pentagon hexagon septagon

0 2 5 9 14 ...
2 3 y 5

and then continued the pattern without drawing any diagonals.

This year, one student in each group of 12 or 13, (Jerome in Group I, and
Cathy in Group II) arrived at the answer by counting the number of diagonals
emanating from a vertex, multiplying that number by the number of sides, and
dividing by two. I will call this number sentence strategy, Strategy #4 (S#4).
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Let me begin by sketching what happened in Cathy's group (Group II). Cathy
wrote the above-mentioned procedure in her Math Log. During the discussion in a
3-some (one child was away), Cathy presented her solution to Abe and to Linda,
saying that it was "weird" but it worked. Abe stated: "Oh, I see how you did it"; he
did follow her thinking but later when he tackled the subsequently assigned 25-
Sided-, 52-Sided Polygon problem, used the same strategy he had used for the
Decagon Diagonals problem (S#3). (Abe only appreciated the power of Cathy's
approach later, as a result of further discussion. It must be stressed that Cathy and
Jerome did not themselves see the potential of their strategy until later.) Linda
(who used a variant of S#4, and whose answer was incorrect but whose strategy was
closely linked to Cathy's way) tried to follow Cathy's thinking. Although it was
fascinating to see that Linda sensed the two key ideas (i. e. divide by two, subtract 3,
discussed in a section below) when she credited Cathy with helping her understand,
it was nevertheless also evident that Linda was confused. David (who had used S#1
and had had the correct answer) heard Cathy present her strategy when the 12
children gathered in the large group; he at that point only commented that it was
interesting: "Oh, that's neat." However, David was later seen to use Cathy's strategy
for the 25-Sided, 52-Sided Polygon problem, and was then seen to delve further, to
extend and to engage in inquiry (Tunnels Algebraic, May 25, 1994). Susan (who had
used S#1 correctly) was yet another who did not at first feel that Cathy's strategy was
helpful (cf. her comments on the Helpful Explanations sheet), but was then seen to
use it for her work with the subsequent 25-Sided-, 52-Sided Polygon problem.

In the second group, the strategy Jerome used at first in his Math Log was S#3;
however, the pattern which Cathy had seen and documented in her Math Log was
one which Jerome "saw" while the May 4 discussion with all 12 children in his
group (Group I) was occurring at the chalkboard. The videotape shows him studying
the assignment page in his Log, and then saying:

Oh-- I just saw another pattern. Well, every time... what happens is . . . if you
see like the five has two from each one, well from two--, from two times five
it's ten, but this is actually five so it's half of ten- and then over here it was
seventy but it's only 35 ... so it's always half

And we hear Gina saying "half" simultaneously with Jerome saying "always half",
and then hear Jeff saying: "Ya, ya, if you multiply it by 10 and then divide by 2".
(Jeff's "it" is the 7 diagonals emanating from one vertex in a decagon.) Despite the
seeming abstruseness of Jerome's oral explanation, Jeff was able to follow it, and to
interpret it for others. When analyzing this portion of videotape one sees that Jeff
not only interpreted, he also focused on salient points, for example highlighting the
fact that one need only attend to the diagonals emanating from one point and
proceed from there. Thus we can state that the number sentence expressed in
Strategy #4 at this point was as follows:

S#4: Number of diagonals emanating from a vertex, times the number of
sides, divided by 2.
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When I asked the group whether anyone would like to try to express it
algebraically (at which point Valerie groaned, and Tamara stated, "I should have
taken notes"), Jeff put it into a generalized expression, writing upon the chalkboard
as follows:

A x S + 2 = # of diagonals

(with A standing for the number of diagonals from one vertex, and S the
number of sides in the polygon)

There were three children in Jerome's 12-some who I now feel were in sync
with Jerome's solution: there was Jeff, who said in his Helpful Explanation sheet
that Jerome had "helped him by explaining better the pattern I saw but could not put
my finger on", and who wrote the generalized expression; Micky (who used S#1 but
whose answer to Decagon Diagonals was incorrect) who as I will show below
adapted Jerome's idea/Jeff's expression for his subsequent algebraic solution of the
25-, 52-Sided Polygon problem; and Gina (who used S#1 and whose answer to
Decagon Diagonals was correct) who understood the aspect of "double-counting"
and explained it dearly to her partner, Indira, as well as the rest of the group. During
this session I strove to highlight the importance of the notion of "double-counting"
to the group, but it is not dear to me how many of the children, Gina included,
understood the reasons for my emphasis.

It is of import to note that I stressed to both groups that what had transpired
was unique in that no other student had ever previously come up with the Cathy/
Jerome-Jeff strategy. (See my correction which follows in Note 1.) Nor had I! I
stressed to Group I (the Jerome-Jeff group) that no one in any of my Grade 5 groups
had in the past ever come up with an algebraic expression such as theirs. My
comments may have influenced some of the children to look more closely at
Cathy's or Jerome-Jeff's strategy than they might otherwise have done.

Key ideas expressed algebraically: "Seeing" the structure of the problem

I needed to oblige the children to see that what they wanted was an expression
which could be used no matter what the number of sides, and so I assigned the
second problem, the 25-Sided Polygon, 52-Sided Polygon problem: How many
diagonals would there be in a 25-sided polgon? in a 52-sided polygon? As the class
was dispersing, Micky quietly asked me: Do we have to draw all the diagonals? and I
turned the question back to him: Do you have to draw all the diagonals?

When the children submitted their Math Logs, I noted That none used S#1,
nine used S#2, one (Abe) used S#3, and ten used S#4. Of those who used S#4, some
used arithmetic expressions (Group II: Cathy, David, Susan, Linda, Carrie; Group I:
Anne), and others expressed the equation algebraically and then solved it (Group I:
Micky, Jeff, Jerome; Group II: Bruce). Micky wrote and explained the following
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notation in his Log-- (Z - 3) x Z + 2, by saying: "Each time I do a problem like this
I don't want [to have to] draw an "X" sided figure. I know that a [vertex] connects
with all of the other [vertices] exept for 3, itself, the [vertex] to the left and right...
You subtract 3 from the amount of total sides .. . then ... here's the rule: (Z = no. of
sides) (Z - 3) x Z 2 = no. of diagonal lines in figure."

It was as they solved or discussed the solution to this problem that some of
the children and I began to see the structure of the 'diagonals' problem, both the
Decagon Diagonals and the 25-, 52-Sided Polygon Diagonals one. I will note the key
ideas, the order in which the students attended to them, and how some of the
children understood the key ideas and could represent them algebraically:

Key ideas

(1) divided by 2 :

Many children spoke of "overlap", or "double-counting", or "so it's always half" but they were
not necessarily able to express it in a number sentence as + 2

(2) minus 3:

At first the children attended to the number of diagonals emanating from a vertex (see Jeff's

"A"). Subsequently while solving the 25-Sided, 52-Sided Polygon problem, they became aware
that the number of diagonals was derived from the number of sides in the polygon 'minus 3', and

were able to say why; for example, we saw above Micky's explanation of his reasoning in his
Log, and Cathy wrote in her Log: "You always take away 3 becase two make the two lines to
the side and one is the vertex."

During the discussion at the table (3-some), and then again during the 12-
some discussion, Jeff said to Micky: "Oh, I understand, the minus 3 is to get my A"
hence making the connection between Micky's notation and his own. It is
important to note that my attempt to point out to Jeff that in order to solve a
problem, one must use one letter (eg. Z, or other) and state the second variable in
terms of the first variable met with a confused reaction on Jeff's part. He did not see
why he could not use two unknowns, A and Z. This was perhaps because he already
knew the solution to the problem and hence did not need to actually solve the
equation. So although Jeff could see the connection between aspects of his and
Micky's respective notations ('Your Z minus 3 is my A'), he did not see the need to
express the relationship of one variable in terms of the other, as in Z representing
the number of sides, and (Z - 3) representing the number of diagonals.

Some derived the expression in collaboration with a partner, i.e. it was a
symmetrical relationship in that each was close to the solution, and needed only a
nudge to get to the final expression (David and Bruce). In another case, the
relationship was asymmetrical in that two children explained the expression, and
the listener agreed with it (Micky and Jeff to Hosni). In two cases where I thought
the students would arrive at the algebraic notation, they could not do so, and could
not understand it when someone else presented it (Gina, Tamara).
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Making connections, and writing meaningful algebraic expressions: The Tunnels
problem revisited

I then wanted to see whether the children could make connections between
the afore-mentioned problems and the Tunnels problem, which was the first they
had solved in the series (Feb. 7). The strategy which the children had used for
Tunnels was S#1, i. e. draw all the diagonals and count. Two children explicitly
made a connection between the diagonals problems, and the Tunnels problem (Jeff
and Bruce). Upon the conclusion of the Decagon Diagonals discussion, Jeff said:
"Look, Vicki, I just turned to the Tunnels problem. It's just the same, but you have
the sides" (May 4, 1994). It was at the end of May that I asked the children to look
back at the Tunnels problem, and then asked: Can you write a number sentence or
general rule for the Tunnels problem? (Tunnels--Algebraic, May 25, 1994).

Cathy, Jerome, and Jeff, the three architects of Strategy #4, seemed to stick
closely to the original expression for Decagon Diagonals when writing their
statement for Tunnels--Algebraic in their logs. For example, Jerome's statement in
his Math Log is as follows: (S - 3) x S + 2 + S. The three arrived at their
statements independently of each other. When I at first looked quickly at Jerome's
statement, I was sure it was incorrect. It did not make as much sense to me as did
David's Math Log entry for example (see below), and I had difficulty figuring out
why it worked. Jerome listened to his partner Michel when Michel suggested that
Jerome could use the 'other' rule "but instead of taking off 3, you take off 1." Jerome
later saw that Jeff and Micky's collaborative effort had also rendered the
Corresponding expression: (S - 1) x S + 2.

Micky saw that there was a connection between the Decagon Diagonals and
the Tunnels problems; in the Tunnels problem the connection does go to the left
and the right. Micky kept pushing to see: How do you put the 3 back? Although
Jeff's expression in his Math Log at the outset was the same as Jerome's (above), and
Jeff seemed for a while very content to stick with it when conferring with Micky, it
was Micky's insistence on determining 'how to put the 3 back' (it is Jeff who points
out that it is not 3 but rather 2 which needs to be 'put back') and Micky's dogged
resistance to closure that led them both to work together and arrive at the creation
of "(S - 1) x S + 2 = tunnels". Jeff's cryptic note in his Log next to this equation
reads: "Best way f". Jeff is thrilled with this creation; his pleasure is captured on the
videotape as he says quietly but exultantly: "PERFECT!"

David's algebraic expression for the Tunnels--Algebraic problem was Z - 1 x
Z + 2: "[It's) 1 instead of 3 because you can go to the sides." Although the notation
varied somewhat, there were 6 other algebraic notations which represented the
same idea as David's (Abe, Bruce, Susan, Sheree as well as David in Group II; Micky
and Jeff in Group I). I regret that at no time did I display all the diverse notations in
order for the children to see and discuss the range of possibilities. The children were
seen to push for supporting arguments, and for meaning; they suggested that some
ways of expressing the idea made more sense than did others. For example, a
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number sentence such as 22 x 25 + 2, worked out as 22 x 12 1/2, met with a
response that it did not make sense because it would mean that the sides of the
polygon had been cut in half.

The achievements of all the children are worthy of mention. There were nine
students who were able to use algebraic notation and of those, five seemed aware
that the use of a general rule was powerful. Four students were able to make
connections to previous problems and to use a number sentence (equation) to
express the solution for Tunnels but used an arithmetic (eg. 8 x 9 + 2 = 36) and not
an algebraic expression. The other twelve were able to understand aspects of the
problems even though they could not yet express the solutions algebraically. Most
importantly, the children contributed to each other's learning; no one child was able
to achieve alone the goal regarding algebraic expression. I the teacher appreciated in
retrospect the extent to which the novel strategy (S#4) had helped me to see how a
generalised equation for these problems would be derived; the children's
discussions regarding what I have here designated key ideas helped me see what the
components of the equation meant.

Acknowledgement: The author wishes to thank Carolyn Kieran and Barbara Graves for helpful
discussions during the preparation of this paper. This research was supported by a Social Sciences and
Humanities Research Council Grant from the Government of Canada #410-94-1627.

Note 1:
As I finished mentioning to the children that their use of the number sentence was unique, it suddenly
struck me that another child, Mario, might have made just such an attempt two years previously. And
when I went back to consult the Math Logs from that year (1991-1992), there it was. It is important to
stress this instance because as I reflected upon it, it became clear that Mario's ideas never reached their
potential because some essential elements were missing. For one, I the teacher could not follow Mario's
reasoning as presented in the Log (although there was obviously a vital germ of an idea there that
stayed with me over the two year interim), and as a result could not nudge him further in his Log, nor
help support his ideas when he presented to the class. Prior to 1993, the students presented their
Problem of the Week solution only to the group of 12, and did not discuss with a partner and then in a 4-
some; hence Mario did not have a peer to hear him out, who might have attempted to follow his
reasoning. When I consulted the videotape of that session, I discovered that Mario gave his
presentation to the group of 12 just before recess, and so the children in the group may have been
attending more to the fact that they would soon be at recess (recreation) than to Mario's ideas.
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DEVELOPING CLINICAL ASSESSMENT TOOLS FOR ASSESSING "AT RISK" LEARNERS
IN MATHEMATICS

Robert P. Hunting

La Trobe University

Brian A. Doig

The Australian Council for Educational Research

Research-based tools for assessing students' mathematical strengths and weaknesses are
important to good pedagogy. We report a project for developing clinical tasks for assessing "at
risk" students. The history and evolution of clinical assessment methods is traced from their
origins in Piagetian research, and related developments in psychological assessment noted. A
process for validating clinical tasks entailing content relevance and representativeness,
theoretical validity, process analysis, and useability is outlined. We briefly discuss two
examples from our recent work to highlight the need for explicit links to research.

The purpose of this paper is to provide some background to a project aimed at developing

research-based tools for clinicians to use in the initial stage of assessing mathematical strengths and

weaknesses of students, and provide examples of some tasks. Effective strategies are needed for

helping individual students who are not realising their mathematical potential in the regular classroom

setting. The training of teachers with advanced clinical skills, and the provision of assessment tools

for them to use, go hand in hand, because it is the way in which a tool is applied that will determine

its effectiveness.

The clinical interview as a research tool, and as a diagnostic and teaching tool

It is generally agreed that the origins of the clinical method as a formal educational research tool

coincided with Piaget's early investigations into children's thinking (Ginsburg & Opper, 1969).

Neither of the two most widely used research methods of that time - naturalistic observation or

standardised testing were considered suitable for studying children's cognitive functioning.

In a clinical interview a dialogue or conversation is held between an adult interviewer and a

subject. The dialogue is centred around a problem or task which has been chosen to give the subject

every opportunity to display behaviour from which mental mechanisms used in thinking about that

task or solving that problem can be inferred. An idealised description of the method is provided by

Opper (1977).

Several variations of the same task may be presented to probe the strength and limits of the

construct thought to underlay the subject's response, and to provide additional insights into that

subject's mental functioning. Because of the dependent relationship between the subject's responses

and the interviewer's questions, no two subjects will ever receive exactly the same interview. It

follows that interviews can vary greatly across subjects in any one experiment. Basic to research

involving clinical interviews are analyses of verbal protocols and non-verbal communications (Davis,

1991; Ginsburg, Kossan, Schwartz, & Swanson, 1983; Resnick & Ford, 1981).
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The clinical method has been the mainstay of cross sectional status studies conducted by genetic

epistemologists and cognitive psychologists in the Geneva tradition (for example, Inhelder & Piaget,

1958; Lovell, 1971; Noelting, 1980; Thomas, 1975). Repeated use of clinical interviews has

provided powerful case study data bearing on questions of why children fail to learn mathematics

(Allardice & Ginsburg, 1983, Erlwanger, 1975). In addition, clinical interviews have been used in

longitudinal constructivist teaching experiments (Cobb & Steffe, 1983; Hunting & Korbosky, 1990;

Hunting, Davis, & Peam, in press; Steffe & Cobb, 1988; Wright, 1989).

Good teachers from the beginning of time have used similar strategies to the clinical method,

precisely because the teaching process involves efforts on the part of teachers to understand the

mathematical realities of their students. As Cobb and Steffe (1983) have said: "The actions of all

teachers are guided, at least implicitly, by their understanding of their students' mathematical realities

as well as by their own mathematical knowledge" (p. 85). Recent didactic literature oriented around

the clinical interview as a teaching strategy is exemplified by Labinowicz (1985), who argued that the

dominant form of paper and pencil testing in the United States did little to assist the teacher make

decisions about what to do next with their students. He proposed a clinical form of assessment that

allowed teachers to follow the children's thinking as they worked through tasks presented in the

context of materials.

Diagnostic assessment often uses clinical approaches similar to those used, for research purposes.

The diagnostic interview is the point of entry at which information is gained that is needed to assess a

problem, a relationship is initiated that will facilitate communication by the interviewee, and where the

client's further relationship in a program of visits is facilitated (Pope, 1983). In the field of

mathematics education Ginsburg et al. (1983) identify two phases in the diagnostic process. In phase

one available data are assembled from parents and teacher, including information about the curriculum

the student has been experiencing. This data is used, along with a standard set of general items, to

help broadly identify the student's problems. The second phase involves specifying more precisely

the nature and possible source of the student's difficulties. Diagnostic assessment is akin to tailored

testing (Lord, 1980), whereby items are selected contingently using available estimates of examinee

status. However, in contrast to tailored testing, where the emphasis for diagnosis is derived from

formal scoring and psychometric analyses, diagnostic assessment has been categorised as

impressionistic (Cronbach, 1984). As Ginsburg et al. (1983) have reminded us,
"There is little agreement on a taxonomy of general mathematical disabilities. Any particular
child is likely to have a mixture of conceptual and procedural difficulties contributing to math
learning problems, as well as more general learning problems and emotional difficulties" (p.
46).

The clinical movement in assessment.

Renewed interest in clinical approaches to assessment of learning in mathematics have coincided

with recent emphases on action reflection models of teaching (see for example, Schon, 1987) and

orientations to psychological testing that admit more qualitative approaches such as dynamic

assessment (Feuerstein, 1979; Gupta & Coxhead, 1988; Lidz, 1987, 1991) and individualised
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assessment (Fischer, 1985; Frederiksen et al., 1990). A further breakthrough in mathematics

assessment occurred in the 80s when several authors re-discovered Piaget's clinical interview

techniques (Donaldson, 1978; Ginsburg, Kossan, Schwartz, & Swanson, 1983; Hughes, 1986;

Labinowicz, 1985). Labinowicz' textbook, in which he reported in detail the responses of young

children to clinical interview tasks, was a significant advance.

Other assessment tools.

Clinical methods and tools are one of a range of assessment alternatives world-wide that are being

trialled and evaluated in efforts to improve student learning of mathematics (Anastasi, 1990; A. C. E.

R., 1994; de Lange, 1987; Leder, 1992; N. C. T. M., 1993; Niss, 1994a; 1994b; Romberg, 1992;

Izard & Stephens, 1992). Other alternatives include student portfolios and journals, investigations,

open-ended questions, observations, performance tasks, and student self-assessment (Grouws &

Meier, 1992). Recent work on curriculum and assessment in Australia (AEC, 1990; 1994a; 1994b)

has been driven primarily by a desire to monitor standards, provide accountability measures, and to

improve reporting (Board of Studies, 1994). As Cronbach (1963) pointed out, these purposes are not

the same as that of improving learning and teaching, and as such have somewhat different qualities.

The advantage that clinical assessment methods have over instruments designed to serve

administrative regulation is that the data source (the student) and the data analyser and interpreter (the

teacher-interviewer) can engage directly in interactive communications. The teacher-interviewer "reads

the play" as the play proceeds. Moreover, the primary concern of the assessor is to better understand

the knowledge state of the learner.

The development process

Traditional approaches to the question of test validity have embraced three major categories of

validity evidence: content-related, criterion-related, and construct-related (APA, 1966). The testing

field has moved to recognise that validity is a unitary concept (Anastasi, 1990; Cronbach, 1984).

Because content- and criterion-related evidence contribute to score meaning, they have come to be

recognised as aspects of construct validity (Messick, 1989). Yet, as Messick (1989) says, "in applied

uses of tests, general evidence supportive of construct validity usually needs to be buttressed by

specific evidence of the relevance of the test to the applied purpose and the utility of the test in the

applied setting" (p. 20). In the context of developing clinical tools for assessing the mathematics

knowledge of a student in an interview setting, there were several areas which we felt needed careful

attention during the process of task construction and development. These are content relevance and

representativeness, construct or theoretical validity, process analysis, and useability (Hunting &
Doig, 1992).

Content relevance and representativeness. In order to highlight skills or understandings which may

have been overlooked in the construction of provisional task sets, analyses were conducted to
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determine links between each task and corresponding content cells of three major curriculum

statements. These were

A National Statement on Mathematics for Australian Schools (AEC, 1990);

the Curriculum and Evaluation Standards of the National Council of Teachers of Mathematics

(NCTM, 1989); and

the mathematics portion of the United Kingdom National Curriculum (DES, 1988).

However, no attempt was made to include tasks which link to every content cell of any of the

curriculum statements, or indeed to content cells common to all three statements. The tasks were

designed to reveal the processes of students' mathematical learning, so the emphasis was to capture

major psychological subdivisions, as we currently understand them. Since a task may' tap multiple

aspects of a student's knowledge, it was our goal to choose the least number of tasks that would

maximise information about students' breadth and depth of knowledge. The goal of parsimony is

especially important due to time constraints surrounding assessment interviews.

A second procedure, complementary to the first, involves submitting the provisional task set to a

panel of mathematics education experts familiar with relevant curriculum content and related research.

The panel was asked to consider, as well as construct representation, relevance of task context,

format of protocol, appropriateness of vocabulary, and adequacy of logical branches for tasks that

have alternative pathways dependent on student response. They were also invited to comment on

interrelations between tasks and clusters of tasks.

Theoretical validity. It was our aim to provide supporting rationales for each type of task.

Rationales have their bases in the research literature of mathematics education, as pioneered by

Labinowicz (1985). A major contribution of this exercise was to delineate known psychological

boundaries and emphasise the significance of cognitive functioning with respect to the domain of

mathematics relevant to the student. Through this analysis recent research findings can be manifested

in tasks not otherwise forthcoming from an analysis of traditionally conservative curriculum

documents. Regular and routine revision of tasks are needed as new research findings throw light on

students' mathematical behavior.

Process analysis. This phase entailed documenting typical student responses to each task type,

with an interpretive commentary that attempted to link student behaviours to available theoretical

constructs. This analysis represents a potentially rich source of data for clarifying existing theories

and results about students' mathematics learning. The documentation of typical student responses is

conducted through training programs designed to prepare skilled clinicians (Hunting & Doig, 1994).

Useability. Teachers who have undertaken specific training in the implementation of clinical

assessment procedures in mathematics were asked to comment on the utility of the procedure. They

were invited to comment on the format and sequencing of the tasks for ease of use, as well as

accompanying checklists or data sheets used to record student responses.
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The need for a research base for assessment tasks

We argue that assessment tasks require rationales based on research and literature into the

mathematical learning processes of students, and that these rationales need to be made explicit to

teacher-clinicians so that they understand the responses of students against some theoretical base. We

have explained elsewhere (Hunting & Doig, 1992; 1994) the critical link between the assessment tool

and the skill level and knowledge base of the person who uses that tool. Historically, test developers

have neglected to acknowledge results from educational research into the learning and teaching of

school subject matter. Recognition of the need to make explicit the research base that supports

assessment items or tasks is a serious weakness in current efforts to design national and state

assessment instruments (Ellerton & Clements, 1994).

We present here two examples from our Level 13 assessment task set (Hunting, Doig, & Gibson,

1993). These examples illustrate the importance of incorporating research results into the design and

development of assessment tasks. The first example is taken from the Measurement section, and deals

with area. The second example is from the Geometry and Spatial Sense section. Our instrument

development model assigns a high priority to provision of a theoretical justification for assessment

tasks used. Other examples are discussed in Hunting, Doig, & Gibson (1994).

Example 1: B6.4 Measuring an irregular region. For this task the clinician begins by showing the

student the graphic shown below, and says: "This diagram shows a leaf placed on 1 cm grid paper.

What is the approximate area of the leaf? How did you work out your answer?"
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Webb and Briars (1990) recommended that tasks for assessing students' measurement skills should

involve the student actually measuring something. In their opinion items of the type where there is a

pencil drawn alongside a ruler and the student is asked "How long is the pencil?" are inadequate

because they assess only whether a student can read scales rather than measure using a particular unit.

A criticism of usual practice by Dickson, Brown, and Gibson (1984) is addressed with this particular

task. They argued that measurement presented in schools is more precise than it occurs in real life. A

related task is B7.5 in the Geometry and Spatial Sense section. Here the student is told. "A dog is tied

to a five metre rope which is attached to a stake in the ground. Make a sketch on this grid paper to

estimate the area and shape of the ground on which the dog can walk. Tell me how you work out

your answer as you do it".
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Example 2: Task B7.6 Making a net from a three dimensional model. A three dimensional model

of a cube is placed in front of the student. The interviewer shows how the cube can be unfolded

without fully showing the net. The interviewer says, "Draw how this cube would look if it was

unfolded and laid flat". After the student has responded, the interviewer asks, "Why did you draw it

that way?"

Many examples of drawing and recognising nets of cubes can be found in teaching and test

material. Piaget and Inhelder (1967) found that children shown a series of correct and incorrect nets

of solids, were able to choose the correct one by guessing rather than demonstrating genuine

understanding. Piaget and Inhelder found that asking a child to draw thecet after being shown the

model revealed intentions much more intelligently motivated. Piaget and Inhelder (1967) found that

children who had been given experiences in folding and unfolding paper shapes were two or three

years advanced on children who had not had those experiences. Children who do not perform well on

this task would likely benefit from activities of transforming two dimensional shapes to three

dimensional shapes and vice versa.

Some final comments

Clinical approaches to assessment have advantages for the classroom teacher wanting a deeper

understanding of their students' knowledge of mathematics. Two critical aspects of clinical

assessment methods are, first, the quality and appropriateness of the task with which the student will

engage, and second, the skill of the interviewer in eliciting responses, and interpreting those

responses. The clinical interview is a tool from research that can be applied powerfully in practice

because the methodology is closely attuned to a fundamental activity of teaching and learning--

interactive communications. It's power derives partly from the incisive nature of the task, and partly

from the potential for the interviewer to use the task to uncover conceptual strengths and weaknesses

of the student. Subtle differences in task presentation and structure can elicit responses from students

that reveal different aspects of conceptual understanding. For example, in the measurement task

above, th directions are comparatively specific. More specific would be to provide square shaped

tiles with instructions to use the tiles to cover the region. Less specific would be the questions, "How

could this grid be used to find the area of this leaf? or "Why would we want to put this leaf on a grid

like this?" Several challenges face this approach to assessment. Mathematics education is a young

science where research into many aspects of the learning of school mathematics curriculum is

negligible or non-existent. Our analyses of tasks and their research bases raises many questions

needing sustained disciplined inquiry. Teachers need specific training in clinical assessment

techniques and principles, and school organisational practices need to change to allow clinical

assessments and follow-up strategies to be conducted effectively.
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ANALYSIS OF ERRORS AND STRATEGIES USED BY 9-YEAR-OLD

PORTUGUESE STUDENTS IN MEASUREMENT AND GEOMETRY ITEMS

Gloria Ramalho, Instituto Superior de Psicologia Aplicada

Teresa Correia, Instituto Superior de Psicologia Aplicada

Abstract

An experiment is described involving 9-year-old portuguese students
responding to the geometry and measurement items included in the IAEP

survey. One of the major aims of this study was to detect the errors that

were made in those items and the misconceptions underlying them. The

children were interviewed on an individual basis. A brief discussion of the

difficulties found is presented

The major motivation for this line of research was to elucidate the difficulties met by 9-

year -old portuguese students while solving the mathematics test included in the I.A.E.P.

survey, in view of this country's low performance in 1991 (Ramalho, 1994). This

presentation will address the errors made and the strategies used by 21 pupils while

solving the items regarding the topics of Measurement and Geometry that were included

in that survey. We are aware of the time lag existing between the test administration in

1991 and the present study whose results pertain to 1994: students were not the same and

it is not possible to argue that there were not any changes in these two years. Moreover, in

the current study we were constrained to a smaller number of students due to the

methodology that we considered as appropriate to use.

Nevertheless, in spite of the limitations that we just acknowledged, we found it interesting

i) to examine the difficulties met by current pupils; ii) to compare their general

achievement with their 1991's colleagues; and finally, iii) to investigate their strategies and

possible misconceptions.
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THEORETICAL FRAMEWORK

In terms of theory of psychological development we subscribe Bickhard's (Bickhard, 1980,

Campbell & Bickhard, 1986) nonstructural proposal of levels of knowing . This

perspective conceives of "developmental stages as a hierarchy of levels of knowing that is

generated by iterating the basic knowledge relationship. (...) The hierarchy of knowing

levels has an invariant sequence in any domain. The knowing levels can thus be used as the

basis for a new, nonstructural definition of stages" (Campbell & Bickhard, 1986, p. 51).

More specifically, the reflective iteration of the knowing relationship consists of a process

of making knowledge that is only implicit in the organization of the interactive

competencies of one level, explicit at the next higher level of knowing, which in turn will

have further implicit properties knowable at the next lowing level,. and so on.

This general view of development is compatible with the perspective of "conceptual fields"

introduced by Vergnaud (1990). Like Bickhard, this author rejects the model of

developmental stages pointing to the evolvement of general logical structures. His

contention integrates a partial order organization of chidren's competences and

conceptions, rendering the analysis of cognitive development dependent on both the

specific epistemology of the particular contents and the analysis of the subject's

experience. The research priorities which Vergnaud maintains for the field of
Mathematics education imply the recognition of a varied class of possible problems, the

careful examination of its structure and of the cognitive operations necessary to deal with

them.

Methodological considerations

We would like to recall here that the present investigation follows the application of a

standardized method in the context of the IAEP survey. As mentioned above, the main

goal of the international study was to characterize the educational systems and the cultural

environments favorable to success in the Mathematics domain. The test was built so that

it could rank students' performance within each country and relate that performance with

contextual factors potentially favorable to success. The use of the survey method was

adequate to the objectives so defined, but has a limited value in the scrutiny and

understanding of the cognitive processes involved (Ginsburg, 1983) and, consequently, the

conceptions underlying the solution of the items that were included.

More specifically, as we aimed at a better understanding of the cognitive processes, we

sought out to use protocol methods which could elicit students immediate accounts of

their mental steps while atempting to solve the questions.We used the revised clinical
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interview (Ginsburg, 1983) consisting of flexible questioning of individual children, with

concrete object support. Even if the resulting protocols may not be able to model all of the

thought processes at stake in the problem solving activities, they are at least recognized as

important contributions to the study of such mental paths (Hart 1985, Ginsburg 1983).

Moreover, as the discovery type of the revised clinical interview allows for the researcher

to perform a naturalistic observation of nonantecipated results and a flexible exploration of

their meaning, we thought of this type of protocol method as the most adequate to the

objectives and constraints of the present investigation.

METHODOLOGY

Sujects and Instrument
This study included 21 9-year-old students attending two elementary schools in Lisbon.

The children were presented the 15 items covering Measurement (9) and Geometry (6)

included in the Second International Assessment of Educational Progress. The pupils

were individually subject to a revised clinical interview as referred to above. In the end of

each interview they were also asked to answer the questionnaire enclosed in that survey

and addressing their family and school contexts.

This presentation covers the results found for eight of these items. The criterion for this

selection was the low performance obtained. Therefore, we will summarize our findings

with respect to the five Measurement items and the three Geometry items in which the

difficulties were greater in the current study.

Procedure
The items were presented in the same order to each of the children by one of the present

researchers. As they answered, they were asked about the way they had gotten to that

solution, through the question "How did you get to that result?". The interview would

proceed in a way that was dependent on the answers given. The time of each interview

varied between 10 and 30 minutes and the interviews were audio-recorded.

Data Analysis

The tapes were transcribed and the resulting protocols were descriptively analyzed in
several different ways, in accordance with the research interests already mentioned above.

'In order to do that:
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I) we first classified the results under four categories: i) correct answer; ii) correct answer

after the student was urged to read the question once again; iii) correct answer after some

interaction with the interviewer; iv) correct answer not reached;

2) we made a comparison between 1991 results and the present ones, considering as

correct answers only the categories i) above;

3) we attempted to identify the types of errors made and the misconceptions underlying

those errors.

RESULTS

Current student performance
Current sudents' achievement in each of the items is presented in Table 1. We can see that

children performed the worst in items 5, 7, 8, 14 and 15, which were selected for a more

careful analysis that will be presented below.

TABLE1Frequency Distribution (%) of Students Answers to Measurement Items

Item 1 2 3 5 7 8 II I4 15

Finish a Select the Determine Determine Solve a Relate an Read a Measuring a Find the

pattern figure with how to the length problem object's temperature segment distance

involving larger area balance two of one side involving volume with below zero when zero- around a

squares among sets of of a square hours and the quantity on a point of given

different marbles given as llama.s of that thermometer niler is not rectangle

figures pointeter object° in a at the end of

dividided boo segment

in unitary
blocks

Schools I II I II I II I II 1 11 I 11 1 II 1 II I II

Answer.

A 72.72 100 100 ISO 100 90 18.2 30 45.5 50 54.5 7U 72.7 80 45.45 60 03.6 5U

11
9.1 - 10 IU - - 9.1 10 27.3 20 - - -

18.18 - - 81.8 60 - - 36.4 2U 18.18 10 36.4 50

C
- - - 54.5 50 - - 36.36 30 - -

D

A - Correct Answer
B - Correct Answer alter urged to read the question once again
C - Correct Answer atter some interaction with the interviewer
D- Did not reach Correct Answer

1 School in th center of Lisbon I N 11

N -21
II -School at th periphery of Lishon II N .10

Table 2. illustrates the outcomes of the administration of the Geometry items.
Achievement was poorer in the items 4, 6 and 12, which will be given more attention in

the discussion that will follow.
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TABLE 2-Frequency Distribution VA) of Studenu Answers to Geometry Items

[tens 4 6 9 10 12 13

Count the faces of a Identify a circle from Complete pattern Identify figures with Visualize the Identify a rectangle in
solid figure its basic properties involving triangles line symmetry rectangular faces of a a figure

geometrical solid

F11(011t3 I II I II I II I II I II I II

linpostas

A 81.1 80 27.27 20 100 90 81.8 90 45 45 30 100 90

B - 10 - 30 - - 9.1 10 45.45 00 - 10

C 9.1 10 63.03 50 - 10 9.1 - 9.1 10 -

D 4.-I. - - - - - . - . -

A - Correc Answer
B Correc Answer after urged to read the question once again
C Correc Answer fter some interaction with the interviewer
D Did not reach Correct Answer

Comparison between current and previous results

The contrast between current and previous results is shown in Table 3, and shows a

somewhat remarkable change. In nine of the 15 items (6 Measurment items and 3

Geometry items) there was a notorious improvement and the performance in two other

items was kept mostly the same. The results were only worse in four of the items.

1- School in the center of Lisbon

I1- School at the periphery of Lisbon

1- h1. 11

II N -10
N 21

TABLE 3. Items' Levels of difficulty - in the 1991 survey and in the present study

Itens Measurement Geometry

1 85.7 (85) --.) -

2 100 (00) A -

3 95.2 (82) A -

4 - 80.95 (55) 71

5 23.8 (39) N -

6 23.8 (39) N

7 47.6 (59) N -

8 61.9 (56) 71 .

9 - 95.23 (15) 71

10 - 85.71 (77) 71

I I 76.19 (50) 71

12 - 38.09 (50)

13 95.23 (94) 71

14 52.38 (21) 71

IS 57.14 (35) 71 -
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Errosis and Strategies
Starting from the most difficult items to the easiest ones, item 5 (Measurement) asked

for the length of one side of a square, given the distance around it. Five students answered

well immediately. Some of the others (2) got to respond correctly just by reading the
question. once again. But most of them (15) reached a right answer after some degree of

interaction with the interviewer. This interaction showed that there were students who
could not understand what was meant by "the total length of the square's sides", and some

would identify it with length of one side. Some others would seem to be confusing a

square with a cube. Once this problem got straightened up children had their answers

right. Quite often they used the strategy of multiplication to get to the length of the side:

"if the total is 20, than ,5 times 4 is 20, and so the answer is 5."

Item 6 (Geometry) required the identification of a circle, among a set of geometrical

figures, from a basic property: that all of its points were equally distanced to its center.

The geometrical shapes seemed not to be very well known among the children,
particularly the circle. But there seemed to exist also a problem with the drawing: the

shapes were indicated by points, and their center was also identified by another point (P);

the figures were not clear and were perceived as fuzzy and belonging to one only drawing,

rather than representing different entities. Only 5 youngsters identified the correct answer

right away. Three other responded well after being urged to read the item once again.
Most of them had trouble in understanding what was asked and in devising a strategy to

answer it. The most common strategy utilized was to draw a few lines connecting the

points which defined the figure and its center. They drew in this way for all the shapes, but

usually chose to draw specific lines, like diagonals in the case of parallelograms, which

allowed for more than one possible answer.
The number of rectangular faces in a triangular prism, where the hidden faces were
indicated, was demanded in Item 12 (Geometry). As in all the other items that were

included, the figure was first and the question came last. Eight pupils were right in their

first response. Many others (11) were asked to look at the item once again, and gave the

right answer just by reading it a second time. Apparently, the triangular faces were most

catching in the drawing, and when they came to read the problem they understood it as

regarding the triangular faces, rather than the rectagular ones.

In item 7 (Measurement) half the pupils anwered correctly on a first answer basis, and

the other half did not get to respond well. This item inquired the students about the time

of a train departure once it was known that it had been a few minutes late. What seems to

hive been the problem here was their understanding of the word "late". For some of them,

leaving "late" meant leaving "before", or else "going back, and therefore, subtracting".
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Measuring a segment when the zero-point of the ruler is not at the end of the segment,

which was asked in hem 14 - Measurement, was not a trivial problem for 10 students,

three of whom did not get to solve it well, even after some interaction with the
interviewer. The errors that we found regarded either focusing on the numbers rather than

the standard unit of measurement (they would just look at the ending point of the
segment), or starting at a point other than zero (they started their counting from one on, at

the beginning of the segment).

Item 15 (Measurement) asked the children to find the distance around a given rectangle

given the length of its two dimensions, which were indicated on the drawing that was

presented. Thirteen students had no trouble in answering correctly. Some of the other

pupils found some difficulty in understanding the meaning of "distance around", getting it

confused with the notion of area. The figure displayed, once again preceding the text,

helped that confusion: apparently the indication of the side's length led them to the

computation of the area.

In item 8 (Measurement) students were asked to select the dimension of an object that

would allow for less objects fitting in a given box. Most students did not show any

difficulty in solving the problem. Two children got it right just by reading the item once

again, and six students used direct proportionality (less objects - smaller objects) which

led them to the wrong answer. Once they reflected on the results of each step of their

reasoning they easily corrected their answers.

Counting the faces of a solid figure which did not indicate the hidden faces was the

content of Item 4 (Geometry). Although this item showed to be relatively easy for these

students, it is noteworthy that four of them still had troubles in solving it. Apparently the

difficulty regarded the fact that the hidden faces were not drawn: they would count the

faces in the drawing and just add one more.

DISCUSSION

In the first place we would like to emphasize the precipitation shown by most children in

giving quick answers to the questions that were posed. This haste had a strong impact on

their (poor) identification of what was asked in each of the items. We tend to attribute it

to an apparently pervasive notion among these students that quick answers are an

indication of smartness and good achievement. In our view, this notion brings serious

limitations to their thought capacities and to their development of reflective power.

There were misunderstandings about some of the words utilized in the items (e.g.

"distance around", "late"), as well as problems in the figures' display: the fact that these

latter always preceded the text, that they sometimes were fuzzy or else gave too much
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stress to some of their aspects, together with the problem mentioned above, appears to

have constrained the youngsters' performance. In the same manner, the multiple choice

format, unusual to portuguese students this age, led them in some sense to direct their

reasoning to conform to one of the alternatives, before they centered it on the problem

itself.

In the Measurement items we also detected some other difficulties at least on their first

approach to the problems: i) with respect to the determination of a" segment's length we

verified Hiebert's findings, namely that students were "focusing on the numbers rather than

the standard unit of measurement, starting at a point other than zero and leaving gaps"

(Hiebert, 1984, quoted in Boulton-Lewis et al., 1994); ii) regarding the connection

between volume and quantity we identified strategies that made use of direct
relationships: "less" objects was understood to imply "smaller" objects.

To conclude, we think that this methodological approach, already explored by Hart

(1985), which combines an extensive survey with a more intensive approach, in this case,

the revised clinical interview, has allowed for interesting outcomes concerning both the

specification of the overall performance of the large group, and the elucidation of the

difficulties that were met.
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SUMMARY: Whenever we want to make use of a test or a questionnaire to collect
information for taking any kind of decision, we have to decide about which one could be the

most appropiate for our task. For this work, we have designed and made use of a specific tool

to study the way in which mathematics teachers conceptualize and value the students'
assessment. The result has been a system of categories which shapes mathematics teacher's

ideas and concepts about assessment. This work ends with a discusion about the results and

their interpretation.

INTRODUCTION
Over the last thirty years, many changes have been taking place in the organization and

structure of the Educational System in most developed countries, and mainly in Compulsory

Education; one example is the almost constant reform of Curricula, being Mathematics teaching

always in the heart of it (Howson & Kahane, 1986).

Curricular changes in Mathematics have been various, each time being focused on

different areas of the Curriculum (Begle, 1968; Fey, 1980, 1992; Howson, Keitel &
Kilpatrick, 1981; Steiner, 1980). However, those changes in assessment methods have been

very limited and controlled, being more frequent in theory than in practice; the debate about

assessment is very recent and, for the moment, its changes are not very well known (Romberg,

1989). The ideas of changes and reforms in Mathematics Education are not having almost any

effect on assessment due to two main reasons: the social impact of assessment, with its effects

on pupil's promotion, and the continuous practice of examinations and external tests
(Kilpatrick, 1979; Niss, 1993; Romberg, 1992; Webb, 1992). Regarding Compulsory
Education, assessment is the area of Mathematics that has experienced less changes, what is

supported by teachers. Mathematics teachers are, in fact, a key factor in the determination of

the ways and uses of assessment made on our pupils' knowledge of Mathematics (Popkewitz,

1994; Skovmose, 1994; Webb & Coxford, 1993).

