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PREFACE

The 12th annual conference of the PME is the first meeting
in the history of the International Group for the Psychel-
ogy of Mathematical Education held in an East~European so-
cialist country., The conferenoe takes place in the old

episcopal city Veszprém, from July 20th to July 25th, 1988.

‘There are a number of different ways in which paffioipants
at the conference may make a contribution: research reports,
_post.r displays, working groups /ipnitiated in 1984/ and
discussion -groups /initiated in 1986/, One session is de-
voted to the preparation for the ICME~6 presentations of
the PME, An innovation at this conference -is that following
each group of papers of similar topics a summary ;bss@on‘
will be held to disouss and evaluate the aohievements in‘
the given territory, The discussion sessions will be held
in the following topics: . *

1, Algebra

-2+ Rational numbers-

3. Early numbers

4, Matacognition

"5, Teachers’ beliefs

6, Problem solving

7. Computer environments
8, Social factors

We would like to thank Thomas A. Romberg, Claude Comiti,.
Kathleen Hart, Richard Lesh, Tommy Dreyfus and Colette
Laborde for volunteering to chair and introduce these eval-~
uation sessions. .

87 research papers have been submitted to the conference,
All of them have been evaluated by at least two reviewers
‘and the final decision on the acceptance of the papers has
been done at a session of the International Program
Committee in Budapest, based on the reports of the re-
viewers, The members of the International Committee of the
PME and the International Program Committee have served as
reviewers for the submitted papers,

The order ‘in which the research papers appear in these

two volumes is alphabetic /according to the first author
of the paper/ except for the invited plenary papers that
are taken first., Therefore the order of the papsers in the
volumes does not necessarily reflect the order of presen-
tation within the meeting itself, Any particular paper can
be located by consulting either the table of contents at ’
‘the beginning or the alphabetical 1list of contributors at
the end. We would 1like to thank the International Program
Committee, the Looal Organizing Committee and the reviewers
‘C)*ﬁeir assistance in. the preparation of this conference,
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International Program Committee:

Chairman: Jénos Surényi /Hungary/ -
Seoretary: LAszl16 Mérd /Hungary/
Members: Andréds Ambrus /Hungary/

Katalin BognAr /Hungary/
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Looal Organiziig Committee:

President: Ferenc Genzwein - general direotor
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HISTORY AND AIMS OF THE PME GROUP

At eh Second International Congress on Mathematical Edu-
oation /ICME 2, Exeter, 1972/ Professor E. Fischbein of
Tel Aviv University, Israel, instituted a working group
bringing together people working in the area of the
psychology of mathematics eduoation., At ICME 3 /Karlsruhe,
1976/ this group became one of the two groups affiliated
to the International Commission for Mathematical
Instruotion /ICMI/,

According to its Constitution the major goals of the group
are:

1./ to promote international oontacts and the exchange of
scientific information in the psychology of mathemat.
ioal education,

2./ to promote and stimulate interdisciplipary research
in the aforesaid area with the cooperation of psychol—
ogists, mathematicians and mathematics teachers,

3./ to further a deeper and more oorrect understanding
of the psychological aspeots of teaching and learning
mathematics and the implioations thereof,

MEMBERSHIP ’ : -

1./ Membership is open to Persons involved in active
research ipn furtherance of the Group’s aims, of Pro-
fessionally interested in the results of such
research,

2./ Membership is on an annual basis and depends on
payment of the subscription for the current year
Q /January to December/ S ) L
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3./ The subscription can be paid together with the

conference fee,

The present officers of the group are as follows:

President:
Vice-President:
Seoretary:
Treasurer:
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INTERVENTION 1M A MATHEMATICS COURSE AT
THE COLLEQE LEVEL

Linda Galtuso, Cégep du Yiswt-Montrdal.
Raynald Lacasse, Univershé d'Cliawa.

4

Following an Investigation conducted wih mathophobks studonts
(Galtuso, Lacasse,1880), we formulated a set of working hypotheses for
mathematics teaching. We brisfly descrive how we experimented this

pedagogical approach In a regular class of at the college level The
obpcgg was to reconcile affective and cognitive factors.

Not 80 long ago, a person who asplred to a respectable career had to learn Latin
and Creek (Tobias,1980; Glabicani,1985). However today, everyone has o do some
mathematics. In Quebec, at the college level, the majority of the students have at least one
compulsory or highly recommended mathematics course in thelr cumiculum; source of
problems for many, cause of repsated drop out for others. Moreover , upoh entering
coltega, these students bring with them at least twelve years of school mathematics. This
“expsrience is sometime posttive but aiso too often negative; as confirmed by the failure
and drop out rate added to the fact that the students choose thelr curicula to  avold
mathematics (Blouin,1986) . Everywhere in the school environment, mathematics are sgen
as a source of problems and we observed a certain declaration of powerlessness In
regard to this question which.as many facets: affective, cognitive and behavioral.

A previous study (GattusoLacasse:1886,1987), convinced us of the
importance of the affective aspact In the learning of mathematics and brought us to
formulate, for the teaching of mathematks, some working hypothesis aiming at alleviating
mathophobla. However that Is not enough, mathematics courses have substantial
content and students with dificuties have gaps In thetr knowledge which we must
address. Lkewise some forms of behavior are also a source of difficulty in the learning
and the teaching of mathematics (Biouin:1985,1987).

O
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Thare &8 no lack of research on the quastionbut beachers coping with all kings of
practical constraints do not succeed In integrating the conclusions of these studies Into
thelr practice. Too often these deal only with one particular aspect of the problem and In
dally practice many vartables Interact To get closer bo school reallly, k seems mportant
to have a global view of the question. Consclous of this practical ditficully, we Irisd to
articulate and experiment a class Intervention modsl to Improve the teaching of
mathematics. Ina way, we wanted to link the theory and practice so that teachers can
easily adapt this model and Integrate R subsequently into thelr own practice.

The starting polnt

This model was Inspired by earller resulls (Galtuso, Lacasse, 1986) whsre the
problem of mathophobia was shown to be part of dally iife. Nimier (1976), Toblas (1876)

_and others show the Importance of the affective domaln. Then, on the grounds of various
experiments especially in the Unlted States and some of our own, we put together a
supportive environment to reassure some students with a negative background in
mathematics: the Mathophebla workshops.

In this research, we wanted bo see if there wore any changes'in the participating

- students’ altkudes and we wanted to identlfy, the reasons for any such changes. We hope
b find a teaching approach that would minimize stuations favorable to the appsarance of
mathophobia. The resulls and the analysls permitied us to éxplore different factors on
which the teachers could Intervene In a regular course of instruction to state some
hypothesis along those lings and to group them around four dimensions:

1. Affective aspects vs ablilty bo communicate

2. Peerrelations s learning of mathematics

3. Teacher vs learning of mathematics

4. Pertinence of mathematics.

In shott, In addtltion to listening to the studert, the teacher has to allow each
Individual the opportuniy to express his or her own experience of mathematics. The
students must have the possibliy to exchange, to explore to express orally the processes
they use; in order to generate learning. Through his altitudes and his words, the teacher
sets out to destroy the myths surrounding mathematics. He must also find occasions to”
supervise Individuai learning. He can also show the work inherent in any mathematical
process. Some historical references and liks wih daily experiences will place
mathemalics In a more human context. To interest and stimulate the students, skuations
and concrete materials have to be developed.

[RICiST COPY AVAILABLE
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This calig for a change of behayior on the part of the teacher and this Is not easy:
he has to be motivated. instead of belng the transmbter of knowledge, thotoacrnrhasho A
support the learning and the work of the students. _

Thig brought us to foresee a second stage In this research; mrottmttmse ideas.
had to be tested In a regular class. '

in the same vein, Biouin (19951997) first developed a group treatment for
mathophobla at the college level in Quebec, then studied two more easlly detectable
phenomena: anxiety and study strategles Results showed that those who succeed the
mostaromoonesmatadoptamoreappropmtosmdybernvbrandm isalkoa
signiicant relation between. inadequate study behaviors and dystunctional cogniive
reactions, particularly urrealistic bellefs that faciltate the epparkion of anxiely and
resignation.

Personal factors (other than Intellectual aptitude) playing a determinant role In
success In mathematics were grouped accordingto four dimensions: '

. Realistic perception of the necessary conditions to succeed in mathematics

II. Knowing and using adequate working methods :

lll. See oneself as able to do what is needed to succeed

IVA sufficient level of motivation (or knpoﬂance alirbuted to proressloml
success)

After Identifying these differents points, Blouln suggests paths of Intervention to
undo some efroneous beliefs and permi the development of adequate wondng behaviors
by means of teacher interventions focussing on these poinis.

' "In the United States (Sadler et Whlrrbey.1985), a new experimental approach
seeks to improve thinking abliiy- through a holistic approach giving a .hrge place to
communication in improving giobal intellectual operations. & emphasize the fact that
learning is an active process and that learners have to participate in the knowledgo
acquhng process. Six principles support this approach.

1.Teach students o learn in an active way.

2. The students must articulate his thought.

3. Promote intultive comprehension.

4.0rganize the course in asequertial way.

5. Motivate the leamers

6.Estabiish a sockai climate favorable to learning. ‘

Remarkable progress In intellectual development, In addkion to an Increase In
motivation and in knowledge, especiaily In mathematics, were observed. :

In France, Claudine Blanchard-Laviile (1981), was ‘also Interested in students'
coplng with a handicap in mathemalics, in the context of unlversly level course In

EKC
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statistics.. Time allocated for the course was doubled b allow the pace of the course to be
that of the students. She used small group work and discussions. At the end of each
session, there are some discussion allowing for the verbalization of some affective aspecis
of learning. This approach demands an Important personal Investment In tems of work
and participation from the student. The content ks also modfied Ina way to provoke active
thinking and critics, the objective being to help the student overcome his anxlety while
learning to use statistics in an auonomous and constructive way. '

Ahough they Issue from diferent theoretical famework, these experiments
converge in many points. A ot of importance is given to communication and parﬁcularly to
 the affective domain. Group work is promoted.
With this in mind we planned three steps to reach the stated objectives.. The first
~ one was o be exploratory to permit a more concrete elaboration of-our intervention
model. The second one, the experimentation, observation and evaluation of the model ina
regular ctass. Thirdly, we wanted, foliowing the analysis of the intervention, to draw up a
realistic pedagogical model that could be use In a regular teaching setting.

Realization o .

‘We obseryed the progress of 2 college groups of 36 students each. The contents of
the course was In line with the regular program but followed. the hypotheses of the
‘preceding research. These students followed a remediation course which is offered to

- those who do not have the prerequisits for collegial level courses. The non-homogenely
of the ages and acquired knowledge oftmsegotpsconpllcatedtheshabon Most of the . -
students were between 17 and 20 years old.

Yery quickly, two major differences in regard to the workshops’ appeared Frst, in
addtion to mathophobia, we found a great Indiference towards mathematics, and toward
Ieamlng in general. Secondly, ina regular class, the gaps in knowledge had a major effect
on the subsequent performance of the students. There had to be remediation at the same

time for the absence ofknowle@e the working behavior and, In general, for skilis needed -
atthe process level.

. Deficient study behariors: included low level of persistence, and laek of working
auronomy. Students did not feel responsble for their lack of knowledge o they did not -
agsume responsioliy for ther own work. We found an extraordindry degree of passiviy.
They are experienced students and unfortunately they have been in contact with aspects
of mathematics that have no meaning for them. Work has to be done on two levels: we -
havo to make allowances for the affective and behavioral components, but must also

l: KC progress In knowledge. There was a need to develop stimulating activhies, rich in

SRRPY)




- 346 -

content and to permit the experience of succpés in mathematics; but first, to overcoms a
very solidly anchored apathy. A reconciliation betwsen the affective and the cognlive
domalns had to be provoked. These two objectives were pursusd the naxt session with &
Group of 25 students. ‘ _

The course was organized in four blocks. The themes ailowad for an exploration of
concepts in a concrete or manfoulatory way, followed by activities aimed at the
development of technical mastery and self confidence. Using general themes ‘offered
more potential for giving meaning to mathematical activity.

The inftial stage I8 Important, It has to be speclal. So, for the beginning, the
activities aimed to sensitize the students to mathematics work while coping with the
affective aspects linked b this work. We used exploration and preblem solving situations
presented as games, puzzies and geometrical constructions. The first moeting was used to

. gdt In touch. After answering an auteblographic questionnalre and an atttude

questionnalre, gach person introduced himthersel? to the others and was able to oXpress
personali feelings on mathematics, on fears, on expectations. Moreover, the teacher tied
t learn each students’ name. . :

For the other actlvities, we had to dovelop a method consistent with our
hypotheses, for examplo: feed-back (discussion In the class on content or the working
method), so the student is able to discuss his progress in addRion to verbalizing himself on
the impressions felt while working; group work, to develop autonomy and taking charge of
lsarning in a supportive environment.

With respact to basic algebra, it was decided not to dedicate time spechlly for this
activily because students do not believe In It. Thelr sense of helplessness is very clear
when you try to submR them to exercises that have atready failed. The basic techniques
were integrated with others activities s0 as to give meaning to these formal mabnipulations.

The study of conics, for example, gives support to all kinds of manipulations and
the teacher can draw on the fact that students’ interest is sustained by the Inherent interest
of the forms and thelr possible applications. Consequently, analytic geomelry was our
second block. Functions and trigonomelry would follow. '

Bearing In mind the tmportance of concrete material In learning, we tried to find
supports for the activities. We had t explore, Invent and improvise. For the first block, the
material used for the workshop was readily available and familiar. For the rest, in addition
t usual Instruments (protractor, graphic paper, elc..) cardboard and acetates were used
for exploratory work centered on maniputation.

The procedure was as follows: following written protocols the students worked in
groups ata discovery or problem-solving activity. Explanation on the board followed and

Has used o bring together the resuts. In order to be retained, learning of a skill has to be
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relnforced. The amangsmant of the class gradually changed and the pace was that of the
students. The teacher continually moved around In the clags to observe the students’ work,
b give support or to refocus activiies where Reedad. This way, the student was able bo -
dominate the sltuation and to assume responsDiilly for his own progress. Every task was
presented so the student could give meaning to the concepts he constructed. These
skuations provided the occaslon for the student to experience real success in mathsmatics
and for this, It is necessary notto oversimpltly the probtems ("t have &, but It was easy..)
The autoblographic questionnalre and the altitude questionnalre (completed at the
beginning and at the end of the course) gave us soms Information, but the main
Information was dsrived from the teacher’s log book and In the studenis Interview. The
analysis is In progress. But [t is already possile to say that the experiment is encouraging
and prompts us to go on. On the students’ part, we observed some remarkable progress
They found out what a mathematical activly could be, they succeeded In giving a
meaning to what they were doing. The tmportance of the answer declined, working on the
process was emphasized. Even  the questionnaire showed that the students still did not
link mathematics to dally occupations, they stopped asking what they were for because
they found a certain interest and sometimes even pleasure In this activily. In spite of some
stress Inevitably connected with any innovation, for example, negative reactions from the
students, pressure from the curricuium, the teacher was able to implement this approach
which proved highly rewarding. Some students came up with some new problems by
themselves, others redid homawork already marked, new questions were asked. in this
context the class atmosphere was relaxed; at first glance, there could appear to be
confusion but the activity was intense and students frequently continued on with their work
beyondthe end of the end of the period.
: ' This experiment allowed us o, lmplemen(t& <thls approach afmed at reconclling
cognltive and aﬁ‘ectlve tactors in ord@r to creaty ¢ an emchlng mathemat!wl envirorment.
The data analysis wil perm!t us to see which of ¢ ou ob}ectlves were really reached, as
woll as to reveal the problems ofuansferabimy Next, the'replication of this experiment wil
allow us to produce an improved model adaphable to the regular classroom
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THE EDUCATION OF TALENTED CHILDREN

Ferenc Gerzwein
National Centre for Educational
Technology/Hungary

In recent years we have heard more and more about the education
of talented children. It is usually said that the talent must be given
an opportunity to develop in school, and the tendency to equalise all
children must be changed.

Although I have not been working in a school for several years, I
would like to share with you some of my experiences from the time I
wos a teacher, about the education of talented children, and.mark out
some ideas and difficulties.

At one time educational statistics only listed the number of
pupils who failed at the end of the year, the good ones did not deserve
this, let alone the very best. Schools were reprimanded if failures
occured in a large number, schools and teachers who tried to foster
talents were not adequately appreciated. The schools which wers good
at taking care of their talented pupils were followed with at least
much doubt and suspicion, lack of understanding as recognition. Here
I am thinking about schools which produced above average study results
for a number of years, whose students won at school competitions in
large numbers, and whose students were accepted to higher education
very often. These achievements were not highly appreciated but the
school was given the nickname of a "racing stable". Morover they were
called "distributors of knowledge", "teachers’ school”, "teaching
material centered”, "school with an aristocratic concept of quality".
As if the distribution of knowledge, teaching the material was not
the task of the school, but some source of trouble. This kind of

. thinking end the resulting action is not lacking something, but it
copsiders the undoubtedly importaont things unimportant, i.e. the
development of talent, skills, knowledge, systematic learning in
general and its special methods, although it is evident that without
these the school cannot reach its targets.

e 24
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Special Classes

In reaching these aims special methods and specialised schools
and classes play an important role among others, these are very
varied all over the world and in Hungary, too.

In Hungary such specialis®d ynits were the so called "small"
special mathematics classes in secondary grammar schools which were
later reorganised as mathematics specialisations. The number of these
classes was fairly large, so a large number of pupils had the oppor-
tunity of learning mathematics in more hours per week than the average.
Special mathematics classes have been organised since 1962, for pupils
with a special interest in mathematics. They have nearly 10 classes
of mathematics per week. There are such classes in five grammar
schools, one each year, and pupils are accepted to them after a
successful entrance examination.

Special units within a school, like a special class can be a
successful method in the education of children with a gift for
mathematics, as facts have proved it, and this is not the same as the
well known "school of the excellent”, much rather this is one of the
criteria of an "excellent school". These two are not only different
in their nome but they are very different in their principle. In the
excellent school excellent teachers work, and educate excellent pupils
in different organisational solutions.

Some have ‘an aversion to special classes in schools. They might
suppose that only extremely talented children can attend these
classes, who might become "one sided” mathematicians. But on the
contrary, pupils in these classes like to learn other sub]ects, too,
vhat’ ‘s more, they do it on a higher level than the average. It is an
honour and a pleasure for the teacher if he can teach any subject in
one of these classes. A large number of these pupils later became very
good doctors, economists, engineers, more rarely specialists in the
liberal arts. They could become good professionals, among others
because in the secondary school they had the opportunity to have an in~-
depth knowledge in at least one discipline, which is one of the
important criteria of developing talent. On the other hand it was

O
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also advantageous that neither the teacher nor the pupils looked
vpon any other subject as unimportant beside mathematics. In these
classes pupils not only developed their mental capacities. They
managed to reach a harmony between the mind and the soul. They were
less likely to merely fulfil instructions like those whose mental
capacities were poorer. They could qualify as excellent not only
because of their quick mind, but also because of their behaviour,
feeling of responsibility and their work in general. They never ]
stopped short before the goal, i.e. they were characterised by higher
morale, more responsibility, general culture, and the ability to
penetrate deeper into the intricacies of a profession. This experience
" proves that the education of talented children in special school groups
does not supress the formation of a manysided personality. This is
proved on the one hand by the career of pupils from these classes, and
on the other, by the experience, that good teaching does not only
develop the mind, but the feelings and the will as well. All goog
teaching is education at the same time, and leurhing means education
of oneself, too. It is proved by many examples that talent and will,
talent and strong character put up with each other.fairly well in a
person, even if they are not always present at the same time and to
the same extent. Talented people are not lacking in strong will in the
majority of cases, on the contrary they wish to be more active and
useful. Talented people can face conflicts and their capability of
-resistance is better than the average.
All this might suggest, that once we have a large enough number
of specialised classes, all our difficulties in developing talent will
be over. We only want to say that specialised classes, not only the
above mentioned ones, can be one means in the realisation of the aims
of the school, in the field of educating talented children as well.

Competitions in mathematics

One of the fields of the realisation of talent might be competitions
in mathematics on different levels.
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I do not think the opinion which.can be read in Kéznevelés
/1981, 12./, a Hungarian paper on educational policy, leuds us into
the desired direction: "The atmosphere of competition may have
undesirable side effects, different forms of co-operation may weaken,
some pupils may be left out from dmong those who are rewarded or
reinforced}“ Such an opinion urges us in an indirect way to accept
the opinion thot as competition may be harmful, we should not have
any. It dxsregurds the fact that all processes in pedagogy might be
harmful. The advice "Let’s not do it because it mi.ght be harmful®
ties our hands. The competitive spirit must be strengthened at school
the opportunity.to. participation must be given to the best, the middling
and the weak ones as well. Competition may also be a means of developing
one’s talent, it may help-the pupils use their abilities to the optimum. "
Good competitive spirit and practice in competition may be a driving
“force. Care must be taken not to do this wrongly, either. It must be
taken into consideration that fear of the competition, prohibiting

" competition may couse difficulties right opposite to the ones mentioned
above. There is one type of fear, that the weaker ones will not receive
any recognition, but there is another one, that the very best will not
get the recognition which they would deserve in the competitions. Good
competition must be a part of the. everyday life of the- school.

The Estves competxtxons have been organised in Hungary -since 1894
every autumn those who were to pass the final exam in secondary school -
were given the opportunity to show their knowledge in u.competition. -
The best two papers were awarded 100 and 50 gold crowns respectively,

. and they Were published in the paper of the Society. Many mathematicians

* to become famous later had their first scholarly success here. These
competitions were trials of talent as well. Not all talented pupils
took burt in the'compefition, but it was proved that those who won were
talented. The competition was trustvorthly because it built on a-
relatively small amount of mothematical knowledge, it tested rather the
way of thinking, the richness of ideas, the udgptubxlxty of the competitor.
It is important to khow that those who entered, kept prepurihg for
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years for this prestigious coﬁpetition. There is no lower age limit set
for the competitors. It has happened several times, that a young person
won. In the preparation valuable help was given by “Kﬁzépiskolai Mo~
tematikai Lapok" /Mathematics Paper for Secondary Schools/, started

by Ddniel Arany in 1894, too, and the Competition Problems in Mathematics,
which contained the problems and elegant solutions of the first.32 _
competitions as well as valuable notes. From 1949 on this went on under
the name of "Kurschék Jézsef pupils’ competition in mathematics™.

The book "Competition Problems in Mathematics has been reissved
several times since, it is a valuable reading for both the interested
pupil and the teacher. The “Arany Déniel pupils’ competition” and the
"Secondary School Competition™ used all the earlier.favourable experieces .
Both attracted large numbers of pupils, already in 1962 more than three
thousand entered each. Nowadays the number is even higher. The Interna-
tional Student QOlympics in Mathematics has been organised for may years,
too, Hungarian participarls have had very good results. It can evident-
ly be put down to the good tratidions in this country, the preparation
is also well planned and high standard, and the participants can be
selected from a wide circle. The highest level competition is the - -
"Schweitzer Miklés Memorial Competxtxon” first of all for university
students, but younger people can also tuke part as vell, sometimes with
success. : :

~ The above mentxoned Kﬁzépxskolax Motemotikai Lapok widely attracts
several thousand pupxls and several hundred teachers, who all read it
regularly. There are problems set in it for several dge groups, the
pupils send in-the solutions and in the next issue the editors’ publxsh
the solution and the points earned by the pupxls. The system of -giving
points provides a very good method for learning and developing pup:.ls’
skills, and the articles contrxbuted by members of the Hungarian
Academy of Sciences are voluable, too. o

* Tibor Szele established o very good way of education within a

school in 1950 in Debrecen. He called these "afternoons of mathematics”,
and these were higher level than mathematical circles.
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Some aspects of talent development in educational policy and
Pedagogy

When talking ubout-the Qducution of talented children we have to
face both aspects of the issue: a complicated problem in social policy

and also one of educational policy. .

It is a practical problem that talent and genious are sometimes
used as synonyms, although beside the number of talented people, i.e.
those with an averuge talent the number af real geniouses is negligible.
It is o fact that there have always been geniouses. Gauss already
solved difficult mothematical problems at the age af three. Ampdre
could also calculate at the age of four. Canava was a confectioner’s
apprentice when his talent far sculpture was already evident: he
shaped such an excellent lion of butter that he attracted the attention
of a senator in Venice and earned his patronage. Mihély Munkdcsy also
showed his talent as a painter when painting boxes and the joiner’s
apprentice became a world-famous painter. Lész16 Lovdsz already wrote
good scholarly papers in mathematics when he was in secondary schoal,
he was a student when he got a scholarly degree, and he was just about
thirty when he was elected a corresponding member of the Hungarian
Academy of Sciences. _

Lipét Fe jér was 31 years old in 1911 when he became a full professor
at the university in Budapest. He was 30 when he formulated a basic
thesis in the theory of Fourxer lines and thus opened the way to modern
analysis. Rossini the famous composer was a lazy boy, so his father
apprenticed him to a blacksmith. Davy, omeof the pioneers in electronics
did not want to learn either.

Schools must draw no consequences from the above things. Least not
that they can or should try to educate Gausses or Darwins. They should
not think either that the way to the development of talent leads through
failure at school or onesided education. But they should not think -
either that if the school misses out on something the talented pupil
will make up for it later anyway.

It is nat the geniouses who give us our most trying tasks but the
so called typical talents. Geniouses are rare exceptions among people,

O
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who might be lucky or unlucky, sametimes a bleséing, sometimes a
disaster for the society. He always remains an eiception, sameone
extraardinory. The creative capacity of those with an average talent

is better than the average or it can be developed to be such. They

are able to organise their thoughts and actions better than the

average and they are able to cover one or more fields of universal
life. Talent understood in this way can be found in the mo jority of
children, and the circumstances /school education first of all in our

- case/ might unfald it, leave it latent, or make it waste away depending
on whether the influences are favourable or not, as teenagers are

still changing. So if we apply the adjective "*alented” to teenagers

it does not mean a state but rather better possibilities for development
than the .average. That is why the education authorities keep trying

to find theoretical and practical solutions of how to educate talented
children in an institutionalised form, because the task of education

is to promote and vrge this development.

Sorry ta say schools have not taken into account that different
children have different inclinations and abilities, they set the same
tasks to everybody. Already at the turn of the century the practice
was that a well defined quantity of teaching material had to be taught

.in prev;ously decided steps. This has basically remained the same up

to the present time. The school does its job in a prescribed "order",
and the personality of the children can manifest itself only within
this fromework. With some exaggeration we could say that the centrally
defined teaching material is not prepared in view of the child to be
taught, but of an age group or of a year in a certain type of school.
The stress is laid on the teaching material itself, the textbooks and
other teaching aids. There are some new measures though: the teaching
material is broken down to basic and additional units, this and -
specialisation opens the way ta changes, but petrified practices hinder
the quick changes. So far we have not been able to find the infallible
weans and methods of how to find and develop talented children, probably
they do not exist. But since school practice cannot do without
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selection and the application of different practices, it must operate
so as.not to lead the. pupil into a dead end eventually causing tragedy
in a period of his life.

It has become evident also that a single rigid central “set of
orders” does not work. The most important task seems to be to operate
the schools in the framework of an intensification programme as regards

the contents and quantity of the teaching material as well as the
teaching methods. I do not think about setting up a new type of school
when introducing and spreading the theoretical and practical aspects of
this concgpt. This is a collection of modern pedagogical methods and .
teaching materials, which have been part of earlier experiments. Drawing
the consequences from earlier experiences and developing the methods
further we can expect higher activity and productivity in schools, that
the'pupils will do more independent work, their creative ability will
grow. Beside presenting knowledge and usual explanations more room will
be freed for individual observation, experimentation so that the pupil
can be more active in acquiring knowledge. It is not the potential
intensity of abilities which is important but the frequency and method
of their utilisation. Talent develops through activity.
Teachers must accept the principle that disciplined school life is
not a mere conformity with rigid regulations, spirit is not the same
as pedontry without ideas, good methods must become common practice.
Those who know our schools from the inside, are aware that although
there are a number of tasks to be done, they do their best for establishin
themselves as creative workshops. /This seems to be proved by the fact
also, that the international society measuring achievements of teachers
JIEA/ when measuring such achievements in mathematics and the natural
" sciences in 24 countries of the world, came to Hungary as well, it found
that in the age éroups of ten, fourteen and eighteen year-olds the
Hungarian pupils were outstanding. In many comparisons they were ahead of
their age group. If they were not the first, they were among the best./
We should never forget that the person able to create something great
always worked very hard in all walks of life and found the aim and
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meaning of his life in this work. Gorky put it like this: talent is
work. We should never getstuck in the bleak practices of the usual,
but we must renew ourselves lead by stimulating dissatisfaction ad

the wish for becoming more and we must surmount pleusﬁnt repetition
with constantly seeking for what is new and better. A
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THE DEVELGPMENT OF A MODEL FOR COMPETENCE
IN MATHEMAT ICAL PROBLEM SOLVING
BASED ON SYSTEMS OF COGNITIVE REPRESENTATICON

] Gerald A. Goldin
Center for Mathematics, Science, and Computer Education

Rutgers - The State University of New Jersey

An overview is provided and theoretical progress reported on the
development of 8 unified model for competence in mathematical
problem solving. The model is based on five kinds-of mature
internal cognitive representational systems: (a) verbal/syntactic;
(b) imagistic; (c) formal notational; (d) heuristic planning and
executive control; and (e) affective. Three stages of construction
are posited: (1) semiotic; (2) structural developmental; and

(3) autonomous. New features described in the paper include
developmental precursors of imagistic representational systems,
and interactions of affective states with heuristic planning con-
figurations. In the present model, the mutual- and self-reference
of systems of representation provide an alternate way to under-
stand what have been called metacognitive processes. Implice-
tions are drawn for the psychology of mathematics education.

COGNITIVE REPRESENTATIONAL SYSTEMS

In earlier work the author has explored the definition of a representational
" system (RS), and proposed a model for problem solving competence based on
systems of cognitive representation. Briefly, an RS consists of primitive
characters or signs somehow embodied, together with rules for forming
permitted configurations of these, and for moving between configurations.
It also includes higher level structures of various kinds. Configurations or
structures in one RS can stand for or symfalizeé those in another. An RS
can admit ambiguriies which are resolved by going outside the system
through symbelizetion (Goldin, 1987; Kaput, 1983,1985; Palmer,1977).
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Cognitive RS's are constructs. They provide a framework for simulating the
internal processing which takes place when people solve mathematics
problems, playing the role of "higher level languages” in relation to the
possibility of "lower level” descriptions by neural networks. They are
intended to describe campelance--the capability of performance--rather
than behavior directly.

Fig. 1 illustrates a narrow, naive model entailing only two RS's--a model
too often adopted in teaching mathematical problem solving. The goal in
this model is for the student to Z7eéns/ste the problem directly from its
presented form in words and sentences into the formal mathematical no-
tation of numerals, formulas, and equations; and then to manipulate the -
symbols algorithmically. But the educational objectives--competencies--
implicit in a model such as this, are-highly inadequate. The translation
process can be achieved in many situations by teaching rote "key word”
recognition ("altogether” means +, "of” meens x , etc.), as if a dictionary
procedure were indicated. We regard this as #an-/ns/ght/u/ problem
solving. The present model (see Fig. 2) incorporates a much more complex
view of what is involved. It is based on five kinds of mature internal
cognitive RS's: verbal/syntactic, imagistic systems, formal notational,
heuristic planning and executive control, and affective. )

A versl/syntectic RS refers to capabilities for processing natural lan=
guage on the level of words and sentences--through dictionary information,
word-word association, parsing of sentences based on grammar and syntax
information, etc. /magistic systems refer to non-verbal, internal configu-
rations representing objects, attributes, relation}, and transformations.
They describe what might 1oosely be called “semantic” information, and are
needed for the meaningful interpretation of verbal problem statements.
Here dwell such interesting theoretical constructs as "phenomenolggical
primitives” (diSessa, 1983). The sfarme/ natetions! systems of mathema-
tics are highly structured symbolic RS's--numeration systems, arithmetic
algorithms, algebraic notation, rules for sgmbol manipulation, etc. Rather
unfortunately, the vast ma]orltg of school mathematics today is exclusive-
ly devoted to learning their use. In problem contexts, their structure can
be explored through-state-space analysis (Goldin, 1980). The Aeuristic
arocess (HP) is taken as the culminating construct in an RS of Aeuristic
Alenning end execulive contral. Four dimensions of analysis have been
proposed for examining and comparing HP’s: advance planning reasons for
using them, domain-specific ways of applying them, domains to which they
can be applied, and prescriptive criteria for suggesting ##&¢ they be
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applied (Goldin and Germain, 1983). Finally, en &/7ective system describes
the changing states of feeling that the problem solver experiences--and
utilizes--during problem solving.’

STAGES OF CONSTRUCTION

Constructivist researchers argue that knowledge is constructed by each
individual, rather than "transmitted" or “communicated” (Cobb and Steffe,
1983; von Glasersfeld, 1987). This metaphor can be given a more detailed
interpretation by regarding the cognitive RS's in the present model as
-constructed during three main stages. An jpventive-semiotic si8g¢é incor-
porates the development of new signs and/or configurations, and the initial
acts of symbolization in"which these are taken to stand for aspects of a
previously established'RS (Piaget, 1969). There follows a pariad af struc-
tursl gdevelopment for the new RS, driven primarily by structural features

. of the previously established system. Last, we enteran sutanoemoeus <~tage
during which'the new RS * "separates” from the old. Alternate symbolic re-
lationships now become possible for the new system, enabling the transfer
of competenmes to new domains.

DEV_ELDPMENTAL’ PRECURSORS OF IMAGISTIC SYSTEMS

The above ideas are illustrated by attempting a unified description of the
development in children of.imagistic RS's from their precursors. One
possible conceptualization of such development, generally consistent with_
Piagetian cognitive- developmental theorg, is illustrated in Figs. 3and 4. ~

" Space permits only 8 brief discussion here. The "brain system” is to be
thought of as representing inborn human capabilities. It provides a kind of-
template for sensory development, facilitating the construction--through
sensory-motor feedback, #/& the above stages--of an RS called the "sen~

" sory interpreter.” This system enables the individual to process sense- )
'data meaningfully, representing for instance the self-other correspondence
that makes imitation.possible in the child: It in turn serves as the main -
template for construction of imagistic RS's. This takes place through the
principal input and feedback channels shown, again v/& the stages dis-
cussed above. The correspondence with Piaget's broad developmental-

- stages is indicated. This picture describes what might be called the "bot-

~ tomup” development of the imagistic.systems which enter into the model
~ of Fig. 2. Later, during the autonomous stage of imagistic cognitive RS's,
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their development continues by means of verbal, formal, heuristic, and even
affective pathways--as well as through new ob]ect constructs by way of
the channels in the diagrem.

. AFFECTIVE PATHWAVS;' l

The affect described in the present model is not 1imited to global attitudes
or personality traits such as degree of independence (cf: McLeod, 1985). -
The emphasis rather is on /acs/ affect. The changing states of feeling
expressed by solvers during mathematical problem solving serve importent
functions, for experts as well as novices. They provide useful information,
facilitate monitoring, and suggest heuristic strategies. Fig. S illustrates -
two major affective pathways, one favorable and one unfavorabie, together
with conjectured relationships between the affective states and useful or
counterproductive heuristic configurations. : -

METACOGNITION VERSLS: NUTUAL; AND SELF-REFERENCE

The term metacognition has been used to refer to problem solvers’ know-
ledge &Zout their own knowledge states, manitaring of their own cognitive
processes, or belief systems about problem solving or about themselves. -
While considerable importance has been ascribed to it in mathematlcs :
education {e.g. Schoenfeld, 1983, 1985a,b), there remain serious
difficulties in trying to distinguish consistently between the cognitive and

the metacognitive. "If we acknowledge "objécts” to be cognitive constructs,

then everyday cognitions about objects are alreadg metacognitive. Tables
and chairs, words and sentences, numbers, mathematical formulas and
equations,.ideas, feelings, and heuristic plans are all commonly treated
(and mampulated) as “objects.” A heuristic-process such as "triel and
error” can be applied to "try” objects, numbers, or heuristic plens, and to ’
evaluate the outcomes of the trlals .

The present model rejects the cogmtlve/metacogmtwe dlstlnctlon as such, .’
but conjectures explicitly that the seme cognitive processes can be
gpplied to various domains, consisting of configurations from verious RS's.
Cognitive RS's are thus muwtuslly referentie/--as when equations (formal.
notational configurations) serve as “objects” and are manipulated imagis-
tically. . They are also se&//-referentis/--as when words and sentences
refer to words and sentences, or heuristic processes act on domains of
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heuristic processes. This concebtuallzatlon allows us to avoid the infinite
regress of levels of executive control, and to describe within the model 8
major complegitg of human problem solving. ’

IMPLICATIONS FOR THE F’SYCHOLOGY OF MATHEMATICS EDUCATION

The model suggests a psychological basis for establishing objectives in
teaching mathematical problem solving, and provides a unifying way to in-
terpret concept and schema development, so that these encompass rela-
tionships among the indicated cognitive RS's. It thus carries further a line
of thinking explored by Lesh (1981) and Lesh, Landau and Hamilton (1983).
Gur gasl shauld be ta develap in.students 61) of the Internal systems of
FEPresentation. 8s ywell 8s the processes thet ensbie these systems to
rererence lhemselves and esch ather Emphasis on formal notational
systems only may lead to rote algorithmic learning; exclusive reliance on
verbal/syntactic processing may limit students to vocabulary learning and
rote translation methods. We must focus explicitly on the development of
imagistic systems (including mathematical visualization, kinesthetic
.encoding, etc.), the executive system (including heuristic processes in all

" their aspects), and the affective system (including its productive use in
monitoring and in the evocation of heuristics). Structured clinical ]
interview research methods are well-suited for investigations based on the
present model, which can provide a theoretical framework from which to
proceed in aiming for replicability and comparability among such studies.
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PILOT WORK ON SECONDARY LEVEL

Miria Halmos _
Hungarian National Centre for Educational Technology (00K)

ABSTRACT

A new mathematical educational project on primary level

was initiated in Hungary in 1962 according to the
conception of Tamds Varga.A new programme based on this
project has been prepared which was implemented during

the seventies and early eighties. Pilot work started on
secondary level during the early seventies. The objectives
of mathematical education in'the new primary programme and
in the secondary experimental programme are essentially

the same. The secondary experiment is projected and guided
by the members of the Mathematical-Didactical Research .Group
of 00K (Hungarian National Centre for Educational Techlogy).
The most important educational objectives of the experiment
are the following: learning should begin at a very concrete
starting point and then lead children towards abstraction;
learn mathematics through the discovering of mathematics;
make mathematics liked by children.

1. INTRODUCTION

I could not start more adequately than by quoting Tamfs Varga
about the main motivation of the changing of the Hungarian mathe-
matical education:

", ..Any normal child is able to comprehend and learn every piece
of mathematics which is now taught .at school, as well as a good
deal more, to enable him to fit in with the requirements of
modern trends..."

Ahnew mathematical educational project on primary level was
initiated in Hungary in 1962 according.to the conception of Tagés
Varga. A new programme based on this project has been prepared which

was implemented during the seventies and early eighties.

ERIC
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Pilot work extending this project to the secondary level has started
during the early seventies. The secondgry programme was based earlier on
the traditional primary programme. A secondary experiment has been started
in 1976, which is based on the new primary ﬁathematical programme, modern
both in method and in content. The objectives of mathematical education
in the new primary programme and in the secondary experimental programme
are.essentially the same. Differences result from the fact that we face
Q different age-group.

The secondary ex}eriment is projected and guided by the members
of the Mathematical-Didactical Research Group of OOK.(Hungariaﬁ
National Cenére for Educational Technology). This research group was
directed by Professor Jénos Surényi for more'than two decades.

This secondary experiment will be discussed in this report.

The experiment is running in 40 classes with 10-10 classes in
the same age-group (age 14-18) at present. The experiments begin in the
first classes of secondary school (age 14) continued in each case with
the classes of'higher grades up to ﬁatufity (age 18). Materials are
prepared both for children and teachers, and these are changed on the

basis of classroom-experiences. These chaﬁges are not finalized yet.
2 .EDUCATIONAL 0BJECTIVE§ AND. PRINCIPLES OF THE EXPERIMENT

a.The abstraction process

The process of abstraction is one for which considerable time must
be allowed. Children do not abstract automatically. Mathematics is very
abstract. This is in fact its greatest.strength, since it'means, in
effect, that it condenses into itself the essence of a great number of
concrete phenomena. In order to get this very abstract structure we have
to begin at 'a very concrete starting point and then lead children towards

abstraction.

b.Discovery

"The best way to learn anything is to discover it by yourself",
wrote George Polya. This is very true in mathematical learning. This
means that there is hardly anything more important, than leading the

E \l‘l ‘en to meet mathematics in status nascendi or to make them

T OVer 1t. S
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When teaching is going this way, learning is realised through
problem solving. Definitions, axioms, notations, terminology are also
very important in mathematics. Children learn independently to name and

.symbolize mathematical entities. These ones are also discoverable.
c.Motivation

Learning is based on intrinsic rather than extrinsic motivation.
This simply means to try as far as possible to build on children's
interest: to provide children with challenging problems which are
neither too difficult nor too easy for them; to make children get used
to checking and correcting their own work (;omething is_correct not
because the teacher has said but because it has been checked and found
correct). )

Consequently, it is important to consider the individual differences
between children. This is, of course, intimately connected with
the principle "to discover by yourself". The children that are able
to do more will produce more, both in quantity and quality. Another
consequence is that nobody should be ashamed of having committed a
mathematical error. To have committed an error gives an opportugity for
‘discussion and could never be used by a teacher for making a chilq look
small. ’

The greatest intrinsic reward for children is to get on happily
with the topic in hand. That is connected with the very important
objective, to make mathematics liked by childreﬁ. The mechanical tedious
training should be avoided for that purpose.The training is to be embedded

into challenging activities. .

d.Mathematics as a tool; mathematics as a whole; mathematics as an art. .

In learning mathematics application is the best starting point. When
it is possible it is worth taking problems from other (nonmathematical)
.subjecté. Problems drawn upon real-life situations may "help to develop
in children a feeling for order of magnitude and reasonable approximation,
skill in estimation or iﬁ répid fough calculation of numerical results.

The structure of the curriculum aihs at removing the fragmentatibn
O the various mathematical disciplines: arithmetics, algebra, geometry,

[E[Q\!(: function are integrated in our experimental mathematical documents;

interlacing. with 8 other.
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! Many children leave school without ever .having felt the beauty of
mathematics. To make children realise the beauty of mathematics the first
step is to remove the fear and anxiety from mathematics. To realise and
enjoy the beauty of mathematics children must be given sufficent

opportunity for free, creative activity.

3. EXPERIMENTAL DOCUMENTS

The children use the following books:
1. grade (age 14-15, 4 lessons per week)
Miscellaneous problems
Arithmetics
Algebra I.
Geometry I.
Functions
' Algebra II.
Geomgtr& II.

Combinatorics

2. grade (age 15-16, 4 lessons per week)
Quadratic function
Algebra
Trigonometry I.
Geometry
Trigonometry II.

Combinatorics

3. grade (age 16-17, 3 lessons per week)
Miscellaneous problems
Extension of the.concept of power and logarithms
Vectors ’

Coordinate-geometry '

4. grade (age 17-18, 3 lessons per week)

Miscellaneous problems BEST GOPY A\!A!LAQ)LE

l: \l‘\c Series ~
» K Spatial geometr 4 @
P & y

Recapitulation . :
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a.Miscellaneous problems

This kind of books is available for flrst, third and fourth grades.
These books contain different kinds of not "too difficult, yet non-routine
‘problems.

They usually do not require much more than logical thinking or
some unusual combination of simple knowledge. Also mathematical
recreational problems can be found amongst them. This kind of problems
have a role in helping children to like mathematics. Puzzles can be
excellent starting points for deep ideas in school mathematics.

The miscellaneous problems often throw light to some topics of
elementary mathematics not treated systematically.

They may also be simple special cases of advanced problems usually
discussed in higher mathematics.

Other miscellaneous problems are destined for preparing topics

to be treated in details later on.

b.Recapitulation
This book includes concepts, theorems and their proofs, problems
and their solutions selecting some topics (sets, arithmetics, algebra,

functions, combinatorics) of the 4 years.

c. The structure of textbooks

The textbooks consist of problemseries, which allow the children
to discover the subject-matter, then summary of the subject, after that
further problems -and interesting parts from books and articles concerning

the discussed themes.

d. The guides for teachers

The textbooks for children may be discussed according to the order
of the listing above, but it is only one possibility. Other possibilities
are given in the guides for teachers.

The guides for teachers includes also the solutions of the problems

.ined in the textbooks ana_hére is listed the problems to be used

[Elz\!(: he gifted -children.
45 BESTCOPY AVAILABLE
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ON THE TEXTUAL AND THE SEMANTIC STRUCTURE OF MAPPING RULE
AND MULTIPLICATIVE COMPARE PROBLEMS

Guershon Harel
Northern 1111nois University
Thomas Post

University of Minnesota
Merlyn Behr
" Northern 111inofs University

_In this paper we will (a) compare the textual and the semantic structures of
division problems in the Mapping Rule category to those in the Multiplicative
Compars category, (b) show how different interpretations of the string.
underlying the textual structure of Multiplicative Compare problems - - the
phrase "as many as" - - influence the representation of division problems as
partitive or quotitive, and (¢) suggest an instrument to answer empirically
the quastton of what implicit 1nterpretat10n students give to the phrase “as
many gas.’

In analyzing the propostttonal structure of multiplicative problems Nesher (1987)
1dent1f1ed and formulated three different categories: Mapping Rule, Multiplicative Compare, and
Cartesian Multtpltcatton In this paper we are interested in the textual and the semantic
structures of the first two categor fes.

Mapping Rule, Ina Mapping Rule problem there is a mapptng rule between the two
measure spaces from which the units are derived.” For example, in the multiplication (M)
problem: ; .
My. Thereare S shelves of books in Dan's room.

Dan put 8 books on each shelf.
How many books are there in his reom?

This ressarch was supported in part by the National Sclence Foundation under grant No. 44-22968..
Any opinions, findings, and conclusions. expressed are thoss of the authors and do not mssmly reﬂect
the views of National Science Foundation.
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. the phrase "8 books on each shelf” is the mépping rule between the measure spaces “shelves”-and
"books."

Z Nesher characterized the two types of division problems in the Mapping Rule categdry,
partitive and quotitive, as follows. A division problem is partitive if the question is about the
string which was the mapping rule in the corresponding multiplication problem, such as in the
following division (D) prablem:

"D, There were 40 books in the room, and

S shelves.
How many books are there on esch shelf?
A division problem- s quotitive if the question is about the string which was an existen}ial
descriptidn in the corresponding multiplication problem, such as in the following division
problem:
D3z. Therewere 40 books in the room.