Current research in Education has focused on teacher's cognition (Houston, 1990), on

teacher's implicit theories as a field of research. However, within the bibliography consulted,

we have found very few works about assessment.
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WORK PURPOSE
The following work is an approach to Mathematics teacher's implicit theories

about assessment. These theories are understood as schematic representations of the
teaching activity. They are teachers' statements about the empiric world after having examined

the information obtained from reality. This study has been based on descriptive
methodology and we have made use of surveys carried out with the traditional tools in this

methodology: the questionnaire. It is a study of transverse nature made with the help of a
small-scale survey, as it will be explained later on.

The goals of this survey have been set out following two phases:

First phase: it was devoted to focus the general aim on a specific central objective; this

objective has consisted in establishing the Spanish Mathematics teachers' current
opinions about assessment, i.e. their common concepts, ideas, relationships
and valuations.

Second phase: it was defined to identify and relate the stages and
secondary aspects derived from the central objective. To achieve our purpose, we
have gone through the following stages:

a) the posing of certain key questions in order to reveal the main ideas and functions

about assessment in Mathematics.

b) the delimination and application of the categories used to classify the different
answers given to those questions.

c) the study of the categories validity and the description of the established system of
categories.

METHODOLOGY

Sample. We have followed a purposive sampling to choose the appropiate sample
for our study: we have selected one by one the different cases that have finally been included in

the sample, finding on this way one able to meet our specific necessities.

This sample has finally been made up of 59 teachers, where 24 were receiving initial

training at that moment, and the rest were tenure teachers of Mathematics who belonged to

Secondary Education and University -10 of them belonged to the area of Didactics of
Mathematics. Our purposive sample has consisted of some teachers who were willing to

participate in the study in debate. It has covered different teaching levels in which Mathematics

assessment has been extremely important.

Tool. At the beginning of the 91-92 Academic Year, we finished the composition of

the Survey of Conceptual Framework about Assessment (SCFA). It was a tool to determine the

field of ideas and functions normally used by Mathematics teachers with regard to assessment.

This questionnaire, which appears in Appendix I, fits the following schema:

Information about the Institution that carries out the study.
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Description of the purpose, request for help and thanks to the subject who has
participated in the survey.

Eleven consecutive questions. The model of each one consisted in posing a question

(first line), continuing with a general sentence that helped to find its answer (second line) and,

following, six blank spaces for writing one or several answers to the posed question. The

content of the questionnaire saw three different versions and it was finally accepted by the

research team, being later on applied as pilot surveys to small groups of teachers who had no

relation with them.

Questionnaire structure. The questions that were finally included have the
following structure:

Questions 1-5: questions related to assessment in general where:

questions 1 & 2 refer to objectives and aims of assessment;

questions 3, 4 & 5 refer to practical and technical aspects.

Questions 6-10: specific questions about assessment in Mathematics where:

questions 6 & 7 refer to objectives and difficulties of assessment in Mathematics;

questions 8, 9 & 10 propose the consideration of other elements in Mathematics curricula.

Question 11: this question intends to collect information about other aspects not considered

in the previous questions.

Application procedure. Although there was no time limit to answer the questions,
in all cases it took between 30 minutes and an hour. During the test, where some members of

the research team were present witnessing the seriousness of this process, the question paper

was applied to individuals in some cases, and to groups in others.

ORGANIZATION AND CLASSIFICATION OF ANSWERS
The second stage, which consisted in establishing the meaning of each posed question,

gave the result of a number of different answers. Each answer was expressed by one
statement, which could appear once or more times. We have compiled all the given statements

as answers to the questions and have organized them according to an alphabetical list.

The general information appears in Table 1.

Question Frequency Average of answers per participant
1 235 4
2 129 2
3 131 2
4 191 3
5 92 1.5
6 215 4
7 112 2
8 180 3
9 198 3

10 128 2
11 62 1

Total 1673 28
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We have collected 1673 answers in total, which correspond to 543 different
statements. It is interesting to note the high number of coincidences among all the answers. The

average of statements per participant has been 28 and the average of different answers has been

9.2.
Our study is focused on determining if these answers fit a system of ideas and concepts able to

be classified and systematized. Are there any prior and clear criteria to classify the answers in

order to know the underlying idea and the position of the person who gave the answers?

Our next step consisted on determining some criteria to classify the given answers.

The established classification must reveal, in each case, the different concepts
involved in the content of the question, and the relationships among them.

We intended to establish a conceptual structure which determine the field of
meanings of each question in order to classify them according to different interpretations.

The procedure carried out by the research team was as follows:

* the determination of a system of ideas and concepts to elaborate the questions and

classify their corresponding answers;

* the establishment of some theoretical criteria to classify the answers, in two stages

with corrections;

* the comparison with the classification criteria followed by an experienced teacher.

* the elaboration of a final classification and application to the statements of the criteria

derived from this classification. In this classification we did not take into account the results

obtained in question 11 for not being significant.

The third stage was devoted to study the reliability of the classification. For that reason,

the list and system of categories were submitted to the control of 10 external judges who made

their own classification. According to it, our first classification was revised and another one

was scheduled following the criteria that were previously established; the percentage of
coincidences in the two stages of classification with the different judges -external and internal-

was as follows. Table 2: Coincidence in statements classification:

Average of coincidences
First classification Final classification

Question 1. 50.8% 63.2%
Question 2. 57.6% 66.6%
Question 3. 80.0% 95.6%
Question 4. 47.0% 58.9%
Question 5. 56.2% 76.2%
Question 6. 45.7% 58.0%
Question 7. 60.4% 72.1%
Question 8. 57.2% 67.6%
Question 9. 59.3% 73.1%
Question 10. 63.6% 71.3%
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The increase in the percentage of coincidences with external examiners regarding the

new classification is noticeable. The final average percentage was 70.2%.

OVERALL ANALYSIS OF FREQUENCY

At the end of the third stage, we carried out a description of answers given to each

question according to the established system of categories. The final categories obtained in this

stage, which appear in Appendix II, were 41. These categories appear with the original
question together with the frequency of answers given to each question.

We followed two criteria to analyze the classification before mentioned.

Firstly, and as far as the total number of answers is concerned, we considered their

frequency and percentage according to each category and studied the importance of each
category in the total number of given answers.

Secondly, and with regard to the relation between the number of answers and the

number of participants, we considered the percentage of answers that teachers gave related to a

particular category.

According to the first criterion, we have to point out that all the questions were not

analyzed with the same precision. In questions 1 and 6, their answers were classified according

to 12 and 8 categories respectively. The answers to question 10 were analyzed through 4

different categories; questions 2, 7, 8 and 9 had 3 categories each, whereas questions 3, 4 and

5 had only 2. This can be reasonable if we bear in mind the information obtained through all

the answers and the average of answers per subject. Questions 1 and 6 had the highest
frequency of answers with an average of 4 per participant. In general, a higher number of

answers makes a coincidence with a higher number of categories established for their analysis.

As far as the second criterion is concerned, it should be interesting to mention that all

the categories had not got the same percentage of answers with regard to the total number of

participants. Therefore, there were 8 categories that obtained a percentage higher than 100%,

i.e. on average, each teacher had, at least, written one statement within these categories.

These are the following:

Assessment is used to control.

Examiners should belong to the classroom -internal examiners.

Traditional tools should be used for assessment.

In Mathematics, it is a priority to assess knowledge.

In Mathematics, it is a priority to assess ability.

Difficulties in assessment are due to the student.

Content is the criterion to assess Mathematics textbooks.

Teachers are assessed on their professionalization.

These 8 categories establish a basic profile of the main ideas about assessment in Mathematics,

and correspond to 7 of the posed questions; only two of these categories are answers to a
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single question (number 6). This profile is consistent; it is not made up of contradictory
categories, and offer a conservative and traditional idea about assessment in Mathematics.

Thirteen categories obtained a percentage of 50%-100% in answers. This reflect some

frequent but not prior opinions about assessment; the remaining 20 categories had a percentage

inferior to 50%.

CONCLUSION
With this work, we have collected data to:

* describe the nature of current conditions with regard to Mathematics
teacher's knowledge about assessment.

* identify norms and patterns to be compared to current conditions in
order to explain Mathematics teacher's ideas about assessment.

* determine the relationships among specific cases regarding the obtained
structured system of ideas, concepts and opinions.

We do believe that we have established a system of categories for the SCFA
questionnaire, being also significant the procedure carried out to determine and validate this

system. The variety shown by the 1673 statements that were compiled, gave the result of 41

different categories that established the system of concepts and ideas employed to answer the

posed questions. Those categories reflect the different interpretations and meanings given by

our participants in order to express their knowledge. Moreover, they reveal how complex and

rich the system of ideas about assessment is.

We have carried out an analysis of every question and of the total, bearing in mind the

frequency and percentage of given answers for each category and for the categories related to a

single question. The fact that the categories show different frequencies in their use, and that a

certain conceptual framework of assessment is seen as predominant does not mean that these

conceptions also belong to a regular group of subjects. However, within the different
categories, we can find some patterns of interpretation that can improve the explanation

obtained up to now. Therefore, it should be interesting to continue this work with an analysis

of the different category groupings obtained through the answers given by our subjects of
study in order to explain the dimension underlying in the established categories and reduce the

information obtained.

APPENDIX I
The following questionnaire is focused on determining and precising some of the most

important questions related to Mathematics Assessment. Please, read it carefully and complete

the information that we ask you for. Thank you very much.

1.- What should be object of assessment?

Assessment in education should be mainly addressed to:
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2.- Why to assess students?

The aims of students' assessment in Compulsory Education are:

3.- Who should assess students?

Compulsory Education Students should be assessed by:

4.- What tools should be used to assess students?

The most frequent tools to assess students are:

5.- How should the results of assessment be expressed?

Students should receive the results of assessment through:

6.- What should be assessed in Mathematics?

Mathematics pupils' assessment should be addressed to:

7.- What are the main difficulties in Mathematics assessment?

The most difficult aspects in Mathematics assessment are:

Assessment not only affects students but other elements in the educational system.

8.- What criteria do you consider important to assess Mathematics textbooks?

9.- What aspects should be assessed in teachers of Mathematics?

The most important performances to assess Mathematics teachers are:

10.- What results should be assessed in the Centres with regard to Mathematics Education?

11.- What other aspects, not considered before, can be assessed in a Mathematics lesson?

APPENDIX II
Question Category frequency

1 It is a priority to assess student's knowledge 27
1 It is a priority to assess student's work 39
1 It is a priority to assess the attitude towards the subject . 25
1 It is a priority to assess the student's ability 26
I It is a priority to assess the student's behaviour 19
1 It is a priority to assess-curriculum 9
1 It is a priority to assess teachers 23
1 It is a priority to assess students 13
1 It is a priority to assess content 17
1 It is a priority to assess objectives 16
1 It is a priority to assess means and materials 8
1 It is a priority to assess the educational institutions. 14
2 Assessment is carried out to obtain information 35
2 Assessment is carried out to take decisions 30
2 Assessment is carried out to control 66
3 Examiners should be internal 97
3 Examiners should be external 23
4 Traditional tools should be used to assess 144
4 General tools should be used to assess 32
5 Assessment should consider the way of communication 25
5 Assessment should consider the kind of information 49
6 In Mathematics, it is a priority to assess knowledge 62
6 In Mathematics, it is a priority to assess work 13
6 In Mathematics, it is a priority to assess attitude 25
6 In Mathematics, it is a priority to assess ability 84
6 In Mathematics, it is a priority to assess behaviour 8
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6 In Mathematics, it is a priority to assess content 37
6 In Mathematics, it is a priority to assess objectives 6
6 In Matehmatics, it is a priority to assess means and materials 8
7 Difficulties in assessment are due examiners 9
7 Difficulties in assessment are due to students 67
7 Difficulties in assessment are due to procedures 36
8 Criterion to assess Mathematics textbooks is presentation 56
8 Criterion to assess Mathematics textbooks is content 97
9 Teachers are assessed on their personal values 41
9 Teachers are assessed on their scientific and didactic training 53
9 Teachers are assessed on their professionalization 97
10 Centres are assessed on their organization 54
'10 Centres are assessed on their projects 29
10 Centres are assessed on their teachers 7
10 Centres are assessed on their students 28
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QUALITATIVE FEATURES OF TASKS IN MATHEMATICAL
PROBLEM SOLVING ASSESSMENT

Manuel Santos Trigo* and Ernesto Sdnchez
CINVESTAV-IPN

This paper discusses the importance of considering qualitative tasks
to evaluate the students' work in mathematical problem solving. Two
examples which show some features of two type of tasks are
provided. In addition, the initial work shown by some ten grade
students is analyzed as a means to show the potential of the use of
these tasks in assessing the students work and also as a class
material.

Introduction
Recent directions on what type of mathematics students should learn have
challenged the idea of learning only collections of procedures or abilities to

solve routine problems. Instead, there has been interest to focus on

understanding the meaning of mathematical ideas and to search explicitly for

different application of those ideas. As the NCTM (1989) indicated students

need to develop abilities to explore, conjecture, and reason logically, as well as
The ability to use a variety of mathematical methods effectively to solve

nonroutine problems (p.5). Research on how students solve mathematical

problems has suggested that it is important to pay attention to the basic domain
knowledge o resources, the use of cognitive and metacognitive strategies, and

the conceptualization of mathematics that students bring into the problem

solving arena (Schoenfeld, 1992). In this context, the question °What type of

mathematical tasks could promote or foster the students understanding of

mathematics?" becomes essential to analyze how this students understanding

could be achieved. This paper presents an experience that analyses the

process of designing qualitative tasks to assess students understanding of
mathematics. It also focuses on discussing mathematical ideas that students

showed when were asked to solve the tasks. Although some of the tasks were
initially thought as a way to evaluate students' ideas of mathematics, there is

indication that they can also be used as a means to engage the students in
some kind of classroom discussion.

'Visiting Scholar at The University of California, Berkeley.
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The Importance of Qualitative Assessment
Kitcher (1988) presented a view about mathematics called °naturalism° in which

he relied on the analysis of mathematical practice to explain the development of

mathematics. He proposed that a mathematics practice has five components:
i. A language employed by the mathematician whose practice it is

ii. A set of statements accepted by those mathematician

iii. A set of questions that they regard as important and as currently unsolved
iv. A set of reasoning that they use to justify the statements they accept

v. A set of mathematical views embodying their ideas about how mathematics
should be done, the ordering of mathematical disciplines, and so forth (p. 299)

In this context, it is important to relate the students mathematical learning to the

practice of doing or developing mathematics. Schoenfeld (1994) stated that
learning to think mathematically means (a) developing a mathematical point of
view --valuing the processes of mathematization and abstraction and having the

predilection to apply them, and (b) developing competence with the goal of

understanding structure--mathematical sense-making (p. 10). Indeed, what
Kitcher identifies as key issues in the practice of mathematics becomes

essential to promote the students learning of this discipline. Here, it is important
to design mathematical tasks in which students have the opportunity to use

different representation of mathematical situations, to identify meaningful

information, and to use mathematical ideas to make progress or solve the
problem. It is also important that students use different means to estimate or

evaluate the plausibility of their solutions. That is, tasks that can be used as a

vehicle to promote the use of language, mathematical content, and diverse

strategies to find and discusses diverse solutions or ways to solve the problems.

A Sample of Tasks
Some tasks could involve finding relationships of various events that appear

regularly around us. In some cases, the event provides the context to set a
specific task. Although many of the tasks are embedded in contexts such as

dealing with post office information, painting a school wall, or designing a field
track, there are also situations in which the tasks are presented in terms of

straight mathematical content, i.e., geometry, algebra, or arithmetic patters. The

underlying principle is that all the tasks give the students the opportunity to use

basic mathematical ideas to work on different phases of the process of solution.

In fact, several tasks were designed by choosing situation that are familiar to the
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students and offer the opportunity to use their mathematical knowledge already

studied.
Two types of tasks have been developed, 45 minutes tasks in which the
students have to explore various mathematical ideas to work on a plan that

leads to the solution of the task; and 15 minutes tasks in which there is a direct

application of some content. An example and some discussion about the

features of each task is provided below.

A. Statement of the Task (45 minutes) (bowl task)
A hemispherical bowl contains some water. The height of the water is 8 cm and

the radius of the bowl is 20 cm.

i. To what angle could the bowl be tilted before the water spills?

ii. If the height of the water is h and the radius of the bowl is R, write an
algebraic equation to find the angle a .

iii. How would you show that your equation in part ii is correct?

Figure 1

Figure 2 Figure 3

Qualitative features: An important part of this task is to represent the key
elements of the task into a diagram that could provide some sense on what the

problem is about. Figure 1 is a sketch of the recipient that shows the amount of

water. Note that the recipient has a stand that maintains the bowl in a fixed

position. Here, students are provided with Styrofoam spheres to help visualize

the container. The second figure represents an abstraction of what happens

when the bowl is tilted. For example, the water can be thought of being frozen
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and the bowl moving. Here, it is possible to observe that the situation could be
approached on the plane, instead of a three dimensional representation.
Indeed, making the connection from three to two dimensions is a powerful step

that allows to locate the data of the problem easily (figure 3). Another important
feature of this task is the selection of the angle. For example, in figure 3, the
angle a goes from the vertical radius to the line representing the top of the

bowl, 90 - a could also be identified as the angle to tilt the bowl.
Dealing with values h and R gives the students the opportunity to analyze

various particular cases and observe the behavior of the angle.

From the figure 3, it is observed that: Sin a = 16/20 which leads to

a = arc sin(16/20), and for the general case,
a = arc sin [(R - h)/R = 1 - h/R]. with 0 < h

B. Short task (15 minutes) (area task)
In the figure below (rectangle), a' point P is an arbitrary point on the diagonal

CB. From P two perpendiculars are drawn to AB and AC. These

perpendiculars intersect AB and CD in E and H and respectively and AC and

BD in G and F respectively.

A

F

H D

i. What can you say about the area of AEPG and DFPH? Explain

ii. Explain what happens to both areas when P is moved along the diagonal

BC?

Qualitative Features: This is an example of a task in which the context is

geometric oriented. It involves ways to examine special cases in which the

information given in the problem could provide a sense.of what occurs to the

areas. For example, if p is located in the middle of BC, it is clear that the are is

the same. Now, if segment CB is taken as a reference, it is observed that AABC

& ADBC are congruent (SAS); in the same way ACPG is congruent to ACPH,
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and APBE is also congruent to PBF. By taking into account this information, it is
concluded that the area of AEPG must be the same as the area of DFPH.

The above examples show some mathematical ideas that students may use

during the process of dealing with the task. An important feature of these type of

task is that students have to analyze the given information in order to decide
what plan could lead to the solution. That is, there is no direct way to solve the

tasks. The approaches shown by the students are used to evaluate their work

from a holistic perspective. An example of this evaluation is given further.

It is important to mention that the development or design of a task follows

various stages.
i. The task is discussed among colleagues to identify some of the its qualitative

features. Here, some changes for the presentation or context of the task may
emerge from the discussion and the initial statement or wording of the task is

often modified or adjusted.
ii. The next part is to pilot the task with a small group of students to see what

students can or can't do with the task. This initial field test gives some indication

on whether or not the potential identified initially is real. Then a second revision

is done by taking into account the pilot results and a new version of the task is

presented.
iii. The next stage is to try this version with different students and then to analyze

the results and give specific recommendation for its use.

Preliminary analysis of the students' work
The bowl and the area tasks were given to 12 grade 10th students, they worked
individually for 45 minutes in the large task (bowl) and 15 minutes the short one

(area). The written work shown by the students was analyzed by considering

the type of resources and strategies that the students used to solve or make

progress while working on the tasks.

Six students recognized that the area of the two rectangles was the same. One

of the students wrote:
They are equal. The rectangle is split into 2 congruent triangles by the diagonal

CB. And CP split the rectangle GCHP into 2 congruent triangles. And PB splits

rectangle EBFP in also 2 congruent triangles. So by this point the two sides have

equal areas. So if CB divides the large rectangle into two small triangles that have

areas. Then AEPG and DFPH must have equal areas.
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In explaining what happens to the areas when P is moved along the diagonal

BC, this student responded:
The areas will continue to be equal no matter where P is on BC.

In general, the students who recognized that the area was the same provided a

similar type of argument to support their claim. It was clear that they have all

the resources to justify their arguments, however, they did not provide a reason

on why for example the triangles were congruent. One student used a special

case to support his answer. He relied on a 4 x 2 rectangle and drew the

following diagram:

L
Area of A = 2 and
Area of B = 2

4
Two students thought that the area of the rectangles was different but did not

show any work to explain their responses. These students wrote comments
such as "I was never really good at this area of geometry" or "I do not remember

how to do this". Two students did not show any work.
In the bowl problem, the students experienced difficulty in visualizing the
relationship that could help them to relate the information given in the problem

to the angle. However, it was interesting to observe that all the students use

some kind of representation. Five students tried to use a three dimension

representation to identify the angle, but they struggled to identify the angle
position and failed to make significant progress to the solution of the problem on

their own. Only three students were able to represent the angle in a diagram of

two dimension. And four students asked for significant help throughout the

entire process of solution.
It is important to mention that the students who achieved the solution of the
problem (three students) spent significant part of their time trying to understand

the conditions given in the statement of the problem. For example, some of the
questions that they discussed that seemed to be helpful to understand the

components of the problem included:
How important is the shape of the bowl? What about if the container were a
parallelepiped? Where should the angle be located? Which data do we have to

calculate the angle? Indeed, by discussing these questions, the students were
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able to focus and determine a plan and strategy of solution. In contrast, the
students who immediately selected a way to approach the problem,

experienced serious difficulty not only in identifying which angle to consider but
also what data to use. It seems that trying to approach the problem without

having a complete understanding of possible relations of the data impeded that
the students explored or identified other ways or variants to solve the problem.

Some of the students commented (after having worked on the problem) that the

bowl problem resulted to be difficult because it was a kind of different type. That
is, it was necessary to choose a manageable representation in which the

behavior of the bowl could be easily manipulated and they expressed that, in

general, the regular class examples do not include this kind of exercise.

Although, they thought that it was important to deal with these problems to find
interesting applications of mathematics.

Discussion of Results and Recommendations
In general, the students showed significant progress while working on both
tasks. However, the use of their mathematical resources often appeared

loosely attached to their arguments. This was evident in the use of congruence
in the short task. In addition, it seems that students experienced difficulty in

presenting the written form of their response. As Schoenfeld (1992) suggested,
problem solving activities should encourage students to value both discussions
of various approaches and the communication of what is important to support
their solutions.

Although few students were able to solve the bowl problem on their onw (30%),

it was found that by working on this task, they showed awareness of using

various means to approach the solution. For example, thinking of other type of

container seemed to help them make sense of the main components of the task
(behavior of the water, level, and the angle). It appeared that representing the

problem in two dimension was the main obstacle to identify a manageable

relationship. Here, it is suggested that students spend more time dealing with
tasks that involve the use of representation from three to two dimensions.

Although the initial purpose was to explore the type of strategies used by the

students while working on some problems, it was interesting to observe that the

information of the students work also could be categorized in terms of how they

conceptualize mathematics and problem solving and in terms of mathematical

disposition to work on this type of problems. For example, it was evident that
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some students tried to work on the problems via number grabbing as initial
method while other spent more time making sense of the conditions of the

problem. It was also clear, that some students showed a better disposition to
work on these tasks and those who showed some kind of flexibility in using

more than only one approach, eventually were able to solve the problems.

Conclusions
The use mathematical tasks in which students have the opportunity to apply
diverse mathematical ideas has been recognized as a necessary step not only

in mathematical instruction but also in the students evaluation. Students may

initially be reluctant to approach tasks in which they are asked to do more than
using procedures while making sense of the information, designing a plan, or to

solve the task. This paper shows that they eventually become interested in

exploring various ways while approaching the tasks. It seems important that

teachers should value and use these tasks on regular basis in their instruction.

So, students could accept that dealing with these type of tasks is part of their
experiences in the learning of mathematics.
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THE INFLUENCE OF TEACHERS ON CHILDREN'S IMAGE OF MATHEMATICS
LAURINDA BROWN

UNIVERSITY OF BRISTOL SCHOOL OF EDUCATION, UK

A set of instruments which allowed the exploration of links between the image of mathematics of
the teacher and their pupils is introduced. Although, given the constraints of the research design, /
had expected no connections to be found the data showed clear evidence for the teacher's
influence on their pupils' image of mathematics. In particular, interviews with the pupils revealed
little evidence for the negative perceptions of mathematics prevalent in many children and adults.
The teachers had been selected because they were effective in the opinion of advisory teachers and
the question is then raised 'what is it that these teachers are doing?' In line with a current concern
with grounding theoretical and philosophical concerns in mathematics education within the reality
of practice my current research attempts to identify the strategies used by effective practising
teachers to achieve positive images of mathematics in their pupils.

In 1988 I worked at devising a set of instruments which might allow me to explore whether a
particular teacher did, in fact, influence the image of mathematics of their pupils in the same way. I
found research studies on:

children's attitude to mathematics and their perceptions of it
teacher's views of mathematics and of mathematics teaching
identifying characteristics of good practice
working at the complex space which encompasses the children, their teacher and the mathematics

and I read reports (Buerk, 1982 and Vertes, 1981) of teachers with a strong philosophy who
apparently influenced their pupils in some way. This reading all fed into the research design.
(See Lerman, 1993 for a more up to date survey of the area.)

Research design

Definitions of image and influence

The personal theory (Kelly, 1955, Claxton, 1984) which an individual holds about mathematics at
the present time which will include feelings, expectations, experiences and confidences was called
the individual's image of mathematics.

An influence of the teacher on children's image of mathematics will therefore be defined as how
the children's personal theories of mathematics have undergone a common change or adaption
through working with the teacher.
The total of influences of the teacher on a particular child's image of mathematics would be
expected to be greater than that of any common changes, but the identification of common changes
would help the teacher to identify those of their personal beliefs which are most apparent to their
pupils.
In looking for common changes in the set of pupils taught by a particular teacher, I will not,
therefore, be considering the difference in adaption of personal theories which might be apparent,
say, in the subset of boys and the subset of girls within the pupils.

Choice of teachers

I imposed a number of constraints of which the most important for me were:
each teacher would have a strong personal philosophy and be considered to be effective either by
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advisory teachers or their head of department
a range of philosophies would be represented such as SMP 11-16 (an individualised workcard

scheme), skill in exposition, 'not using a text-book'
each teacher would have taught a group of pupils for at least a full year before the process

started.
In the end I worked with 4 teachers, the fourth one being chosen because their own philosophy of
teaching mathematics was undergoing change.

Choice of pupils
With each teacher I worked with one class and asked each teacher to choose 6 pupils, two of
whom did respond to whatever they did with them, two of whom did not respond and the other
two to make up imbalances such as gender representation. They were not to inform me of the
reasons for their choices. Given the definition of influence above i would be looking for similarity
of responses between the teacher and all six of their pupils even though one-third of them did not
respond! Given this constraint, at this stage of the process, I was sure that I would find no
evidence of such influence!

Pre-visit

I felt that it was important to experience the teacher working with the group of pupils and this visit
started the fieldwork. My record of this visit was in the form of notes, written at the time, of
events that happened in the lesson using reportive statements only eg 'Teacher says 'Now make
22" (A M Brown, 1987). At this early stage of the process I wanted to avoid other categories
quoted by Brown such as interpretative and prescriptive. I had to work quite hard prior to this first
visit to get into the habit of doing this. Each teacher was asked not to prepare a special lesson for
me to observe, but just to do what they planned to do.

Interview with 6 pupils
Each interview was semi-structured (Walsh, 1985) with a basic script for me to follow from
which I could ask contingent questions as in a clinical interview (Ginsburg, 1981). I tape-recorded
each interview and later transcribed the tapes. The interviews began with us engaging in some
mathematics which was chosen by the pupil from five alternatives. This was partly as a vehicle for

us to get to know each other before the 'questions' and partly as a vehicle to allow a choice of
mathematical activity to be made which then led to a discussion of why that choice was made and
the possibility of learning something about their view of mathematics directly. The five activities
were chosen to offer a spread of categories of mathematical experience: practical work/geometry,
numerical/algebraic, an investigation, applied/bookwork, a problem.
The work of Hoyles (1985) in: asking pupils to recall particular episodes and Thomas (1987) in
the formulation of the questions in the affective domain were influential in the design of the script
for the interviews with the pupils.

Opening statement:
On the table in front of you there are, in fact, five different activities. Although we will
not have time, probably, to finish the activity in any sense, could you choose one for

us to get involved in?

After approximately 15 minutes:
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Your answer to this question might be the same as your first answer. If instead of
asking you to choose an activity for us to get involved in, I'd asked you to choose the
one you thought was most mathematical, would you have chosen differently?

Stories:
For this part of the interview I am going to make some statements and, for each one,
see what is brought to mind by what I say. Try to remember the event so clearly that

you can tell me a story about what happened.
a) Tell me about an activity you have done recently in a maths lesson, and although
you probably did not think so at the time, it is brought to mind now when I say, there
you are, sitting in a maths lesson and what you are doing does feel like mathematics.
b) Tell me about an activity you have done recently in a maths lesson, and although
you probably did not think so at the time, it is brought to mind now when I say, there
you are, sitting in a maths lesson and what you are doing does not feel like

mathematics.
c) Imagine a time when you felt good in a maths lesson.
d) Imagine a time when you felt bad in a maths lesson.
e) What I am interested in is your image of mathematics. So far you have indicated in
your responses to the various statements and activities that maths is ... Is there
anything else you'd like to add that has not been covered so far to the question: What

is mathematics to you?
Some of the questions might seem long-winded but experience showed that they precipitated direct
responses from the pupils without any need for them to clarify what I meant. The precise wording
developed over time. The last question proved useful in that I could get feed-back from them about

what I thought I had heard.

Interview with the teacher
I kept the interview with the teacher as close as possible to that with the children and also taped
them. They engaged with the mathematical activity and then I asked them to describe to me their
criteria for choosing the children for interview. The story questions were the same followed by:

can you say in one word how you feel about mathematics?
can you say in one word how you feel about teaching mathematics?
and finally a chance to mention anything you would like to that you do not think we have

covered naturally so far.

The technique of asking for stories through which to probe the underlying tenets (Davis and
Mason at a seminar Changing ways, ATM Easter Course, 1988) of the teachers worked well and I
felt comfortable in the interviews which lasted in some cases over an hour.
As the interviews progressed I reflected on the techniques I was using to encourage the teachers to
talk more. The most effective technique I called 'summing up'. Clearly, on the later tapes, there
are comments from me, in response to a particular story or statement, which are little more than a
simple reiteration eg So you think that ...(repetition) ... These comments seem to provoke either
agreement or disagreement, on the part of the teacher followed by clarification and further examples

which I now call provoked articulation.
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Post-visit
The final visit was to observe the teacher and, as with the pre-visit, to simply note reportive
observations (A M Brown, 1987) unless anything from the previous experience in the interviews
was brought to mind in which case I would change to interpretative mode (A M Brown, 1987)
continuing in reportive mode when sufficient notes had been taken to ensure that the link could be
remembered. In practice this was the least satisfactory part of the whole process since those pupils
who had been through the interviews wanted to engage with me and I became an active part of
each of the lessons and 'observation' was difficult. Having worked hard to observe in the pre-visit
in reportive mode I also found it difficult to move into a more interpretative style.

Evidence

A large amount of evidence was collected. There appeared to be evidence for strands linking
linking the images of mathematics of the teachers witli those of their pupils as follows (diagrams
showing the links for Teachers A and C are included as a separate figure on the following page):

Teacher A through challenging the pupils leaves them with an image of mathematics as initially
hard, but easy when sorted out
Teacher B through using the structure of the SMP 11-16 individualised learning booklets leaves
the pupils with an image of mathematics as a set of titles from the booklets

Teacher C sees mathematics as a framework of ideas which all link with each other and leaves
with the pupils an image of mathematics based on using and applying it

Teacher D and the pupils have a common image of mathematics as enjoyable.

These links came as asurprise to me. I had expected that my conditions on the pupils, namely
some who did and others who did not respond to their teachers, would ensure that influence,
defined as being an image common to all the six pupils and their teacher , could not be present.

One other surprise was that the vast majority of the 24 children interviewed seemed on the whole
to be genuinely engaging with their mathematics. Where were all these pupils who hate
mathematics and cannot see the relevance of it? Where are the children lacking in confidence,
scared of making a mistake? Certainly not all the children I interviewed would have said that maths
was wonderful; some thought it hard at times, others boring at times, but my overwhelming
impression was of children working in classrooms where there was a positive experience. They
were children who were learning something in mathematics lessons and had a feeling of progress.

Teaching strategies and purposes

So, these four teachers are seemingly capable, on this evidence, of working with pupils so that
they end up seeing mathematics in a particular way. This seems to have positive effects on the
pupils' performance in mathematics. The most pressing question raised for me by this piece of
work was : what is it that these teachers do? They have a strong philosophy, yes, but if, say, I am
starting to teach
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Pupil A2

Mathematics is about organising thing so that
they are easier to think about. When things are
already easy they are not worth thinking about
and not mathematics. It's more demanding than
just number.

Pupil Al

I don't understand it
sometimes. I get a bit lost,
but in the end I can do it.

Pupil A6

Pupil A3

When you look at all those numbers,
you don't read it, it looks difficult. I
think maths is more about problems
as well as figures. Sorting out things.
Finding easier ways to do things.

Teacher A:
influence through challenge

Control, insight and challenge. in one
word mathematics is compelling. When
kids report 'It's all so easy and you can
make it as complicated as you like and it's
just as easy' about an extended piece of
algebra, that's at the heart of what I'm
trying to do with my teaching. Pupil AS

I think I felt good it was building those classrooms.
Feeling good when I'd finished it, achieving, actually
working it out. We'd not really known what to do all
our own work really.

Pupil A4

I think maths is a hard
subject.

That making a scale-model
was really hard, interesting
but hard. I got to understand
it a bit better, it took about a
week to understand.

Pupil C2

I prefer having to solve it myself. It gives you
that satisfaction of not having to take it from a
book. I enjoy mathematics. I find it more of a
challenge than a chore. The problem-solving
exercises would help me because I could imagine
how I felt and go logically through the steps.

Pupil Cl

You've got to actually solve
things for yourself which aren't
in a book. That's not really what
I thought maths was going to be
in the earlier years because that
was just numeral sort of maths.
You can relate it more to things
outside, it's not just like a
picture on the board, you can
imagine it.

Pupil C3

Mathematics is problem-solving. In
Connect-4 I'd start by experimenting
on a smaller grid to see if there's any
pattern and be able to predict; maybe
changing the number of counters
which you have to make a row.

Teacher C:
influence through philosophy

I think the whole idea of a problem is
that you model it and make it solvable.

Mathematics is a framework and
mathematics teaching is fun. Fun
when you see the children building
their own frameworks which are not
necessarily you frameworks.

Pupil C6

There was a real problem there. I understood what was
happening and there were so many different types of maths
used to find the final answer. Maths was numbers to me. I felt
that in maths everyone knew the answer but as time's gone on
I've discovered that even Teacher C doesn't know all the
answers - so maths has changed - you can experiment.

Pupil C4

I think maths is just
applying stuff that
you have learned in
the lesson in reality.

Pupil C5

Maths is using what I
already know like
trigonometry and
measurement.
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and know that I want to create an environment in my classroom where children learn from their
mistakes rather than feel they have failed when they make one, are there specific techniques which

I can try?
In trying to find a way of thinking about what these teachers actually do to achieve the atmosphere
in their classrooms which they value I started using a confusing variety of words such as
`strategy', 'tactic', 'skill' and 'technique'. Sometimes the teacher used a specific and repeatable
behaviour over again with marked effect and at other times the strategy seemed more nebulous and
global such as asking questions. How could I find a way of describing what I was looking for?
There seems to be a general richness (lack of consistency?) in the use of words to describe
strategies, but in the literature concerned with learning strategies I found a model which proved
most useful in describing to me what I was trying to articulate in terms of teaching strategies (for a

full discussion see Nisbet and Schucksmith, 1986):

Characteristics Examples

Central strategy
(style, approach to
learning)

Macro-strategies
(executive processes
closely linked to
cognitive knowledge)

Micro-strategies
(executive processes)

Related to attitude and
motivational factors

Highly generalisable
Improve with age
Improve with experience
Can be improved by
training, but difficult?

Less generalisable
Easier to instruct
Form continuum with
higher-order skills
More task-specific

`Planfulness'

Monitoring
Checking
Revising
Self-testing

Asking questions
Planning

The examples here are concerned with learning strategies, but this hierarchy of strategies seems
worth working with as a tool for allowing me to notice teaching strategies. I am not going to put
too much energy into their classification beyond these broad divisions since 'a strategy is
essentially a method for approaching a task, or more generally attaining a goal. Each strategy
would call upon a variety of processes in the course of its operation' (Kirby, 1984 quoted in
Nisbet and Schucksmith, 1986). These are distinct from non-executive processes which might be
termed skills but any distinction when related to the complex arenas of learning and teaching is as
Nisbet and Schucksmith point out easier to maintain in theory than in practice. For my purposes

micro-strategies will subsume skills and tactics.
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The work I am currently involved in is concerned with interviewing perceived effective
mathematics teachers after their first lessons in the school year with classes new to them to find
out what strategies they use to achieve the classroom ethos for mathematics which they want. I
am not so interested in the management and organisational strategies as those linked to how they
teach mathematics. After the initial interviews the work is followed up using a similar set of
instruments to those discussed above and working with a class which the teacher has taught for
some time.

In the above learning hierarchy applied to teaching strategies I am linking the central strategy to the
teacher's images of mathematics and mathematics teaching and, as such, gives an overall sense of
direction to their work. Such philosophical and attitudinal perspectives built up over time are
certainly not easily transferable but do inform the decision-making necessary to apply lower order
strategies. In finding a way of talking about what I am observing in such a way that it might be
usable by trainee teachers I have started to work on macro-strategies in terms of their purpose as
articulated by me or the teachers whilst observing or listening to practice. For a particular purpose
the teacher often has a range of strategies which could be applied at differing times and in differing
circumstances and, where a particular purpose is shared by a number of teachers, they will have a
range of strategies between them. The micro-strategies for a particular purpose might be easily
transferable as behaviours but the trainee teacher would still need to work at the level of purpose to
begin to integrate the behaviour into a tool to achieve that purpose and will only recognise the
micro-strategy as being useful if it conforms to their naive but developing central strategy. To give
an indication of what I mean here follows a purpose with a few related strategies:

Purpose: Knowing what they know

At the start of a topic or theme how can you find out what the individual students in your class
know and where they find problems so that you can make links?
Strategies:

invite the students to make posters or write in response to 'Tell me what you know
about ...'

open-ended starter

eg You're going to be working on area and you invite the students to draw shapes with
area 8. This can be constrained by using square dotty paper and inviting the corner of the
shapes to be on the points of the grid.

a pupil offered an explanation of how they had begun to tackle a problem. The other pupils were
invited to close their eyes and put up their hand if they had started in the same way. In fact, in the
lesson observed, only two pupils cl;d so. An alternative start was requested and the pupils again
closed their eyes and put up their hands if this was their way of starting. The process continued
with more information being collected and these different starts were then used for further
exploration:

What was the aim of the people who drew the radius? (Brown, L, 1992)
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This work is still in its early stages but the framework is providing a useful tool for my
observations. In the presentation I will give an update on the work so far with a fuller list of
purposes and strategies and would be interested to meet teacher researchers from other countries
with a view to exploring similarities and differences.
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LISTENING TO STUDENTS' IDEAS:
TEACHERS INTERVIEWING IN MATHEMATICS'

Marta Civil
University of Arizona

As teachers work on developing learning environments that build on students' ideas
in mathematics, questions such as "how to uncover these ideas?" and "what to do
with these ideas?" arise. This report focuses on the experience of a group of
teachers as they interview students in mathematics. The teachers' write-ups serve
as a spring board for a discussion of beliefs about mathematics and its teaching, and
of aspects related to their pedagogical content knowledge. This discussion is placed
within the larger framework of change in mathematics education, with a particular
emphasis on implications for teacher education.

"It's scary to go into the classroom with the idea of letting the children go in different
directions and me following them." This is what Donna, a preservice elementary teacher, said

upon reflecting on her experience with an approach to mathematics instruction that moved away

from the teacher as imparter of knowledge to the teacher as facilitator of mathematical inquiry.

Donna's statement captures what I think many teachers are currently going through as they work

on changing their teaching practice. The classrooms described in documents addressing
recommendations for change in mathematics teaching and learning (NCTM, 1989; NRC, 1989)

are very different from the classrooms that many of us experienced as students and as teachers.

If classrooms are to become mathematical learning communities where students and teachers

participate in the joint construction of mathematics (Cobb, Wood, & Yackel, 1990; Wilcox,
Schram, Lappan,.& Lanier, 1991), students' ideas should come to the foreground of class

discussion. Teachers may then be faced with a variety of mathematical ideas floating in the room

and their role is to probe and guide without leading or imposing their views as to what constitutes

the ultimate answer. In order to build on their students' ideas, teachers need to listen to their

students in ways that may be quite different from the kind of listening that usually takes places in

a mathematics class. This "new" listening is an active listening in which the teacher shows a

genuine interest in the students' thinking in mathematics by asking them to elaborate, to explain

further, and by involving different students in the conversation.