8 books on sach shelf,
How many shelves were there?

Multiplicative Compare. A Multiplicative Compare problem is one in which a
one-directional-scalar-funciton is used to compare between two problem quantities. For
example, in ths multiplication problem '

Mg. Dan has 12 marbles.

Ruth has 6 times as many marbles as Dan has.
_ How many marbles does Ruth have?”
the-phrase “Ruth has 4 times as many marbles as Dan has” is the one-directional~scalar-function
between the quantities representing Dan's set of marbles and Ruth's set of merbles.

Nesher did not characterize partitive and quotitive problems in the Multiplicative
Compare category. Howsver, according to Greer's ( | 985) extension of the type of division
problems, & problém is partitiveor quotitive, respectively, according to whether the divisor is
conceived of as the multiplier or as the multiplicand in the corresponding multiplication problem.

If we hold that the numbers 6 and 12 in Problem M, are the divisor and the multiplicand,
respectively, then based on Gresr's extension, the following divisiqn problems ( D5 and Dg) would
be partitive and quotitive, respectively. (As can be sesn from Problems My, D,, and D3, Greer’s
extension agrees with Nesher's characterization of Mapping Rule division problems.)
Ds. Ruth has 72 marbles.
Q - Ruth has &6 .times as many marbles as Dan has.

ERIC T 48
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How many marbles does Dan have?"
Dg. Ruth has 72 marbles.
Dan has 12 marbles.
How many times as many as Dan doss Ruth have?

_ Using Nesher propositional terminology, we get that a division problem from the
Multiplicative Compare category is partitive if the question is on the string which was an
existential description in the corresponding multiplication problem (ses, for example, division
problems Dg with respect to the multiplication problem M 4)- similarly; adivision problem is

quotitive if the question is about the string which was the one- directional-scalar-function in the
djrresponding multiplic_ation problem (ses, for example, Problems Dg with hespect to Problem
My).

We will ses now that these definitions of partitive and qdotit!ve Multiplicative Compare

problems are based on a specific Interpretation of_the phrase “as many as;" a different
interpretation of this phrase would lead to opposite definitions. Consider, for example, Problem

Ds. The phrass “Ruth has 6 tl.mes,as many marbles as Dan hes” can be interpreted as a
un1t-ratdrper4statement, i.e. ,.fdr each marble of Dan, there are 6 merbles of Ruth (ses Figure

1), or as a lot-per-statement, i.e., for Dan's sst of merbles there are 6 sets of marbles of Ruth,
sach of which is equivalent to Dan’s set (see Figure 2).

Figure 1
Ruth’s <nm\ ooo‘ e ./ 72 marbles
. s ¢ 3 7 7 merbies
L
Fiqure 2
: / 72 marbles
Q ! ?.__marbleé
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If the phrass “as meny as" is interpreted as a unit-rate-per-statsment, then Problem Dg

would be concaived of as a quotitive and not as a partitive as was indicated earlier. This is because
under this interpretation, to find how many marbles Dan has, one needs to find the number of
times the st of 6 marbles goes into the set of 72 marbles (see Figure 1). On the other hand, if the
phrase “ss many as” is interpreted as a lot-per-statement, the problem situation would suggest
that (a) there is one set of marbles belongs to Dan, which egainst it there are 6 sets of marbles .
belong to Ruth, each of which is equivalent to Dan's set, and (b) Ruth has 72 marbles. (Ses Figure
2.) Thus, to find how many marbles Dan hes, one needs to find the number of marblses in each

Ruth's set. This situation suggests that Problem Dg is of partitive division type.
Applying the same analysis to Problem Dg, it will be found thet the problem is conceived

of as partitive or quotitive aecofding to if the phrase “as many as" is interpretedas @
lot-per-statement or as a unit-rate-per-statement, respectively.

RELATIONSHIPS BETWEEN PROBLEM STRUCTURES

We indicate that under the lot-per-statement- interpretation, partitive (quotitive)

) Mapping Rule problems have the same textual structure as the quotitive (partitive) Multiplicative
Compare problems ( see Figure 3): The duestion in a Mapping Rule partitive problem and in a
Multiplicative Compare @ut/tive problem is about the string which was an-gssociation (i.e.,
either as a mapping rule or as a one-directional scalar- function) between two measure spaces in

. the corresponding multiplication problem. similarly, the question in the Mapping Rule @w!/lrve
problem and in the Multiplicative Compare pert/tive problem is about the string which was an
existential description in the corresponding multiplication problem. On the other hond,'undar the
unit-rate-per-statement interpretation, the Mapping Rule partitive and quotitive problems are
of the same structure as of the Multiplicative Compare partlfive and quotitive problems,
respectively (ses Figure 3). :

" BEST COPY AVAILABLE
ERIC

A FuiToxt provided by

o
RS

A



- 376, -
Hgure3

ED - Existential Desoription Ass - Assoclation

Mapping Rule’
Multipitoation _ Partitive quotitive
- 3 shelves of bocks (ED) - 40 books (eD) = 40 books (eD)
-8booksoneach (Ass) -3 shelves (eD) - 8 books on each {Ass)
- How many books? (ED) - How many on each (Ass) - How many shelves (ED)
Multipticative Compare
(Lot-per—statement interpretation)
_ MuttipHoation quoiitive Partitive
« Dan has 12 marbles (ED) = Ruth has 72 marbles (ED) = Ruth has 72 marbles (ED)
-Ruthhas 6 times as many - Dan has 12 marbles  (ED) - Ruth has 6 timesas many
marbles as Dan has {Ass) - How many times as many as marbles as Dan has {Ass)
- How many marbles Dan does Ruth have? (Ass) = How many marbles
does Ruth have?  (ED) does Dan have?  (ED)
Multipliostive Compare

(Unit-rate-per-statement interpretation)

Multiptication Partitive quotitive
- Dan has 12 martles (ED) - Ruth has 72 morbles (ED) - Ruth has 72 marbles (ED)
= Ruth has 6 times as many - Dan has 12 marbles (ED) - Ruth has 6 times 85 many
" marbles a5 Dan has (ASS) - How many times 2s many as marbles a3 Dan has (Ass)
- How many marbles Dan does Ruth have? (Ass) = How many marbles

does Ruth have?  (ED) does Dan have? {ep)

" AN EXPERIMENT

We will suggest now an experiment to answer empirically the question of whether the
phrase "as many as” in division problems from the Multiplicative Compare category is interpreted
- implicitly by students as a unit-rate-per-statement or as a lot-per-statement. This experiment
is m{rt of an instrument we have developed to assess the inservice teachers' knowledge of
. BEST COPY AVAILABLE 504
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multiplicative structures, which is under way and Wm be 'reported at Post Harel and Behr (in
preparation). Itemsf rom this experiment include the following example. We gave studsnts two
variations of adivision problem. In the first variation the problem quantities violate the intuitive
partitive model but conform with the intuitive quotitive mode! ( Fischbein, Deri, Nello, and
Marino, 1985). This variation can be achieved, for example, by taking the divisor to be a
fractional number and smaller than the dividend. The second variation is a problem in which the.
quantities conforms with the two intuitive modsls, which can be achieved, for exainble, by taking
the divisor a whoie number and smaller than the dividend. Examples of these variations are
_Problems D, and Dg, respectivsly. ’

' D,. Steve has 72 pizzss.

Steve has 6. 3 times as many pizzas as John.

How many pizzas does John have?

Dg. Steve has 72 pizzes.
Steve has 6 times as many pizzas as John.
How many pizzas does John have?
Fischbein et al. (1985) and others (Gresr, 1985; Greer and Mangen, 1984; Mangan,

1986; Tirosh, Grasber', and Glover 1986 ; Harel, Post, and Behr, in preparation) found that
children and teachers &s well select a non—correct opsration when they are presented with
problems including numbers that conflict with the rules of the primltive' models; students’
performance on problems which conforms with the intuitive models is relatively high. Thus, if
the phrase “8s many as" is interpreted by the students &s a lot-per-statement, then, as has besn
shown earlier, the two variations (D5 and Dg) would be represented as partitive division

problems. Consequently, it would be expected that the students will perform better on the sscond
variation (Problem Dg), which does not violate the partitive model, than on the first variation

(Problem D), which dogs violates the partitive model. On the other hand, if the problem is
interpreted as a unit-rate-per-statement, then the problem (in the two variations) would be
represented as a quotitive division. Conseguently, it would be expected that the students’
performance would be equr,!'ly high on the two variations, since both problems do not violate the
intuitive quotitive models.

) B : ’
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CONCLUSIONS

From this analysis we ses that the interpretation of the phrase “as many as” affect the
ssmantic structure of Multiplicative Compare division problems. The pedagogical value of this
analysis is thet it points out the need to enrich the cultural and educational exper fences which
underlie children's undorstondlng of Multiplicative Compare division problems. Students should
be able to move from ons interpretation to another in order to construct the problem
representation that most incorporates with their knowledge. Our analysis of Missing Value
Proportion Problems (Harel and Bohr 1988) and research by many others (e.g., Davis, 1984;
Greono, 1983; Behr, Lesh, and Post, 1 986) demanstrate the importance of the use of dlfferent
problem representotlons during the courss of a problem solution.

The types of the quantities, discrete or continuous, involved in the problem sesm to have
an impact on the interpretation of the phrase “as many 8s," and consequently on the semantic
interpretation of the problem as quotitive or partifive. As was shown earlfer, an “8s many &s”
phrase which involves discrete quantltles_oon be Interpf‘oted either as a unit-rate-per-statement
or as a lot-per-statement. On the other hand, if the quantities are continuous, it is more likely
that the phrase “as many as" would be interpreted &s a lot-per-stetement, such as in the phrase “a
mountain renge fs 124 times as long as a mural of it.” However, this hypothesis and the analysis '
doscribed in this paper needs further considerations.
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FORGING THE LiNK BETWEEN PRACTICAL
AND.-FORMAL MATHEMATICS
K. M. Hart and A. Sinkinson
Nuffield Secondary Mathematics

The research project ‘Children's Mathematical Frameworks’

-monitored the transition from the use of concrete materials to the
mathematical formalisation which was the synthesis of these
practicael experiences. The data were collected from interviews
with children and classroom observations of teachers and pupils.
‘The children tended to say that there was little or no connection
between the two types of mathematical experience. The Nuffield
project uses the same methodology as CMF but attempts to
compare results and children's opinions when &) the ‘normal’
transition is made and b) a distinctive, different type of
experience is provided to establish & link between the concrete
work and formalisation.

The research project ‘Children's Mathematical. Frameworks' (CMF) was
designed to monitor the transition from the use of. practical/concrete
material to formal/symbolic mathematics. The sample was composed of
British chiidren aged between 8 and 13 years. For at least 20 years the
training of teachers-in Britain has been influenced by the theories of Piaget
and more significantly by those who sought to implement these theories in

.suggestions for classroom practice. Thus teachers have come to believe

that the most beneficial method of teaching mathematics to children
deemed to be at the concrete gperational level of cognitive development, is
through the use of concrete materials (manipulatives). This is often
extended to ‘mathematics should be taught through practical work’. The

“mathematics taught in the secondary school, however, assumes the use of

O

symbols and generalisations which constitute a more formal system. CMF
was only concerned with the use of materials in a series of experiences
carefully structured by the teacher so that they culminated in a
generalisation, formula or rule. This ‘ formalisation’ was supposed to be the
~“atement or symbolisation of the synthesis of.the experiences: For

KC ample the formula for the area of a rectangle could be regarded as coming )
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naturally from many activities which involved using tiles, counting squares,
drawing shapes to encompass & given number of squares etc.

The methodology of CMF involved the mterwewmg ‘of some of the children
being taught in this way (1) before the start of teaching, (ii) just before the
lesson in which the ‘formalisation was verbalised, (iii) immediately after =
this lesson and (iv) three months later. The ‘formalisation’ lesson(s) were v
observed and tape-recorded by the researchers. The results, previously
reported at PME, showed generally that the pupils saw no connection

between the two types of work they had experienced, to quote - ‘sums is
sums and bricks is bricks’. Additionally te.ache'rs made little effort to
describe why the transition was being made nor to emphasise the
generalisability of the new ‘formalisation’. They might appesl to the time -
‘saved by using the new method or to the inconvenience of carrying bricks in
order to perform mathematical calculations but generally, although the
pupils were told they would understand better if they used materials, the
link to a final formula was not stressed.

In September 1987, we were funded by Nuffield for one year to continue and
extend this work. The hypothesis for the new research is that the gap -
between the use of concrete materials and the formalisation (which is often
written symbolically) is very great and that 't_:h'ildren would benefit froma
third type of experience, essentislly different from both but acting as 8
bridge between them. This bridge activity might be discussion, child
verbalisation, diagrammatic representation, tabulation etc., but its role is
clearly seen as that of connecting practical work to more formal
mathematics. :

The informati_ori obtained from the observation of classrooms and teachers
during the CMF project, has proved to be very illuminating. The-CHF records
“were of teachers using their own schemes of work and the methods they
suggested as effective. These results give a different view of classroom
happenings than those reported by mathematics educators who are seeking
to change practice by the introduction of innovative procedures. The role of
the researcher in the formalisation lessons was that of observer and
""‘"'der and was not concerned with intervention. We have sought to extend
]: KC data by again observing experienced teachers,-audio-taping their

o B4
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words and then transcribing the tapes. The Nuffield research involves nine
secondary teachers (seven of whom are heads of mathematics departments)
and two primary school teachers, one of whom is the head of the school.
Seven of these eleven teachers are engaged in study for a masters degree in
mathematics education. Their-analysis of the research experiences forms
part of the work to be assessed for the award of the dégree. The teachers
have volunteered to be part of the research and are both experienced and
confident. Each is asked to teach one of the following topics (already
investigated in CMF) to children for whom they thought it appropriate:

(1) the formula for the area of 8 rectangle, (11) the formula for the volume of
a cuboid, (ii{) the rule for generating equivalent fractions, (iv) 8 method for
solving'algebraic equations. The rule is to be the synthesis of a series of
practicel sxperiences. The teacher chooses two matched sets of children to
teach, either-the two halves of a class or two classes which are seen as
roughly comparable in attainment.’ One group is taught using concrete
experiences leading to a8 formalisation and the other group has an additional
, bridgmg experience.

The teacher gives a pre-test on the topic to each group, the test is provided
and marked by the researchers and is based on questions tried and found
informative in CMF and CSMS. For the ‘normal’ group the teacher writes a
scheme of work, a copy of which is sent to the researchers for information.
The 'formalisation’ lesson is tape-recorded and observed by a researcher,
then transcribed and analysed. The teacher is provided with a post-test and
asked to interview six children in the group in order to amplify the
information obtained from it. -Some training in interview techniques is
given to each teacher and they are supplied with questions to use in the
interviews. After the teaching of Group ! is finished, the teacher meets
with the researcher to discuss the nature of the ‘bridge’ which forms the
distinctive feature of the second teaching sequence. The ‘bridge’ is defined
as essentially different to a) the two types of experiences already in the
scheme of work and b) whatever was used by the teacher in the
‘formalisation’ lesson, thus if the teacher used diagrams in the
‘formalisation’ 1esson then diagrams could not be the distinguishing feature
of the ‘bridge’. The second teaching sequence also includes pre and post
G572 and Interyiews ag Lelore but hou an edtre sel of activitics which fori
[KCH-" 58 Hm: iy the rexenrchsrs Interddae Lhibiren fiao both sels U ee
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months 1ater to discover whether the conscious effort of the teacher to link
two very different types of working has helped the children see a link.

The research is in progress {(Jan88) and it is hoped that some results can be
presented-at PME 12. Scrutiny of the schemes of work of five teacher and
transcripts of some of their lessons 1eads us to make some comments which
might be recognised as true of other teachers in other places. Firstly, the
concrete material is not taken seriously by the teacher in that its essence,
be it wood or tin of particular 1ength or weight is often ignored or distorted.
For example, one teacher asked a boy how he would show 2x + 3 = 17 using
Cuesenaire rods (these were the manipulatjves),. There is no-rod designed to
be 17 units in 1ength, so the child is forced to pretend. The conversation
continues thus:

{T: Teacher. P: Pupill
T (repeats), now how would | do it with my rods? How
would | do it with my rods?
Put a... say you had blue, on the bottom
Put a blue on the bottom, what's that going to-represent?
The 17
That's going to represent the whole lot, the 17.
And then say, take pink and-that would represent the
three that you're taking away
That's the 3 I'm taking away
And the gap left is the 2x

DHPAD

oA

Already the bricks are superfluous and possibly stand in the way of
understanding since their colour and length have no.relation to the numbers
they are meant to represent. The words ‘take away' which convey ‘removal’
cannot be accurately used if there is no way the requisite amount of wood in
the blue rod can be removed. The mode! set up demonstrates a ‘difference’ in
length. Another teacher also used rods to introduce solution of equations
and even when the wood was no longer there, referred {o ‘chopping’. The
child was asked to remember how 2x = 10 was represented:-

T: However we did have some that looked like this, where we
had 2 of the rods put together, equalled one whole rod,
remember’7 How did we do w1th those? Yes, Tamsin

T 56
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P: Say you had one x there, we put 2x plus.... you split it

in half

T: ° Wesplitit inhalf, remember, we chopped it in hailf. We
~+  kept takling about chopping it in half, yes?. So what did
we write down there Christopher, can you remember?

T 10....

P: Take away S

LE Oh no, | dont think...| can see you can see it's 5 yes.. go
back to you Tamsin

P: 10 divided by 2

T: 10 divided by 2, cos we're chopping that one in half, "

8lright? Because we've got 2 of them remember, in your
~* mind, the two rods side by side equals the ten, chop it in
“half...x equals 10 qver_'-2, X equais....

oy

It is however much more sensible to remove-or ‘take away’ one of the 'x' rods .
(or-5) than to chop wlth a non- exlsting chopper where there is alreadg a
split! . i -

) ‘Secondly, the'material set.up to represent the mathematics, very often
rep}'esent‘s only the simplest case or perhaps only one aspect of the rule.
Forexample if . repreéents-2x +3 =9, how does one represent
2% - 3 =97 Consequently, much of the formalisation is based itself on a
formalisation which is tied to the material. This does not deter teachers

* . from referring (verbally) to.the manipulatives although the.mathematics

: being discussed cannot itself be represented by them. A classic example is

’ referring to -3, -4 as points on a number line when-the topic under

. consideration is multiplication of negativexnu‘mbers.

E . It IS possible that by trying to ‘make contrete’ certain parts of
mathematlcs we have confused rather than helped children. Can teachers be
expected to set up concrete models for many topics, in such a way that they
covera number of situations and not just the simplest? In our research we
“hope to provide evidence of planned ways of bridging the gdp between '
. concrete experiences and formallsation in situations where the teacher
' thought the practlcal aspect would be effective.

wll Toxt Provided by ERIC
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THE KINDERGAhTMIERS' UNDERSTANDNG OF THE NOTION OF RANK:

Nicolas Herscovics, Concordia University
Jacques C. Bergeron, Université de Montréal
Abstract

iWhen the natural numbers are viewed as the means to seasure

the rank of an-object in an erdered set, the netion of rank can
then .be considered as e pre-cencept of number. This r?petr‘

reports the results of a study regerding the kindergartners'

understending of rank. Our Investigation shows that three

distinct components of understanding cen be found smong this

. 8ge group. fill 24 children tested indicated they had an intultive

understanding as evldenced by their abliity {0 estimate order

related concepts on the basis of visuel perception. B more

advanced level of .comprehension, thet of procedurel

understanding, was evidenced when each child proved able to

. __.use procedures based on c¢ne-to-one correspondences te

- construct. ordered sets subject to constralnte om some

-~ elements which had to be positioned before or efter or
together with anether one. R third component of
understanding, that of abstraection, was studied _thmugh' :

various tasks ascertalning the suhjacfs' ability to percelve the

. invarlance of renk with respect fto varlous surfece

transformations, that is, changes in the disposition of the
objects which did not affect the glven rank .

In their -seminal study on the emergence of number in the child's mind, Piaget and- .
Szeminska (1941/1967)-discriminated between the cerdinal and ordinal aspects of number.
Much of their work on cardinality was an -extension of earlier work involving = the
conservation of liquid and mass. They approached ordination through the study “of
asymmetric relations such as those implied in the seriation of objects of different lengths or
of different masses. Thirty years later,’Brainerd (1973) sought to. establish a possible priority -
“between the two’ complementery aspects of number also by using tasks involving length and
mass and found that “ordination emerges prior to cardination”. However his findings may be
atributed to his exprimental design for they are.in sharp conirast with- Piaget's own
conclusions: . ‘

*Several authors {Freudenthal,etc.) seem to have understood that | think the
_ordinal number is more primitive than the cardinal number, or the opposite. | have
. nevor made such a statement and have always considered.these two aspects of
finite numbers indissociable and. psychologically reinforcing one another in a

synthesis that goes beyond both the inclusion of classes and the order of
asymmetrical transitive relations™ (Piaget;1973,p.82) .

“We wish to thank our research assistants Anne Bergeron and Marielle Signori whose.
' O _tions have improved the quality of both the tasks and ‘the questions. -
E MC ‘ch funded by the Quebec Ministry of Education,FCAR Grant EQ 2923
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But in fact, Freudenthal's disagreement with Piaget runs much deeper. It is at the level of
fundamental definition. Freudenthal distinguishes between counting numbers, by which
he means the number word sequence, and numerosity numbers which refer :. “the
potency or cardinality” of a finte set (Freudenthal,1973,170-171). When chii== ,aup the
sequential nature of the counting numbers, they become aware of ther intrinsic ordinal
nature. According to Freudenthal, “In the genesis of the number concept the counting
number plays the first and most pregnant role."(p.191) and he criticizes Piaget for ignoring
it: "His indifference with regard to the counting aspect is so deeply rooted that he mostly
tacitly assumes that his test children can count and he never mentions how far they can
count™(p.193).

We tend to agree with Freudental's view that the concept of number emerges from the
application of the number word sequence to various enumeration activities. We also agree
with Piaget's contention that the concept of order is independent of the number concept,
" witness the various seriation tasks he has suggested. However, the notion of an ordered set
need not be restricted to seriation of physical quantities. In fact, a set can be ordered simply
on the basis of the position of its elements. The position of any pencil in a set of ten pencils
of different lengths can always be ascertained on the basis of its size. But in a row of ten
chips, if the seventh one is removed and the gap it leaves is eliminated by readjusting the
row, it will be very hard to re-insert the chip without knowing its precise rank. This example
highlights the ordinal use of number, that of measuring the rank of an object in an
ordered set. In this sense, the notion of rank can be viewed as a pre-concept of number.

In our analysis of the notion of rank, we have postulated three distinct components of the
childs understanding of this conceptual schema. A first componentwhich can be-
considered as an intuitive understanding of this concept, reflects a type of thinking
based essentially on visual perception. At this level, a child perceives a certain order in a
set and can decide about an object coming before or after or at the same time or .
together with another one; whether an object is between two other ones can also be
determined from a purely visual estimation.

A more advanced level of operation is involved when children can use a more rational
procedure to make these judgments about rank and position with reliability and precision.
The acqulsition of such procedures brings about a deeper grasp of these concepts which
can be viewed as procedural understanding. These concepts can be assessed by
using procedures based on one-to-one correspondences. While stil being
non-numerical in the sense that no enumeration is jnvolved, such procedwes can be
carried out physically by the children and provide them with an assurance that mere visual
estimation cannot achieve.

Still a more advanced level of understanding is evidenced when the child's conception of
“rank becomes.more stable and can resist various surface transformations. The cognitive
processes which enable children to overcome the misleading information they obtain from
their visual perceptions bring about a level of understanding which we qualify as
abstraction . It is characterized by their ability to recognize the invariance of rank under
3~ “"ormations which change the disposition of the objects without changing their rank.

ERIC
= - 89
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The present paper describes the different tasks we have designed to assess the
kmdgrgmners' knoyvledge of rank-related concepts. These tasks gh‘ava been used in
semi-standardized .interviews with 24 children (average age, 5:.8) coming from three
different schools in Greater Montreal. The interview dealing with rank lasted about 30
mmutgs and was videotaped. The same children were interviewed on their knowledge of
Quantity and their responses are reported in a -companion paper, The kindergartners'
Understanding of discrete quantity by J.C.Bergeron & N.Herscovics.

Intuitive understanding

At the level of intuitive understanding, one can find primitive concepts of rank based purely
on visual estimation. The child develops ideas such as before, after. at the same time

- or together, between, first and last without any recourse to numeration. In order to -
assess this we designed the following task. Eight toy horses of different colors were placed
in the row shown below. At first, it was necessary to verify that each child knew the colors
we used. Thus the child was given the eight horses and was asked to hand them over io the
interviewer who asked for specific colors. These were aligned as shown below:

brown orange yellow blue green black white

7 188t

red

]

Y

The questioning .proceeded as follows:
(a) Look, my horses are in a race and here is the finish line.
Can you show me a horse that is before (in front of) the blue horse?
Are there other horses before (in front of) the blue horse?
(b) Can you show me a horse which is after (behind) the yellow horse?
Are there other horses after (behind) the yellow horse? i '
(c) Can you show me the first horse? Can you show me the last horse?
(d) Can you show me a horge that is between the white horse and the blue
horse? Is there another horse between the white horse and the blue horse?
(e) Can you show me two horses that come along at the same time (together)?

Results show that ‘most of the 24 subjects ‘could handle these questions with ease. All
children had acquired the general meaning of "before™ except one child who interpreted it
as "immediately befors™. Similar results were obtained for the question on “after” where
three children had interpreted it as "immediately after™. Nineteen of the children understood
"at the same time", while five required the expression “together”. The notion of "between”
was understood by all children who pointed out the two horses between the white one and
the blue one. The wards “frst” and “last” were familiar to all subjects.

" As can be seen from the previous tasks, the notion of order and many of its subconcepts
exist in the kindergewtner's mind. The notion of rank is somewhat more difficult to assess.
Thin is due lo the lact that while the child is exposed to all kinds of Questions dealing with

Q@ oation, those dealing with position in an ordered set are seldom raised. In. order to
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investigate the children's thinking about rank we thought that the notion of a perade was
quite adapted to our neads since it incorperates the idea of order which is maintained aven

after motion (which is not the case in a race). A major difficulty we had to overcome was at
the level of language. '

initially, in-our pretests, we had used the word place 1o indicate rank. This was understood
by some children and not by others. One common misinterpretation was due to the fact that
this word is also used to describe the site where an cbject was, its location. The question
°did it change its place” could be interpreted in these two ways. Thus while an element
in an ordered set might have changed its rank when the first object in the row was removed,
some children answered that “its place did not change because it did not move”. The
same kind of linguistic problems surfaced with the word “position°.

Yet every child we had interviewed in our prior research could use the natural numbers in

ther ordinal sense, that is in their function as a measwre of rank. Each subject we had

tested in our previous experiments (Bergeron, Herscovics & Bergeron,1986). could identify

- the second, third, fourth,.... element in & row. Quite interestingly, many children referred to

the object's rank as “its number” (in French "son numéro®). Thus, we decided that in order

- to avoid ambiguity, we would use this waord and in case it was needed we would convey the

" meaning we wanted to assign to it, that of rank. The following task was developed to
handie the objectives mentioned above.

The subject was asked:

Do you know what @ parade ia? Have you ever seen a parade? In a perade
like this one, the care follow sach other. ,

Arow of 8 little cars, each one of a different color, was aligned in front of the child.

R R A o It

green white black yellow blue red brown orange

(a) Can you teil. me what is the number of the litile blue car?
(b) Can you show me the car which is the number saven car?
If the child did not understand the word "numéro” he or she was asked:
Can you show me the third car? '
Can you show me the car which is seventh?
When | say third or seventh, that is its number.
Can you tell me the number of the littie blue cas? :

Of the 24 children tested only 10 interpreted the word “numéro” spontaneously as meaning
"rank® and the other 14 were taught. This proportion is somewhat lower than expected but
then, in our earlier work, we had interviewed kindergartners five months later in their school
year. The word "numéro” provided some minor problem too. In response to the initial
question, some chilben were picking up the blue car and looking for a number which they
expected to be inscribed, like on a racing car, but could not find any on our cars. This was
due to the fact that "numéro” also refers to "numeral*. However with all our subjects, the
intended meaning was easily established using the above scheme. C

riability o k with respect to th

. Va att .
o Qe of our immediate question was
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this effect we told the fo|lowmg story:

- The perade ie now stoppad because the g:reen cer (the first one) broke down.
The tow truck is coming to gat it (removing the green car).
Do you think thal the red cer siill has the same numlbe? as lbe‘lm@ in the -
perade?
We referred. here spadifically to’ the red cer for the child had not used any number to
determine its exact rank. The subject thus needed to reason about the question without any
specific number in mind. Eighteen of the children thought that the removal of the head car
changed the rank of the red cer while six did not. We refer to this as the lack of perception of
the veriability of rank with respect to the quantity of preceding objects. ‘

) Procegﬂwra!] undersianding

As was the case with the notion of quantity, the procedure at stake here was the use of
one-to-one correspondence. The tasks were designed to ascertain if these children could
use one-to-one corespondences to establish ordered sets in which they had to use the
notions of "before”, "after”, and “at the same time". A row of 8 horses were Imed up in front of
them and they were given another set of horses:

TR TR

green yeliow brown white - red black orange blue--
The children were then told:
} have here some horses on pande
(a) Now, can you make a parade in which your red horse comaes elong at
~ the same time ae my black horse?
(b) Now | would like you to make another parade i m whlch your red horse
comas before my biack horse.
(c) Now, can you make another parade in which your red horee comes
. after my biack horse?

Although we thought these tasks might prove to be difficult, each-one of our subjects was
able to handle them with ease. They used the interviewer's parade as a template for ther
own and performed the necessary adiustments to fulfill the constraints that were imposed.
These tasks were more difficult than the eerlier ones which involved mere recognition of the-
relative positions. The tasks here necessitated the actual generation of the vanously
ordered sets.

: Abstractlon

As mentioned earlier, abstraction refers here to the child's perception of the inveriance of
rank with respect to surface fransformations, that is, changes in configurations which do not
affect the rank. Three distinct tasks involving different transformations were desugned

The fn'stsuchtask assessed the chllds perceptlonof the i invariance of rank wnh respect to
the elonganon of a’row. A set of 8 dﬂerent coloured trucks wera laid out in front of the
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O O 00 O O O O O 0O
orange brown green red black white blue yellow

Look at another parade of trucks. Can you show me the blue truck? Look,
the parade moves on (stretch out the row and move all frucks).

(a) Do you think that the blue truck still has the same number as before in
the parade? .

(b) Do you think that its number is bigger or smaller than before?

The parade was then stretched a second time and the questions were repeated in order to

verify the stability of the answers. .

The responses indicate that 19 of the 24 children, (79%), perceived the invariance of rank
with respect to elongation. Seven of these, (64%), were among the 12 children under 5:2
and 12, (92%), were among the 13 aged 5:2 or over. Thus, there seems to be a maturation
factor involved. The overall success rate here was somewhat higher than in the comparable
task on the invariance of quantity (see companion paper) where the rate was 67%, the
group of older.subjects improving on the rank task, the younger ones having the same
success rate on both tasks. )

Invari { rank with f isual .
Our next task dealt vith the invariance of rank with respect to the perception of all the units.
The row of trucks aranged in the same order as in the last question was laid out in front of -
the child who was told that the parade would move on and go under a tunnel:

Look, here is a parade of trucks. Can you show me the red truck? Now the
parade must get inside a tunnel. (The parade is moved ahead so that the first three
trucks are under the tunnel, thus hidden from view):

> =4 red black white Dblue yellow
Do you think that the red truck has kept the same number in the parade?
Why do you think so?

The parade is then moved ehead by another three trudt-and the same questions are now
asked about the blue truck.

The results are most interesting. Fifteen of cur 24 -children, (63%), thought that the red car
had kept its rank even if the three cars preceding it were hidden from view. The second part
was aimed at verifying the stability of the initial response. Out of these 15 subjects, 14 stil
believed that the blue truck had not changed its rank when it reached the enfrance of the
tunnel. Thus, these responses can be viewed as validated. What is most striking is that
while nearly all childrer failed at perceiving the invariance of quantity when part of a row
was hidden, (4% or 13% depending on the task), a majority of these same subjects
perceived the invariance of rank when part of the row was out of sight.

Conservation of rank

The following task was designed to veriy if the child perceived the invariance of rank in the

@ nce of two rows. The test is similer to Piaget's test on the conservation of quantity.
MC:e we are calling ours a test on the conservation of rank. The interviewer aligned 3 little
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identical cars and asked the child to make another parade right next to hers with another
identical set of 9 cars. A piece of blue cardboard was set in front of the two parades to
;epro;gnat a river and a small piece cardboard of a different color was used to represent a
erry boat.

Look, | have a parade of cars which go towards a river. Would you make
another parade just like mine? The parades must cross the river in a little
ferry boat. But the ferry can only camry two cars at a time, one car from each
parade. When the captain is ready he signals for one car from each parade to .

come on the ferry. (Cross the river with one car from each parade and come back for two
more cars): :

o 4. 4. 4. 6. &b S
L Y Y ¥V ¥V ¥ ¥ 3

Did you understand how the parades will cross the river? Good. I'm putting
back the four cars in the parades.(Atter replacing the four cars, the interviewer places
an arrow on the 7th car in her parade)

Now I'm putting this little' arrow on this car.Can you put this other arrow on
the car in your parade which has the same number as mine?

Now look, the parades move on.(Move the child's parade a small distance but move
the interviewer's parade further so that in coincides with the fifth car in the other parade)

ahaaaaxaa
Ahh bbb

Do you think that the two cars with the arrows will cross the river at the same
time? Do you think the two cars still have the same number?

The results to these questions are quite striking. Only two children out of 24 believed that
the two cars would cross the river at the same time. Asked for an explanation, those who
could verbalize mentioned that the cars were no longer next to each other. In order to verify
that the subjects understood the problem clearly, they were asked to show the interviewer
how the parades were to cross the river. Each child demonstrated that he or she had
grasped the situation wel by crossing two pairs of cars. After having crossed these two
pairs of cars, each child was asked: :

And now, do you think that these two cars (indicating the ones with arrows) will
cross together? '
With the two marked cars now In fifth position, only 4 of the children changed their answer .
The other 18 held on to their-initial view. The children were then asked if the two cars would
cross together should the two parades get back next to each other:

If my parade gets back next to yours like before, will the two cars with the
arrows cross at the same time?

‘t{""'&en responded affrmatively stating that they would cross together. Ther explanation

MC tite consistent: “the cars would be next to each other”. These answers illustrate quite

E
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well Piaget's distinction between roversibility and undoing (‘renversibilité®). - Our
subjects’ thinking is not yet reversible in the sense that they cannot as yet compensate
mentally for the surlace ransformation they have witnessed. However, ‘they can perfectly
well perceive the undoing of the transformation which will bring them back to the initial
state. . h o

In compering the results of this task with those of the conservation of quantity, we found that
the two children who conserved rank also conserved quantity. But there were eight others
who conserved quantity and did not conserve rank. This would imply that from a cognitive
- viewpoint, the conservation of quantity precedas the conservation of rank, at least in our
present culture where experiences dealing with quantity are more frequent than those
dealing with rank. S ' - :

By way of conclusion

As has been shown by these results, the kindergartners' understanding of rank is quite
_extensive. Their success rate here is remarkable since all our tasks involved the notion of
rank in a more abstract form than when related to seriation of physical quantities.
‘Nevértheless, by the age of five and a half, nearly all children can -handle order related
_concepts within the context of the position of the elements of a discrete set. Not only can
they all use visual estimation but they in fact can use procedures based on one-to-one
~ comespondence to achieve accurate conclusions. Their perception of the invariance of rank
- varies with the perticular transformations and. based on their success rate one can establish .
. the following hierarcy: : - : '
. Inveri { rank wit

: N Percentage
“elongation of & row _ 19 79%
visual perception of objects in a row 15 - 63%
_comparison with translated row (feyrybo'at) 2 C 8%
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INITIAL RESEARCH . INTO THE UNDERSTANDING OF PERCENTAGES

Rina Hershkowitz and Tirza Halevi, Weizmann'lnstitute of Sciehce. Israel

This paper describes several steps in understanding student
behaviour in percentage tasks. The data were obtained from
questionnaires and interviews with: 6th and 7th graders. - )
Results show that student responses to types of tasks (which
are mathematically similar), are quite different.
The strategies which students used were identifiéd and
‘analysed. . - ’

" _An analysis of patterns of behaviour shows that students also
tend to vary their strategies within' the 'same type of task,
according to the numbers involved. :

I. INTRODUCTION

Percent 1is oﬁe of the most commonly 'ﬁsed mathematical c9ncepts_ in
everyday life. Howeverr . many studenés as.well as adults lackbeﬁen an
intuitive undgrstanding andicannot use the concept corfectlyy(ﬂggt. 1981,
Carpenter et al, 1980,Wilebé. 1986) .
Thé rese;rch gbals for this project are: '
(1) Analysis of student éifficulties and thought processes in percentage

., tasks. ' ) ‘ .
(2) Development of teaching strategies and remedial tools to overcome the, )

above difficulties.
Here we will describe the research conducted to realize the first goal.
There aré three types of tasks in pgrcent problems:
i) To find a_quéntiCQ.(A) which is p% of a given quantity (B).
ii) To find what percent (p) one quantity (A} is of another quaﬂtip&'(ﬁ).
iii) To find the qudntipy kB) if we know tﬁﬁt (p) percent of it is equal
to a quantigy (A). C

Mathematically the above tasks are all expressed in the one ﬁroportion

A . . . L
BT T%ﬁ . but ‘some aPproaches to teaching Percent use different
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strategies for the above three types of tésk (see, for example, Smart,
1980).
What is the student's "psychological approach" to the different percent
tasks?
Does it change from one type of task to the other?
How does student reasoning differ from student to student on the same
task?
Do certain number relations encourage certain strategies whether correct
or not?

The following is a description of few steps of a study designed to find

some answers to the above questions.

II. FIRST STEP
In a preliminary investigation, we administered a questionnaire to
students in grades 7 and 8 (N=76) after they had studied percent. The
questionnaire included items of the first two types, in two comparative
dimensions - accurate computation and estimation. In eddition, we
conducted unstructured interviews with a few of the:students. Students
were much more successful with first type than second type tasks in both

dimensions (see Table 1).

Accyrate Cogputation Estimation

Find 48X ' | what percent|| Estimate whether | Estimate whether 60

of 150 1s 12 of 80?7 53% of 900 is is _____of 245;
Correct 6 26 more than 450 80 [ more than 255 59
Incorrect bug n " e less than 450( 10 | less than 253] 29
reasonable . ess than ess than !
Incorrect 20 .o 450] 9 25% 8
No response 8 3 no response I 1| no response 4

Table 1: Distribution of' student respons;s (%) to sample tasks of the"
first two types. .

In the accurate computation. most students used a correct algorithm for

tasks of the first type. but for those of the second type, if an

algorithm was used at -all, it was usually different and incorrect.

O
:s. did not, however, show understanding of the concept.

o [ady

. of those who wrote down the correct algorithm in the - first type
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On the other hand, 'we found students who showed understanding, but did

not necessarily use the standard algorithm.

III. SECOND STEP
In order to understand better the student's conception of percent we
decided to investigaté ﬁainly the global (intuitive) understanding of the
percent concept in the different t;sks.
We used a questionnaire in which the students were asked to give their
reasoning for each answer, as well as structured interviews.
In most of the tasks, the students were asked to estimaﬁe. We believe
that estimation reveals intuitive understanding, if it exists.
In order to guarantee "real estimation" (without computation) we used

various types of item:

i - Items depicting area or volume without quantification.

ii - Items with "messy" numbers. : )

iii- Items with a time 1limit, imposed by the interviewer or by the
microcomputer.

We administered the questionnaire .to two 7th grade classes at the
beginning of the school year. The gtudents had had some formal teaching
on the subject in their previous school year.

The .answers and reasoning were analysed and followed by recorded
interviews with some of the students._' In the following, we first
describe some of the students' strategies and then various ‘"student

behaviour".

Types of Strategy

a) Strategies without any evidence of understanding the concept.

i) Additive strategies level 1.

Here the student adds or subtracts the quantities presented in the task.

ERIC . 68
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Examples: 1) Hagit (in the interview):

I : You.had a collection of 140 match boxes and gave your friend 72 of
them. what percent of your collection did you give to your friend?

. (type 2). .
Hagit: About 60 - 70 percent.
I : Why? .
Hagit: Because 140 minus 72 is about 60. ° R ]:‘l
2) Hagit (in the questionnaire): : "~ ‘L' B
Item 1: "Mark in B 25% of the quantity in A." -”gg%%- :
(type 1). - WAL !
.

Hagit shaded the right quantity and "explained": ~t.LAL
"Because in A there is 20%, so I added 5%".

Item 2: "The quantity in B is ’

about .....%¥ of the gquantity in A." (type 2).
Hagit wrote j(Q.and "explained":

"I added what we have in A and B and got about-40".

Hagit added the quantities involved, and "named"
she had squares, she just counted the squares in each quantity, when

she did not, she imagined them.

ii) Division sérategies level 1.
Here. the student divides the given gquantities but again. no
underétanding can be identified.

Example: Adi (in the questionnaire): "Qsﬂ of 150 (type 15. is about
3% of 150 because 48 goes into 150 about 3 times"...

\

b) Strategies which may reflect some understanding.

i) Additive strategies level 2.

_Heré the student performs some additive manipulation ‘with' the
‘quantities presentéd. ané. relates it additively to a "different
system" which_is somehow supposed to."transform" the result into
percentages. .

Example: Michal (in the interview)

I: You had a collection of 140 matchboxes ' and you gave your little
gister 120 of them. What percent did you give her? (type 2)

Michal: 80% : . .

I : How? ) L

Michal: I subtracted 120 from 140 and got 20 and then I subtracted it

from 100 and got 80%.

ERIC 69
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Answers that on;'can geﬁ'by using this strategy are ‘'reasonable" for ;n.
interval of numbers, i.e. when B i;‘"élose" to 100 aﬂd A <B (wheh B'=—
100 we get the right answer). In some cases we had éhe imp;ession that
the student had some global intuitive jgdgement when (g)he gave quite a
reasonable answer, and then when we asked him/her to explain it (s)hg

created the above algorithm.

ii) Division strategies level 2

These strategies are usually used in type 2 tasks:
In the first one the student checks how many times the smaller quantity-
goes into the large quantity (B : A).

Example: Naama (in the interview):
I : You had 140 shekel and paid 72 . .shekel for shoes. Estimate the
percent you paid. .
Naama: 2% and a little more because 140 : 72 ... 72 goes into 140 about
twice.
I : And if you paid 35. shekel, what percent of 140 shekel would that be?
Naama : about 9%
. I : When did you pay more, in the first or in ‘the second case?
Naama : In the first, because 72 is more than 35.
I : When did you pay a greater percent of your money?
Naama : (after some hesitation) When I paid 35 shekel ... I think e
Naama did not feel any conflict in the above situation. But other

. 8tudents ﬁsed this strategy (B : Ai as a first step to the ' right
aqsger.Exampie: ]

Dan : "35 of 1407 ... 140 divided by 35 is 4 I think, so it is 25%". .
-~ In the second strategy the stu&ent use the inverted division (A : B).

Example: Miri.(in the interview) I.: Estimate what percent 72 shekel is
of 140 shekel? '

Miri: 1/2% I : Why?
Miri : Because 72 is about half of 140. >
I : Half and 1/2% are the same? Miri: Yes '

Miri understands percentages as "part of", but she does not know that it
is proportional to 100.

i) Global quantitive judgement.

.Here the student uses some wholistic Judgement to estimate the

Q lative sizes of the quantities in the givén task. It might be that

-0
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gome students use this strategy to check the result obtained by other
strategies. But some of them, 1like Adit in the following example,

use only this.

‘Adit (in the questionnaire): "The
quantity in. B 1is about 25% of the
quantity 1in A because in B there is
almost nothing and in A there is almost
all".

11) Halving (doubling) and guartering (see Hart 1981).

Examples: . ) ’

1) Gai (in the interview): "260 of 367 is about 65%, because the
difference between 367 and 260 is about 100, so 260 in more than half,
therefore it is about 65%". S LT L l!’ﬂ

2) Orly (in the questionnaire): - j 1 ' !

SN B N O I M

Orly shaded an area in B and explained.
"In A we have 50% (she relates the ghaded .
"area"” in A to the whole of A), so we must -
shade half of it to get 25%"
Vered (in the questionnaire):

Item: "The quantity in B is about ....% of éZV

Item: "Put in B 25% of the quantity in A". ;
M)

3

~—

the quantity in A", Vered wrote 25% and
explained: 4 < 25% = 100%

A ]
Hart (1981) notes that: fDoubling and halving are the easiest aspects of

ratio, when presented ih»either problem form or drawing". It is clear
that this strategy can be used in only a very limited number of

situationg. We found that in these situations many studentg do use it.

iii) Proportional Strategies

Examples: Michal (in the questionnaire):
Item: "Put 75% of the quantity in A .|

into B". Michal shaded the right (] ISEERE ;
area and explained: M= ;{,—o ?z/, 444 i
?51,=}§; ﬂzzé |
% #

Item: "The quantity in B is ....% of the
quantity in A". Michal wrote 60% and

explained: In A we have 5 rows, in B 3 rows:

. 3.60 _ ¢og.
5= Too - 60%-

O

RE—
| 71
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The above examples.are of course evidence of true underséanding of the
concept.

In the above section we tried to.categorisé student strategies in first )
and the second type of tasks, in the hope that it will bring us closer to

the understanding of- students' percent concept image.

Individual Student Behavioqr in Percentage Tasks

Like Hart (1981) in the study on Ratio and proportion, we found that,
although some children are very systematic, "most children on interview
(and questionnaire) changed the method they used continuously". The
change in behaviour seems to be due to the type qf task and the numbers
involved. Many strategies have some "numerical limitations". Some of
these limitations lead- (or may lead) to change in student behaviour.
Examples:. B
1) Gai, in finding what percent A is of B, when A is close to a quarter
or half of B, uses halving or quartering,” and when the numbers are more
"difficult" uses some "difference algorithm" plus quantitative judgement.
2) Miri is usually very systematic. In finding what percent A is of B,
she divided A by B when the result is a unit fraction or nearly so; 1i.e.

10 of 100 is 1/10%, 51 of 100 is about 1/2%, 35 of 140 is about 1/4%
etc.... But for 98 of 100 she claimed that she does not know.

- The problem is how to get some overview of students' patterns of

behaviour. We have started to use graphical analysis of individual

behaviour in order to discern a general pattern. (Wilkening 1979 used it

to describe and compare group behaviour).

In type 2 tasks, if one plots a student's answers as a function of the

quantity A, with a curve for each value of B, then:

i) If the student wuses proportional strategy we will get a proportional
graphical model:- The set of curves form a diverging fan of sﬁraight

lines, the slope of each line is B/100 (see figure la).

ii) If the student uses additive strategy we will get an additive

Q phical model: The set of curves form a parallel fan of straight

72

[Elz\!(:res (see figures 1b and 1lc)~
_ ,



Quantity A Quanfity A (c) Quantity A

(b)

(a)
Figure 1: Graphical models of the different strategies:
(a) proportional (b) additive (B-A) (c) additive 100 - (B-A).

It is clear that stéategies.like inverse division (A + B) pnd halving
also yield tﬁe proportional model. Strategies like global intuitive
judgement can beleither proportional (a)lorladditive second lgvel (c)~
. We used these models as tools in the -graphical analysis oflsingle
'student‘beﬁaviour. -Ekamples: In Fig. 2a we see that Hagit for B=140,

has changed ﬁer strategy from B-A (for A=35, 80) to global judgement

N

(for A=100), and to 100 -(B-A), (for A=120). For B=100 she
systematically'usesAB-A. '
Michal uses strategies which 1lead ﬁore or less to the (correct)
proportional answer for B=60,.100; 400. 'But for B=140 (which wads the

first to be asked) she uses. different étfqtegies which are ﬁsually

wrong. When A is about 50% of B she is very systematic, halving each

'_timg.

.__&_&—&_Gﬁ_-&_-ﬁ_.&_dm"ﬁ“*- '“.-.!"-'-‘“"-".""--l".o_:,"‘

@ Fiare2a.. - Figure 2b
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The above are few steps towards the understanding of individual
behaviour in percent tasks. . There is more to be done in studying the
individual and in studying group benaviour and. its qpantitetive
description. By this sﬁudyf we hope to be able to contribute to the

improvement of the teaching and learning the subject.
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STRUCTURING AND DESTRUCTURING A SOLUTION:
AR EXANPLE OF PROBLENM SOLVIRG WORK VITH THE CONMPUTER!

J.Hillel, Concordia University. Hontresl
J.-L. Gurtner, Université de Fribourg
C. Kieran, Université du Québec & Hontréal

In this paper we amlyze a programming solution to

a geometric task in which the goal figure is
constrained by several conditions.

Our analysis points to an overvhelming tendency on
the part of the solvers to proceed by operating on
the figure appearing on the screen, rather than on
the problem's conditions. Consequently, such
problems may end up being 'solved' graphically
without an understanding of their embedded relations.

Hany types of mathematical problems including numerical,
geometric and deductive ones are now given to children to be solved
as a computer activity. There are persuasive arguments that the use
of computers in problenm solving renders it more active, inter-active
and engaging.

Certainly, the use of computer encourages an experimental,
empirical approach to problem solving. Consequently, children.
vorking in a computer environment develop belief systems about what
constitutes successful problem solving. Gurtner (1987) discusses
some of these beliefs when the problems worked on are of a geometric
type. He suggests that one component of the belief system is that
success is completely identified vith correct-looking screen
productions. Thus, 'success' may be achieved even though the
intrinsic aspects of the problem are completely circumvented.

It is this last point mentioned above which is the object of our
analysis. Ve reconsider a particular problem solving activity.

! Research supported by the Québet Ministry of Education, FCAR Grant #EQ3004.
Dr.J.-L. Gurtner wes visiting Cancordie University on @ Swiss Government FNRS Grant.
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already analyzed from a metacognitive perspective by Gurtner, in
terms of the relation between the process of solution and the
process of understanding. .

~

THE 4-TEE TASK: .
The task was given to six twelve-year olds during Session 84,
They were presented with a computer printout

// g

-

A

and were asked to write the (Logo) program that would preduce the
above figure.

The children had at their disposal three Turtle commands for
producing the figure. These were:

BASELINE :X in which the turtle 'draws’ a horizontal line to its
right, X units long, and returns to its initial position.

A
-

X

TEE :X in which the tqttle ‘draws’' the figure Tee and returns to
its initial position.

X : ab' = ¢d = X units

v

MOVE :X in vhich the}turtle moves horizontally X units (t6 the
right if X > 0, to the left if X < 0),without leaving a trace.

k-------a
X

’

El{fc‘ | .76

Aruitoxt provided by Eic:



- 'l;oh -

With these comnﬂs. the goal figure was viewed as four Tees
placed on a baseline.

%hen the figure was presented to the children, some of its
features were described as explicit conditions. namely
(i) the small and large Tees vere aligned on each side
{(ii) the large Tees were contiguous ("no overlap and no gap®)
Finally, a constraint on the order of the production of the
figure was added:
(iii) the Baseline had to be constructed first {(i.e. the ptogran had
_to begin with the command BASELINE).

sk _Ana is:

An exact solution of the task requires that the geometric
conditions (i) and (ii) above be reinterpreted as numerical
‘relations which govern the choice of inputs to the commands
BASELINE. TEE and MOVE. Thus, labelling parts of the figure as
follows N

Y t

A C O 8
FIG. &
and letting t and T correspond to the inputs for the small tmd 1atge
Tees, we have-the following length telauons
AC=DB=i/2t
T= 2t - . (alignment condition)
T=CD {contiguity cordition) ,
These relations establish an implicit relation between the length
AB (vhich is the input to BASELINE, the first command in the
program) end the length t (vhich is the input to TEE, the second
command. in the program). Finding the actual relation between t and
AB is non-trivial and its derivation requires several algebraic
substitutions, i.e.
=AC*CD*DB-1/2t+T+1/2t-1/2t*2t*1/2t=3t
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Row, without our imposition of condition (iii). it would not have
been a very difficult task for these children. They would have, in
all .likelihood, constructed the four Tees first and then fitted the
Baseline by a sequence of visually-based trial and error
adjustments, i.e. :

b

—_—

By adding the constraint that the Baseline had to be chosen
first, ve greatly increased the complexity of thé‘ task. Ii_ neant
that, having arrived at an incorrect solution, the children would
have to (i) identify the appropriate input to be adjusted, (ii) )
having change this input, and (iii) to reestablish all the relations
vith the other inputs. In particular, trial and adjustment strategy
could not proceed by isolating ard medifying a single ix}put.

Two aspects of the children's solution interest us here: . '
(a) Understanding the 'problen‘and. in partictilar. the realization
that. once having chosen a fixed Baseline, all the other inputs were
determined. We did not expect that the children would be able to
link ¢t to AB (the unobvious relation t = 1/3 AB merely assured us
that the problem would not be solved surreptitiously). We did expect
that the children would eventually realize that t was the only input
vhich they could freely modify, if they had opted for a trial and
adjustment astrategy.
(b) The choice of inputs and, spec:.tmally vhether the inputs
satisfy one or several explicitly derived relations.

Ye proceed by analyzing the solution process of one child, vhich
was rather typical.

ROSA'S SOLUTION: .

Rosa had already apent most of the previous session (sess:.on M)
on the 4-TEE task. In session #5 she restarted. it without looking
back at her previous attempt. .

t;Ec.T COPY AVAILABLE ~ 78
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Initial-solution of session #5:

Rosa's initial program. vhich wvas similar in nature to the one
she had produced in the previous session, was strongly influenced by
the symmetry of the tib'ufe - vhatever wvas done on the left side of
the Baseline had to be done on the right side as well. Her progranm
had the following structure:

BASELINE AB

TEE t

HOVE aC lett side -1 - ]
TEE T T T
MOVE CB +
TEE ¢t esern
HOVE BD right side AC > 8
TEE T RSN

Her inputs were AB = 130, t = 20, T= 40, AC =BD= 10 and CB =
120.

Ve nots that her initial attempt was very controlled. The choice
of inputs was done with care. and the relations T = 2t, AC = 1/2 t
and CB = AB - AC were all satisfied. At this point there was no
particular linking of t to AB, except in that AB was quite large
compared to t and T. This might have been a deliberate strategy on
her part so:as to allow her more manoeuvrability; in the previous
session, she had consistently chosen"b as 1/2 AB vhich resulted in a
large overlap of the big Tees.

Quiput 1

Rosa's spontaneous reaction to-the output wvas to 'shrink' the
Baseline. AB was decreased from 130 to 90 but none of the other
inputs was touched. Her expectation was that this action would have
an 'accordion’ effect of bringing the Tees on the left and right
closer together, as if she were dealing with a rigid figure.

El{llC 79
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Qutput 2

1 F

The output gave Rosa & clear indication of what else had to b_e
podified. She then reestablished the relation CB = AB - AC by
decreasing CB from 120 to 80.

Output 3

T

The output indicated that the the goal figure was now withan
reach. The large Tees were much closer to each other than before and
this suggested an obvious action for closing the gap. namely, to
operate on those Tees. This is, in tact' vhat Rosa did. .She started
to close the gep by a sequence of stretches of these Tees. Thus the

' input T, initially 40, undervent six cautious increases, each of
vhich was followed by an output on the screen. When T was set at 63,
no gap appeared in the output vhich led Rosa to conclude that the
large Tees were now contiguous. '

Rosa's actions were the start of the 'destructuralization' of the
solution. In her effort to close the gap, she forgot that T and t
vere linked by the relation T = 2t and that T should not be changed
on its ovn. She was so preoccupied with closing the gap that she
didn't even notice in the outputs that the small and large Tees were
no longer aligned.

Furthermore, in contrast to her way of choosing inputs earlier,
the new values of T were not based on any explicit relations (such
as T = CD). Rather, she adopted what we have termed the
‘qualitative’ approach of 'making bigger' (see Kieran et al., 1987).
In fact, the large Tees were now overlapping, something that was not

"discernable by looking at the output. Rosa had, in fact, replaced a
gap by an overlap and lost the alignment condition in the process.

ERIC BEST GOPYAALABLE = g1
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T

Rosa expected the output to indicate a successful solution.
However, now she did notice that the small Tees were too small and
not aligned with the large Tees. She continued the
destructuralization of her initial solution by ignoring the
relations T = 2t and AC = 1/2 t and proceeded with a single stretch,
changing the input t from 20 to 28, leaving all other inputs in the
program- unchanged. Her Tees now were neither aligned, nor
contiguous nor correctly placed on the Baseline.

Output § .

Rosa realized that she was not detting any closer to a solution
and gave up on the task.

DISCUSSION:

There are certain features of the attempted solution by Rosa
-‘which wvere quite prototypical of the way most of the other children
solved this and similar problems. Her initial solution, planned away
from the computer, respects most of the relations governing the
lengths of the different components of the figure. However, as the
solution process progresses, the screen output becom_as the relevant
‘data’. There is no longer any attempt to either satisty already
established relations or derive new ones from the given corditions.
Qualitative and local solution strategies become dominant; an
initially structured solution becomes progressively more
destructured and. ad hoc.

This solution behaviour was 'prevale_nt even among children who
ended with a, 'successful' solution (in the sense that the output on

e gy
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the screen seemed to satisfy the required conditions). They might
have persisted longer with ‘patching up' the different outputs or,
eventually, adjusted the Baseline to fit the Tees, thus ignoring one
of the explicit constraints. In either case, they were no closer to
really understanding the nature of the problen. :

Host research into problem solving has pointed to a frequent
alternation, while solving a problem, between the solution phase and
the understanding phase. To quote Simon (1978), “The solving process
‘appears to exercise overall control in the sense that it begins to’
run as soon as enough information has been generated about the -
problem space to permit it to do anything. ¥hen it runs out of
things to do. it calls the understanding process back to generate
more specifications of the problem space” (our emphasis). To the
extent that the above typifies probler solving behaviour, the
behaviour that we have described seems rather anomalous. We put
forvard the following explanation for this: Using a computer is an
action-oriented activity: once a solution phase is started one
seldom runs out of things to do. Consequently, the process of"
understanding may simply not have an.occasion to be .called upon.

Y
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METACOGNITION: THE ROLE OF THE "INNER TERACHER"(3)

Ichiei HIRABAYASHI and Keiichi SHIGEMATSU
(NARA University of Education, Japan)

ABSTRACT

The nature of metacognition and its implication to
mathematics education is our ultimate concern to investigate
through a series of our researches. We argued in the last
two papers that metacognition is given by another self or ego
which is a substitute of one's teacher and we referred to it
as "inner teacher”. In this paper we will show a more
concrete description of pupils' metacognition through
teacher's responses of the questionnaire. Especially we will
prove that there is a close correlation between pupils’
metacognition and teacher's utterances in class sessions.

AINES AND THEORETICAL FRAMEWORK OF THE RESEARCH

The ultimate aim of our research is to have the clear conceptions
about the nature of metacognition and to apply this knowledge to improve
the method of teaching mathematics. This paper is the report on the
preparatory works for this aim. A

In our former papers presentéd to PME annual conferences, we hévé
argued that metacognition would be formed through teachers' behaviors
and utterances in the classroom lessons. If we may use a metaphor,
teacher enters in the pupil's mind through the lesson and becomes
another self of the pupil, monitoring, evaluating the original self's
activities. So we have referred to this another self as inner teacher
because it plays the same role as the actual teacher in the teaching-
learning situation. ’

The favor of this metaphor is that we could have the practical
methodology te investigate the nature of metacognition; that is, we may
only collectAmany varieties of teachers' behaviors and utterances in the
lesson and carefully examine and classify them from some psychological
view-points.

Following to this research scheme, we have done two works:

1) we have collected teachers' utterances through the lesson
observation and make the 1ist of the questionnaire both to teachers
and students-to know which items are the most used during lessons

[:IQ\L(: by teachers. Then, we have compared the iwo kind of these
responses, one is from teachers and thé other is from students.
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We think that the items common to the both responses would be
suggest the essential components of metacognition. We should add
to say that the data from students were from university students of
mathematics course for elementary gchool teacher and nonmathematics
course for the same, and the contrast of these two kind of students
seemed to suggest some ;mportant things about the nature of
metacognition. 4

2) we have classified the said list of ‘teachers' utterances for -
the lesson of the problém-solving situation. As we will show later
this situation is the most promising to investigate metacognition

.and We had also here some interesting results suggestive to our
future direction of the research.

METHODOLOGY OF THE RESEARCH
1. Teacher's Utterances in Class Sessions

(1) Making the list of questionnaire
We have gathered teachers’ utterances from the recorded
teaching-learning processes. On these records, we made the list of
questionnaire. We classified these items of questionnaire into 4
classes according to the types of teachers' behaviors in the lesson:
1) explanation 2) question 3) indication 4) evaluation
From each category, some items are shown in the following;
1) explanation
"If you can draw a figure, you may solve problem.”
"I (teacher) myself used to make a mistake."
2) question ’
"Can you use this strategy at any place?™
"Can you explain the reason for jte"
3) indication
"Read the problem carefully."
- "Please give me an example for that.”
4) evaluation
"Goog!"

"You could have grasped the important point."

G“
[Elz\!(:xta collection
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We sent the questlonnalre to teachers in all levels of school and
had responses from them, numbers of which were as follows:

1) Elementary school teacher 38
2) Junior high school teacher 24
. 3) High school teacher 16

2. Studenfs' Impressions about Teachers' Utterances

We have used the same Qquestionnaire to analyse university-
~gtudents’ impreséion of their teachers' utterances in their school
days. This is because, as we argued, teachers' utterances would have
became the important-components of students’ metacognition.'

We collected the data not only from students in mathematics major,
but also in non-mathematics major. The numbers of each were as follows:

1) Student of mathematics major 29 )

2) Student of non-mathematics major 44

- 3. Metacognitive Frame&ork of Problem~solving

A classroom lessoﬁ inéludes varieties of activities of students.

and among them we notice the so-called problem solving activities  are

. the'most preférable phenomena to think over the nature of metacognition,

because there we may-observe many features of this complicated concept.
Thus, we exclusively concerned with these learning situations in our
research of metacognition.

At first we introduce the classification framework of teachers'
utterances.' which has two dimensions: one may be referred as the
Problem soluing stages and the other as metaknowledge categories, and 8o
we have 24 éeéfions in all ‘as is shown in the following fiéure. The
former dimension is éuggésted from that of Schoenfeld and the second
from that of Flavell and both of them were a little mogiflgd by us:

(Figure 1) Metacognitive framework in problem solving

1. GENERAL STAGE
11) environment 12) task: 13) self 14) stratggy

O 2. ANALYSIS STAGE
[Elz\!(: 21) environment 22) task 23) self 24) strategy y

.
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3. DESIGN STAGE

31) environment 32) task 33) self - 34) strategy
4. EXPLORATION STAGE
. 41) environment 42) task 43) self 44) strategy
5. IMPLEMENTATION STAGE

51) environment 52) task 53) self 54) strategy
"6. VERIFICATION STAGE

61) environment 62) task 63) self 64) strategy

Some comments will be needed about this framework.

To the Schoenfeld's stages we add the 'general stage' in the
beginning, because we think that there are some metacognitions which can
not belong to the specific stage of him but have influences to all
stages; for instance,

"Don't be afraid of mistake, you may do mistake.”
would be made in any stage of students activities.

RESULTS AND DISCUSSION
1. Categorization of items

Contrasting responses from teachers and students, we classified
them into three categories according to the frequency of coincidence, as
follows; :

1) Category I )
In this category each item is responded by above 50% of the
teachers and above 50% of the students. Some’ examples are as follows:
"Do you have any question?”
""Try to figure it out by yourselves."
"Yes, sure!”
2) Category II

In this category each item is responded by above 50% of the
teachers but by only a few students. Some examples are as follows:

"You already experience in solving problem similar to this."

"What is the given condition?" '

"If you can solve problem by a strategy; try to solve it by
another strategy.” ‘

Q
[Elz\!(: "It is am interesting strategy.” é} %;
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3) Category III

,,__
\~

In this category each item is responded by only a few teachers but

above 50X of the students. Some examples are as follows:
"This is a good problem"
"How can you describe it in the expression?
A
2, ga;e‘diffgrqnt utterances agcqrding go the school level
There are some difference in the- number of responses according
the school level.
1) Elementary school teacher
"What is the given condition?”
"Solve the problem in any way you like."
"You are bright.”
2) Junioriéecondary school teacher
"If you can draw the figure, you can solve the problem.”
"When you have finished, please check the problem and your
anéwer once more."” '
3) Senior secondary school teacher
"Have you finished?"
- "If you lost your way in solving the problem, please read
and analyse the problem once more.”

3. Teacher's Utterances in the Problem Solving

to

Here we mention some interesting utterances that migﬁt'ﬁave some

connections with the formatién of metaknowledges in each stage
problem solving situation. Some items are as follows:.
1) general stage

11) "You may make mistakes."

of

li) "This is the first time for you to soive this type of problem.”

13) "Solve the problem carefully."”
14) "Solve the problem by yourselves without other's Help g{
possible.” .
2) analysis stage
22) "You have already the. experience in solving problem similar to
O this.n I ~ LA . '

24i "If you can draw the figure, you can solve the problem.”
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3) design stagé
34) "This problem may not be solved by computation only.”
4) exploration stage
44) "Try to reduce the problem to a easier, and similar problem.”
5) implementation stage
52) "This problem may be slightly difficult from the previous ones.”
53) "Don't do too many things at a time, or you may mistake."
54) "How can you describe it in the expression?"
6) verification stage '
62) "This problem is interesting."
.63) "If you can't understand the problem and don't know the answer,

~ you must review it once more."
64) "Can you use that strategy at any time needed?"
In some sections of this framework, we can't find teacher's
utterances from this questionnaire.

CONCLUSION

1) In the classification of teacher's utterances, we can clearly
notice that teachers speak- very often for 'indication' to children. This
may mean that in our country teachers are apt to assume an attitude to.
'teach’ not'to make pupils learn of their own accords.

2) In the framework of problem-solving (figure‘l), we see that
few utterances belong to sections 12), 14), 44) and 63). This may show
that- teachers often emphasize the strategy of solving exclusively,
taking less care of other important features of solving activities.

3) In the comparison between data of teachers' and students', we
can guess that teachers speak qot so much {n the stage of 'design' and
'exploration’,'but,studénis have received much impression from teachers'’
utterances of these stages. ‘

4) . The comparison between students of mathematics major and
non-mathematics major in university shows that the former may have much
metaknowledges concerning to the positive attitude toward problem-
solving, vhile the latter seems to stick too hard to stages of analysis
and implementation. .

5) Teachers' utterances are different according to the kind of
school level: Elementary school teachers' ﬁtterances cover all of

[: inzr;Of problem solving, but teachers of highef levels incline only to-
Alz\y ) ~
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speak more in the particular stages of problem-solving especially of
‘analysis' and 'strategy!.

In this report we think that we could have clarified in some
degree the close reiation which the teachers’ utterances has to the
formation of metacognition of the students, but we are still very far
from analysing the mechanism of the formation. Through we personally
bélieve that there would be the critical period of this formation in
around 3rd grade in the elementary school, the verification of this fact-

"must be left to our future researches.

‘Finally we should thank to Prof. F.K.Lester,Jr. and Prof.
J.Garofalo for having much instructions from their works. We think our
research is different from theirs in the next two points:

(1) They seem to have their data through the individual teaching

and interviews, but our data originates from the daily classroom

lessons. . ' ’

(2) Their data seem to come maxnly from high schools, while ours

cover all levels of schools.
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FORMALISING INTUITIVE DESCRIPTIONS
IN A PARALLELOGRAM LOGO MICROWORLD

Celia Hoyles & Richard Noss
Institute of Education, University of London

Abstract: This paper reports a follow- -up study to that presented in Montreil at
PMEXI, (Hoyles & Noss 1987) in which we reported on an investigation of
pupils' interactions in a Logo-based parallelogram microworld. In this study,
we take account of pupils' initial and final conceptions, and present findings on
how understandings developed in the computer context were synthesised with
those developed within other domains.

The framework within which this study was located consists of four
dynamically related components of mathematical understanding: the use,
discrimination, generalisation, and synthesis of mathematical notions (UDGS).
Such a model of learning presupposes an environment which allows pupils
actively to construct their own understandings on the basis of informative
feedback. An interactive computer environment can (under appropriate
experimental conditions) fulfill such a role

In this earlier study we noted some confusions between turtle tum and angle.

- . We also found that pupils frequently constructed procedures with more than

* one variable (input), and used them without making the relationship between the -
variables explicit within the program -- these we referred to as implicit, action-
based generalisations -- and we noted that an awareness of the relationship at a
conscious level would be unlikely to occur without intervention. The study also
identified different levels of discrimination: discrimination of the features of
the figure without regard to its available symbolic representation, and:

. discrimination within the symbolic representation- without regard to its-visual
outcome. Finally, we observed how the symbolic representation of a computer
program acted as a form of scaffolding, (Hoyles and Noss, 1988) allowing the
pupils to sketch -out their global structuring of the problem before turning their
attention-to local detail. An overall conclusion concerned the importance of
pupils’ coming to synthesise the symbohc descnptlon with the geometrical
image.

Subsequent to the study we noted the need to investigate the followmg pomts -
o pupils’ conceptions of the relevant mathematical nonons prior to the
experimental phase;
@ if and how understandmgs developed in the computer context were
E MC ised with those developed within other domains. :
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We had also hoped to probe pupils' classification of squares or rectangles in
terms of the set/subset relationship to parallelograms, but in the event were
unable to do so. These three issues constituted the objectives of the present
research.

Methodology

We undertook a study with six. 13-year old Logo-experienced pupils. Our
. experimental methodology consisted of the following research instruments all

of which were piloted and appropriately modified prior to the main study:-

+ a pre-test consisting of an audio-recorded semi-structured interview, -

including some written responses, to probe pupils' conceptions of
parallelograms, rectangles and squares; :

+ a structured set of Logo based tasks, some to be attempted on the
computer and some off the computer;

» a post-test, again consisting of an audio-recorded semi-structured
interview, including written responses, to investigate what pupils had taken
away from the experimental work, and in particular whether there were any
changes in their conception of parallelograms, squares, rectangles etc.

The pre-test, which was administered on the day preceding the structured tasks,
sought to investigate:- .

« how pupils spontaneously described a parallelogram; how they would
draw one and write down a definition;

« whether pupils were able to recognise correctly instances and non-
instances of parallelograms in a set-of 13 shapes (including rectangles,
rhombuses and squares, as well as 1rregular quadrxlaterals), and how they
would justify their decisions -- including convincing another pupil;

- « whether pupils would be able to construct a procedural descrlptlon ofa
parallelogram in a 'real-world' context (of walking around a path) and in the
form of a Logo program;

The structured tagks followed a similar pattern to those in our previous work --
with specific questions to be answered on and off the computer -- but with some
modifications. The pupils were given a Logo procedure for a parallelogram,
SHAPE, with the turns of the parallelogram (rather than the lengths of the sides

as previously) Oparametensed as follows:-
SHAPE :ANGLE1 :ANGLE2
FD 200 RT :ANGLE1 FD 100 RT :ANGLE2
FD 200 RT :ANGLE1 FD 100 RT :ANGLE2
END

" They were then asked to:
« predict the screen outcome of typing SHAPE 30 150;
« construct a tiling pattern on the computer using SHAPE;
Q » draw seven different parallelograms (all with sides 200 and 100) in
]:KC srent orientations (mcludmg tectangles and squares) using their SHAPE

S 91
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procedure . -- rather than leaving, as we had previously done, the choice of
construction method to the pupil;

+ modify the SHAPE procedure to a procedure with one angle input only
(called NEWSHAPE). This aimed to see if they were aware of any necessary
relationship between ANGLE1 and ANGLE2, (i.e. that their sum must équal
180°) and, if they were, whether they could make the relationship explicit in the
procedure;

« construct a procedure which would draw any parallelogram no matter
what size or shape (called SUPERSHAPE). Such a procedure would in fact
need three inputs. In order for the puplls to reflect upon the generality of their
SUPERSHAPE procedure, we built in a communication aspect to the task: each
pupil was asked to draw any parallelogram he or she liked, label its sides and
angles, and give it to another pupil who would then try to draw the
parallelogram with his or her version of SUPERSHAPE: the final outcome to
be discussed by the two pupils.

The structured tasks were undertaken during a whole-day' session in the
University computing laboratory. Data was obtained using 'dribble files' of the
pupils' work, the researchers’ notes, and the written work of the pupils.

The post-test was administered immediately following the structured tasks and
was designed to probe pupils' conceptions of the Logo-procedures for
parallelograms they had constructed, whether the understandings they had
developed during the tasks had affected their view of the .nature of
parallelograms and, in particular, their (possibly new) classification of
rectangles, squares and rhombuses with respect to the set/subset relationship
with parallelograms. The u ils were given the following procedure:

TO SUPERSHAPE :S :SIDE2 :ANGLE

FD :SIDE1RT :ANGLE FD :SIDE2 RT 180 - :ANGLE

ENDFD :SIDE1 RT :ANGLE FD :SIDE2 RT 180 - :ANGLE
They were:-

« asked to describe what shapes SUPERSHAPE would draw with different
inputs, justify their descriptions and draw, in particular, what SUPERSHAPE
100 240 would produce;

« asked if and how SUPERSHAPE could draw rectangles, squares and
rhombuses;

« given exactly the same recognition task as in the pre-test; that is, asked to
pick out instances and non-instances of parallelograms in a set of 13 shapes,
giving reasons for their choices;

» finally, asked whether all the instances of parallelograms in the
recognition task could be drawn with SUPERSHAPE, and whether they could
use SUPERSHAPE to draw shapes that were not parallelograms.

O
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Findings

We concentrate on three areas of interest which emerged from analysis of the
data: the ways in which the pupils defined a parallelogram and how this
definition interacted with their activity, the relationship between visual and
symbolic representations, and the pupils' initial and final conceptions of the.
relationship between set and subset.

Pupils' definitions of a parallelogram

In the questions on the pre-test designed to investigate spontaneous descriptions
of a parallelogram, all the pupils drew what can be termed a prototype
parallelogram; that is, a parallelogram with a pair of horizontal sides usually
leaning to the right. Their definitions of a parallelogram were all declarative,
based on the equality of sides and angles. There was, however, an assumption
that a parallelogram had to be 'slanted’. This was either stated explicitly in the
definition of a parallelogram: for example Gail wrote 'The opposit (sic) sides
and angles are equal. It is slanting'. Alternatively, it emerged later during the
recognition task, when a rectangle was rejected as an instance of a
parallelogram: for example, Lyndsey stated "The angles are not meant to be 90
-- a parallelogram is a twisted square or rectangle....it's meant to be squashed'.

This throws light on pupils’ perception of definitions and their ability to use
them -- and in particular, the frequent mismatch between pupils’ formal
definitions and their intuitions. Thus Lyndsey's formal definition was 'all sides
are equal, opposite angles are equal’, yet her intuitive definition was 'it's either
a rectangle or a square squashed'. Similarly, Adam knew at a formal level that
parallelograms have two equal and opposite sides and angles, but excluded
rectangles and squares which had sides which were horizontal/vertical. He
decided however, that the square that was tilted over was a parallelogram,
_presumably because it displayed 'slantiness’. Matthew was more aware of this
confusion and refused to answer whether squares and rectangles were
parallelograms -- saying "They're not parallelograms because of the right
angles. But I'm not sure (it looks like one)!". ’

The relationship between visual and symbolic representations

a) Concerning explicit geometric attributes: When asked to draw the

figure (away from the computer) that would be produced for SHAPE 30 150,

all the pupils drew a parallelogram, although there was some confusion in the
labelling of the angles (similar to that reported in the previous study) and in the
orientation of the shape. In justifying why a parallelogram was the outcome, the
answers made general references to a parallelogram'’s properties (for example
opposite sides being equal) without any explicit reference to the features of the
code relating to these geometric properties. Thus there was, at this stage, little
Ci""ence of synthesis of the visual and symbolic. For example, Gail drew and

B KC lled her .parallelogram correctly, but when-asked to write a' procedure
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which would produce a given shape, she inserted the inputs the wrong way
round.

We noted in the post-test a tendency towards a more precise definition of
relationships; for example, while pretest definitions tended to involve 'slanting’
or 'squashed’ squares, post-test responses focused rather more on the features of
the parallelogram which had been explicitly discriminated during the activity

" (such as the equality of alternate turns in SUPERSHAPE). We noted an
increased readiness to discriminate at the symbolic level, rather than only the
visual. For-example, on the post-test (but not on the pretest), Lyndsey and
Simon both pointed to the code to justify-their responses.

b) Concerning implicit geometric relationships: Despite the confusions
exhibited in the pretest over whether rectangles were parallelograms or not, all
the pupils found no problem in using SHAPE correctly to draw rectangles (i.e.
by using 90 90 as inputs). Additionally, all the pupils were successful in
drawing the seven parallelograms with appropriate inputs to SHAPE (i.e. inputs
whose sum was 180). However, when subsequently they were -asked to
construct NEWSHAPE with only one angle input, their lack of awareness of the
relationship was very apparent. Lyndsey, for example, was completely baffled:
when challenged to explain how she had obtained the correct inputs in the
previous questlon she replied: "I took the angle and doubled it, subtracted from -
360, and halved it to get the other input”. She could not convert her complicated
procedure for calculation into a formal relationship which could be used in
NEWSHAPE. In contrast, Gail used the same calculating procedure but did
manage to formalise it by writing on paper; RT (360 - :ANGLE * 2)/2 which
she then 'tidied up’ to RT 180 - :ANGLE on the computer.

In fact both these girls and a third -- Emma -- used two pieces of information
about parallelograms which they considered as flowing from their definition
(i.e. the sum of the angles was 360, and opposite angles were equal). They were
so busy doing these calculations -- which worked, of course -- that they did not
reflect on the values of the two.inputs or see the simple relationship between
them. An intervention was required at this stage merely to provoke the pupils
to take another look:
Researcher:"Can you see any connection between the inputs to SHAPE?"
Lyndsey: (immediately) "Oh ... they add up to 180." °
However, the understanding generated by this intervention turned out to be only

transno \z dsey subsequently wrote:
SHAPE :ANGLE
FD 200 RT :ANGLE FD 100 RT :ANGLE - 180
FD 200 RT :ANGLE FD 100 RT :ANGLE - 180
. END
’th§ che made a common error in converting”'they add up to 180" into
]:KC 1atical language. However, when she tried out NEWSHAPE on the

~
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.computer,- it Fdid not produce a parallelogram. She then debugged her

procedure visually -- ie. she saw that she should type LT rather than RT after

the FD 100 command, and produced the following workable procedure:
TO NEWSHAPE :ANGLE
: FD 200 RT :ANGLE FD 100 LT :ANGLE - 180
FD 200 RT :ANGLE FD 100 LT :ANGLE - 180
END

" Thus there was no ultimate synthesis between the ordinary language to describe

the relationship between-the two inputs, the Logo code and the visual outcome --
on this occasion the computer allowed her to circumvent an explicit symbolic
generalisation. Lyndsey had not really grasped the geometric relationship, as

-was evident in her post-test where she again used her previous calculation to
find the second turn. Similarly Gail, despite deriving the relationship correctly

within NEWSHAPE, 'seemed to lose sight of it when she came to use
NEWSHAPE in subsequent work -- trying inputs of 70 and then 120 to create a
parallelogram whose first internal angle was 70°. This data throws light on the
cyclical nature of the UDGS model we have proposed elsewhere (Hoyles & Noss
1988) concerning the way in which, during the use of a procedure which has
first been constructed, attention shifts away from the symbolic and towards the
visual. Thus the symbolic. relationship was -made explicit during the
construction of NEWSHAPE, but when the procedure becaine a tool, the
consequences of this xelatlonshlp were ignored.

The work of these three girls contrasted with Adam The girls all worked in

direct mode on the computer, stamping the procedure on the screen, typing ar
interface and stampmg another procedure. Adam (and the other two boys)
worked all the time in the editor. He constructed NEWSHAPE correctly, but
chose the wrong size of input for the shapes required -- he always chose the
complementary input in NEWSHAPE -- e.g. 30 when NEWSHAPE 150 was
required. Thus he focussed on the symbolic code of his programme, and had
not integrated its components and sequence with effects on visual outcome. This
highlights a further difficulty in switching from the computer to pencil-and-
paper -- the latter really had no real payoff for the pupil.

Overall, there was therefore evidence of synthesis between the visual and
symbolic representations at the level of definition of a parallelogram -- that is,
how -the geometric attributes of the parallelogram in terms of equality of
opposite sides and angles were reflected in the Logo code; but not at the level of
geometric relationships inherent within the constriiction of the parallelogram.

One way in which we were able to gain insight into the way in which the idea of
parallelogram-was conceived, was by probing the extent to which pupils viewed
m"c1a1 cases such as rhombuses, rectangles and squares (in various

‘ntations).
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a) Rectangles and squares: As we mentioned above, all the pupils in the
pre-test were confused as to whether or not rectangles and squares were
parallclograms Despite this, none of them found any problem with
immediately using SHAPE for producing rectangles Thus.they were prepared
to'see that the general procedure SHAPE would produce rectangles as special
cases (when the inputs were both 90), even though they did not acknowledge
rectangles as instances of parallelograms. After the experimental phase, five
out of the six pupils were willing to see rectangles as parallelograms i.e. they
were willing to reject -- albeit tentatively -- their intuitive ideas and those
features of their prototype parallelcgram which were not necessary:

For example, with reference to a rectangle,,Lyndsey said: "It is because
opposite angles are the same and opposite sides are the same, and that is what a
parallelogram is. Before I said a parallelogram is not a square or a rectangle. I
still see that is sort of right, but now I see it doesn't kave to be squashed.” Simon
would not commit himself: "Well it can but -- I can't -- I don't -- I don't actually
think it's a parallelogram. Tt can be if -- working it out the way that you do on
the computer. It's like er... I'll put in various angles for the SUPERSHAPE -- so
it can make one of those (1 e. a rectangle) out of a parallelogram....But I don't
actually think it's a parallelogram....I think it's a rectangle.”

b) Rhombuses: In the pre-test recognition task au te pupils identified the
rhombus as an instance of a parallelogram. In the experimental phase they drew
‘thombuses correctly, but in the post-test five of thém gave 90 as the only
possibility for the anglc input to SUPERSHAPE (while the inputs to the two
sides were correctly given equal values). It was apparent that they were unclear
as to the variants and invariants of the rhombus's geometric attributes.
Interestingly enough, it seemed that they thought rhombuses had turns of 90°,
yet did not refuse to-designate a rhombus as a parallelogram -- which
contrasted with their professed intuitive definitions (which explicitly excluded
right angles). We conjecture that the focus here was on the lengths, not the
angles. Adam was the only exception: he had a precise definition of a thombus
which related it specifically to a parallelogram as well as a square: "A rhombus
is a square parallelogram".

Conclusions

We are able to conclude that the mismatch between the pupils' fuzzy and
intuitive ideas of a parallelogram and their formalised definitions identified in
the pretest, was at least partially resolved as a result of participation in the
experiment: we conjecture that using the formal code helped to discriminate the
significant features of a parallelogram. As far as the relationship between the
turns is concerned, the pupils were able to make it explicit when requested, but
it ic "'i' from clear how far they saw the functionality of the generalisation thus
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"gained, or were able to keep the relationship in mind when the, procedure was
used as a module in a larger project.

A related aspect is the clarification of the set/subset relationship. There was
some evidence that the experience of confronting the relationship between
parallelogram and rectangles (by using and generalising the given procedures)
did have the effect of introducing uncertainty into some, of the pupils’
conceptions. We hypothesise that the initial confusion displayed by the pupils
might arise from the fact that pupils intuitively know that {apples} is a subset of-
{fruit}. This is different from the situation involving rectangles and
parallelograms: a slightly deformed rectangle is very much like a rectangle --
and not far off being a typical parallelogram. The important relationships
change from those between the angles to the size of the angle. As far as
rhombuses were concerned, pupils initially saw them as tilted squares and
defined them as parallelograms in contrast to horizontally oriented squares,
which were excluded. We conjecture that in this case, the essential intuitive
feature of parallelograms -- their 'slantiness’ -- was crucial. This initial
conception of rhombuses persisted in the post-test.

We conclude by making three further points. Firstly, we found that our
interpretations were handicapped by not having the backup of longitudinal
data, and indeed not having a close relationship with the children (this situation
was quite different from that in our earlier work). Secondly, we noticed that the
rather directed nature of the tasks resulted in: i. some differences in approach
from other studies we have undertaken, (for example, we noted very few
instances of pupils using the computer as scaffolding presumably because
insufficient scope was allowed for experimentation) and ii. the danger that
pupils almost inevitably produce a result, but without necessarily understanding
how their actions led to this result. Thirdly, 5/6 pupils in the post-test, in
answering a question in which they are asked to pick a shape which they know is
a parallelogram and write down a Logo procedure for it, wrote a procedure in
direct mode. We interpret this finding as suggesting that the idea of
SUPERSHAPE was not a functional tool for them. Although they were
prepared to use the procedure when they were asked to do so explrcrtly by the
researchers, they reverted to direct drive at the earliest opportunity. Finally, we
noted in passing that the two boys in the study were completely prepared. to
ignore the finer points of the visual outcome of their procedures -- a finding
whrch contrasted strongly with that of the girls.
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One mathematics teacher

Barbara Jaworski - Open University - U.K.

Nature and purpose of the study

This in-depth study of one teacher is part of a wider study
of a number of teachers which aims to explore their
mathematics teaching in all of its facets, including:

# their beliefs about mathematics._COantion, teaching and
learning:

their ways of interacting with pupils in the classroom;
their devising and presentation of activities for pupils;
their classroom organisation and management;

their assessment and evaluation of pupils mathematical
learning:

# their assessment and evaluation of their own work.

[ 3 R 2R

Its purpose.is to find out more about what mathematics
teaching implies and involves, and perhaps about how
teaching can be more closely related to the learning ‘of the
pupils. I present only one teacher, Clare, in this report
because. it would be impossible to do Justice to more than
one in the space and time available, and because an
understanding of the study as a whole depends upon an
appreciation of the nature and depth of the data collected.

_Methodoloqy and data

Clare was involved in the second phase of the prodect. The
methodology here is substantially that of Case study form of
a §ubstantially ethnographic nature with participant
observation and some interviewing as discussed in Stenhouse
[1]. The first phase had been one of exploring what might be
involved in in-depth research into teachers' classroom
practice in mathematics and of evolving a methodology. Two
teachers were involved. The developing methodology was then
employed with another two teachers in the second phase.

This involved me, the researcher, in:

1) Discussion with the teacher about her lesson intentions.

2) Participant-observation of a lesson and recording by
hand-written field notes.

3) Audio recording of aspects of certain lessons. b

4y Video recording of aspects of certain lessons.

5) Discussion with the teacher after a lesson about what had

occurred, her own perceptions of it and her comments on
the researcher's perceptions of it.

6) Obtaining written comments from the teacher about audio
or video material from her classroom, and talking with
her about aspects of this material.

7) Discussions with the teacher about mathematics teaching
generally, about issues with which she was concerned and
about her own students and their learning.

COPY AVAILABLE ~ - gg
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8) Conversations with some of the teacher's students.

L) Eliciting students' attitudes and opinions through
interviews and questionnaires. :

10) Talking with the teacher and her colleagues about their
teaching, sometimes with video recordings of certain of
their classrooms as a stimulus.

Qualitative data was obtained in various forms: field notes;
-audio and video recordings from the classroom and transcripts
of these: audio recordings and transcripts of conversations

between teacher and researcher: audio recordings and
transcripts of pupil interviews; questionnaires from pupi.s:
video recordings and transcripts of teacher group discussion.

Circumstances garticulaf to research with Clare

Clare, who had been teaching for about seven years, was a
competen&igeacher who was recognised conventionally as being
successful., She taught mathematics in a comprehensive school
of 12-18 yesar old pupils. Most observation and discussion
concerned one mixed ability class of 24 fourth-year pupils
(aged 15) who remained in this class for all of their lessons.
Another of Clare's classes was also observed and discussed and
‘all of her classes completed a prepared questionaire.
Classroom observations occurred once or twice per week over
two and a half terms. Discussions were fitted in before and

. after lessons and at specially arranged times outside school
hours. As a result of all of this I built up a mental picture
of Clare as a mathematics teacher which I have tried to
express and defend with reference to the data which I
collected. : -

Beliefs behind and implications of this methodology

It is not possible to know objectively either what ocours in
a lesson or the reasons for it as all observation involves
interpretation. To speak rationelly about what occurred and
why, the researcher needs not only to observe the event but
to get as' close as possible to understanding the teacher's
perception of the event. This involves a dilemma:

In understanding the teacher's perception, the researcher
needs to act as distancer, helping the teacher to separate
her reflective self from her active self (Schon [21) in an
effort to analyse better her. actions and ‘thinking in the"
classroom. This analysis requires self-awareness,
self-honesty and analytical persistence on the part of the
teacher, and the researcher can encourage these by asking
apPropPriate questions, urging further consideration and
offering support and encouragement. The act of distancing
is best possible when the agent is separate from involvement
in the action and thinking: thus the teacher, being :
intimately involved, finds it hard to be the distancing
agent for herself. The researcher begins the act in this

Q rated position, but the very nature of her intention in
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undertaking the act, which is to get closer to the thinking
of the teacher, draws her into the web and reduces -her -
distancing capabilities.

Thus the researcher has to be careful with interpreuations
which are based on the teacher's perceived perceptions. From
a distance she may be misinterpreting the teacher's. words,
but as she becomes closer in understanding to the teacher
she may lose the ability to encourage the teacher to
question her own interpretations. The analysis which follows
must be viewed in the light of these remarks.

Analysis

It needs to be said that the form of this analysis was not
obvious and the doing of it was not easy. I wanted firstly
to characterise Clare as a mathematics taggher, and secondly
to produce a characterisation that was in-some sense
generalisable. I wrote down many attributes and many
descriptive categories. I tried to’ substantiaha my
descriptions with events and quotations. 1 found my ya
categorisations indistinct and elusive.

- For example when working at the board on soma aspect of
fractions, Clare said to the class, "Anyone who's ahead of
this, try to think how to explain the repetition in 1/7'.

In one respect this is classroom management. Discussion was
on points of difficulty which some students were’
experiancing while others seemed to understand and were
possibly getting bored. This comment enabled them to make
Prograss while Clare gave her attention to the others. In
another respect it shows tha level of challenge in her
instructions to students - "try to think how to expldin" was
typical Clare-speak, and it was to her credit that students
saemed not to be worried by such complex instructions.

One brief comment being so rich in interpretation
illustrates the complexity of the task. I decided that I was
trying to distinguish too finaly and that what I needed in
the first instance was a much broadar brush so I settled on
broader categoriles which seemad to encapsulate Clara's
Qualities. Due to limitations of space I have chosen to
concentrate on Just three of these which have emerged
strongly from my observations of and discussions with her. I
was influenced by the reporting and analysis of data in
Fensham et al [3]}.

1. Classroom management'and'management of learning

Clare is strongly, even forcefully, in charge of what
happens in her classroom. Her expectations are both explicit
and implicit in what occurs. Students respond favourably to
this, recognising its value while. ruefully admitting that
they might choose it to be otherwise. She is’ most concerned
[]zJﬂzncouraging students to think about what they are doing
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and why they are doing it and to organise their own Qork and
thinking.
Some quotations from her instructions in the classroom:

"Today we'll work on KMP (their maths scheme). We'll have
two lessons on this, so plan your work."

"How many people have calculators? 1It's a good idea to
bring them to all lessons"

_"Think! - no, I mean a hands down think.

"In order to get this off the ground. can we have Just one
person speaking at a time. Because if you think that what
you have to say is valuable then it is probably going to be
valuable to everyone.

. A boy complains. rather agressively. that he doesn't know
what to do.- Referring to the task set, he says "I've done
this before." Clare replies, "I don't ask you to waste your
time - don't treat it like that™.

At the end of a class prodect on ‘pentominoes' she told the
class that they should hand in their written report after
the next maths lesson. "So.", she said, "this is the lesson
to see me and ask me about it". She went on, "But if you
want a solution., I'm not going to give you one. There's
nothing wrong with handing in a prodect where you haven't
found an answer. If I tell you, then you won't get that
kick from having found it yourself"

In many of the lessons which I observed. students chose.
where to sit and with whom, but occasionally Clare directed
them into specific positions or groups. “Jerome, come and
sit here please. I want you to work on your own today,
tcause I want to find out what you think about ....".
Daisy., will you work with John and Stephen today please,
‘because I think you're all thinking along the same lines
...". She disagreed strongly with one of her colleagues who
claimed that friendship groups were the best form of
organisation as they provided a secure and supporting
environment in ‘which students could work. Clare believed
that students needed to work in different situations and
with different people for stimulation and to gain a variety
of experiences rather than always relying on a protective
situation. I observed that relationships within the class

* were mostly good and that students did not in general seem
to mind with whom they worked.