This report is part of a larger research project that has as a goal to document and analyze the

efforts of a group of elementary teachers as they try to bring change to their mathematicS

classroom. As they move towards an approach that focuses and builds on students' ideas of

mathematics, becoming active listeners of these ideas is of key importance. Hence, one aspect of

our research focuses on teachers listening to students' ideas about mathematics and on what they

do with what they listen. We are looking at this from different perspectives: nature of the

'This research is supported in part by the National Science Foundation #ESI-9253845. The views expressed in
this paper are those of the author and do not necessarily reflect the views of the Foundation.
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classroom discourse (through observation and video-tapes); teachers' use of students' writing in

mathematics; teachers' use of task-based interviews as a means to learn about their students'

thinking. This paper uses the teachers' interview reports as a window into aspects of their

beliefs about mathematics and its teaching, their pedagogical content knowledge and their

understanding of mathematics.

Background
This research report is part of a teacher enhancement project that was developed to address

the needs of teachers who want to become active participants in the reform movement in
mathematics education. Thirty one teachers (teaching children ages 8 through 14) constitute our

first group of participants. This project has a strong leadership component. Hence, one of the

criteria in the selection of theie teachers was evidence of their participation and exposure to a

variety of reform-oriented workshops and experiences in mathematics. These are neither novice

teachers nor unfamiliar with the rhetoric of reform in mathematics education. Many of them have

been using alternative teaching strategies and reflecting on the teaching implications of this call

for change for quite some time now. This is not to say that there was not a great variability

across participants as to their level of awareness of the call for reform and their personal

interpretation of this call. Different participants had different needs--often shaped by the

circumstances of their school and school district. Furthermore, a constant throughout the

institute was the tension between participant as learner of mathematics and participant as teacher

of mathematics.

A broad goal of this project is to enhance teachers' understanding of mathematics by
engaging them in a variety of experiences as learners of mathematics. During the summer
institute, these elementary teachers work in small groups on problems in geometry, numbers and

number theory, probability and statistics. Technology, manipulative materials, and a variety of

exemplary curriculum resources are integrated throughout the institute. In addition to exploring

mathematics, the teachers discuss topics from research on learning mathematics and work on the

implications of the reform for their own classrooms and schools. During the school year, the

teachers work on implementing aspects addressed in the institute. Support is provided through

project staff visits to their classrooms, monthly meetings with some of the teachers, and four all-

day reunions during the year.

The instructional approach followed throughout the summer institute is based on a social

constructivist view of learning (Cobb, Wood, & Yackel, 1990; Simon, 1994). In our

interpretation of this view, we focus on the complementarity of individual and social perspectives

on learning (Bartolini-Bussi, 1994; Cobb, 1994). Throughout the institute, the instructors often

choose challenging tasks aimed at promoting social interaction in a mathematical context. The

teachers share their ideas on the tasks posed, examine different ways to approach them, and
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extend upon them. Our aim is to create a mathematics learning community in which participants

are responsible for the negotiation of meanings and for deciding on the validity of different

methods (Bishop, 1985; Wilcox, Schram, Lappan, & Lanier, 1991). Hence, a key activity
during the institute is listening to each other's ideas and pursuing these to advance in the
exploration of mathematics. We also explore different ways of finding how and what students

think about mathematics. The participants watch videotapes of task-based interviews of children

and read and discuss resource materials related to the issues of interviewing students and
listening to students' ideas of mathematics. During the school year the teachers have to interview

two of their students (individually or together) on a topic and with tasks of their choice. The

teachers' write-ups about their interviews provide us with another way to gain an understanding

of the many issues involved in changing the teaching and learning of mathematics.

A Discussion of the Teachers' Interview Reports
Letting Go of the Teacher's Hat

With a few exceptions, interviewing students on a mathematics task was new to these
teachers. Three factors appeared to play a role in the teachers' writing of the interview reports:

the task chosen for the interview (e.g., the choice of a problem-solving task or of a concept-

investigation task led to considerably different reports); the teachers' beliefs about mathematics

and its teaching; their level of experience with interviewing and reporting findings.

Added to the novelty and difficulty of the interviewing process, we need to keep in mind that

this is just a small part of a larger program in which these teachers are being pushed to think

about how mathematics is usually taught and how it may be taught.' Hence, their interview

reports convey a tension between the images they have held for years and the alternate images

proposed for the teaching and learning of mathematics. Several teachers wrote about how hard it

had been for them to refrain from telling or showing their students how to do something during

the interview (cf. Markovits & Even, 1994, for similar observations). Letting go of the "telling

mode" can be particularly difficult since the model of the teacher as dispenser of knowledge is

very well ingrained throughout our experience in school. Knowing how to ask probing
questions without directing students' thinking is usually not an easy task, especially because this

kind of questioning is very different from the recitation type questioning that takes places in

many classrooms. An interview that had as a goal to investigate the concept of decimal soon

turned into a teaching-by-telling interview in which the students were led through the teacher's

agenda by a series of questions that remind me of Plato's dialogue, Meno.

Another characteristic common to several reports is the focus on outcomes, especially to

point out:that the students did reach the "correct answer." This may be an indication of their

beliefs about what is valued in a mathematics activity. But it also may be partly due to the

difficulty in reporting in writing a thought process, leading to statements such as "they both
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thought for a deliberate amount of time and gave the correct answer," with minimal to no
description of what this thinking was.

The need to evaluate the students' performance is very much present. But this evaluation is

coated with very positive remarks, emphasizing the fact that they "did get it" In reading some of

these reports, several of the characteristics of the progressive educator (Ernest, 1991) surface,

especially in relation to the minimizing of conflict and the avoidance of errors. Yet, it is through

cognitive conflict and by looking into students' "errors" that we are most likely to learn about

their thinking. Interviewing in mathematics should enable teachers to prod students' ideas and

walk into murky areas. Shying away from these areas may lead to lost opportunities for learning

for both teacher and students.

I next focus on what I consider to be two exemplary interviews. These teachers' write-ups

are thought provoking and could serve as documents for reflection in teacher discussion groups

along the lines of current work on using cases in mathematics teacher education (Barnett &

Sather, 1992).

Pedagogical Content Knowledge

Lisa is a seventh and eighth grade (12 14 year olds) mathematics teacher with a very solid

background in this content area. This became evident during the discussions on mathematics

problems and concepts throughout the institute. She appeared knowledgeable, comfortable, and

ready to take on the many mathematical challenges that, were presented to the participants.

During the institute she gained further appreciation for the use of manipulatives as a means to

help students gain understanding. Thus, for her interview she had two students work (in
individual interviews) on some fraction tasks using square tiles and the number line (this being a

model that she routinely discusses with her student's). Lisa had the students represent fractions

such as 2 and 3 with the square tiles. She was interested in them "seeing" these fractions. The

students had no difficulty making up models with the tiles to represent the fractions given. Then,

after a very short time on this (each interview lasted about ten minutes), Lisa asked them to

represent on the number line. Both students drew a number line from 1 to 10 and marked 5

as . In her write-up, Lisa does not share much of her thinking about this response. She

writes:

I tried to ask them again to show me where was and not half of ten. I asked them to

draw a number line starting at zero and going to one and then to mark . They both
appeared apprehensive at first, as if the space between 0 and 1 were sacred ground. They

knew that half was in the middle and finally marked the and labeled it.
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Several questions seem appropriate here: What model for fraction were these students using?

Was their answer to be expected given the sequencing of tasks? What kinds of probes and tasks

could be used to further explore their thinking? Using this episode to investigate these and similar

questions could prove very fruitful in teacher discussion groups as a means to explore their own

understanding of the mathematical content and their pedagogical content knowledge. By asking

the students to draw a number line from 0 to 1, the students are able to give the "desired
answer." But, what would have happened had she given them a number line from 0 through 6,

with marks at every whole number? Would the students have marked .5 or 3 as their choice for

? As Larson (1980) points out, a number line from 0 to 1 may be interpreted by students as a

part-whole model and thus may shed little light on students' understanding of the number line as
a model for fractions.

Lisa's report reflects the difficulty to bridge between one's own understanding of the content

and the students'. In no more than ten minutes per student, she had them work on three very

distinct tasks, involving different subconstructs of rational number and the idea of unit. Just
based on her report, it is hard for me to assess how much awareness Lisa has of the many
subtleties (from a learning point of view) involved in the tasks she presented. She does write

that, prior to this experience, she had assumed that her students knew more about certain
concepts such as the number line. Students do find the number line model for fractions to be

more difficult than the area (region; part-whole) model (Larson, 1980). Yet, teachers such as
Lisa may not have had a chance to revisit the large knowledge base on rational numbers.since

they were in college working on their teaching degree. And even then, it is not clear how much

they did (since time is always a factor) and how relevant they may have perceived that
information to be at the time. Now that they have had their own experiences teaching this topic,

a discussion of relevant research related to vignettes such as those written by Lisa is likely to be

meaningful and help advance their pedagogical content knowledge.

Learning about their students' concepts

Penny teaches third grade (8 year olds) in a middle to upper class school district. She is very

aware of what the implications of mathematics education reform are and is clearly a leader in

implementing change. She feels isolated in her school because of some of her peer teachers'
apparent lack of interest in or concern about discussing mathematics teaching and learning.

Judging by her very insightful journal, her attitude throughout the institute, and her teaching

behavior, she seems to be in the forefront of reform. Her write-up presents three students'

responses to one single task which was part of a larger interview that she administered
individually to each of 25 students. The task can be stated very simply:

166 2 158



The teacher shows a red trapezoid (from the pattern blocks collection) and tells the

student "this trapezoid represents of the whole, show me the whole."

Penny had interviewed students in mathematics before and had in fact used this task in

previous years. It is Penny's ability at probing, listening, and waiting that makes her report a

very rich one. In reading it, one learns about these children's images of fractions and how prior

experience with the pattern blocks appears to influence their work. One of the students, in

looking for the whole, appears fixed on the idea that it has to be a hexagon. Immediately
discarding the yellow hexagon as being too small, the student seems at a loss because she is

looking for one single piece. When Penny asks her a general question about fractions, the

student refers to a pie as the context for her answer. In the context of pattern blocks, this student

may have been limited by an overreliance on the yellow hexagon as the whole. In a different

context, one of her choice, she may have succeeded in solving a task similar to the one posed

(see Mack, 1993, for a discussion on the influence of context when working with rational

numbers). These are just suppositions, but the point is that the case presented opens up the door

to further investigation. But how does this student finally respond to the task posed? She takes

six red trapezoids and arranges them in the shape of a hexagon, with a hole in the middle. This

hole creates some discomfort for her, as she says that the shape has to be "all filled in." She then

takes a yellow hexagon to fill in the hole and presents that as her answer. Penny probes tomake

sure that the child is indeed done and concludes the interview telling her that they will look at this

problem with everybody in the class later on. What is this student's concept of the whole in the

context of pattern blocks? Is only a hexagon acceptable? And more generally, would she accept

a pie (or another representation) with a hole as a model for the unit? This image of a continuous

region (with no holes) is also shared by another student in Penny's report. This student takes
three red trapezoids right away. He appears confident that this is what he needs for the whole.

The whole interview is then spent on his trying to decide how to arrange these blocks to make the

whole. To Penny's question as to whether there is only one way to arrange these blocks, the

student answers that they can go any way as long as they touch. Penny probes this idea of

touching and the student insists on it and says that "it's a rule." He finally arranges the three red

trapezoids as a larger trapezoid for his answer. This vignette could serve as a motivator for a

discussion on discrete versus continuous models for fractions (part-group/part-whole). Penny
does address several teaching implications based on her reflection on the overall interview. She

discusses what these students knew and what they did not, what they did and whatthey did not

do. Her knowledge of her school program and of her students allows her to situate her findings

within the larger context of where these children come from (in terms of mathematical
experiences in school) and where they are heading.

2 1&9
167



Implications
One clear aim of the project in which these teachers are involved is the development of

teaching and learning environments where students' thinking about mathematics is encouraged,

shared, and explored. To do this, teachers not only need to nurture a safe atmosphere conducive

to intellectual risk taking, but also, they need to know how to uncover students' thinking and

what to do with it. The experience in interviewing described in this paper is one way for teachers

to become more comfortable with how to probe students' thinking in a more controlled
environment than that of the classroom. Two questions arise from this experience: What do

teachers learn from listening to their students in an interview setting? What do we (as
mathematics teacher educators) learn from reading the teachers' reports of their interviews? The

first question is hard to address without some follow-up conversation with the teachers on this

experience. Some teachers were more explicit than others in their reports and shared some of

their views on what they had learned. Several of them commented on the difficulty of not asking

directed questions. A few expressed that this interview experience had been eye-opening in

terms of what they thought their students understood and what the interview revealed (e.g.,
Lisa).

The second question has been the focus of this paper and leads to several implications for

mathematics teacher education. The choice of a task for an interview is a difficult one. Some

teachers chose tasks that did not seem to be challenging enough (or for which they did not know

how to probe). A knowledge of their students (what they know, how they learn) and of what

makes a task mathematically rich seem necessary ingredients when designing an interview. The

most informative interviews are those that set out to investigate a child's understanding of a

concept (rather than a problem-solving task). Among those, several teachers based their
interview on aspects of rational numbers (e.g., the two cases presented earlier). Yet, this topic

was not addressed in the summer institute (other than incidentally). The teaching of rational

numbers occupies a prominent place in mathematics in elementary school. To dismiss it in

institutes for teachers as something "elementary" that they most likely already know is certainly a

mistake as Lisa's and Penny's reports show. The questions raised by their write-ups can lead to

a very fruitful discussion in which this topic can be investigated from both a teacher-as-learner

and a teacher-as-teacher position.

Learning how to listen to students talking mathematics in an effort to uncover their thinking is

a step towards the development of learning environments where mathematics is socially

constructed. But teachers need to know what to do with the ideas they hear. An interview

setting may give them a chance to reflect on the ideas they uncover. This reflection could be

enhanced through a discussion group in which teachers share their findings and discuss teaching

and learning implications. What should Penny do next with her third graders based on what she
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found out about their concept of in the context of pattern blocks? How many more teachers in

our group are unaware of the difficulty for many middle-school students to visualize fractions on

the number line?

Uncovering their students' ideas is not enough, as several teachers in this group have
realized. They regularly use students' writing in mathematics as one other way to "listen" to their

ideas. In the classroom, they are working on changing the nature of discourse by involving their

students in the inquiry proceSs. But.what to do with their students' writing and with the ideas

they advance in the discussion is becoming an issue for some of these teachers. They would like

to go beyond the "thank-you for sharing," often followed by little to no further discussion of the

student's idea. Engaging teachers in small group discussions of actual students' ideas about

mathematics (such as those uncovered through interviews) seems like a necessary next step.
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ANALYSING FOUR PRESERVICE TEACHERS' KNOWLEDGE AND THOUGHTS
THROUGH THEIR BIOGRAPHICAL HISTORIES*

Domingos Femandes
University of Aveiro, Portugal

Abstract
For about 40 hours I met four prospective secondary mathematics teachers aiming at (a)
reconstructing, and reflecting upon, aspects of their own academic and personal lives; (h)
talking about Mathematics teaching and learning ; and (c) talking about their views of what it
means to be a Mathematics teacher. Research data enable one to relate the participants'
biographical histories to the development of their current professional identities; it was also
possible to get an understanding of the participants' personal traits, thoughts, knowledge and
learning strategies. This paper discusses and elaborates upon those results and, consequently,
yields reflections on: (a) the preservice education of mathematics secondary teachers; (b) the
relevance of the biographical approach in the study of preservice teachers' knowledge and
thoughts; and (c) the impact of the biographical approach on the development of preservice
teachers' professional identities.

INTRODUCTION

I have been involved in the education of mathematics teachers for about 15 years.
During all these years I have learned how difficult it has been for me to have a significant impact

on my students future mathematics teachers. As a matter of fact, their personal views about

mathematics and about its teaching and learning, which are known as being related to their
teaching actions, are not easy to change. Besides, I have also realised how their optimism, and

even enthusiasm, which they usually show while they are engaged in the preservice program,

starts to fade away as they engage in the school routine. We all know that some particular school

contexts do not facilitate the professional development of beginning teachers; many of them

aren't even supportive of their ideas or pedagogical proposals. These facts might partially
explain why it is so difficult for them to bring innovation and change into practice.

I think that I could go on and on building up a long list of difficulties which are inherent

to our role as mathematics and teacher educators and which clearly call for our permanent
reflection and informed action. However, I do believe that preservice teachers can make a
difference in the future development of mathematics education. We need to provide them with

more adequate learning environments and, simultaneously, we need to pay closer attention to

preservice teachers as persons who are engaged in a life-long process of human and professional

development. This means, for example, that we should reflect upon the answers to questions

such as: Are we listening to our preservice teachers? Do we really know what they learn and

how they learn? Do we take their own formative experiences, their knowledge, values, and

beliefs into account ? Are we providing preservice teachers with an education which truly takes

into account the contexts in which they are supposed to teach? Do we care about the meanings

*Research reported in this paper was developed within the project Resoluciio de Problems: Encino, Avaliacdo e
Formactio de Prolessores (Problem solving: Teaching, Assessing, an Teacher Education) which is financially
supported by JUNTA NACIONAL DE INVESTIGACAO CIENTIFICA E TECNOLOGICA (JNICT) under grant
PCSH/413/92/CED.
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they attach to their preservice program? Are we dealing appropriately with the theory-practice

dicotomy?

These are some of the questions that we must deal with if we are to make changes and

improvements in the education of mathematics teachers, that is, if we are to provide them with a

meaningful and powerful pedagogical atmosphere which can challenge their teaching beliefs

and, at the same time, contribute to the development of their professional identities. That is why

the underlying idea of the research reported in this paper has to do with the need to get a better

understanding of preservice teachers' knowledge, thoughts, and professional identities by means

of describing and interpreting the points of view which emerge from their biographical histories.

The following are the fundamental questions which guided the research described in this

paper: (a) What meanings do the preservice mathematics teachers who participate in this study

attribute to the former experiences that they lived as students both in their College and pre-

College education? (b) What are the main characteristics of these preservice teachers'

professional identities? That is, what knowledge and thoughts do they reveal about being a

mathematics teacher, about mathematics and mathematics teaching and learning and,

particularly, about problem solving? (c) What relationships can be found between these

preservice teachers' biographical histories and their professional identities?

RESEARCH FRAMEWORK
Beyond the personal reflections and concerns expressed above this research is based

upon the following grounds : (a) Recent research work on teachers' knowledge and thoughts that

has been conducted in the context of Portuguese education (e.g., Delgado, 1994; Fernandes &

Vale, 1994; Ponte e Canavarro, 1994; Vale, 1993); and (b) Work done in the area of narrative

and biographical research, not necessarily developed by mathematics educators (e.g., Butt,

Raymond, McCue e Yamagishi, 1992; Carter, 1994; Elbaz, 1990; Knowles, 1992; Kelchtermans,

1993).

In reviewing that research I have reinforced the idea that reflecting and coming up with

new approaches about the initial education of mathematics teachers must be linked to the

development of empirical research which enables one to get to know who preservice teachers

are, what they think, what they know, what they learn, and how they learn.

Most of the recent Portuguese research in the mathematics teacher education area is

based upon the assumption that teachers' thoughts and knowledge play a determinant role in the

development of their teaching decisions and actions and, ultimately, in their teaching practices.

It was based on this same assumption that researchers such as Thompson (1992) and Cooney

(1985) developed their own research.

What are the main lessons that can be drawn from the results of that research? Firstly, it

is clear that teachers and their formative experiences emerge as key players in any changing or

innovative process in mathematics education. Secondly, in order for teachers' professional

development to be successful both the quality of the programs and our good intents are
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necessary; however, they are not sufficient. Thirdly, studying teachers' thoughts and knowledge

provides relevant information to be taken into account by teacher educators in the process of

improving teacher education programs. Finally, it must be said that implicitly or explicitly all

studies acknowledge that we need to pay more attention to the person that every single teacher is.

It is important to highlight some of the shortcomings of that body of research as well:

I. As it should be expected their conceptual frameworks are strongly anchored in

research work developed by mathematics educators. There are very few references to research

work done in other areas; particularly, in teacher socialization, teacher thinking, and teacher
education literatures.

2. In most of the studies the participants were experienced teachers; very few
investigated preservice or beginning teachers' beliefs, practices, or knowledge (Abrantes, 1986;

Fernandes, 1992; Fernandes e Vale, 1994; Vale, 1993).

3. There are very few references to the teachers' preservice programs and to their

relationships with the teachers' beliefs and actions (practices). The role those initial programs

can play in investigation and reflection upon teacher education processes has been essentially
ignored.

4. Teachers' academic and formative experiences while they were pre-College. or

College students were not studied as well as their relationships with their current views about
mathematics education, about teaching and about learning.

This analysis calls for the statement of other research questions, for the adoption of other

methodological and analytical approaches and for the inclusion of other theoretical perspectives.

I think that as mathematics educators we have much to learn from research conducted in teacher

education by non-mathematics educators. This may help us to fill in some gaps and to overcome

some shortcomings like the ones referred to above.

The biographical research perspeCtive is one of those methodological and theoretical

approaches that can enrich our work as teacher educators and researchers in mathematics
education.

Barthes (1973) stated that narratives are an integral part of people's lives. That is, groups

and members of a particular class or professional group express their knowledge, feelings,
beliefs, thoughts, values, and experiences through narratives. Ultimately, one can say that
people's narratives are a genuine expression of their culture. Thus, one is doing biographies

when one uses people's narratives to write or to reconstruct their lives.

For the purposes of this investigation narratives, in writing or oral form, are more or less

organized means through which human beings express their thoughts giving meaning to past,
present or future events (experiences). Consequently, in their very nature, narratives are
personal and subjective. According to Cortazzi (1993) one may state that there are at least three

main reasons which justify the adoption of the biographical research approach in teacher
education: a) it promotes and facilitates teachers' reflection; b) it enables one to thoroughly
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investigate the nature of teachers' knowledge and thoughts ; and c) it gives "voice" to teachers'

feelings, lived experiences, and the like.

Asking teachers to tell their experiences or their histories is a means to encourage them to

reflect. Under this perspective, teachers and preservice teachers are commonly asked to narrate

episodes, experiences, or teaching/learning events (e.g., Bird, Anderson, Sullivan e Swidler,

1993; Carter, 1994; Johnston, 1994; Keiny, 1994; Pultorak, 1993; Rust, 1994; Stoddart, Connel,

Stofflettt e Peck, 1993).

Research on teachers' thoughts described in Clark & Peterson' s extensive review of the

literature has shown how complex the relationships between teachers' thoughts and their teaching

actions really are (Clark & Peterson, 1986). In order to study these relationships researchers

have been making extensive use of teachers' narratives (e.g., Butt et al, 1992; Carter, 1994;

Elbaz, 1990; Knowles, 1992; Kelchtermans, 1993; Stoddart et al, 1993).

In sum, investigating teachers and preservice teachers' knowledge and thoughts through

their biographical histories allows for its contextualization from the inside; that is, through

narratives one can learn thoughts and knowledge which are deeply grounded in classroom events

experienced by the teachers to which only they can ascribe real meaning (e.g., Cortazzi, 1993;

Kelchtermans, 1993).

METHOD

The method adopted in this study follows recommendations by Kelchtermans (1994) and

Knowles (1992) who have also used a biographical research approach to understand teachers'

thoughts, knowledge, and development. Some of the concepts that they have used as heuristic

tools were extensively used in this study. Critical phase, critical person, critical event,

formative experiences and teachers' professional identity are some of those concepts.

Participants
Four participants volunteered to participate in this study: Ines, 23, Regina, 21, Catarina,

23, and Joao, 24. All four were enrolled in a 5-year program leading to a License in
Mathematics Teaching and were seen by their mathematics methods course instructor as good

informants. Ines was in her sixth year at the university, Joao and Catarina in their fifth year, and

Regina in her fourth year. Their mathematical ability was considered average (Ines, Joao), above

average (Catarina) and excellent (Regina).

Data Collection and Data Analysis
As suggested by Kelchtermans (1994) data for this research were mainly collected

through a "cycle" of three biographical individual semi-structured interviews focusing on: (a) the

participants' most significant educational experiences in their family environments and in pre-

College schools; (b) the participants' .experiences in their university program; and (c) the

clarification and reflection upon what had been said in the previous interviews. Participants'

views about mathematics and about its teaching and learning as well as their views about what it

e
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means to be a mathematics teacher were inquired throughout the three interviews. All these

interviews as well as the ones mentioned below were audio-taped and totally transcribed.

Two group interviews were also performed. The first one took place in the very
beginning of data collection and was aimed at getting to know each other, presenting the
research objectives, legitimating the work to be done, and motivating the participants to the
importance of their commitment to this research work. The second one took place before the

third round of individual interviews and focused on issues such as the participants' preservice

education and their experience in this particular investigation. A fourth round of individual

clarification interviews was needed and helped both myself and the participants to reflect upon
the written reports and to clarify and elaborate on some of their parts.

Data analysis was performed in three main steps: (a) after the first two rounds of
individual interviews and the first group interview; (b) after the second group interview and the

third individual interviews; and (c) after the final clarification interviews. Thus the analysis was
inductive and recurrent in nature. All participants had the chance to analyse the written form of

their own narratives for further ellaboration and reflection. As a consequence, all the cases were
subjected to some sort of modification.

Each participant's narrative was used to write a case reflecting a vertical analysis.
Together all four cases provided the grounds for a horizontal analysis. Each case was organised
in two main sections: (a) Genesis of the Ideas; and (b) Features of a Professional Identity. The

first one has three sections: Family, Schools, and University. The second one has four sections:

Mathematics, Teaching and Learning Mathematics, Becoming and Being a Mathematics
Teacher, and Problem Solving.

MAIN FINDINGS AND DISCUSSION

Due to space limitations individual cases are not discussed in this paper. A discussion of

the general findings which arose from the horizontal analysis follows in the next sections.
On the Genesis of the Participants' Ideas

All the participants except one (Catarina) grew up in very small, rural villages and belong

to families of modest cultural, social, educational and economic backgrounds. For example,

Regina's and Ines' fathers had to leave the country to raise the necessary for their families. Those

two participants grew up with their mothers in Portugal while their fathers were working in

Germany and France, respectively. Maybe because their parents had to struggle very hard to
earn their livings all the participants were encouraged to study since they were very yining. This

is' interesting to point out because all the participants' parents but Catarina's parents and Ines'

mother did not even get a middle school diploma. They all hold a Grade 4 one.

Education was primarily seen by all families as a means to get social, economical, and

cultural promotion. A means through which their children could get a decent life. It was under
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this perspective that education was strongly valued in the families of all participants. They were

all pushed into getting a College education.

While in Grades 1-6 the participants enjoyed quite different experiences, they all stressed

their close and tender relationship with their primary school teachers (Grades 1-4) and remember

their moments of fun and recreation with their peers in the school's playground. Their memories

of Mathematics learning back in Grades 1-6 are limited to performing computations. They all

enjoyed it and they all experienced success in this discipline. When inquired about their
teachers' teaching strategies and styles they either said that they didn't remember any or stressed

the "fun activities" that they provided in special ocasions of the year (e.g., Christmas, Easter).

Apparently, and according to all the participants' narratives, it is during Grades 7-12 that

their relationship with Mathematics and with its teaching and learning starts to evolve in a more

visible and significant way. They all pointed out more or less traumatic experiences in the
Mathematics classrooms which are still very present in their memories and which ended up

being recognised as critical incidents.
For example, Regina gives a strong meaning to the effort that she put into overcoming

difficulties inherent to getting classes through TV. She states that what "saved" her was "the

method" she used then. It is interesting that in our days she still refers to that experience when

she is in trouble.

Catarina's narratives provide us with another example. For two years in a row she didn't

like Mathematics because of her Grade-6 teacher. However, because of her Grade-8 teacher she

regained confidence in herself and she started to enjoy mathematics again. These and several

other examples illustrate that all the participants remember very well experiences lived in their

mathematics classrooms. However, they seemed to have some difficulties in analysing the
events from different perspectives. Usually, they were inclined to focus on the teacher-student

relationship. That is, most of the times they did not blame their teachers' teaching methods; they

blame them frequently on the grounds of their attitudes towards the students.

Another aspect which seems to be strongly rooted in the participants' ideas has to do with

the number of students who fail in Mathematics. It is seen as something unavoidable and almost

natural. Mathematics is difficult, they say, and one fails because either one is working on weak

grounds or one doesn't study enough. A constant in their opinions was that they tended to blame

the students for their own failure; not the teacher, nor any other external aspect. They only
blamed the teacher when his or her rapport to the students was seen as a bad one.

Based upon the participants' experiences in their university program, one can list the

following ideas: (a) they see their program for becoming a mathematics teacher as difficult or

very difficult; (b) they tend to see education courses as the ones that "everybody is able to do";

(c) they seem to value more the mathematics courses, including methods courses; than courses of

a more general nature; (d) they expect to spend 7 to 8 years at the university to complete their 5-

year program (the exception is Regina who is one of the best students in the university); (e) they
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all feel that they are not being adequately prepared to be a mathematics teacher; (f) they claim

for more education courses of a practical nature instead of theoretical ones.

On the Participants' Professional Identities

As it should be expected, the participants' professional identities are still quite incipient.

They seemed to have difficulties in reflecting upon the issues that were raised during our
interviewing time. For example, it was quite surprising for me to realise that they couldn't
mention other role of mathematics teaching beyond providing students with utilitarian tools to

function properly in society. The formative, cultural, and scientific roles of mathematics
teaching were seldom mentioned. This is consistent with their Platonic and utilitarian views of
mathematics.

Mathematics, for these students is a difficult discipline. However, it can be learned by
everybody if one works very hard and if one perseveres. This view seems to give little
importance to the role that pedagogy and method can play in mathematics teaching and learning.

Paradoxically, and on the other hand, they referrred to the need to provide students with more

active methods to enhance their motivation and to facilitate their learning. In sum, I expected the

participants to possess a more elaborated and sophisticated pedagogical discourse. Apparently,

their views are strongly based upon quasi-naive reactions to educational situations and
experiences that they have been living.

The preservice teachers who participate in this study seem to consider mathematics
teachers as different from teachers in other disciplines. They say that mathematics teachers are

seen differently by students and society in general. They apparently link this view of
mathematics teachers with the nature of mathematics itself and state that to become a teacher of
mathematics is a quite difficult endeavour.

Teaching mathematics, according to the participants, must be diversified to meet students

differences in attitudes, capacities and abilities. However, it was clearly a difficult for them to
elaborate this idea. That is, to make a difference these preservice teachers miss pedagogical

tools which can guide them in the planification of more appropriate mathematical tasks.

On the Biographical Research Approach

In my opinion, based upon this research experience, the use of the biographical approach

in the context of preservice teacher education has several advantages. First of all, it highlights

the relevance of preservice teachers' past experiences both in family and school contexts; this is

important because we need to be aware of the limited impact that our courses or actions may
have on the professional development of the future teachers. Secondly, narratives call for
preservice teachers' reflection and interpretation of past and present events. This is probably one

of its strongest features because, as this study suggests, preservice teachers seem to have
difficulties in developing a coherent and elaborate discourse about issues on mathematics

teaching and learning. Thirdly, this research approach helps to get a better understanding of

preservice teachers' thoughts and knowledge because, in telling and reflecting upon their stories,

they are necessarily led to express their thinking about mathematics and education.
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Many other things could be said about this research.experience. Although it is the first

time that I engaged in this approach, I think that I can tell that 1 learned the importance of

knowing more about "my" preservice teachers. As a matter of fact, I learned that bringing up

their biographical histories into our discussions might be an effective means to challenge their

professional thinking and knowledge. And this is an indispensable component for the

development of preservice teachers' professional identities.
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In a previous study (Mohd Yusof & Tall, 1994), it was shown that university
students in a problem-solving course developed positive attitudes towards
mathematics as a process of thinking rather than as a procedural body of
knowledge. In this study their teachers are asked to specify the attitudes they
expect from their students and the attitudes they prefer. The difference is used
to define the professors' "desired direction of change". It is found that almost
all attitudinal changes in the problem-solving course are in the desired
direction. Six months after returning to standard mathematics lecturing,
almost all changes are in the opposite direction consistent with the
hypothesis that professors get what they expect, not what they prefer.

Mohd Yusof & Tall (1994) studied the attitudinal changes in 44 students following a
course in mathematical problem-solving based on the approach of Mason et al (1982).
(There were 24 male and 20 female students a mixture of third, fourth and fifth year
undergraduates aged 18 to 21 studying Industrial Science (majoring in Mathematics) and
Computer Education at Universiti Teknologi Malaysia.) The original study used a 17
item attitudinal questionnaire and showed that students' attitudes to mathematics and
problem solving changed in what was considered a positive manner. In particular
students' attitudes changed from mathematics as a body of procedures to be memorised
to mathematics as a process of thinking.

Here we collect data from the students' teachers to establish their "desired direction of
attitudinal change" and further data from the students in a delayed post-test, after six
months of standard mathematics lectures. This allows a comparison to be made between
the staff's desired change and the actual changes occurring in the students during
problem-solving and during a return to regular mathematics teaching. The data from the
questionnaires is supplemented by interviews with selected students and staff.

The "desired direction of attitudinal change" perceived by mathematics staff

Members of the Mathematics Department were invited to fill in the attitudinal
questionnaire of Mohd Yusof & Tall (1994) twice. On first reading, they were requested
to tick the response they expect from a typical student. On the second they were
requested to put a circle where they prefer it to be. Twenty-two members of the
department took part, responding to the following questionnaire on a five point scale:

Y, y, n, N (definitely yes, yes, no opinion, no, definitely no).
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Section A : Attitudes to Mathematics
1. Mathematics is a collection of facts and

procedures to be remembered.
2. Mathematics is about solving problems.

3. Mathematics is about inventing new ideas.

4. Mathematics at university is very abstract.

5. I usually understand a new idea in
mathematics quickly.

6. The mathematical topics we study at
university make sense to me.

7. I have to work very hard to understand
mathematics.

8. I learn my mathematics through memory.
9. I am able to relate mathematical ideas learned.

2.

3.

4.

5.

6.

7.

8.

Section B : Attitudes to Problem-Solving
1 feel confident in my ability to solve
mathematics problems.
Solving mathematics problems is a great
pleasure for me.
I only solve mathematics problems to get
through the course.
I feel anxious when I am asked to solve
mathematics problems.
I often fear unexpected mathematics
problems.
I feel the most important thing in mathematics
is to get correct answers.
I am willing to try a different approach when
my attempt fails.
I give up fairly easily when the problem is
difficult.

Table 1 : Attitudinal questions to mathematics and problem-solving

Table 2 shows the responses of 22 lecturers in the Mathematics Department and the
direction of the desired change from the expected to the preferred attititude. The columns
marked "Yes(Y)" have the "total yes" responses (Y+y), with the subset "definitely yes"
(Y) in brackets. Similarly for "No(N)".

Mathematics

Problem

Solving

Expect Prefer

Attitude desired change Yes (Y) No (N) Yes (Y) No (N)

facts and procedures I:++ <1% 20 (8) 0 2 (0) 13 (4) 0 9 (2)

solving problems I::: n.s. 19 (9) 0 3 (0) 22 (9) 0 0 (0)

inventing new ideas t 1: n.s. 8 (2) 0 14 (1) 11 (3) 0 11 (1)

abstract .1,!!' <1% 20 (6) 0 2 (0) 7 (0) 0 15 (4)

understand quickly f 1:__ <1% 3 (0) 0 19 (6) 15 (1) 0 7 (1)

make sense
++ <1% 8 (0) 0 14 (2) 19 (3) 0 3 (0)

work very hard 1 +.,.:4- n.s. 21 (13) 0 1 (0) 18 (4) 0 4 (0)

memorisation 1 .+::_ <1% 15 (5) 0 7 (1) 2 (1) 0 20 (6)

ability to relate ideas 1'11" <1% 5 (0) 0 17 (5) 22 (5) 0 0 (0)

confidence 1.-+*. <1% 10 (I) 0 12 (0) 22 (3) 0 0 (0)

pleasure t :++ n.s. 15 (0) 0 7 (2) 21 (4) 0 1 (0)

only to get through 14_"" <1% 21 (9) 0 1 (0) 7 (2) 0 15 (3)

anxiety j.!L <1% 16 (5) 0 6 (0) 2 (0) 0 20 (5)

fear unexpected 1.+_.1: <1% 15 (7) 0 7 (0) 3 (0) 0 19 (5)

correct answers <I% 19 (3) 0 3 (0) 6 (2) 0 16 (2)

try new approach t .4',.+. <1% 12 (1) 0 10 (0) 22 (4) 0 0 (0)

give up j!!. <5% 16 (2) 0 6 (0) 2 (0) 0 20 (2)

Table 2 : Lecturers' perceptions of students preferred and expected attitudes
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The arrow and the plus and minus signs in the second column indicate the direction of
movement. The number of plus or minus signs indicates the average weighted strength
of response, taking each Y response as 2, y as 1, n as 1 and N as 2. If the average
response is 1 or more, the response is considered "strong" and denoted +++ or ---.
Between 0.5 and 1 it is denoted "++" or "--", and less than 0.5 it is considered "weak"
denoted "+" or "-". For instance, "facts and procedures" is desired to change down from
an expected strong agreement (+++) by the typical student to a preferred weak
agreement (+) by the lecturers. In line 4, "being abstract" diminishes from an expected
strong agreement (+++) to a preferred disagreement (--). The significance of the change
is computed using a x2 test (with Yates correction) on the number of yes responses
(Y+y) and is given as significant (<5%), highly significant (<1%) or not significant
(n.s.).

In only four of the cases is the change too small to be statistically significant: the
lecturers expect the typical student to believe strongly that mathematics is about solving
problems and prefer it marginally stronger, that mathematics is not about inventing new
ideas, but weakly prefer that it should be, that the student has a strong expectation to
have to work hard to understand, whilst lecturers have a lower expectation, and that
there is a weak expectation of pleasure, but lecturers prefer it to be strong.

One change in direction is statistically significant that the typical student is expected to
give up when a problem gets difficult, but the lecturers prefer the opposite.

Two differences remain in the same direction but the changes are highly significant an
expected strong student belief that mathematics is a collection of facts and procedures
to be remembered, which the lecturers desire less, and a weak expectation that they are
willing to try a different approach when their attempt fails, which is preferred stronger.

The remaining ten are both statistically highly significant and have opposite expectances
and preferences. The lecturers expect the typical student to think mathematics is very
abstract, will not understand quickly, will consider that mathematics does not make
sense, will learn through memory, will not relate mathematical ideas, will not have
confidence, will only solve problems to get through the course, will show anxiety, will
fear the unexpected, and regard correct answers as the most important thing. In every
case the lecturers prefer the student to think the opposite.

Individual interviews with lecturers

Interviews revealed substantial differences in meaning of ideas expressed in the
questionnaire from the ideas of "mathematical thinking" in the problem-solving course.
For instance, Kilpatrick & Stanic (1989) suggest three different perceptions of problem
solvingas means to a focused end, as skill and as art. It soon became apparent that the
lecturers see it more as a means to achieve a specific end or a skill to be learned rather
than the art of thinking mathematically. "Inventing new ideas" was perceived as original
research rather than just ideas new to the individual, as in the following quotation:
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To me mathematics is a tool for solving problems. One way of motivating the students is by
showing them applications in the real world. In this way they get the knowledge and the
skills for solving problems. ... I do not think the students are capable of creating new ideas
on their own.

Lecturers are not certain of the problem-solving techniques used in the course:

... I am not sure of these [processes]. I have not thought about them and I don't know how
to go about [teaching] them. I think I need to learn more about them before I can implement
them. We developed certain abilities to look at problems but we are not sure how those
abilities came to be with you.

Instead they show students how to do examples in the hope that they will develop their
own techniques:

The experience of making conjectures, generalising and the like, I think the students can get
themselves on their own, from doing their project work. We do not have the time to teach
them everything.

We tell them how to do it for example, what are the criteria that should be fulfilled in the
formula before they can use it. Normally I explain only part of it then I think the students
can complete it themselves. ... I think that is sufficient for the students.

Under the circumstances, I expect students to acquire the mathematical skills and to get high
marks in the exam. ... I would want them to become good problem solvers but I am not sure
they would be. I myself did not try to get them into becoming one consciously.

Some lecturers genuinely want to change the system but are not sure how to do so:

I would like students not only to see mathematics as a subject that they need to learn and
pass in an exam but also as a discipline which enables them to think for themselves. My
main aim is not in trying to finish the syllabus but rather in making the students learn the
mathematics in a more meaningful way. ... I am not really sure how but I am trying to do it.

To me mathematics is a mental activity but I should say that at this level I presented it more
as a formal system. Because we are confined by the syllabus and also depending on the
students' background. ... I would like it to change. How do I do that? I don't know.

There are a lot of problems that we face. Firstly the students themselves do not have the
motivation in their mathematics learning. Secondly they do not have the confidence in their
ability to do mathematics. So we have to deal with these first before we can make them see
mathematics as a thinking subject.

I very rarely allow students to think [mathematically]. The problems that we gave them do
not require them to use their thinking capability.... It is due to the shortness of time.

We give them little room to do their own thinking. But we cannot change it because the
system does not allow us to do so. So we end up teaching them what they need to know.