In one prodect where students were gathering information
about population distributions she said. '"All groups ..
pool what you've found and decide what questions you want to
ask next". And on another occasion., again to the whole
Q ss. "In about 3 minutes I want some feedback from you.

[: l(:t think about what you're going to say.".

R 0



- k29 -

2. Sensitivity to studénts and _their individuéal needs

Although her decisivencss and personality occasionally
verged on the formidable, Clare was also caring and
sensitive to students' individual needs and characteristics.
She was never unapproachable, and students tended to treat '
her with a familiar respect. She maintained an informal and
often Jocular relationship with them.

She wrote for me on one occasion, 'The students and I know
sach other well. There is trust and humour on all sides and
they understand that in the Joyful melee of mixed-ability
teaching, I will sometimes be lost for words, in a muddle,
badly tuned, or Just plain wrong.'

Much of our recorded dislogue consists of her comments on
‘particular students: Daisy and Naomi who aro bright but
stuck in a rut and need- to be stimulated; Jucques, who is
bright but in trying to cut corners does not do full Justice
to his thinking:; John who has-'maverick ideas' but has
difficulty in following them up: Annette who is totally
lacking in confidence and needs to experience some success; .
Frances whao has such overwhelming difficulties that Clare
despairs of ever being able to help her: ‘Jerome who is lazy
and will rarely make any effort. I have pages and pages of
notes on these and others, and feel that I know them well
myself through Clare's descriptions. After a particular '
interview which I had with two students, Clare reported one
of them as asking in a wondering tone, "How does she know so
much about us?" -

It is typical of Clare to get excited about or to agonise
over particular students at length. For example she said on
one occasion, "I have a student in the foundation year who
has a slightly embarrassing stutter and really can't read,
or write, very well. She is one of the brightest, most
creative, mathematicians in that group. When I said
brightest, that's probably not what you could measure in a
test, it's not like that sort of bright, but she's one that
I can rely on to make the classroom come alive, and work
...yes, in an illuminating sense. And she comes up with
ideas - the sort of person who will invént things. I mean,
she invented this morning the prime factor rectangle and the
factor prime rectangle. She said, 'Is it alright for me to
invent a prime factor rectangle?' and I said, 'If you can
tell me what it is, yes.' You know she's Just so sort of
open and creative about the sublject.

In our discussion after one lesson, I had asked Clare if she
had noticed a girl, Virginia, sitting with her hand up for
quite some time. She replied, ''Yes, she did. It was quite a
good lesson for Virginia because she doesn't always-take apy
part at all, and she was actually working very well this
“:;‘ﬁg." when Clare later listened to the audio recording
[E l(:e lesson and the discussion, she wrote as a comment; 'I
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sidestepped Barbara's comment about V's hand up by saying
she was working well. If she was waiting for me with her
hand up she wasn't working, and it was my fault! Guiltli! I
hadn't really been on the lookout for hands up during the

" lesson. I hope I haven't let Virginia down.'

3. Challenging the students mathematically

Clare expressed on many Occasions her struggle with helping
students to develop their own mathematical ideas and
concepts rather than,K Just accepting mathematics from her.

""Naomi .. she's very bright.. but she couldn't divide 6 by
4/5. 1 wasn't going to tell her! But I couldn't think of
how to tell her how to divide fractions."

when Frances and Joanne had come up with different results,
Clare said to each of them in turn., "You try to convince
Frances that you're right. You try to convince Joanne that
you're right.

In response to a conjecture made by a pair of girls she
asked, "What are you going to do to find out if that's
true?”

Many of Clare's lessons involved project work in which .
students were asked to investigate some given situtation. In
one example they explored the under and over patterns in a
plece of string when it was dropped onto the table. and
whether., by pulling both ends it was possible to form a
knot. Clare was very aware of her propensity to ‘'push ana
“prod' and felt that when she had particular ideas or result:
in her head, she was likely consciously or unconsciously to
push students towards them. She said after one lesson on
Knots, "The way I work with these things is that if I know
too much about where it's going., given that I do prod and
guide., I may well prod and guide people into directions
which may not be most fruitful ones, may not be the most
interesting ones to them." In trying to expand on this and
Justify her thinking and motivation she later wrote., "It
sounds as if 'anything goes', but I only feel ‘anything
within certain limits goes'. I will know the limits when I
reach them."

We watched a piece of video together of Clare working with
one student. Annette., on a workcard on area. The sound was
particularly poor and Clare stopped the tape at one point to
explain, "This is a lovely conversation - it's all about
chopping up. It's an L shape. chopped into two rectangles,
and she actually realises why she has to chop -it into two
rectangles. At one point she told me why to chop it into
two rectangles to get the figure. and then when I ask her to
O it, she does it totally differently. ‘Instead of having
[E l(:b L—shape chopped 1nj? two rectangles., she actually makes

Aruitoxt provided by Eic:



- 431 -

it into a bigger rectangle. So I think, Oh Hell, but we'll
take her through this, and she get's there! She can't tell
me what she is going to do, but then she does it exactly
right - it's ever sc exciting!"

Triangulation - students comments

There has often been a considerabie periecd of time between

" the collection of the data and analysis of it. Very often
in the analysis questions arise where it would have been
nice to obtain students' comments. For example, regarding
the lesson where Virginia had her hand up for a period of
time without Clare noticing, it may have been helpful to
have asked Virginia about her feelings and reactions to
being ignored. However, apart from-occasiocnal conversations
with students which happened spontanecusly, all data from
students came from arranged interviews and questicnaires at
the end of my period of work with Clare.

Some of the interviews produced unsolicited comments about
Clare's way of working which very strengly supported what I
was seeing and what Clare claimed to be her purpeose. For
example in response to the question: "What do you think
about the way Clare runs lessons? About the organisation
and the things she expects you to do or not do?", one boy
replied:

"Well she's basically very strict. It's a funny sort of
strictness because it's not sit down and quietness and this,
because she allows a certain amount of leeway. ~So I mean
she will let you sit with your friends when you start off,
and chat, but sconer or later she decides, you know, .if it's
gooed for you. I think that Clare wants you to get the best
of your capabilities, that she is continually pushing vyou,
in some ways - in most ways it's good, but I have found once
or twice that it tends to worry you, you know you haven't
done encugh, or you are not doing enough, and vou have all
the other subJdects to worry about."

Ancther student said, "She seems to be pushing you along,
you know, because I think she sees your capabilities more
than you do.". ’

At another time, in reply to a question about similarities
and differences between maths and other subJects a student
said,. "I think in Maths, especially with Clare people do
more work in the class as a whele. She is a much.stricter
teacher and she really pushes you forward, to get your goal,
to the height of your ability. So I think a lot of people
are doing quite well in maths because she is always there to
give you that extra push and makes you go further.
Again on the subdect of how maths is different, one student
said, "I think maths is different because everyboedy sort of
(S IEEE with pecople talking I find it much harder to
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work." I then asked, "Is that something to do with the way

Clare runs the lessons, or is it Just because it's maths?",

and the reply was, "Yes, I think it is because of Clare, you
. know, if they talk they get into trouble, or get moved.

Conclusions . ' -

Care needs to be taken in generalising from interpretations
of qualitative data of this sort (Stemhouse [1] ; Cohen &
Manion [41). However, when I have applied the same level of
analysis to the second teacher of this phase of my study I
hope to be able to make links between the findings on the

. " two teachers and possibly link back to the two teachers in
the first phase. I should like to explore whether the
differing emphases of the teachers correspond to differences
in their classrooms, whether common beliefs or strategies
correspond to similar effects, whether there is any
agreement that particular ways of working promote
tsuccessful mathematical learning' and how that is seen to
be defined, whether the ways the teachers see themselves
developing have any common features. I hope to form some
condectures and questions which I can take into the third
phase for testing. Ultimately I should like to be able to
make some general statements related to the facets listed on
page one.

I expect the third phase of the study to be different to the

first two in the following respects:

1) I wish-to enter the third phase with well defined
questions which I want to pursue.

2) 1 hope to modify my methodology to improve on
deficiencies in the second phase. Ffor example I hope to
interview students closer to the event to allow more
student input at the fine level of data collection.

3) - I wish to explore how my own beliefs affect the
teacher's responses and actions. Both of the teachers in
the second phase have indicated words or opinions of
mine which have influenced their thinking and I should
like to pursue this more overtly. ‘

4) Related to (3). The relationship between teacher and
researcher has been fruitful according to teachers in
the second phase. I should like to look deeper into the
implications of this relationship. ’
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LEARNING THE STRUCTURE OF ALGEBRAIC EXPRESSIONS AND EQUATIONS

Carolyn Kieran
Université du Guébec & dontréa!

Abgtract. This theoretical paper begins with a brief
discussion of the meaning of "structure”, within the
context of the early part of the high school algebra
course. Students’ difficulties with learning the
structural aspects of algebra are shown by examples from
several cognitively-oriented, research studies. The paper
concludes with some suggestions for algebra instruction.

The teaching of high school algebra usually begins with the topics:
varlables, simplification of algebralc expressions, equations in one
unknown, and equation Sciving. Students’ difficuities with these topics
have been found to center on (a) the meaning of letters, (b) the shift to a
set of conventlions different from -those used in arithmetic, and (c) the
recognition and use of structure. Since the first two of these
difficulties have already been well documented in the research literature
(e.g., Booth, 1981, 1984; Kuchemann, 1981; Matz, 1979), this paper reviews
some of the research )iterature related to the third one--recognition and
use of structure. Because of space constraints, 1t 1s not possible to
review in this paper all of the pertinent 1lterature; a more complete
description can be found in Kleran (in press b).

Structure

The term °Structure® is used in many different contexts throughout
this paper. In a general sense, we refer to "arithmetic/algebralc
structure® as a system comprising a set of numbers/numerical variables,
some operation(s), and the properties of ‘the operation(s). However, we
also refer in this paper to particular aspects of structure, such as the
structure of expressions and the structure of equations.

“Structure® 18 defined by Webster to mean "the arrangement of the
parts in a whole, the aggregate of elements of an entity in their
relationships to each other.* The former deals with arrangement or
disposition; the latter with relationships. When we speak of the structure
of an algebraic or arithmetic expression, we mean both (a) the gurface
structure, which refers to the given form or disposition of the terms and
operations, subject when disposed sequentially to the constraints of the
order of operations; and also (b) the gystemic structure (systemic in the
senge of relating to the mathematical system from which it inherits
properties), which refers to the properties.of the operations such as
commutativity and associativity, and the relationships between the
nberations such as distributivity. The systemic -structure of algebraic

. [:Iz:i(:essions permits us to express, for example, 3(x + 2) +5 '
.
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. equlvalently as 5 + 3(x + 2) or as 3x + 11 and so on. Thus, the
structure of the expression 3(x + 2) + 5 comprises the surface -
structure, that 1S, the given ensemble of terms and operatlons--in this
case, the multiplication of 3 by x + 2, followed by the addition of 5--
along with the systemic structure, that is, the equivalent forms of the
expression according to the properties of the given operations.

The structure of an equatlon incorporates the characteristics of the
structure of expressions, for an equation relates two expressions. Thus,
the surface structure of an equation comprises the given terms and
operations of the left- and right-hand expressions, as well as the equal
sign denoting the equallty of the two expressions. Similarly, the systemic
structure of an equation includes the equivalent forms of the two given
expressions. For example, the equation 3(x + 2) + 5 = 4x/2 - 7 can
be re-expressed as 3x + 11 = 2x - 7, wherein each expression is
independently transformed (i.e., simplified). Because of the equality
relationship inherent in an equation, the left-hand expression continues to
be equivalent to the right-hand expression after such systemic
transformations of one or both expressions. The resulting equation is also
equivalent to the glven equation. However, the systemic structure of an
equation comprises much more than the systemic structure of expressions.
Because of the equality relationship and sSystem properties such as the
additlion property of equallty ("1f equals are added to equals, the sums are
equal™), the equation as a whole can be transformed into equivalent
equatlions without necessarily replacing one or both expressions by
equivalent ones. For example, the equation 3x + 11 = 2x - 7 is
equivalent to the equation 3x + 11 + 7 = 2x - 7 + 7, even though the
left-hand expression 3x + 11 is not equivalent to 3x + 11 + 7, nor is
the right-hand expression 2x - 7 equivalent to 2x - 7 + 7. Similarly,
the equation 5x '+ 6 = 10 is equivaient to 5x = 10 - 6, according to.
the properties of our arithmetic/algebraic system, wherein an addition can
be expressed-as a subtraction. The system properties of equality can be
used to generate an Infinite set of equations, in fact, a class of
equivalent equations. It is this particular aspect of the systemic
structure of equations--that.is, the potential of generating equivalent
equations by means of properties related to (a) performing the same
operation on both sides of an equation, and (b) the alternate ways of
expressing additions and multiplications in terms of subtractions and
divisions--that is so crucial to the process of solving equations.

Variables

High school algebra usually starts with instruction in ‘the concept of
varjable--a prerequisite to understanding the systemic structure of
algebralc expressions and equations. In elementary school, children have
alteady seen placehoiders in "open sentences” (sometimes called missing
addend problems), and have used letters in formulas such as the area of a
rectangle. However, thelr past experiences cannot easily be related to. the

" many uses of varlable to which they are exposed in high school algebra. In
a large-scale study of some of the various ways in which high school
students use algebraic letters, carried out by Kuchemann (1978, 1981), it _
was found that most students could not cope consistently with questions
(5 required the .use of a letter as a specific unknown. The findings of a
[E l(:]ow-up study, the Strategies and Errors in Secondary Mathematics (SESM)

ect, reported by Booth (I?ﬂ? gest that some of the difficulty
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which students have in interpreting letters as representing generalized
numbers may be related to a °cognitive readiness® factor: The lower
ability mathematical groups were unable to evolve in their interpretation
of letters as did the middle and top abillty groups. Another finding of
the SESM study was that, even though beginning algebra students are
initially unreceptive to the ldea of unclosed, non-numerical answers (such
as x + 3), instruction can be quite effective in changing their thinking in
this regard.

Algebraic Expressions

After being introduced to the notion of using letters to represent
numbers, the next topic in the algebra programme is usually operating with
these letters In the context of simplifying algebraic expressions (e.g.,

&x + 3x). Chalouh and Herscovics (in press) carried out a teaching
experiment (six chjldren, 12 to 13 years of age) in which they investigated
the cognitive obstacles involved in constructing meaning for algebraic -
expressions when using a geometric approach. In designing their teaching
experiment, they took into-consideration the work of Collis (1974) and of
Davis (1975) .concerning the incongruencies between arlthmetic and algebra,
the consequent -inability of novice algebra students to regard algebraic

' expregsions as legltimate answers, and the difficulties they experience .
with algebraic concatenation. Chalouh and Herscovics used an instructional
sequence that included arrays of dots, line segments, and areas of
rectangles. The lessons permitted the children to develop meaning for
expressions such as 23 + 5a, but most of the children were not able
to Interpret this expression as 73. This atudy showed that
constructing meaning for algebraic expressions does not necessarily lead to
spontaneous development of meaning for the slmpllflcatlon of algebraic
expressions.

While the above study emphasized children’s construction of meaning
for.the form of algebraic expressions, other studies (e.g., Greeno, 1982)
have investigated children’s structural knowledge of these expressions as
evidenced by the processes they use to simplify them. Greeno (1980) has
suggested that the process of solving problems involves apprehending the
structure of relations in the problem. To test this idea, he carried out a
study with beginning algebra students on tasks involving algebraic
expressions (Greeno, 1982). He found that their performance appeared to be
quite haphazard, for a while at least. Their procedures seemed to be
fraught with unsystematic errors, thus indicating an absence of knowledge
of the structural features of algebra. Their confusion was evident in the
way that -they partitioned algebraic expressions into component parts. .
According to Greeno, beginning algebra students are not consistent in their
approach. to testing conditions before performing some operation, nor with
the process of performing the operations. For example, they might simplify
4(6x - 3y) + 5x as 4(6x'- 3y + 5x) onh one occasion, but
do something else on another occasion.

Algebraic Equations and Equation Solving

Q )
IE l(:tudents difficulties with apprehending the structure of algebraic
slons carry over into thelr work with the next topic of the
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programme, algebralc equations (e.g., 2x + 3 = 7). One of the findings

of the Algebra Learning Project (Wagner, Rachlin, & Jensen, 1984) was that
algebra students have trouble dealing with multiterm expressions as a
single unit: Students appeared not to perceive that the basic surface
structure of, for example, 4(2r + 1) + 7 = 35, was the sane as for

4 + 7 = 35,

A recent Study with.a teaching component (Thompson & Thompson, 1987)
has shown that instruction can improve students’ ability to recognize the
form or surface Structure of an algebraic equation. These researchers
designed a teaching experiment involving two instructional formats:
algebraic equation notation and expression trees displayed on a computer
screen. After instruction, their eight 7th-grade subjects (12-year-olds)
did not overgeneralize rules, nor did they fail to adhere to the structure
of expressions. They: also developed a general notion of variable as a
placeholder within a structure and the view that the variable couid be
replaced by anything: a number, another letter, or an expression.

_ A teaching experiment carrled out by Herscovics and Kieran (1980)
emphasized another aspect of the structure of an algebraic equation: the
equivalence of jeft- and right-hand expressions. In a sefies of individial
sessions, Six 7th-grade and 8th-grade children were guided in constructing
meaning for equations in which each expression did not contaln simply a

_numerical.term (i.e., for equations with the surface structure ’
ax + b=cx + d>. The instructional sequence began with an extension
of the notion of arithmetic equality to include equalities with more than
one numérical term on the right side and then went on to hiding the numbers
of thesé "arithmetic identities." This approach was found to be accessible
to these algebra novices and effective in expanding their view of the equal
sign from. a "do Something signal® (Behr, Eriwanger, & Nichols, 1976) to
that of a symbol relating the value of the left-hand expression with that
of the right-hand expression (Kieran, 1981).

Many studies have focused on students’ knowledge of parsing (i.e.,
recognition of the surface structure of an expression or equation). Davis
¢1975), Davis, Jockusch, and McKnight (1978), Matz (1979), Greeno (1982),
and others have all shown that beginning algebra students have enormous
difficulties.in Imposing structure on expressions involving various
combinations of operations, numerical terms, and literal terms. Parsing
errors, such as simplifying 39 - 4 to 35x, have bern documented in
gseveral studies. These same errors have been found to persist among
college students (e.g., Carry, Lewis, & Bernard, 1980).

Another facet of arlithmetic/algebraic structure concerns the
relationship between the operations of addition and subtraction (and
between multiplication and division) and the equivalent expressions of
these relationships ¢(e.g., 3 + 4 = 7 and its equivalent expression
3 =7 - 4). Knowing these relationships and their written forms could
conceivably enable a student to see that x + 4 = 7 and x = 7 - 4 are
equivalent and that they have the same Solution. However, such may not be
the case: A group of six twelve-year-old beginning algebra students showed
considerable confusion over equations involving the addition-subtraction
relationship (Kieran, 1984). This was seen with two of their errors: the

I Redistribution error and the Switching Addends érror. In the Switching
C}“ndé error, x + a = b was considered to have the same solution as
IE l(:a + b; in the Redistribution error, x + a = b was considered to have
same sSolution as x + a - ¢c =b + c. In this last equation, the
2 !

- 109

Aruitoxt provided by Eic



- 437 -

subtraction of ¢ on the left was balanced by the addition of ¢ on ‘he
right. :

another aspect of structural knowledge considered to be important in

equation solving involves knowledge of- equivalence constraints. Greeno
(1982) has pointed out that algebra novices lack knowledge of the
constraints which determine whether transformations are permissible. For
example, they do not know how to show that an incorrect solution is wrong,
except to re-solve the given equation. They do not Seem to be aware that
an lncorrect solution, when substituted into an incorrectly transformed

. equation will yield different values for the left and right sides of the
equation. Nor do they realize that it is only the correct solution which
will yleld equivalent values for the two expressions in any equation of the
equation-solving chain.

Students’ understanding of equation structure, as related to the
solutlion of an equation, was also investigated in the Kieran study (1984).
The six novices were presented with palrs of equations and were asked
whether or not the equations had the same solution, without actually .
solving the equations. The method the students used was to compare the two
equations, attempting to pick out what did not match and, on the basis of
their arithmetical knowledge, to determine whether the mismatches wece
legal or not. In scanning the equation-pairs for similarities and
differences, the novices followed a left-to-right search pattern and rarely
seemed to be able to take in all of the differences between the equations.
This inability of beginning algebra students to discriminate the essential
features of equations has important consequences for learning theory.

Another large body of research exists in which the focus has been on
the procedures used by novices in the solving of equations. Some of these
studies have included different "concrete® modeling techniques as a method
of helping students construct meaning for certain forms of equations and
for the operations carried out on these equations. One such study was
carried out by 0’Brien (1980) who worked with two groups of twenty-three
3rd-year high school students. One group was taught meaning for equations
and for the manipulations performed on equations by means of concrete
materials (bundles of counters and colored cubes). The manipulations
involved removing objects from both sides or adding objects to both sides
of the concretely-modeled equation. The second group was taught meaning
for manlipulations using a generalization of the part-whole strategy (i.e.,
the retationship. between addition and subtraction--2 + 3 = 5 compared with
2 =5 - 3), often called the "Change Side"-"Change Sign® rule. O0’Brien
found that the second group became more proficient equation solvers than
the concrete materials group.

- Concrete models have also been used in teaching experiments by Filloy
and Rojano (1985a, 1985b) In studies almed at helping students create
meaning for equations of the type Ax + B = Cx and for the algebraic
operations used in solving these equations. Their main approach was a
gecmetric one, although they also used the balance model In some of thelr
studies. Teaching interviews with three classes of 12- and i3-year-olds
who already knew how to soive equations of the types x + A = B and
Ax + B = C showed that the use of these two concrete models (the balance
and the area models) did not significantly increase most students’ ability
b “““'ate at the symbolic level with equations having two occurrences of

nown. The well known equatlion-solving-érror of combining constants
[: l(:fflclents was aiso seen in this study, in particular with the use of
o~
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the geometric model. Students tended to fixate on the mode]l and seemed
unable to apply previous equation-solving knowledge to the simplified
equations of the instructional sequence.

A final study to be discussed in this section on equation solving is
one which did not use concrete models but rather drew on the numerical
approach used in an earller teaching experiment by Herscovics and Kieran
(1980). At the outset of the study, Kieran (in press a) pretested six
average-abllity 12-year-olds who had not had any previous algebra

- Instruction. She found that the students showed two different
equation-solving preferences, both based on their elementary school
experience with "open gentences.* Some preferred to solve the simplc
equations of the pretest by means of arithmetic methods such as
substitution and known number facts; others preferred inversing, that ls,
solving 2x + 5 = 13 by subtracting 5 and then dividing by 2 (and In fact
seemed unaware of the potentlal of substitution as an equation-solving
procedure). Those who preferred substitution viewed the letter in an
equation as representing a number in a balanced equality relationship;
those who preferred inversing viewed the letter as having no meaning until
its value was found by means of certain transposing operations. (See
Kieran, 1983, for more details on these students’ views of algebraic
letters.) In the teaching experiment on equation solving which fol lowed,
the procedure of performing the same operation on both sides of an
algebralc equation was carried out first on arithmetic equalities (Ce.g.,
10 + 7 = 17), and then on the algebralc equations built from these
arithmetic equalities C(e.g., x + 7 = 17):

10 + 7= 17 x+7=17

+

10+7-7=17-7 X+7-7=17-17.
Kieran found that those students who had initlally preferred inversing
(i.e., transposing) were in general unable to make sense of the solving
procedure being taught, that is, performing the same operation on both
sides of an algebralc equation. This suggests that, although lnversing is
considered by many mathematics educators to be a shortened version of the
procedure of performing the game operation on both sides, these two
procedures may be perceived quite differently by beginning algebra
students. The procedure of performing the same operation on both sides of
an equation emphasizes the symmetry of equations; this emphasis is quite
absent in the ugse of the procedure of Inversing. Although this
Investigation involved only six case studies of beginning algebra learners,
the findings suggest that there may not be just one path which is followed
in the learning of algebra. Some learners focus inltially on the given
aurface operations and on the relationship of equality between left- and
right-hand expressions of an equation; they may be more open to the solving
procedure of performing the same operation on both sides. Other learners
focus immedlately on transposing and on the inverses of the glven surface
operations; they may prefer to solve equations, not by the
same-operation-to-both-sides method, but by extending their transposing
method.

1 é 1 Concluding Remarks

The early learning of algebra involves grappling with the topics of

Q rlables, algebraic expressions, equatlons, and equation solving. The

[EIQ\L(:search discussed in this paper has shown that students. have difficulty
roe oot enc)
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with recognizing and using the structure of Introductory algebra. It has
been found that some aspects of this difficulty are amenable to )
instruction; others less so. One particularly troublesome area-concerns
the ‘understanding of a particular -feature of algebraic structure--the
equality relatlonshlp between left- and right-hand expressions of
equations. This relationship is a cornerstone of much of the algebra
instruction currently taking piace. It is the basis of many of the
concrete models used to represent equations and equation-solvings it 1s-
also an integral part of the symmetric procedure of performing the .game
operation on both sides of the equatlon. However, 1t has-been found that
for -some Students, teaching methods based on this aspect of the structure
of equations often do not Succeed. For these Students, who tend to view
the right side of an equation as the answer and who prefer to solve
equations by transposing, the equation is simply not seen as a balance
between right and ieft sides, nor as a structure that Is operated on
gymmetrically. That understanding seems clearly to be absent. These same
students also appear to have difficulty in formalizing even such simple
relationships as the equivalent forms of addition and subtraction. Another
finding of many -of the studies digcussed in this paper concerns the
inabllity of beginning algebra students to *gee®. the surface structure of
algebralc expressions which contain various combinations of operations and
literal terms. This difflculty seems to contlnue throughout the aigebra
career of many Students, as evidenced by errors such as reducing
(a+b+¢)a+b)tog, seen among college students. In

conclusion, many high school Students appear to be experlencing gerlious
obstacles in their abilityto recognize and use the structure of school
algebra. The challenge ‘to- regearchers Is to devige studies that will push
forward our knowledge of how students can come to understand the structure
of elementary algebra and of algebralc methods.
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THE INFLUENCE OF TEACHING ON CHILDREN’S STRATEGIES
FOR SOLVING PROPORTIONAL AND INVERSELY
PROPORTIONAL WORD PROBLEMS
Wilfried Kurth, Universitédt Osnabriick, W.-Germany

Prior to the teaching unit, children are left to strategies of
their own, when they try to solve proportional and inversely
proportional word problems. With the help of a test, several
succesful and error strategies were found. During the teaching
unit, children have learnt to relate word problems with the
concepts “"proportion" ‘and "inversely proportion" and to solve
them by using characteristic peculiarities of these types of
function. :

In this way, the children become more succesful in general,
but the different types of error decrease to a different
extent, some don’t decrease. One type of error - to take an
inversely proportional problem for a proportional one - even
increases distinctly. The results of the investigation are
presented and then are tried to be interpreted.

The solution of proportional and ‘inversely proportional word problems -is
mainly taught in the seventh grade in schools of all types in the F.R.G.
(age of the pupils about 12 years). The aims of the corresponding teaching
unit are '

- the ability to gather from the text‘whether the function is proportional
or inversely proportional (or neither)

- the ability to solve the p}oblem by -applying a procedure thdt corresponds
to the respective function. This procedure (e. g. the rule of three, the
method of fraction operators, fractional equations) is usually introduced
as a schematic procedure, i. e. the Eules applied are presented in a
particular optical fashion.

A typical kind of. problem is the missing value-problem which requires the

calculation of a forth value on the basis of three given ones.
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The cnildren already know the arithmetical operations (multiplication and
division of rational numbers) for solving proportional and inversely
proportional problems. The question is, how far this knowledge will help
pupils to succeed in working out a strategy referring to the situation
presented in the text of the excercise.

Within our inyestigations we are mainly engaged in finding out which
strategies and types of error are produced.by the pupils before and after

the teaching unit and how these changes can be explained.

The investigations are composed of a preliminary test (before the teaching
unii); teaching observations in some classes, and a follow-up test identi--
cal ‘to the first one (about 6 weeks after the teaching unit). Additionally,
we 1ntervxewed some pupils in order to get more information on their pro-
blem-solvxng-process 217 pupils from 11 classes of the “Realschule" (the
secondary school within the tripartite school system of the FRG) were

involved in the investigation outlined here.

The test consists of 10 missing-value-problems (5 broportional and 5
inversely proportional). Previous investigations (Hart 1981, Karplus et al.
1983, Kurth 1987, Noelting 1980) showed that pupils adjust their strate=
gies very much to the chosen ratios, i. e. possible calculation diffi-
culties influenced the extraction 6f the operations from the text of the
exercise. If the three given values a, b, ¢ and the unknown “x" are arran-

ged in a table (My, Mp are the two measure spaces)

My M2
a b
c X

the five following combinations of ratios are included (a, b, ¢, x integer):

1) ¢:a and b:a both integer
2) c:a integer, b:a not integar

c:a not integer, b:a integer
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4) c:a = 3:2, b:a + 3:2, b<a
§) c:a, b:a both not integer, both not equal 3:2, c<a, b<a.

Each of the five combinations refers to one proportional problem (no. of
evaluation: 1-5) and one inversely proportional problem (no. of evaluation:
8-10) occuring in the test in a mixed-order:

Test exercises according to the order of evaluation:

1. Out of 7 liters of milk, you can make 42 grams of butter. How many grams
of butter would you.flet from 21 liters?

2. Within 5 days,. a potato-chip factory uses 8 truck loads of potatoes. How
many truck loads of potatoes would the factory use within 30 days?

3. In 12 seconds, a water-pump can fill 38 liters of water into a pool. How
many liters of water can the same pump fill into the pool in 9 sec.?

4. There are 10 eggs to 8 table-spoons of milk in a pancake recipe. How
many table-spoons of milk are there to 15 eggs?

§. TIn 20 seconds, a computer printer prints 15 lines. How many lines does
it print in 8 seconds?

8. 4 identical pumps empty a swimming pool in 40 hours. How long would it
take 20 pumps to do so?

7. 6 identical lorries remove a heap of rubble each by drxvxng 12 times.
How many would each of 15 lorries have to drive to remove the same heap?

8. A water supply lasts for 6 days if you daily take 18 liters. How many
liters may be taken daily, if the water supply is to last for 4 days?

9. For 8 sheep, a feed supply lasts 15 days. How long would the same feed
supply last for 12 sheep?

10. A certain amount of potatoes is filled into 15 kilogram-bags. 8 bags
are filled. How-many 8 kilogram-bags could have been filled using the
same amount of potatoes?

According to preliminary examinations and to investigations by Lybeck
(1978), Karplus (1983), Noelting (1980), Vergnaud (1983), pupils’ success-

ful strategies can roughly be classified into the two following forms,
called the "A-Form" and "B-Form" by Lybeck:

A-Form: The children try to first establish a multiplicative relation
Q between a and b (according to the proportional and the inversely

ERIC .5
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proportional coefficient respectively) and then transfer 1t to tne
ovair (¢, Xx). -
(This strategy 1s called "Within strategy" by Noelting , and
"Function® by Vergnaud ). ’

B-Form: The children try to first establish a multiplicative -relation
between a and ¢ (according to a scalar operator) and then transfer
,it-or else the reciprocal operator with inversely proportions-to
the pair (b, x). T ’
(This strategy is called "Between-strategy" by Noelting , and
“Scalar" by Vergnaud ).

Remarkable types of errors are:

Additive strategies (add): The pupils try to establish a relation between a
and ¢ (similar to the B-Form) but chose an additional operator and transfer
it to the pair (b, x).

Dividend and divisor exchanged (div): The pupils exchange dividend and
divisor where a division is required. s
Wrong type of function (wf): The pupils take a proportional problem for an
inversely proportional one and-vice versa.

No attempt made (na): No attempt is made to solve the problem.

Results of the preliminary (p) and of the follow-up test (f)-(data shown in
percentage referring to the total number of pupils (N = 217):

Proportions:

No. of evaluation 1 2 3 4 5
p f p f p. f p f p f
Success rate 79 85 60 81 69 80 34 67 15 60
A-form 28 28 4 18 85 60 5 21 5 25
B-form 50 55 53 61 417 23 37 8 26
ad 1 - 4 - 7 3 18 3 13 3
div - 1 2 5 - 4 10 13 14 12
wf - 3 - 2 1 5 3 3 2 6
a 3 4 8 3 5(( 2 20 6 28 7
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Preliminary tsst: )

On the one hand, it becomes clear that with increasing “unfavourable" ratios
the success rate in solving the“problem is decfeasing and the application of
additive strategies as well as not attemﬁting the problem is rising.

No. 2 and 3 show clearly that ihg'children look for integral ratios when
chosing their strategies. No. 1 Shows that given an'inteber A- and B-ratio,
pupils prefer the B-strategy. )

Most of the B-strategies in-excercise 4 (21 %) also show that pupils are
inclined to use correct additive strategies: The ratio c:a = 3:2 allows the
application of the special strategy f(c) = fratas2) = f(a)+f(a)/2 = b+b/2
which utilizes the additivity of the proportional function f.

The interviews have shown that the successful application of the B-form in
no. 1 and 2, too, is based on the concept of multiblication as a short form
of writing an addition. The children try to find out, how many times the
magnitude a goes into b, get the scalar operator, and transpose it in Mp,

or ihey even add at+a+... until they get to b, then count the number of

times they have added a and so add c+c+... -

If this concept is no longer applicable, pupils switch to the wrong strategy
“add"”, which only reflects the monotonous character of the proportionaliiy.
Difficulties occur when pupils try to apply the A-form in no. 4 and 5: here,
too, a confined concept of multiplication and division becomes clea)
manifesting itself according to the following rule ihich was valid during
elementary school education: "You can only divide the larger number by the
smaller one". '
Fischbein (1985) showed, that it is difficult for pupils to detach

themselves from these "Implicit Primitive Models™".

Follow-up test:

The still high percentage of "div"-mistakes in no. 4 and 5 is due to pupils’

failure who learnt a procedure based on the A-strategy. "Implicit Models" of
division could not be reduced in this case. C '

. The type of error "add" hardly occurs because the pupils rarely did any

addition or subtraction during the teaching unit.

| 11 ~
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Results of the preliminary (p) and of the follow-up test (f):

Inversely proportions:

No. of evaluation 8 7 8 9 10
p f p f p f p f p f

Success rate |39 68 54 69 | 38 47 26 55 56 60
A-form 10 32 28 35 38 35 22 39 54 49
B-form 26 24 25 33 2 9 3 15 2 9
ad 2 - 4 1 51 20 4 4 2

div - - - - - - - - - -

wf 8 14 9 11 27 42 9 18 2 21

na 4 3 13 7 11 5 27 11 27 10

Preliminary test:
Th;re is no tendency towards a decrease in the success rate with increasing
“unfavourable" ratios of numbers. This was not expected anyway because the
A-strategy - in this case beginning with a multiplication which is followed
by a division with an integer result - is always a strategy that avoids
fractional numbers. Yet, pupils like to use the B-strategy even with an
integer B-ratio (no. 6,7). “Correct” additive strategies as used in

=~ proportions (f(x+x+...+x) = f(x)+f(x)+...f(x)) do not occur in inversely
proportions. The fact_;hat pupils still try to use them, partly éxplains why
the percentage of "wf“-mistakes with inversely proportions is higher than
with propqrfions. To what extent the problems for pupils are influenced by
the ratios; is indicated by the extremely high percentage of the
*wf*-mistake in no. 8, for, heré, the integer A-ratio (b:a = 18:6) provokes
a proportional A-strategy. In order to exclude the possibility that other
factors - e. g. text variables - caused the mistake, the texts of no. 8 and
10 were exchanged by keeping the numbers in another investigation. The

results were similar.

In no. 9, the high percentage of “add“-mistakes with low percentage of
A-strategies at the same time, is caused by the presented situation. The

fntermediaie.result a‘b belonging to the A-strategy is more difficult to

NS 119 0



- W7 -

interpret in this problem than in the other four inversely proportional
problems. Switching to a B-strategy - with “unfavourable" ratios of numbers

given - leads to the "add"-mistake.

Follow-up test:
The most remarkable resuli of this test is the distinct increase in
“wf"—mistakes.when compared to the preliminary test. Based on the inter-
views, we are able to-name an important factor for this result: In the
preliminary test, no pupil has as yet determined a pattern to solve the
problems but each new problem requires pupils to find a way to solve it,
i..e. the pupil has to form hypotheses for his solving process from the
concrete context of the problem, to calculate and interpret partial results
thus, to test his hypotheses and thereby to solve the problem sequentially
and within close analysis of the concrete context.
This situation differs considerably from the one in the follow-up test: The
pupil has learnt to relate the excercises with the concepts “proportion" and
“inversely proportion". After having decided on the type of function he is
now capable of using the respective procedure mechanically like a computer
programme.'His input, i. e. his analysis of the context of the problem, is
confined to the decision on the type of function. Especially here lies the
danger. ’
Let us have a look at no. 8 for example:
A water supply lasts for 6 days if you daily take 18 1iters. How many
liters may be taken daily, if the water supply is to last for 4 days?
In many interviews, the type of function was determined wrongly: "The more
days, the more water will be used. That is: proportional®.
There is, indeed, a proportional relation - as just mentioned - in the first
clause of many inVeréely.proportiénal problems. Pupils chose their procedure
on the basis of this relation. The procedure then runs without further text
analysis and often, too, without applying the final result to the content
once again. Thus, there is no protection against a wrongly determined type
of function.
The previous explantations have shown possible dangers of automating the

solving of word problems to a large extent.
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That part of the solution which cannot be automated is reduced to a minimum.
This is a correct and possible way to solve word-problems,. but for the

children, it is a new and unfamiliar way to work with concepts like

" “function", “proportions", "inversely proportions" and to solve problems by

applying procedures which are based on characteristics of these types of
function. '

Obviously, teaching does not take this aspect into account sufffbiently.
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CONSTRUCTING BRIDGES
I R (o)

Chronis Kynigos
Institute of Education University of London

Abstract. Turtle geometry, apart from being defined as intrinsic, has a special
characteristic; it invites children to identify with the turtle and thus form a body
syntonic thinking “schema”, to drive it on the screen to make figures and shapes.
This is a report of on - going case study research, whose aim is to investigate the
potential use of this "schema” by young children in order to develop understandings
.of Cartesian geometry. Three pairs of 11 -12 year old children with 50 -60 hours of
experience with turtle geometry participated in the study.The results presented here
highlight the children’s conflicts arising from their attempts to use a coordinate
method to control the turtle. A model of a synthesis of their insights into coordinate
notions is proposed, together with a model of the schema they seem to have built
during their experience with turtle geometry ptior to the study. Some examples are
then given of the children's dissociations from their "intrinsic schema” and their
subsequent understandings of specific coordinate notions.

The theoretical framework of the study is based on the role of Logo and turtle geomewy within a
specific view of mathematics education; i.e. learning mathematics is seen as an on - going re -
organisation of personal experience, rather than an effort to describe some ontological reality. The
child learns mathematics by building with elements which it can find in its own experience (Von .
Glaserfeld, 1984). Papert (1972) uses words like "doing” and "owning" inathematiqs to stress the
dynamic and active involvement of the child. Hoyles and Noss (1987) use the notion of "functional
mathematical activity”, i.e. the child using mathematical ideas and concepts as tools to solve
problems in situations which are personally meaningful. Logo is seen by more and more édﬁcators
as a powerful tool for creating educational environments in accordance with-the above perspeogi\'/e.
Turtle geometry, a very iinpo‘rtarit part of Logo, has a particular characteristic; when children "do"
turtle geometry, they can identify with the turtle, and therefore use personal experience of bodily-
motion to think about the shapes and ﬁglires they want to make (Papert 1980, Lawler 1985): :

My approach to this thinking "schema" which the children seem to adopt for doing turtle geometry
(called "intrinsic thinking" by Papert and Lawlér), does pot pre - assume the nature of the
geometrical notions used when the schema is employed to drive the turtle on the \scree'n. It is
infomed, rather, by research into the structuring of intuitive geometrical knowledge, i.e. the way
children link very simple sets or “units" of such knowledge to the turtle's actions. The); acquire
these "units" from very early personal experience of movement.in space. DiSessa might call these
units "phenomenological primitives", although his study was in the context of physics (diSessa
1982). Lawler puts forward the ﬁon'on_ of a "microview" to talk about domain specific fragme:its of
personal exberience. He contends that the personal geometry "microview" is "ancestral” to the

:_-::‘i--f geometry "miCroview". '
ERIC 122 ‘
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However, the nature of the geometrical notions underlying turtle geometry is characterised by
Papert as intrinsic, i.. that turtle geometry belongs to the family of the differential geome&ical
-systems where growth is described by what happens at the growing tip (Papert 1980). This
geometry is contrasted to the "logical" euclidean geometry of theorems and proofs and to the
"analytical" cartesian geometry where changes of state are caused by location descriptions. Papert
discusses the different nature of these geometrical systems and argues that it is mathematically
important for children to understand the relations between them. As part of a wider issue of the
potential of intrinsic thinking for the learning of geometry (Kynigos 1987a), this study addresses
the problem of whether it is possible for children to use this powerful thinking tool which they
adopt naturally from doing turtle geometry, to develop an understanding of the cartesian
geometrical system and its relationship with the intrinsic. For convenience this thinking schema will
“be refered to as the "intrinsic schema".

OBJECTIVES,
The aim of the study was to investigate in detail different aspects of the same problem i.e. the extent
to which it is possible for children to use their intrinsic schema for developing an understanding of
coordinate geometry. The method employed involved the ecouraging of the development of three
separate learning paths, each employing a different conceptual base for describing the plane (fig.1),
thus building a different "bridge" from intrinsi¢ to cartesian geometry. All the paths consisted of
three categories of activities (fig. 1) with the aim of:

Category 1) illuminating the process by which the children developed an understanding of a
systematic description of the plane (fig. 1 - A, B, C).

Category 2) illuminating the nature of children's understandings of the absolute coordinate and
_heading systems, while using a non - intrinsic method to change the turtle state in the coordinate
plane (fig. 1 - D, E).

Category 3) investigating if and how they used their intrinsic schema to relate intrinsic and
coordinate notions while choosing a method of changing the turtle state in order to make
measurements on the coordinate plane (“T.C.P." microworld, fig. 1, F).

METHOD, .
Three pairs of 12 year - old children participated in the study, one for each path (fig. 1). Prior to the
study the children had had around 60 hours of experience with turtle geometry (they did not know
about the SET- commands) in an informal, investigation - type classroom setting as members of a
Logo club of 20 clifldren in total. The research was carried out during school hours in a small
“research room" and each pair of children participated.in three 90 to 120 minute sessions, one for
¢y vegory of activities, in a total period of no more than a week for each pair. Soft and hard
]: MC were produced of everything that the children said and typed. The researcher also kept what
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they wrote on paper, produced graphics screen - dumps, and took notes on anything of importance
which would escape the rest of the data.

A rather detailed analysis of the data was required in order to underscand the children's thinking
px"ocesses especially at times of conflict created by environments which embedded notions which
were "dissonant” to their hitherto experience. A substantial component of the analysis therefore is
in the form of "significant" episodes during the children’s activitics xllustmtmg the nature of their
msxghts or confusxons related to the research issues.

RESULTS,
The results presented here concentrate on the activities of the children during the category 2 tasks
which involved taking the turtle to specific points on the coordinate plane (shown on the screen by
a cross sign) with the only available means being the coordinate (SET) commands (fig. 1, D). For
the category 2 and 3 activities (fig. 1 D, E, F), the researcher imposed position changes dependent
on the turtle's heading, i.e. the turtle could only mrve towards where it was heading.

As aresult of the analysis of the data, a model of a "coordinate schema" is being developed, which
‘synthesises the children's insights into the notions involved in the coordinate controlling of the
turtle. The model consists of heading and position change schemas, which the children seemed to
be in the process of building as a result of dissociating from intrinsic notions. This process of
dissociating from the intrinsic schema and developing another, seemed to throw light on specific
notions the children had aparently built for controlling the turtle during their 15 - month ‘experience
with turtle geometry, thus clarifying components of the intrinsic schema itself, a model of which is
also proposed in the study. -

During an earlier part of the analysis (Kynigos 1987, b), examplés were given of one pair of
children (pair 3, fig.1) dissociating from a turtle "action - quantity" schema (e.g. "move steps, turn
degrees”) while having insights into important factors for changing the heading and the position in
the coordinate plane. This report presents examples of how the other two pairs of children seemed
“to make dissociations from "action - quantity" and sequentiality notions in "intrinsic" heading and
position changes in order to solve the tasks. The presentation concentrates on the children's
understandings of a turtle state - change caused by describing the gnd state (e.g. the meaning of the
command SETH 180), rather than a "sequential” change from the present to the end state (e.g. the
meaning of RT 180). The children's abandonning of their "action - quantity” schema is also
illustrated in favour of state changes caused by descriptions of absolute directions and locations.

":"“ ~llowing episode illustrates Maria and Korina's first insight into the coordinaté method of
]: MC ng the turtle's heading which seemed to mvolve a dissociation from their familiar "action -
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. quantity" schema and the use of an absolute direction system to describe the new heading. The first
discussion concerning the method of changing the turtle's heading arose in the context of a mistake
during the task to take the turtle at point 80 -60, i.e. Maria's aparent unclear distinction between the
two states and the nature of their metric systems (degrees and length units), resulting in her typing
in SETH and then counting on the x - axis for an 80 input to SETH (point at 80 -60). The process
of discussing the meaning of the SETH command and its input in order to understand the turtle's
resulting heading of 80, seemed to favour the development of an awareness of an external direction
as the determinant of heading change. The following extract illustrates the aparent carry - over of
this awareness to the next task (turtle at -90 0, heading 270, point at -90 -40, fig. 2):

(discussion on how to take the turtle from heading (1) to heading (2))

M: "SETH..." )

K: "To show where it's <—o
looking, yes..." (meaning of SETH) :

M: "SETH..." _ L )

K: "How much...wait...
- to look downwards..." (meaning of the input)
M: "SETH 180." X (-90-40)

- M, and K.; Discussing the meaning of SETH

However, it seems that this insight in dissociating heading chzinge from action - quantity, did not
incorporate a dissociation of what has been referred to as the "sequentiality schema", i.e. the notion
the children seem to have built from their turtle geometry experience, that a heading change is
caused by a turtle action from its previous heading to the new one.This can be illustrated by the
children's attempt to take the turtle on the -100 90 point (fig. 3), a task in which the axes were
hidden. Having passed the point by typing SETY 100, the children were trying to make the turtle
face downwards, i.e. change its heading from O to 180. Although Maria's verbal expression of her
plan seemeéd to indicate an understanding of relating heading change to an absolute direction
("...this is 0 now, if we turn and we say- SETH 180..."), she‘ had 'not really séen Ithe absolute
direction as the only necessary determinant of the change. This became aparent in her attempt to
make the turtle face downwards from a heading of -20'(she had typed SETH -20 confusing degrees
with turtle steps - ﬁg._3)

(Discussihg how to change the turtle's heading from (1) to (2)) . @)

M: "So we should tell it to go to 180. . X @)
Therefore, 200. Let's see..." (she types SETH 200)) ’

Figure 3 :
Q M, and K. Discussing how to make the turtle face downwards
ERIC 126
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It is suggested that Maria's mind focussed on the rotational "distance” from -20 degrees to 180,
imposing an input which was dependent on the previous heading. This sequentiality schema
seemed to have a very strong resistance to change in the children's mind; after discussing the
outcome and trying out different inputs to SETH, Maria did seem to have an insight'into the
absolute nature of this method of heading change:
M: "Le. however much it iS, let's say 5 degrees funher, it's not relevant, let'’s say we mustn't add
it to...