The system has been proven a failure. It has not been successful in producing good
mathematicians, or engineers that can use mathematics effectively. They only know how to
use procedures or computer packages without really understanding why they use them.
...It's all down to the system. We are not training students to discover patterns, or how to
prove a statement is true, for example. What we teach them is mainly how to use the
procedures.
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The change in student attitudes in problem solving and mathematics lectures

To discover how the attitudes of the students changed, the same attitudinal questionnaire
was given before and after the Problem-Solving course, then six months later after a
semester of standard mathematics lectures. The responses were as follows:

Mathematics

Problem
Solving

Before P S Af er P S After Math
Yes (Y) No (N) -- Yes (Y) No (N) Yes (Y) No (N)

facts and procedures 34 (18) 8 (2) 2 11 (3) 32 (8) 1 30 (9) 14 (1) 0
solving problems 27 (10) 16 (4) 1 42 (21) 0 (0) 2 32 (22) 12 (0) 0
inventing new ideas 21 (4) 21 (6) 2 37 (15) 5 (0) 2 24 (4) 18 (1) 2
very abstract 25 (13) 17 (0) 2 15 (8) 26 (3) 2 22 (11) 21 (0) 1

understand quickly 9 (0) 30 (5) 5 20 (3) 21 (2) 3 13 (2) 29 (l) 2
make sense 22 (4) 22 (5) 0 35 (5) 7 (0) 2 29 (4) 14 (0) 1

work very hard 37 (15) 5 (I) 2 28 (8) 13 (0) 3 32 (8) 12 (1) 0
learn by memory 30 (1) 12 (2) 2 11 (0) 31 (7) 2 20 (2) 22 (1) 2
able to relate ideas 24 (8) 14 (2) 2 35 (11) 8 (0) 1 31 (5) 10 (0) 3
confidence 26 (7) 17 (2) 1 36 (12) 6 (0) 2 34 (7) 10 (0) 0
pleasure 43 (25) 1 (1) 0 42 (21) 0 (0) 2 42 (21) 1 (0) 1

get through 16 (4) 27 (8) 1 4 (0) 37 (17) 3 14 (1) 29 (5) 0
anxiety 17 (1) 24 (4) 3 6 (0) 36 (9) 2 9 (0) 32 (4) 2
fear unexpected 30 (10) 12 (3) 2 10 (3) 31 (9) 3 16 (3) 28 (2) 0
correct answers 21 (4) 21 (3) 2 5 (1) 36 (11) 3 17 (0) 23 (7) 2
try new approach 42 (17) 0 (0) 2 43 (20) 0 (0) 1 43 (16) 1 (0) 0
give up 19 (3) 24 (9) 1 5 (0) 37 (20) 2 8 (0) 34 (12) 2

Table 3 : The changing attitudes of students before and after problem-solving and "after math"

Calculating the significance in the change of the total "yes" responses and using a
weighted average response as in table 3, we find the following changes:

Mathematics

Problem
Solving

desired change After P S After math Total change
facts and procedures 1 :++ <I% 1 : 4-" < I % t : : < 1 % i : : n.s.
solving problems + ++f n.s. il+-++ <1% 1 :.-_,F.+ <1% t :+ n.s.
inventing new ideas t+ n.s. t .1_.++ <1% 1 :++ <1% t +_ n.s.
very abstract 1 1....4+ <1% 1: n.s.* t +- n.s. j+ n.s.
understand quickly t :__ <1% t 2_ <1% 12 n.s. t :_ n.s.
make sense t '+ <1% t : 4 < 1 %

+4. n.s. t: n.s.*
work very hard 1 ::+ ns 1::: n.s.* t ++ n.s. Il+++ n.s.
learn by memory 1 12._ <1% 14_-_ <1% t :_ <5% j± n.s.*
able to relate ideas t 4:: . < 1 % t : + <5% 1:: n.s. t :+ n.s.
confidence t :++ <1% <5% 1:: n.s. t :+ <5%
pleasure t :++ n.s. ns. I::: n.s. 1 ::: n.s.
get through 1 :++ <1% _ <1% t::_ <1% 1: n.s.
anxiety 14::_ <1% j__ <5% 11 ::1 n.s. j -- n.s.
fear unexpected 1 : 4" < 1 % 1 : : < 1 % 1.:_ n.s. 11: <1%
correct answers 1:+ <1% 14---- <I% t =_ <1% 1: n.s.
try new approach t :++ <1% t + ++ ns I::: ns j + ++ n.s.
give up _1 :: <5% 1:_._ <1% j___ n.s. 1:_ <5%

Table 4 : Desired changes compared with changes after problem-solving and after mathematics lectures
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Note that the attitudinal changes during the problem-solving course are all in the same
direction as the desired change, with the exception of one: "pleasure" was rated highly
each time with positive attitudes changing only from 43 down to 42 (out of 44).

On the contrary, all but one of the changes during the mathematics lectures are in the
opposite direction. Even the exception "anxiety" has an increase in those feeling
anxious from 6 to 9, but the weighted average is biased marginally in the oppositive
direction by the drop in "definitely not anxious" from 9 to 5.

During the problem-solving course, only four changes are not statistically significant:
pleasure, wittiness to work hard, willingness to try a new approach remain highly rated,
whilst mathematics is abstract has a small improvement from positive to negative.

Three items change significantly: ability to relate ideas and confidence both increase,
whilst anxiety diminishes. All other items have highly significant changes in the desired
direction. Some beliefs are reversed so that after problem-solving students now believe
that mathematics is more than facts and procedures, it involves inventing new ideas, it
makes sense, it is not learnt just through memory, there is less fear of the unexpected,
it is not just getting correct answers. Others are greatly increased: mathematics is more
about solving problems, it can be understood more quickly, and students are less likely
to give up when encountering a difficulty.

However, six months later, after returning to the mathematics course many opinions
have reverted back in the old direction. Of these there is a significant reduction in belief
that mathematics is not just memorisation, and highly significant reversal in belief that
mathematics is just facts and procedures; it is less about solving problems, less about
inventing new ideas, less about doing the work for reasons other than to get through
the course and less about things other than correct answers.

Comparing the situation from before the problem-solving course with the status after six
months back at regular mathematics lectures, many of the indicators revert back towards
their old position. But three problem-solving attributes remain: confidence and
unwillingness to give up remain significantly improved and fear of the unexpected is
highly significantly reversed. Smaller changes are evident in the belief that mathematics
make sense and that it is not necessary just to learn by memory. (These are improved by
a factor that would be significant at the 10% level, marked "n.s.*" in table 5.)

In addition to these changes, there are other items that are given at least "++" or "--" in
the final ratings: mathematics is facts and procedures, is about solving problems,
students work hard, are able to relate ideas, take great pleasure in their work, have low
anxiety, are willing to try a new approach. All these are attributes carry over from
earlier mathematics learning. The emphasis is on procedural aspects, working hard to
solve problems and relate ideas to obtain pleasure and low anxiety. However, the
comments of the lecturers earlier suggest that this pleasure is more the security of
operating in a system set up to teach the students procedures which can be successfully
tested than in developing flexible new skills appropriate for the changing modern world.
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Student comments

The following selected comments written by the students in the final questionnaire bring
to light several factors that could explain their changes in attitudes. In the perception of
mathematics for instance, about a third (32%) reported that the regular mathematics did
not allow them to think in a problem-solving manner:

Since following the course I know mathematics is about solving problems. But whatever
mathematics I am doing now doesn't allow me to do all those things. They are just more
things to be remembered. male, year 5

I believed mathematics is useful in that it helps me to think. Having said that it is hard to
say how I can do this with the maths I am doing. Most of the questions given can be solved
by applying directly the procedures we had just learned. There is nothing to think about.

female, year 3

They saw that their mathematical training is rather rigid. They felt that their lecturers laid
too much emphasis on content, and on unchallenging work:

At the moment I am finding difficulty with maths because I am just not enjoying it. Too
much emphasis is put on getting the right answer and not on method and understanding.

female, year 4

The mathematical atmosphere here is very bad; there is little discussion and it provides no
encouragement to do maths. The content is emphasised over everything else. We are
crammed full of lots of bland mathematical abstract theory. male, year 3

Some emphasise the way in which the lecturers move fast to complete the content:

I did not enjoy most of the maths coursestoo dependent on the lecturers. I don't find the
way most of them teach particularly inspiring. We find ourselves hurrying through to keep
up. There is no time to think about the mathematics we are doing. male, year 3

Some appreciate their knowledge in problem solving, suggesting it helps them to learn
their mathematics and solve problems more effectively:

The problem solving techniques help me come to terms with the abstract nature of the maths
I am doing. I try to connect the ideas together and talk about them with my friends. It is not
that easy though. But I felt all the effort worth it when I am able to do so. male, year 3

I find the problem solving knowledge very useful in helping me understand the whys and
the hows of advanced mathematics. It is much more satisfying than rote-learning.
Furthermore it is actually easier to remember something that you understand.

female, year 4

There are some who have minor reservations on their problem solving experience. But
they believe it is necessary to have a positive attitude:

The main disadvantage is time. It would take several flours maybe days to understand each
new. concept. Under the current circumstances we are finding ourselves rapidly hurrying to
keep up. Sometime we were too bogged down in the technical details and we end up purely
taking down the notes without even concentrating. This really defeats the problem-solving
techniques. ... But I think with further support from good teaching as well as tailoring the
courses to suit the needs of the students the situation can be improved. male, year 5
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Summary
Although lecturers prefer students to have a range of positive attitudes to mathematics,
they expect the reality to be different. They prefer students to see mathematics as solving
problems, making sense, with students working hard, able to relate ideas without needing
to learn through memory, having confidence, deriving pleasure, with low anxiety and
fear, ready to try a new approach and unwilling to give up easily on difficult problems.
On the other hand, they expect them to see mathematics as abstract, failing to understand
it quickly, not making sense, working hard to learn facts and procedures through
memory, unable to relate ideas, with less confidence, obtaining less pleasure, working
only to get through the course, with anxiety, fear, seeking only correct answers, and
ready to give up when things get difficult.

By assigning a "desired direction of change" in the direction from what lecturers expect
to what they prefer, it transpires that when doing a problem-solving course almost all the
changes are in the desired direction and when returning to mathematics lectures, almost
all the changes are in the reverse direction.

The findings show that the lecturers have little confidence in the students' ability to think
mathematically and teach them accordingly. The students acquiesce to this approach, and
set their sights on the lower target of learning procedurally to be successful in routine
tasks. In this there is a widespread sense of pleasure although, after the problem-solving
course, opinions expressed suggest concern that that the quantity and difficulty of the
mathematics gives them little room for creative thinking.

Teaching problem-solving skills is not part of the lecturers' previous experience,
consequently the lack of experience and the perceived difficulty of changing a formal
system with so much content to be learned are severe deterrents to change. However,
given the fact that problem-solving causes "positive changes in attitude" which are
largely reversed in the standard course with its more difficult mathematical content, it is
appropriate to pose the question:

Given such a situation, do professors wish to continue to get what they
expect, or do they want to change to attempt to get what they prefer?

References

Mohd Yusof, Y. & Tall, D. 0. (1994): Changing Attitudes to Mathematics through
Problem Solving. Proceedings of PME 18, Lisbon, IV, 401-408.

Skemp, R. R., (1979): Intelligence, Learning and Action, London: Wiley.

Kilpatrick, J. & Stanic, G. M. (1989): Historical perspectives on problem solving in the
mathematics curriculum. In R. Charles & E. Silver (Eds.), The teaching and
asessing of mathematical problem solving, (pp.1-22), Reston VA: NCTM.

Mason, J., Burton, L. & Stacey, K., (1982): Thinking Mathematically, London: Addison
Wesley.

186
2 177



WHAT ARE THE KEY FACTORS
FOR MATHEMATICS TEACHERS TO CHANGE?

Erkki Pehkonen, Dept Teacher Education, University of Helsinki, Finland

Summary: In the research realized during the spring of 1994 together with
prof. Giinter Tomer (University of Duisburg), our purpose was to find ans-
wers to the question: What have been the key factors causing a discontinuity
in teacher change? Our test subjects were experienced German teachers
(N=13). We used two methods to gather the data: a brief questionnaire and
interviews. Through the interviews, we tried to follow the teachers'
memory pictures of their change, and decided to use the theme interview for
the methodology. During the interviews, a total of 49 statements about the
change were mentioned. We could compress these statements into fifteen
change factors. The most referred change factors were, as follows: changes
in society, experiences with pupils in school, experiences with the school
administrations.

It is imperative that any research into teaching and learning, within a
framework of constructivism (e.g. Davis & al. 1990; Ahtee & Pehkonen
1994), should take into account the teachers' and pupils' mathematical beliefs
and conceptions if we are trying to completely understand their behavior.
Already in the beginning of the 1980s, we had evidence that different
philosophies (or belief systems) of mathematics teaching lead to different
teaching practices (e.g. Lerman 1983).

The focus of this paper is to reveal the factors which teachers have ex-
perienced as crucial for their change, the so-called change factors.

The design of the research
During his career, each teacher changes with new experiences all the

time. Typically, the change is continuous, since beliefs do not change radi-
cally; they evolve through extensive, extended experience. But every now
and then there are some bigger steps, points of discontinuity. In this re-
search work, we are interested in these discontinuities. In the research work
realized during the spring of 1994 together with prof. Gunter Tomer (Uni-
versity of Duisburg, Germany), the focus of our research work was to find
answers to the question: What have been the key factors causing disconti-
nuities? We are especially asking about the teachers' own recollections of
such key experiences.
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Test subjects. Firstly we will provide a very short description of the
German school system that the interviewed teacher are apart of. After four
years of elementary school, pupils face the following four options: to attend
the Hauptschule with graduation after the completion of the tenth grade; to
opt for the Realschule (which originally prepared its pupils mainly for the
service industry) and graduate after the tenth grade; to go to the Gymna-
sium (academic high school) and graduate after a total of twelve or thirteen
years, depending on the State (Bundesland); or to spend the same number of
years in a Gesamtschule (composite high school).

We interviewed 13 experienced German middle school teachers in the
spring of 1994. The teachers were expected to have had at least 10 years of
teaching experience. Furthermore, they were expected to be innovative in
their teaching, at least according to the school administrators who provided
us with their addresses. All the thirteen teachers interviewed were from the
Ruhr Area (in northwest Germany): five of them were from Gymnasiums,
two from Realschules, one from a Hauptschule, and five from Gesamt-
schules. From the Realschule and the Hauptschule, it was not easy to find
teachers who were prepared to be interviewed. Only three teachers were
female, all the others were male teachers.

Indicators. To gather the data, we used two methods: a brief question-
naire and interviews. The questionnaire contained thirteen statements
about teaching principles in school mathematics. These thirteen aspects
emerged as the result of a factor analysis in another study on teachers' con-
ceptions, based on questionnaire results (Lepmann & Pehkonen 1995).
In the interview, we decided to use a theme interview methodology (e.g.
Lincoln & Guba 1985) in which many questions are associated with the re-
search problem. For this research, we generated four main questions, as
follows: (1) Tell your "history" as a mathematics teacher. (2) How did you
teach in the very beginning? (3) How do you teach today? (4) Can you name
some factors which might have had an influence on changing you?
The teachers who answered these questions were assisted with some addi-
tional questions according to the situation, until we thought that we had
extracted the answers to the questions. For example, when discussing the
change factors, we might have followed up the questions by using the list of
possible sources for the perturbance given by Shaw & al. (1991): pupils, col-
leagues, parents, administrators, teacher-educators, books, articles, and
self-reflection. At the end of each interview, there was an additional ques-
tion about the questionnaire, as follows: (5) Would you express your opinion
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on the questionnaire? Perhaps, you would like to comment further on some
of your responses.

Practical realization. The questionnaire was mailed beforehand to the
teachers, and they were asked to fill it in. The plan was to help teachers to
reflect on their own teaching, and thus partly to structure the interview.
Thus, the information received through the questionnaire contributed some
parallel aspects concerning the teachers' conceptions. The completed ques-
tionnaires were collected after the interviews.

The interviews formed the main source of information. The length of
the interview was 40-60 minutes as a rule. Both researchers were present at
each interview, in order to have two different viewpoints on the situation.
And each interview was discussed thoroughly on the same day. In addition,
all the interviews were recorded on video.

Methodology. Using a questionnaire methodology, researchers usually
remain on the surface level of beliefs. With interviews and observations, an
attempt may be made to go deeper, as well as to find out what the uncon-
scious beliefs are which lie behind the explicated conceptions. Since the
structured interview often remains almost on the same level as a good ques-
tionnaire, the interviews here were realized applying the methods of natu-
ralistic inquiry in a form of the theme interview (Lincoln & Guba 1985).

We had four main questions which we showed to the teachers before-
hand and which formed the core of the discussion. During the interview, we
asked more questions if we felt that we had not yet extracted "all the
answers" to our main question. The narrative mode of interviews encour-
aged the teachers to reflect on their past experiences and on the feelings
associated with them.

Some results
The results of using the questionnaire supported the main inquiry

method: the theme interview. Therefore, we will concentrate here on the
results of the interviews. A larger description of the research results
(Pehkonen & Torner 1994) will be published in some periodical soon.

Evaluation of the data obtained. The information obtained (interviews
and questionnaire) was worked out in the form of a teacher's mathematics
related snapshot. The information from the interview of each teacher was
written on one page, including the following components: time and place of
interview, position, teaching experience, mathematical world view (today),
own view of personal change, change factors, and comments on the ques-
tionnaire. Each teacher received his "snapshot" by mail for reviewing, and
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had two weeks time to react, if he thought that our interpretation was not
valid. The teachers were satisfied with our interpretation about their ma-
thematical conceptions, except one teacher. He wanted to make a small
addition in one change factor of his view.

During the interviews according to our interpretations, a total of 49
statements emerged about the change. We classified these statements into
fifteen different change factors. Furthermore, these fifteen factors could be
classified into four groups: Experiences as a teacher with individuals (1) pu-
pils in school, (2) own children at home, (3) children of relatives, (4) pupils'
parents. Experiences as a teacher with institutions and authorities (5) other
school forms, (6) the school administrations, (7) as a class teacher, (8) co-
operative teaching with colleagues, (9) changes in society. Experiences as a
learner with individuals (10) excellent teacher-tutor, (11) a working group
of voluntary teachers. Experiences as a learner with institutions (12) in-
service courses, (13) further studies at the university, (14) mathematics edu-
cation conferences, (15) literature.

The most referred one was factor (9): changes in society; there were
altogether ten statements. The other much referred one was factor (1): ex-
periences with pupils in school, with eight statements. And the third factor
which was also much referred to was factor (6): experiences with the school
administrations, with six statements. The rest of the factors were men-
tioned by 1-3 teachers. A summary is given in Table 1.

factor (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

8 3 1 1 3 6 1 2 10 2 3 3 2 1 3

Table 1. The distribution of statements on each factor.

Each factor caused the teacher to begin to reflect critically on his own
teaching. Here, we will comment briefly on each of the three most referred
factors.

Factor (9). Nearly every teacher reported a drastic change within so-
ciety, influencing situations within families. The changing society also in-
cludes changes in the organization of school (e.g. large classes, restricted
financial resources) which have an impact on mathematics teaching. Some
keywords were: the crisis of the family in our western society, materialism,
TV consumption, a lack of interest in school achievement, deficiency in the
potential to concencrate, computerization leading to the lack of ability to
communicate, the "electronization" of children's rooms, the lack of pro-
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fessional perspectives, deficiency in criticisms, manipulation by the media,
and politization of schools.

Factor (1). This factor is one of the most important impact parameters.
In the words of Mr. BR: "It took me nearly an hour to explain the multipli-
cation of fractions: numerator times numerator, denominator times denomi-
nator by using sophisticated arguments about operators. Today I am asha-
med. After that lesson, a boy who was having much trouble with math ad-
ressed me: "Why didn't you tell us the rule straight away at the beginning of
the lesson?" However, teachers do not only report changes concerning pu-
pils as mathematics learners, but also point out the individual and personal
dimensions of their pupils as part of a complex social environment.

Factor (6). Many teachers claim that the situation of administrative re-
gulations has become worse in the last five years. The average number of
pupils per class has risen although problems with the pupils have emerged.
Mr. HO had the following experience: "It is no longer possible to organize a
fruitful inner differentiation when there are more than 30 students in a
class..."

From all 49 given statements about change, the test persons referred to
themselves as teachers in 72 % of the answers and as learner only in 28 % of
the answers. Some of the interviewed teachers first stated that they have
not changed, but were teaching using the same styles as in the beginning of
their careers, e.g. Ms. DY and Mr. WI. However, during the course of the
interview, they found some factors which might have influenced them.

Key experiences for changing conceptions. Here we will elaborate the
obtained fifteen change factors more. In many factors, the "always present"
influence of the society is clear. Besides the factor (9), this may be seen also
from the factors (1), (2), (4), (5) and (7).

In another classification of the change factors, we will focus on one side
on positive factors which will help teachers in change process, and on the
other side on negative factors which could form an obstacle for change.
Some factors could effect in both directions: positive and negative, depen-
ding on the circumstances. The teachers have given principally only positive
factors besides item (6). Only the factor (4) was discussed in the negative
sense. Further, one teacher mentioned that changes in society have lead to
some frustrations rechanging his teaching to a more traditional one. For
example, one could be compelled to work cooperatively, although he would
like to work independently in his own classroom (8). We believe that here
research has to answer some more questions.
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Some factors have caused in the teachers a change in the view point,
e.g. the factor (2). One of the biggest changes happened, when the teacher
was compelled to identify himself with the teacher of his own children or
with that of his relative children, since then the personal affectedness was
the highest.

It seems to that some changes in a teacher's behavior may be stimulated
when the teacher is forced to look from outside on another mathematics
teacher (or himself) resp. mathematics as a subject. Then he often is willing
to reflect critically his own appearance as a teacher as well as the relevance
of mathematics he is teaching.

Reflections of that type may lead to the assumRtion that mathematics,
although the discipline is a fundamental school subject, is limited with re-
spect to the individual development of a pupil (the factor (7)). Although this
was reported by the teachers, we don't know the effect of the mathematical
competency. Whether one (and which one) or both of the extreme positions
is stimulating this perception: a high qualification at university level or a
restricted education in mathematics.

In addition to these observations, the question how the teacher under-
stands his role as a teacher may lead to different solutions in instruction: If
the teacher is considering himself in the first place as a mathematics instruc-
tor, he watches the teaching situations from the view point of mathematics.
This is in many cases very different from a pupil's view point which comes in
question when the teacher sees himself mainly as an educator, and mathe-
matics is only the content of the study.

Discussion
With our research method a combination of a questionnaire and an

interview, we could see the limitations of the questionnaire method, too.
Almost all teachers were giving strong critiques on some statements in the
questionnaire, and asking what we wanted to reach with them; and the
point was that they were not always on the same statements.

Of course, we are aware that our own conceptions on mathematics
teaching are setting the natural limits for our investigations. Nevertheless,
the research described here has enlargened our knowledge horizon. We
were not aware of all of the mentioned aspects before our interviews. As a
measure of validity fOr our interpretations, one could use the satisfaction of
the teachers to our interpretations. Only one test person from thirteen
wanted to make one small completion in the view of him we had written.
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Our observations during the interviews give support to the results of
Bottino & al. (1991) that teachers' choices seem to be many times more affec-
ted by pressure from their colleagues in successive school years than by edu-
cational considerations. Another research results which are coherent with
ours is the work realized by Shealy, Arvold, Zheng and Cooney. In their
paper describing the evolution of student teachers' beliefs, they commented
that "the greatest effects were interaction with faculty, graduate students,
and peers, open-ended problem solving, and his field experiences" (Shealy
& al. 1993, 227).

As a result, we have also an open question: Would the high mathemati-
cal competency block or promote a teacher's activity? According to our re-
sults, the problem might lie in the question, since mathematical competency
seems to play an ambivalent role on a pupil-oriented attitude. Our inter-
views provide us with examples in both directions. A couple of other ques-
tions occured from our research: International comparisons in this point
could be of interest. Are these change factors culture bound or something
universal? Furthermore, it might be interesting to know how big a percen-
tage of all teachers are as far in the change process as most of our test per-
sons. And what will a random sample of teachers respond to the statements
on change factors?

Implications for in-service education. In teacher in-service education,
we are just trying to reach a change, i.e. to help teachers to grow. There-
fore, we aim also with this research to answers for the question "Which kind
of teacher in-service education would be optimal, in order to have a change
in participants?" In this sense, our results are serving also the teacher in-
service system.

Our study had made some school authorities (e.g. in Dusseldorf) sensi-
tive on the meaning of teachers' belief systems for their teaching which have
had some positive feedback in the form of teacher in-service courses. At the
same time, it has revealed that teaching in many cases could be very sur-
ficial, concentrating on rote learning of some procedures and techniques.

For teachers change, there seem to exist at least two effective strategies
to follow: change of roles, and change of viewpoint. The change of roles
means that the teacher is forced to identify himself with a student, e.g. in a
simulation group. Such a situation lets the teacher an opportunity to ob-
serve himself from outside. This could as a consequence cause a perturbance
in his thinking which is a prerequisite for change (Shaw & al. 1991).

The change of view point could be reached e.g. through letting the
teacher to deep interview a pupil, in order to try to understand his mathe-
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matical (and broader in general) thinking. Such a task may allow the teach-
er to accept a pupil as an individual through seeing in him also other aspects
than only his mathematical abilities or a lack of them. Thus, he learns to see
also mathematics from the pupil's point of view, and understands that ma-
thematics is not, perhaps for all people, the most important subject on earth

nevertheless it is a very challenging one. Therefore, his view of school
mathematics is changing. As a consequence, he is able to realize "nonstan-
dard" reflections on mathematics and doing mathematics.
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TEACHERS' AWARENESS OF THE PROCESS OF CHANGE
Vania Maria Pereira dos Santos Lilian Nasser

Institute de Matemdtica Universidade Federal do Rio de Janeiro

This paper reports the context of a staff teacher development project and examines the awareness of
the process of change experienced by three teachers who have participated in both a continuous
teacher training and a teacher enhancement program. Having in mind the aim of investigating if the
staff development furnished by this project is leading to professional development, we examined,
analyzed and categorized the data collected in 1994. The analysis addresses the three teachers'
perceived changes in terms of professional growth, teacher autonomy and metacognitive awareness
about mathematics teaching and learning based on the work of Cooney (1994), Kagan (1992) and
Santos (1993). Although this growth demands time for teachers to mature their views, willingness
and courage to engage into innovations, this work suggests that these three teachers have
progressed a lot toward professional development.

In many countries, low mathematics perforMance of students is usually associated with poor

teaching. Nations around the world are demanding better teachers at all levels, but yet too little

effort has been taken to understand what prospective and practicing teachers think about doing,
learning, teaching and assessing mathematics and how these conceptions can affect both preservice

and inservice teacher preparation as well as teaching practice (Dossey, Dossey & Parmantic, 1990).

Formal education involves complex interaction between teachers and students who are influencing

and being influenced by each other in terms of both cognitive and noncognitive factors. Teachers'

beliefs about mathematics and mathematics pedagogy are inherent in the human endeavor of

teaching. However, one may question when and how these beliefs appear and if they can be

challenged and/or changed.

Thompson (1992) summarizes her review of the literature pointing out that belief systems are

dynamic, permeable mental pictures susceptible to change in light of experience, and that the
relationship between teaching practice and beliefs is not a simple linear causal-effect, but is a

dialectical one. Hoyles (1992) proposes the notion of situated beliefs based on the fact that

"teachers reconstruct their beliefs whilst interacting with any innovation ... [and] all beliefs are, to

a certain extent, constructed in settings" (p. 282). Pontc (1994) draws our attention to the fact that

the classroom environment and social, educational, and personal constraints also contribute to

shape teachers' beliefs, which favors a dialectical perspective of the association between beliefs and

practices.

In this paper we analyze the process of change experienced by three mathematics teachers

who have been engaged in a project of teacher development. We also examine their awareness

about changes in both their pedagogical practices and views about mathematics teaching and

learning.

Context of the Teacher Education Project
The Fundao Project (FP project) is an ongoing staff development at the Mathematics Institute

at Universidade Federal do Rio de Janeiro initiated in 1980. The FP project acts in three directions:

teacher training, research and mathematics teaching at university level. The continuous teacher

training component involves university professors; secondary teachers and undergraduate students.

The main concerns of this component are to improve the preservice mathematics teacher education,
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to provide continuous teacher enhancement, to develop a collaborative effort between university

and classroom teachers in order to improve the process of mathematics teaching and learning, and

to call attention to the importance of the teacher as an educator. The project work and the
environment in which it takes place provide a supportive context leading both to the personal

recognition of teachers and to the realization of the importance of their role as mathematics teachers.

Throughout the mutual collaboration between the three groups, the teacher training
component benefits from the experience of school teachers and, at the same time, contributes
positively for the growth and change in teachers' attitude. The participation of undergraduate

students in the project (even in their first year of university course) contributes to their teacher

education program through the contact with classroom situations, the discussion about problems of

mathematics teaching and the engagement in research teaching experiments. Furthermore, they

give valuable ideas when planning and designing school activities because their way of thinking

and speech style is closer to the pupils' population with whom the teachers work. In sum, since

the beginning of the project the idea was to have undergraduate students, teachers and university

professors sharing their expertise and knowledge (Nunes, 1993). Actually, it is a collaborative

project of action research where the whole group is involved in identifying important learning and

teaching problems and searching together for workable solutions. In other words, it is on-site

inquiry aimed at problem resolution which tends to motivate school teachers to become practitioner

researchers (Clouthier & Shandola, 1993; Raymond, 1994).

In addition to this component of the FP project, there is a systematic graduate program for

mathematics teachers (a two-year enhancement program previous to the master). Through this

program the teachers get the opportunity to rethink and reflect about their views, beliefs,
conceptions and attitudes toward mathematics teaching and learning. The program is arranged

around three issues: mathematical content, methodology for mathematics teaching, and mathematics

education. The teacher-students have to enroll at least in respectively four, one and two courses

from each issue before carrying on a small research monograph. During these two years, the

teacher-students use their own school classrooms as an experimental laboratory to investigate the

possibilities of innovating in their mathematics teaching. It is also the first step for becoming a

researcher since they are required to systematize their pedagogical planning, write about their

classroom investigations, report their observations and trials, and discuss the whole process of

these innovations with their peers.

The components of continuous teacher training and graduate teacher enhancement program

provide to practicing teachers a full range of opportunities to develop professional autonomy,

acquire independent thinking when facing classroom problems, and become adaptive agents that

are able to try out innovations and to reflect-in-action (as Schen, 1983 advocates) about the positive

and negative aspects of this move. According to Cooney (1994), in teacher education programs,

teachers need to have experiences which help them to develop both the conceptual and the

pedagogical bases. He suggests that "teacher education programs ought to have features that

enable teachers to develop a knowledge of mathematics that permits the teaching of
mathematics from a constructivist perspective;
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offer occasions for teachers to reflect on their own experiences as learners of
mathematics;

provide contexts in which teachers develop expertise in identifying and analyzing the

constraints they face in teaching and how they can deal with those constraints;

furnish contexts in which teachers gain experience in assessing a student's understanding

of mathematics;

afford opportunities for teachers to translate their knowledge of mathematics into viable

teaching strategies." (p. 16)

All these features are present in the FP project as a natural consequence of the dynamics
adopted, i. e., discussing and theorizing about mathematical learning and teaching problems and

experimenting ideas in their school classrooms. Furthermore, the teachers engaged in the project

are stimulated to share and disseminate the innovative mathematical ideas developed in the project

in their school context to their peers and in symposiums, workshops and conferences on
mathematics education. All these situations lead teachers to acquire both autonomy (Castle &

Aichele, 1994) and mathernsatical pedagogical power (Cooney, 1994), and develop their
metacognitive awareness about teaching in the sense defined by Santos (1993).

It is important to notice that "teachers' conceptions are not easily altered, and that one should

not expect noteworthy changes to come about over the period of a single training course."
(Thompson, 1992, p. 139) In addition, we should observe how teachers' beliefs and conceptions

match and/or are in conflict with their teaching pradtices and behaviors. Teacher training programs

can influence and help teachers to solve these dilemmas if the programs provide them with
reasonable time and a suitable setting allowing them to think, reflect, try out innovations, and

decide about changing or not their conceptions and practices. Based on the evidence from
previous research studies on teacher education (Cooney, 1994; Hoy les, 1992; Ponte, 1994;
Thompson, 1992), the FP project works so that each participant (either undergraduate student or
practicing teacher) stay regularly linked with the project for at least two years. As a matter of fact,

there are teachers engaged in the project for about ten years.

A Look at Some Instances of Teachers' Changes
In 1994, eighteen undergraduate mathematics majors, nineteen practicing teachers and five

university professors took part in the teacher training component. The participation of practicing

teachers and undergraduate students in this component of the FP project and the development of

their metacognitive awareness about the complexity of the teaching-le'arning process led some of
them to enroll in graduate teacher programs (enhancement and/or master level). This year there
were twenty five teacher-students engaged in the graduate teacher enhancement program of the FP
project . Data for this investigation were collected in March and December of 1994, consisting of:

undergraduate students and teachers' written reports about the activities developed in the

continuous teacher training project both at the university setting and at the school
classrooms;

undergraduate students, teachers and teacher-students' written comments about
mathematics education articles and research studies discussed;
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undergraduate students, teachers and teacher-students' written reports with a critical

analysis of the influence of either the teacher training or the teacher enhancement

components in their views, beliefs and conceptions about mathematics and the
mathematics teaching profession;

teachers and teacher-students' written reports pointing out their perceived views about the

five components suggested by Kagan (1992) as essential for defining teachers'

professional growth. These components include: metacognitive knowledge about pupils

and classrooms; teachers' expectations, beliefs and knowledge about pupils; their self-

image as teachers, shifting the focus of attention from self to the design of instruction and

then to pupil learning; development of standard classroom procedures; and growth in

problem solving skills, becoming able to relate and connect topics of the mathematics

curricul urn.

Partial analysis of these documents, describing categories of the professional growth of students

and teachers involved in the investigation, was reported by Nasser and Santos (1994).

Having in mind the aim of investigating if the staff development furnished by the FP project

is leading to professional development, teacher autonomy and metacognitive awareness, we

examined, analyzed and categorized the data collected during this year. Our analysis was based on

suggestions given by Kagan (1992), Santos (1993) and Cooney (1994). In this paper we focus

our attention on the changes pointed out by some teachers during the whole year of 1994. Due to

space limitations, we only address the cases of three teachers who have participated in the teacher

training and are now enrolled in the enhancement program.

The Three Teachers

Margarida is a beginning teacher facing the dilemmas of the initial career who worries about

her awareness to overcome these problems; Susana is an experienced teacher who has been

searching for ways of improving her teaching in the last decade; and Anne Marie is a serious and

responsible teacher who tries to innovate but needs continuous support from her peers at school or

at the university to keep on with her pedagogical trials. Margarida and Anne Marie have taken part

in the teacher training as undergraduate students for about two years some time ago, and they

returned in 1993 to the University looking for the support of the teaching enhancement program.

On the other hand, Susana has participated in the teacher training project as a teacher for two years,

and also engaged in the enhancement program in 1993.

Margarida

In March of 1994, she reported the internal conflicts of her professed beliefs about teaching

style and teaching approaches to mathematics with her actual teaching behavior in class. She was

facing, as a beginning teacher, the dilemma of being attached to the mathematical content while

willing to innovate without knowing exactly how, but afraid of losing her teaching jobs in private

schools in Rio:

One of the most important factors experienced in the continuous teacher training
component was the emphasis given to spreading the focus of teaching, in the sense that
the teacher is not the only owner of the knowledge. . . but he /she is only a vertex of an
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imaginary triangle formed by the teacher, the learner and the knowledge. . . . When
beginning to teach in 1993, I observed that although having been influenced by the
variety of innovative activities [from the teacher training] , I felt a big difference when
facing the reality of working in private schools. The question of the teacher being
attached to the programmatic content is too hard and heavy for a beginning teacher. . . .

My theoretical attitude was one, but my actual teaching practice was another one, quite
different which was making me feel sometimes anxious. . . . My first lessons were the
worst ones, because I repeated exactly the same methods used by my previous teachers,
which I have always rejected. This gave me a terrible sensation because nothing that I
was doing was pleasing me. . . . That situation was letting me anxious, and I felt like a
hypocrite, preaching some ideas and acting in a different way that was divergent from my
own thinking about teaching. During this time, I have even thought in quitting the
teaching career. . . .

In December 1994, when reflecting back about the influences of participation in both components
of the FP project, we can perceive the change in her speech about teaching and problems faced in
schools. At this moment, she was aware that her teaching attitude and behavior has been affected
and influenced the most by the participation in the teacher enhancement program:

. It was at that time, that the discipline of "problem solving" [one of the courses from
the program] "fell over my head," and soon I perceived that this discipline was going to
be of "great impact,' and it's good that this happened, because that's exactly what I was
needing: a shock treatment to awake me from the stillness I was locked in. The approach
of this course, in particular, shook me up and changed my way of seeing education.
With the assignments and the links with the classroom practice (at last we applied
something in our classes!), this problem solving course led me to discover another side of
the lessons in which the teacher interacts much more with the pupils, guiding them in the
construction of their knowledge. . . . All this has shown me that the application of
innovative proposals in classrooms may be successful, being enough for this a certain
amount of willingness and courage from the teacher.

When looking back to the entire teacher enhancement program, even though realizing the

importance of the mathematics content disciplines, Margarida acknowledges the crucial role played

by the mathematics education and methodology for mathematics teaching disciplines in developing

her self-image as a creative professional teacher being able to integrate different mathematics topics

and to generate interesting activities. Margarida says "influenced by the three disciplines of

mathematics education I tried to do a more dignifying work as a teacher which is coherent with my

ideals and my preaching about mathematics teaching. . . This is my second year teaching and I

could leave behind a great deal of insecurity." Another evidence of her professional growth is the

fact that she had the courage to submit a communication about her teaching experiment with the

study of trigonometry to the National .Meeting on Mathematics Education that will be held in July

1995 in the Northeast part of Brazil.

Anne Marie

She is a teacher with some experience who has already overcome the difficulties of the first

two years of teaching. Differently from Margarida who is very metacognitively-aware of her

teaching behavior and constraints for implementing changes, Anne Marie is more dependent on the

approval from her peers and creates obstacles for the success of innovations. This happens

because she works in two private schools having different educational philosophies. One is very
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traditional while the other is more open to innovative methodologies. This need of peers' support

and interest is noticed in her speech:

I try to pay attention to everything that can be directly connected to the learning-teaching
process, but I need to have a larger number of people in each school involved in the
production of activities and/or research. . . . Nevertheless, I feel that as my level of
information increases, my level of concerns increases too, I would like to change
experiences and create things more often but several times I face the reality of working
with colleagues with low interest in both teaching and change.

Although Anne Marie has participated for two years in the teachertraining as an undergraduate, and

she has been enrolled since 1993 in the teacher enhancement program, she seems to have gathered

information without processing it. Only now, when conducting the final investigation of the

enhancement program, her awareness of her teaching limitations iscoming to a conscious level.

1 see that to become an excellent teacher 1 will need to have a researcher's attitude, that is

to reflect about each lesson given to my students, thinking about their reactions and
performances. But the attention should not be only focused on the teacher; it is essential

to have complete knowledge of the mathematics content in order to better explore it, and a
deep knowledge about the learner in order to understand the learning process. . . . Today
1 believe to have a better consciousness of my role-as an educator. I perceive more clearly
the importance of diversifying the lesson styles, of innovating in the way of questioning,
of stimulating discoveries, of promoting learning transfers, and of taking advantage from
the pupils' mistakes. But this more dynamic attitude is the result of various factors: my
professional experience, and moments experienced in the enhancement courses and /or

workshops.

Susana
Susana is an experienced teacher who works with two school realities: middle school pupils from

public schools and preservice teachers at high school level from a Center of Elementary Teacher

Training. Since the beginning of her career, she has searched for original ideas and materials, and

inservice teacher training in order to improve her teaching expertise. Susana was aware of her

teaching difficulties but had to keep looking for different ways to solve school problems, as noticed

below:

Initially in my teaching career, I knew there were mistakes in the educational system, i.

e., the pupils didn't learn and 1 noticed that sometimes I could not communicate with
them. I couldn't identify the factors that were causing this situation and I didn't know
even which strategies to use in order to modify this reality. . . . While I was getting to
know pew methodologies and becoming aware of the phases and obstacles to overcome,
there wasn't a fixed classroom routine any more.

Susana had already acquired a lot of teaching experience when she came to work as a practicing

teacher in the continuous teacher training program. After two years ofparticipation, she left this

inservice teacher training in order to write with some colleagues a mathematics textbook for

preservice elementary teachers at high school level. At this point in her career, it seemed as if she

had nothing more to learn, but when she engaged in the enhancement program, Susana realized that

she still had a long way to go:
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The enhancement program allowed me both to deepen and evaluate my knowledge of well
as improving at the same time my students' and my metacognitive skills in a constructivist
approach. . . . The main change that occurred with me was the incorporation in my
teaching routine of: cooperative work, valuation of the language when interpreting
mathematical ideas, use of concept 'turps accompanied of written explanations, and group
assessment. . . . I found out that I still have a lot to discover and I feel that all the
disciplines of mathematics, mathematics education and methodology for teaching in the
program are adding up to my knowledge. I try out theories, adopt a constructivist attitude
most of the time, but realize that there isn't a theory that is sufficient to solve alone the
problems of the teaching-learning process and I take advantage of the theory I find more
suitable in each moment.

Looking at Susana's discourse, we can observe that by incorporating a new repertoire of routines

in her teaching practice and by reflecting about the use of several learning theories, Susana is

moving toward a scientific approach to teaching. Which, according to Cooney (1994), "honors

observing students; hypothesizing about, and examining the effects of, various teaching strategies;

and reformulating hypothesis about students'' learning." (p. 19)

Discussion

As we said before, changes in teachers' attitudes, beliefs, and practices- need time and

supportive context to take place. Maybe, this explains why the main acknowledged changes in

these three leachers occurred only when they returned to the university to enroll in a teacher

enhancement program. They needed time to mature some of the innovative teaching ideas shared in

the teacher training component before they were able to develop their metacognitive awareness

about mathematics and its pedagogy. Only then, they could acquire autonomy to try out

innovations and to incorporate new classroom routines as problem solving, group work, and a

teaching practice focusing more on questioning, leading to a constructivist approach. I t was crucial

for them to have experienced group work as teacher- students before implementing it in their

classes. The three teachers explicitly state that the most influential courses from the enhancement

program were the three disciplines dealing with mathematics education and methodology. They

explain that this occurred because they had the opportunity to develop small pieces of teaching

experiments in their schools, thus becoming researcher practitioners.

Throughout the enhancement program, Margarida was able to improve her metacognitive

awareness of teaching concerning her strengths and limitations, and was able to find out ways to

cope with her conflicts and professional dilemmas. To some extent, Margarida and Anne Marie

followed a similar path of change concerning the shift of their attention from the self to the content

and, then, to the learning process as suggested by Kagan (1992). The reading and discussions

about mathematics education articles were fundamental to provide them with a theoretical basis for

professional growth. All of them also acknowledge the importance of experimenting different

ways of collecting information about pupils' learning and difficulties for becoming investigators in

their own classrooms (e.g., interviews and/or group problem-solving). The act of writing in a

more systematic way the results of these investigations as well as reporting the successes,

difficulties and failures contributed to develop the awareness of their strengths and limitations and

to bring to a conscious level the complexity of trying innovations. This helped them to become
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autonomous teachers as described by Castle and Aichele (1994): "Autonomous teachers are self-

directed learners who question, study, and search for answers from a need to know. . . .