K: "We should put it normally (she means just the end heading) whatever itis.”
M: "Good. Now let's tell her... 10 distance." ~

Inspite of the different context (change of position) it was seen as important to include the last
phrase of this dialogue, which seems to indicate that although Maria had just had an insight into the
notion of end direction being the important factor in changing the heading, she did not carry that
notion to the change of the turtle's position from (0 100) to (0 90), focussing on the distance from
100 to 90. In fact, the children had already discussed changing the position before turning the
turtle, imposing a distance notion in their plan (fig. 4): '

(Discussing how to take the turtle from position (1) to position (2)) '
Me
L
M: "No, it's too much." o @ .
K: "Yes... a bit less.” (-10090)
M: "Em... minus 10. Minus 20, therefore 80." :
K "Yes, I'said 80 at the begmmng too."
M: "OK., -20 then.”

M. and X.; Changing the turile's position
The éhildmh séemed to be talking about the turtle steps from the 100 to the 80 point, i.e. the

distance from the present position to the position of change. They also seemed to impose a "reverse
action" notion, of "undoing" an aparent forward 100 action by subtracting the distance.

The strength of this "relative distance” (as opposed to distance from the origin) schema is illustrated
by the children's persistence to use it in. their subsequent activities: at first they typed in -20,
forgetting about the SETY. command. After discussing the error message from the SETY -20
command, which led to a turning of the turtle to face downwards, and although Maria had had an
insight into the notion of the end direction being the important factor in changing the heading (fig.
2), she did not carry that notion to the change of the turtles position from (0 100) to- (0 90)

assing on the distance from 100 to 90, she typedm SEl'Y 10, and after the result on the screen,

]: l C Y -10, apan-.mly thinking she'had failed to include a "reverse action” elemcm.
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From the resulting 0 - 10 position, the children turned the turtle to face upwards again and took it to-
(0 80), saying forward 80 and typing SETY 80. Only then, did one of them (Korina) show some
indication of dissociating from the relative distance hotion, expressing an opposition to a proposed
SETY 10 command in the attempt to move from 0 80 to 0 90: ‘ .

M: “Now. SET...Y... 10." .
K: "10? I say, let's do... 90."

" However, the children did not explicitly use the notion of position change caused by giving the end
position as an input, in any of the subsequent tasks in this session. '

Natassa and Toanna, however, were more explicit in their attempts to ‘make sense of position
changes. They met their first difficulties in trying to move the turtle from a -100.0 to a -110 0
position in order to decide whether the value of 100 for the x coordinate was the correct one (the '
axes were invisible, the point was at -100 90, fig. 5). In their efforts to explain why th&r first
attempt (SETX -10) did not work while their sécond (SETX -110) did, the children constructed a

~ "theory" for the meaning of the number of the x value. - '

(explaxmng why- SE'I‘H 110 worked while SETH -10 did not,
in taking the turte from position (1) to position (2))

.(-100 90)

I: "...we did it again from 0 till 110 X

and it came out.” .
N: "...we can't do 10 because we've

~ done 100 already. Plus 10 we wan )
to do... 110." @

I: "She doesn't go... because we've . <4

passed 10." ’ (1)

) Ioanna seemed to suggest two ways of mtcrpretmg the mieaning of thé x value: firstly, the value
represents the distance. from the origin, and therefore the SETX command operates in such .
. distances, and secondly it represents a name for a place ("...we've past - the place - 10."). Natassa
. seemed to take on board the "distanice from the origin" theory. Notice how she used a specific way
to talk about a number when it represented an x.value (by using the word “do" in front of such
numbers), and seemed to implicitly corntrast it io the normal meaning of number ("... plus 10, we .
" want to do... 110). o .
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DISCUSSION,

In their attempts to control the turtle, the children seemed to dissociate from their intrinsic schema
and develop new schemas for heading and position changes. Not surprisingly, this development
was not uniform across pairs, or across children individually. The children seemed to have
"insights” into parts of the coordinate method at various times during the activities but no child
seemed to explicitly synthesise the notions into a concise method of state change. The model for
the "coordinate schema” which is being déveloped, therefore, is only a synthesis of the children’s
insights into the notions involved in controlling the turtle in the coordinate plane.

The study provides a description of the process by which the children aparently began to build a
mental schema with dynamic characteristics, i.e. one which would enable them to make controlled
changes in the coordinate plane. The schema seemed to emerge in the children’s minds from it's
antithesis to the intrinsic schema, caused by the coordinate nature of the category 2 tasks (fig. 1). It
is interesting to consider the relationship between these two schemas and in particular that they both
seemed to emerge (at different times) in the children's minds as mental tools ing changes in
particular environments. Although this does not come as a surprise in a turtle geometric
environment, it is-not a self - evident characteristic of the leaming of coordinate geometry. In the
category 3 activities, for example, where the children could choose the method for controlling the
turtle (fig. 1), they seemed to use the necessary coordinate notions (e.g. locating and naming

- methods) gither vy employing their intrinsic schema (e.g. FD DISTANCE 70 -70: "go forward the
distance/'ﬂgog_where you are to point 70 -70"), gr their coordinate schema (e.g. SETPOS 70 -70:
"put yourself on point 70 -70™). It seems therefore interesting to consider the potential of the
"T.C.P." microworld of the category 3 activities (fig. 1) in providing the children with the
opportunitv of a dynamic interplay between the two geometrical systems by means of the option to
employ a method to make changes, based on concepts belonging to either system.
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CONCEPTS IN SECONDARY MATHEMATICS IN BOTSWANA
Hilda Lea
. University of Botswana

Abstract

Four tests from "Concepts in Secondary Mathematics and Science"
tests were used on a sample of secondary school pupils in
Botswana. The aims were to ascertain the levels of
understanding of pupils in Forms 2, 3 and 4 and to identify
difficulties; to compare performances of boys and girls in
Botswana; and to attempt to make some cemparison with available
results for some questions.on the same tests carried out in
England. It was found that many pupils were still at the
concrete operations stage in secondary school; that there was

a small difference between performance of girls and boys, with
a trend in favour of boys; and that there was some relationship
between the performance of pupils in Botswana and England.

INTRODUCTION

The CSMS tests were very carefully constructed, with qhestions chosen to
examine a variety of ‘concepts in an unfamiliar setting, so that hierarchies
of understanding could be established, and an investigation of children's
difficulties made. This should give insight into the way children learn
mathematics Hart (1981). Levels of questions iinked_to Piaget's stage
theory, were used as a framework to describe pupil's understanding. Four
levels were identified. ‘Level 1 shows an understanding of basic concepts.
Level 2 shows the application of these concepts. Level 3 shows the
beginning of abstraction. Level 4 uses abstract reasoning as well as the
application of knowledge to the solution of problems. In Piagetian terms it
could be said that items at Levels 1 and 2 require early concrete
operational thought, Level’3 late concrete, and Level 4 early formal
operational thought.

Achievement Of Girls And Boys

In Botswana, girls constitute 60% of the junior secohdary school population.

Form 4 is selective and girls constitute 40% of the senior secondary school

enroiment. This suggests that boys are already showing greater ability.
[:Iz:i(:erform better in 0 level mathematics and more boys achieve higher
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'plac1ngs in the Jun1or and sen1or ma ths contests., Kahn (1981) showed that
in Botswana, éducational ach1evement due to sex difference is not
significant’ at’ primary level but 1is more pronounced at Form 3, and that .
boys perform better than girls in all subjects except Setswana.

In Britain, APU (1980) showed that even though all girls do mathematics up -
to 16 years, they are not as successful as boys, and only 39% of the top

10% in 0'1eve1 were girlé: Boys were shown to be ahead in descriptive
geometry. In USA, NAEP (i930) found that at 14 years of age boys and girls
did equally well, but at 17 years fewer girls study maths and those who do
have a lower ach1evement Fennema (1978) found that boys were better at
spatial v1sua11sat10n The generalisation of many studies in Russia also
showed more mathematical aoi1ity for boys. Schildkemp-Kundiger (1982) on
an, 1nternat1ona1 ma ths study, found some sex related differences in maths
ach1evement in a wide range of- countr1es of different economic levels.

CompariéonIOf Results In Botswana And England

_As mathematics is:more culture free than most subjects, it should be

. possible to make some comparisons. It should be borne in mind that in
Botswana, the medium of instruction from Standard 4 in'primary school is
Eng1ish§ in Botswana the JC examination ds taken at the end of year 3,

. whereas in'England there is no national examination till the end of year 5;
and in both countries:O level is taken by the.most able, approximately 11%
in.Botswana and 20% in England.

METHOD

B Sample

Ten. schools were chosen at random, and 15 boys and 15 girls were selected
at random from each Form used. At the time of the tests about 35% of the
‘primary school populat1on went on to secondary school and approximate:y 11%
of ‘the primary intake proceeded to Form 4, In England the sample was mostly
taken from Comprehensive schools with a large ability range. A quarter of
each year group was used, the samp]e being representative of the normal
distribution of IQ in the British child population. The population of
England to Botswana is in the-ratio 50 : 1, and though the sample in England
‘Q° ger, the Botswana sample covered a much greater percentage of the -

EMCI populat1on 1 3 ﬂ ,
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Forms 2, 3 and 4 took the same tests in October each year.- Papers were
“ returned to the University for marking and analysis. Answérs were coded, 1
for correct answers, 0 for completely wrong or missing answers, and 2-9
depending on the type of mistake made. The marking system was that shown
in Hart and Johnson .

Table 1

(1980).

Summary of results showing the

RESULTS

percentage of pupils giving correct answers.

Botswana England
_ Form2 Form3 Form4 Form2 Form3 Form4é
)
Measurement Level 1 7. " 85 86
2 50 56 65 76
3 33 41 42 48
4 16 16
n 160 126 a4 - 373
Reflection  Level 1 58.2  66.3. 84.8 _ 79** 809  84.7
& Rotation 2 58.1  59.0  83.6  52.6 57:6 . 64.8
3 29.6 31.8  59.6 35.6 41.6 47.0
4 '39.0  42.6 59.9 5.1  27.4  35.6
5 7.7 22,5  35.0 123 16.00 20.2
n. 105 147 66 293 449 284
Algebra Level 1° 92.5  92.5 86.7. '92.5
2 69.7 78.6 . 51.7  65.4
3 39.9 44.9 2.5  43.8
4 10.8 18.4 7.6 - 14.7
n 221 176 128 961
Graphs Level 1 59.5 55. 78.1 67.3  63.3  69.6
2 40.6 7.0 59.1 17.0  18.3  21.9
Q 30.3 8.7  68.0  21.6 . 19.0  30.0
EMC n 215 115 68 459 755 584
”1
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Table 2

Results of girls and boys in Forms 2, 3 and 4 showing the percentage of
pupils giving correct responses.

Test Level ) Form 2 Form 3 Form 4
Girls Boys Girls Boys Girls Boys
Measurement 1 66 77 70 74
2 45 57 53 63
3 27 39 37 44
4 20 23 23 22
n 85 75 70 56
Reflection 1 52 66 61 72 81 90
& Rotation 44 53 49 8 78 79
° 20 40* 23 42 63 , 62
4 31 47 34 47 . 52 67
5 9 25% 1" 19 30 36
n 54 53 56 36 27 39
Graphs 1 67 67 69 50 ) 90 72
z 35 44 34 36 57 61
3 19- 28 22 23 58 62
n : 85 62 68 47 21 47

*Significantat .05 level
DISCUSSION OF RESULTS

When the téstS‘were drawn up, items were identified which had the same
Jevel of difficulty. If 2/3 of the pupils answered an item correctly, it
was an indication of the level reached by the group. Similarly a pupil
answering 2/3 of all questions correctly at a particular level, would be
considered to have reached that level of ability. From Table 1 it would
seem that in general in secondary schools in Botswana, in Form 2, 22% give
responses classified as early formal, 11% late concrete and 37% early
%oncrete; in Form 3, 26% give responses classified as early formal, t1%

]E \i(:e concrete and 35% early concrete; in Form 4, 35% give responses
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classified as late formal, 25% early formal and 4% late concrete. In most
cases Form 3 results were better than Form 2.” In the graphs‘test Form 2
results were bettek, probably due to the fact that this topic had just been
completed in the syllabus. From Table-2, one can compare samples of girls
and boys. There is a consistent trend in favour of boys, significant in °
two cases in the Reflection and Rotation test in Form 2. This would support
research findings that in maths boys perform better in general, and
noticeably better in spatial visualisation. It is not possible to make
precise comparison between samples in Botswana and England though trends can
be identified. It must be rememoered that this is a compar1son between the
top third of school age children in Form 2 and:3 in Botswana, and the whole
ability range in England. Selective Form 4 in Botswana is being compared
with an all ability range in England.

* Table 1 shows that in measurement, the sample of pupils in England did
nbticeab]y better at levels 1, 2 and 3. This could be partly due to the
fact that the environment of many pupils in Botswana is frequently =
unstructured. In Reflection and Rotation, pupils in England did better at
levels 1 and 3, and pupils in Botswana performed better atlevels 2, 4 and
5. In Algebra pupils in Botswana performed better at all levels. In-Grapﬁs,'
pupils in England did better at level 1, but pupils in Botswana.did
not1ceab1y better at levels 2 and 3. ‘The fact that Botswana performance is
relatively poorer at level 1 but relatively better at other levels, suggests
that in England pdpils get. a better foundation in mathematics at primary
“school, but at secondary school performace on average deteriorates, in’
comparison to Botswana where- the opposite seems generally to be true. . This
is supported by the fact that pupils in Botswana ~did better in Algebra at
level 1, a subject not done at primary level. It is not poss1b1e to make a
fair comparison vetween Form 4 results. One can only say that the average
performance of Form 4 pupils in Botswana (11%) 1s»better than the average
performance -of all Form 4 pupils in England. ' B

CONCLUSTON

"Considering that at Independence in 1966, very few pupils in Botswana
received secoridary education, -then it is clear that enormous strides have
Q ade since then. At present 35% of the possible school popu]at1on
[:IQ\L(:he Junior Cert1f1cate examination at the end of year 3, with over 70%
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pass rate. In 0 level, results have consistently improved siiice 1979 with a
pass rate of 55%, to a present pass rate of over 80%. The overall improve-
ment in results is probably dué to two main factors - that there are many
more good Batswana mathematics teachers in the schools, and that the text
books widely used were written for Botswana, Lesotho and Swaziland by local
teachers and mathematics educators. Overall, evidence suggests that, in
Botswana, many pupils have difficulty with formal reasoning well into

Jjunior secondary school. The implication for teaching is that, if pubils
can only function effectively at the concrete operations stage, materials
must be presented in a way which is directly related to everyday situations,
otherwise they may be reduced to learning algorithms with 1ittle under-
standing. Many senior secondary pupils do not function consistently at the
level of formal reasoning, so it is important to relate some of that work
also to everyday situations.

In a mixed ability class pupils will be at different stages in making the
transition from concrete to formal operations, so weaker pupils may not yet
be able 'to do questions with very abstract reasoning, yet more difficult. .
questions must be given to the better pupils if they are to reach their full
potential. Results suggest that boys do perform better than girls in
mathematics. That this should be so in Botswana is interesting, because in
a country as new as this there is not likely to be a tradition of stereotyping
related to role or to subject. Social and cultural factors could play some
part. There are also-possible explanations in terms of brain laterality,
genetic or hormonal influences. One aspect of the research was to ascertain
whether pupils in Botswana performed very differently from those in England.
It was found that on the whole they did not. They made the same types of
errors and levels of cognition measured by the achievement of the pupils,
was comparable. It would be interesting to compare results in CSMS tests
with those from other countries.
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A DEVELOPMENTAL MODEL OF A FIRST LEVEL OF COMPETENCY {N PROCEDURAL THINKING IN
LOBO: “ Mey be we're not expert, but we're competent”

TAMARA LEMERISE
UNIVERSITE DU QUEBEC A MONTREAL

Abstract. The present paper addresses the problem of the kind of competence a child
between 9 and 11 can develop in procedural thinking applied to structural.
programming in Logo. A present trend in the litersture tends to demonstrate that
children of this sge can not master structural programming. There is some truth to
that, but nontheless we can still find a body of evidence showing that they do
ecquired a certain competence in the domain. We propose here a mode] describinga
first Jevel of competency  that cen be ecquired by children of this age.  The
proposed model tries to capture the path followed by these children in their
progressive use and conceptualisation of five of the main caracteristics of tha Logo
procedure. The following goals may be served in presenting our model : illustrate
children’s habilety to develop some competence even if they do not become expert;
propose some guidelines to teschers or researchers interested in the promotion of
such competency; and finally argue that it is possible to obtain evidence of
children's competency in this domain &t ege levels younger that of secondary school
children.

Dans le domaine des recherches et applications Logo on observe présentement une dérive de
I'intéret vers le nivesu secondaire (12 ans et plus). Durant les sept derniéres années de la
décennie 80, Logo s'est laborieusement taillé une place au niveau primaire (6 o12 ens).
Plusieurs chercheurset enseignants ont déployé de grands efforts pour introduire philosophie et
langage Logo dans les classes du 2 iéme cycle du primaire (4-5-6 iéme année) et méme, &
V'oceasion, dans celles du premier cycle { 1-2-3 iéme année). Nombre d'études ont tenté soit
d'analyser 1'impact du travail en Logo sur le développement des enfants, soit d'en décrire les
conditions idéales d'application. Aujourdhui, c'est 1'implantation et 1'évaluation du Logo au
secondaire qui semble le plus retenir 1'intérét des chercheurs et des professeurs.
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A priori, ce phénoméne est réconfortant et dans 1a lsgigue méme des événements. En effet, suite
& la fascinante période de la diffusion du Logo dans les classes du primaire , le moment est
venu, si 1'on veut s'sssurer du maintien et du développement de Logo dans le systéme éducatif, da
poursuivre les efforts d'implentation aux niveéux scoleires plus evancés. 11y e certes eu de tous
temps des chercheurs et pédagegues qui ont ceuvré en Logo su secondaire (4 titre d'exemples
1'équipe de C. Hoyles et R. Noss en Angleterre, celle deJ. Olive aux Etats-Unis, ou encore celle de
A.Rouchier en France); le mouvement n'est donc pas nouveau en soi, mais ssulement plus
sceentué eujourdhui. 11 faut toutefois souhsiter que 1'intérét sccru pour les nivesux d'dge plus
avancés ( 12 ens et plus) ne soit pas 8ssocié & un désintéressement ou & une “dévalorisstion” des
compétences susceptibles d'étre ecquises en Logo par 1es enfants du primaire.

Que ces enfents placés dans un environnement Logo développent toutes sortes de petites
campétences (apprentissege d'un lengage informatique, perception nouvelle de 1'erreur, vision
dynamique du concept d'angle, calcul et mise en relation de dimensions, ect...) est aujourd'hui
générala_mant confirmé at accepts . Toutsfois, reletivement eux granas cenans ds Logo, tels le
meitrise de la programmetion structurée, la compréhension de la notion de variable ou la
menipuletion de la récursion, les progrés abservés chez cette populetion se sont evérés plutdt
minces comparativement aux ettentes (Kurland et al 1987, Blouin, Lemoyne 1987, Hillel
1984). En effet, excaption faite de le récursion généralement reconnue difficile d'accés, .
certains espoirs ont été entretenus reletivement & la compétence des 9- 11 ans & meitriser 18
pr_‘ogrammation structurée et & manipuler la veriable dans certaines situstions pey complexes.
Or rares sont les enfants de piveau primaire qui, méme eprés deux années de travell avec Logo,
deviennent hautement combétsnts dans 1'un ou 1'autre ds domeines.

Les fecteurs explicatifs les plus fréquemment amenés & 1'appui de ces “pauvres perfarmances”
observées chez ces enfants sont 1iés tentdt eux limitas imposées eux canditions de travail (une
heure ou dsux /semeine pour des péricdss de 7, 15 ou 30 semeines /ennée ), tentdt & le neture
du contexte pédagogique ( 1'approche “prajets libres" nécessiterait un grand 1aps de temps avant
que soit assuré un apprentissage réel et steble; 1'approche “projets dirigés” s'avére souvent trop
limitée pour sssurer un apprentissage camplet et suthentique d'une habileté spécifique souvent
dépendante ds le meitrise dhebiletés connaxes 1). Un troisiéme facteur, plus reremient évoqus,
est celui des obstecles épistémologiques créés par le type et le niveau des hebiletés requises
pour la réussite de la tiche. Si les habiletés requises sont fort complexes, 'enfent d'un certain
niveau d'ége. n‘aura méme pas le bagage développemental nécessaire pour pouvoir travailler & les
8CqQuérir.
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Le modile que nous voulons présenter ici se rattache &ce tromeme fecteur; pour le moment
i1 ne couvre qus la seule problématique du akvﬂmmmt as /e competence &n progremmetia, .'
dite struciurée. L'srqument principal que nous voulons ici promouvoir atraversla prmmatmn
de ce madtle est que la “non-compétence” observée chez les enfants de 9- 11 ans, dans le domaine
de 1a progremmation structurée, est eainsi définie & cause du modale de référence utilisé pour’
1'évaluer. Lorsqus ce modéle de référence est un moddle d'expart, inutilement trop sophistiqus, il
masque ou dévalorise toute une série de compétences locales effectivement - soquises  par les
enfants dsns leur démarche progressive menant vers 1a maitrise de la prcgrammatioi\
structurée.  Ce sont ces compétences “pré-expertes” ou “prérequises” que nous voulons ici
dévoildes, afin de promouvoir une évaluation positive des progrés des enfents dans le domaine de
la progremmation structurée (malgré lefait qu'ils ne sont point encore experts), et de proposer
aux chercheurs et enseignants un mog#le décrivant certaines étapes importentes 8 franchir sur
le chemin de la meitrise difinitive. Les données utilisées & 1'appui de ce maodsle proviennent

d'une part des données d5ja rapportées par certains auteurs (Noss 1985, Hillel et Samurcay,

E

1985), mais aussi et surtout de notre propre banque de données recueillies au cours de trois
années consécutives de travail evec une classe multidge { 4-5-6iéme) d'une vingtaine d'enfants.

AU SEUIL DE LA PENSEE PROCEDURALE : un modile du développement des compétences
pré-requises 4 18 programmation structurée

Dans un premier temps sera présentée une description sommaire d'une série d'habiletés en
pensée procédurale, jugées ici prérequises & 1a maitrise de 1a programmation structurée. Sutvra
une schématisation de 1a trajectoire développementele de ces habiletés telle qu'observée chez des
sujets égés de 9 & 11 ans. Enfin quelques bréves recommandations sont dégagées pour la mise, '
sur pied d'un contexte de travail favorisant le dévgloppement hermonieux, et peut-étre moins
labarfeux, de 1a pensée procédurale en progremmation structurée.

1-Description des habiletés.

En Logo, 1'hebileté & programmer de fegon structurée fait appel & deux grands ‘typ&s d‘[\ahﬂetés
spécifiques: 1'habileté & a&7inir des procédures et 'habileté & manipuler des procédures.
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L'habileté & @i des procédures référe d'abord aux compétences du progremmeur &
sélectionner et & organiser les ctions Logo jupées utiles pour reproduire une forme, un effet ou
un projet donné. Le misa en procédure c'est sussi I'habileté & regrouper la série d'actions
choisies pour 1a représenter sous un seul vocable.  Ainsi, la mise en procédure ne nécessite
point, du moing dans un premier temps, 1'élégance ou 1'économie des actions choisies, mais elle
requiert qu'unlien d'équivalence procédurale soit établi entre le nom de la procédure et 1a liste
ordonnée des actions qui la composent. Que CARRE soit définie avec un répate ou par une série
d'actions & 1a queue leu leu importe peu dans la mesure ol le programmeur peut se représenter
_la série d'sctions cheque fois évoquée per sa procédure spécifique. Aussitdt définie, une
procédure est aussitit appelée § étre manipulée; ainsi 1'habileté & définir des procédures -
appelle I'habiletd & manipuler des procédures. '

L'habileté & menipu/er des procédures. En Logo, 1'habileté & manipuler une procédure se
manifegte habituellement sous 1'une des quatre formes suivantes : 1) habileté & modifier une
procédure ; 2) habileté & transformer une procédure; 3) habileté & organiser entre elles plus
d'une procédures; et 4) hebileté & exporter une procédure.

' 1) L'habileté & medifier une procédure référe sux initiatives des programmeurs pour spit
ajouter une commande, 1a modifier ou la retrancher dans une procédure déja définie. Souvent,
par exemple, 1es enfants vont ajouter de 1a couleur ( un FCC ou un FFQ) dans leur procédure, ou
encore i1s modifient une longueur , mieux edaptée & leur besoin du moment, ou plus simplement
encore, ils corrigent, suite & un résultat inattendu, ‘une ou des erreurs de copie. Plus terd,
certains définiront directement leur procédure dans 1'éditeur, sechant fort bien qu'ils peuvent la
modifier si le résultat ne concorde pes & leur attente. L'habileté & medifier une procédure
souligne le caractére hautement plastique de 1'entité procédurale.

2) L'habileté & transformer une procédure consiste & créer une nouvelle procédure a partir
d'une procédure déjé existante. La nouvelle procédure “se différencie souvent de la procédure
mére par des variations mineures de commendes. Par exemple, les procédures CARRE!,
CARREZ ne sont que des reprises egrandies ou rapetissées g'un CARRE précédemment dafini.

Dans d'autres cas, c'est un besoin de symétrie qui est & l'oridine d'une transformetion : telles
procédures miroirs qui demendent d'sdepter 1'orientation dun rﬁéme angle (OEIL,
OEILDROIT; OCTOGONE, OCTCGONEGAUCHE). La transformation d'une procédure ‘se différencie
donc de la modification d'une prow’dure en ce qu'elle aénére une seconde procédure . Une
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transformation de procédures sugmente ainsi le nombre de procédures qu'un sujet 8 & son actif.
Toutefois, i1 n'est point rere que la transformation donne lieu & des modifications de .
procédures { su nivesu des noms des procédures une certaine réorganisation est souvent
appliquée : CARRE 1, CARRE2, CARRE3 ; OEILD, OEILO; des longueurs sont modifiées pour que les
deux procédures puissent étre pairées 4 1'écran : OCTOD, OCTOG ) . Plus encore, une
transfqrmation initiale révéle a plus dun spprenti-programmeur le jeu sattrayant de la
transformation "& 1a chaine” ; d'abord eppliqgué & un premier ansembla (OCTO -- OCTOD,
0CTOOG -~ PETTITOCTOD, GRANDGCTOD, PETITOCTOG, GRANDOCTOG), ce jeu peut rapidement se
généraliser (CERCLE -- CERCLED, CERCLEG, DEMI.CERCLED, DEM!.CERCLEG; ou encore
BRASGAUCHE, BRASDROIT, OEILGAUCHE, OEILDROIT, JAMBEGAUCHE , JAMBEDROITE ; ect...).

3) L'habileté & organiser des procédures avec d'sutres procédures est 1'habileté 1a plus souvent
associée & 1a progremmation structurée en Logo. Plusieurs auteurs définissent en effet,
implicitement ou explicitement, 18 progammation structurée comme une habileté & créer des
programmes ol procédures et sous-procédures sont logiquement et économiquemant emboitées.
Certes des niveaux élevés de sophistication peuvent étre etteints dans ce domaine, mais
nonobstant ces nivesux, 1'habileté & organiser des procidures référe toujours & la Cepscité
dutiliser des touts (des procédures) comme des €léments et & les organiser entre eux pour
produire un nouval “output”. Un jeuna programmeur ciui crée FLEUR en utilisant & répétition
son CARRE , un programme OCTO qui appelle OCTOO puis OCTOD, ou encore une TETE, un CORPS,
des BRAS et des JAMBES réunis sous  BONHOMME sont sutant exemples différents
d'organisation procédurale. L'organisation procédurale est en quelque sorte une répétition, a un
deuxiéme niveau, de la définition de procédura, & la différence prés gue les entités alors
sélectionnées et organisées ne sont plus uniquement des actions mmplw (primitives), mais
8ussi des séries d'actions regroupées ( procédures).

4) L'hebileté & exporter des procédures référa pour sa part & 1'utilisation répétés et variée
d'une méme procédure dans plus d'un projet. La procédure ainsi exportée peut avoir été définie
_isoiément ou dans le cadre d'un prajet particulier. Les formes géométriques, per exemple, sont
& 1'occasion créées isolément, puis ultérieurement elles sont réutilisées dans plus d'un pi‘ojet
(FLEUR, POISSON, BIKE, ect...). En d'autres occasions, une procédure créde pour un projst bien
spécifique est empruntée pour un autre projet (un SOLEIL, un OISEAU , un " effet FIASH ).
L'exportation d'une procédure n'est pas toujours faissble (souvent & cause de 1a présence de
commandes spécifiques de déplacement) mais-cela n'empéche pas pour autent les enfants
d'exarcer la dite habileté : a défaut de la procédura elle-méma, ils transporteront dans un
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premier temps 1'idée et le mode de construction (emprunt d'une formule d répéte ou copie
d une série de commandes présentes dans la precédure convoitée )!

Les habiletés précédemment décrites traduisent tout compte fait cing propriétés fondemendales
.de 1a procédure Logo : la procédure est une entité @¥inissaple, modifisbie, lranstarmepie,
w'gaﬂ;LW/eeI expor{sble Ainsi un premier palier d'éguilibre en programmation structurée est
atteint lorsque le programmeur peut voir le prjocédure comme 18 somme de ces propriétés. |1
‘nest certes pas encore expert pour autant dans 1a gestion de toutes ces caractéristiques, mais il
tonnait, par expérience directe et construction progressive, la polyvalence de la procédure.
Le présent modle tente de décrire les étapes suivies par nos enfants pour apprivoiser chacune
‘'da ces caractéristiques, at pour les intégrer progressivement . - A l'instar de d'sutres mod2les -
développementaux, il respecte 1adouble dimension du passage du concret & 1'abstrait (de 1'action
au concept) et du simple au complexe (de une & plusieurs caractéristiques). La compétence de
" Tenfant est d'abord expérientielle et distincte pour devenir progressivement notionnelle et
intégrée.

Dans une premidre phase, les enfants s'exercent & d&finir dﬁprocédures puis tantdt i1s les
modifient, tmﬂ ils travaillent socit & les transformer, soit & les organiser. A d'autres
occasions, ils apprivoisent 1'idée d'exporter des procédures. Régle générale , ces différentes
sctions sont, & ce niveau, exercées séparément (dans le cadre de projets différents ) ou de
. proche en proche {sans anticipation préglable et non nécessairement répétées dans le projet
suivent). . .

A une seconde étape, certaines habiletés sont délibérément pairées pour 1a réalisation ponctuelle
d'un projet. Les trois regroupements les plus fréquemment observés sont : a) définir et
transformer; b) définir et organiser; ¢) exporter (au lieu de définir) et organiser. A noter que
~ T'habileté & modifier une procédure est ici percue comma un outil applicable & toute procédure -
simple ( sans Sous-procédure). L'action procédurale est donc, & ce niveau, plus complexe, plus -
1ntégrée( référant & plus d'une propriétés & 1a fois) qu'éu niveau précédent. Un exercice répété
de ces combinaisons simnles permettra aux enfants de se représenter la procédure comme gyant
_Pplus d'une fonctions. .
o v E 4
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A 18 troisitme phase, la procédure est concue comme pgotentiellement modifigbie,
transformeble, organisable ou exportshle. Les planifications et'les actions du progremmeur
treduisent 18 carsctére polyvalent désormais attribué & 1a procédure : F., 11 ans, annonce qu'il
va faire un projet lettres “Je vais rapetisser mon CERCLE pour faire mon o, et je vais 1'utiliser
pour b, d,'p, 9 en leur rajoutant une queue; puis je vais prendre juste une partie du o
(DEMI.CERCLE) pour faire c,m,n ....ect. Avec toutes mes lettres je vais me faire un AB.C. et
avec les lettres de mon A.B.C. je vais écrire 1e nom de mes emis.” Et F. mit qustre semaines, &
raison d'une heure/semaine, pour réaliser son projet : une super procédure A.B.C. contenant
vingt six procédures, souvent perentes entre elles, et quatre sutres super-pracédures
reproduisant les noms d'amis. Cette vision multifonctionnelle de 1 procédure ne régle pas
sutomstiquement, pour autant, certains problémes concrets de gestion procédurele ( problémes
d'interfaces entre autres), ni plus qu'elle essure d'une maitrise de tous 1es instants de 18 logique
de 18 pensée procédurele. Mais & notre &vis, les expériences et connaissances ecquises
constituent 1a base des compétences en programmetion structurée et elles outilient bien le sujet
pour aborder 1a prochaine phase dévéloppementale, celle de 1'epprentisseges dss mécanismes et
10is de gestions des propriétés de 1a procédure.

Ainsi le projet d'animaux en formes géométrigues de R. illustre bien le chemin encore & faire,
mais 8ussi les compétences déja acquises pour faire face aux futurs apprentissagss. Pour
définir ses différents types d'animaux, R. exporte, transforme, organise sans aucun probléme
des formes géométrigues déja définies dans un projet antérieur de banque de formes; mais voila
que R. expérimente toute une série de difficultés dans V'orgenisation et 1'exportstion de
sous-procédures (oeil, nez ..) définies cette fois au fur et a mesure de ses besoins : les
nouvelles procédures incluent souvent des déplecements et s'averent plus difficilement
exportables, organisables; 1a position de 1s tortue différe selon que c'est 1'ceil du poisson ou
celui de 1a chenille qui est & tracer et cela entraine frustration ou modification des plens de
travail procédural; ect.. Les obsteclas rencontrés n‘empéche toutefois pss R. de réunir ses
trois animaux mmpléiés dans une nouvelle super-procédure. 11y a donc encore des inélégances,
des solutions parfois élémentaires, mais 1a pluralité fonctionnelle de 1a procédure est désormais .
connue, expérimentée et .appréciée per le programmeur; 1'attention et les énergies peuvent
désormais &tre portées sur 'analyss des conditions nécessaires pour que les procédures définies
soient en tous temps et toutes circonstances madtirrables, transtormebles, orgonissbles e
exportables

Le description du présent modsle élaboré & pertir dobservations d'enfants de 9-11 ans
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travaillent & long terme dans un envirgnement Logo viseit deux objectifs principaux. Un
premier objectif était de souligner le développement effectif des compétences procédurales
méme si 1a niveau de performance atteint, pour les &ges ici étudiés, n’est pas toujours celut dun
expert. Un second objectif étsit de dégaper certeines idées de travail pour guiconque veut
favoriser le développement et 1'apprentissege de la pensée procédurale en progremmation
structurée. Le présent modéle suggére quelques lignes de force & inClure dsns un  plan
d'intervention Logn. Le présentation de pstites mises en situation oli les enfants Logo sont
appelés & définir des procédures pour tantdt pouvoir les modifier, tantdt les transformer, tantot
les organiser ou les exporter permet V'identification et Texpérimentation de différentes
fonctions procédurales, et ce dsns le cadre de situations simples et stimulantes. De méme, la
présentation subssquante de mises en situations demandant de combiner deux ou-trois de ces
actions hebilite déja le jeune progremmeur. & enticiper le cerectére multifonctionnel de la
procédure et & confronter certeins problémes simples de gestion procédurale. Ainsi outille,
T'enfant peut psr la suite faire appel & l'ensemble des propriétés procédurales pour la
réalisation de projets, libres ou suggérés, plus veriés et plus complexes. Compte tenu du
nivesy 0 compétence maintenant etteint, 'apprenti-progremmeur pourra désormais
spontenément s'attaquer & différents problémes de gestion procédurale ( étent donné les
différentes parties dun projet quel est Yordre préférentiel des étapes de travail, comment
doit-on procéder si 1'on veut définir des procédures utilisables dans plus d'un projets; ect. ).
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THE NAIVE CONCEPT OF SETS IN ELEMENTARY TEAGCHERS

Liora Linchevski ana Shlomo Vinner
Israel Science Teaching Center
Hebrew University Jerusalem

Abstract

Four aspects of the concePt of set were examined in 309 elementary
teachers and Student teachers by means of a Questionnaire based on some
interviews. The aspects were the following: 1. The set as an arbitrary
collection of objects. 2.. The singleton as a set. 3. The set as an
element of another set. a, The order of elements in a set and the
problem of repeating elements. It was foung that the naive concept of
sets in these teachers Oiffers from the mathematical concept. The
majority Of these teachers believes that the elements of a given set
should have a common property, that a set cannot be an element of
another Sset and that either repeating elements or the order of elements
in a set go count. About a half of them believes that a singleton 1is
not a set.

Tne naive concePt of set seems tO uS both interesting and important.
Everybody who teaches the concept of set at a higher 1level of
Matnematics, whether this is a high school level or a college level,
should be aware of the common views about th€ corcept ‘Since the word
»set'” appears very often in everygay langusage, it is 'only natural to
assume that almost everybody will have gefinite views about it which are
gifferent from tne mathematicians' views.

In this study we chose Several aspects of the mathematical concept
of sets and examined whether elementary teacners are aware of them and
if not what are their conceptions. The reasons we chose elementary
teachers. were the following:

1. we believe that it is imPortant to know about the mathematical
concepts of elementary teachers whether or not these particular
concepts are taught directly in school.

2. rhe naive concepts of elementary teachers are probably qQuite close
To the naive concept Of most educated People with limited
background in Mathematics. Thus it is possible to assume that
junior nigh, senior high students or even college students, when
starting to study &bout Sets, have similar concepts. . This
assumption, however, needs experimental verification.

Some Of the aspects we chose were raised by Freloental (1969a,

, .
1969p, 1970, pp.239-344) and Vaughan (1970). Both of them pointead out
that the didactical approach to the concept of set, as presented in many
textbooks, iS5 sSometimes inconsistent with the mathematical concept.

¥ .
]: TC can be a cause for misconseptions.
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Our research qQuestions are the following:

1. Do elementary teachers think that all members Of a given set must
nave a common proPerty? In other words, under what congitions is a
collection of objects consiadered 55 a set by elementary teachers
(the issue was raised in Freudental, 19690).

a. Is a singleton (a set containing only one element) considered as a
set by élementary teachers?

3. Do teachers understand that one set can be an element of another
set, ana also, when drawing the aiagram of the union of two sets,
are they aware of tﬁe aifference between the diagram representing a
new set whose members are the two given sets and the aiagram which
really represents the union?

a. what are the teachers’ criteria to determine whether two sets are
equal and how are these criteria related to the mathematical
criterion? Note that the mathematical definition for set eqQuality
is. the following: AzB 1in case for every element x, x&A if ana
only 1if «xeB. Thus, repeating elements 1in 1lists, tables or
aiagrams describing sets should be considered as one element and
also the order of the elements in such list 1is not important,
namely, 1lists with the same elements but with aifferent oraer
gescribe the same set. -

Method

Sample -

Our sample consisted of 237 elementary teachers (all of them teach
mathematics to their students) and 72 student teachers (who were
preparing themselves - to teach mathematics among other Subjects) in
Jerusalem. In the 237 teachers we distinguished between twoO subgroubs.
The first one inclugea S4 mMathematics coordinators. These are
plementary teachers who are interested in teaching Mathematics and in
adaition to that also underwent some in-service training, thus, their
mathematical background is better, to certain extent, than the other 183
teachers who consisted thé second group. In the result section we will

re?er to this second group as the teacher group.

Questionnaire

In order to form our Questionnaire we interviewea 21 teachers. we
posed to them several questions ana recorded their reactions. As a
Ff=nlt of this interaction we modified the interview Questions ana came

LS
B ith the following auges iognaire.
ERIC fr i
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Questionnaire

1. which of the. following collections is a set? Explain your answer!

ta) 1,-3, 7, 8, 0, 12

{b) a book, 1, 3, a table, 7, 9

(c) a table spoon, a tea spoon, a fork, a knife

(ay 7

(e) all the children under age 10 who flew to the moon
ey (7), (51, 7, S

(g) a triangle, a square, a circle, a box

2. Give five examples of sets which you would choose 1in order to
present to your students the concept of set.

3. A teacher asked her students to give an example of a set. One of
the students wrote: My set has three elements: (a) 5, (b) 1.5, (c)
the set of all the even integers between 2 and 100. Is this
answer correct? cxplain!

q, Given the sets

Figure 1

which form (if any) seems tO you more appropriate to represent the wunion
of these sets?

(a) Figure 2
(D) Figure 3
L"
Explain!
a i
S. Given the set (1,3.%,7,4). which of the following sets are equal
. - ’
to it? T

(a) (5,3,7.9,1}
(b) All the odd integers between O and .10.
(c) (1,5,3,5,7,9)
@ L oas e f-; 3
(e) (9,5,3,0,7,1,5}
(f) (9,5,3,1,0}
Explain!
The reader can easily fingbwnicn item of which question in the

]: \l'C«onnaire is related to our research qQuestions.

bEST COPY AVAILARI E



- 47y -
Results
1. Jhe set as an arbitrary collection

In mathematics any collection of objects (arbitrary or- not, unless
you are in a hignhly sophisticated situation)-is a set. However, 87X of
the student teachers, 89% of the teachers and 60% of the Math.
coordinators did not consider as sets collections whose elements diad not
have something in common (note that a °‘'teacher’ in this section 1is a
teacher who is not a Math. coordinator). A collection of elements is
regarded as a set only if these elements have a common property. Many
respondents did not accept 1(b) as a set explaining it, for 1nstance.
by: 1. No common property. 2. I can't tnink of a name describing tne

entire collection. 3. Tnere are least two sets nere, numpers and
objects.

The last arguments is especially interesting since it implies that
a union of two Sets is not necessarily a set, a claim which contradicts
one of the fundamental Principles of Set Theory. Among the arguments
not accepting 1(g) as a Set we found: 1.A box Is 3-dimensional contrary

to the other figures. 2. One of tne elements does not nave & common
property.

On the other hand there were some respondents who accepted 1(b} or
1(g) as sets by saying: 1. I tnink tnat any set of elements can be

gefinea as a set even if they do not have salient common property. 2. IC
is an arbitrary set. Some respondents who acceptéd 1(al as a set saiq:
1. Probably tnis Is & union of even numbers and odd numbers (here,
the belief that a union of sets is aiso a set is expressed contrary to a
Drevioué case abovel. 2. Tnis is a set of numbers. Tnere Is & common

property (although the answer iS mathematically correct the exPlanation
shows that the criterion for a collection to be a set is the common
property}.

It 1is worthwhile to mennioﬁ that 17% of the Math. coordinators
rejected some items in Question 1 as sets because the parentheses of the
set notation were missing. For instance., 1(a) was not considered as a
set because it was not written as (1,3,7,9,0,12). Formally, they are
right, but formal notation was not our concern in this questionnaire.
For the decisive majority of our sample this was not a problem at all.
while @23% of the Math. coordinators, B% of the teachers and 3% of the
student teachers admitted that a set can be an arbitrary collection of

&) jects, in the ‘'construction task’ (Question &) almost everybody

[Z l(zwnioned sets with common property. This Shows how weak is the idea of
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arbitrary sets (if it exists at all) in these teachers' thought. It is
natural to exPect examples with common properties when you ask for one,
two or three examples, bDut when you ask for five examples and the
respondents are aware of the concept of arbitrary sets and its
importance to students they should give at least one arbitrary set. The

typical answers were: 1. Snirts 2. T7The students of the first grage 3.

The girls in the class 4. (1,2,3,4,5.....). 1t was interesting to
examine the answers to Question 3. It was not accepted as a set by all
the teachers, all the student teachers and S5% of the math.
coordinators.

In this item there were two Potential arguments for the rejection.
The first one was the common Property and the second one was the claim
that a set cannot be an element of another set. It turned Out that in
this case the second argument was dominant (S6% of the teachers, 70X of
the students teachers and 76X of the Math. coordinators). The above
information 1is presented in Tables 1 and 2 with some additional

information.

Table 11 Oiastribution of respondante to Guaestion 4

Student Math.
Teachers |Teachers{Coordinators
(N = 183) | (N = 72) (N = 54)
The elements of a set should 89X 7% 60%x
have a_common orooerty
A collection of arbitrary 9% Bi 23%

elementS can be a set

The elements should be given
in .parentheses otherwise 2% 0% 17%
they do not for a set

Table 2: Oistribution of responaents to Question 3

Student Math.
Teachers |Teachers|Coordinators
(N = 18311 (N = 72) {N = 54)

It is not a set because there a4a% 30% 18%
iS no common property

It is not a set because One

set cannot be an element of 56% 70% 76%
lanqther set 4
Other O% ox 5%

2. Jnhe singleton as a set

This aspect of sets was examined by item 1(d). The results are

~n Table 3. ) |
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Table 3 - Dietribution of respondents to GQuestion 1(d)

Student Math.
Teachers |Teachers|Coordinators
(N = 18311(N = 72) (N = 84)

A single element cannot form a8% o55% 6%
a set
A single element can form & set sax' 4a5x% Sex

Typical explanations to 1(d) were:

1. No. a8 set Is more than one element.

2. ves, It Is a set with one element.

3. Yves, a set with 7 elements.

Note that in answer 3 the inability to accePt a set with only one
element led the respondent to the concrete interpretation of the number
7: it became a set Of seven elements. Unfortunately. we could not

locate the respondent to ask her or him whether the number 1 can form a
set.

. 3. The set as an element of another set and the representation problem

of a union of two sets

These aspects were examined by Questions 3 and 4. Table 2 already
indicated that at least in the context of Question 3, the majority does
not accept a set as an element in another set. It cannot be claimed
that the figures in Table 2 really express the percentages of .those who
pbelieve that a set cannot be an element in another set. Thls is because
of the fact that the respondents had 2 opbtions né answer the guestion.
Many of them chose the argument of common property. We do not know what
percentage of them, 1if asked explicitly about this issue, would have
accepted or rejected the idea of one set as an element of another set.
Thus, we believe that the percentages of those who rejected the idea of
a set as an element of another set are higher than those indicated 1in
Table 2.

AS to the representation of the union of two sets (Question 4],
more than a half Prefered Figure 2 to Figure 3 (61% of the teachers,
4a7% of the student teachers and S0% of the coordinators). According to
the mathematical convention, Figure 2 representS 3 Set whose elements
are the two original sets. we are sure that this was not the intention
of the respondents (most of them do not accenn the idea of one set being

element Of another set). However, they do not notice that a circle

O
[E l(:ound a list of elements makes it & Set according to the common
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convention and therefore, at the context of Figure 2, they got a set
whose elements are the twO given sets. The reason: why SO many
resﬁondenus prefer Fig.2 to Fig.3 mignﬁ be that in Fig.2 there 1is an
indication how the union set was constructed from its components.

4. Eguality of sets, the problem of repeating elements and order

Question S had the potent:al to examine three aspects of the

concept of Set. The first one can be described at the intention-
extention aspect. A set can be described in various ways, each of them
relates to a different property of the elements. when comparing the

sets dgdefined like that, should we pay attention to the ProPerties and
thus stipbulating that we deal with different sets or ignore the
properties and Pay attention only to the elements and thus deciding that
the sets are equal? .In other words, when comPparing between sets, should
we consider the intention or the extention? For instance, the set of all
even primes and the set of all the whole numbers less than 3 and greater
then 1 have the samg extention but different intention. In Mathematics,

only the extension i5 considered when determining egualities of sets.

Thus. (g:%:3.5)(2:-‘%:3)=(1,-9,7.5.3).

Several respondents considered the last two sets as diffe. ent sets. One
can claim that this was done on the basis of superficial impression.
They simply did not bother to carry out the computarions at the left
side. This might be true in some of the cases. In other cases the
written explanations showed that the distinction between the two Set:
was made because of conceptual considerations.

Table 4: Distribution of answers to question §. The

principles used in order to determine the
equality of sets

Student Math.
Teachers {Teachers|Coordinators
(N = 1B33 ] (N = 72) (N = S4)

The mathematical definition 1B8% 15% 56%

The order and the intention do
not matter but repeating 21% 34% 13%
elements make a difference.

The order does not matter but .
the intention makes a 5% 5% 6%
difference

The order does not matter but
intention and repeating 21% 16% 11%
{elements make a difference

Order rePeating and intention

each of them makes a 32% 28%. 6%
& rence
FRIC e~ L | e -
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The other two aspects which were involved in Question 5 were the
repeating elements and the order. The respondents answering Question S
could fail in each on of the above aspects if they deviated from the
mathematical criterion for equality of sets. This is shown in Table 4.
Discussion

Our results show several conflicts between concePt images and
concept definitions (Vinner, 1983) in the case of sets. Qur sample
consisted of elementary teachers but every population with the same
mathematical bDackground will probably have similar views. It is
interesting to compare between the subgrouPs of our samples (teacnegs.
Math. coordinators and student teachers). There are some items were the
Math. coorginators did better and even much better than the rest of the
sample (seeATables 1.3 and 4). In Question 4 there was not noticeable
dgifference between the teachers and the Math., coordinators. on  the
other hang in Table 2 the rejection of a set as an element in another
set seems higher in the Math. coordinators. This impression, however,
might bDe wrong. It might De the result of the fact that Math.
coordinators do not deny a collection from being a set on the ground of
not having a conmon property. For certain percentage of the rest of the
sample this is still a good reason.

The fact that the Math. coordinators showed bDetter conceptual
unﬁerstanqing‘ is enough ground for hope that teaching can overcome some
students’' primary views. But teaching can be much more efficient if it
relates to the primary views which were described here and does not
ignore them as it does in many cases. Our recommendation is that
studies 1like this one should be Presented to student teachers in an
appropriate way when they are taught about sets. This will nhelp them to
overcome the misconcePptions they already have Or those that might

develop if certain steps of caution are not taken anead of time.
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CONCRETE INTRODUCTION TO PROGRAMMING LANGUAGES
AND OBSERVATION OF PIAGETIAN STAGES.
~ CLINICAL INTERVIEWS -
F. Lowenthal

Université de 1'Etat & Mons.

We introduced, in a concrete fashion, a simplified
programming language to very young children. The device
we used can be used to train young children (6-year olds)
in-a very specific task, but also to observe trained and
untrained children during clinical interviews. The training
does not seem to have any immediate influence on purely
school performances ; but the clinical interviews show that
the trained children have acquired skills which are not
natural for children of that age : the ability to ‘use and
combine two inputs to produce an output, some notions about
recursion and programming. We wonder whether there is any
transfer to other domains such as : Piagetian conservation
tasks, the use of names instead of a long and complete
description, the study of real programming with a language
such as LOGO.

PIAGET has shown (1936, 1955) the importance of concrete manipulations
at an early stage. He used such manipulations to observe how children
acquire concepts such as conservation of liquids, ... FLAVELL (1977)
wrote that one of the major differences between the pre-operational
and the concrete operation stages is that the younger child is centered
on one relevant element of the phenomenon he observes, while the other
child is '"decentered"” and can consider several relevant elements
simultaneously in order to compare them and draw logical conclusions.
BRUNER (1966) described an experiment where concrete .manipulations of
"logically organized” objects were used (beakers were placed at
different places on a board depending on their- height and thickness).
He showed that such manipulations made cognitivists' observations easier;
but also that '"what is needed for the child ... is organizing
experiences into a form that allows more complex language to be used
as a tool not only for describing it but transforming it".

<

PAPERT (1984) insisted on the importance of computer languages,, and

more specifically on the manipulations of representations of objects

ERIC™
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which is procedural and recursive. Nevertheless all these
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computer languages, LOGU included, seem too abstract for young children :
a special vocabulary must be used, words must be written and read, and
a - keyboard must be used to communicate with the computer. Even if we
assume that these minor details can easily be settled, we still do
not know wether young children are able to use a language suchas LOGO :
do they really conceive what—a procedure is ? are they able to replace
by a name a 1list of actions, and then to combine such names instead
of combining basic actions ? do they have any understanding of the
concept "recursion" ? Should the answer to one or more of these questions
be negative, one might wonder whether these concepts and competences
can be taught to young children and then wonder wether such a teaching
would be useful.

For all these reasons, we thought that it would be more useful to let
young children manipulate concrete representations of objects which
suggest a logical structure because these objects are in fact a concrete

representation of a formal system sufficient to perform reasonings.

COHORS-FRESENBORG's Dynamical Mazes (1978) can be used in such a way.
We used them (1986) with 6-year olds (first graders) and noticed a
transfer from the training we gave them to their performances in reading
activities. We then tried another material with similar children. This
material has been described by SAERENS (1984) who wanted to use it to
analyse sentences while we described how to use it as basis for a
programming language (LOWENTHAL, 1985).

The device itself consists of a white plastic board furnished with holes.
In these holes one can put coloured plastic nails, or pegs. The pegs
are defined by two variables : their colour and the shape of the head.
There are five colours : yellow, green, red, orange, blue ; the heads
can be squares or triangles. We used short sequences of pegs : each
received a name represented by a triangular peg ; this definition was
placed on the left of the board : our short sequence became thus a
procedure. A short sequence of triangular pegs placed in the centre
of the board represented a programme : a list of procedures which had
to be executed. The end product was then placed on the right and could
only contain’ square pegs (i.e. one had to perform a list, finite or
Q
,.K
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yellow triangle which was only used in this context.

The most relevant feature of this device, when used as basis for a
programming language, is that it constitutes a procedural language

procedures can be combined and ‘referred to. Another relevant feature
of this language is that a procedure .can call another one (the name
of the other one has been inserted in the definition of the procedure).
A procedure can thus call itself provoking an infinite recursion. Finally

some kind of turtle-like- orientation can be introduced.

We used this setting to ask three kinds of questions. Firstly, we gave
the procedures and the programme and we asked the subject to produce
a long sequence of square pegs by replacing each triangular peg by its
"meaning" (i.e. the subject had to execute -the programme). Secondly,
we gave the procedures and the end product, and we asked the subject
to propose,using triangular pegs,é programme which could have been used
to produce this end product with these procedures. Thirdly, we gave
the programme, the end product and the names of the procedures, and
we asked the subject to discover definitions which could have been used
for these proce&ures (i.e. produce a sequence of "things" for each of
the given triangular peg). In each case, the child had to solve a
problem : he had to produce an output taking simultaneously account

of two inputs of different kinds.

The use of such a material as observation and/or teaching device suggests

a great number of questions. When comparing children who were trained

to use this device with untrained subjects, can one show that the first

ones :

a) have better school results, -as far-as classical "school problems are
concerned, when they are evaluated by means of classical tests or
by the teachers' grades ;

b) have transferred the competence acquired in a pseudo~computer language
to reading skills, as mentionned for the Dynamical Mazes, or to
vocabulary or other skills involving the semiotic function ;

c) have a better apprehension of spatial concepts ;

d) verbalize more easily and are more able to explain what they did

and why ;

ERIC -
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One can also wonder whether clinical observations realised while using
this material as "testing device", give informations concerning the
type of cognitive strategy a child uses and the type of cognitive
processes which are involved for him (COHORS-FRESENBORG, 1984 ; SCHWANK,
1986).

Finally we will show that such observations can be used to specify which
Piagetian stage, (or part of a stage) has been mastered by the subject.
Moreover we will show that some higher concepts are teachable to younger
children although we do not yet know whether the result of our teaching
is limited to the use of this material or can be transferred to other

domains.

1. EXPERIMENTAL SETTING.

We worked with 76 6-year olds (first graders). We used a pre-test to
split the group in two equivalent subgroups : an experimental group
and a control group. The pre-test contained three parts : a) a reduced
version of the BD in order to measure the general intelligence of the
subject (in VAN WAYENBERG), b) PORTHEUS'mazes in order to measure the
subject's capacity to make plans and to foresee, and ¢) Similitudes,
items extracted from the WPPSI (WECHSLER, 1972).

The "experimental" subjects worked during 6, 7 or 8 30-minutes sessions
with the pegboard. They worked by groups of two. The "control" subjects
also worked by groups of two on typically placebo activities (play games,

draw, sing, ...). This activity lasted from January to May.

At the end of this activity, all children were submitted to a post-test
containing four parts : a) a reduced version of the BD, b) LAMBLIN's
"test de la goutte" (in VAN WAYEMBERG), similar to the REY figure test,

but simpler : it measures the level of structuration of the perceptive-

activity competence, c¢) the Reversal (EIFELDT, 1970) which measures
the level of spatial organisation and lateralisation and d) a test of
mathematical knowledge (CLEEMPOEL-HOTYAT) concerning only the kind of

mathematics which should be taught in a first grade. 6 months later,
in January again, we interviewed the 11 children who got the best scores
at the post-test, in each group. The procedure used for these clinical
1:{n'views will be presented later in this paper.

- 1R\
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2. STATISTICAL RESULTS.
As  far as typical and classical school activities, problems,
mathematical-activities are concerned, our testing shows NO significant
difference between the experimental and the control group. the teachers'
evaluations of reading abilities were also taken into cohsideration
(but this is not a standardized test)A: these evaluations do not show
any significant difference between both groups. Neither did we observe
a difference in the test which was used to measure the subjects'

apprehension of spatial concepts.

3. CLINICAL INTERVIEWS.

We prepared for these interviews a video tape showing an adult hand

solving 6 exercises on the pegboard : N

a) production of the end product ;

b) discovery of the programme used ;

c) definition of the needed procedures (the solution of this exercise,
as presented on the videotape contained a mistake) ;

d) use of procedures calling other procedures ;

e) use of a procedure containing its own name (and thus calling itself) ;

f) use of the directional triangle.

The material was shortly presented to each subject when he started to

view the tape. The interviewer showed him then what the adult had done

stopping at each step {and he thus subdivided an exercise in as many

parts as requested by the child) ; he asked the subject to tell what

he had seen and to explain what had been done and why it had been done.

Some children were also asked to predict ‘what would happen next and

all the children who seemed unable to understand what was going on got

hints from the experimenter.

In order to analyse these clinical interviews we looked at the following

elements :

a) what type of explanation does the subject use to produce or explain
a result : we consider that a subject produced a high level
explanation if he took into account 2 information sources
constantly, or 1 source for some problems but 2 sources for most
of them ; otherwise we consider that he produced alow level explanation;

o 2 subject able to use labels to represent a collection of objects

[Elz\!(: a8 chain of squares) and to manipulate these labels instead

P oo e ’ jglfgé;
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of the objects they represent, in order to perform a reasoning ;
¢) is the subject able to understand and explain that a procedure can
contain a label (a triangle) "calling" another procedure ;
d) is the subject able to understand and explain that a procedure might
contain its own name and thus provoke an "infinite recursion" ; )
e) is the subject able to discover the mistake made by the adult and
to react by correcting it rather than by modifying his own solution ;
f) is the subject able to understand and explain the meaning of the

directional triangle ?

- In the experimental group, 7 subjects (out of 11) gave high level
explanations, the same subjects used labels in a useful fashion,
the other 4 subjects gave some kind of explanation ; in the control
group 3 subjects (out of 11) used high level explanations and 2
subjects gave explanations taking none of the available information
into account, the only control subject who used labels correctly,
also gave high level explanations.

- In the experimental group, 5 'subjects clearly understood that a
procedure can contain a label, and thus call another one and 3 of
them more or less understood the process associated with the "infinite
recursion", but 3 of the 5 subjects mentionned above had never seen
similar problems during the training period ; in the control group
none of the subjects understood either the "call" or the "infinite
recursion".

- Most children either did not detect the mistake or modified their
correct proposal to stick to the wrong adult solution.

- In both groups, 3 subjects understood the meaning of the directional
triangle, only 2 of these 6 children had seen similar problems during

the training period.

4. DISCUSSION AND PROPOSALS FOR FURTHER RESEARCH.

A. Reflections concerning the subjects of the experimental group.

~ These subjects have been trained to perform a very special kind of
task which has no relation with what is usually done at school. More

than 6 months after the training ended, these subjects perform well

when .they have to discuss and explain this task to an adult. It is

Q thus obvious that these "learners have assimilated certain notions
Emc‘and/‘or §trategies. It is thus important to try to specify which
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notions or strategies they acquired and to figure out whether they
transferred these to other domains. ’

- These subjects learned to use labels and to manipulate them instead
of the chain of objects they represent : they were thus able at the

age of 7, to. manipulate symbols in a specific setting. A further

experiment whill show whether they do this in other domains, and
more specifically whether they use less, as much or more periphrases
and metaphors in their usual language:, than the subjects of the
control group. )

- These experimental Sui)jects also seem to be able to use, in a special
setting and at the age of 7, two. different sources of information
simultaneously, "and to combine them in order to explain a fact. A
further experiment will show wether these subjects are better than
their control counterparts. when, confronted to typically piagetian
conservation tasks requiring the ability to combine two informations
(e.g. width and height of a glass).

- Finally some of these subjects appear able to understand that a
procedure can contain basic instructions and instructions "calling"
another procedure. This is also the case for experimental ‘subjects
who never saw similar exercises before. A research with LOGO on actual .
computers will show whether they are better at. programn\xingv tasks

with LOGO or simply better in the direct mode, or not better at.all.

B. Reflections concerning the subjects of the control group.

- The results obtained by these subjects show that, at least in the
setting we used and more probably in general, certain activities
are not natural before the age of 8 : e.g. use simhltaneously and
combine two informations to explain or oroduce an output ; use and
manipulate labels instead of the objects themselves >; use in a’
sequence of instructions the instruction : "perform the instruction
whose label is xxx". A further 'experiment ‘will show at which age
these activities become: natural for non trained subjects. It has
been shown (LOWENTHAL and EISENBERG, 1984) that the use of recursive
reasoning is not. always natural, although it is necessary, in 18
year olds students starting a University course in mathematics.

- C. Reflectlons concernlng all the sub]ects.

l: lC observations also confirm that ~children aged 7 experimental

o 158



ERIC

- 486 -

and control, are easily impressed by adults' solutions and do not
react positively to adults' mistakes.

— A less expected observation is that the meaning of the directional
"triangle has not been discovered by a majority of subjects, although
most of them agree to say that "the squares (end product) do not

look the same" (i.e. are no longer in one line).

‘We are already conducting the new experiments we mentioned and we believe

Qo
I

that the material we described might possibly be used in the future
to test children's abilities in totally different problem solving
situations. This device will probably also help us to determine which

piagetian stage has been reached by the subjéct.
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COGNITIVE and METACOGNITIVE SHIFTS

John H. Mason
P. Joy Davis

file:PME12

ABSTRACT
A basic mathematical question is to ask, overtly, 'What is
the same about these apparently disparate and yet strikingly
similar situations?', and to try to bring this to
articulation. PME XI in Montreal provided us with numerous
apparently disparate experiences, in the form of the many
presentations. Yet we were struck by a common thread
running through most of the sessions we went to, and this
paper is an attempt to articulate that sameness.

The sameness has to do with shifts in perception and
attention. One example is the shift indicated above, in
moving from a sense of sameness, to an articulation of that
sameness. The sense of sameness is akin to breathing air -
a natural activity, a state of immersion in experience.
Becoming aware of sameness as a sameness, and trying to .
bring that to articulation, is akin to becoming aware of the
fact of breathing, and trying to describe what breathing is
like. Our intention is to go further, and to begin an
analysis of the mechanics and function of shifts, akin to
studying the mechanics and function of breathing.

Tﬁis paper must necessarily be brief, and hence laconic. A fuller
analysis, with more examples, with more detailed links made between
examples and mechanism, with an exegesis of the kind of theory which we
are developing, and with a justification for our epistemological
approach and our method of study, must wait for another occasion.
Elements can already be found in Mason & Davis 1988 and Mason 1986.
There are four sections:
1 The scope and range of shifts in mathematics education:
Examples of some of the fragments of disparate experiences which
the idea of shifts embraces.
2 The fundamental importance of shifts in the psychology of learning
mathematics.
3 Significant factors in the bringing about of shifts:
First steps towards a descriptive vocabulary to enhance noticing.
4 The structure of attention:
First steps towards a mechanism of shifts.
O
FR]J(* THE SCOPE AND RANGE OF SHIFTS IN MATHEMATICS EDUCATION:
Aot Provded by enc|
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Examples of some of the fragments of disparate experiences

which the idea of shifts embraces.

' By a shift, we mean a shift of .attention, often sudden, but sometimes

gradual, in which one becomes aware that what used to be attended to was

only part of a larger whole, which is at once, more complex, and more

simple. Frequently, shifts studied in mathematics education are from

object to process, and from process to process-as-object. For example:

shift from attention to number as a sound uttered during the 'act
of counting', to attention to the act of counting, and then to
number as independent of céunting;

shift from having to mentally calculate when converting, say,
temperature given in degrees centigrade to.degrees fahrenheit, to

simply knowing (perhaps approximately), in both systems;

shift from root 2 as a number approximately equal to 1.41l4..., to

root 2 as a number known only by its property that it is positive,

- and that its square is 2.

shift from seeing an infinite seguence as an unending process in
time, to seeing it also as a completed act:;

shift from experiencing emotions while engaged in mathematical
thinking, to being aware of affective factors in mathematical
thinking during the\thinking;

shift from being immersed in being stuck while working on a
problem, io being aware of being stuck, and hence freed to be able
to do éomething about it;

shift from seeing a mathematical problem as being hard,
1nteres£1ng, important, ..., to seeing 'hard', 'interesting’,
*important', etc- as descriptive of the relationship between a

person, a problem, and the circumstances;

A gquotation attributed to Kant, sums up beautifully the essence, the

ubiquity, and by extension, the importance of shifts: The succession of

our perceptions does not add up to a perception of that succession.

2 THE FUNDAMENTAL IMPORTANCE OF SHIFTS
IN THE PSYCHOLOGY OF LEARNING MATHEMATICS

o examples of shifts given in section 1 are intended to be immediately

[EIQ\L(:)gnisable to mathematics educators. They illustrate some of the aiﬁs

Aruitoxt provided by Eic:

161



- 489 -

and activities reported by many researchers at PME XI, some of whom were
concerned with how pupils learn specific mathematical ideas, concepts,
and techniques; some of whom were concerned with how teachers ﬁight
intervene with pupils to faciljtate learning; and some of whom were
concerned with helping teachers to become aware of their own thinking

processes and thus in turn to help their own pupils.

' We suggest that to make contact with a mathematical idea, to learn a
concept, to master a techniqﬁe, and to develop an awareness, all require
a shift of perception in the pupil, indeed, often several shifts. For
example, in the well studied domain of algebra, which is a watershed for
most people, there are at least five fundamental and essential shifts
required:

from an éxpressiqn seen as a complex entity, to being seen both as a
rule for calculation and as the result of a calculatibh;"
from attention on the result of counting, to attention on ‘the act of
counting, so as to discern the ggneric aspects of the counting;
from single right/wrong answers to the possibility of a multiplicity
of ways of expressing the same pattern;
from the unknown as unknown, to the unknown being merely a
manipulable as-yet~unknown (Mary Boole 1909);
from ‘seeing’' pattern, to pictures supporting that ‘seeing’';, to
words describing that ‘seeing', to succinct words, to symbqls
which can conveniently be manipulated.
The charting of common pupil misconceptions can be viewed as a charting
of behaviour in the absence of necessary, but sadly, essential shifts ol
aitention. Teachers try to encourage pupils to shift their attention,
from focussing solely on getting correct answers, to how such answers.
are obtained, and thence to the processes of thinking mathematically.
Teahcers often‘find themselves encouraging shifts of attitude, which is
concomitant with attention, among colleagues and parents, as well as
pupils. AEéucators conducting in-service sessions with teachers are
trying to encourage teachers. to shift their attention away, for example,
from mathematics as fact-learning and tOwafds mathematics as engaging in
thinking and as a disciplineé form of enquiry. At a second level, they
wish to help teachers shift their attention away from the details of
) lc lesson plans and detailed tips for good lessons, and towards a

EMCL approach to teaching. 1 8 2
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What we found most striking, in discovering the idea of a shift of
attention lying behind the wide variety.of research, pedagogic and

" inservice activity displayed at PME XI, was that there is comparatively
lit;le information about how such shifts of attention actually come
about. People report on their perception of teacher and pupil
behaviour, but tend to leave unnoted sufficient details to enable a

study of what brought about such attention shifts as do take place.

Before proceeding with our suggestions, it is extremely important to
draw attention to an enormous potential danger in the use of the
language of shifts. The English language encourages reification of
processes, and mathematics often makes progress by making just such a
shift. Shifts could become things ;hich 'have to be made to happen'.
The very word shift, based as it is on a spacial metaphor, suggests that
it is something that you can 'do' to someone else. The next stage in the
potential degeneration of ideas through excessive articulation, is that
teachers might start to try to 'shift pupils', educators to 'shift
teachersi, and researchers to study all this 'shifting' activity. Wwe
believe that the notion of shifts is sufficiently impurtant and powerful
to take that risk, but we emphasise that shifts are NOT something you do
to someone else. You cannot shift someone else's attention. You may
attract it, you may try to focus it, you may even act in a manner which
invokes temporary shifts of perspective. But, based on our experience,
we are certain that you cannot shift someone else's attention, at least

in the way in which we are using that term.

What is the use of a theory which denies the possibility of causation in
its application? We suggest that through the language of shifts, it
becomes possible to notice situations in which shifts, and blocks to
shifts, are significant factors, and because of this awareness,
alternative action can be taken ~ for example, in not 'beating your head
against a wall’', bﬁt rather setting up activities that might promote the
necessary shifts (for example, the Didactic Situations of Balacheff
1980). By focussing attention away from the teacher as curriculum
delivery agent, and towards -the teacher as guide and gardener, the
vocabulary connected with the theory of shifts can help influence the
o -elopment of a more productive classroom environment. Notice that we
[E l(:‘ here'talking about a sﬁift of attitude and perspective, connected

63
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with a shift in focus, on the part of the teacher. Our theory (when

fully elaborated) speaks to its own promulgation.

3 SIGNIFICANT FACTORS.IN THE BRINGING ABOUT OF SHIFTS:

First steps towards a descriptive vocabulary to enhance noticing.

working from experience of ourselves, from observations of and
discusgsions with others, and reflecting on the examples proffered so
far, it seems that ehifts come about in basically four ways:
in the presence of a person, usually whom we esteem or in whom we
have some 1nvestmeﬁt (Investment for short);
when present experience is suddenly seen as an example or particular
case (Examplehood for short):;
when a word, expression or image which is richly associated with
past experience (often described as meaningful or substantial)
provokes a moment of noticing (Resonance for short);
when we suddenly, and apparently spontaneously notice something new
or freshly (Grace for short).
Several of these may be operating at the same time. The reasons for
distinguishing and labelling them are that we can elaborate on those
aspects of shifts which seem to fit these patterns, and the labels can
be used (via the mechanism of resonance) to help notice shifts taking

place, thereby permitting specific action to be chosen.

Investment

Try to recall some moment when someone whom you respected or esteemed
caﬁe for the first time to your room or other familiar place. Often
when this happens, it is as if you see the place freshly, perhaps even
through the other person's eyes. Sometimes there is a sense of being
larger than life, of being more than ordinarily aware. It can also be
dysfunctioning in that you find yourself knocking things over or
otherwise behaving awkwardly. Teachers being inspected or visited often

report this sort of experience.

We suggest that personal investment describes the principal action
behind many metacognitive shifts. Such shifts occur when attention is
O ;vely split by seeing the world as though through the eyes of
[EIQ\L(:r. The investment of esteem }iterally places part of our
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attention outside ourselves, and so produces the inner sebaration which

is one form of shift.

Examplehood )
Try to %ecall some situation in which you suddenly realised that what
you were attending to was an example or particular case bf a general
principle. For example,

counting the number of stairs in a stairchse-is an example of the

'fence~post-argument';

realisin§ that the eiper;ence of suddenly eﬁerging from being stuck

on a problem by becoming aware of being stuck, is an example of

what we mean by a shift.
fhe shift to examblehood is remarkably, and peculiarly, hard to speak
about, bécause the act of speaking entails that examplehood has already
occurred. Yet there are countless acts that people perform each day,
whose examplehood passes unremarked. People say 'Good morning', but
don't seedthis as an example of ‘'stroking' (Berne 1955); they think
‘ébout what they will do during the day, but don't see it as 'blanning',
pnd 80 on. Wé a;e not suggesting that it would be helpful to see every
act, every object, as an example of something more general. Héwever we

:‘do observg.that in mathematics, many students act as if they have not

detected examplehood when it is expected or intended.

Examplehood is an important part of our story, for it describes the way
in which disparate éxpérience is integrated into a more substantial,
more meaningful ﬁet o§ cénnections and associations. .Along with making
distinctions, it seems to be a fundamental power of the human brain, and
aéipresent represents a ‘'psychological primitive' (DiSessa 1987) in our

theory.

Resonance

In.the midst of a éogversation, someone uses a word which for you has a

technical or emotive_importance: ~Suddenly you both hear what.they are

saying, and simultaneously, ybu have an expanded inner sense 62 the

special meéﬁing for you. It 6ften happens that atter yodr return from a
'holidéy in another county, you notice numerous réferences to that
;fkuntry in travel write~ups and even in the news. A car-saiggman

[E l(:\erved thaf-when you buy a new car, you suddenly become aware of other
. * L0
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‘cars on the road 6f the same model. These are examn;es of a process
which seems to work rather like the resonance of a musical instrument -
if you make a sound in the right place, the instrument reverberates and
amplifies the sound. In terms.of memory and meaning, a sight, sound or

~ thought can resonate with past experience, making both specific images
and abstracted awareness seem to appear in attention. Workers in other
disciplines use the language of frames, schemes and scripts to_tglk
about the same sort of experience. The metaphor of resonance does not
answer the questioﬁ of mechanism, but seems a useful way to speak about

a whole gamut of experiences, in which something becomes meaningful.

Resonance seems to lie at the heart of many cognitive and metacégnitive
shifts. The sudden insight, the change in viewpoint, seem to be related
to prior experiences which, although not summoneg directly, coptributq
to the shift of attention. This is the 'mechanism' proposed in Mason,

" Burton and Stacey 1982, for 'learning from mathematical experience' via
the use of emotional snapshots which are re-vivified fragments of recent

significant experience.

Grace

‘Every so -often, in our experience, we suddenly find apr attention
sharpened, but for no apparent reason. There may in fact be a cﬁaig of
subtle -resonances and associations, but in order to leave room for the
possibility of spontaneous shifts of attention, a fourth term seems
desirable. We use the word grace r;ther than hazard or chance, because
it often seems like a gift, a special mqmeng in which atten;ion;is
enhanced and ‘'things seem to fall 1n€o place'. Since. the act of grace
does seem to be haphazard, there is little more that can be said, anﬂ

certainly it cannot be called upon or planned fort

4 THE STRUCTURE OF ATTENTION:
First steps towards a mechanism.of shifts.

Our current understanding of cognitive and meta-cognitive-shifts is best’
-st#ted in terms of splitting and diffusing of attentioh, from mqnadicf'
through dyadic, to triadic form. The transformation of attention has,
QO ose, qualities analogous to physical change of state, with the
[:IQ\L(: latent heat being taken partly by stimulation from the

i e v e,
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environment, and partly by the self, working on automatising and
integrating awarenesses (Gattegno 1962, Maturana & Varela 1971).
Monadic attention is a state of total immersion and full concentration,
of being caught up in the.doing and being blissfully unaware. Dyadic
attention emerges as awareness of distinction, duality, or identity.
Ideas suddenly fall into piace, and one ﬁecomes aware of the fact of
thinking. The .focus of attention becomes itself an example or generic
instance. This is typical of cognitive shifts connected with
mathematical content. Significant metacognitive shifts arise when
attention becomes triadic, sometimes through emergence of investment in
a significant other, an internal watching bird (Rig Veda clS5S00BC) or an
internal monitor (Schoenfeld 1985, Mason et al 1982), and sometimes '

through resonance with significant key words or phrases.

The whole of the theory is summed up for us in the memorable epigram of

Gattegno (1971): ‘'Only Awareness is Educable'.
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LEARNING MATHEMATICS COOPERATIVELY WITH CAI

Zemira Mevarech
Bar-i1an University, 1SRAEL

The purpose of the present study was to investigate the effects of
computer assisted cooperative learning on mathematics achievement and
learning processes. Participants were 227 pupils in elementary school 'who
studied mathematics with a Computer-Assisted instruction program called
TOAM. Results showed that collaboration at the computer tended to be
associated with a higher level of mathematics achievement and more
time-on-task than did the individualized CAl program.The theoretical and
practical applications of the findings for the psychological aspects of
mathematics education will be discussed.

in recent years, researchers and teachers have started to question the
widely accepted assumption that Computer;Assisted instruction (CAt)
works best in individualized settings (Johnson, Johnson and Stanne, 1985).
Jackson, Fletcher, and Messer (1986), for example, showed that more than
50% of the teachers in England use CAl in pairs or small groups. Jackson
and her colleagues indicated that teachers prefer to.implement CAl
cooperatively not only because of limited sources, but also because of their
belief that students benefit more in cooperative than in individualized CAl
settings. This assumption raises two important gquestions: '(a) does
Cooperative CAl (C-CAl) facilitate learning more than Individualized CAl
(i-CAI)? and (b) to what extent are learning processes different in one
setting than in the other? The present study addressed both questions by
focusing on lmathemAatlcs achievement and mental effort of elementary

school students who used CAl cooperatively versus individually.
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Underlying cooperative learning models is the fundamental assumption
that learning _together improves knowledge-acquisition more thar
co'mpetlt.ive and/or individualized learning (Sharan, 1980; Slavin, 1980).
This assumption stemmed from cognltl\)e and social-psychology theories.

- From Cognitive point of view, learning together provides ample '
opportunities for students to verbalize the material, reorganize it in new
- schema, and represent it in different ways. According to Webb (1982),
these processes facllifate learning.  Moreover, research has_shown that
both high- and low- ability students benefit from cooperative iearnlng
(Stallings and Stipek, 1986). The high-ability learners achieve a higher
level of understanding via the process of teaching the slow learners; the
low-ability learners benefit from the instant.help they receive from other
children in the small-group. These processes exist also in cooperative
mathematics classrooms.. When children solve mathematics problems in
small groups, they help each ot_h_er-to analyze the problem, identify the
"given" and the “wanted", Iookv for appropriate algorithms, and correct
computational mistakes.Thus, we hypothesized that students in cooperative
CAl settings would perform better than students in individualized CAI
settings. _
~ From social-psychology perspective, cooperative learning is presumed
“to raise motivation and increase mental effort more than individualized or
" competitive learning (e.g, Slavin, 1980). Stallings and Stipek (1986)
argued that “individual competition can enhance the motivation of students
who have some possibility of "winning®, but research shows that many
children, who.begin the competition at a disadvantage and who expect to
© . poorly, no matter -how hard they try, eventually cease trying

ERIC 169



- hoy - .

(Covington and Berry, 1976; Dweck and Reppuucci, 1983). A group reward

structure may relieve motivation problems that many low-ability students
have in individual competition situations™ (p. 746). if indeed, cooperative
Iearning' raises motivation, there is reason to .su* wse that stv - “ts in
C-CAl settings would invest mof‘e mental effort than their counterp.. (s in
1-CAl settings. '

While most studies of cooperative models focused on settlngjs withno. .

computers (e.g,,-Sharan, 1980; Slavin, 1980, Stalilngs and Stipek, 1986),
studies in the area of CAl assessed the effects of the system on students
who worked individually at the computer (e.g., Kulik, Bangert and Williams,
1983; ﬁev_arech, 1985, Mevarech and Rich, 1985; Mevarech and Ben-Artzi,
1987). Only two studies investigated theeffects of CAl In cooperative
settlngs {Johnson et. al., 1985; Mevarech, Stern and L_evlta, 198:7‘), but they
did not examine mathematics learning. The purpose of the present study s,
therefore, to compare the effects of C-CAl and 1-CAl on mathematics

achievement and on mentat effort investment,

METHOD | :
Subjects
Participants were 227 |srael| students in third and fifth grades
Subjects studied in two elementary schools whlch served economically
disadvantaged families as defined by the Israeli Ministry of Education.

CAl Program’
KC he CAl program used ln this study Is called TOAM, the Hebrew

© 170
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ac nym for Diagnosing and Practicing with Computers., TOAM program
“c ers® all toplcs of elementary school mathematics including: four basic
of ations with natural numbers, negative numbers, fractions and
dr imals; powers; word problems; equations; and geometry. The program is

ided Into fifteen strands each Includes problems of varying difficulty:
At every session, problems from all strands are presented on the screen.
Students are provided with three attempts to solve a problem correctly.
when all three attempts are failed, the correct answer is presented on the
screen.

The first ten TOAM sessions are devoted to diagnosing purposes. Using
the "testing-taliored" technique, the level of each student is determined
independently of his or her age or class level. Then, each student drills and
practices according to his or her ability level. The computer makes
moment-to-moment decisions regardln'g the matching of student ability and
problem difficulty levels. The criterion level of mastery is approximately
80% correct answers. At the end of a session, students receive sumraary
reports indicating the number of problems provided and the number of
problems solved -correctly on the first attempt. Teachers and principles
receive weekly reports describing performances of ail students on every
strand and the average performance of the ciass. In addition, teachers
recelve information about special problems students are confronted while

working on the tasks. (More details about TOAM can be found in Osin, 1981).

Measures
Two measures were used In this study: one focused on mathematics
achlevement and the other on students’ mental ‘effort. Each was
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administered at the beginning and the end of the study.

TOAM's average scores overall strands were used to assess students’
mathematlcs achievement. The scores are constructed of two-digit
numbers. The “tenth” digit presents the "class” level and the “unit™ digit
presents the “month” level within that class. For example, a student whose
score is 54 knows that his or her performance is equivalent to the
performance expected by a student at fifth grade on the fourth month. As
mentioned earlier, these scores are based only on Students’ performances
regardless of their age or class level. For example, students can be in

~second grade and perform as expected by students in fifth grade and
vice-versa, students cén be in fifth grade and perform as expected in
second grade. The norms were determined by the lIsraeli Mtnisfry of
Education.

Students’ mental effort investment was assessed .by a short
questionnaire. Following Salomon (1983), students were asked to indicate
the extent to which they invested mental effort during the CAl sessions.

The Scale ranged from one (very little) to five (very high).

Procedure

At the beginning of the experiment students were randomly divided
into an experimental and control groups. Students in the experimental group
worked in pairs at the computer. They were ésked to discus§ the problems
presented on the screen, agree on the solution, and then ENTER the answer.
in this group, students took turns at the keyboard so that at each session
another team-mate typed the answers.

The control group continued to work at the computer as they were used
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to do. They learned individually -- one student at one computer.

Both the experimental anq control groups used the same textbooks, CAl
‘system, and basic teaching methods. The duration of the study was
approximately three months.

RESULTS AND DISCUSSION

Results showed that students in the experimental group gained higher
mathematics scores than students in the control group. During the time of
the study, studen.ts who worked individually at the computer gained 2.86
monih equivalent grades, whereas students who worked in pairs at the
computer gaine‘d 3.10 months equivalent grades. Analysis of Covariance
(ANCOVA) of mathematics achievement obtained at the end of the study
(initial scores served as covariance) indicated marginal significant main
effect for the “treatment" '

Results also showed that students who used CAl in pairs invested
More m'ental effort than students who used the program individually. While
;harigeé -between post and pre measures of students’ mental effort
nvestment in C-CAl settings avei‘aged at .37, ‘that of students in I-CAl

ettings remained‘almost the same (.08). ANCOVA of mental effort scores
Jtained at the end of the study (initial scores served as covariance)

dicated significant main effect for the “treatment';.

'Since this work is now in progress, more details will be communicated

the PME meeting in July. '
Q These findihgs %p@ﬁ@ teachers’ intuition that C-CAl facilitates
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learning more than 1-CAl. Evidently, students collaborating at the computer
encouraged one another to invest more effort and tended to gain a higher
level of mathematics achlévement than their counterparts learning
individually with CAl. These findings incorporate in previous studies
éhowlng the effects of cooperative learning on mathematics.achievement
and time-on-task (eg., Mevarech, 1985; Stallings and Stipek, 1986).
According to Salomon (1983), cognitive effects of media depends on a
number of factors including the effort invested, depth of processing, and
special aptitudes of indiviaual learners. Future research may focus on
these factors and relate them to learning mathematics cooperatively and
individually in CAl settings. ’
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MATHEMAT ICAL PATTERN-FINDING IN ELLEMENTARY SCHOOL
-- FOCUS ON PUPILS' STRATEGIES AND DIFFICULTIES IN PROBLEM-SOLVING --
Nobuhiko NOHDA,  University of Tsukuba, Japan

(Abstract)

Our study 'Problem-Solving' is the current focus on mathematics education in
Japan. The study on analyzing pupils’ strategies and difficulties in problem
solving is considered indispensable to improve teaching in mathematics classroom
activities. It seems that these strategies and difficulties are influenced
greatly by some social and cultural factors, such as languages, symbols and daily
life-habits etc.. This study is planned in order to make exactly the effects of
social and cultural background on teacher and pupils who engage in problem solving
by means of activities and communications, particularly in reference to share
meaning and use of mathematical words and symbols involved in problem solving. We
have to become more aware of the information processes which consist in the
communications between the teacher’s explanations and pupil’s understandlngs
about problem-solving.

Subjects of survey test in this study are selected at random one class of
first, second and third graders in the elementary school and they are living in
Tsukuba City near Tokyo. And then, we will take the second class for the problem-
solving of the teaching experiment. The second-grade class (Male; 17, Female. 18,
Total;35) we take here in this study, are composed of pupils of another
elementary school which we have carried out the above survey test, but the school
is the almost same conditions as the survey school in Tsukuba City.

1. Background Research
The process of problem-solving becomes evident when teaching is seen as a
process of interaction bewween the teacher and learner-and among the learners-in
which the teacher attempts to provide lerners with access to mathematical
thinking in accordance with given problem. This teaching/learning process is
(like all processes between learners) influenced by a number of social and
developmental aspects and factors which can be included in problem-solving, The
commnication between teacher and learner is thus not only conditioned by formal
decisions about goals, content and teaching methods, but it is also strongly
dependent on even more informal aspects in early elementary school, such as the
teacher's words and explanations to the problem-solving, and learner’'s motivations
to solve the problem and to concern with it.
[: l (:Je will cite an example as the problem-solving activities between teacher and

lers (Fig.3). A brief consideration oisyrﬁvf the roles of the teacher at
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different stages of the teaching/learning process illustrates this: instructor as
to teach learner mathematical knowledges and skills (Top-Down); educator as to
make them help problem-solving (Bottom-Up); and decision making as to judge
teaching goes ahead or not, still there repeatly explaines more politely. The
teacher's explication of such roles is intgrated with his specific actions, and
serves to establish his/her background and context for the interactions between
pupils’ actual and inner activities in vonnection with any their subjective words.

If you grant this inherent

subjectivity of concepts and, Teacher Instruction |e
therefore, of meaning , you are ‘[ l
immediately up against a serious

problem. If the meanings of Problem-Solving
words are, indeed, our own Top- Activities Bottom-Up
subjective construction, how can ' T l

possibly communicate? How could

anyone be confident that the Pupils’ Inner
representations call up in the i Activiteis
mind of the listener are at all : ~

like the representations the Met:g-l.earining
speaker had in mind when he or ~ geeeeeeee- Wiy
the uttered the paticular words? Pupils’ Experiences '
This question goes to the very |
heart of the problem of Fig.1 Problem-Solving Activities

commnications about problem-solving,

Accordingly, the communication used ‘problem-solving' as am organizing
principle in Japanese mathematics learning calls for meta-learning under the
teacher's support. This communication views mathematics classroom teaching as
controlling the organisation and dynamics of the classroom for the purposes of
sharing and developing mathematical thinking.

2. Mathematical Problem-Solving in Lower Elementary School
Our study . ‘Problem-Solving’ is the current focus on mathematics education in
our world. The study on analyzing pupils’ strategies and difficulties in problem
solving is considered indi.spensable to improve teaching in mathematics classroom
activities. It seems that these strategies and difficulties are influenced
greatly by some social and:cultural factors, such as languages, symbols and daily
life-habits etc.. This study is planned in order to make exactly the effects .of
social and cul tural background on teacher and pupils who engage in problem solving
Q leans of activities and commdnigation’s, particularly in reference to share
E l ing and use of mathematical words and symbols involved in problem solving. We
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hope to become more aware of the information processes which consist in the
communications between the teacher's explanations and pupil’s understandings
about problem-solving, i.e. pupil’s hearing and writing down some key word the
teacher says.

Here we use as non-routine problems: problem situations ( Christiansen &
Walter, 1986). We suppose the given problem by the teacher is caused for major
difficulty: How to give a suitable problem to pupils ? In actual practice, every
teacher will have to take his or her own classroom conditions into consideration.
Thus, we will define the problem being used in this paper as follows: the problem
includes both sides of mathematics and pupil/pupils, and then it is a non-routine
problem which two fundamental factors must be contained in the problem in order to
solve by themselves independentlly in mathematics classroom ( Nohda, 1983, 1986).

Here we use the problem of pattern-finding. We shall focus on mathematical
pattern-finding in broblem solving, One of the dominant themes of cognitive
research into problem-solving in recent years has been pattern-finding. However,
much of this research has been in non-mathesatical contexts ( Lester, 1982). We
will study pupils’ acheivement on solving-problems from views of mathematics
education. Thus,we will define the problem as follows: The problem occurs when
pupils are confronted with a task which is usually given by the teacher and there
is no prescribed way of solving, the problem. Ii is generally not a problem that
can be immediately solved by the pupils.

Pupils are able to solve the problem when they find a suitable ‘pattern’ in the
problem, On the other hand, they have some feelings of difficulty in solving
their problems when not being able to find a suitable ‘pattern’. To study’
pupils'mathematical activities by means of the strategies and difficulties of
probleﬁ-s_olving. is to make it clear how pupils find more suitable patterns of
the problens under some interaction between the teacher and pupils, and between
pupils, what strategies they find in their problem-solving, and in what parts they
have difficulties in teaching and learning processes( Silver, 1979).

For the purpose of this study, first of all, we consider the mathematical
activities through the following two cases. The one is the underlying pattern in
the problem, that is, the nature of characterizing the problem itself. The other
is the feature of strategies in pupils’ problem-solving. The former means the
structure of problem and the rule in it etc.. The latter is the mode of action
applied in pupils’ problem-solving. Therefore, in order that pupils might do
better in their problem-solving, it is ﬁecessary that pupils share the
unders tandings of problem through-some activities of communications between
teacher and pupils. For pup'ils who fail to understand the problem or feel

QO 1t to solve it, the reason would be that there is no sharing the

EMC(mding or way of solving of the task through the interactions between
T Ry
s 178
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tasks and pupils under the teacher’s instruction.

To make clear the pupils’ strategies and difficulties on problem-solving from
the above viewpoipts. we will present a more difficult problem than the problems
found in the textbooks. Then, we will observe the mode of action on pupils’
problem-solving and analyze the process of problem-solving which pupils take to
solve the problem, and whether they arrive at the correct final answer or not. In
studying pupils’ pattern-finding behaviors, we may be able to see better how
pupils are solving the problem and examine the steps by which they arrive at their
understanding, planning, solving and cﬁecking by means of the interactions
between teacher and pupils’ communications( Polya, 1962). The interest here is to
look at the internal thinking of ‘pupils and to attempt to determine how their
thinkings unfold by looking at their work on papers and to act and talk with the
problem between the teacher and some pupils in the classroom by our observations.

3. Survey Test

Subjects in this study was selected at random one class of first, second and
third graders in the elementary school and they were living in Tsukuba City near
Tokyo. This test was carried out May 16, 1986 and that day was in a short time the
biginning of new school year in Japan.

Survey procedures were that let the pupils read themselves the problem after
the classroom teacher was handing the problem to pupils and then the problem out
loud for all pupils to hear, and gave them 15 minites for solving the problem.
Survey Problem
Apple problem (See Figure 2 )

Figure 2 Apple Problem

0000,

O

(1) How many apples are there in this figure?
(Count the number without skipping any and
without counting any apple more than once.)

(2) Show different ways of counting the apples.
How many different ways of counting can you
think of?

(3) Of all your ways of counting, mark the one
you think ‘the best.