Autonomous teachers construct personally meaningful professional knowledge resistant to
education fads or external mandates.... and are more confident in what they know." (p.'7). In

certain sense, Margarida and Susana have developed this kind of autonomy, while Anne Marie is

still in the way. As a matter of fact, from the three teachers, Susana has acquired an attitude of a

life-long learner who believes that pupils and teachers are always engaged in a learning process, as

she concludes her report : "from new methods of assessment and reporting my investigations, ...

I discovered that we [teachers and students] learn how to learn".

The process of change reported in this work is not a closing point, but must be continued.

We must keep on investigating if the perceived changes in the beliefs, attitudes and behaviors of

these teachers will remain and/or improve, and if they really affect mathematics learning in the

classroom environment. In order to assure that the enhancement program actually promoted the

changes suggested by this work, we intend to carry on a closer investigation in which we rely not

only on the teachers' reports and narratives but also on observations of their lessons, analysis of

classroom tasks, and interviews with the three teachers and some of their students. Only then, we

will be able to assert that they have become autonomous teachers.
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A COLLEGE INSTRUCTOR'S ATTEMPT TO IMPLEMENT
MATHEMATICAL PROBLEM SOLVING INSTRUCTION

Manuel Santos T
CINVESTAV-IPN, Mexico

Problem solving has become an important part of mathematical
instruction in the last 25 years. This study focuses on analyzing the
role of a college instructor who tries to implement problem solving
instruction in his regular calculus class. Results show that even when
the instructor openly supported the principles of this approach, there
was no consistency in the implementation of those principles in
classroom activities. This suggests that it takes time for instructors to
conceptualize and accept significant changes in their actual practice.

Introduction
Problem solving has been an important part of the mathematical

education agenda in the last 25 years. Lester (1994) pointed out that there has

been a lot of progress in understanding how students solve mathematical
problems, but he also suggested that there is a need to continue doing research

that provides more directions in the implementation of problem solving activities
in the classroom. One of the issues that Lester identified as being crucial in the

implementation of problem solving approach is related to the role of the teacher

during the development of course. in my view, attention to the teacher's role

should be the single most important item on any problem-solving research

agenda" (p. 672).
The present study investigates the effects of attempting to provide

mathematics instruction based on problem solving in a calculus class at the

college level. The course was a regular course taught during one term. It is

suggested that this type of study will help instructors to be aware of the potential

and limitations when trying to implement some strategies related to problem

solving instruction. The study focuses on the analysis of the instructor's views

and behaviors observed during the course.

Background to the Study
Mathematical problem solving involves a view of mathematics in which it

is important tc find the meaning and connections of mathematical ideas. It also

emphasizes that doing mathematics is a social activity in which people interact

during the process of understanding or solving mathematical problems. As a

consequence, some essential learning activities associated with this approach

involved the use of some nonroutine problems, the use of small group

interactions, and the consideration of problem-task assignments. Here, the role

of the instructor becomes crucial not only in the selection of what activities to
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implement but also to what extent those activities appear in the actual practice.
Therefore, it is important to document the instructor behavior while intending to
provide a problem solving environment in the development of the class.

Thompson (1988) suggested that instructors' beliefs about mathematics

and problem solving influence the way that they conceptualize and implement
learning activities in the classroom. The need for documenting the directions of
instruction was pointed out by Thompson when she stated:

reports of instructional studies in problem solving have generally lacked
good descriptions of what actually happened in the classroom (except for
those in which programmed instructional booklets were used) and have
failed to assess the direct effectiveness of instruction (p. 232).

Schoenfeld (1992) stated that learning involves the active process of
constructing interpretations of what one sees, and what the student perceives

may not be what the teacher intended. Therefore, it becomes important to

discuss what the instructor did during the course and to interpret the results in
the context of the problem solving approach.

Methods and Procedures and Frame of Analysis
Miles and Huberman (1984) discussed advantages in the use of

qualitative data. They expressed the opinion that:
with qualitative data, one can preserve chronological flow, assess local
causality, and derive fruitful explanations. Serendipitous findings and
new theoretical integrations can appear. Finally, qualitative findings
have a certain undeniability that is often far more convincing to a reader
than pages of numbers (p. 22).

The review of related studies suggested that a design which involves

gathering information via extensive conversation previous to and during the

development of the course, and an interview with the instructor at the end of the

course could provide grounds to analyze the direction of the course. In

addition, the researcher observed the development of the course and

maintained direct interaction with the instructor and recorded class

observations. The main interest was to analyze to what extent the activities

implemented during the course were consistent with the problem solving ideas

discussed with the instructor previously and during the course.

The framework utilized to analyze the information is a modified version
of Thompson' ideas on how to categorize teachers' beliefs about mathematics

and teaching. The main categories used to analyze the instructors' behaviors
included aspects related to the nature of mathematics, the class interaction, and

the evaluation of the students work. The frame resembles aspects related to
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what mathematics is, what the role of the instructor (students) is, and what it
means to learn mathematics, that Thompson identified as important

components to analyze teachers' behaviors. Thus, the information gathered via
interview, class observations, and fields notes were organized and analyzed by
following those categories. t is important to mention that the final analysis and

results has been shared with other mathematical instructors and they have

identified some of the finding on their own practice. This part enhances the
validity of the results in this type of qualitative studies (Marton, 1988).

Limiting the Context: Analysis and Discussion of Results
To analyze the direction of the course and its consistency with the

original plan, an interview with the instructor was conducted a the end of the
course. Some of the questions address specific issues discussed with the
instructor during thd planning period of the course; others were inspired by the

class observations carried out by the researcher during the development of the

course. The analysis will address issues related to the nature of mathematics,
the conception of learning, and the students' problem solving evaluation.

The Instructor's Conceptualization of Mathematics.
Schoenfeld (1987) pointed out that the way teachers conceptualize

mathematics permeates the classroom activities that are implemented during
instruction. He described his own experience as a student in which the
instructor could not remember the binomial formula and showed the students

how to figure it out. Learning activities that relate the sense of studying

mathematical relationships are different from those in which the instructor gives
only rules for solving problems. Schoenfeld (1987) stated:

the important thing in mathematics is seeing the connections, seeing
what makes things tick and how they fit together. Doing mathematics is
putting together the connections, making sense of the structure. Writing
down the results - the formal statements that codify your understanding -
is the end product, rather than the starting place (p. 28).

Thompson (1988) pointed out that teaching is a human activity that
involves experience, taste, and judgment. She stated that *in my view teaching

is an activity that cannot be prescribed; it cannot be reduced to a sequence of
predetermined steps to be learned as one learns, say, an algorithm* (p. 234).
Therefore, there is room for the instructor to make instructional decisions that he

or she considers suitable at a particular moment during the class. Hence,

exploring the way the instructor thinks of mathematics and problem solving and
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analyzing the activities that he implemented during the study could help to
document the type of instruction that he provided during the study.

There are indications suggesting that the instructor endorsed a view of

mathematics that emphasizes the conceptual part of mathematics. For

example, to the question 'which aspects of mathematics would you mention in

responding to the question 'what is mathematics?' " (in the interview carried out

at the end of the course), he responded:
I [would] probably start by turning the question around and say what is not

mathematics, in an effort to try to immediately broaden the questioner's
perspective, and in response to that, I would say it is not a matter of going
through a few predetermined steps and ending up with an answer. I am not
sure that ... a clear description of what is mathematics is that easy, certainly
not to those who would be asking it. However, I would include the uncertain
nature of mathematical fact, call it. I would certainly include mention of how
mathematical fact evolves, how it is changed ... with such examples as non-
Euclidean geometry because it's relatively accessible, or perhaps more
accessible, might be baseball mathematics, where our usual addition of
fractions is thrown out the window with very good purpose. I would certainly
include mention of attempts to understand or explain and try to distinguish
that from absolute truth and discourage suggestion of absolute truth. One
would have to include some mention of skills. There is no doubt about it,
that one cannot do mathematics without a certain collection of skills and for
the most part in undergraduate instruction that's the extent of [the] focus.
However, I would want to go well beyond that and include notions of
generalizations of patterns. I would like to emphasize the difference
between various levels of mathematical activity: skill level,
conceptualization level, validity level.

In his response, the instructor differentiated the mechanical approach to

mathematics instruction, that is, the identification of a determined sequence of

steps (rules) in order to understand content from the approach in which there is

room for discussion, speculation, and criticism. His view of the nature of

mathematics suggested that mathematics is a subject growing constantly and

that there is not absolute truth.

The instructor is firm in his position on the teaching of mathematics at the

undergraduate level: He considers the teaching of basic skills as important; he

also believes that formal mathematics should not be the focus of undergraduate

teaching. At the end of the study, he stated:
I'm beginning to question more and more the utility in formal pursuits. It's

only...formal mathematics is only useful if you have some reference points
to evaluate its utility (my emphasis), and so only if you have some sort of
understanding of perhaps some of the aberrations of, call it, intuitive
mathematics; let's face it that it's really weird formulas just come in, and they
formulate their theories after the fact. So no, I don't think that there is that
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much utility for it especially in first year calculus.... However, I do think that
leaves lots and lots of room for many other valid mathematical activities and
in particular conceptualization and applications of concepts in different
settings; they're much much more universal than applications of algorithms.

Learning: The Interactions Between the Instructor and the Students
It is important to relate the activities that the instructor implemented

during the problem solving instruction to his views of mathematics. For
example, he relied on several examples to introduce each day's content; the

students normally spent some time reflecting on the examples, but the instructor

was always ready to answer any question from the students without exploring
the students' difficulties. The instructor at one point formalized the definitions or

theorems discussed during the class; often he demonstrated some of the
theorems. This type of instruction occurred more often when the concept of

derivative was used to present some of the formulae for obtaining derivatives.

For example, all the rules for operating with derivatives (addition, multiplication,
and division) were demonstrated by the instructor in one class. One student

who probably did not follow the demonstration asked whether these types of

proofs were going to be on the final exam; the instructor who might have known
the purpose of this question responded, "No, but you have to know theme....

Other students asked during the same class why the derivative of the product
was not the product of the derivatives. The instructor responded with a formal

demonstration of the expression that characterizes such a product. The

researcher observed in this session that some students were experiencing

some difficulties in understanding those demonstrations and that the instructor

did not follow up some of the students' concerns. This type of intervention by

the instructor sometimes happened in the course. In addition, when the

students asked some questions regarding-the development of the proof, the

instructor only repeated the proof without exploring the students' difficulties. It

seemed that even though the instructor was aware of the students' difficulties,

he did not address these issues directly during the instruction; perhaps, this was

because of the limited time for covering the content.

It was clear that the model of mathematics that the instructor portrayed in

his teaching presented mathematics as a well organized subject. For example,

the instructor often introduced and presented the use of algorithms and rules in

a sequential manner. For example, during the class several examples that

involved the chain rule for determining the derivative of function were

discussed. The strategy in attacking this problem was to apply the chain rule
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and the formulae for the derivative involved in the expressions. The students in
the assignments in which they had to use the chain rule calculated derivatives
without analyzing whether or not the functions were differentiable at the

corresponding points. Thus, the message given to the students was that
mathematics always works and that it is important to use the right approach to
solve problems.

The importance of engaging students in practicing basic skills is shown
in an analogy which the instructor made between learning mathematics and
playing golf. At the end of the course, he stated:

.... I might give an analogy here. If you are learning to play golf, you first
of all learn how to swing a golf club and have it hit the ball, and only
when you get the ball flying you spend a lot of time on the practice 'till
you're getting the ball flying and yet that's not the extent of what you do
when you play golf, but that's an important part when you play golf. I

agree that the emphasis we show on examinations is somewhat
unfortunate and yet it's practice.

The instructor's ideas about the use of problem solving were linked to the
way that he conceptualized mathematics. He maintains that doing mathematics
is a social activity and that this aspect should be integrated into the problem

solving instruction. He thinks that this aspect can be promoted by asking the

students to work on the assignments together, asking the students to work in

small groups during the class, and by discussing examples that show the
application of mathematics in various contexts. However, in his actual class,
there were few examples in which the students had the opportunity to defend
their means of understanding or solving problems.

Even when the instructor recognized the importance of discussing

nonroutine problems in the classroom, he also recognized that the actual
conditions of the college limit the use of problem solving. For example, he

mentioned that the extent of the curriculum, the size of the class, and the testing

practices are major concerns that impede trying new instructional approaches.

He recognized that to discuss nonroutine problems on a daily basis during
instruction takes time and that there is a risk of not covering the proposed

curriculum. In addition, the final exams (designed by the department) normally

include only routine exercises for which the students have to be prepared.

Regarding the number of students, the instructor at the end of the course stated:
Having class sizes of 38, 39 students ... it's difficult to do anything but
present the traditional lecture format. And I think it's quite clear that
traditional lecture formats are not very efficient learning tools, especially
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for today's student who doesn't engage in that way any more. They have
to engage in other ways.

Evaluation of the Students' Work
Although the instructor recognized the utility of discussing nonroutine

problems, he also suggested that the students' examinations should not include
these types of problems. During the interview at the end of the course, he

stated:
I think that there is a good deal of ... discussion of nonroutine problems in
that it can emphasize how concepts can be applied, it can promote social
interaction, it can promote the thinking aspect, the critical analysis aspect
of problem solving, and these are all things that are useful in order to
learn. I agree that these things are not particularly easily tested and so
this is not what comes up in examinations; however, I think that by
pursuing them one can improve performance on examinations by
knowing the stuff better by applying those things to it.

He went on to say that he provided some coaching to the students on

how to write exams in which they have to work quickly to solve 12 routine

exercises in about two hours. The students knew that even when they were

asked to work on some nonroutine problems in the assignments and during

class instructions, these problems could not be part of the final examinations.
All the students were concerned about the final exam, and they constantly

asked for the correct and most efficient procedures in order to do well in that
exam. They often ignored exploring the problem in more general domains or

looking for other approaches. They knew that these types of activities are never

included in the final examination.

Although the instructor agreed to consider nonroutine problems in the

assignments and class discussions, he rarely checked the students' progress in

solving the assignments. The researcher, who was in charge of marking the

assignments and giving written feedback to the students, periodically reported

to the instructor and the students the students' strengths and difficulties. This

report was always judged by the instructor to be satisfactory.
Conclusions

Research in mathematical problem solving has suggested that it is

important that mathematical classes provide an environment in which the

students have opportunities to develop and apply diverse strategies to

understand and solve mathematical problems. Results from this study suggest

that being aware of the main principles of this approach is an important step on

the part of the instructor. However, it is important to develop a mathematical
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community among instructors (as a group) in order to develop nonroutine

problems and give the support needed to implement problem solving activities.

For example, it is necessary to consider learning situations in which the
students openly discuss and challenge their ideas. In addition, it is important to

value the students communication of mathematical ideas. These classroom
activities challenge some views that identify mathematics as an fixed discipline

and may produce some conflict in the classroom. Nevertheless, if students get
encouraged to participate and to value the interaction with other students, then

they may see that what it counts in studying mathematics is the search for

meaning and not only to master different procedures. Thus, the process of

assimilating and implementing problem solving strategies in mathematics
instruction should be seen as an ongoing process in which there is always

room for improvement and adjustment. Here, there is indication that instructors

need support not only from other colleagues, but also from researchers and
institutions to overcome aspects related to the coverage of material and

students' evaluation..
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DESIGNING COMPUTER LEARNING ENVIRONMENTS BASED ON THE THEORY
OF REALISTIC MATHEMATICS EDUCATION

Janet Bowers, Vanderbilt University

The belief that computers can qualitatively change the nature of work has been well
documented (e.g., Norman, 1988). The implication for education is that the computer has the
potential to serve as a medium for helping students to learn by providing an environment in which
they can model and reconceptualize their actions. This view of learning, vOich is consistent with
the tenets of constructivism, guides the development of the Realistic Mathematics Education (RME)
program. This paper reviews the three principles of RME, mathematizing, reinvention, and
didactic phenomenology, and contrasts them with traditional views of instructional design in order
to derive a set of computer design heuristics that are compatible with constructivism.

Most people who use computers to facilitate their writing process, organize ideas, or model

mathematical problems have experienced the ways in which interacting with a computer can
qualitatively change the nature of the work that can be done (Norman, 1988; Dorfler, in press; Pea,

1994). Word processors, data bases, and spreadsheets are examples of open-ended computer
applications that enable users to create and modify the working environment within which they
organize their thinking strategies. This definition of work is consistent with the Freudenthal
Institute's conception of learning. According to Freudenthal, "[Mathematics is] an activity of
solving problems, of looking for problems, but it is also an activity of organizing a subject matter

(Freudenthal, in Gravemeijer, 1994, p. 21). This organizing activity, called "mathematizing," is one

of three basic assumptions of the theory of Realistic Mathematics Education developed at the
Freudenthal Institute. This paper examines these three assumptions, mathematizing and modeling,

didactic phenomenology, and student-developed models, and contrasts them with the basic
assumptions of standard approaches to instructional design (ID). The goal is to derive design
principles for computer learning environments that can give rise to opportunities for students to
reflect on and ultimately reorganize their current ways of knowing.

Instructional Design Theory and the Development of Computer Learning Environments

For the past several decades, the practice of designing instructional materials (and
educational software) has been guided by the field of (ID). This approach is based on the belief that

students can achieve goals over time by mastering successive learning units (chunks defined by

domain experts) that are delivered through high-quality instruction (Gagne and Dick, 1983). This

approach, which reflects a "top-down" view of design, is thought to be inconsistent with
constructivist theories of learning. In essence, the argument states that instructional activities that

are consistent with constructivism cannot be created with a top-down behavioral approach because

ID does not take into account the view of the students as active constructors of their own ways of
knowing. In response to this argument, the proponents of ID state that "While ISTG [Instructional

The research reported in this paper was supported by the National Science Foundation under grant
number RED-9353587. All opinions expressed are solely those of the author.

2 202

210



Systems Technology Group] has a well-documented methodology, it is not clear how a
constructivist would go about carrying out these steps How does one select relevant problems? By

job analysis?...If we do a task analysis, are we going to choose irrelevant tasks?" (Merrill, 1991, p.

50). Merrill suggests that while these theories might offer some general assumptions regarding how

children learn, they do not offer a systematic way of developing materials.

One response to this challenge is offered by the Freudenthal Institute's approach to
instructional design. The philosophy that underpins the Realistic Mathematics Education program

(RME) combines instructional design with developmental research in a cyclic process. The basic

tenet of this approach maintains that (math) learning is a human endeavor that can be accomplished

through mental effort (Freudenthal, cited in Gravemeijer, 1994). This orientation offers an

alternative to the top-down approach because it centers on creating instructional sequences that

engage students in problem-solving activities which are intended to lead to increasingly
sophisticated student-generated strategies. This focus on students' actions, models, and
interpretations illustrates the "bottom-up" nature of this approach (Gravemeijer, 1993-a).

By coordinating this cognitive perspective with a social perspective in which children are

viewed as active members of a community of learners, software designers can begin to form a

holistic picture of students' learning-in-action. As Laurel (1993) points out, the process of
designing computer systems should begin with an analysis of what the users are trying to do, rather

than what the screen should look like. This approach assumes that what the learner is trying to do

is engage in discourse, negotiate understandings of his or her activities, and reflect on those

activities. In taking account both students' cognitive activity and their social obligations, the

designer can begin to develop an environment and envision potential implementation schemes.

This process will be elucidated by examining the basic assumptions of Freudenthal's approach to

instructional design.

Design Issues Based on the Tenets of Ft Mg
The three basic tenets of RME form a strong core that reflect beliefs about mathematics,

about teaching, and about mathematics education itself (Gravemeijer, 1994). These core

assumptions constitute a rare example of a unified set of design heuristics that are consistent with

the tenets of constructivism (Cobb, 1994) and hence can serve to guide the development of

computer learning environments.

Principle #1: Progressive mathematization and guided reinvention .
The first principle maintains that students learn mathematics by reflecting on their own

actions through a process of progressive mathematization. Mattrematization is defined as the

process by which learners organize their mathematical activity to transform a context problem into

a mathematical interpretation. According to Gravemeijer (1994), this process can be conducted in

two directions: horizontally and vertically. Horizontal mathematization occurs as students create

models of their mathematical activity in various contexts. Vertical mathematization refers to the
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process by which students reify these models through progressive mathematization. Gravemeijer

(1993-b) outlines several characteristics of this progressive mathematization process. They can be
grouped into two categories: developmental aspects and social aspects. The developmental
characteristics include the central role of context problems, and the attention that must be placed on
the development of situation models as bridges between reality and more abstract mathematics.

The social aspects include the interactive character of the learning process, and the roles and
obligations that have been established in the social microculture.

The question of how to develop context activities that support these modeling activities is

addressed by the principle of guided reinvention. The term "reinvention" is offered as an
alternative to the notion of sequencing that is prominent in instructional design theories. The

reinvention principle suggests that learning should follow a path that enables the student to reinvent

mathematical concepts for themselves as they are guided along a potential learning route. The

critical difference between this approach and traditional ID theories is that prospective and
potentially-revisable routes are mapped out based on the designer's knowledge of students' actions

and of the history of mathematics, rather than from the designer's own conception of how the task

should be approached. For developers, these two sources of guidance (an historical account of

mathematics and observations of prior students' interpretations) can inform the planning process by

suggesting possible learning routes to be included in the computer environment. This does not

suggest that development should be limited to a linear procedure. RME's cyclic approach of
design, implementation, and revision is critical to the design of computer environments as well
because even the most well-intentioned programs elicit unanticipated interpretations. These
unexpected uses should be channeled back to revise the program and also serve as insights into the
nature of the students' actions with the computer.

One guiding heuristic that has evolved from the principles of mathematization and
reinvention is that the starting point of activities must always be experientially real for the students.

This does not imply that the students need to be actually familiar with the context in a physical
sense, but that the problem and context representations must be understandable (or make sense) so

that the students' associated actions can be personally meaningful. According to Gravemeijer
(1994),

Reality is understood as a mixture of interpretation and of sensual experience. This

implies that mathematics too can become part of one's reality. Reality and what one
counts as common sense is not static but grows under the influence of the learning process

of the person in question. (p. 94).

The notion of 'reality' in relation to computer environments is highly provocative because

it can include, from a semiotic perspective, representations which may or may not have real-world

referents (Laurel, 1993). For example, interacting with an animated rabbit or cartoon garden that

grows flowers in specific patterns may not reflect a real-world scenario. It can however support the

development of strong imagery that is central to the mathematization process. The issue for the
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computer developer is to enable the students to act in the environment in a way that is personally

meaningful regardless of whether these interactions mirror real-world referents. The intent is to

engage users interactively in situations in which they reify their activities. Such an approach

circumvents the issue of dualism that often confounds arguments regarding representations (Cobb,

in press).

Applying the principle of mathematization to the design of computer systems implies that

the environment must allow students to model a problem in multiple ways such as through graphics,

symbols, or icons. For example, students using the Geometer's Sketchpad (Jackiw, 1991) can first

create models of their activities using the drawing tools (horizontal mathematization), and then use

their local sketches to develop scripts for their more formal solution heuristics (vertical
mathematization). This scripting process, which enables students to create, save, and apply

geometric constructions to different sets of "givens," may facilitate the process of vertical
mathematization by providing an environment in which students can interact with the agents of the

program to form increasingly sophisticated models. Rather than serving as an intelligent tutor, the

computer simply provides a medium in which the student's actions and intentions can be realized.

It also serves as a social mediator enabling groups of students to discuss their various hypotheses

and share constructions over the network.

Principle #2: Didactic Phenomenology,

Gravemeijer terms the second assumption "didactic phenomenology." This principle is

based on Freudenthal's notion that learning occurs as students create mental mathematical objects

by engaging in mathematizing. In the classroom, didactical phenomenology refers to the teacher's

sense of how materials fit into the larger goals of the instructional program and how the students

might gradually transform their initially informal activity into increasingly abstract yet personally

meaningful activity. By analyzing the micro-didactics of the learning in-situ, the teacher can be

aware of how to capitalize on the students' models to support level-raising and the gradual
formalization of activity.

Although the designer is not a direct participant in the classroom microculture, the
"programmer's voice" plays a role in constituting this mathematization within the educational
context (Griffin, Belyaeva, Soldatova, & Velikhov-Hamburg Collective, 1993). This role is to

create an environment that can lead to vertical mathematization by supporting the students'
development of rich imagery. The emphasis on the word "supporting" indicates that students
cannot be given imagery. Each student creates his or her own mental imagery by reifying his or her

Own actions within the computer environment. One aspect of a supportive environment is the use

of familiar images. Pictures of real-world objects can be used to illustrate potential actions based

on the user's prior knowledge of the object's physical properties. One disadvantage of using
familiar pictures is that if the properties of the computer-based objects vary too widely from the

user's expectations, they could become confusing. A second disadvantage is that images represent

213
2 205

BEST COPY AVAILABLE



objects rather than actions. In response to this, Laurel (1993) suggests that developers focus on
supporting activity and representing this activity in the environment.

The notion of representing action suggests that if developers create a virtual world that

elicits reflection on prior actions and makes alternative actions possible, students would be able to

progressively refine their strategies in sophisticated ways. For designers, the critical issue is to note

that these progressions should be initiated and planned by the students, rather than being imposed

by the program. This does not suggest however that students will naturally refine their strategies. In

contrast, this process occurs within the classroom microculture. For example, as the students and

teacher mutually negotiate the sociomathematical norms, efficiency might emerge as an implicit
criteria for discussing solutions (Cobb & Yackel, 1993).

The multiplication microworld developed by van Galen (van Galen & Gravemeijer, 1988)

illustrates how didactic phenomenology can inform the design of a computer environment. This

program was designed to help students develop increasingly sophisticated strategies for
multiplication by providing pictures (such as flowers) in varying array formations. The intent was

that students would begin by counting all of the flowers, but slowly develop more sophisticated

counting strategies such as counting the number of flowers in each row, and eventually curtailing

this process by simply multiplying this number by the number of rows. When discussing
observations of students using this program, van Galen and Gravemeijer (1988) note, "We saw

examples of children exchanging inefficient strategies for more efficient ones" (p. 5). By

conducting research on how the children act in the computer environment and how the social
environment affects their actions, the research cycle continues to feed back to inform the design of

new software, materials and implementation scenarios.

There are some trade-offs involved in designing computer environments that support level-

raising strategies. One such decision is the debate between being aided by tools to accomplish tasks

at the expense of actually performing the physical actions. Pea's (1994) solution is to consider the

computer and user(s) as one system. From this perspective, the work that can be accomplished by

the whole system should be considered viable, rather than trying to account for individual
contributions. This is consistent with a more realistic view of how people interact with tools in
general. A second trade-off is the prudent use of constraints. There may be a fine line between
focusing the users' creative efforts and actually "funneling" their actions.

Principle #3: Self-Developed Models

This third principle discusses how self-developed models serve to bridge the gap between

informal and formal knowledge (Gravemeijer, 1994). Assuming a non-representational view of

learning, this principle holds that students develop their own models for their initially informal
activities. Slowly, through the encouragement of the teacher, students' models of their informal

activities become models for more formal mathematical strategies (Gravemeijer, 1994). This
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approach varies widely from a representational view which suggests that students use pre-existing

models that contain knowledge in their structure.

This distinction can be illustrated by considering two different microworlds, The Thinker

Tools, a physics microworld designed to model various properties of motion (White, 1993), and van

Galen's multiplication program discussed above. The instructional objective of the Thinker Tools

microworld is "... to introduce simplified conceptual models in the initial stages of learning and

then to progress gradually to more complex models" (White, p. 4). In this way, the expert-novice

dichotomy is brought to the fore and distinctions are made A priori. That is, the developers

determine what simplified models (based on simplified expert models) the students will use initially

and then provide more complex models that the students formalize into a set of laws. The Thinker

Tools program could be described as "top down" because it begins with a goal of teaching
particular concepts via previously constructed representations and specific algorithms for solving

problems. Further, prior knowledge is viewed as a stumbling block, something that has to be
overcome. White writes, "The thesis is that acquisition of ... knowledge overcomes misconceptions

and fosters an understanding of physics and scientific inquiry that older students taught with
traditional methods appear to lack" (p. 3).

In contrast to the above emphasis on pre-formed models, programs that are consistent with

the RME approach take students' actions as their starting points. Thus, prior knowledge and

actions are considered not as residual artifacts that can be progressively eliminated by the discovery

of more sophisticated rules, but as "the very essence of cognitive creation" (Kieren, 1993, p. 2).

For example, van Galen's multiplication microworld was developed in concert with research
indicating that students often progress beyond counting solutions by using thinking or derived fact

strategies such as products of doubles and multiples of five and ten. This "bottom up" approach to

learning conceptualizes the learner as an active agent constructing his or her own strategies.

In summary, the distinction between the activities incorporated in traditional ID approaches

versus those that are consistent with the RME approach can be viewed as a difference in underlying

assumptions about students' abilities to generate and develop their own models. While the Thinker

Tools is based on a careful analysis of how experts think about and represent established concepts

in physics, the Freudenthal Institute's multiplication program is based on a careful analysis of how

students' own strategies evolve. While both microworlds enable students to view representations

in multiple forms, the ability to develop and modify one's own models and strategies represents a

more holistic approach that is consistent with the tenets of constructivism. For software developers,

the implication is that student-generated models offer a crucial starting point for conceptualizing

how to incorporate potential actions into the computer environment.

Concluding Remarks: Design Based on an Integrated view of the Computer-User System
This interpretation of RME's fundamental assumptions leads to a view of learning as both

socially situated and integrally related to the physical artifacts (models) students develop and use.

For developers, this suggests a perspective in which the student and computer are viewed as an
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integrated system. This view is also consistent with Pea's (1994) contention that knowledge is

socially constructed and distributed across Minds, persons, and symbolic and physical
environments. Given this perspective, software developers can capitalize on the reciprocal
relationship between the learner and his or her tools in order to develop computer environments that

support the processes of mathematization and level raising. This holistic view of learning-in-action

combined with the core principles of RME offers design heuristics for software developers
interested in creating environments that enable users to distribute their intelligence (Pea, 1994) in
order to organize and reflect on their activities.
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PASSIVE AND ACTIVE GRAPHING :
A STUDY OF TWO LEARNING SEQUENCES

Dave Ptra t

Mathematics Education Research Centre, University of Warwick

Abstract
This paper reports on the graphing work of children, aged 8 and 9 years, who have immediate and
continuous access to portable computers across the whole curriculum. They have been using their
computers to generate graphs and charts from experimental data. The unit of analysis is a learning
sequence in which the progress of a small group of children on a specific coherent task was recorded
over a period of several weeks. The paper describes two such learning sequences to illustrate two
types of graphing, which can occur in computer-rich environments. In one sequence, the children
collected data after which they explored the graphing facilities on the computer whereas in the other
learning sequence graphing is used iteratively as an integral part of the ongoing task

Introduction
Perhaps the overriding characteristic which distinguishes contemporary living from that as recent as

fifty years ago is the central importance of information. In particular, there is a great emphasis placed

upon the presentation of data through images, such as graphs and charts, as a means of informing or

persuading. There is a tendency to believe that such images are transparent in the sense that the reader

will gain immediate understanding of their message (see Dreyfus and Eisenberg (1990) for a longer

discussion of this issue). There has been much interest in the use of computers to help children to

develop their understanding of graphs. However, a growing body of literature suggests that there is

considerable complexity in the cognitive demands of such an approach.

Some of this research has focused upon the misconceptions and illusions that can occur in computer-

based environments (see, for example, Yerushalmy 1981 and Goldenberg 1987). Other research has

looked upon the support offered by linking the graph-plotting computer directly to an experiment

under the learner's control. The evidence (from, for example, Nachmias & Linn 1987, Mokross &

Tinker 1987, Brasell 1987) suggests that this data-logging approach helps the child to interpret the

meaning of the graphs as they can make direct connections between their actions in the experiment and

the feedback generated in graphical form on the computer.

We have previously proposed a pedagogic approach (Pratt 1994), termed active graphing, which

offers children a computer-based environment which seems to support the acquisition of fresh

insights into the nature of graphs and graphing. This paper develops these ideas further by reporting

in some detail two learning sequences, which illustrate contrasting ways in which spreadsheet

generated graphs have been used in the classroom.

Methodology
We analyse the graphing work of two groups of children, aged 8 and 9 years, data which was

collected by direct observation in the classroom over several weeks as part of the ongoing research in
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the Primary Laptop Project' in the UK. The observer kept field notes which were later refined by

discussion within the project team, including the teacher. The unit of analysis is a learning sequence.

We recorded over a period of several weeks the work of a small group of children on a coherent and

specific task. Since the children would, from time to time, move away from this particular task to carry

out other work, the learning sequence was not continuous but the researchers were in a position to

continue monitoring so that, when the children returned to the task in question, detailed observation of

the sequence could be continued.

Joy and Shelly's learning sequence arose out of an activity in which the children were asked to

consider how they might predict their own adult heights. This resulted in the need to collect and

analyse various body measurements of all the children in the class. Andrew, Ben and Sam's learning

sequence arose when the children were shown how to make simple paper spinners and asked how the

design of the spinner might affect its flight. In particular, they tried to design a spinner which stayed in

the air for as long a time as possible.

Results
Learning Sequence 1 : Joy and Shelly

The teacher had asked the class how they might predict their own adult heights and a class decision

had been made to collect data about their own body measurements. Small groups of children entered

their data into a spreadsheet and this was checked and collated by one group. The class was shown

how to use the spreadsheet to generate graphs and charts which they were encouraged to investigate.

Shelly and Joy were two quite bright girls, though not in the teacher's assessment mathematically

exceptional. Shelly and Joy began to create many different graphs and charts, usually based on the

whole set or a large subset of the body data The two girls were clearly enjoying the process of

generating appealing pictures on the screen and had managed to create about six or seven graphs in just

a few minutes. They had dismissed some as boring and praised others as interesting. After about half

an hour, they commented:

Joy: "That's fun exploring graphs." Shelly: "Yes, because you can draw any graph that you like."

At one point, they became particularly interested in one chart (Fig. 1), generated from the whole set of

data. They seemed to have settled on this as the best graph so far. At this point, the researcher

questioned the girls about their understanding of this chart. Shelly and Joy seemed to think that each

bar corresponded to one person and one part of the body.

1 The Primary Laptop Project is studying the effects on young children's mathematical learning

when they have constant and immediate access to portable computers. The computers are seen

as part of a complex working environment, where many aspects integrate to support the

children's learning. The project has just completed its third phase in which children of ages

ranging from 8 to 12 took part over a period of one academic year. Two researchers worked on

the project full-time for the year in cooperation with t2n1r191 class teachers.
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Fig 1 : Joy and Shelly's graph, chosen on aesthetic criteria

So the first bar showed Bernard's

left leg, the second bar showed

David's right leg, followed by a bar

for Andreas's right arm and so on.

The two girls were making

connections between the ordering of

the bars (labelled by the parts of the

body) and the ordering of the key

(labelled by the children's names).

In the extract below, the researcher

probed further by encouraging them

to face the bugs in their

explanations and, when necessary,

by focusing attention on some

revealing aspect of the chart:

Researcher Shelly

So where is Bernard's right leg or Andreas's for that

matter?"

Mmm.

Why are the bars made up of lots of different shading? Each bar is everybody's.

So how is each bar made up? Ryan's is at the end because he is the tallest.

At this stage, Shelly had recognised that each bar contains information about every child but she was

now ordering the bars according to the heights ofthe children.

So who is the shortest? Bernard.

Is that right? No.

Shelly knew that Bernard was actually quite a tall boy.

So what's happening? How are the bars made? Silence

Are all the bits of the right leg bar the same width? Oh no.

Why is that then? ...because some people have thin legs.

Shelly made a connection between the appearance of the bars and an attribute of people not contained

in the dataset, a phenomenon referred to elsewhere as over-interpretation (Donnelly & Welford 1989).

It is clear that the discussion has prompted Shelly to try to interpret the graph rather than treat it merely

as an aesthetically pleasing picture. However, the connection that she was making was not shaped by a

knowledge of the conventions of such a graph.

Learning Sequence 2 : Andrew, Ben and Sam

In this sequence, we describe the work of three boys (age 8 and 9), Andrew, Ben and Sam, who, like

Shelly and Joy, were bright children but not exceptional and not, in the teacher's view, the most

mathematically able in the class. They had been shown how to make paper spinners and were
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exploring alterations to the design which might affect the flight of the spinner. They had decided to

focus on how the time of flight was affected by changing the spinner's wing-length. In particular, they

wanted to find out which wing-length would maximise the time in the air. Their method of working

was to make a paper spinner, measure the wing span, time its flight and then immediately enter the

data into their spreadsheet. The teacher had spent some time encouraging them to generate scatter-

graphs at regular intervals in order to see how their experiment was progressing.

After testing four spinners of various wing lengths, they generated their first scatter-graph. The boys

were able to relate each cross with the corresponding piece of data in the table. The researcher decided

to probe further into their understanding of the graph (R stands for researcher, A for Andrew, S for

Sam and B for Ben).

R: "It's early days, but can you see any patterns yet?" A: "Up, down, up, down."

They were focusing at this stage on the specific data points but they were able to use the information to

determine missing data.

R: "What other results do you need?" S: "1..5..7..8..9..10."
Andrew, Ben and Sam set about making more spinners. After seven results, they decided to generate

another scatter-graph. When interviewed, it was clear that their thinking was still focused on the

individual points rather than seeing any more general pattern. However, when they were asked to

Fig 2 :Snapshot A An intervention focused

Andrew, Ben and Sam's attention onto the trend

in the data

t 2.4 X

2.3
X

e 2.2 X X

2.1

2

f 1.9
1 X1.8

i 1.7

1.6
0 2 4

wing length
8

Fig 3: Snapshot B Ben interpreted the line and

Andrew recognised a point which does not fit

show the trend or pattern in the crosses using the computer's drawing tools, they dropped th' line over

the points and moved it around a little before settling on the position shown (Fig 2). It is likely that the

line was seen by the boys as a representation of the pattern in the crosses rather than as a statement

about the relationship between the wing-length and the time of flight. After collecting three more
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results, they generated another graph (Fig 3) and again there was some debate about where to put the

line. When the researcher probed further, a shift in their understanding seemed to have taken place.

R: "What can you say about the pattern?" B: "The longer wing stay longer in the air."

A: "Apart from that one."

Andrew was pointing to the cross representing a wing-length of 6.5 cm.

This was a break-through since it was the first evidence of the boys gaining insight into their

experiment by interpreting the graph and/or data. Andrew confirmed his appreciation of Ben's

assertion by the way that he was able to identify a misfit. The boys decided to check that piece of data

and collect some more.

t 2.4

m 2.3

e 2.2

o 2.1

2

f 1 .9

1 .8
9
1 1 .7

9 1 .6

X
X

X X

X

X

0

X

4 8 12 16
wing length

Fig 4 : Snapshot C - More and more data seemed to conflict

with the boys' earlier conjecture.

Fig 5 : Snapshot D Andrew, Ben and Sam recognised a

non-linear relationship between the two variables

Andrew, Ben and Sam began to

make some very long winged

spinners. Along the way, they

entered one piece of data incorrectly

when a spinner of wing-length

12.5cm was entered as 122.5cm.

The error went unnoticed until they

drew their next scatter-graph. The

feedback from the graph was so

different from previous graphs that

they were prompted to look back at

their results and they identified the

mistake.

Later, they began to make their

spinners in a different way.

Although they did not realise it at the

time, their results were being

affected by this change. Again it was

the feedback from the scatter-graph

that alerted them to the possibility

that something strange was

happening. To make sense of the

graph, they had to think back to

what they had been doing in their

experiment

As they continued to collect more

data, Andrew, Sam and Ben were

disconcerted that the new entries

seemed to confuse rather than clarify. They were getting more and more exceptions to Ben's earlier
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assertion (Fig 4). It never at this stage occurred to them that the relationship might be other than

linear. However, after a little more data collection (Fig 5), Sam, in a moment of inspiration, said,

"It's an up and then down pattern!" and waved his hands around.

R: "Do you remember when you put the line over the crosses yesterday to show the pattern? Could

you do that again?" Andrew placed a line over the first set of points.

R: "What happens then? Grab another line to show the rest of the pattern. "Andrew then placed a line

over the remaining crosses.

R: "What would be the best wing-length to use?"Ben traced his finger over the lines before replying:

B: "5.5"and drawing in the vertical line.

Discussion
These two learning sequences were selected because they seemed to typify two contrasting uses of the

graphing facilities available in modern spreadsheet software.

1. Passive Graphing
Conventionally in UK schools, children use a graph to display the results at the end of an experiment;

the children come to see the graph as a presentational tool. The emphasis is placed on making the

graph look attractive. We refer to this style of graphing as passive (Fig 6).

It is important to note that the children's need to draw a graph is motivated by the production of a

display. The source of this need is, we think, fundamentally important since it shapes the child's

vision of what the graphing activity is about and in turn drives the child's view of which characteristics

of the graph are significant. Joy and Shelly's

graphing explorations had been motivated by the

teacher's exhortation to investigate the graphing

facilities on the computers. Their attention was very

presentational use of a graph is emphasised much focused on the aesthetic aspects of the various

graphs that they were so easily able to generate. The

presentational aspects of the graphs were foremost in their thinking so that, although they were

engaged in a lively interaction with the computer, we would nevertheless classify this style of graphing

as essentially passive. The interaction was not one in which the use of the graph was furthering their

experiment.

collect data make a graph display

Fig 6: Passive Graphing evident when the

Joy and Shelly were making what we call pseudo-mathematical connections. We use this term to

describe a process in which children use the computer to generate objects thus giving the appearance

that they are engaged in mathematical activitiy and yet, on closer inspection, it becomes apparent that

there is little substance to this illusion.

However, we do not mean to infer that such learning sequences were valueless. Indeed, it is quite

possible that these early affective responses might contribute to later success. In any case, we would

be very surprised if the children did not need to go through this process in order to test out what the

computer was capable of before settling down to more focused work. These experiencesallowed the

children to gain a familiarity with the technology and some notion of the range of possibilities.
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By being given the freedom to investigate the graphing facilities within the spreadsheet, Joy and Shelly

made connections with previous experiences of pictures and graphs rather than with the formal

conventions as understood by the teacher (cf the play paradox in Noss & Hoy les, 1992). The

pedagogic question becomes one of how to offer children experiences where they can use graphing as

an interpretative instrument and so encourage them to make new connections.

2. Active Graphing

In response to observing such experiences, the teacher asked Ben, Sam and Andrew to generate

scatter graphs on a regular basis (perhaps every three or four pieces of data) and to use this

information to help them decide on the next action to be taken in the experiment. Fig 7 gives a crude

description of the process, which we refer to as active graphing. In the Active Graphing approach,

'collect initial data [make a graph

collect
data

study graph and
Make or refine
conjectures

'decide what further I
data is needed

when you are readyll

draw conclusions

Fig 7: Active Graphing stressing interpretng a graph

the children are encouraged to

generate a graph after only a few

pieces of data have been collected. By

studying the graph and the tabulated

data, they are expected to try to decide

what to do next in their experiment.

Further data is collected and more

graphs are generated. At each stage,

the children are encouraged to pause

and reflect upon what this tells them

about their experiment. Eventually, a point is reached when it is felt that enough data has been

collected to draw some conclusions.

We are struck by Nemirovsky's (1991) method in which, rather than seeing the children's efforts as

misconceptions, which often lack power of explanation, he reports positively on the connections that

children make. He notes how the children that he observed made two types of connection between

graphs generated automatically on a computer as the children manipulated toy cars. He uses the term

syntactical translation to describe occasions when the students linked-features of one graph with

features of another. In an active graphing approach, we too observed children making syntactical

translations between different modalities; for example, numbers in the spreadsheet were often

connected with points on the graph (and vice versa). The term, semantic translation is reserved for

situations where the children made connections between the meaning of the graph or the numerical dal

and the experiment itself. We observed Andrew, Ben and Sam interpreting graphs in terms of the

experiment such as when they recognised the sloping line as indicating that the longer wings stayed

longer in the air and later when they made the even more sophisticated non-linear connection. When

the children made predictions about their experiment based on the graph or data, they were making

semantic translations in the opposite direction.

Nemirovsky sees solving a problem as negotiating between two or more apparently conflicting

versions of the truth as presented by different modalities. We find this a particularly helpful way of
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viewing the interactions of the children as they move between and around the modalities offered by the

active graphing approach (cf Hoy les and Sutherland (1989) when referring to two categories of

children's problem solving with Logo;working at a syntactical level and makingsense of ).
When we talk about the children making mathematical, as opposed to pseudo-mathematical

connections, we refer to both semantic and syntactical translations. However, we would conjecture

that active graphing may promote another semantic connection, related to the purpose of graphing. In
the active graphing approach, the children are using graphs as a meaningful and relevant tool. A child

who sees graphing as an analytical interpretative instrument has made a powerful mathematical

connection which has fundamentally widened that child's grasp of the utility of graphing.
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BETWEEN EQUATIONS AND SOLUTIONS: AN ODYSSEY IN 3D.

Michal Yerushalmv Merav Bohr

University of Haifa, Israel

Comparison of two functions, is a way to describe an equation. This approach is the one
we use through an innovative algebra curriculum in which the function is the central
concept. This approach calls for 2D graphic representation of equations in a single
variable, and can be generalized using 3D representation of equations in two variables.
We had interviewed 5 pairs of 10th graders, who studied with an experimental algebra
curriculum. During 15 hours of interviews we explored how they interpreted equations in
two variables and their solution sets both, analytically and graphically. The students had
not seen this sort of problem before. Throughout their actions we realized that their deep
understanding offunctions and comparisons in a single variable not just helped them to
view 3D graphs but more important, it helped them to relate to, solve and explain
problems that are normally the subject for rote learning and memorization.

For the most part, solving equations and inequalities is taught as a set of seemingly

arbitrary rules that govern allowed and disallowed actions. Moreover, the equations

learnt at school mathematics are these that can be solved analytically, while the infinite

number of types of equations that can only be solved numerically is hardly introduced.

The message of the traditional algebra curriculum is that all equations should have an

algorithm that collapse the equation into a number and that mastering these algorithms is

the important knowledge required. It is at least equally important to investigate

comparisons, to produce equivalent equations by manipulating the expressions and to

analyze the processes they represent (Chazan 1993). Choosing the function to be the

central concept around which the algebra curriculum should be organized (Yerushalmy

and Schwartz 1993), and the availability of graphic technology, make it easier, and even

attractive to describe any equation (or inequality) as a comparison between two

functions. Those who consistently tried this approach with their students agreed that it

present substantial and clear organization to the algebra curriculum, and open an arena

for exploration of the essence of functions, equations and solutions. However, some,

rightly so, questioned the consistency and the generalability of the approach while

moving to multi variables relations Before proceeding we will illustrate the use of the

representation in one variable:
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Equivalent
Wuations

2x+5=2
2x -= 3

So
graph

-1.5

and in two variables:

Equivalent Solution's
equations graPb

2x+y=2
2x+y-2=0

Equations
graPh:

The visual limitations are clear: such representation of two variables is about all one can

do graphically. Furthermore, previous research of the understanding of 3D shapes is

discouraging (Osta 1987) and the graphic technology, while colorful and flexible than

concrete drawings, is still a 2D environment and we should not assume that what seems

to be successful approach in 2D representation would prove itself in 3D representation.

However, we were eager to explore how would students who educated to look at any

equation in a single variable as a comparison of two functions and who were never

formally leamt about functions of two variables would think about equations and their

solution sets in two variables. Specifically we question the possible views of equation in

two variables, the interpretation and explanation of the 3D representation of functions

and equations and the implications on the ability to distinct between solutions, functions

and equations. Our study is based on 15 hours of interviews with five pairs of 10th

graders who learnt their algebra/precalculus course through inquiry guided by special

materials which organize the curriculum around the concept of function and make

intensive use of multi representation graphic technology. The classes were closely

observed during 4 months prior to the experiment. The students, four of were of the

strongest in their classes and the rest at the average and above level, volunteered to

participate. Each pair interviewed for about three hours and it included a half hour

intervention to teach the representation of functions of two variables, using Lego blocks,
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paper and pencil and software to graph functions of two variables. During the interview

the students worked on the following task: Describe the solution set of each of the

following equations: 2' = x2
4 9

2f = 1 ; x2 y+ xy2 =1. The first equation in a

single variable requires comparisons of the graphs of the two functions and was posed to

view whether students do view an equation as a comparison. The second can be

described as two explicit functions and the third cannot be written as an explicit function

of a single variable and solution by comparison of two functions. The interviews were

videotaped and transcribed. Here we will shortly describe the conflict students ran into

while analyzing equation in two variables using single variable knowledge, their

suggestions for representations and their use of the 3D representation to make sense of

other equations in two variables. We will provide data from work of one pair.

x2 y2

4
1. The conflict + =1: This part went for about 20 minutes. Students were not

9

familiar with analytic geometry and the assumed background was manipulations skills,

experience with functions and comparisons in a single variable and familiarity with

graphic technology. The given equation can be manipulated to be written as two explicit

functions in a single variable and we expected that students will try this approach first.

While the manipulations are not complex, the conceptual shift from a comparison of the

type f (x, y) = g(x,y) into two functions h(x) = ±,1-- is not trivial. It requires the

understanding that in general any comparison of functions in n variables could be

equivalent to a function in (n-1) variables but not always. It also requires to read the

equation sign in the comparison and in the function as two different objects: the first is

symmetrically bi-directional and the later is not. The analysis of the data showed that the

problem was an appropriate example to a task that can be carried on successfully without

understanding but at the same time opens the stage to deep dilemmas: We will start with

a short episode from the interview with Ron and Ed' .

Ed: We'll change the equation soy equals something...

Michal and Merav are the authors and the interviewers. Students' names were changed to prevent
identification.

11) 0
lc* 4,, C.,)
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Ron: It will result 2y = 136- 9 . . This will not help us!

Ed: I will try to factor both sides and produce two comparisons:

(2yX2y) = (6 3xX6 + 3x). It (factoring and comparing) did not lead them anywhere.

Ed: I need to find out when do these two sides are equal; it is easiest with zero.

Substituting 0 for y will allow me to find for which values ofx the right side will be zero

as well. That would be the values for which the comparison exist.

Even though they manipulated the equation and separated the y they continue to relate to

it as a comparison and not as to a function of x. Ron: When y = 0 then x = ±2 .

They sketched the parabola f (x) =*9 9x2 and marked the two roots...

Ron: ...but we assumed that y=0!

Ed: Right, so we actually found two points.

Michal: Am I allowed to assume that both sides could also be equal to a 100?

Ed: / can substitute any number for y.

Michal: So then what would you say about the solution set?

A long pause seems to sign that they have no idea how to proceed.

Ron: Lets start to think... There are two variables in here...

Ed: Two variables in one equation.

Michal: what do you mean by that?

Ed: That is something that I have some difficulties to solve I can't, it is depended on

two things and I can't compare it to something else.

This last statement of Ed clarifies his confusion about the object they deal with: if it is a

function then they values determined by x but here y is an independent variable. But, if it

is an equation what are the compared objects? Ed seeks 'something else' which he could

not find. We will later observe how this conflict developed into an invention.

2. An invention of the representation: While planning the experiment we were uncertain

if at all to provide and for what purposes software. We provided the 2D plotter because it

was the everyday tool that the students were used to have for solving and manipulating

equations. In effect, all students tried to plot the manipulated equation in one form or the

other but only some of them were able to analyze the problematic representation. For
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some of them the inability to type the variable y into the software was a discouraging

feedback while for others it was the first indication that something is very different here.

We used this opportunity to move into the next stage of the interview:

Merav: Would 1 offer you something that could help you solve this, what would you

take?

Ed: That the software would also accept the y.

Michal: Assuming that this software could accept the y, how would it appear?

Ron: Then I would need 3 equations2.

Ed: Wait a second..I'm talking here about two totally different axes systems.

Ron: Exactly, two coordinate systems.

Michal: Can you draw it?

Ron: I have to see both x and y because the x solves the equation in one way in one

system and they also...the y could get a single value solution, it isn't an ordered pair but

in a different system!

Michal: So in what system?

Ed: Oh, something 3-dimensional!

Ed: I would have an x axis and a y axis that goes in (points towards the inside of the

screen), I'm not sure. So each of them is an independent variable but where is the

independent variable that they are both dependent in?

They presented the need for 3 dimensional representation did not spring out of visual

considerations of the functions rather by analytical search for a representation that would

satisfy their need to express the comparison in two independent variables. In order to test

their ability to view 3D graphs we asked to describe a simple function f (x,y)= x + y

and provided an addition table on a paper. All that did not help them to think about the

shape; it was only when we suggested them a Lego plane and blocks that they started to

talk about shapes:

Ed: for example for (1,1), when it is (1,1) so I get here 2 (puts two Lego Blocks one on

top of the other on the point (1,1))

2 Ron might have meant 3 dimensions and not equations or 3 equations: solving for x, solving for y or for
the set of x,y.
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Ron: Exactly, because building the height...as if we are building an axes system this is

three dimensional! Ed put three Blocks at the (1,2) coordinate.

Ed: Should we keep on building? Shouldn't we look here (at the printed addition table)

and find out about its shape?

At that point Ed started to view the addition table to the 3D shape and soon he was ready

to conjecture about the resulted shape of the function analyzing the differences at the

diagonal, the columns and the rows. They concluded that a shape that changes in a

constant rate in any dimension should be a plane. It seems clear that the graphic

representation nourished from the experience and understanding of functions as an input-

output process, from the understanding of the dependency between variables and from

their experience in analyzing the function graph's behavior (such as analysis of rate of

change or finite differences). Following a short 'Lego session' we introduced the 3D

software to the students.

3. Now again comparisons are an option

Once ( following the intervention) the students were familiar with the new representation

and the technicality of the 3D software we discussed the third task: x'y + y2.x = 1

Ed: I can start by factoring x and then by y.

Ron: It (looking at the product of the two functions) could simplify things for us.

Ed: Maybe we will simplify it well enough...no, we'll factor by xy (in one step)

Their attempt to view the function as a product of two functions was a surprising strategy

for us. All we expected at this stage was the use of the 3D software for plotting the two

functions. However, since all students learnt to construct functions and analyze their

properties using operations between functions (in a single variable) it made a lot of sense

for them to generalize this method in the context of two variables' function.

Ed: Now, what about x+y? we know how it looks like...and xy is....let's work for a minute

on a multiplication table...

Ed then built e two dimensional table of values as a tool to draw from about the shape.

We suspect that the habit to describe each function's behavior (without any formal

knowledge of calculus) using tables of values and finite differences and their

representation through out the curriculum enabled him to use this numeric tool.
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Ed: The diagonals are the important part.... Maybe it is not the central idea here but I

can see that actually there is a sequence of whole squares. The next one will be 36... So

the graph looks .... (shows with his hands a concave increased curve)

Ron: The slope increases more and more while x increases

They continued with predictions about the product of the two functions (the sum and the

product) but soon asked to view it with the software.

The discussion then turned to the analysis of the very

complex graph at the light of the product of the two

functions. They talked about symmetry and about viewing

properties of each of the components' functions. Finally

we asked: Where is the solution set?

Ron: All the points that...that touch...

Ed: .. touch the flat thing...

Michal: Would you draw on the paper what you see on the screen?

The left figure is their prediction. The figure on the right produced by the software.

Comparison of two surfaces

also motivated a discussion

about an empty solution set. It

provides another opportunity

to view their parallel multi-

representation judgment:

Michal: What about the solution set of x2 + y2 = 1?

Ed: They don't have intersection points.

Ron: Oh! Algebraically they don't have intersection points either, because (points at the

equation x2 + y2 = 1),..because it can't be, because each one of them is a power and

there it can not be a negative number.

Ron: it would elevate above ,..if the function

f (x,y)= x2 + y2 is hooked then the flat thing should

go down by one.
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Ed: We could use two strategies; Our previous strategy in which we raised the

paraboloid..or we could lower down the flat thing and then again attain no solutions.

Discussion
The combination of the objective difficulties of viewing 3D and the complex concepts

we deal with caused us a very shaky take off which later turned to an odyssey. The

problems we posed, regularly assumed to be non interesting problems, problems that are

subject to rote learning and motivate memorization rather than thinking proved to be an

arena to sophisticated mathematical discussion. The 3D graphic software was an

essential tool but completely insufficient; the deep understanding of functions, of

relations as objects created by comparisons, of equivalent equations, and the ability to

maneuver between the various representations: numeric, analytic and graphic made this

experiment to be an intellectual experience. We are convinced that a learning sequence

that equipped learners to invent methods of representation and analysis as reported here

is a valuable and important one to consider . We acknowledge the difficulties the

representation may cause and that the current technology still does not provide the

ultimate solution to the problem. We suggest that students' views and uses of

representations mentioned here (and other aspects that will be reported elsewhere) will

provide a base for rethinking the algebra curriculum.
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UNDERSTANDING AND OPERATING WITH INTEGERS:

DIFFICULTIES AND OBSTACLES

Rute Elizabete Borba

Universidade Federal de Pernambuco

Abstract
Difficulties and obstacles of different nature epistemological and ontogenetical have

been observed in the operations, conceptualization and understanding of integers. These have
been enumerated by many authors that analyzed the historical evolution of this concept (Glaeser,
1985; Boyer, 1985; Nagel, 1979) and also by empirical observations of children solving situations
that involve relative numbers ((Mukhopadhyay, Peled & Resnick, 1989). The present study
sought to establish parallels between these obstacles and difficulties described and those observed
in an empirical study with 96 children of Recife. Performances before a period of instruction and
immediately after training addition and subtraction with integers were observed Didatical
difficulties were also analyzed in this report.

Resumo
Dificuldades e obstdculos de diferente natureza epistemol6gicas e ontogeneticas tem

sido observadas na operacionalizacdo, conceitualizacdo e compreenscio dos nameros relativos.
Estes tem sldo enumeradas por autores que analisaram a evolucdo hist6rica deste conceito
(Glaeser, 1985; Boyer, 1985; Nagel, 1979) e tambem a partir de observacoes empiricas de
criancas resolvendo situactles com mimeros inteiros (Mukhopadhyay, Peled & Resnick, 1989). 0
presente estudo buscou estabelecer um paralelo entre alguns destes obstdculos e dificuldades
descritos e aquelas observadas em um estudo experimental realizado corn 96 criancas da cidade
do Recife. Foram observados e analisados os desempenhos anteriores a um period° de instrucdo
com mimeros relativos e imediatamente epos o treino em adicao e subtracdo neste campo
numeric°. Andlises de dificuldades de natureza diddtica tambem foram efetuadas neste relatdrio.

This report refers to an empirical study (Borba, 1993) with 64 fourth grade and 32 sixth
grade students. The fourth grade children were divided in groups accordingly to different modes of

instruction. These modes differed in the way the sign rules were dealt with and if students were

explicitly trained with integers or natural numbers. The students performances were observed in

pretests and after a period of instruction, on adding and subtracting using diagrams (fourth graders)

or simply using sign rules (sixth graders), posttests were applied. These tests had four parts:
numerical equations with integers, situations involving profits and losses, temperature situations

and interpretation of numerical equations. The training was given in classrooms with twelve
students or more each. This format of study was chosen trying to reproduce situations more similar

to those encountered in usual classrooms which may contribute to analyze the adequacy of
procedures, problem situations presented and the forms of representation used in formal teaching.

The fourth grade students were instructed to analyze situations of profits and losses supported by

auxiliary forms of representation: diagrams and the number line. The diagrams used were those
proposed by Vergnaud (1982) on which a transformation links two static relationships. An example

of the situations proposed was: Celia is owing Cr$ 42,00 to the bank. She deposited Cr$ 64,00 in

her account. What is now her situation? A correspondent diagram for this situation is:
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Vergnaud justifies the use of diagrams arguing that equations and equalities are not used by

children to represent relevant relationships that are present in the problems proposed but that they

use these representations to recall the sequence of numerical operations necessary to find the

results. Diagrams can, therefore, be considered a different kind of equation. It contains additional

information specified (measures, states, transformations, or relationships).

The number line was in this present study used as an auxiliary form of verifying the

correctness of answers.
Some of the results presented in this study will be analyzed through the establishment of

parallels between epistemological difficulties and children performance.

Glaeser (1985) presents six obstacles, evidenced by the examination of mathematical
classics, in the development of the understanding of relative numbers. Difficulties and obstacles
must be initially distinguished. Obstacles here will be used in the sense purposed by Bachelard

(1967) as resistance of conceptions that do not permit advances in knowledge. These differ from

difficulties that will here be seen as poor performances demonstrated by subjects while solving
problems in a much more superficial sense. The obstacles presented by Glaeser are: (1) incapacity

to deal with isolated negative quantities; (2) difficulties in giving sense to isolated negative

quantities; (3) difficulties in unifying the number line,. (4) ambiguity in the understanding of the

two zeros: absolute zero and zero as an origin; (5) difficulties in getting loose of the concrete sense

of numbers and (6) desire to use unifying models for both additive and multiplicative fields.

The first two obstacles presented are in fact difficulties in the sense that they demonstrate

mere incapacity in dealing with negative quantities and that did not necessarily hinder the advance

in the understanding of relative numbers.
The difficulties in unifying the number line is an obstacle that directly impedes the

understanding of relative numbers. This obstacle exists when the subjects do not differentiate

qualitatively negative and positive quantities or when they simply conceive the number line as a

juxtaposition of two opposite semi-lines or even by not considerating both the dynamic and static

character of numbers.
Mukhopadyay, Peled and Resnick (1989) investigated how children represent negative

numbers before formal instruction. First, third, fifth, seventh and ninth grade students were
interviewed while solving equations that involved relative numbers. The authors concluded that the

children used quite abstract models and that practically did not exist models amongst the youngest

ones. The older children demonstrated progressive development on the understanding of negatives.

They initially had a Divided Number Line Model manipulating positive and negative numbers in an

isolated way. Progressively they achieved a Continuous Number Line Model that treated both

positive and negative numbers as coherent ordered entities.
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Results of the performances presented on the first part of the pretest, of this study being

reported, showed significant differences between the two grades involved (F = 8,97; p < . 0009).
Table 1 shows the performance presented by the fourth and sixth grade students on some of the
equations presented in the first part of the pretest.

Table 1

Percentage of Correct Answers in the Pretest

Equation presented to child Fourth grade students Sixth grade students

+ 400 + (+200) 62,9 87,5

- 400 + (- 200) 1,7 31,3

- 400 + (+200) 2,2 6,3

+400 - (+200) 29,5 40,6

+200 - ( -200) 13,2 12,5

- 200 - (- 400) 48,6 28,1

- 400 (+200) 0,0 18,8

As may be observed the fourth graders presented initially greater difficulties in solving these

equations than the sixth graders. It is necessary to point out that these results were obtained before

formal instruction on integers was initiated. One of the aspects analyzed is that the sixth graders
performed better when signs involved were of the same kind - both positive or both negative. This
possibly denotes the use of a Divided Number Line Model and these students may have accepted

operating with negative numbers just as they had been doing with natural numbers even before
understanding what these "new" kind of numbers meant.

It has been observed by Vergnaud that children meet problems involving directed numbers

long before their formal instruction to this conceptual field. He argues that there are six distinct
categories of relationships present in the field of additive structures, i.e., problems involving

additions or subtractions or both of these operations. These categories are: (1) composition of two

measures, (2) a transformation links two measures, (3) a static relationship links two measures, (4)

composition of two transformations, (5) a transformation links two static relationships and (6)
composition of two static relationships. Vergnaud stresses that time transformations and static
relationships are not adequately represented by natural numbers. Natural numbers are adequate only

for the relationships involved in the first category. The other categories involve elements that
should be represented by directed numbers. These categories are, however, present in many
problems proposed to children before they begin to learn about integers. There seems to be a great
discrepancy between the structure of problems taught at school and the mathematical concepts that

are aimed to be learned. Children have also contact with everyday problems that involve integers

such as inverting rotations and compensating gains and losses in games. This may, to some extent,
justify that students have previous formal contacts with integers.
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The third obstacle presented by Glaeser that refers to the historical difficulties in unifying

the number line has straight connections with the fourth one - ambiguity in the understanding of the

two zeros. The understanding of relative numbers begin when the child perceives that if negatives

are smaller than positives there must be a point where they are originated. This gives the child a

new meaning for the zero that is not only the absence of quantity but also an origin.

The second and third parts of the pretest of the present study referred to situations involving

profits and losses and temperature situations. Analyzing the differences of these distinct situations

better performance was observed with situations of profits and losses. Significant differences were

observed when the four conditions (types) of testing were considered ( F(3,273) = 30.66; p< .0009).

These differences may be better observed on Table 2 where a sample of the formal representations

of the problems proposed is presented. These observations seem to indicate that most students did

not realize the necessity to indicate the different nature of their answers. They were not expected to

present their answers in a conventional form (with signed numbers, for example) but to indicate
clearly that their results were credits or debts or that they represented temperatures above or below

zero.

Table 2

Percentage of correct answers in the different situations of the pretest

Formal representation of the

problem presented

Fourth graders Six graders

Problems of profits and tosses

(-48) - (-76) = (+28) 50,1 65,6

(-47) - (+21) = (-68) 2,1 3,1

Problems of temperature

(-13) - (-25) = (+12) 37,3 28,1

(-17) - (+12) = (-29) 12,3 34,4

kobayashi (1988) alerts that enough attention should be paid to the difference of meanings

among negative quantities. The first aspect is the case where the zero is determined a priori
naturally. In these cases the origin is not set artificially. The examples given by the author are:
electricity charges and property and debt. The second aspect evidenced by Kobayashi is the case

when the origin is determined arbitrarily. The position on a line, measuring temperatures, elevation

of the, water level in a river, and Anho Domini and before Christ are examples presented by the

author for this case. Some of these origins are unchangeable because they have been used widely

and historically in our society . The third aspect is the case when quantities are determined
according to the direction in which the quantities are changed, increased or decreased. Examples

2 229 237



are differentials of temperature, water level, volume etc. In the present study two different kinds of

origin are therefore involved. A natural one - as in the case of profits and losses - and an artificial

one - the measurements of temperature. The students, in both grades, showed difficulties when

negative values were involved but strange enough the better performances were observed on the

temperature situations. Brazil is a tropical country where very little variation is observed on

temperature measurements and only very few cities occasionally have marked temperatures below

zero. What possibly made students obtain correct answers in temperature situations were the terms

presented when the problems were proposed on which direct reference to temperatures below zero

were made. Even though the problems involving profits and losses had a very natural origin only

very few students seemed initially to feel the necessity of making clear that the answers obtained

represented debts.

While interpreting numerical expressions involving integers children initially could not

explain equations that were representing negative quantities and significant differences were

observed between the pre and posttest (p = 0,0007). While interpreting these equations on the

posttests students preferred situations involving debts and credits. Only two children used

temperature as basis for interpretation on the posttest. To understand integers children seem to

initially need to support their understanding on physical models (such as measuring temperatures,

positions on a line) or social models (positive and negative accounts related to money or to results

in games). These models closely related to the child's everyday experiences may be used as a

starting point in the understanding of integers but this complete comprehension depends on the

ability to abstract the invariant of these situations. This abstraction was not evidenced in the

posttest of the present study because the groups trained with situations of debts and credits did not

seem to transfer their previous knowledge to new situations - measurement of temperatures.

The greatest difficulty presented while interpreting equations with relative numbers was on

expressions of the type (+a) - (-b). Children's conception of subtraction as an operation that

decreases quantities hinder them to accept initially that the final result in this case is greater than

the one started with. This case is also very confusing to children because two minus signs are

involved. Carraher (1990) presents three types of meaning for the minus sign that provide

categories for the classification of everyday situations involving negative numbers: (a) the minus

sign and the operation of subtraction, (b) the minus sign as a mark intimately connected with the

magnitude that follows it and (c) the minus sign as a representation of inversion. In this last case,

one can mentally reconstruct the starting point by inverting the operations. The results of

expenments related by this author comparing subjects performances in written and oral situations

indicate that what has often been viewed as a conceptual difficulty may, in fact, be a difficulty

introduced by the notation conventions that are usually used in school. These results were to some

extent confirmed by the present study where differences in performances were presented

accordingly to the different type of situations involving integers. On formal expressions difficulties

with subtraction were emphasized. On problems with everyday situations, particularly debts and

credits, children's difficulties with this operation were less evident. The interviews with these
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children seem to indicate that difficulties are directly related to representational systems and not

necessarily demonstrate lack of comprehension on integers.

The final comment to be made refers to the different ways the children were instructed on

integers. The fourth grade students were taught using situations of profits and losses and the sixth

graders were instructed in using the sign rules. Both groups presented significant differences on the

posttests when compared to the performances presented on pretests but a qualitative analysis

showed that the sixth graders many times found correct answers using incorrect or incomplete

procedures. Many "false" rules were created by these students and some of them succeeded in

obtaining correct answers. The fourth graders, taught with diagrams, when interviewed, presented

well established explanations for the problems that involved additions but were still confused with

subtraction problems despite the use of these auxiliary forms of representation. Probably more time

dedicated in instructional programs with this operation is necessary.

Many difficulties encountered by children can be more easily detected and also instructional

programs are more efficient in some cases than in other ones. Some obstacles need to be considered

in very special ways and more understanding of these profound difficulties may be very useful in

elaborating more efficient instructional programs.
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GAMES FOR INTEGERS: CONCEPTUAL OR SEMANTIC FIELDS?
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ABSTRACT

By the sign rule problem we understand four questions into which we cast
Glaeser's historical survey (Glaeser, 1981) and Brousseau's epistemological
remarks (Brousseau 1983) about integers: How to take the bigger from the smaller?
How to subtract a negative? Why minus times minus equals plus? What does it
mean minus-times something? In the paper we present a didactical strategy to
solve this problem, based on Baudrillard's conception of game (Baudrillard, 1979)
and on the theory of Conceptual Fields (CF) (Vergnaud, 1990). We report some
experimental results and discuss them from the point of view of the theory of
Semantic Fields (SF) (Lins, 1994).

Difficulties about integers are quite old. In his historical survey, Glaeser [1981] describes'

perplexities of famous mathematicians of the past about the sign rule. The proof that we know

today was first given by Haenkel in 1867 in a text about complex variables. We know that it is

useless as an explanation for convincing a 13-years old student. Integers have scarcely been

dealt with in recent literature. Among 56 research reports presented in PME XVIII, only one

explicitly concerns integers [Lytle, 1994]. The sign rule remains a major problem for the teacher.

Works about integers generally display a profusion of suggestions for 'addition but are

insufficient about multiplication. Glaeser [1981] points out this insufficiency in Freudenthal [1973].

"The reading of pages 279/281 does not even suggest that he has realized the astonishing

phenomenon studied here" [p. 305]. Freudenthal [1983) offers three simultaneous approaches to

the sign rule problem. The first insists on the necessity of permanence of distributive and

commutative laws (-3)x4=4x(-3) [p. 434]. This leads to the usual difficulties: students keep

asking: what does it mean minus-three times something? Less than zero time it? The second

approach is extension of linear transformations according to what he names the "geometrical-

algebraical permanence principle" [ib. id., p. 444]. This raises the problematic relation between

discrete-numerical and continuous-geometrical domains. The third approach is simply teaching

rules, among which (-a).(-13)-4a.b. Freudenthal asks for "the most simple and effective way to

programme the learner with (...) six rules. It is almost nothing compared with the rules a child must

1 Advisor of the Action-Reserch Group (GPA) of the Graduate Program in Mathematical Education. UNESP,
Rio Clam, SP, Brazil.

2 Senior student in the Mathematics Pre-serviceTeaching Program. UNESP, Rio Clam, SP, Brazil.
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learn in order do master a column arithmetic" [sic. p. 457]. When the student comes to the point of

asking why minus times minus equals plus it is already too late3: he has learned a solution

without knowing the problem and is "fed up° with rules.

We thought of anticipating the solution to the sign rule problem as theorems in action,

according to CF. Our idea was that the roles should be exchanged: the teacher should be the one

to ask and the student the one to answer why minus times minus makes plus. The didactical

strategy should lead the student to provide his own explanation to facts that he should consider

as evident: "(theorems in action) are associate with a feeling of obviousness: they are (...) taken as

obvious properties of situations" [Vergnaud, 1982, p. 36].

This research was aimed at testing the didactical validity of a certain conception of game

to solve the sign rule problem. This conception sharply distinguishes game from activity. At the

moment of the game, nothing else counts but following a rule. "The game is the vertigo of the rule.

By choosing a rule we suspend the law. The obligation that the game creates is of the order of a

chalenge" [Baudrillard, 1979, p. 151]. In particular, no interruptions for registering results or

making connections with the sylabus should be admitted. In designing games for integers we

have been guided by pedagogical beliefs that are best stated as answers to two questions.

Question 1: "How can we make theorems become theorems in action?" [Vergnaud, 1982, p. 36].

Our answer was: By engaging the student in games where the use of theorems in action leads to

better playing strategies. Question 2: "How can we make theorems in action become theorems?"

[ib. id.] Our answer was: By introducing adequate work-sheet activities based on the game, after

it has been finished.

THE DIDACTICAL PROBLEMS AND THEIR SOLUTIONS

Glaeser's [1981] historical account of epistemological obstacles in the

development of integers was made more precise by Brousseau [1983]. We cast these works into

four didactical problems:

P1. How to take the bigger from the smaller? 3 -5 =...

P2. How to subtract a negative? +3)....
P3. Why minus times minus equals plus? (-2)(-3)=...

P4. What does it mean minus ... times something? (-3)x ...?

.What do we mean by solutions to these problems? Our premisse has been that integers

are operators on signed naturals and operations between integers are operations with such

3 This statement should be taken as rethorical but we believe that it can be justified.
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operators. In a state-operator conception, using for additive,Q for multiplicative operators and

for their states, our two basic diagrams are:

We emphasize that the ± signs before the operator numbers do not have the same

meaning as the ± signs before the state numbers. This is easily seen by noting that we can use

a red/blue code for the operators and a ± code for their states or vice versa. Denoting the

multiplicative operators by f. , the second diagram represents the transformation of one state into

another: f.3 (-2) = +6. "To multiply a rational integer by -a is to multiply by a and change the sign of

the product" [Papy, 1968, p. 334]. We argue that this is not y the solution of minus times minus.

P3 is solved when the subjects perform the composition of multiplicative operators: f.3° f.2 = f.6

which is quite different. In our games we have introduced f.3 (-2) = +6 as a rule and expected that

f.3° f.2 = f.8 would come out as a theorem in action. Note that in both cases the calculation

(-3)x(-2) = +6 is the same.

By solutions of the four didactical problems (theorems) we mean the following four
theorems in action. By a solution of P2 we mean the action of removing a debt by increasing the

amount of money in a gain/debts model. By solutions of P1, P3 and P4 we mean the actions of
completing the diagrams below without resorting to states.

P1: P3:

THE DIDACTICAL STRATEGY: THE GAMES

P4:

According to Brousseau's conception of learning we cannot hope to solve these

problems in one stroke: "learning is the result of experimentation of successive conceptions,

temporarily and relatively good that have to be successively rejected or retaken in a truly new genesis

at each time" [Brousseau, 1983, p. 171]. In order to provide conditions for experimentation of

conceptions, we designed three games based on additive and multiplicative machines [Dienes,
1969A, 1969B).
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G1. This is an additive state-operator game. The kit consists of a board with

a stamped network, cards representing additive operators to be placed on

the network's branches, and one-colored beads, representing the operator

states, to be placed on the network's knots (butterflies). Two signs are

associated to card numbers: an operative sign (an arrow) and a predicative

sign (+/-). Operator states are not signed. The objective of the game is to

place the cards between knots so as to close commutative circuits. In the

advanced version, players should develop schemes for composing additive operators without

resorting to the beads. The expected strategy is direct composition of operators, thus solving P1.

We denote this strategy by G1A. In applying this game we have observed the

emergence of a strategy consisting in mentally keeping track of the states by

memorizing the number of beads in one fixed knot, generally the first one that

was filled. We denote this strategy by GIB. A puzzle occurs when a card is to be placed in such

a way as to close two circuits simultaneously and, due to a previous unnoticed mistake, the

numbers assigned to it from each of the circuits do not match. We shall refer to this situation as

G1C. In some cases the number of beads on a knot is not sufficient to allow for the subtraction

determined by the card that a player wants to place. It is expected that they decide to increase

the number of beads on all previously filled knots. We refer to this solution as G1D.

-3
3-11.
E-

+3

E+

G2. This is a real estate sales game with "red money" representig debts. This game introduces

singed operator states. Instruction cards may ask a player to "remove a $10 red bill' from the

stock of a partner who happens to have no debts. This situation instals the neutralization of

opposites that solves P2 [Lytle, 1994]. We call it G2A.

I
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with the dices' numbers

G3. This is a pawn-track game. The position number to which the

pawn has to be moved is obtained from the introduction of its

present position number into the entry of a connection of additive

and multiplicative machines. The track numbers are coded +/-. The

operator numbers to be placed in the machines are obtained by

throwing two dice with face numbers also coded +/-. To negative

multiplicative operators is assigned the property of reversing the sign

of the states upon which they act. The player may choose the

machine connection best suited for his move. The objective is to put

pawns on the positions numbered, say, 30. In the first match only

series connections may be used; in the second one, only parallel

connections. We define G3A as the strategy consisting in operating

before trying the series connection of multiplicative operators
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O. This is the solution to P3. Moving his pawn to a position whose number does

not divide 30 indicates that the player has not solved P4. When the player avoids this trap we

say that he has developped G3B.

THE SITUATIONS

Informal experiments and adjustments were made so as to fit the kits to the vertigo of the

rule conception of game. Then a systematic teaching experience was made with G1 and

observations were made with G1 and G2.

Si. Two of us applied the G1 and subsequent work-sheets in two out of six weekly classes for

5th graders (11 years-old) during 7 weeks in a public school of a relatively rich town of Sao Paulo

State, Brazil. Officially the study of integers should only begin at 12 but the school administration

raised no objections. The class was being ruled by one of us. Each meeting lasted for 1.5 hours.

The class was divided into 9 groups of 4 students. Ech group received a complete G1 kit. First,

beads were used on the knots (butterflies). Then we asked the children to leave them out

(advanced game version). Special care was taken not to hint how to perform direct composition of

additive operators. Promotional grades were set on criteria of presence, participation and

performance. A contest was organized, awarding medals to the three first places but not counting

for grades. The last three meetings were dedicated to group-work on four work-sheets. These

activities started with problems of completing a circuit that reproduced part of the network board

and ended with problems of replacing a serires of cards by a single one in the absence os any

butterfly drawings. We asked for solutions of the problems but suggestions were limited to: do as

you did in the game.

S2. One of us played G1 in two occasions, with 7 groups of mathematics high school teachers

(S2A) and with 9 groups of college teachers and senior students (S2B)4. The previously accorded

presentation was the following. If the G1A strategy did not occur we would ask the groups for a

direct method without insisting (S2A) or increasingly insisting (S2B). If G1C occured, we would

say: go back to beads. As for G1D, we would tell the solution if necessary in order to concentrate

on G1A. S2A also played G3. The accorded presentation was to first play the series version and

worn the players before starting the parallel version: there is a pitfall in this game. As they fell into

the trap we would remark: your are already trapped. Find out why.

THE RESULTS

Ri. Two of the four contest finalists were sutudents considered 'Weak" according to teachers'

general oppinion. The nastiest boy spontaneously worked as tutor of other groups. Only one case

4 UNIJUI, ljui (RS), November 11; Un.G., Guarulhos (SP), November 24, 1994.
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of cheating was observed. G1D caused no major problems; children promptly suggested the

increase of the number of beads. They realized that there was some arbitrariness in this number:

you could have started (the game) with more (beads). Nevertheless they did not develop G1A,

not even the winners. G1B was used all the time, inclusive on the work-sheet situation.

Consequently G1C never happened. Some students resorted to writing numbers for the states on

the work-sheets and then quickly erasing them while asking: can't we play any more? When they

faced the no-butterflies problems, they became lost. At this point our suggestion: do as in the

game, became appaerently meaningless. One group that had had poor performance in the game,

started developing ad hoc strategies, which only succeeded when the cards had the same sign.

The others kept asking for help. Nevertheless, considerable ability of mental calculation was

developed.

R2. None of the S2B groups and only one of the S2A developed G1A, precisely the one where

a member could cite Dienes's page numbers by heart. About half of the groups ran into G1C

and one third required explicit solutions for G1D. All groups faced with the demand for a direct

scheme of composition of additive operators, started by reinforcing G1B. Faced with

increasingly stronger demands for direct methods, four of the S2B groups succeeded, three

succeeded after some feed-back information, two gave up and left the room. Three of the

groups which later succeeded, chose a minimal-value state as reference for G1B. All S2A

groups playing G3 fell into the G3B pitfall. Pointing out: you are already trapped, apparently

produced little or no effects: palyers continued trying to reach 30 from positions such as 12.

Only after repeated being told that their efforts would be useless did they produce an

explanation and, in some cases, reset the game. One player praised G3 as excellent but

actually rejected it as a teaching instrument: I am going to play it with my best students outside

the classroom and I will introduce some random instruction cards, so that they can get out of

the trap. Our data about G1A are not conclusive.

DISCUSSION

Results in R1 and R2 did not confirm our first pedagogical belief that theorems could

become theorems in action by engaging the student in games, conceived as the vertigo of the

rule; hence the second belief could not be checked. As foreseen by Vergnaud (1990, p. 152] and

Dienes [1969A, p. 9], G1A turned out to be much more difficult than G1B. Why? There is no

doubt that the different degrees of difficulty can be explained in CF in terms of complexity of the

mathematical structures involved in these two problems. But we still have to explain the different

outcomes of the two situations S2A and S2B, dealing with the same (G1A1 problem. Mathematics

teachers and senior students certainly knew P1-P4 as theorems, but they only put P1 into action
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in S2B and not in S2A. Nevertheless, the outcome of S2B indicates that they had the means of

having done so.

The issue is not why G1A is more difficult than G1B. What we have to find out is why the

difficulty of G1A was overcome in S2B and not in S2A. This is a central issue for teaching: how

to overcome the difficulty imposed by a given complei mathematical structure? This question may

be rephrased as: how do mathematicians overcome such difficulties? More precisely, how did

they produce such complex structures? It seems difficult to answer this question in CF since this

theory takes mathematical structures for granted: CS. "favours (...) models that accord an essential

role to the very mathematical concepts" [Vergnaud, 1990, p. 146]. We could evoke the affective

and dramatic dimension of the situation but the discussion of Walkerdine [1988] shows that this

would be just an attempt to graft context into CF. A new approach is needed.

In SF, that is, from the point of view of production of meaning, S1 and S2A are

completely different from S2B. Meaning is produced in the dialectics of the subject and the

other [Lacan, 1973, p. 239]. The motor of this dialectics is a certain demand of the other before

which the subject talks and acts. In S2B the demand required an immediate verbal answer:

"mistakes" were promptly available as raw material for meaning productioh. The social agent in

charge of the room hailed with a promised yes for an answer. Since he was recognized as an

invited lecturer, this yes was perceived as stemming from a bigger legitimating cultural instance.

Therefore desire and fantasy were directly melt with the power of mathematical discourse. On

the other hand, in S1 and S2A the meaning of a winning strategy would only come in the

aftermath, as an external reference: a medal. "The focus of their fantasy upon the external

reference called up by the practice prohibits the possibility of their driving enjoyment from the

power of mathematical discourse" [Walkerdine, 1988, p. 195].5

Distinction of the G1A and G1B problems can also be made in SF. We argue that

justifying composition of additive operators by resorting to operator states, or by doing away

with them, are different modes of producing meaning. These justifications belong to different

semantic fields [Lips, 1994, p. 185]. However it is hard to explain the different degrees of

difficulty of G1A and G1B in SF without resorting to some idea of structure.