The feature of this problem’s pattern is to
take those as two pairs of apples forming with
5 X 5 row. That is, the pattern is 2 X 5% §
here. Namely, the apples arranged with 5X 5
can be taken as those set as to pile up with
shiftings lightly. Therefore, pupils found .the
;ame number and rule (pattern) in group of
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Figure 3 Problem Pattern
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Table 1 shows only the result of the survey test item (3).
Table 1, Result of-Survey Problem

A, Correct Grade First Grade Second Grade Third
Counting

Male Female Total |Male Female Total | Male Female Total

Numbers 17 171 3 L 23 B |17 17 34
Correct 9 2 1 8 9 17 13 13 2
No Responce | 5 T 12 { 2 9 1 1 0 1

B. Ways of Counting

One By One 1209 102 22711 | 50 80 13® |20 7(D 9(D
Pairs 0 10 2(0 300 |2(2 2(2) 4@

Group of Five 0 10 0 200 198 4(2) 1300
Group of Ten 0 1D 2D 3@ |3 3D 65
Aslant 0 4@) 51@) 9B [0 100 1
The Others 0 1M 1M 2@ |0 o 0

Note: () in parentheses in the Table 1 are those pupils of correct answers

The difficulty of this problem lies in that a first glance the pupils feel it
rather difficult to count well because of seemingly complicated problem for the
pupils of the lower elementary school. Especially, for first grade-pupils, it is
difficult for them to Count well after arranginig and regrouping in the same
number of those or in the concept of pairs, although it is easy for pupils to
@unt the number of up to fifty with numeral, They gain almost the same numbers as
the correct answers, errors and no responses.

For second grade-pupils, it is easy for them to count apples being arranged
and regrouped with the concept of pairs, group of fives and tens, and aslant.
About half pupils gain the correct answers almost using one by one counting. They
could not almost aquire the well-counting as group of fives or tens.

For third grade-pupils, pupils almost gain the correct answers and two thirds
pupils are the well-counting after the arranging and regrouping with the concept
of pairs, group of fives and tens.

Problem-solving we are concerned with here, is needed to share and develop of
d 1tical patterns as well-counting of the arranging and regrouping according

_ E lC‘concep_t. o_f pairs, group of fives or tens on second grade-pupils. To study
amesrrm dblem-solving through thg teaching expiigna we .cannot take the first
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grade-pupils sharing and developing of mathematical pattern as the well-counting
in this case, and need not teach the third grade-pupils the well-counting of
apples. Thus, we will select the second grade-pupils for our study and to take the
second grade class for the teaching experiment.

3.Problem-solving in the second-grade classroom

The second-grade class (Male; 17, Female; 18, Total;35) we took here in this
study, were composed of pupils of another elementary school which we had carried
out the above survey test, but the schopl was the almost same conditions as the
survey school in Tsukuba City. This lesson was done June 6, 1986.

A classroom teacher started as follows: pupils were each given a picture of

. ‘apples’ which was a larger picture than usual one and put the same picture of

‘apples’ on the blackboard, and then, the teacher asked the pupils "How many
apples are there .in this figure?” and explained some notinons to them; “Counting
the number under well-consideration wi thout leaving some out or counting doble.”
After he explained to them the problem, he wrote the same informations about it on
the blackboard as follows:

What way of counting and how many ways of counting do you think of?

Of them all, encircle your way of counting as you think good and suitable in
this problem.

Pupils wrote their answers on the served sheets for about ten minutes af ter
teacher explained the problem. While the teacher were observing and looking
through pupils’ activities of solving the problem in details, he advised first,
some of pupil to take care of counting, and next, made them respectively to think
out more ways of counting, and then he found out their different ways of the
solutions as follows:

(1) Pupils almost were checking and ;ountins apples with one by one vertically
or holizontally, or with the filled numerals in the sketch of each apple. Some
pupils mistook to count apples in their processes in this case.

(2) One fifth pupils were counting apples in pairs and some pupils who counted
2, 4, 6, 8, and so on continued to add apples till fifty, and the pupils almost
gained the correct solution but a few pupils had the results in the impossibility
of calculating 2 X 25 in this case. ’

(3) Four pupils who counted five apples together counted accurately and
relatively quickly in this case.

(4) Nine pupils who counted ten apples together well-counted correctly and
quickly jn this case. '

(5) A rather small number of the pupils used a symmetry of figure as the way
of aslant counting. In this case, adding numbers aslant was the key.

Note: Almost all pupils made counting by more than about one method in this

109
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lesson.

4. Pupils’ activities in the classroom

When pupils almost had finished to count and check the apples by themselves,
first, the teacher asked them whether they counted the apple correctly. This was
a beginning of a communication -through the interactions between the teacher and
the pupils for the sharing of the correct answer. This was an important point that
the teacher judged his teaching on ahead or not. This decision making of the
lesson was important rolles of the teacher. Then, after the teacher explained
pupils to select to better one commensurate with their countings, he pointed out a
representative pupil respectively of the five cases above mentined and let them
explain of their ideas according case from (1) to (5) cases at the front place
beside the teacher of the classroom.

In the case of (1), when a girl explained her idea, almost all pupils nodded
to show that they agreed and understood one by one counting., There was an
existance of the correct counting between the pupils in the classroom.
Furthermore, the teacher advised a few pupils who could not count them correctly,
made them to count again more careful. Thus, all pupils gained the corect answer
and felt to satisfy with their needs to solve the problem. These processes of
teaching and learning activities were the important communication for the aims of
solving the problem in cooperation with the teacher and the pupils,

In the case of (2), when a boy explained his idea, pupils almost understood
the count of apples in pairs. There was the existance of the sharing of the
couning between the pupils. And then, the teacher advised the others pupils who
could not add them correctly, to add again more careful. Thus, all pupils_had the
feeling of satisfications, too. These processes of activities were the meaningful
commnication between the teacher and the pupils for the aims of mathematical
solving the problem. Furthermore, Some pupils replied the case (2) when the
teacher asked them "Which is better method of the-counting apples between the
case (1) and (2)?°. This was more advanced negotiation because of his asking to
make their counting with mathematical views.

In the case of (3), when the other girl explained her idea, many pupils easily
understood her explanation and appreciated it. And in the case (4) pupils
appreciated the good explain by an excellent boy. We.were impressed what pﬁpils
had understood the mathematical patterns could be attained through the processes
of their commnications. All pupils had appreciated the grouping of fives and tens
of mathematical pattern of the problem, and the teacher did not need to expalain
the best ways of counting more details. Théy thought out themselves the best ways
Q unting from their communication without the direction of teacher.

[Elz\!(::In the case of (5), when a fanny boy explained his idea, most pupils seemed

_ 182
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to reject it. For most pupils felt it troublesome to count the numbers and to
calculate the numbers in adding. This was another important aspect for their
communicatfon. because they could find easily the ways of'counting as the case (3)
and (4), and did not really conceive that 1 +3 +5 +7 +9 could be calculated
as rather easily (1 +9) +(3 +7) +5,

5. Disscussion on mathematical problem-solving

Seen the strategies of solving here, first almost pupils take them one by one
counting and next some pupils find thé same number (pattern) in grouping of the
iength—width formation and a few pupils take the slantiﬁg formation. Many pupils
find the same number and rule (pattern) in group of such formation. The difficult
péints here that in spite of the first instruction by the teacher, about half of
the pupils counted twice and forgot some numbers to count. For the purpose of
overcoming these difficulties, the mathematical ideas of grouping have developed

" by the human race for a long time ago.

We have to need the communication between the teacher and the pupils as
follws: the teacher advises pupils who can not find the correct patterns, to find
the features of problem and to count again apples using the ideas of grouping
more careful. Thus, almost pupils understand the ways of counting from the cases .
() to (2), or from (2) to (3), or from (3) to (4) except case (5). Under the
teacher’s direction, they have the feeling of satisfications to learn new ideas
and concepts in the mathematics lessons. A series of these communications open to
the interactions betweem the teacher and the pupils for the main aims of solving

. the problem.

Furthermore, In the case of (3) and (4), for examples, we are impressed that
pupils have the real appreciations of sharing of mathematical patterns by the
processes of commnications between pupils by themselves. Pecause, all pupils have
appreciated the grouping of fives or tens for counting the apples. They think out
themselves the best ways of counting the apples with their communications without
the directions of teacher. This is the most advanced communications, because the

best counting of grouping which is developed mathematically by the human race, is
found by their learnings.

6._References
(D) Christansen, B, & Walter, G. (1986), ‘Task and Activity’,Christansen, B et al
(Eds.) “Perspective on Mathematics Education”. D. Reidel Publishing Co.
(2) Von Glasersfeld, E. (1987),. ‘Lerning as a Cognitive Activety’: Janvier C.
(Bd.), "Problems of Representation in the Teachinf and Learning of
IE \i(:rﬂathenatics'. Lawrence Erlbaum Associates.
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THE CONSTRUCTION OF AN ALGEBRAIC CONCEPT
THROUGH CONFLICT

Alwyn Olivier
University of Stellenbosch

This paper focuses on one aspect of pupils’ interpretation of literal sym-
bols in elementary algebra (generalized arithmetic), namely that different
literal symbols necessarily represent different values. The underlying
causes for the misconceptions are investigated. A teaching experiment in-
ducing conflict and reflection to remediate the misconception is described
and analyzed.

From a constructivist point of view, students’ misconceptions are never arbitrary or al-
together unreasonable. Misconceptions are seen as emerging from some interaction be-
tween experience and other existing concepts the student has (perhaps themselves
misconceptions). Misconceptions are crucially important to teaching and learning for at
least two reasons:

e misconceptions form part of the student’s conceptual structure that will in-
fluence further learning, mostly in a negative way, because misconceptions
generate mistakes.

e misconceptions are highly persistent and resistant to change through instruc-
tion. They are maintained by their ability to distort or reject incompatible in-
formation and by the support from other concepts in the student’s conceptual
structure.

In this paper we focus on the often-observed and well-documented misconception con-
cerning the meaning of literal symbols in elementary algebra (géneralized drithmetic);
namely that different literal symbols necessarily represent different values (Kiichemann,
1981; Booth, '1984a). A student’s response of “never” to the following question usually
demonstrates this misconception (Kiicherann, 1981):

When is the following true —always, never or sometimes?
L+M+N=L+P+N

The pervasiveness of this misconception is illustrated by the following data for the ques-
tion above: In the CSMS study (Kiichemann, 1980) 56% and in our study involving more
than 40 000 students (Olivier, 1988) 74% of 13 year olds answered “never”. The resist-
ance of this misconception to change is illustrated by, the poor improvement in perfor-

Q v average students in the SESM project, despite a well-designed teaching
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programme that was successful in ameliorating other algebraic misconceptions (Booth
1984a). Booth (1984b) attributes the persistence of this misconception to maturation-
linked cognitive factors, i.e. that understanding depends on the attainment of a certain
general developmental cognitive level. Kiichemann (1981) links understanding of gener-
alized number to Piaget’s late-formal stage of development. However, the possibility re-
mains that certain experiences (instructional interventions) may well ‘address this
misconception successfully, disproving the developmental hypothesis. For instance,
Sutherland (1987), in studying students’ understanding of variables in algebra in a Logo
environment, concludes that “Whether or not pupils can make the links between vari-
able in Logo and variable in algebra appears to depend more on the nature and extent
of their Logo experience than on any other factor.”(p.241) This promising approach
nevertheless showed limited success in relation to the misconception under discussion.

SOME EXPLANATIONS

Searching for underlying causes of this misconception, we conducted interviews with ten
students randomly chosen from the eighth grade population of semi-urban first-world
secondary schools. Each interview was based on a subset of the following questions:

1. When is the following true —always, never or sometimes?
L+M+N=L+P+N

2. Ifa + b = 4, what values of a and b will make the sentence true?

3. True orfalse: If 2a + 3b = 20, thena = 4 and b = 4 is a solution of the equation.

4. Solve forx andy: x+y 6
2+y =9

5. Construct an algebraic expression for the total points scored by a team in a rugby
match if they scored only tries (counting 4 points each) and penalties (counting 3
points each). Use the expression to find the total points if a team scores

(a) 5 tries and 2 penalties (b) 3 tries and 3 penalties

The following is a summary of the findings of the interviews and a situational analysis.
All students interviewed demonstrated the misconception in questions 1 and 2.

For four students answering “never” in question 1, the literal symbols did not represent
numbers, but names of objects like apples and bananas or abbreviations for names of ob-
jects (e.g. a stands for apple) or as an object in its own right (letters of the alphabet).
These students are simply continuing their arithmetic framework of knowledge (Booth,
1984b), where literal symbols are often used as abbreviations for units (e.g. 4 m). Also,
inintroducing algebra, teachers often do not distinguish between symbols and their refer-
ents, or use objects (apples and bananas) as referents instead of numbers to facilitate
'—":{'“dcal manipulation and inhibit conjoining (e.g.a + b = ab).

ERIC
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A further four students viewed the literal symbols in question 1 as representing unique,
unknown values, from which it then follows that different symbols necessarily represent
different values. This mind set may be established through the early emphasis on linear
equations in the curriculum. It is also the outcome of experience. One student mentioned
that he had “never, ever” seen different literal symbols stand for the same number (he
was referring to substitution exercises of the type

“Ifg = 2and b = 3 evaluate (1) ab (2) a +-2b etc”).
Despite their handling literal symbols as objects or unique unknowns in question 1, all
ten students accepted more than one replacement of values in question 2, although no
student admitteda = 2and b = 2, even on being prompted on the possibility. They were
all quite adamant about that. Two reasons were identified.

One reason is that pupils, despite working with numbers, do not seem to work with num-
bers in an abstract sense, but, to give meaning to the situation, introduce their own con-
crete referents for the literal symbols (e.g. “things” or apples and bananas) by reversing -
the modelling process. The following extract illustrates the point:

(Interviewer: I; Frieda: F explaining why a = b in question 3)

F: |do not know in what circumstances the equation was asked. But if the a is the

abbreviation for the apples and the b of the bananas, they must have different sym-
bols. -

So a and b are abbreviations for the apples and bananas.
No, | would rather say it's a symbol for the apples and bananas.

A symbol for the apples?

F: Yes, that you use to Indicate what each number is. If you say & is equal to 4, then
you know that if a is the symbol for apples, then you will immediately know that a
stands for the apples and that 4 apples were bought.

Frieda’s conceptualization should allow her to buy an equal number of apples and bana-
nas, but her verbalizing “apples” instead of “number of apples” means that in the end
the meaning degenerates to “apples” and “bananas”, objects which should be different.

The second underlying mechanism for not allowing a =h =2 as a solution to question 2,
and in general not allowing different literal symbols to take equal values, stems from a
combination of other valid knowledge and students’ faulty logical inferences. Students
are very much aware of the convention that the same literal symbol in the same express-
ion must take the same value, e.g. inx + 2x. From this they infer that the converse, or
even the inverse also holds:

o Proposition:  the same letter stands for the same number.
o Converse: the same number stands for the same letter.
o Inverse: “Not the same letter” stands for “not the same number”.

The following two extracts illustrate the converse reasoning to questions 1 and 2 respec-
tively:
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“Ifthey (M and P) were the sams, you could Just as well have used L + P Instead
of L + M. if P and M were the same number, then you cannot have P and M, be-
cause M and P represent different numbers, but if they (P and M) were the same
number, it Is the same letter that is used.”

“2 plus...no it cannot be...otherwise it would be x + x = 4, (silence). 2 plus 2 Is
4, then you cannot have 2 plus 2, because It is the same numbers and it must be
different numbers.”

Another interesting phenomenon is that all students demonstrated the misconception in
questions 1and 2, while all students supplied correct responses to questions 4 and 5. Also
of interest is that no student noticed any contradiction in their responses to the different
contexts.

Lawler’s (1981) theory of microworlds (cognitive structures) may offer an explanation.
Students are operating in different distinct and separate microworlds when solving the
two classes of problems. Lawler views the microworlds as actively competing with each
other, working in parallel to solve a problem. Which microworld provides an answer to
a problem depends on how the problem is posed and the particular knowledge the dif-
ferent microworlds embody. The competition of microworlds usually leads to the domin-
ance of one and the suppression of others. To Lawler, resolving the misconception
requires the cooperation, interaction and integration of microworlds whereby confusion
between related competing microworlds is suppressed by a new control structure.

Davis (1984) also suggests that separate, conflicting “frames” may be created. A frame
acquired early and developed well may prove to be extremely persistent, so much so that
it may sometimes continue to be retrieved inappropriately long after one has become
fully cognizant of the conditions under which it is or is not used. Put differently: a new
appropriate frame may be available, but the old frame continues to exist. The source of
such misconceptions lies in retrieving the wrong frame and not recognizing the retrieval
error. As for remediating the misconception, Davis advocates making sure that pupils
-are aware of both frames, and of the likelihood of incorrect choice.

From our analysis of the data it is clear that most pupils possess two apparently separate
schemas for literal symbols. One is the letter-as-object schema, which stresses the dif-
ference of different letters and which is appropriately used to make routine manipula-
tion of symbols automatic (Skemp, 1971). The other is the letter-as-generalized-number
schema, which should include the possibility that different literal symbols can take the
same value. The essence of the observed misconception lies in the fact that the letter-as-
object schema is inappropriately invoked in cases were it does not apply. As such the let-
ter-as-object schema has become an obstacle to further learning, inhibiting the
letter-as-generalized-number schema.

A TEACHING EXPERIMENT

For the purposes of a teaching experiment the format of the interviews was changed, by
]: TC ling students with the contradictions in their responses (questions 1 and 2 versus
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questions 4 and 5), in an effort to induce cognitive conflict and to help students to reflect
on their own concepts and mental processes. The objectives of the funher investigation
were:

o to determine the strength and stability of students’ beliefs concerning the mis-
conception, and

o to determine the success of cognitive conflict as a teaching strategy to remedi-
ate the observed misconception.

An additional 30 students were interviewed. Of these, 22 demonstrated the misconcep-
tion in questions 1 and 2, with correct responses to questions 4 and/or 5, before being
confronted with the anomaly in their responses. After these confrontations the students
were evenly split between

@ persistence in the misconception
o total confusion
o successful remediation.

In the first category of students, the belief in the misconception was so strong that, on
being confronted with the discrepancy in their responses, they chose to alter their initial
correct responses by also excluding equal values in questions 3, 4 and 5, or reconciled
the discrepancy by inventing all kinds of conditions for equal values in questions 3, 4 and
5, in preference to modifying the misconception and allowing equal values in questions
1and 2. For example, Jacques, on comparing his response to questiond4 (x =y = 3) wn.h
his response in question 2 (where he insisted @ s b):

“You can say that x = y, because you proved that x = y. Ses, you have proved

thatx = y. But here (question 2) nothing Is proved yet, so you cannot say thata =

b
Similarly, students defended equal values in question 3 and 5(b) “because they say so”,
but excluded a = b in question 2.

The second group of pupils typically obtained equal values in questions 3, 4 and 5. Then,
when their attention was drawn to the fact that they would not allow equal values in ques-
tions 1 and 2, they altered their responses to questions 3, 4 and 5, only to be convinced
again that equal values were common sense in 5(b), yet they would not accept.equal
values in 1 and 2. At that stage they were totally bewildered and confused.

Consider Thys as an example. After successfully completing S(b), his expression was
4a + 3b, he was asked why he did not allow equal values in question 2.

T: Ohno! Yes...It cannot be the same! (referring to 5(b)). It cannot be the same...|
thought...I'm afraid |, |....(stience).

I:  What was a? :
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Can they be?

Nol

But we just did a problem were they can!
Yes, but, but then that should have been an a (points at b).
What does b stand for?

The penalties.

And a stands for the ...

It's the tries.

Can we score three tries?

Yes.

Thena is 3?

Yes.

Can we score three penalties?

Yes.

Then bis 37

Er...No, it must be an a.

Can the expression that we must write for the team'’s total, can it be 4a + 3a?
Yes. '

What does the a stand for?

it is the tries.

And what about the penalties?

It must also be a...oh no! (silence). I'm afraid | must now be totally con-
fused...(sflence)...No, | don't know.

4 T AT AT AT AT AT AT AT AT AT A7

The third group of students successfully altered their misconception responses for ques-
tions 1 and 2. They were all able to re-interpret the letters in these questions as letters
with added semantic meaning (Rosnick, 1982), i.e. letters that mean more than a num-
ber —they mean a number of things. Carl, for example, after completing 5(b) and being
confronted with the discrepant meanings: “Oh, so a can be the number of tries and b can
be the number of penalties and a team could have scored 4 times” (question 2).

DISCUSSION

In summary, one-third of the students interviewed did not experience conflict between
their discrepant meanings of literal symbols. Another one-third of the students experi-
enced the conflict quite emotionally, and although they were confused and unable to re-
solve the conflict, it is possible that they may do so with more experience and/or
reflection. Although the other one-third of the students were successful in the interview
situation, it is of course not claimed that the changed perspective was permanent. It was
not possible to follow up any of the cases.
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The relative ease with which the successful group seemed to correct their misconception
would suggest that the cognitive structures necessary for such assimilation were already
available to the students. It is suggested that the main factors distinguishing successful
students are the absence of the converse-flaw and avoidance of the letter-as-object trap.
The teaching experiment did not address the converse-flaw. It is suggested that situations
involving semantically laden letters have a constructive role to play in resolving the mis-
conception, because they render equal values for different letters intelligible and help
to form a bridge between the meaning of letters in language and its meaning in mathe-
matics. The complexity of the pitfalls in language when viewing letters as objects is de-.
picted in Fig. 1 (compare the extracts for Thys and Frieda). Fig. 2 shows the simplicity
of a correct interpretation of semantically laden letters. Students who view letters as ob-
jects must negotiate more transformations and make more errors. It was observed that
unsuccessful students introduced objects even in abstract numerical problems.

Letters

Letters ~

Number of
objects

Figure 1 ] Figure 2
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GENDER AND MATHEMATICS: THE PREDICTION OF CHOICE AND ACHIEVEMENT

-
WILMA OTTEN & HANS KUYPER

RION: INSTITUTE FOR EDUCATIONAL RESEARCH
UNIVERSITY OF GRONINGEN

ABSTRACT

This paper deals with gender differences in the prediction
of 1) the choice of math as an examination subject, and 2)
the achievement in math. Predictors were gender, attitude
towards math, whether favored vocational training requires
math and optionally achievement and choice. The attitude
was assessed by two approaches: scale-construction and the
Fishbein model. Multiple regression analysis showed that
more than 70% of the variance in math choice could be
predicted against 50% in achievement. Gender differences
were profound in the prediction of math choice. These
differences could be attributed to gender differences in
favored vocational trainings.

INTRODUCTION

One examination subject has the special attention of the Dutch
government, namely: m§thematics. Mathematics is considered to be
important. It is required for most vocational trainings and the
consequential professions generally are less struck by unemployment
than those which don't require math. Based upon these facts the
government has started a national propaganda campaign "Choose exact
sciences”. Another reason was given by the fact that generally more
boys than girls choose mathematics. So girls are likely to decrease
their chance of finding jobs due to their choice of examination
subjects.

In this paper the choice of mathematics as an examination subject is
f:§ main topic. Which are the main predictors of the decision to

[E l(:é mathematics as an examination subject and do boys differ from
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girls in this respect? This question raises five variables of
interest: the sex of the pupil (SEX), the choice of mathematics as an
examination subject (CHOICE), whether mathematics is required for the
favored vocational training (REQUIRE), the achievement in mathematics
(ACHIEV) and the attitude towards mathematics (ATTITUDE). This
attitude consists of several sets of items, which will be discussed in
the method section. We assume that SEX, REQUIRE, ACHIEV and ATTITUDE
influence the math choice, and are therefore predictors of CHOICE. The
next question is whether the relation between REQUIRE, ACHIEV,
ATTITUDE and CHOICE differs between the sexes. We acknowledge the
existence of interrelations between the variables, but they are not
our main interest. The second topic of this paper concentrates upon
the prediction of achievement in mathematics. Specifically, which are
the main predictors of the achievement in mathematics and do boys

differ from girls in this respect?

METHOD

In May and June of 1986 the research was undertaken in general
formative secondary schools of all three levels of difficulty. In this
paper we concentrate on the results of the intermediate difficulty
level. This kind of secondary school takes five years. In the third
year the examination subjects are chosen. Therefore., in this paper we
report mainly the results concerning pupils in the third year (age:
14, 15 years). The total number of pupils was 354; 210 girls and 144
boys. The pupils filled out questionnaires during a subject hour at
their schools. The questionnaire contained a large number of
variables, including the variables of our interest:
CHOICE: "Are you going to choose mathematics?" Answer possibilities:
certainly not (1), probably not (2). do not know yet (3), probably
(4), certainly (5):
\;““ulg_z The pupils were asked to state their favored vocational
[E l(:‘ining. If any, they indicated whether mathematics is a requirement
entering it; ﬂ 93
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ACHIEV: The pupils were asked to give the mathematics marks on their
last two school-reports. The mean of both marks was used as achievement-
index. The Dutch rating-system ranges from 1 (very poor) to 10
(excellent);

ATTITUDE: We adopted two different approaches to assess the attitude
towards mathematics;

ATT I : Item analysis and scale construction.

In this approach three main attitude domains were distinguished:

a. Pupils’ personal attitudes (23 items; 4 subscales)

b. Pupils'perception of math teacher's behavior (16 items; 3 subscales).
c. Perceived sex-role ideas of the math teacher (10 items);

ATT II: The Fishbein model (Ajzen & Fishbein, 1980).

The model distinguishes two components that influence the intention to
perform (a) behavior: the ‘attitude' towards the behavior and the
“subjective norm' about the behavior. The attitude-component consists
of behavioral beliefs, i.e. expected consequences of the behavior, and
evaluations of these beliefs. The subiective norm-component consists

of normative beliefs, i.e. perception of the degree to which important
others favor the behavior, and motivations to comply, i.e. the degree
to which these perceptions are complied to.

After multiplication of the probability ratings (-3=certainly not,
3=certainly) by the importance ratings (l=very unimportant, 5=very
important) of the behavioral beliefs twelve 'attitude’-components
resulted:

qualifying for an education which requires math, qualifying for a profession which
requires math, not being able to choose another examination subject, increase of
professional possibilities, the time spent on math home-work, passing the examination at
first try, need of additional lessons, increase of grade point average, kind of teacher
((un)friendly), kind of classmates ((un)friendly), (foster)parents' satisfaction.
Eight subjective norm-components resulted after multiplication of the

probability ratings (that other person favored the math choice;
-3=certainly not, 3=certainly) by the compliance ratings (l=no
compliance, 6=much complicance):

(foster)father, (foster)mother, elder brother. elder sister, friend, math teacher,
class mentor, schoolcounsellor.
For more details on this method, see Kuyper & Otten, 1988.

)
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RESULTS

The variables of interest showed the following results. Of the boys,
81% intended to chobse math (category 445 vs'1+2) versus 43% of the
girls; 63% of the boys favored a vocational training which requires
math, versus 21% of the girls. The mean math mark for the boys is 6.1
(sd=1.2) versus 5.9 for the girls' (sd=1.2).

The item analysis and scale construction approach consisted of
principal component analysis followed by varimax rotation, and
assessing Cronbach's alpha for items belonging to one factor (absolute
loading 3.50). Finally a scale-value resulted by calculating the mean
of the scale items. Analyses of the items within each attitude domain
resulted in the following eight scales:

‘pleasure in math' (6 items, a=0.90); 'difficulty of math' (12 items, a=0.86);
'sex-specifity of math' (3 items, a=0.65; e.g. "girls don't need math"); 'usefulness
of math' (2 items, a=0.71; e.g. "math is useful for society"); ‘perceived knowledge
transfer by teacher' (8 items, a=0.86; e.g9. "encourages asking questions");

‘perceived relevance transfer by teacher (4 items, a=0.74; e.g. “tries to convince
the pupils of the relevance of math for later 1ife"); 'perceived sex-specific behavior
of teacher' (4 items, a=0.66; e.9. “asks girls easier questions than boys");
‘perceived sex-role ideas of teacher' (10 items, a=0.87; e.g. “math is a subject for
males").

To answer the two main questions of this paper we used the technique
of multiple regression analysis. The inclusion of predictors in the
equations was. determined by stepwise selection (forward and backward
elimingtion). Missing data were handled by the SPSS-X option pairwise
deletion. In addition to an ‘overall’ analysis, seperate analyses for
boys and girls were performed.
I Prediction of the math choice.
The predictors are SEX, REQUIRE, ACHIEV and ATT I, Of course SEX is
excluded from the boys' and girls' analysis. Another regression
analysis was performed analogous to the former except for replacing
ATT I by ATT II.

The overall analysis, including ATT I, yields an R of .84 (70% of
the variance in CHOICE accounted for). In the girls' analysis 67% of
the variance is accounted for, in the boys' analysis 61%. The

B-weights are an indication of the relative importance of the
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predictors. Table 1 displays the B-weights of the predictors included

in the equations.

Table 1: Multiple regression models for the prediction of CHOICE using as SEX,
REQUIRE, ACHIEV and (ATT I) as predictors: R2 and B-weights.

overall girls boys
R2 .70 .67 .61
SEX .08
REQUIRE R .40 .30 .62
ACHIEV A5 .18
ATT I:
pleasure A7 .22
usefulness A2 5
difficulty -.22 -.23 -3

knowledge transfer -.08

The main predictors are REQUIRE and difficulty. The negative B-weight
of difficulty indicétes that the more d@ifficult math is, the less math
is chosen. The negative 8 of knowledge transfer seems surprising, .
because it indicates the more knowledge transfer, the less math is
chosen.'However, this effect is due to the removal of the covariance
between CHOICE and it's former predictors from the initial correlation
between CHOICE and knowledge transfer (r=.13), resuléing in a negative
partial correlation coefficient (r=-.07). SEX is included in the
overall equation indicating that, despite the comtribution of the
other predictors, SEX contributes to the prediction of CHOICE in such
a way that more boys éhoose math. The differences between the girls'
and boys' solution are the following. First, the boys' equation
accounts for less variance in CHOICE than the girls' equation. Second,
the boys' equation is more 'economic’: only two predictors versus five
girls' predictors. Third, the large influence of REQUIRE on the boys'
choice is striking. Lastly, the girls also include the predictors
pleasure and usefulness.

.The overall equation, including ATT II, accounts for 76% of the
variance ;n CHOICE. The girls® eguatign accounts for 72% and the boys’
accounts for 64%. Table 2 shows the B-weights of the predictors

included in the resulting models.
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Tabel 2: Multiple regression models for the prediction of CHOICE using SEX,
REQUIRE, ACHIEV and (ATT II) as predictors: R2 and B-weights.

overall girls boys 4
R2 .76 .72 .64
REQUIRE .29 .18 .46
ACHIEV .09 14 21
ATT II:
education .09 12
'no other subject .09 .08
future possibilities .09 .09 .14
pass at first try .15 .20 .28
extra lessons N
kind of teacher -.07 -.10
parents' satisfaction .10
mother 14
friend .10 .16
math teacher .15 .26

The main predictors are REQUIRE, pass at first try and ACHIEV. In this
analysis SEX is not included in the equation. The differences between
the boys®' and girls' equations are similar to the differences noted
above. First, tﬁe boys' equation accounts for less variance in CéOICE
and is more 'economic': four predictors versus ten girls' predictors.
Second, the large influence of REQUIRE on the boys' choice is striking
again. Third, the girls' model shows the inclusion of 'other person‘'
predictors: friend, math teacher, parents’ satisfaction and kind of
teacher. The negative B-weight of the last predictor originates.from a
negative initial- and partial correlation coefficient (initial r=-.03;
partial r=-.10), indicating the negative influence of the attitude-
component kind of teacher on the math choice.

II Prediction of the math achievement.

The criterion is ACHIEV and the predictors are SEX, CHOICE, REQUIRE
and ATT I. SEX is excluded from the boys' and girls' solution. The

results are shown in Table 3.
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Table 3: Multiple regression models for the prediction of ACHIEV using SEX,
REQUIRE, CHOICE and (ATT I) as predictors: R? and B-weights.

overall girls boys
R2 .52 .47 .58
SEX -.18
CHOICE .26 .27 .19
ATT I:
difficulty -.56 -.47 -.64
sex-role idea teacher . .09

The overall analysis yields an R of .72 (52% of the variance in ACHIEV
accounted for). In the girls' analysis 47% of the variance is
accounted for, in the boys' analysis 58% is ;ccounted for.

The main predictors are difficulty and CHOICE. The negative 8 of
difficulty indicates the more difficult math, the lower achievement.
The initial correlation between ACHIEV and SEX is .05, which could be
expected considering the mean math marks of the sexes (boys: m=6.1.
girls: m=5.9). However, partialing out the covariance between ACHIEV
and it's former predictors results in a partial correlation
coefficient between SEX and ACHIEV of -.17, which explains the
negative 8-weight of SEX. Surprising is the inclusion of perceived
sex-role idea of math teacher, indicating that the more
sex-stereotyped opinions are attributed to the teacher, the lower the
achievements are. There are no striking differences between the girls'

and boys' models.
DISCUSSION

Returning to the first topic, prediction of the math choice and sex
differences in this respect, Qe may conclude -the following. First, it
appeared that the choice of math could be predicted to a large extent.
In both analyses (ATT I/II) more than 70% of the variance in math choice

() Dbe predicted. Second, the achievement in math, the attitude
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towards math and whether the favored vocational training requires math
are significant predictors of the math choice. Third, sex proved to be
a significant predictor for choice of math using the scales as
predictor set. However, sex was not included in the regression
equation when using the Fishbein predictor set. When the effects of
these predictors were partialled out, sex was not significantly
related with choice of math. Therefore it seems plausible that
sex-effects can be explained by means of these predictors. The results.
of analyses, separately carried out for boys and girls, supports the
above conclusion even more.

First, it seems that boys' choices are predominantly influenced by
pragmatic factors such as difficulty of math, achievement in math,
passing the examination at first try and especially whether the
favored vocational training requires math, whereas girls' choices are
also influenced by other persons and pleasure in math. I't seems that
whether or n>t the favored vocational training requires math
determines the boys’ ﬁhoicg of math above all. Girls’ choice behavior
is less prescribed by the conditions of the favored profession.
Second, girls favor less vocational trainings requiring math. Third,
no significant differencesin math achievement between the sezes was
observed. Therefore we may conclude that the boys' preference for
vocational trainings requiring math regulates their choice behavior in
achieving this goal, whereas girls’ preference for vocational
trainings not requiring math allows their math choice to be influenced
by other factors such as pleasure in math. This implies a more central
role of the favored vocational trainings in further research after
gender effects on math choice.

The second topic, prediction of math achievement and sex differences
in this respect, leads to the following conclusions. Math achievement
could not be predicted as well as math choice (about 50% of the
variance accounted. for). The choice of math and the difficulty of math
appeared to be ‘the significant predictors. Interesting is the absence
of whether the favored vocational training requires math as predictor.
Apparently this factor doesn't influence the math achievement, whereas
it influences the math cho;ce for a great deal. The low predictability

of math achievement might be due to the absence of predictors like
O

ligence, mathematical ability, motivation and invested effort.
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These predictors might also explain the inclusion of sex as a

predictor, despite the absence of sex differences in achievement.
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TRACHIEG AP LEARIING HETEORS FOR PROBLEH-SOLVILG : SOHE
THEZORETICAL ISSUES AP PSTCEOLOGICAL EYPOTEESES.

Janine Rogalski, CHRS.
Aline Robert, Université Paris VI.

Abstract

Many researches have recently ecpbasized the role of
netacognition in problen-solving. This paper focuses on
nethods as part of this field. Does it exist methods in
problen-solving in a given pathematical field (geometry
for instance)? Uhat are the relationships between
nethods and classes of problens? Is it possible to teach
nethods? Can such a training be efficient for pamnaging
and/or acquiring conceptusl knovledge? Uhat problens and
vhat didactical enviromnents are gocd °candidates® for
such a training? Does it exist an optimal poment in the
process of knovledge acquisition for teaching metheds?
Ve insert these questions in a constructivist view of
knovledge acquisition, and propose in this framevork
some psychological and didactical hypotheses based upon
enpirical studies.

Intreduction
Hetacognition bas been studied from several points of viev.
Research on mnetacognitive development became an inportant element in
cognitive psycholegy: hov does “knovledge about knovledge® arise in
child developnent, vhat role does it play in operational knowledge?
This concerns a variety of cognitive activities, only a part of then
being linked to problen-solving (Flavell, 1977). Ye want to underline
the attenpt presented by Pinard to develop a post-piagetian analysis
of the origine of netacognitive knovledge and self-regulatory
processes (Pinard, 1986). His study extends the question to a
life-span perspective; it allows to take into account the problen of
corplex acquisitions such as rathenatics, and scientific or
professional knovledge. IHore specific research was engaged in
psycholegy of mathematical education, concerning problem-solving.
Most of them emphasized the positive role of netacognition in
Q hematical perforrmance, through a theoretical anslysis (Garofalo
EMC Lester, 1985) and/or by analysing students strategies in

- 201
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problen-solving (Galbraith, 1985; Garofalo, Kroll apd Lestsr. 1987).
Sone of thess studics are directly concerncd with the question of
teaching competences for problenm-solving (Schoenfeld, 1986 Garofalo
and al., 1987). Othervise, mnear questions arised in the field of
artificial intelligence amnd education: how to integrate °“reasoned
explapations® apd “reasoning on reasoning® is a crucisl point in
designing intelligent tutoring systems (Vivet. 1987). (1).

Our ovn presemt purpose is to specify some questions dealing
with a specific area of nDetacognition : nethods in nathematical
problen-solving. First., ve will precise what we nean by *metheds” (by
respect to students’ heuristics or “strategies amd by respect to
patheratical algorithms). Ue express some central theoretical 1ssues
concerning the status of nDetheds in a given conceptusl field:
relationships between “local® acquisitions (knowing and knowving-how)
and °global® organisation of problem-solving; relationships between &
nethod and the ‘actiﬁtim‘ of soon acquired knowledge. Secondly we
present cognitive and didactical hypotheses: hov and vhen to teach
nethods; vhat are the ezpected effects on knovledge acquisition and
on knovledge ‘“ranagenent®. These hypotheses are based upon o
theoretical amalysis and upon empirical results in cognitive studies
on decision-raking and planning, on studies about teaching metheds in
other scientific or professional dopains, and on detailed amalysis of
the. role of teaching methods in geometry problem-solving with
advanced level students.

A method is telated to a class of problems. It expresses the
conmun points in efficient problem-solving in a field. It does not
describe students’ bebavior. Roughly speaking, a nethod describes or
even prescribes efficient ways in solving a given class of problems.
It can be defined in terns of the functions fulfilled by respect to
task requirenents. A nethod can be considered as an invariant in
problen-solving procedures linked to an invariant related to the
class of problens (Robert, Rogalski. Samurcay., 1987; Rogalski. 1987).

Consequently, the specification of a methed is related to the
extend of the considered class. A -nethod defininrg an orxganisation of

]: \l}C«x in problen-solving as °problen understanding®, “orientation®,
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“organization”, “execution®, “control® is /mlid for vhatever type of
problems. It may precise a lot of "ghat" to do, but a fev on *how” to
perfors it: hov to analyse the problem, hov to define the involved
knowledge  field, how to identify the possible strategies.. At the
opposite the algorithm defining how to process with binomial
equations has a very limited validity field. Henceforward, when
speaking of methods, we will exclude pure algorithms and consider
mothods as presenting two main purposes: helping an user in ths
approach of a problem and in the organisation of the process leading
to a solution (including control of solution validity and/or
optimization) (2). As a class of problems may be embedded in a
broader class, there exist embedded levels for methods, increasing
the field of validity, and decreasing specifications about how to
apply t.he.;et.hod. On the other side, a given method may define
sub-problems, for which it can precise methods of “lover® level
(Rogalski M., 1987). :

One can const.raat. net.hoda in problen-solvul; eccording to the
following poles: methods which are strongly linked to conceptual
invariants, and methods vhich are mainly devoted to organize, manmage
and control the use of soon acquired knovledge. An example of the
tirst pole is given by programming methods for the construction of
loops invariants in writing iterative programs. At the second pole
one can find the methods implicit in heuristics management in expert
systems. in example will be detailed below, which can be seen as an
elicitation of expert's knowledge in the study of nunmerical
sequences.

It appears a plausible hypothesis that methods play different
roles in the teaching and learning process depending on their
position by respect to these poles. As an example, we will now
pPresent "a priori analysis”" of - two methods, designed for scientific
advanced 1level students. The first one deals with geometrical
problem-solving: the second one with convergence of mumerical real
sequences.

The purpose in elaborating a method for corplex geometrical

]: lClen solving was to teach them to students, so that they becanme
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able to conceive solutions to problems of the relatively large field
covered by the curriculus in the scientific classes at the end of the.
secondary school (i7-i8 years old students). Requirements in writing
proofs were out of this actual aim (Robert arnd al.). Schematically
the method is organized in three parts: 1) a rough classitication of
types of geomstrical problems (6 or 7 types). 2) a 1list of togls
(such as: cartesian coordinates, transformaticns as symmstries,
translations, rotations.., use of scalar product, barycenters..) with
@ gpecification of the setting in which they can be used (affine,
. vector or. euclidian space, mmerical setting..) and 3) a 1list of
basic contigurations (they are relatively simple configurations vhich
appear very frequently in more complex figures. and whose properties
are vell known). This method was taught to students from the very
beginning of the curse. according to the folloving scemario. Before .
any problem-solving situation, the -teacher presented some of the
above elements of the method. A completion of the initial state of
the classification anmd the - 1ists of tools and contigurations was
engaged by the students,- depending of their activities in geometrical .
problem-solving. A great part of these activities was devoted to
research in small groups (3 or 4 students) on problems requiring the
use of the method: problems were given without any indications,
several ways vere possible to find a solution. The teacher intervened
both on geometrical content and on methods. What was expected from
the students was the following: asking questions ebout the type of
problems, making suggestions about possible adapted tools, trying
strategies and changing points of vievw. iramevorks or strategies it
unsuccessful. At the end of the work, the teacher presented a point
on the various specific strategies uses in the different groups. and
the geomstrical concepts underlying the solution to the prohlel
Vriting a method for the study of numerical real sequences was
done in a quite different perspective (Rogalski H., 1987). The method
s not directly taught to students (in the teaching process) but was
prooosed to them atter the curse (Students are scientific students,
in the tirst year of the university). The purpose was to express a
. qeneral complete method for studying convergence for sequences
1y encountered in mathematics at this universitary level. The
as organized vith strategies (mrglm methods for reaching
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sub-goals): 1) classification strategy. 2) strategy for rescarch of
bhynotheses (as: existence, possible value of the limit..), 3) pxeof
strategy. Some of these strategies involve tactics (classify the
problem, define priorities, simplify. mnodify for simplication,
classify the sequence..); tactics themselves use technigs (graphicsl
representation, numerical tests,..). Moreover a process was expressed
for control. correction, “recovery” for dealing with unsuccessful
strategies. At last., three types of required knovledge were
presented, vhich have to be always available by students (consisting
of 'main theorems, classical results and “standard” numerical
functions). Two technics are joined as general useful tools: “using
inequalities® and “reasoning by induction”. This presentation was
based upon students’ previous knovledge and centered on the
organization of the process of problem-solving. It clearly
exanplifies a method as a tool in managing soon acquired "local®
knovledge (about specific sequences, typical problems such as
convergence of sequences defined by induction..).

Some hypotheses and results about cegnitive acquisition and
i es ’

Our hypotheses about the productive role of learning methods are
based upon three types of considerations. First a constructivist
conception of knowvledge acquisition leads to the fundamental
assumption that “problem solving 1is source and criterion of
knovledge® (Vergnaud, 1982). Then. learning methods for problen
solving should be strongly linked to knowledge development. Secondly.
epistemological as empirical studies show that metacognition is an
intrinsic part in the vhole process of knovledge acquisition
(Schoenfeld, 1986, 1987). Thirdly, studies in work psychology have
shovn strong evidence that goal setting (that is specifying goals to
be reached in performing a task) has positive effect on the
performance. (Locke, Shawv, Saari, Lathan, 1981). Now, methods
organize research activity in problem-solving both by setting
specific goals and relating sub-goals and tools, therefore they must
lead to besser performance.

Q ¥e can specify briefly two hypotheses about the process by which

EMC;ming and using methods may improve knowledge acquisition. These

N
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hypothesesare based upon two theoretical concepts. First ve defined
the notion of "precursor”: precursors for a new conceptual field are -
notions, operations and/or representations in a near field that can’
nake. nev problens and notions mesningful. Second we defined twp
states for student's knovledge: available and liberable. An avalaible
knowledge can be used without any expiicit cue in the problem, and
without reference to this knovledge: at the opposite, a 1liberable
knovledge requires an explicit call to this knowledge: speciitic goal
directing attention to it, or specific cue in the text of the problem
(such as are indications on the way by which solving a problem). Our
hypothesis is that for most of the students existence of precursors )
is @& strong requirement in acquiring nev knowledge, and that
knovledge has to become available in order to be really efficient in
problem-solving (3).

Two hypotheses about teaching and learning nethods are related
to these concepts of precursors and states of knovledge: a) learning
a -method in a given conceptual field i's more efficient (or even
perhaps only ‘possible} it there exist precursors for the involved
conceptual notions and if some knowledge is present in "liberable”
state. b) learning and using a method in problem-solving is a mean
for a change in knovledge state, from “liberable” to "available”,
because of two facts. calling out knowledge: ‘elicitation of goals and
explicit proposals of tools. Working in small groups may stress this
productive role played by the ellcltatmn processes.

) A tvofolds question arises at this point: vwhat. are the
conditions for students'acquisition of mpethods? what are the
corniitions for teaching methods? The acquisition may follow an
explicit presentation by the teacher (as in our tirst “preceeding
example on geometry) or it may proceed from elicitating
students'strategies in problem-solving. the teacher expressing the
invariants defining the method. The empirical result;s in
professionnal acitivities as in teaching lead not to retain the
hypothesiz that students can cosntruct themselves the invariants in
eficient problem-sclving: it concerns probably a small part of
students. and it szemms to nus necessary. to research pedagogical
strategies for the others.

I: llcbependmg on our preceeding psychological analysis we assume
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that i) the possibility for students for acquiring a taught mothod

. depends on the content and on the actual state of knowledge by
students; 2) didactical intervention is more efficiemt if methods are
presented during problem-solving sessions. vhere students work in
small groups and vwhen the problems are “open* (no intermediate
indications. and several ways for solution). The analysis of students
working in small groups confirms the place devoted to elicitation,
and its evolution along the succeasive .sessions (narililer, Robert,
Tenaud, 1987).

‘conclusion

Theoretical analysis, results in the field of cognitive
-psycholegy and data observed in didactical experiments converge to
the conclusion 1)that one can design methods related to a specitic
conceptual field; 2)that such methods can be taught to students. as
soon as they have some available knovledge and the ability to
explicit metacognitive activities in a precise way, ami to take them
as objet for thought. end 3)that students benefit from such a
teaching. Didactical situations which appear as good "candidates” for
‘supporting such a msthodolegical teaching involve: wvork in small
groups, open and sufficiently complex problems and a didactical
environment giving a large place to students’ metacognitive
activities such as discussion sbout knovledge and heuristics, and
elicitation of netacogntive representations on pathematics.
probler-solving. on learning and teaching =maths (4). Two open
questions comcern to what extend such conclusions may be valid for
teaching younger and less advanced level students, amd what are the
good ways for evaluating such a teaching end learning proceas?