Briefly, SF indicates the condition that a game situation should satisfy in order to be

didactically effective: the implication of the mathematical discourse with the sub'ect's fantasy

5 This argument also explains why in S2, only upon insistence was G3B solved, and in St only in the work-
sheet situation was G1A first considered. Non-systematic experiences with G2 indicate that children do not
take very long in order to solve G2A by borrowing some money from the bank. Indeed, the demand for'a
solution of G2A is explicit in the rules of the game.

2 238

246



iii

and object of desire. In order to explain how this condition is present in well succeeded game

didactical strategies such as in Gimenez [1993], we have to consider how the promised yes (the

transfer, in lacanian terms) is delt with in a socially and culturally meaningful) context. The

language paradigm is rapidly becomming a central issue in Mathematical Education [Rogerson,

1994]. Further applications of G1-G3 should take such an issue into consideration.
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The focus of this paper is on new paradigms in cognitive science, and on the relationship
between these paradigms and mathematics education research. We will contrast what is
generally understood as "cognitive science" with emerging alternative paradigms in the
discipline. The nzain.distinguishing feature of these new paradigms is a view of mind that
does not separate cognition from biology nor from culture. We propose that this view of
the mind has important implications for research and practice in mathematics education, and
we offer examples from research in support of this thesis.

Introduction

The focus of this paper is on new paradigms in cognitive science, and on the relationship between these

paradigms and mathematics education research. These new views of cognition entail a reconsideration of
the idea that knowledge, including mathematical knowledge, is objective, abstract, rational and context-
free. The most important entailment of emerging paradigms in cognitive science is a stance which holds
that it is theoretically and empirically inadequate to consider knowledge independently from the knower.

Although this idea is by no means a new one, either to the mathematics education community or to
scholars of cognition more broadly (c.f., Cobb, 1994; Cobb, Yackel & Wood (1994), Lave & Wenger

(1991), Rogoff (1990), Sfard (1994)), we believe that more can be done to delineate the implications of
this concept. The issues of objectivism and non-objectivism invite a deeper reflection on basic

assumptions of mainstream cognitive science, and on the implications of these assumptions for research

and practice in mathematics education. We raise, for example, questions like the following: If

knowledge depends on the knower, what does it mean to explain cognition as information processing, or
as symbol manipulation? What can it mean to describe a learner as "possessing" certain mental

representations of a mathematical concept?

Underlying these questions is an implicit presupposition that information exists priorto the
knower, and that mathematics itself has an objective reality independent of the learnermathematical

objects exist "out there somewhere," waiting to be "re"-"presented" in the mind of the subject. Learning
in mathematics, in this view, consists in accurately representing and manipulating the objects of
mathematics.

The goal of this paper is to present an alternative non-objectivist perspective which we claim is
more adequate for understanding and explaining mathematical cognition. We will describe this

perspective in theoretical terms, and will illustrate it through the interpretation of research results taken
from work on children's understanding of infinity and transformation geometry.

248 2 240



Theoretical and philosophical frameworks

One of the central goals of mathematics education research is to understand the thinking involved in

doing and learning mathematics. In addressing this goal, it is important to make use of resources outside

the field of mathematics education, and even outside the discipline of psychology. The field of cognitive

science constitutes one such resource. Unfortunately, the term "cognition", and cognitive science in

general are often understood to refer to a particular theoretical approach focused on individual reasoning,

often explained in computational terms. The result of this interpretation has been that many mathematics

educators, especially those concerned with social and cultural factors, have overlooked the potential

contribution of cognitive science as the scientific study of knowledge.

There is a widespread belief that in explaining human cognition it is necessary to refer to mental

representations and information-processing, and "to posit a level of analysis wholly separate from the

biological or neurological, on the one hand, and the sociological or cultural, on the other " (Gardner,

1985, p. 6). Moreover, there is a strong belief that central to any understanding of the human mind is the

idea of computation. Gardner, among others, expresses this view, when he states, "Not only are

computers indispensable for carrying out studies of various sorts, but, more crucially, the computer also

serves as the most viable model of how the human mind functions" (loc. cit.). Herbert Simon, identified

as founder of the discipline, describes cognitive science as "the study of intelligence and intelligent

systems, with particular reference to intelligent behavior as computation" (Simon & Kaplan, 1989, p. 1).

Mainstream cognitive science approaches that are consistent with this view include symbol-

processing models (cognitivism; c.f. the work of Simon, Newell, Pylyshyn, Fodor) and parallel-

distributed processing models (connectionism; c.f., Rumelhart, Smolensky and others). However, with

Gardner, we define cognitive science more broadly, as a multidisciplinary, "empirically based effort to

answer long-standing epistemological questions ..concerned with the nature of knowledge" (loc. cit.).

Cognitive science is, most simply, a science whose subject is cognition; an inquiry into knowing which

utilizes the scientific method. In this view, there is nothing that implies that a cognitive scientist must

endorse the more restrictive, computationally oriented framework mentioned above. The central

paradigms in cognitive science today, cognitivism and connectionism, thus do not define cognitive

science, rather they constitute only two approaches that happen to be popular today.

The fundamental problem with these approaches is, first, that they are at heart objectivist, and

second, they are focused at an individual level of analysis. By "objectivist" we mean a philosophical

tradition that:
.. assumes a fixed and determinate mind-independent reality, with arbitrary symbols
that get meaning by mapping directly onto that objective reality. Reasoning is a rule-
governed manipulation of these symbols that gives us objective knowledge, when it
functions correctly. (Johnson, 1987, xxi-xxii)

That is, the world, including the mathematical world, is made up of objects external to and independent

of the knower (c.f. White, 1956). Mainstream cognitive science paradigms for the most part take this

view as foundational, and devote their efforts to building models of cognition that can account for how

humans succeed and fail at representing the world, and at processing information from it. This view is

very different from the foundational assumptions of several emerging paradigms in cognitive science: we
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will describe briefly the central elements of a non-objectivist approach to cognitive science before turning

more specifically to its relevance to mathematics education.

Non-objectivist cognitive science

Our view of cognition is based on work by non-objectivist cognitive scientists, active in several

intersecting domains. These researchers have in common an approach to cognition which explicitly

includes both the biological and the social. Central figures in this approach include Lakoff and Johnson

from linguistics (Johnson, 1987; Lakoff, 1987), Maturana and Varela, working in theoretical biology

(Maturana & Varela, 1987), and Rosch from cognitive psychology (Varela, Thompson & Rosch (1991);

also summarized in Lakoff, 1987). These scientists see cognition as a biological, embodied phenomenon

which is realized via a process of co-determination between the organism and the medium in which it

exists. Rather than positing a passive observer taking in a pre-determined reality, a non-objectivist

cognitive science holds that reality is constructed by the observer, based on culturally determined

categories as well as individual bodily experience. As Lakoff states, in describing what he calls embodied

concepts, "A concept is embodied when its content or other properties are motivated by bodily or social

experience.. Embodiment thus provides a nonarbitrary link between cognition and experience" (Lakoff,

1987, p. 154).

This paradigm is non-objectivist because it rejects the necessity of an objective world that is

already "cut up into" objects with pre-existing properties. Instead, as Putnam states, " 'Objects' do not

exist independently of conceptual schemes. We cut up the world into objects when we introduce one or

another scheme of description. (Putnam, 1981, p. 52, quoted in Sfard & Thompson, 1994, p. 14). A

non-objectivist perspective allows us to consider cognitive activity beyond the level of the individual,

since conceptual schemes are in large measure socially constructed, and also to acknowledge the role of

biology in cognition (Johnson, 1987; Lakoff, 1987; Maturana & Varela, 1987; Varela, Thompson &

Rosch; 1993) Within a non-objectivist cognitive science, the knower and the known are codetermined, as

are the learner and what is learned. Thus, cognition is about enacting or bringing forth adaptive and

effective behavior, not about acquiring information or representing objects in an external world.

Mathematics and mathematics education

Traditional views in the philosophy of mathematics (platonism, formalism, constructivism) consider the

existence of mathematical objects (or formulas), in various degrees and forms, as being independent of

human understanding (Davis and Hersh, 1981; Kitcher, 1984; White, 1956). White, discussing this

issue at length, quotes Hardy as stating: "I believe that mathematical reality lies outside us, and that our

function is to discover or observe it" (White, 1956, p. 2394) Davis and Hersh note that, although many

contemporary mathematicians might disavow this statement, in their daily work, they act as if it were

true: "T'he typical working mathematician is a Platonist on weekdays and a formalist on Sundays. That

is, when he is doing mathematics he is convinced that he is dealing with an objective reality whose

properties he is attempting to determine. But then, when challenged to give a philosophical account of
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this reality, he finds it easiest to pretend that he doesn't believe in it after all" (Davis & Hersh, 1981, p.

321).
Clearly, within the mathematics education community, such a view no longer holds great

currency. Research carried out with children in classrooms or homes or in the streets cannot pretend that

mathematical knowledge is an abstract, disembodied, asocial entity . However, we believe that in many

cases, elements consistent with mainstream cognitive science persist even within research that

acknowledges the socially-constructed nature of mathematics. These often subtle ways of thinking and

talking about cognition can be characterized as a kind of residual objectivism.

As a generic example, a piece of research may examine in detail the social interactions, discourse

practices, or cultural factors involved in students' learning within a particular area of mathematics, be it

fractions or functions. But, when discussing what the student knows as an individual, in describing what

the learner takes away from the social situation, the framework often shifts, and mathematical knowledge

is described in terms of mental representations and the storage/retrieval/processing of information. For

example, researchers talk of students "acquiring" a concept, or "building an internal representation" of a

mathematical entity. This view of mathematical knowledge is objectivist, in that it presupposes the very

existence of an independent mathematical reality which contains objects to be represented and information

to be processed.
Furthermore, this view may reflect an objectivist stance toward mental constructions themselves.

Instead of using the terms mental representations or mathematical objects as theoretical tools to further

understanding, which can be more or less adequate or useful (see Sfard's comments on mathematical

objects in Sfard & Thompson, 1994), in some cases the researchers' goal seems to be to discover and

describe mental structures which are presumed to actually exist. Statements like the following

demonstrate this objectivism concerning mental representations: "I am deeply supportive of perspectives

that challenge the presumed connection between our introspections about our knowledge and the actual

underlying representations" (emphasis added; Kirshner, quoted in Sfard & Thompson, 1994, p. 5).

It may very well be that within mathematics education, we find the equivalent of Davis and

Hersh's weekday Platonists and Sunday formalists. We may declare that the mathematical or conceptual

objects we tali( about are only theoretical constructs, with no existence independent of the theorizing

individual or community, yet find it easier to utilize the objectivist vocabulary of mainstream cognitive

science when describing the results of our research into mathematical learning.

Thesis
Returning to the issues with which we opened this discussion, we propose the following thesis:

Objectivism is not a necessary element in cognitive science or in mathematics education research.

Cognitive science does not have to consider either knowledge or its components as existing objectively

(as is done in the information-processing framework and in discussions of mental representations).

Furthermore, we claim that non-objectivist cognitive science of a particular kind is more useful and

adequate than objectivist cognitive science for mathematics education research and practice. In support of
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this thesis, we will present specific examples from each our research programs, examples in which a

non-objectivist interpretation is applied to selected findings.

Examples from research

Children's understandings of infinity

Our first example comes from a study of children's ideas about infinity carried out by the second author

(Ntifiez, 1993a, 1993b, 1994). The research methodology was the clinical interview, focused on Zeno's

paradox. The researcher presented the paradox to children from 7 to 14 years of age, using a statement

like the following: "Imagine that we are asked to go from a point A to a point B, but we are told to do so

by following a rule which says: first go half of the way, then half of what remains, then half of what

remains, and so on. Do we ever reach point BT' Zeno's paradox arises because, if this rule is followed,

then we never reach point 13, yet this is contrary to our experience, in which a journey always reaches a
destination.

In a series of experiments described elsewhere (Niniez, 1993b, 1994), the author found a

developmental, age-related difference in the responses to the paradox. Younger children often altered the

conditions of the situation such that the problem would be solved. For example, Ban (who is 7 years, 9
months old), eventually resolved the paradox by changing the destination of the "journey:"

Ban +(7;9): We get closer .. but if we go half of the way there is just a step left, and if we
go the (other) half, there is just one half left, .. and we go that half and we arrive ..
(thinks and re-analyzes with his fingers near the edge of the table),. or maybe there is a
small piece left before the arrival and we decide that that's the place where we have to
stop. ..We put the arrival before the place where we want to go, so then we are sure that
we arrive.

The opinions of students older than 10 or 11 were very labile and counterintuitive. They seemed to realize

the difficulty of resolving the paradox. Their answers were full of doubts and hesitations:

Mal -(14;8): Does it arrive? (thinks, whispers) .. I think we don't arrive exactly, maybe
about a millimeter away. I think that we will arrive, but that we are not going to arrive
immediately, .. if we have every time, .. well, I don't know, I think that it will arrive
exactly at the point, and I think that it will not arrive exactly. I have two opinions. I don't
know whether it will be exactly or at about a millimeter away.

According to our theoretical stance, mathematics is a language shaped historically and based on
consensus. In Zeno's paradox, agreeing to respect the conditions of the problem (that is, not changing

the "givens" of the situation) takes place within this consensus. The consensus in turn, depends, in part,

on the biological structure of the subjects (e.g., their level of neurobiological development). This issue is

essential because the conceptual world that emerges from the cognitive activity of young children is based

on a consensus which is different from ours (because their neurobiology, their language, their embodied

cognition is different). Thus, what we call rigor in mathematics has a different meaning for students of

different ages, and younger students take a different attitude than older ones about the possibility of

changing the conditions of Zeno's paradox.
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The children's unnoticed alteration of the conditions of the paradox takes place in a different

domain of consensus which we happen to not share. As a further example, we have found that before

age 12, some students show a striking ontological difference between two "kinds" of infinity. A 10-

year -old, Yak, answered a question about his use of the terms "bigger" and "smaller" infinities:

RN: If that is the "bigger" infinity, as you say, when you say "smaller" infinity, is it the
same thing but in the other sense?
Y: Yes, and there is only one difference. At a certain moment it becomes so small that we
can not even know where it is.
RN: So what is the difference then, between the "bigger" infinity and the "smaller"
infinity?
Y: At a certain moment, when we are in the smaller infinity, it stops, whereas in the
bigger infinity it could continue until .. infinity

In other words, there are endless infinities and infinities which stop, both being infinities! The idea of an

infinity which stops contradicts our very notion of infinity, as mathematically-experienced adults.

Children's notions about infinity also change, depending on individual characteristics and on the context

provided for the paradox. Ten-year-old high performers, and 12- and 14-year-old average students gave

different answers with different arguments to isomorphic situations in which the context had been

changed (e.g., the distance to be covered in the journey).

Do these alternative notions represent misconceptions about what infinity means? We don't think

so. They are part of a shaping of consensual space based on bodily grounded experiences, just as the

idea of "indivisibles" of the plane were for Archimedes or Cavalieri.

"Conceptual bugs" in transformation geometry

The next example is taken from a qualitative research study by the second author, and focused on the

learning of twelve middle-school students who spent about 7 hours working in pairs with a computer

microworld for transformation geometry (Edwards, 1990,1991). This microworld was made up of Logo

procedures corresponding to rigid transformations of the plane (translation, reflection and rotation), and

included a game in which the transformations were used to superimpose two congruent shapes.

One research result concerned certain expectations the students demonstrated about the rotation

transformation. The rotation conunand takes three inputs, for example "ROTATE 102045." The first

two inputs specify a fixed point about which the entire plane rotates (in this case, the point (10, 20), and

the third input specifies the amount of the rotation (here, 45 degrees clockwise). About one third of the

students who used either a pilot or final version of the microworld initially expected the rotation

command to work differently than it actually did. Instead of en Asioning a whole plane rotation, these

students thought that the ROTATE command would first move the shape to the center point, and then

turn it (Edwards, 1991).

The students quickly realized that this was not how the microworld functioned, and were able to

adapt and effectively use the whole-plane version of rotation as implemented on the computer. What is of

interest to our thesis, however, is not the actual performance of the students with the microworld, but

rather the interpretations that are possible concerning the students' initial ideas about rotation.
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One possible interpretation, which the author made when first analyzing the data, is

fundamentally objectivist. Under this view, the students had a "misconception" about the nature of

rotation. The mathematically correct version of rotation, involving a single movement or mapping of the

whole plane, was instantiated in the computer microworld. Any alternative notions that students held

about rotations were simply incorrect, based on a lack of understanding of rotation as a mathematical

entity. This misunderstanding was referred to as a "conceptual bug" by the author in early written

analyses (e.g., Edwards, 1990). An objectivist interpretation suggests that we can "correct" such

misconceptions simply by providing accurate representations of mathematics as it actually exists.

Under a non-objectivist interpretation, however, we would not describe the students' initial

conceptualizations of rotation as "misconceptions" (cf., Smith, diSessas& Roschelle, 1993/4). Instead,

the students' understanding of rotation would be seen as an appropriate, adaptive expectation arising

from their own embodied experience in the world. In the everyday world, when something turns, it

almost always turns around a center point which is part of the object itself. When a child turns around,

she turns around the central axis of her own body; if she plays with wheels or tops or other turning

objects, these objects turn around their own centers. It is rare to experience an object that turns at a

distance, from a center point in an arbitrary location. Yet this is the kind of rotation which is instantiated

in the microworld (Edwards & Zazkis, 1993).

The students' initial understanding of rotation differs from the more general, whole-plane notion

held by the mathematician. Some might argue that this is simply a matter of convention, of agreeing upon

a way to describe rotations (that is, mathematicians may choose to describe rotation as a whole-plane

transformation, but they could just as well adopt the students' convention of first sliding and then

turning). But this assumes a single mathematical entity, rotation, which each community describes

differentlyan objectivist view. Under a non-objectivist view, each understanding of rotation is

completely different, since each derives from a different set of experiences, from a different practice.

Each is couched in a vocabulary that the knower has found most useful; furthermore, in the mathematics

community at least, this vocabulary is shared and formal.

In order to modify the students' initial, perfectly adaptive understanding of rotation (or any other

mathematical notion), it is not enough to provide the "mathematically-correct" version. Instead, we must

create situations in which the new mathematics more adaptive than the old, and provide social support for

students as they learn a new way of talking about what they are doing. Computer microworlds can

provide problem-solving situations and games that require the use of new mathematical objects and

operations. Teaching with an emphasis on communication can provide the necessary social support.

Discussion:

From a non-objectivist position, mathematics is conceived as totally dependent on human beings it

emerges in the interaction of biological beings as they evolve within and adapt to their medium, and is

therefore contingent on the very nature of the interwoven process of embodied concepts and social

interactions. This view rejects an objectivism which reifies either mathematics itself or the constructswe

create to help us tell the story of mathematical learning. We believe that research and practice in

254 2 246



mathematics education cannot help but be enriched by drawing from the new perspectives provided by

non-objectivist approaches to cognitive science, which include an increased and more sensitive emphasis

on the bodily and social bases of thinking, learning and knowing.
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OVERCOMING LIMITS OF SOFTWARE TOOLS: A STUDENTS SOLUTION FOR A
PROBLEM INVOLVING TRANSFORMATION OF FUNCTIONS1

MARCELO C. BORBA
Graduate Program of Mathematics Education

Mathematics Department
UNESP-Rio Claro

(State University of Sao Paulo at Rio Claro, Brazil)

ABSTRACT
This paper describes how a student, confronted with discrepant results while using a
multi-representational software program, solves this discrepancy by mentally adding

features to the software design. The discrepancy occurred while the student was working
with transformations of functions. A model for understanding in multi-representational

environments is refined in order to incorporate the data discussed in this paper.
Students' reasoning can inspire changes in software design.

INTRODUCTION

In recent years much emphasis has been given to the role of software tools as a
mediator of students' knowledge and as a way of enhancing students' learning (Borba &
Confrey, 1992; Confrey, 1994; Beare, 1994; , Edwards, 1994; Kieran & Hillel, 1990;
Monaghan et al. 1994, Nemirovsky, 1994; Noss et al, 1994; Schwarz, 1994). On the other
hand, not very much has been said about how students have been "substantially" changing
the design of software in order to adjust it to the mathematical ideas they are engaged in.
In this paper, a case study is presented in which a student overcomes the limits of a
software design in order to solve a problem involving transformations of functions. The
importance of this kind of student input for software development and for mathematics
education in general will be discussed.
THE RESEARCH

This particular research was part of a larger project2 on the teaching and learning of
functions through contextual problems and transformations of functions using a multi-
representational software. The overall pedagogical framework (Borba, 1993; Confrey &
Smith, 1991; Confrey, 1994 ) includes a critique of the dominant role of algebra in

mathematics education. Transformations of functions, in particular, are usually dealt as
effects on the graph resulting from changes in the coefficients of an algebraic expression.
Borba (1993) have argued that this is just one approach among several others, especially
with the facility provided by multi-representational software, such as Function Probe

1 The research reported in this paper was partially funded by CAPES (a funding agency of the Brazilian
government ("Bolsa 804/88-12") and by the National Science Foundation of the U.S.A. (Grant 9245277). It is
currently supported in Brazil by CNPq, a funding agency of the Brazilian government, (Processo 520107/93-
4.)

2 The research reported in this paper was developed as a part ofmore encompassing research developed by
the Mathematics Education Research Group at Cornell University directed by Dr. Jere Confrey.
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(Confrey, 1991). It had been previously discussed how Doug, a high school student, have
dealt with transformations of functions in our research (Borba & Confrey, 1992; Borba,
1994). In this paper it will be discussed how Ron, another 16 year old high school student
from Ithaca, New York, U.S.A., dealt with this theme. Ron's performance can also be
described by the model for students' understanding in a multiple representation
environment (Borba, 1993, 1994), a model in which understanding is seen as a process in
which findings in one representation are justified based on arguments developed on
another representation.

Function Probe (FP) is a multi-representational software which allows, among other

features, a graph to be transformed into another through direct actions on the graph using
translation, stretch or reflection icons. FP allows both the reflection line and anchor line for
the stretch to be moved. Therefore, a graph can be reflected on or stretched from any line
parallel to the y or x axis. Points can be sampled from a graph allowing a transformation in
a continuous graph to be studied as actions on discrete points. These samples can be sent
to the table where they will be stored in "x" and "y" columns. Any pair of columns can be
sent back to the graph window as points and columns of numbers can be altered in the
table window. In this study, three students were interviewed in a teaching experiment
fashion (Cobb & Steffe, 1983) over approximately eight two-hour sessions. Students were
introduced to the features of the software through three tutorials and then given tasks
involving absolute value, quadratic, and step functions.

The tasks were based on a model which was an alternative to the algebra-
dominated approach. In the first part of the model, the focus was entirely visual. Using the
transformations icons, subjects attempted to transform graph A into graph B. In the
second part, a numeric component was added as students were asked to predict what
would happen to the coordinate values of a given point of a graph when the graph was
transformed. Finally, students were asked to explore the relationships between actions in
the graph and coefficients of algebraic expressions. The interviewer was the author of this
paper.
RESULTS

The Problematic

Ron proceeded through the visual part of the model quickly and with few obstacles.
He was able to predict and explain the relationship between the visual and the numeric
values of the points easily and without hesitation. As he sought to create algebraic
descriptions of the transformations, he generated what was labeled "covariational
equations" (Borba, 1993, 1994). These equations express in algebraic terms a
transformation in the table world. For instance, in Fig. 1 we can see a horizontal
translation to the right by 5 units which can be expressed by the covariational equation x' =
x + 5 and y' = y where (x', y) are the coordinates of the translated set of points and (x, y)
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are the original set of points. These covariational equations express a type of algebra
which was labeled "table algebra" (Borba, 1993) due to its close connection to the table

micro-world.

x V x'=x+5 Y'=g

-5.0 5.0 0.0 5.0
-4.0 4.0 1.0 4.0
-3.0 3.0 2.0 3.0
-2.0 2.0 3.0 2.0
-1.0 1.0 4.0 1.0

0.0 0.0 5.0 0.0
1.0 1.0 6.0 1.0

2.0 2.0 7.0 2.0
3.0 3.0 8.0 3.0
4.0 4.0 9.0 4.0
5.0 5.0 10.0 5.0

Fig. 1. On the top part of this figure the graph is being horizontally translated by 5 units.
Points have been sampled (not shown in the figure) and sent to the table window on the
bottom part of the figure. Also shown on the bottom part are points of the corresponding
covariational equations.

As Ron was involved in the third part of the teaching experiment - studying the
relationship between graphical transformations and changes in the coefficients - he ran

into a problem similar to one which often happens in the classroom when computers are
not used. Ron used the iconic facilities of FP - which allow him to drag a graph to
horizontally translate by 5 units the graph of y=x2+3x+5. Having the model of
y=ax2+bx+c in mind, Ron could notice, looking at the screen, that in the translated graph
c=15. Despite his finding, he decided to check it, using paper and pencil and his previous
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results from the analysis of covariational equations. He claimed: " . . .1 know an easy way to
find out what c will be . . . Just substitute . . . do the formula that I did [the covariational
equation discussed before]. y.. so x, x2 + ...I think this will work ... 3x + 5, and the
thing ... transformation was to the right by ... It's (x+5)2 + 3(x+5) + 5.". He wrote down
what he thought was going to be an algebraic formula for a horizontal translation by 5 to
the right: "(x,x2+3x+ 5) --> [(x,] (x+5)2 + 3(x+5) + 5" . Next he developed the above
expression until he reached "(x+5, x2+13x+45)". Ron was then confronted with a
discrepancy in the results: he had found using the icons that a horizontal translation by 5
to the right would make c= 15 and now, using his algebraic algorithm, he predicted c=45.

To make things more complicated, the feature of FP which allows the equation of
the transformed function to be shown was turned on and showed y = (x-5)A2 + 3(x-5) + 5.
Besides the discrepancy of values for "c", Ron now had a new problem: how to explain that
a horizontal translation to the right resulted in a change in a "minus sign" in the FP
display. Moreover, as he put y = (x-5)^2 + 3(x-5) + 5 in the y = ax2+bx+c format, he was
reassured that c=15.

The roots of Ron's latest puzzle can be found in his investigation in the table world.
As he was investigating the relationship between transformations in the graph and
changes in the coordinates of transformed points, he generated covariational equations in
which there was no contradiction between the "plus sign" and a horizontal translation to
the right, since x'=x+5, y'=y could express such a transformation.

In trying to solve this problem, Ron developed three solutions: a visual one, an
algebraic one and a visual-algebraic one in which he "transformed" FP. In this paper, the
focus will be on the last solution proposed by him3. In the first two solutions, Ron found
explanations for the discrepancy between the different values he had found for "c" but he
could not find explanation for the discrepancy between the movement to the right and the
minus sign. He in one instance found an explanation for the movement to the right and on
another find reason for the minus sign, but there was no explanation yet for a coordination
of both events.

The Visual-algebraic solution: changing Function Probe

On the first two solutions for this problem, Ron was still working with the equation
which was originally involved in this problem: y = x2 + 3x + 5. When he started working
on the third solution, he was already working with equations in a different format:
y=Af(Bx+C)+D. This format was suggested by the interviewer since it keeps separate the
vertical transformations from the horizontal transformations and, although it was
suggested from the beginning, Ron started working with it only at this point of the
teaching experiment.

3See Borba (1993) and Borba & Confrey (1993) for a discussion of the first two solutions.
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After some preliminary investigation with the model y = Af(Bx+C)+D, Ron was
focusing on the understanding of C, working with the family of functions y = (x+C)2 and
keeping
A=13=1 and D =O. In this investigation, he had the first breakthrough of what would
become his new solution to an old discrepancy:

Wait, wait, I just want to change it back to +52 [(x+5)2]. That's all. So now if you
imagine this x-axis shifting over completely by 5. Shifted +5, okay? ... Now, and change
all the values back to what they should be okay? And then over here at -5 is going to
be where the y-axis is going to be -5 is going to be, see what I'm trying to say?

Ron was building an argument in which he was seeing a horizontal translation as a
result of an action on the x-axis instead of seeing it as a shift of the graph. As the
interviewer realized the nature of Ron's argument, he asked Ron if that could explain why,
when C had a "+5 change", the graph would move to the left, bringing back the original
problematic in a new scenario. Ron's response was quite telling: "Um... yes. If you do ...
if you think about it right. Let me think about it. Yeah. See if you pull this [the x-axis] to
the right, -5 is getting to end up at the zero, and in the distance will be 0 at -5, see?." Ron's
articulation suggests that he was understanding "+5" as a movement of the x-axis to the
right. The x-axis would be pulled back to the right because "[b]y being a function, it pushes
it all back the way it was supposed to be . . . so then this whole thing slides back and then it's
plotted where it is now ... ".

A way to interpret Ron's reasoning is by thinking of a metaphor of "double rubber
sheets" proposed by Borba (1993) as a refinement to the "rubber sheet metaphor"
(Goldenberg & Kliman, 1990). In the double rubber sheet metaphor there is a back rubber
sheet with the Cartesian axes and a front rubber sheet with the curve on it. Previously, I
had chosen to think of transformations as impacting on the front rubber sheet while the
back rubber sheet remained permanent. The same kind of reasoning is embedded in the
design of Function Probe. Ron, however, was thinking of the horizontal translation as
being an action on the back rubber (x-axis) sheet, followed by an adjustment which would
push both rubber sheets so that the origin would be back to its original position. The
"original position" can be understood by thinking of an observer who is standing still
looking at the origin before the graph has been transformed. In this sense, Ron could
coordinate his action with the plus or minus sign in the equation written in y = f(x) form
and with the final "visual" result of the graph.

After this point, Ron used the double rubber sheet metaphor to extend his idea to
stretches and also to all the coefficients of the model y=Af(Bx+C)+D as shown in the next
two excerpts:

B and C... Anything inside the function, stretches and pulls and shrinks it this way
or moves it this way [horizontally]. Anything outside the function stretches or pulls it
this way [vertically], so now only one rubber sheet changes ...
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Because B and C [in y=Af(Bx+C)+D] are inside the function. That means you haven't
done the function yet, so you're still working on the x-axis. When you're outside the
function, you've already done [with] the function and you're working on the y-axis
now - directly with the y-axis.

In the first excerpt, Ron tries to explain how he visualizes his model: he noted that
he could see B and C as connected to action on the x-axis, because they are "inside the
function", which can be understood as the coefficients which "act" on the variable "x"
before prototypic functions (Confrey & Smith, 1991) such as y=x2, y= I x I and y=[x] are

"applied" to the variable; in contrast, anything outside the function, A and D, are going to
be in the front rubber sheet where the parabola or the line is. Based on this argument, he
concludes that the coefficients "inside the function" are linked to horizontal actions,
whereas the other ones are connected to vertical actions, as he explains in the second
excerpt. Ron's conclusion is coherent with the model y=Af(Bx+C)+D, which separates
vertical actions from horizontal actions.

Ron added thread to his metaphor to represent any curve that was being graphed,
made the front rubber sheet a "sticky rubber sheet" to glue the thread, and used "pins" to
attach the two rubber sheets together when necessary and so on. He ran into some trouble
to adjust what he was visualizing and the metaphor he was using to express what he had
in mind and the coefficients. But after some time of interaction with the interviewer and
with the ideas embedded in the design of FP, Ron came to what he called an "overall
generalization":

R: Here's what you do, okay? Here's the overall generalization. You have 2
rubber sheets, one of them is your graph. The clear one is your ... the other one
is your function.
I: Yeah, the one on the bottom is the axes.
R: Is the axes.
I: Okay...
R: So anything that is inside the parameters of the functions means you change
the graph before you do the function. That means that you're ... that means
that B and C are a stretch and a contraction [he probably got confused and said
contraction instead of translation] before you do your function, okay?
I: So you're going to do that on the graph or the axis?
R: On the graph. Or not on ... on the axes, not on the function, not on the
function.

R: . . . Then when everything is all stretched, you pin it down and you slap our
function on top of it, then let everything bounce back the way it should be. That
means that when you shift it to the right 5, plop it on, when you bounce it back,
it will move it left 5, okay? If you look at your function, shift this over, plop it
on, and move the whole thing ...
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R: Plop that on, move it over, okay? Now when you change A and D, what
happens is you take your clear one, keep this where it is and you stretch your
clear one up this way. Then, when your clear one's all stretched, you plop it on.

Ron was able to expand the notion of change in the axes, incorporating vertical and
horizontal translations and stretches. Moreover, he constructed klis version of the double
sheet metaphor, improving it, and was able to coordinate the numerical changes in the
coefficients with the transformations on the graph.
DISCUSSION

This case study contributes to a growing literature (e.g. Proceedings of PME-94,
PME-92) suggesting that working in computer environments can be something quite
different than working in other environments. Constant and fast feed-back, easy use of
several representations at the same time and flexibility in students inquiry have been some
of the features listed to support computer use in mathematics education. On the other
hand, most classrooms are not equipped with computers; and it can be argued that
problems solved with the help of computers are not relevant for the general classroom.

This potential contradiction does not occur in the case discussed in this paper since
the problem Ron dealt with - coordinating a horizontal translation of a graph with the
changes in the coefficients - takes place in classrooms without computers, too. In addition,
although the three solutions presented by him were mediated by FP, the ideas developed
by Ron can be implemented by students and teachers who have no access to computers.
The fact that Ron's solution can have impact on every classroom adds importance to his

findings.
The literature has emphasized either the role of the software in shaping the thought

of the student or, often times, the construction by the student as if it had happened
without the strong support of the design embedded in every computer software. I have
proposed the idea of an "intershaping relationship" (Borba, 1993) as a way of giving equal

emphasis to the influence of a software design on a student and the role of the student in
not only appropriating this design but actually shaping or mentally enhancing a software
as Ron did in the case discussed in this paper.

Ron's solution to the problem can be framed by the model of students'
understanding discussed in Borba (1994), since the problem emerged as a discrepancy
between results obtained in different representations, and he found in the graph
representation an explanation for an algebra-related problem. It should be noted however,
that Ron's solution demands a refinement of the model, since in order to coordinate the
"minus sign" with the horizontal translation to the right, he had to mentally change the
structure of the graph representation of FP. He had to build his own notion of translation,
overcoming the limits of FP, which is a very rich software with powerful transformations
icons, but which cannot allow for transformations in the axis in a dynamic manner. The

2 254

262



model (Borba, 1994) should emphasize, therefore, the role of students' changes in multi- .

representational software as they justify a result found in another representation. Close
attention to students' thoughts, such as Ron's could also result in relevant suggestion for
future software design

Finally it should also be noted that the pedagogical approach of teaching functions
through transformations, exemplified by the original way Ron approached this problem,
emphasizes the notion of family of functions and the focus is on the coefficients and not on
the variables. Such an approach combined with others which focused on the notion of
variable could help students to reach the function sense proposed by Eisenberg & Dreyfus
(1991).
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Graphs that Go Backwards
Tracy Noble and Ricardo Nernirovskyi

TERC, Cambridge, MA, USA

This paper reports on results of interviews with high school students using a motion detector
to create graphs of velocity vs. position. We are interested in the possibilities offered by
non-temporal and non-functional graphs, such as velocity vs. position graphs, for exploring
graphing and motion from a different perspective. In the transcript and analysis of selected
Episodes of an interview with the student Noam, we trace the development of his ideas about
the relation between the shape of the graph and the path of his motion with the car, as well as
his use of language and gestures in explaining the responsiveness of the graph to his actions.

Introduction
Much of the literature on students' use of motion sensors to create graphs has focused on

graphs of some quantity, such as distance or velocity, over time (Thornton and Sokoloff, 1989;

Nemirovsky and Monk, 1994). Temporal graphs (of some quantity vs. time) have a common logic:

the graph continually progresses forward, just like time. Doubling back is not allowed. Thus,

temporal graphs are all graphs of functions: for a given time (or x-value), there is only one

corresponding distance or velocity value (y-value) on the graph. Given this relationship to functions,

graphs of some quantity, such as distance, vs. time are useful for exploring functions; for instance,

linear functions can be explored by graphing distance vs. time for motion at a constant speed.

Given the value of making temporal graphs in learning about functions and motion, why

would one ever choose to venture outside this realm? There are, of course, many other types of

interesting graphs to explore with students (Janvier, 1978; Bell, Brekke and Swann, 1987a, b, &c).

In dynamical systems modeling, for instance, graphs of velocity vs. position, which are examples of

phase space graphs, can be very helpful for understanding a system's behavior (Janvier, 1978;

Nemirovsky, 1993; Tufillaro, Abbott, & Reilly, 1992). In phase space, the state of a system is well-

defined by a single point in the space, and the space is often many-dimensional. However, for a

single, solid object whose state is defined only by its position and velocity, the object's phase space is

its velocity vs. position graph. These graphs can often elucidate different features of the behavior of a

system than temporal graphs do. For example, in an oscillatory system, such as a spring undergoing

simple harmonic motion, the trajectory in velocity vs. position space will trace out an ellipse or a

circle, and will keep re-tracing the same path until the motion slows down and the trajectory spirals in

towards the center of the ellipse. Alternatively, a graph of position vs. time for the same system

would be sinusoidal, and the damping would be visible as a decreasing amplitude of the sinusoidal

curve. Given the alternative way of looking at these and other dynamical systems that velocity vs.

position graphs offer, we conjectured that students may also find valuable insights into motion and

graphing through work with these graphs.

iThe work reported in this paper has been supported by NSF Prime Grant # RED-9353507, under a
subcontract from the SimCalc project. All opinions and analysis expressed herein are those of theauthors,
and do not necessarily reflect the views of the funding agency. The authors wish to thank David Carraher
for his editorial feedback and Steve Monk for a number of helpful discussions related to this paper.
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This paper will follow the work of a high school student named Noam as he tries to

understand the velocity vs. position graphs he produces by moving a hand-held toy car in front of a

motion detector. Noam begins his work with the graphs by describing the graph as if it corresponds

to a trail left by the car, or a trace of the car's motion. During the course of the episodes, Noam

slowly constructs a sense of the meaning of the graph that is more like that used by experienced

graph-users. Some authors have described students' initial ways of thinking about graphs, some of

which closely resemble Noam's, as misconceptions (for instance, the "graph-as-picture"

misconception) which must be removed and replaced with correct conceptions (for a brief review, see

Clement, 1989). We argue, instead, along with Smith, diSessa, & Roschelle (1993), that students'

processes of learning often can be better described as a process of adapting and refining initial ways

of thinking as they experience the responsiveness of the graph to their actions (Monk and

Nemirovsky, 1994; Nemirovsky, 1994). We suggest that as Noam learns more and more about the

responsiveness of the graph in the course of the Episodes described herein, he does not abandon his

initial way of thinking about the graph and adopt some new way. Instead, Noam subtly changes and

refines his thinking, eventually coming to think of the graph in a way that would not only be

considered "correct" by experienced graph users, but that also retains many features of his initial

thinking that turn out to be powerful for understanding velocity vs. position space graphs.

Other themes that arise from the analysis of the transcript described in this paper are Noam's

use of gestures and his use of language. Noam's gestures provide a way for him to talk

simultaneously about the car's motion and the resulting graph, with the use of a single gesture. We

have also analyzed Noam's use of language, tracing his use of the word "straight" throughout these

Episodes. We have found that his use of the word "straight" does not follow some linear progression

from "incorrect" usage to a more mathematically "correct" usage. Instead, Noam uses the word

"straight" flexibly, to describe a number of different concepts; it becomes a tool for him to use to

explore new ideas, not just the word for an non-curved line.

Methodology
In this study, five students were interviewed for five hour-long sessions each (except the first

student, who was interviewed three times) using individual teaching experiments (Cobb and Steffe,

1983). The interviewer posed some pre-determined problems to the students, but also aided the

students in exploring questions of their own whenever possible. The videotape of each interview was

analyzed in order to plan for the next interview.

The first interview with each student began with playing a game in which the student and the

interviewer, Tracy Noble, made representations on paper of the toy car's motion on the table for the

other person to use to act out the intended motion. At some point during each student's first or

second interview, Tracy and the student began using the motion detector to make graphs of the car's

motion, beginning always with velocity vs. position graphs, and sometimes moving on to temporal

graphs as well. The motion detector senses the distance away of the nearest object in its path, and the

software (MacMotionTm) can use this information, gathered over time, to compute the velocity of the

object as well.
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Figure 1
Before beginning work with the motion detector, the students were only given the minimal

information that they needed to begin making graphs: that is, they were told that the small plastic box

will detect their motion, and that they should move in front of it to make a graph on the computer

screen. Some might argue that time might have been saved in this process by simply "explaining" to

Noam the meaning of the and position axes ahead of time, and that all of the work he did in

these episodes was unnecessary. However, the graphs on the computer screen all had axes labels,

unit labels, and scales on the-axes, so, that if that information is relevant to the student, he can read it

off the computer screen. We would argue that, instead, that no explanation can replace personal

exploration of the tool and the meanings of its responsiveness to the environment.

Noa m

At the time of this interview, Noam was a high school senior at a Boston-area vocational and

technical high school that is connected to a traditional high school. Noam had been primarily in the

vocational track, which meant that for his senior year he spent every other week working in a graphic

arts shop, and the intervening weeks in academic classes. Noam had taken two years of math:

arithmetic and a pre-algebra/algebra class, and one year of general science at the time of the interview.

He was at the time of the interview enrolled in a physics class.

Transcript
The following Episodes occur about halfway into Noam's first interview, when Tracy introduces

Noam to the motion detector for the first time. The four Episodes last a total of about 10 minutes, and

they occur in immediate succession. [Notation: "..." indicates the voice trailing off, and ". . . "

indicates deleted transcript.]

Episode 1-- What is the Graph?

Episode 1 begins when Tracy introduces the motion detector to Noam for the first time, and asks him

to move the toy car in front of it. He had not worked with a motion detector before.

Noam moves the car at a slow, relatively constant speed, along the path below:
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The following graph appears on the computer screen:

m/s

O

-1

m/s

G

Om distance 3 m

Graph 1

Tracy asks Noam to "walk her through" the graph.

Noam: Okay. (pause) Where did I start [moving the mouse on Graph 1 between A and D]? I
started from this [A] It was - I started from here [A]? [Tracy: I think you started from here [A] .

. . .] How come it's [Graph 1] not going in a straight line [runs finger across Graph 1 in a
horizontal line]...[points to table on which he had moved the car] like I did? [Tracy: In a straight
line like you did...] Okay. Either way [dismissing the topic of the straightness]. Okay. I started
coming here [running the cursor from B to C along Graph I]. It seems like I turned...[rinning
cursor downward from C to Eon Graph 1],backed up [moving cursor up to Eland started going
over here [moving cursor from F back along the x-axis to G].

Tracy asks Noani about what he had expected, and he explains why he had expected the graph to

have a straight line on top by acting out the motion he believes he made with the car. He has been

influenced by the correspondence he sees between the graph and the motion, and as a result forward

and back are flipped from the original (Imagine flipping Figure 2 over the tape line).

Notes on Episode 1: In trying to make a correspondence betweenthe graph and the motion he made,

Noam asks why the graph is "not going in a straight line like I did," because for motion left to right

along a straight path, Noam expects a straight line on the graph, not the bumpy one he sees from A to

C [Graph 1]. Noam uses "straight" here to refer to the quality he notices in his path with the car: its

lack of curvature. This is the first example we see of Noam expecting the graph on the computer

screen to look like the path he took with the car. Another example occurs when Noam analyzes his

turning motions, associating the 2nd and 3rd motions in Figure 2, with the curves C to E, and E to F,
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respectively (on Graph 1): "It seems like I turned...[running cursor downward from C to E on Graph

1] backed up [moving cursor up to F]." Noam may associate these portions of the graph with turns

because these parts of the graph have a curved shape (See Graph 1), or because these lines move

vertically on the graph, which he may connect with forward and back motion on the table (See Figure

2). It appears that Noam expects a direct correspondence between the path taken by the car and the

graph produced, almost as if the graph were a trail left by the car.

Episode 2 -- Stopping and the Graph

Immediately after Episode 1, Tracy suggests that Noam make sure the card at the front of the car is

always facing the motion detector, so that the motion detector can read the position of the car. Noam

moves the car as shown below:

a little faster
44

slow 104-0-r slow slow
1/111' " 011". 1rio 1111"

1st
stop stop stop

Figure 3
This produces the following graph:

1

m/s

0

-1
m/

All these motions are
along the same line

D

A
C

F

Om distance 3m
Graph 2

Noam talks through this graph, saying he started at A, and stopped at B, C, and E. Then Tracy asks

him how he can tell from the graph which places he stopped at, and Noam responds below:.

Noam: This here. [points at Graph 2, at B or C] [Tracy: That there ?] Indicates stop [gestures a
downward curve with his hand, like the graph shape at B or C: 1 ], because it [graph near B or
C] doesn't go like that one [points at Graph 2, from E to G, and runs his finger from Left to
Right to Left across the curve]. [Tracy: Okay.] It's [graph near B or C] not a straight line
[gestures along a straight line in the air with his hand]. Even though that one's [from E to G] not
straight but...

Notes on Episode 2: Noam's description of Graph 2 includes a new feature: stopping, and Noam has

associated stopping with the area of the graph near points B, C, and E. Given the trip with the car,

which did not involve turning, the places where the graph curved downward to the x-axis took on a
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new meaning for Noam: "[graph near B or C] doesn't go like that one [points at Graph 2, from E to

G]." Thus, there is a sense in which the graph shape from E to G (Graph 2) can "go," as opposed to

the graph shapes at B and C. This is closely related to the experience of drawing this graph (Graph

2), or following the line with one's finger. Tracing the graph near the points B and C requires an

actual stop of the finger, so that line "doesn't go," whereas the stretch from E to G can be drawn in

one continuous stroke, so that this line does "go".

Another feature of this Episode is that Noam's gestures link the graph he has made (Graph 2)

with the act of drawing or tracing the graph. When Noam says that the graph at point B or C

"Indicates stop [gestures a downward curve with his hand, like the graph shape at B or C: 1 ]," his

gesture indicates both the shape of the downward curve of the graph, and the abrupt stop of the car on

the table that produced the shape. In this Episode, we also see an example of Noam's changing use

of the word "straight." Noam uses the word "straight" to describes the difference, on Graph 2,

between the graph near B and C and the graph between E and G when he says that the graph near B

or C is "not a straight line . . . Even though that one's [from E to G] not straight but...". Noam is

apparently now using "straight" to describe his sense that the graph at B or C is interrupted, not

smooth, as opposed to the uninterrupted and smooth graph from E to G. Even though this use of the

word is unconventional, when Noam stretches its usage, he is able to talk about this smooth quality

of lines, which he may have had no other specific language to describe.

Episode 3 -- A Stop or a Turn?

Immediately after Episode 2, Tracy and Noam are discussing Graph 2 (See Graph 2 in Episode 2)

when Noam describes a rule he believes: when any object moves right and then left, it must stop in

between those two motions. He illustrates this point with gestures which decompose forward and

back motion into pieces. Then he describes how Graph 2 relates to this rule:

Noam: But that [Graph 2] doesn't show that [the stop between left and right motion]. It just shows
here [running hand horizontally along computer screen], turning around [runs hand along
downward curve on computer screen, curving to the left, then continues moving to the left,
horizontally, into space]. . .

Tracy asks Noam to clarify what he sees as the difference between points B and E on Graph 2, and he

answers as follows:

Noatn: This one [Graph 2, B] stops and starts starts all over again [traces part of Graph 2 at B]. .

. Oh, maybe that [Graph 2, area of El should stay like that because, uh, I'm stopping [moves
hand to the Right, stops it], but then I continue on the same road [moves hand back to the Left]. .

. Back - just back [moves cursor from -E to -G again]. . . 'Cause the other stops don't go
back. . . Stop [stop cursor at C] and go in the same direction [to the Right]. And over here
[points with cursor at E], I stopped and went to the opposite direction [moves cursor to the Left].

Notes on Episode 3: In this Episode, we find that Noam's way of understanding certain curves as

indicating turns and his newer association of some curves with stops has caused a conflict centered on

the point E of Graph 2. Noam is certain that there must be a stop between his right and left motions

(see Figure 3), and thus that he must have stopped at point E. However Noam also associates curves

with turns of the car, and he is concerned that Graph 2 at point E only indicates "turning around," and

doesn't show the stop. While Noam is analyzing Graph 2, he comes upon the realization that perhaps
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the shape of Graph 2 at point E makes sense, "because, uh, I'm stopping [moves hand to the Right,

stops it], but then I continue on the same road [moves hand back to the Left]. . . Back - just back

[moves cursor from E to G]." Noam has discovered that there is something about point E that makes

it look different from the stopping places at B or C: at point E he stops and comes back to the left

again, running over the same road" a second time, whereas for the other stops at B and C, he stops

and then goes "in the same direction [to the Right]." Nom) has found that the point E is both a stop

and a tum, because he does stop there, but, unlike the stops and B and C, he changes direction at

point E, a kind of turning around, and moves back to the left.

Episode 4 -- Slow and Fast

Immediately after Episode 3, Tracy suggests that Noam try doing another motion, and he does

a motion involving another turn off to the side and a crossing of the line of tape on the table,

reminiscent of his first motion in Figure 2. While talking through this graph, Noam associates

turning on the graph with turning the car, and crossing the axis with crossing the road, once again

speaking of the graph as if it were a trail left by the car.

Then Noam tries another motion: a linear motion in which he moves the car to the right

slowly, stops, moves it further to the right slowly, stops, and moves the car back to the left very fast.

The following graph results:

1

m/s

GJ

1

m/s

Om distance 3m
Graph 3

Tracy begins to ask Noam about this trip, and he describes it as follows:

Noam: Okay, so I can tell right now, that the wider it [moves his finger up and down across the
vertical width of Graph 3] is -the line is of that shows it the speed. Okay. [Tracy: Okay.] Just
by looking at this one I can tell. Okay.' I came here [moves cursor from A to B, along x-axis].
Stopped [B]. And then continued here [moves cursor from B to C, along x-axis]. Stopped [C].
And I rushed back [moves cursor back to the left]. So, this [indicates with cursor the depth of
Graph 3 from x-axis to DP so what are these number's supposed to be [pointing to the numbers
along the y-axis on the graph]? Velocity? [Tracy: Yeah.] So it shows here it shows here that
it's [i. e., speed of "rushing back" is] over one velocity.

Notes on Episode 4: In the second trip Noam takes in this Episode, we see for the first time Noam

making a purposeful distinction between the speeds of two different parts of a trip, so that the part of

the graph below the x-axis has a much larger vertical extent (is "wider") than the part above the
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x-axis. The new salience of the vertical "width" of the graph causes Noam to ask what the vertical

axis label is, and even try to associate the vertical extent of the lower part of the graph with a value of

velocity: "it shows here that its D. e., speed of 'rushing back' is] over one velocity." Because

previous trips have involved turns and backward and forward motions perpendicular to the tape line,

or have involved moving at a constant speed, the vertical extent of the graph hadn't been a useful

feature for distinguishing different parts of the graph.

Discussion
These Episodes illustrate a process in which Noam adapts and refines his initial way of

understanding velocity vs. position graphs to account for the new types of responsiveness he notices

when he makes each new graph. In Episode 1, Noam's way of understanding the graph involved

thinking of it as a trail left by the car; then in Episode 2 he made a linear motion with several stops,

and located the stops on the graph, using the method from Episode 1 of traveling along the graph as

the car travels along its path. However, instead of looking for the actual path of the car in the

trajectory of the graph, Noam looks to it this time for the feeling or sense of the motion, that is,

whether a line seems to "go" or not. Then in Episode 3, Noam's original thinking of the curves of

the graph as turns allows him to see that the stop at the point E is different from the other stops, and

that point E actually represents both a stop and a turn. Finally in Episode 4, Noam gives a highly

detailed account of the trip he made to produce Graph 3, as one might expect from an experienced

graph-user. Even while continually adapting his thinking, Noam's original way of thinking about the

graph provides him with important resources that he draws on to interpret each new graph he makes.

In Noam's use of the word "straight'. throughout these Episodes, we note that the word is

useful to Noam, even when he is not making progress toward "correct" mathematical usage. The

search for correct word-meanings or accurate gestures does not drive the process of inquiry. Instead,

Noam's words and gestures are both used flexibly, as tools in the service of his interpretation of the

responsiveness of the graph.
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THE GRAPHICAL, THE ALGEBRAIC AND THEIR RELATION-
THE NOTION OF SLOPE
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ABSTRACT

Some aspects of the slope concept were examined in 174 Arab and Jewish Israeli students. One of

the research questions was whether students realize that the slope is an algebraic invariance of the

line and therefore does not depend on the coordinate system in which the line is drawn. Another

question was whether the students are able to move back and forth from the algebraic aspect to the

graphical aspect of slope in order to perform simple tasks. The results show that between 1/2 to 213

of our sample can be considered as "illiterate" in certain contexts of the slope concept.

§1. The Notion of Slope and the Research Problem. The slope is a central concept in the

chapter about linear functions and their graphs. Recently, some of its cognitive aspects got a

special attention in several studies, either in purely mathematical contexts (Moschkovich et al, 1993;

Mullis et al, 1991) or in "real world" contexts (Clement, 1989; Goldenberg, 1988; Nemirovsky,

1994). This paper will deal with the notion in purely mathematical contexts.

In many countries (also in Israel) the chapter on linear functions is taught already in the ninth grade.

The topic is mentioned again and again in high school courses and elementary college courses (pre-

calculus and calculus). In the common mathematical textbooks one can find definitions like the

following: 1. If (xi, yd and (x2, y2 ) are two points on a straight line then its slope is (y2 - yi)/(x2

- x1). (See, for instance, Leithold, 1981, pp.30-31. ) 2. If y =ax +b is the equation of a straight

line then the number a, which is the coefficient of x, is called the slope of the line. (Lang, 1973,

p.28. ) These definitions are absolutely algebraic. Nevertheless, the word "slope" has a potential

of a geometrical interpretation because of its everyday meaning. In a previous study (Ben David,

1986), where close observations were made on 10-th grade class, it was found 7 students out of

33, when asked the slope of a straight line in a context of algebra course , responded that it was the

angle between the straight line and the x-axis. This misconception was not reported by Clement

(1989), although similar misconceptions were mentioned ("height for slope" and "slope for height,"

p.85). We were curious to see whether the "angle for slope" misconception will be found in a

bigger and more heterogeneous sample. We wanted, as well, to examine whether students realize

that the slope is an algebraic notion which does not depend on the graphical representation of the

line equation and we were also curious to examine additional aspects of the slope notion which are

directly related to some general mathematical abilities: the ability to pass from the graphical aspect
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to the algebraical aspect of a concept, the ability to pass from the algebraic aspect to the graphical

aspect of a concept and the ability to pass from the algebraical to the graphical - back and forth.

The mathematical education assumption about concepts which have algebraic and graphical aspects

is (or, at least, should be) that students should be able to cope with simple tasks which involve

passing from one aspect to another.

§2. Method. Our sample included 3 classes of Israeli Arabic students and 3 classes of Israeli

Jewish students, 10-th, 11-th and 12-th graders. The total number of students was 174.

In order to answer our research questions we compiled a 7-question questionnaire which we

administered to the above sample. The questions were:

1. In the following coordinate system (please notice that the x-axis and the y-axis have different

scales) a straight line is drawn. What is the equation of this line?

2

2

2. Draw the straight line the equation of which you have found in the previous question in the

following coordinate system.

Y
2

x
1 2 3 4

3. What is the slope of the straight line in the first question?

4. What is the slope of the straight line you have drawn in the second question?

5. Which of the following statements is a true statement? Explain your answer!

a) The slope of one of the above lines is greater than the slope of the other one.

b) The two slopes are equal.

6. In the following coordinate system draw a straight line whose slope is negative.

y

7. It is given that the slope of a certain line whose equation is y = ax + b is negative. It is also

. given that the points (1, y1) and (3, y2) are on this line. Which of the following statements is true?

Explain your answer! a) y1 < y2 b) y1 > y2 c) y1 = y2 d) It is impossible to know

because a and b are not given.

The first five questions were meant to examine whether the student is able to pass from a given line

2 265



in a coordinate system to its equation, whether he or she are able to identify two different lines in

two different coordinate systems as representing the same algebraic entity and whether he or she

are able to overcome a supposedly natural tendency to relate to the technical term "slope" its

everyday meaning. Question 6 was meant to examine whether it is clear to the student that a

negative slope means an obtuse angle with the x-axis. In other words, we wanted to examine

whether there is a graphical association in the student's mind related to the term "negative slope"

and whether this association is a correct one. In order to answer question 7 the student has to relate

to the picture corresponding to the term "negative slope", to realize that the point (3, y2 ) is at the

right side of the point (1, yt ) and therefore it is lower than the point (1, yt ). Since the y of a

lower point is smaller than the y of a higher point then y, > y2 . Thus, moving back and forth from

the algebraic to the graphical is crucial for carrying out the task of question 7.

We consider all the above questions as simple and elementary. No special preparation is required

in order to answer these questions. Only a true understanding of the basic mathematical language is

needed. Such understanding of the mathematical language is, so we believe, a necessary working

assumption for every mathematics teacher in the 10-th grade and above. Otherwise, it is like

teaching short stories by 0. Henry in an English as second language class to students who do not

have a minimal English vocabulary. Question 7 might seem to the reader a harder question than the

other six. We consider it as a "simple complex" question. It is simple in the sense that the
associations needed in order to solve it are immediate and straight forward. No tricks are involved.

It is complex because it calls for elements which are not mentioned explicitly in the question and it

requires more than one step. Calling for elements which are not mentioned directly in the question

is necessary for every non-trivial task. Reading comprehension tasks which do not have these

characteristics cannot examine any high level thought. Again, by saying "high level thought" we

mean only one level above the elementary level, nothing higher. As to the more than one step

which is needed in this case we would like to add that the moment one step is made the next step,

somehow, follows directly from the previous one. It is a process similar to what Davis (1984) calls

a "visually moderated sequence."

§3. Results and Analysis.

Question 1

Category li: A correct answer (62%, N=174)

Category IIII: A wrong answer which is a result of computational mistakes (3%).

Category ER: A wrong answer resulting from a reconstruction failure of the slope formula (5%).

Category IV : A wrong answer which is a result of a defective algebraic thinking (19%)

Examples: 1. The point is (1,2). If we substitute it the equation line we will get: 2 = (112)*1+

Therefore b = 1.5 and the line equation is y = _5x + 1_5 (There are two elements in this answer that
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we would like to point at. First, the student does not know to pass from the point in the graph to

its algebraic representation. Second, the student decides that the slope of the line is 1/2 without any

attempt to justify it. Perhaps he guessed it, perhaps he got it from his neighbor's questionnaire.)

2. The line equation is y = ax + b, I = 2x + b, I= 2x + 0, x = 0 and, therefore the line equation

is y = (1 /2)x + (1/2) (The roles of the letters are not clear at all to the student and because of that

his substitutions are totally wrong. He writes a = 2 instead of x = 2. In addition to that he

assumes, without giving it any justification, that b = 0. From the equality x = 1/2 he infers that a =

1/2 and even more surprising, b = 1/2 which contradicts what he wrote earlier in an implicit way:

a = 2, b = 0.)

Category V : Meaningless answers (9%) Examples: 1. The equation of the line is determined

by the angle. 2. The equation of the line is y = 2x + I 3. From the angle we see that the slope

is 1. Therefore the equation of the line is y I = 1*(2 x), y = -x + 3

Ouestion 2

Category If : The student drew the line of the first question in the coordinate system given in the

second question (69%). In this category two solution strategies were used. The first strategy used

the equation y = (1/2)x as a starting point. By means of this equation two or three points of the line

were calculated and marked in the given coordinate system and then the line through them was

drawn. In the second strategy the task was considered as a map drawing task. A geometrical

shape in one map should be drawn in another map which has a different scale. In this particular

case it is sufficient to identify the location of two points of the geometrical shape in order to draw

all of it. Since it was impossible to distinguish by means of the questionnaire between students

who used the first strategy and those who used the second strategy we included all of them in the

same category. We have no doubt that there were students who used the first strategy because

there were three points marked on the line they drew. We also have no doubt that there were

students who used the second strategy because they got an incorrect equation in question 1 whereas

their drawing to question 2 was correct. The second strategy is considered by us more

sophisticated than the first one because it uses elements which are specific to the context of the

question and thus enables a shortcut. The first strategy just uses the common algorithm for a line

drawing as if there was no question 1 in the questionnaire.

,Category : Answers in which an incorrect line was drawn (23%). Among these answers there

were lines which did not pass through the origin or lines which did not pass through (2,1).

Usually it happened because the line equation which the students got in question 1 was wrong and

the students used the first strategy in category I. The students who used this strategy should not

be blamed for using an unsophisticated strategy for the given context. They should be blamed for

not being aware of the contradiction which was obtained. Focusing on one technical detail while

losing the connection to the entire context is, unfortunately, characteristic to many situations of

problem solving in mathematics education. This phenomenon is even more salient in the next
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category.

Category lit : Answers in which a curve was drawn (3%).

5% of the students did not answer this question at all.

Question 3

Category It : The slope is defined either as the coefficient of x in the line equation y = ax + b or

as (y2 - yi)/(x2 - x1) where (x1, yi) and (x2, y2) are two points on the line (71%). In this category

we included also students who gave an incorrect equation for the line. Also here, as well as with

the first strategy in category I, question 2, we want to say that although there is nothing wrong with

the application of the formula (y, yi)/(x2 x1) it indicates that the student is not aware of the fact

that the calculation leads to the coefficient of x in the line equation, which is the slope he was asked

about. 38% of the students are not aware of it.

Category III : The slope of the line is defined as the derivative of y = ax + b (2%). Although this

category is quite small we wanted to keep it as a separate one because it reflects a common tendency

of thought: a property implied by the original definition takes its place and the original definition

is forgotten. (Similarly, in the case of increasing function there are students who claim that an

increasing function is a function whose derivative is positive.)

Category : A failure in the application of the formula (y2- yi)/(x2 - x1) (9%). The

impression made by these answers was that the students used distorted formulas like

(y2 -y1)/(xi-x2) , (x2 xi)/(y2 - y1) etc. or they failed in the number substitution.

Category : The slope of the line is defined as its equation or part of it (6%). Examples:

1. The slope is y = (112)x 2. The slope is (112),v (The students'probably remember that the

slope is connected somehow to the line equation but they cannot dissociate from the equation the

relevant part. )

Category V : Vague answers in which the student uses the notion "slope" in a meaningless way

(6%) Examples: 1. The slope a = 0 because the line passes through the origin. (This is a
distortion of the rule: If the line passes through the origin then b = 0 in the equation y = ax + b. )

2. The slope is Ay/Ax (The student repeats the general definition although hewas asked to give the

slope of a specific line. )

5% of the students did not answer the question at all in spite of the fact that they gave an equation in
their answer to question 1.

Question 4

The categories of this question were supposed to be the same as in question 3. This was true in the

majority of the cases. Howevever, 9% of the students who answered question 3 correctly gave a

wrong answer to question 4. This was a result of the fact that the students used once again the

expression (y,- yi)/(x2 x1) in order to calculate the slope of the line. In the second time they
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chose two points on the line they drew in question 2. These p6ints were not identical with the

points they chose in question 3 and some computational mistakes which led to the wrong answer

were made. The students were, probably, not aware of the contradiction in the same way as in

category II and category III of question 2.

Question 5

Category I : Answers which claim that the slopes of the two lines are equal and also explain it

correctly (65%).

Category El : Answers which claim that the slopes are equal based on wrong explanation (5%).

The wrong explanations are like: 1. The two lines are parallel therefore their slopes are equal.

2. The two slopes are equal because the lines do not intersect. 3. a = 0 in both lines.

Category 10E11 : Answers with no explanation which claim that the slopes are equal (8%).

Category IV : Answers which claim that the slopes of the two lines are not equal with or without

explanations and also meaningless answers (19%). Examples: 1. The slope of the first line is 112

and the slope of the second one is 2. 2. It is impossible to determine what the right answer is

because the line equation is not given. 3. The first answer is the correct answer because when the

slopes are equal then the lines are either identical or perpendicular. 4. The first answer is correct

because the scales are different. 5. The first answer is correct because the angles are different.

3% did not answer the question. Froin the above categorization it turns out that only about 65% of

the students we can claim for sure that they know the concept of slope. About other 8% (category

III) we cannot claim it but we also cannot claim the opposite. About all the rest (categories H. IV and

those who did not answer), which are 27% of our sample we can claim that the concept of slope is

not clear to them. 3% (some students in category IV) tied the concept of slope with the angle that the

line forms with the x-axis. This was in contrast with our expectations and we will discuss it later on.

The claim that between 27% and 35% do not have basic knowledge about such an elementary

concept is potentially traumatic. Just remember the strong reaction of the mathematics education

community in the USA to the fact that 1/3 of the students in a calculus course at a certain university

failed in the students professors task ("There are six times as many students as professors at this

university," Rosnick and Clement, 1980)

Ouestion 6

Category II : The student drew a line with a negative slope (84%).

Category II : The student drew a line whose slope is positive but the drawing contains some

elements which can be associated with the notion "negative." (b is negative,- x is negative or y is

negative) (8 %)

8% of the students did not answer the question.

Question 7

Category II : The student chose the correct answer y, > y2 and also explained correctly his or her
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choice (37%). Examples: 1. a < 0 means when x increases y decreases. 2. The function

decreases.. 3. According to the drawing:

3

When we analyzed the task in question 7 (see §2) we suggested that the student is supposed to pass

from the algebraic aspect to the graphical aspect and back. This is quite obvious in example 3 above

but it is not so obvious in the first two examples. We assume that the claims about the decreasing

function are implicitly associated with appropriate mental pictures and therefore, in fact, the

students passed from the algebraic aspect to the graphical aspect and back.

Category II : The student chose the correct answer y1 > y2 but did not explain (9%).

Category u,n : The student chose a wrong answer (with or without an explanation) or chose the

right answer but gave a wrong explanation (51%).

3% of the students did not answer the question.

When summarizing the categories of question 7 it turns out that between 51% to 60% are incapable

of carrying out, what we called in §2, a "simple complex" task. This is another example of the

inadeqaute level of mathematical thought that so many students demonstrate. If we compare this to

our comment at the end of our analysis of question 5, relating our results to those of Rosnick and

Clement (1980), we may discover the same features. When a problem which is a little bit more

complex, but still simple, is presented to the students (there it was: "At Mindy's restaurant, for

every four people who ordered cheese cake, there were five people who ordered strudel." ) the

number of those who fail is doubled. The percentage of "illiteracy" in our case is between 1/2 and

2/3. (Note that in the above comment and in similar comments, we do not intend to be judgmental

toward the students. We only discuss the quality of mathematics learning and teaching in the current

situation versus the expectations of the mathematical education researcher community (as expressed

for instance in the Curriculum and Evaluation Standards, 1989.) A similar comment about a "slope

task" was made in Moschkovich et al, 1993, p. 70)

As to the "angle for slope" misconception that we were looking for, it has not been found. When

we looked for an explanation to the fact that it appeared in Ben David's sample (1986) we were told

that its students had had in their junior high period a course in "technical drawing." This was not a

mathematics course but during the course the students drew a lot of straight lines and they related to

the angle between those lines and the horizontal direction. Thus, in a spontaneous way, a noticeable

number of students associated in their mind the word "slope" with a picture of an angle. This

association remained dominant also after the technical notion of slope was introduced to the students.

On the other hand, the students in our sample got only the technical definition of slope and no

attempt was made to connect it to the angle between the line and the x-axis. The students
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themselves, who are, usually, quite indifferent to mathematics, did not bother to make any

connections between the everyday meaning of the word "slope" and its technical meaning. This

situation presents a dilemma to the teacher: should he or she attempt to tie the technical meaning of a

notion to its everyday meaning (in case there is such a meaning) or should they avoid it. If they do it

they may raise the danger of misconceptions. If they do not, misconceptions may be avoided but the

students might remain detached from the mathematical notions, feeling that they have nothing to do

with everyday life. As with any serious educational dilemma it is impossible to advise what to do.

The decision, apparently, depends on the teacher, on the students and on the particular context of the

educational events.
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VISUALISING QUADRATIC FUNCTIONS: A STUDY OF THIRTEEN-YEAR-OLD GIRLS

LEARNING MATHEMATICS WITH GRAPHIC CALCULATORS.

Teresa Smart
School of Teaching Studies, University of North London, UK.

Abstract: The graphic calculator provides the mathematics learner with a powerful tool that is
relatively cheap and portable. Previous work has shown that girls in particular respond well to using
technology that is both personal and private. This paper reports on work that took place in a lower
secondary school mathematics classroom. The pupils (all girls) had free access to graphic calculators
during their mathematics lessons. Prior to this, the girls had not used a graph plotting calculator or
software. As a result of the experience, the girls started to develop a robust visual image of many
algebraic functions. They were happy to describe how changing the value of a coefficient would lead
to a transformation of the resulting graph. They discussed graphical methods to solve algebraic
problems, often illustrating their ideas by using their hands to draw diagrams in the air.

INTRODUCTION

For students in the advanced mathematics classroom, the use of graph-drawing software has been

shown to increase the ability to visualise and investigate algebraic functions. With cheaper graphic

calculators these facilities are now more widely accessible, although projects to integrate graphic

calculators into the 11-16 classroom are still relatively new. Little research has been done with this

younger group, and this initial study shows a similar impact on girls in a lower secondary school.

BACKGROUND TO THE STUDY.

The importance of computer graph drawing software for the mathematics classroom has been well

researched. (Tall 1989; Leinhardt, Zaslaysky et al. 1990; Duren 1991) As Duren noted "the
availability and access to graphics software for the secondary school mathematics curriculum has

provided two powerful learning modalities for students: visualisations and investigations." (Duren

1991 : 23) In particular the benefits of the use of computer software on a student's understanding of

the functions (Breidenbach, Dubinsky et al. 1992) and in developing a visual approach to
transformations and graphs (Bloom, Comber et al. 1986; Dugdale, Wagner et al. 1992) have been

demonstrated. Now the availability of graphic calculators has made this graph drawing software

widely accessible and provided a powerful resource for the mathematics classroom.

As Kenneth Ruthven, the co-ordinator of a project funded by NCET (National Council for Education

Technology, UK) to investigate the use of the graphic calculator in the post 16, Advanced level (A

level) classroom wrote: "The impact on the project students of unrestricted access to graphic
calculators, either as a personal or classroom resource, was impressive." (Ruthven 1992 : 5) The

NCET project found that students who had used the graphic calculator in their mathematics lessons

did significantly better when tested than a control group who had had no access. (Ruthven 1990)

The research took place in the Alevel classroom, but as the price of the graphic calculators comes

down, then schools have started to buy them for younger pupils' use.
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BACKGROUND TO THE CASE STUDY CLASS

This paper is based on a case study of a class of 13 - 14 year old girls observed during their
mathematics lessons over a 13-week term. The pupils were from a girls' school situated in a

deprived area of London (UK). It is popular and over-subscribed, but there were growing concerns

that the girls were underachieving in mathematics. One of the steps taken by the school to try to raise

pupil's achievement was to investigate the benefits of integrating technology into the mathematics

classroom. As a first stage the school acquired a set of 35 graphic calculators and set out to ensure

that as many pupils as possible had an opportunity to become familiar with the calculators.

At the same time, a decision was made to give one class unrestricted access to the calculators for

every one of their mathematics lessons, and to study the results. In this class, the calculators became

a form of personal technology they could be picked up and used whenever needed.

I chose to work in a girls' school because I was aware of gender issue surrounding the use of

computers in the secondary classroom. (Cul ley 1988; Hoy les 1988; Elkjaer 1992; Cole, Conlon et

al. 1994) Previous work with graphic calculators together with the results of the NCET project had

shown that girls work well with this form of technology. An explanation offered for this is that the

girls value a form of technology that is personal, enabling them to be less anxious aboutmaking

mistakes on a private screen rather than a public computer monitor. (Smart 1992) Also, in this study

we took note of research showing that all pupils, and particularly girls, benefit from collaborative

work with a computer. (Johnson 1985; Underwood and McCaffrey 1990; Underwood 1994) One

emphasis of our work with the graphic calculator was to encourage the girls to share their ideas and

discuss their findings.

THE STUDY

My first aim, working closely with the class teacher, was to investigate whether it was possible to

integrate the graphic calculator into the mathematics curriculum. The school followed a text book

scheme. It was important that this class who were in the top third ability range for their year - did

not fall behind the parallel group who were not using the calculators. The teacher wished to keep up

to date with the text books, bringing in the calculator when beneficial. My role was as an observer

and more "expert" user of the calculator.

The second aim of the study was to observe the influence of unrestricted access to technology on the

girls' mathematics learning. I hoped to find, as Goldenberg noted, that: "Proper use of visual

imagery gave students new depth and clarity in thinking about old problems. The mathematical

richness in linking graphical and symbolic representations of functions also gave students

opportunities to pose and explore new problems." (Goldenberg 1988: 136)
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Our third, more detailed goal, was to see if the graphic calculators would help the pupils to develop:

a more investigative approach to their learning of mathematics, using the calculator to predict,

test and generalise;

a graphical approach to solving problems; and

an interest in writing and talking about the mathematics they learned through using the
calculator.

Through this, the teacher wanted to create an atmosphere of enjoyment and exploration of
mathematics in the class with the girls discussing and directing their own mathematics learning.

EXTENDED PROJECT WORK ON PARABOLAS.

In this paper I concentrate on only one part of the case study. Four weeks into the term, the girls

were all familiar with the facilities of the calculator. Already we could see that access to the
calculators had encouraged them to extend problems posed in the class beyond what was expected in

the text book scheme. The teacher decided that so much mathematics was developing that it was

preferable to use normal class time to follow through and extend any problems. The pupils then kept

up to date and completed the allocated chapters for homework or during "catch up" lessons. At the

same time, we felt that the pupils were confronting new ideas without time for consolidation. Things

were going too fast. We decided to ask the pupils to work on a piece of extended project work. Their

task, over the next four weeks, was to explore the graphs of quadratic functions. They could explore

using either graph paper or the calculator or both. Some time was made available during the normal

class periods and extra workshops were organised during the lunch hour when the calculators and
teacher help would be available.

For their extended project, pupils were asked to explore the graphs of the following functions

y = ax2 when a is positive and when a is negative

y=x2+b and y=x2-b
y = (x + c) 2 when c is positive or negative

The first thing they did was make a plan (something they had learned to do in geography and not

mathematics). We wanted to encourage them to investigate the functions by making and testing

predictions rather than by drawing one graph after another. The ease with which the picture of a

graph could be produced and compared with its previous state encouraged them to work in an
explorative way.

On completion of the project, the girls were required to hand in a written report of their explorations.

This was assessed. Later we asked the girls to discuss their findings and their feelings about using

the graphic calculator. We made a video of groups of 5 or 6 girls, discussing their work. Talking

about mathematics was not something these girls had much experience of. They were more
accustomed to answering the teacher's questions. To help the discussion, each group was provided
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with a set of card with questions. Each pupil was asked to pick up a card and talk about.the question.

The other pupils could then add to the discussion or choose another question.

Below I illustrate the progress they made with the extended project work on parabolas using the

girls' own words written and spoken.

They had very little experience of writing and talking about mathematics. They were encouraged to

make a plan. They felt this plan helped. As Shazia said: "It helped me because it put the work into

stages. I didn't have to do everything at once. It was good because I knew what to do after, so the
plan was quite useful." Angie agreed: "yea, with my plan, I did it differently. I planned it in stages,

like if I was doing y=ax2, I planned that, then I planned for y= x2+b. So I found that easier. I

thought it would be easier than making one big one."

MAKING AND TESTING PREDICTIONS

At every stage the pupils were making and testing predictions. Shafa gave as steps in her plan:

Predict what the graphs would turn out like, then say if you were right or wrong

See if the graphs have anything in common

Write some conclusions on what you have found out."

Angie described in her written report her predictions for the graphs of y=ax2 when a is positive and

then negative: "I was right in my prediction that the centre of the graph will always be 0. I was also

right in saying that as a gets bigger the curve will become steeper and closer to the yaxis. When a

is negative the U shape is formed upside down and as a gets bigger the curve got steeper too and I

got that right too." Her partner Amina made a different prediction. She said: "About y=ax2 with the

positive one [ a ]. I found it was a curve and as a got larger it went closer to the vertical axes so my

prediction for the negative a is that when well the curve will be upside down but when the a got

larger it would move away from the vertical axes and would be less steep. But I found out imy

prediction was wrong. and it was exactly the same as the positive one but upside down."

When exploring the graph of y= (x +c)2 nearly all the pupils were surprised at what they saw, having

made false predictions. As Shahanaz wrote: "My prediction was partly wrong because I predicted

that whatever +c was then the graph would go through the value of x = it [Here Shanaz is using "it"

for +c , generalising using a mixture of words and symbols]. But instead I found that the curve

would go through the negative side of the x-axis, through whatever c was e.g.. y= (x+5)2 it would

go through 5. But when we looked at y=(x-c)2 then our prediction was right whatever +c was it

would go through -c so in the case of (x-3)2 it would go through minus -3 which is +3."

Shafa found the same but she explored further. She wanted to understand why this curve went

through the opposite side. She wrote in her report:
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"I was so surprised when it [y= (x +3)2 ] turned out the other way, so I did the equation

y=(x+3)2=0

=> x+3= 0
=> x = - 3

so the solution was x = -3 "

VERIFYING RESULTS PREVIOUSLY LEARNED, WITH PAPER AND PENCIL, IN CLASS.

In using the calculator, the pupils discovered rules they had learned in a symbolic form in the

classroom but did not necessarily feel confident with. For example, in exploring the graphs of y=x2

+ b or y=x2 - b many of the girls found for themselves a visual image of the rule: "a minus
followed by a minus is a plus". Shibley said:

"I did these two graphs and I discovered that if you take y=x2+ b and y=x2 minus a negative

number, it is the same."

I asked her if she was expecting this result

"When I predicted what the graph of y=x2 - 8 would look like, I thought the whole
[positive] numbers were supposed to be at the top of the screen. I

thought the minus was going to be at the bottom. After I realised, that a minus and a minus

is a plus."

Shakila went further. She explored the effect of putting two quadratic functions together. She drew

the graphs of functions of the form: y= (x +c)2 +x2 T b

She predicted that the graphs would be of the same shape as all the other graphs (parabolas), and the

b and the c would only affect the position. She found that she didn't always get a parabola on her

screen but sometimes a straight line and sometimes a parabola steeper than the expected graph of

y=x2. She was interested enough to work out why this happens setting out to simplify the algebraic

expression. She wrote as her conclusion:

"This never had a lot to do with parabolas but I also learnt something, for I found out why I

got a line graph. I had to do research to be able to understand or otherwise I didn't have a

clue of why I got line graphs."

Goldenberg noted that: "if the connection between the analytical representation of the function and its

graphical representation is perceived as magical or arbitrary, the two representations cannot inform

each other." (Goldenberg 1988 : 153) Shakila when surprised with the graphical representation she

found on her screen, and did the research going back to examine the symbolic form.

Other pupils however, just accepted the graph produced on the calculator without questioning its

validity. As Leinhardt warned: "In computer based instruction, ... the graph the machine produces is
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unquestionable. A teacher should be aware of the 'magic' effect this may have on students."
(Leinhardt, Zaslaysky et al. 1990 :7) This "magic" led to several of the pupils feeling convinced that

there was something wrong with the graph of y= (x +c)2 when the value of c lay outside the range of

the calculator. It was no longer a parabola, and as Janet said, "well, they weren't what I thought they

were going to be, because the graphs before when I had plotted y=ax2 and y=x2+b, they were all

the same - they were all U shapes - but with these ones with say y= (x+4)2 the curve was not the

same so I couldn't make predictions". Janet later, after discussion with the teacher, readjusted her

mental image of the graphs of y= (x +c)2. She said in her group discussion several weeks later: "Well

the graphs are all the same shape but they appeared different shapes because we did the axes different

and the graphs went off the screen so you have to add it on yourself in your mind." Other girls had

greater difficulty. When they saw an unexpected feature in the graphs they made up a set of rules to

interpret the feature, falling into the danger that Goldenberg had warned about. "Our earliest
experiments showed that students often made significant misinterpretations of what they saw in

graphic representations of function. Left alone to experiment, they could induce rules that were

misleading or downright wrong." (Goldenberg 1988 :137) Several of our students believed when the

graph was translated up or down the screen as in the case of y=x2- 6 and y=x2+6 then, as Dimpey

said: "the top parabola is narrower and you see less of it and the bottom graph is wider and less

steep. The graphs in this group do not have the same shape." This was agreed to by all the other girls

in her group. These girls needed another experience besides the calculator. This could be provided

by moving an acetate sheet with the graph of y=x2 up and down the calculator screen, but they also

needed more time exploring the graphs and the equations by hand.

WERE THEY CONFIDENT WITH THEIR GENERALISATIONS?

As Shahanaz wrote:

"We decided to take the last two equations [y= (x +c)2 and y= (x -c)2] a step further by seeing

what will happen with y= (x -c)2 - d. We predicted that if we did -d it [y= (x- c)2]would go

down and if we did +d it would go up (below x-axis above x-axis)."

When they were asked if they would know how to investigate the graphs of y=x3 and y=ax3 + b,

and if they could predict what the a and the b would do to the graph, Shafa, Shakila, Shahanaz and

Henna felt confident enough to discuss what they would do. They use their hands to show the

shapes and the movements up and down the screen. Below is what they said:

Shafa: Well do the same as this [y=ax2] and write down some sort of prediction - like

what you would think the graph would turn out to be and write down all the equations

and then try to learn how to do cubed on the calculator. We would follow the plan here.

Henna draws an S shape on her paper.

Shakila: Wasn't it one of those S type graphs like that? [she points to Henna].

Shafa: The a would move it to the side or maybe go up or something
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Shahanaz: It would spread it out; it would make it steeper and wider.

Shafa: Oh yea, when a is positive, the higher it gets the steeper it [the graph] is.
Henna: The +b, well the +b that [pointing to the stationary point of the graph] would

start going up as well.

The girls know exactly how they would explore other functions and transformation, and were quite
confident that they could use the graphic calculator to do this.

DISCUSSION.

All the girls in the class handed in an extended piece of work exploring all the cases and produced

work that was considered by the teacher to be of a higher level than what she would predict for them.

Several of the 30 girls extended the work to consider combined transformations, such as predicting

the shape and position of the graph of y=(x+3)2 - 4. or y=2x2+ 6. They found that the work with

the graphic calculate was "quicker and more accurate" and as Natasha said: "the calculator draws the

graphs on top of each other so it is easier to see patterns." One of the strongest pictures gained from

the study is that of the pupils' talk about seem the pattern seeing that a "minus and a minus is a
plus", predicting what the graph of a combined function would look like. One of the aims of work

with a graph plotting facility is to encourage the learner to move freely and easily between the

pictorial and the symbolic representation of any function. These girls achieved this ease of
movement. They developed strong powers of visualisation. When a new problem was posed they
tended to adopt a visual strategy to solve it.

All the girls were able to talk fluently and articulately about their work with parabolas. This was

impressive as the majority of the pupils in the class do not have English as their first language or the

language that they use at home with their families. Their school recognised the importance of

language development through the curriculum, and I saw the graphic calculator as providing an extra
stimulus for meaningful talk. As a group of mathematics teachers working with bilingual pupils

noted: "The main aim of the maths department is to provide interesting lessons for all students, in

order to develop their mathematical skills and knowledge. A central way of achieving understanding

of mathematics is by talking, reading and writing about it. In order to do this we must provide

students with the appropriate mathematics vocabulary and the appropriate stimulus for the use of

language to take place." (Cox, Gammon et al. 1993 :9) I believe that the ease in which the calculator

produces a visual image of the function, and the need to retain a picture of this image, pushes the

pupils into talking and describing, and hence using "appropriate mathematical language".

My observation finished at the end of the term but the pupils' use of the calculator did not. When I

returned several weeks later, the class was working on a textbook chapter on linear inequalities.

They extended their work to include higher order inequalities. When I asked about the solution to 7 -

3x2 > 0, one of the girls replied. "Well the graph is upside down because it's minus and it's up there
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because it's +7 so it will be all that inside the curve." This girls and many of the others felt confident

with questions that often cause difficulties for more mathematically sophisticated students because of

their well developed powers of visualisation.
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