Hotes :
(1) ¥We don't try to be exhaustive, but to give some representative
examples of different types of research in the field of metacognition
in problez-solving (The first one devoted to mathematical
problem-solving being Polya (Polya, 1962-64).
(2) The field of programming presents quite & wide range of
“programming methods” one can analyse as methods for problem-solving
(Rogalski, Samurcay, Hoc, 1987).
(3) Fron our theoretical point of view. these notions of precursors
g~4  1liberable knovledge are related to Yygotski’'s concept of
QO . . .
‘oximal zone of development”.
FRIC e *be1sets* in Scpgemteld’s claooiticatim (Schoenteld, 1987).
&~
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STUDENT-SENSITIVE TEACHING AT.THE TERTIARY LEVEL: A CASE STUDY! °
- Pat Rogers
~ York University

Abstract

Perceptions college students have of mathematics as a
difficult and almost impossible subject can operate as a
barrier preventing them from developing their full potential.
This paper is about one department's success in changing those
perceptions and-cCreating a learning environment in which
concern for the students’ development overrides any concern
- about covering the curriculum. This ap;t)roach succeeds in-
motivating students and encouraging them to high achievement
in advanced level mathematics, at the same time fostering high
self-esteem and confidence in their mathematical abilities, the
ability to work independently and skill at proving theorems and
reading mathematics. This study is the beginning of an attempt
to describe conditions which favour the learning of more

advanced-and abstract concepts in mathematics. |

“Proper, curriculum 1is the heart of a mathematical sciences program,

but there are many non-academic aspects that also must be considered.”
- (CUPM, 1981) While this idea is a cliché at the elementary and secondary
levél, it has still- had little impact at the post-secondary level. What
research has been done into effective learning environments at the tertiary
level has focussed on students who have previously nad difficulty with
mathematics (see for example Lochhead, 1983), rather than -on
mathematically able students.  This paper .is about one undergraduate
department’'s success in balancing their concern for curriculum with a
concern for developing each student to her fullest potential. In my study of _
this' department | am attempting to describe conditions which favour the-
learning of-more complicated and abstract concepts in mathematics.

in a 1981 report, the. Committee on the Undergraduate Program in’
Mathematics (CUPM) of the Mathematical Association of America (MAA)
cites examples of programs it has found Lo be successful in "attracting a

IThis project is supported by a grant from the Social Sciences and
Humanities Research Council of Canada under the Women and Work Thematic
Program.
O
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large number of students into a -program- that de'velops rlgorous'

mathematical thinking and also offers a spectrum of (well taught) courses
in pure and applied mathematics.” The State University of New York (SUNY)
at Potsdam College is one of those mentioned. According to an MAA survey
(Albers at al., 1987) for the period 1980-85, while overall-.undergraduate
enrolments in the United States remained relatively stable, there was an
increase in the number of undergraduate mathematics degrees of. 45%; the
corresponding figure for Potsdam was 152%. Last year, just under one
quarter of Potsdam's graduates had a major in mathematics and, of those
who graduated with an overall average of at least 3.5 on a 4 point scale,
“over 40% were mathematice majors. . ‘

‘At most post-secondary institutions, complaints about the difficulty
of attracting 'good’ students, the low quality and Inadequate preparation of
the students they' do have, and their Inability to write a rigorous

mathematical proof are common-place. Peopie who make such complaints-

usually expect and find high drop-out rates in introductory courses.and large

_numbers of students doing poorly on tests. One frequently aiso encounters -

the attitude amongst faculty that if too many students are successful in a
“course, then it cannot have been challenging enough. The main message of
the CUPM Report is that rather than spend time complaining about students

there is much to learn from the few departments cited where students are - .

. successful and quality and standards are maintained.

According to Poland (1987) the basis for the success of the Potsdam
mathematics programme is that they "instill self-confidénce and a sense of
achievement through the creation of an open, caring environment.” Students
he talked to said they felt the faculty cared for each one.of them and he
observed that this was reflected in a high degree of confidence in their own
mathematical ability. “The faculty win the students over to énjoy and do

mathematics. It is simply the transforming power of love, love through )

encouragement, carmg and the fostermg of a supportive environment.”

in October 1987, | began a study of the programme at Potsdam in
order to identify and describe the programme’'s determining Characteristics
and to answer a number of questions raiscd by the Poland paper:

1.~ Wwhat precisely is the nature of the caring attitude the I'aculty_

at Potsdam display towards their students?

2. what specific teaching behaviours arise from this attitude
towards students? (In his paper; Poland discounts teaching technlques as an
explanation of their success.) .
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3. What are the specific aspects of .their .approach which are
especially successful with their female students? (60.4% of the
mathematics degrees awarded in 1983 went to women-compared with 43.8%
nationally. Degrees awarded to wofen in thatiyear at Pot*dam comprised
SS% of the total number of degresa warded compared witi §1% nationally.)

4, What do the students think about the programme?

In this paper | shall confine my comments to summarising findings
which relate to the first of these questions.

METHOD

This Is an exploratory study using qualitative technigues to gather
and analyze a variety of data. At the time of writing the first (data-
gathering) stage of the investigation is complete and | have begun coding
and analysing the data.

The data includes: all departmental printed material which is
distributed to students; statistics relating to undergraduate enrolments,
high school averages, and SAT scores for the last ten years; taped
interviews with 40 students currently in the programme and with Dr
Clarence Stephens, Chairperson of the. department at Potsdam for eighteen
years until his retirement last year. In addition,l have made extensive field
notes of my observations including interviews with faculty members,
counselling and admissions personnel; office consultations between faculty
and students; and classroom sesstons of almost all faculty members.

My final report will be presented to the facuity and students to check
whether my findings match the experience of the participants. While most
of what is reported here has been validated by one or two key informants,
nevertheless, since this is a report of work in progress, the conclusions 'l
have reached are tentative at this stage.

THE PARTICIPANTS

Potsdam College is a small undergraduate institution serving about
4000 students and is situated in the north east corner of New York State
Close to the Canadian/US border, a rural area known as the North Country.
From its early beginnings in 1816 the college has been involved primarily in
teacher education until it became the State University College of Arts and
Science at Potsdam in 1962.

The mathematics- department comprises 15 faculty members only
one of whom is female and five of whom have joined the department within
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the last five years; all but one faculty member has a doctoral degree In

mathematics. The teaching load varies between 9 and 11 hours each .

semester but In addition faculty may have one or more students .doing
independent study.

According to admissions personnel, the college draws from a wide
area of New York State, attracting students primarily from lower middie
class backgrounds, often from farming communities and small villages.
Students are invariably the first in their family to attend college and with
no tradition of post-secondary education to support them, poor seif-concept
and low self-esteem is often.a problem.

MAJOR THEMES IN THE DATA AND DISCUSSION

The most striking feature of- the programme at Potsdam is the
learning environment. This has been created by establishing a balance
between what the former chairperson would call ‘a proper, rather than an
excessive, concern for the curriculum and the standards of the department
(Poland, 1987) and a concern for the development of their students. The
faculty are highly sensitive to students belfeving that, "while the subject
matter is important, the student is more so.”

The predominant characteristic of this environment is its culture of
success. Students at Potsdam are more concerned about whether they will
do well enough to achieve high honours in @ course rather-than whether they
will fail it. They expect to do well and they do. The facuity believe that it
is their “job to teach the students they have, not the students they wish
they had.” Instead of complaining about the poor quality of their students,
they work with the students at their level of understanding and develop
them to their full potential. There is a strong belfef in the students’ abflity
to master difficult ideas in mathematics and this-is communicated to the
students who in turn come to believe in themselves.

What is the source of this belief in students? | think it owes fits
genesis to the experiences of the former chairperson, Dr. Stephens, when he
taught in a black southern college and learned that “the perception students
have about mathematics as an aimost impossible subject has o be changed .

" in order to teach them mathematics." Knowing this when he came-to
Potsdam, Stephens made it his primary focus to set about changing students’
perceptions about the difficulty of higher level work in mathematics and
whether they were capable of doing it.

A key strategy in Stephens' approach was to create role modeis. He
did this by identifying students in their first year at- the college who had
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demonstrated high promise in their course-work, and chalienging them to do
advanced level work in mathematics. At that time the department had no
graduate programme and so he was faced with a dilemma: how could he
motivate these students to “go very deeply into something when.if they
played around, after four years and they did less work" they would.still get
the same degree? For this reason, the department created the BA/MA double
degree whereby students could get their undergraduate and graduate degrees
concurrently in four years. This is an extremely demanding programme and
over the years, less than 4% of thelr mathematics majors have graduated
with the BA/MA degree, but its role in challenging the brighter students and
providing exampies to encourage and motivate ill-prepared students has
been invaluable. :

The spirit in which these role models have been used is aiso
jmportant. They are not held up as exampies of excellence, as a means of
rewarding the high achievers. Rather they are presented as examples of
what can be achieved by any student who is prepared to put in the time and
effort. The message received is: "Look at what these students have done.
They're just like you. You can do it too." It is interesting to note that many
of these early role models were women, one possible reason for the
department's success in attracting female students.

Another way in which perceptions about the difficulty of upper level,
courses in mathematics are created is the tendency many departments have
to give lower level courses to untenured facuity, part-time faculty,
graduate students or faculty with no doctoral gualifications, and to reserve
the upper level, ‘more interesting courses’, for senior faculty. Such a
practice can convey to students the hidden message that upper ‘level courses
are so difficult that only the best, or the most experienced, or the few can
. teach them,-Weil may the student ‘wonder whether, by implication, only the

very brlghtest will be able to pass it. In a department which is sensitive to
the perceptions of students, this is avoided by ensuring that all faculty
teach across the curricuium: At Potsdam no one complains about teaching
lower level courses because everyone gets the opportunity to teach upper
“level courses.

It has been interesting for me to observe how many of the attitudes
towards students prevaient amongst the facuity at Potsdam are those’
attitudes considered, by -proponents of effective parenting (see, for
example, Dinkmeyer and McKay, 1976), to be crucial in building 2 child's
self-confidence. The importance given by members of this department to
building their students confidence and self-esteem is central.
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Encouragement Is an essential skill for building a students’
confidence.and self-esteem and the ways in which the faculty at Potsdam
encourage their students are many and complex. One of these ways has
already been discussed above: the deliberate creation of a rich tradition of
role models and stories which place the student in a climate of success.
_Another way to encourage students is by recognising their efforts and
accomplishments in much the same way that sports fans spur on their
favourite team. Perhaps the most Impressive way the Potsdam department
does this is through their annual newsletter. Last year the newsletter was
distributed to almost 2000 former students, high schools and graduates. In
it were printed details of the new Clarence F. Stephens Mathematics Scholar
award, the department’s way of thanking and honourlng its chairperson on
his retirement. The award is to be given annually to "the non-graduating
" mathematics major who, by his or her achievement in mathematics, best
personifies C. F. Stephens’ vision of the mathematics student who s

becoming all he/she is capable of being." The message Is clear:- You don't . .

have to be the best, but you should strive to be your best. Competition is
encouraged, but the competition Is with oneself and the effort Is recognised
as well as the achievement. .

_ Students are also encouraged by being chaltenged, but. the challenges
should be realistic. Instead of watering down the content and lowering
standards as so often happens when faculty are concerned about giving their .
students success, the faculty at Potsdam believe that confidence comes
from grappling with difficult ideas and concepts and being ‘successful. And
they are quite explicit about it, as one teacher told his.students on the first.
day of class, "Frustration is a natural part of our game. -My job 15 to keep
you at the edge where you're frustrated enough to keep working but not too
“frustrated to quit.” And they are prepared to provide the resources in terms-
of time and encouragement to support their students' efforts.

Other encouraging behaviours which | have observed are closely linked
to their approach to teaching mathematics.. This will be the subject of
another paper so | will give only a brief sketch here. -First and foremost the
alm is to teach the student to think mathematically, to write a rigorous .
mathematical proof and to read a mathematics textbook. It is important not
- to race through the course-in an attempt to cover a set syllabus - a student

who has learned how to learn can cover the remaining course content by
herself. Consequently, very few teachers at Potsdam adopt the traditional
“lecture format of teaching. Indeed some are quite vehement in their
opposition to the method: “"Suppose a person has a pile of sticks -and they
-want to start a fire. They find two nice.dry stones and they begin to rub
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them together. Then | walk in énd pour a bucket of water over them. That's
what a lecture 1s Ilkel" : '

Instead a wide variety of teaching techniques are used which are
relatively uncommon-at this level of the educational system. Metaphors for
describing this approach to teaching abound iIn the department but there 1s a
common theme in all of them which agrees with what | have also observed
in the classroom. - There is the acknowledgement that becoming a
mathematician, 1ike becoming an athlete, takes time, practice and lots of
encouragement and support. The teacher at Potsdam s a coach. . .

To summarize, some of the techniques i have observed are: active
student participation and group work in class and outside of class; ‘coming
to the blackboard’; learning by helping others informally and more formally
in the student run Math Lab; observing seatwork; an approach to grading
tests and homework that construes them as articles of learning rather than
measures of ability; a flexible grading scheme which allows for the student
who blossoms late in the course; explicit teaching in how to read a
mathematics text with understanding; and most importantly constructivist
approaches to developing the subject matter.

CONCLUSION

The learning environment at Potsdam has been Created by challenging
perceptions students have about the difficult nature of mathematics which
inhibit their ability to succeed. at it. In creating this environment, faculty
have been motivated by a concern or caring for students which is directed
towards helping them become the best they are capable of being. The
faculty believe that developing a student requires time, encouragement and
challenge and that the best way to do this, as Stephens would say, is to ‘go
fast slowly’. In other words teachers who are sensitive to the needs and.
level of understanding of their students will sequence instruction at a pace
at which students can learn. This is the essence of a student-sensitive
approach’ to teaching because concern for -the Individual student's
development overrides any concerns about covering the curriculum.-

One consequence of this student-sensitive approach is that, as news
about the department's success with students has reached the high schools,
they now attract better prepared students. Presently one of the most
selective of the SUNY colleges, Potsdam attributes part of its success in
attracting good students to the excellence of the'mathematics department.
Over one quarter of the fncoming freshmen at Potsdam were in the top ten of -
their high school classes and the college's freshmen scoré the highest
mathematics SAT scores in the whole SUNY system.
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_ Given the 1arge numbers of majors they teach and the nature of thelr
approach to teaching mathematics, it 1s natural to ask what compromises in
curriculum have been made. No compromise in standards has been made, in
fact the opposite is true. But certain economies have been made in order to
keep class size down to the level (40) the department insists upon. The
mathematics major s a minimal degree requiring 30 credit hours (10 one-
semester courses) in a very traditional, pure mathematics sequence with a -
Himited range of options. .

The experience of graduates of the program who have gone on to
jobs with companies like 1BM, Kodak, and Hewlett-Packard suggests that
students leave Potsdam with excellent work skills: the ability to think
independently, read and write technical reports, work cooperatively with
other people, present and defend their work, and also offer criticism to
others without annihilating them. Students who have gone on-to graduate
school, at places like Cornell, i11inofs, Michigan and Wisconsin, report that
while their mathematical preparation may not be as broad perhaps as other
students, their learning skills enable them to bridge any gaps for
themselves and that they are well prepared for independent work at the
graduate level.

Graduates of Potsdam College are very loyal to the mathematics
department. Many of themr have mentoring relationships with a facuity
member and keep in touch for years after they leave. Some return to speak
at TIME (their honorary mathematics society) functions, providing role
models for current students and living proof of the value of a pure
mathematics education that taught them more than a collection
mathematical facts. :

~,
\
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STRATEGY CHOICE IN SOLVING ADDITIONS MEHORY OR
UNDERSTANDING OF NUMERICAL RELATIONS?*

.

Analudcia Dias Schliemann
- Universidade Federal de Pernambuco, Recife, Brasil

.Siegler ‘s strategy choice model was tested for
additions of two addends ranging from 1 to 29,

"on a sample of 20 Brazilian street vendors, very
‘skilled in mental computation. The model proved
to be adequate for addends no larger than 10.
For larger addends, properties of the decimal
‘gystem, more than memorization, seems to better
predict the strategy used. -

"Data on everyday mathematics (Carrahen,' Carraher @&
Schliemann,. 1985, 1987) have .shown ihat; uhen.cqmputing_the
results of arithmetical -operations, most of the time‘
children use oral. procedures. One of the most common of
these procedures is the decomposition strategy. When using
'decomposition to calculate, for example, the result of 95 +
57, one might add 90 (from the first addend) and 50 (from
the éecond), obtalning 140, which is than added to 12, the
result of 7 + 5, yielaing 152. Such a strategy, as already
<Aemonstrated by Cafraher- & - Schliemann (1988, in ’préss)
reveals a cleab understanding of the decimal system and of
the properties of the additive- composition of numbers.

.‘How these strategies develop and how they relate to
memorization of addition fécts is still unknown,
Experimenﬁs by Siegler & Robinson (1982) and by Siegler &
.Schrager (1985) analyzZed the strategies used - ‘by 4- and 5-
year-olds to solve additions of two addends with values from
1 to S5or from1l to 11, with sums no larger than 12.:
Siegler (1986) proposed that the choitce of a strategy among
others would be determined by the strength of the
associations between the pairs of numbers to be added. This
association was determined in a separate experiment"uhere 4-
*Ihls rcgcarch was suPported by a grant from CNPaq, Braznl.

I am .indebted to R. Siegler, for discussions that originate
QO study, to D.Carraher for his comments on a first version

[: l ihisfpaper and gg'ﬁd’ Carlos, Enildo, Ivo, Leila,
icia and Solan ‘data collection and analusis.
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and 5-year-olds were asked to say what they thought were the
right answer for the additiqp ofﬂ each pair of numbers,
without putting up fiﬁgérs or counting. - The amoﬁnt of
correct and incorrect answers thus obtained ‘or each pair of
numbers was - used to determine the strengtﬁ of the
associations between these numbefd.‘ This distribution of
associations model, tested in different types of tasks,
pfoved to be adequate to predict the strategies used in
those simple additions. The strategies found ranged from .
overt behavior stratégies (finger counting, finger display
with no apparent counting, verbal counting)"to memory
retrieval where no overt behavior was observed. Solution
times, degree of overt behavior displayed and eficiency in
solving the additions, were all highly correlated (around
.90) with the degree of association found between the pairs
of numbers involved in the additions.

. What would happen, however, uiph additions involving

. larger numbers, allowing use of other 'more soffisticated
procédures.such'as decomposition strategies? Would the same
étrategy choice model apply? Siegler (1986) proposes that
his model would bhold for additions, subtractiong and
multiplications. However, Hope & Shérrill (1987), in their
study on the characteristics of skilled and unskilled mental
calculators have shown that performance on mental
multiplication of large numbers had a low positive
correlation with general multiplication fact recall.

It has been shown thét oral addition of numbers
frequently involve -“decomposition strategfies. " These
strategies could either be determined by the addition facts
recalled by the subject or by a general undéerstanding of bﬁe
decimal system. In the. first case, -as predicted . by
Siegler "s model, the decomposition strategy should be uséd
for numbers not recalled by the subject and the kind of.
decomposition used should be related to the addition facts
they know. If,. however, understanding of the relations
involved in the decimal system is a more prominent factor

¢ memorization of addition facts, even for pairs

]EIQJ!::zed by a subject, decomposition straiegies-uould often
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be used and the "way numbers are decomposed would not be
related to the memorized addition facts but most often to
the decimal system properties.. ’

This study aims .to find out the relative importance of
memorization versus understanding of the decimal system in
the choice of different strategies for solving additions.

METHOD

Subjects: Twenty 9- to 13-year-old Brazilian childrén,

who worked as street vendors participated in the study.

. Their 'school experience was irregular and they attended, or
" had attended, at'mdst, the 3rd grade. At ‘work, when selling

‘candies, lollipops, ice-crean, fruits or sandwichs, they

_were used to mentally compute the results of additions,

subtractions and multiplications.

Material and Procedure: Subjects were asked to orally

solve a series of 216 two-addend additions. In the first
phase of the study they were 1ﬁstructed to answer  each of
the 216 paira of numbers to be added, as quickly as possible
and, when two seconds were elapsed, if no answer was given,

another pair was presented. In the second phase they were

" asked to orally solve, in a differént order, the .same 216

problems, using whatever methods they want and explaining
how they " reached each result. Of the 216 additions, 45
involved the addition of two numbers from 2 to 10 with the
larger addend preceding the smaller one; 171 involved the
‘addition of a number between 21 and 29 with another in the
interval of 2 to 20. These 216 additions could be
classified according to the numbers ,ihvolved, into five
groups, as shown in Table 1.
Table 1

Classification of the 216 additions presented to the
subjects in the first and the second -phases

Problen type Values of Addends SN of
~First Addend Second Addend ~ Problems-
Group 1 1to 9 1 to 9 . 36
Group ‘2 10 1 to 10 9
\)’*oup 3 21 to 29 1 to 9 - 72
oup- 4 21 to 29 10 or 20 18
l{J}:~oup 5 21 to 29 11 to 19 81
IR = = = = = o o e e e ——— e ———————
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RESULTS

The percéntage "of memorized _pairs, for each type of
addition--That -is, those correctly answered in less than two
seconds--is shown in Table 2. Memorization was  at lﬁs
highest fép group 1 problems (10 plus a ﬁumber from 1 to 10>
where 86.1% of problems were solved. Group 1 (1 to 9 plus 1
to 9) and group 4 (21 to 29 plus 10.or 20) followed with
59.6% and 46.7% of correct answers, respecﬁlvely. The most
~difficult additions ‘were those in groups 3 (21 to 29 plps 1
to 9) and 5 (21 to 29 plus 11 to 19) which were solved in

only 31.9% and 9.0% of the cases, respectively.

' Performance in.jthe second phase was nearly errorless:
only 22 errors were found among the total of 4320 problenms
presented to the 20 subjects. The prefered strategy to
solve pypé 1 and type 2 additions was memory retrieval.
For types 3, 4 and 5, decomposition was the strategy. most
oftenly used. Counting strategies appeared in a few
problens, either in isolation - or combined with
decomposition.. This general analysis seems to show that the
data obtained support Siegler.'s model: for the additions
solved in the first phase, more memory retrieval was found
in the second; for those not solved, other strategies were
chosen. However, i{if a more specific analysis is peréormed a
different picture may appear.

Table 2
Percentage of problems solved in the first phase and

percentage of problems solved through memory retrieval,
decomposition and counting strategies in the second phase.

Problem Solved in Strategy in 2nd phase

Type N 1st phase Mem. Dec. Coun. Mix.
Group 1 36 59.6 64.6 20.7 14.2 4
Group 2 9 86.1 92.7 2.8 4.5 0
Group 3 7.2 31.9 . 23.5 56.8 17.2 2.4
Group 4 18 46.7 38.7. 52.9 7.5 9
Group 5 81 9.0 6.9 74.7 10.2- 8.2

Table 3 shows, for probiems that were solved in the
first phase, the percentage of those where the answer in the
Q | phase was given .through each one of the strategies.
ERIC '
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The same data are also shown for problems not solved in the
first phase. Siegler ‘s model leads to the prediction that,'
for pairs of numbers with a strong association--in this
study those solved in the first phase-—-memory retrieval
.'should be the chosen strategy in the second phase. For
those pairs not solved in the first phase, other strategies

such as decomposition or counting would be chosen more

frequently in ‘the second phase. Inspection of Table 3
reveals that  this prediction applies only to type- 1
problems. For these, as predicted by the model, use of

memory retrieval was much more -common for the problems
solved in the first phase than for the unsolved ones. ‘ype
2 problems show a very high percentage of use of memory
retrieval for solved problems, but this also happens for the
ones left unsolved. For types 3, 4, and 5, regardless of
the results in the first phase, there was a clear preference
for strategies other than memory retrieval, mainly the
decomposition stfa%egyh
A 7 " Table 3 - .

Mean and.percentage of solved (5) and unsolved (U) problems

in the first phase and percentage of use of memory

retrieval, decomposition, counting, and mixed strategies in
the second phase, for corresponding problens.

Problem . *st phase Strategies in 2nd phase
. type . Mean % ’ Mem. Dec. Coun. Mix.
Group 1 36 S 21.4 59.6 78.8 14.0 7.2 o -
. U 14.0 38.9 42.8 31.1 -25.0 1.1
Group ‘2 9 S 7.7 86.1 95.5 2.0 2.5 o
. i} 1.2 13.3 75.0 8.3 16.7 o
Group 3,72 S 23.0 31.9 26.2 69.4 4.4 .6
U 48.7 67.6 22.3 51.3 23.2 3.3
Group 4 18 S '8.4 46.7 33.3 57.7 8.3 .6
- i} 8.9 49.4 43.8 48.3 6.7 . 1.1
Group 5 81 S 7.3 - 3.0 13.0 83.6 = 3.4 o
. U-73.5 80.7 6.3 73.8 10.9 9.0
% Totel meens and percenteas (nthe flrot phose dlefec  Fromn
total Nnumber oFf pProblemos bBecmuse w faw Problammn wari- e n'ut'
Broavsnented {0 thoe Flret’ bhave. :

The model also leads to the prediciion ihat-theVnumber
of problems solved in the fjrsﬂ phaée should .be highly’
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of unsolved problems should be highly correlated with the
number of these same problems solved through strategies
other than memory retrieval. . Table 4 shows, for each
addition type, the correlation coefficients obtained for this
analysis. For types 1. and é problems, the simpler ones,
invoiving addends no 'larger than 10, ' use of memory retrieval
was in fact highly correlated with number of solved problems
in the first phase. However, this correlation ués also very
high and significant for the unsolved problems. For types
3, 4, and 5, problems with at leasi one addend larger than
20; the correlations go clearly agaimst the model: use of
decomposition was always highly correlated with number of
solved but not with number of unsolved problems. Only
count ing sirategies, for all problem types, shows
significant, althougﬁ’not very high correlations with number
of unsolved problems, as predicted by the model. ‘
Table 4
Kendall ‘s tau correlation coefficients for number of solved

(S) and unsolved problems (U) in the first phase with number
of these problems solved through each strategy in the second

Problem First phase .Strategy in second.phase
type N Mean S and U Mem. Dec. Coun. Mix.
Group 1 36 S 21.4 E0=== 25 -.10 -

U 14.0 57 uwm .27 39%~ 10
Group 2 9 s 7.7 73%=~ -.03 08 -
U 1.2 79%u= .15 .19~ -
Group 3 72 S 23.0 .16 .75%== -0.3 .02
’ U 48.7 . 44n- .04 .27 .01
Group 4 18 S 8.4 .23 - .49%= ~.19 .00
) U 8.9 .23 .20 .25% .34~
Group 5 81 S 7.3 .29+ Ve Sl .09 -
U 73.5 .08 .14 .24 .18
bl d o B I 4 ~ Q@ . e < L -2 ] - » < O,

For types 3, 4, .and 5 problems the decomposition
sirategy consisted in most of the cases in separating, for
each addend, the tens from the units. The tens and the
units are then added together separately and the two results
added at the end of the précedure. Variations within this
general approach were related to the order the units to be

'ere mentioned (nearly always the larger one was

]:IQJ!::ed first), and the order the  tens and units were
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taken (there was a general tendency to add the tens first).
Uhen the sum of the units was larger than 10, and was
obtained before the sum of the tens, a Be;ond.step in the
procedure could appear which consisted in decomposing the
result of the sum of the units into ten plus units, add the
ten to the original tens, joining the units that were left
at the end. : )

For problem types 1, 3, and 5, another kind of
decomposition, used with different frequencies by 19 of the
20 subjects, appeared in a total of 746 problems. This_
consisted in adding, to one of the addends or to its units,
pért of the units of the other addend so that 10, 5, or a
multiplé of 10 or 5 was obtained. In types 3 and 5, when 10
or 5 was obtained, it was - joined to the originaf tens, |{f
there were any, and the part of the units was aggregate at
the end to the round numbér obtained (multiple of 10) or to
the multiple of 5, if this was the case. In most of the
.cases where 10 or a multiple of 10 was searched, the units
of one of the addends were ' of value 8 or 9. Examples of
this strategy are the following answers:

9 + 37 ”"12, 1 added 1 to 9, there was 2 left; 1
added 2 to 10.”

28 + 197728 plus 19, let me see (pause) 28 plus 19
(pause) 40 (pause) 47. This one | took 10
from 19 and put it on 28. Then 1 took 2
from 9, and ] ‘-had 40.* There was 7 left, it
makes 47.” NI N

Among the problems “solved through tﬁis sort of
:composition, more than one third 1nvolved the addltlons of
10 units that were solved 1n Lhe first\~phase (1n\&ype\1
oblems). Correlation coeficients for number of type 1
ditions solved in the first phase.with use of this secondF\
rt of decomposition strategy 1in each problem type tended

be negative but were all very low and non-significant.

CONCLUS10NS .
The choice of strategies to solve addition problems,
.although influenced by memorization of addition facts, seems
be also strongly determined by the understanding of the
[: l(:macterlstics of the decimal system, by the situation

223
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where the problems are solved, and by the kind of numbers to
be added. Thus, ' Siegler ‘s strategy choice model, although
adequate to explain the choice of simpler straﬂegies to
solve addition of small numbers by young children, who often
rely on éounting straiegies, does not seem to fit the case
of more complicate additions solved by skilled mental
calculators, who use different sorté of decomposition
strategies. Of course one can always argue that the
decomposition strategies themselves are determined by the
stronger association that exists for 10 and multiples of 10
with numbers .smaller than 10. But this association only
holds if an undefstending of the decimal system as a
generative system' pre-exists. For numbers larger than 10,

when the child understands the relations involved in the

.

system, the role of memory skills is reduced.  Understanding

the decimal system allows the child to find out, whenever
needed, the results of additions, making school training or

memorization of addition facts irreléevant.
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REPRESENTATIONS OF FUNCTIONS AND ANALOGIES
" Baruch Schwarz & Maxim Bruckheimer
Weizmann Institute of 'Science, Israel
A major difficulty in the learning of functions is the transfer of
knowiedge and methods between representations. The computerized
environment T.R.M. was created to alleviate this difficulty.
series of studies on learning grocesses with T.R.M. was undertaken.

. This paper reports on nvestigation of students' wuse of
analogies in transferring knowledge between representations.

REPRESENTATIONS AND ANALOGIES

Although the concept of function and its snbconcepts ‘are not
theoretically linked to a particular representation, the curriculum of

. necessity translates these concepts 'into several representations. The

preimage-image link, for example, -may he represented'algebraically in the
form vy, =f(x,), graphically by a point, or by a pair of data’in a table.
Similarly, other notions have to. be based on one or more representations.
Typically, three or four representations are used in the initial study of
f‘unctions. The_"passage between . these represe_ntations ig difficult {see
e.g. Markovits et al., 1986). The properties of a function are often i
understood in their representational context only and no abstraction of
these properties is ‘made by beginning students \nor, often, by more
advanced ones) - ' , R

Such a tendenc& to compartmentalize knowledge has been noticed in
several domains. Schoenfeld (1986), in geometry. showed how students who
acquired knowle_dgef in one contekxt kept it separate from knowledge
acquired .in other contexts. Kaput (1982) obtained similar results in
algebra. Greeno "(1983), on the other hand, indicated how analogies can
facilitate the construction of relationships between units of knowledge:

"If the domains are represented by entities that have relations that

are Similar, the analogy ai' be found easily, but if the

representation of either’ domam acks these entities, the analogy may
be impossible to find. Consequently, an analo can be used: in

facilitating ghe acquisition. of‘ representation - knowledge in a

domain." (p.22

. The representational domains of a. function are composed of quite
different objects. and the methods which are used in each representation
are quite different from each other For\example. the solutich of -an

equation ,of the form f(x)=a can be obtained by algebraic nethods
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(extracting.roots. simpli?icationa ..s) or by constructing and reading
the graph of the. function. ' The need to establish these representational
domains and the relationships between' them led us to construct a
computerized environment, the Triple’ Representational ‘Model (T.R. M ),
whose principal characteristics are: .
® T.R.M. facilitates transfer of function concepts between  three
representations: algebraic. graphical' and tabular. The 'technical
tasks are executed automatically; the student has to organize and to
relate results linked with one.representation in order to use them
in others. ‘ .
4 WOrk within each representation is operational, i.e organized-in
terms -of operations that the student has to carry out. -
® T.R.M. is the computerized core of a complete Grade 9 function
curriculum based on problem solving-and'exposes the student to a
great variety of functions. . ' .
The congtruction of T.R.M. is intended to provide a good ontology of
domains which facilitates analogies . between representations.
Therefore, operations available in the three representations were
chosen to be conceptual entities whose utilization is similar
‘Their detailed description will be given in the folloming

BRIEF DESCRIPTION OF T.R.M.

Three typical operations will be described to _convey the character of
T R.M. "Search" (algebraic), "Compute" (algebraic) and "Draw"
(graphical).

"Search" enables theuuser to solve (in)equalities involving the function

f(x) under consideration. The structure of this operation is shown'in'

" Fig.l. Using this operation the student can search. for example. for
the zeros of a function. for the subdomains in- which the. function is

increasing (see Fig.2), solve inequalities (e.g replace f(x+0.01) by 0. °

in Fig.2 etc.. The "Search" operation - changes the conventional aspect
© of _the algebraic representation based on intensive .computation to
extensive computation which is performed by the software. ’ ’
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F(X)z X~3-3%

FROM ‘ 0 _ STEP 0.0l
i Search
e
TO arke
R s 1 £

" f(!) =

X = =1.020
PRINT  ~x- oA “F- X = -l1.010
X = 1.000
: . X= 1.000 TEST: -1.000 GOAL: ~-1.000
igl . The Search operation ]
' - next - back Esc - quit

Fil-Define F2-c0mpd¢e F3-Search Fé-Paging F7-ReadT F8-ReadG F10-End

Fig.2. Search for subdamain
in which f(x) is increasing

"Compute"” enables the student to compute automatically the value of a
function for any desired element of the domain.

"Draw".enables the student to draw the graph of a function, to zoom on
subdomains or to strétch the graph in one direction. This operation not
only removes the technical fatigue but adds a dynamic aspect to the

graphical representation. -

In addition to the fact that T.R.M. enables the user to move or to
read information between representations, its operations diminish the
conceptual distances between the representations by stressing operational
parallels. Two general procedures in the T.R.M. are directly parallel in
the graphical and algebraic representation:

1) Convergence, by which the student "homes in" on the desired result.
It is realized in the graphical representation by a well judged
sequence of zoomings and in the algebraic representation by
intelligent use of-thé "Search" operation.

2) Accuracy of che required result, which uses the same operations as

convergence but is-supported by other strategic considerations.

[Elz:i(:(‘. 23 . . .
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We focused on these two procedures because the operations of T.R.M.
facilitate analogies between the graphical and the algebraic

representation with these procedures.
AN EXPERIMENT WITH T.R.M.

The T.R.M. curriculum has.been taught experimentally in two éeth grade
classes in junior high schools. In this paper we report on one aspect of
this experiment, the procedural analogy between the graphical and the
algebraic representation. The treatment of the two classes differed only
in the order of the learning process. One class (Cl) was introduced to
functions through the gfaphical representation, whereas the other'class
*(C2) was introduced via the algebraic representation. At this stage Cl1
was givén the computer-based task CIN1 (CIN= computerized interview) and
C2 was given CIN2 (see below). In the second stage each group was
introduced to the other representaticn and given the \othe.r task. Some
students performed the tasks in a classroom setting and s{:me were
interviewed individually. CIN1 was essentially graphical in form and
CIN2 algebraic: .

CIN1: The computer chooses an undisclosed function f and displays a
rectangle on the screen. The student is asked to decide by
‘interrogating the computer whether the graph of the function passes
through the rectangle. The hidden graphs took one of the following

rd
four forms:

Dﬁ
|
U)
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e .
and the student could only use the Compute operation to sotve the

task.
CIN2: "Find an x which satisfies f(x)=a to an accuracy of 0.001.™ The

student could use the Compute and Search operations.

Collection of data: A program was written to record student behaviour on

the tasks.

For example, in one of the CIN1 tasks the given rectangle was

as shown in Fig.3 and the student's trials (using the Compute operation)

are shown numbered.

The student concluded that the graph passes ;hrough

the rectangle, which, in this case, is false (see Fig.H4).

TILE: B:DATATILE.Q02

Fig.3. Student trials in CIN 1

Fig.4. Rectangle and ﬁidden
graph in CINL

The order in which the student calculates the points tells us “about the
student's use and understanding - of the converéence procedure. We also
‘asked students to express their confidence in their conclusion on the
foilowing diagram and this tells us something about their understanding
of the accuracy proceduré.

Does not pass

Passes
. " _ - Y
Certain

. o .
EN,C Certain -~ 22'9_}0“‘; krow
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An example of a CINZ task was to solve x -3x+l$=5. for vhich the correct
answer is xal 879. Fig.5 shows the various trials of one student, who
used the Compute operation for the first three trials and then ‘the Search
operdtion for the next two and finally returned to the compute for the
final three. Since she wrote the condition for Search operation in the
form "IF f(x)=5" her search was "fruitless". However, either on the-
basis of the f(x) values in the Search or the computed values. in the
first three trials,she completed the task successfully.

) : Name: Vered Taizi x=1.879 fri .
0,0 trials
%0 .
. R = 1111111 R # %
8.0 i
1 2 1 4 [ & 2 8

Fig.5, Student trials in CIN2

\

There is clear indication that this student . appreciates the convergence
procedure but has trouble with the accuracy as shown by her Search
operations. To resolve her difficulties she returns to Compute. Other
students tackled the accuracy problem by changing the Search condition to
"IF f(x) > 5" together with an appropriate choice of step-length.

RESULTS AND FINDINGS.

The design of CIN1 and CIN2 enabled us to check two different
questions:

Analysis of characteristic student behaviour in CIN1 and CIN2

O
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For CIN1l,. a three level categorization scheme was found to be.

. sppropriabe; ’ '

1) The student computes irrelevent images outsidé the bounds of the
réctangle. Decisions are based on linear interpolation only and
cohfidence is low. '

2) The student'coﬁhutes relevant images and his search is systematic.

" The computations are managed by linear interpolation and confidence is
high. ) .

3)'_The student manages the computations by interpolation and continuity,
confidence is high, and well-founded in discussion.

For CIN2 a similar categorization was found to be appropriate:

1) The student works randomly wiph the Compute operation until a
direction is found for the ~search. Efficient use of the Search
operation operation is not made; the number of trials is large. )

2) The student‘s analysis process converges almost from the beginning
and intelligenﬁ_use of previous computations is made. Not much use of
the Search operation is made and then always with equalities rather
than inequalities. .

3) The student. integrates Compute and Search operations in an efficient

©  converging solution.

~

From the behaviours observed with CIN1 and CIN2, we .arrived at the
following sketch of general cognitive levels.of functional thinking.
1) The numerical level: The functional link between preimages and images
is not well understood. The search for the result is not systematic.
2) - The functional reasoning level: The functional link between preimages
and images is understood. The search for results is systematic but
dogs not use a logical sequehce of computations.
3) The dynamic functional reasoning level: The student understands the
' richness of the concept of function and can search for a result by an
efficient converging sequence of computations.

Comparison of the achievements on CIN1 and CIN2 within/between Cl and C2
The analysis of the data showed that Cl (which started with the graphical
representation) had results in CIN1 similar to those of C2, and much

better results in CIN2. - This would seem to “ndicate that learning the

O
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-graphical representation first leads to a higher level of functional

reasoning. [ie also found that accui‘acy and convergence ‘procedures
transfer from the graphical to thg algebraic representation but not in
the opposite direction. However, as Gick and Holyoak (1983) hoticéd,' if
two prior analogs are glven, stuii_ents can derive an underlying principle
as an incidental p.roduct of describing the similarities of the analogs.
Consequently, a theoretically based f‘unction curriculum which integrates
the various representations at an early stage, may ﬁell have advantéges
over either system used in this experiment.
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OPERATIONAL VS. STRUCTURAL METHOD OF TEACHING
" MATHEMATICS - CABE STUDY -

.Anna Bfard
The Hebrew Uh!vérslty of Jerusalem

0 The “operational® method of teaching mathematics was first
. proposed in [41, on the grounds of certain theoretical claims
and experimental findings dealing with the leurnlng of advanced
mathematical concepts. ~ In the prosent gtudy he method is

applied to mathematical. induction. The new approach is

compared, both thaoretically and experimontally, to the

v conventional ("structural®) way of toaching the subject. -

-

INTRODUCTION

The'oxpér!&ﬁntul study which will be repo}ted in this paber is a
continuation df ouf oxtensive reﬁgar:h on thé rdlo.of aiqor!fhms in the
.acqusition 6 mathematical concepts. The theopbtical frumeudrk_and the'
initinl ctages of this rosearch have boan precenfed in [41. Here we shall
des@r!ba'our f!rqt attémpt at examining the_d!dﬁ:t!:al implications of the
formor - sCudy, S L L 2
} In [4]1 we suggested that abstragt mathematical noi!ons' can be
conceived in two fundamentally differont ways: e;ther structurally or
oge}at!ogallx.-~People who think structurally refer to a formally defined
entity as if it were a real object, existing outside the human mind. Those
who concazive it operationally, speak abou; a kind of_pro:éss rather than

N about a  gtatic. construct. Both.abproa:hss play an important role in all
kinds of  mathematical activities. The pro:gés of rolving problems consists
in an intricate \lhterﬁlay between the' structural and oparational versions
of tho appropr!ste mathemgt!éal ideas. Since computational procedures are
mqro—"}bﬁg!bls“ then abstrs:i méghemat!:s{ constructs, it seems plausible
that fofﬁat!on of an aﬁerat!onaﬁ conception is, in many cases, the first
Bteo in the acquisition of a new notion. Two experimental studies,
prosented in [41, provided some initial svidence for this conjecture,

. The;stru:tural approach predominates in the most developed bran:haé.
‘of contemporary  mathematicss Ac:ord}nqug.:st;u:tural definitions ‘and
representations are taught at wuniversities ‘and' in schools, while very °

O
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ic tacitly Asqumed that by the holp of ctructural definitions the peocasses
become self-evident, and that only a little training is neceded to ensure,
-that they will be corroctly oxecuted whenever necossary. In the light of
our former claims, morc direct treatment of algorithms can greatly improve
the learnind.h _I$ tho operational conception is indeed the necossary first
step in an accquisition of o now mathematical idea, we can probably make
the 1esarning more effective by' communicating with the utudent-ip tha
suitable "operational® language, and by fostering the pupil's understanding
of procasges before tranclétinq the operational’ descriptions into
structural definitions. All this can be done by incorporating computer
pnbdrumming into mathematics :oursaé. While writing the programs the
student would get \a profound insight into the algdrithms_uqde(lying a
%eth@matical concapt. This should deepen tha“undeystandinq of the concepts
thomselvos and - create a sound basis for the t?ansftion from obo(&tional to
structural conception. [ Formation of‘the structural conception of basic
mathematical ideas secms to -be essential for ¢$urthes®® learning =~ for
acquisition of more advanced :on:epté. 14 co, the structural conception
should be promoted. in behali of those pupils who are able and willing to
continuo thoir mathematical oducation after matriculation. 3
In the experimental ‘study, uhi:h'uill now be das:ribed-in’detall} we
tried to :ompara‘ the effectivness of the “structural® (conventional) and
the “operational®” (the one propoued here) mathods of tea:hing. Hathnmati:al
induction has been chosen as a perfect sublect for this kind of investi~
gation. Firstly, the ‘topic .can. be easily presented in two ways, both
_stru:-'turu;ly and operationally. _ Secondly, while ‘being one of the mbst‘
important mathematical ideas taught in (Israeli) secondary gchool,_it-fé
also considered to ba‘particularly difficult for the learner. 'As such. it
has already inspired quite considerable amount of both theoreti:ul and
experimental edu:ational studies ({1 i, 23, tSJ. [31).

STRUQTURAL APPRDACH .TD MATHEHATICAL LNDUCTION

The way mathematical induction is taught in Israeli- sanidr
se:ondary-schoolc'qay . be regarded a typical implementation of the
structural method. According to the curriculum, 20 taaéhing.hours should.
be devoted to the subject in a@leventh or twelfth grade. Let us describe-now
the main =tages of. the learning, and at the same time indicate and analyse

ficultigs which may be encountered by the learner at each of thom. l
[: l(: Recursion. To begin with, the student is presented with the idea

Ceron - 23 E% 4ﬂ .
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of sequence, It is nssuméd that the pupil is'alrbady well acquainted with

‘the :onéepi of function (in its structural versioni), so the sequence can

be considered nothing more than a particular case of the familiar mathema-

tical :onﬁfru:t. The recursive representation of a sequence (see Box 1(a)),

howaver, is a new idea, which is explained by help of appropriate examples

and exercises. Since the sequence is pressnted ag a static entity (:omposed

of infinitaly many parts), the rule of recuraion can only be par:eived ag a’
constant relation between ite adjacent components.

Hera, a serious difficulty may stem from a quite unugual role playad
by. the variable n. To find a rule of recursion for a given sequence (such
as f(n)=n2), the student has to begin with the substitution of n+l
ingtead 04 n into the formula which defines the secuence. Until now, the
variables such As n were used only in their structural, static senser any
lettor denoted an. unknown magnitude, which was assumed to remain constant
throughout the entire brq;ass of @olving a oivan problem. Now, for the
$#irct time, the students sust cope with aﬁ additional, dynamic meaning of av
variable. Whila substituting n+l instead of n, they have to be aware that

- .the laetter n serves both ae a "given number” (n+1 is ite guccassor), and as
a "cell” for' storing .changing magnitudes. This double role 6f n may be
quitu confusing for unprepared learners. The bewildered studant would maka
such classic mistakes like adding 1 to f(n) while looking for f(n+1).

2. The principle of mathematical "induction is introduced in its
$orma)] axiomatic version, as presented in Box 1(b). '

It seems pretty obvious that the fully developed structural
conception of the notion of infinite set is indispensable for undersiandtng
the underlying idea of equality between K and N. The way the two sets are
compared may " be an inexhaustible source of additional difficulties.
Everyday classroom experience clearly shows that many students cannot get
along with the astatements of the form ¥n [P(n) o> P(n+1)], which constitute
the very heart of an inductive proof. ) .

To oét a deeper insight into. the problem, we asked 16 students who
had just “finished the regular twenty-hour course on induction to describe
the main stages of inductive proof (see Test 2 in Box 2). Only four answers
could be regarded as correct. The remaining twelve ra}ponsas clearly
indicated some serious problems with quantification. More often than not,
th; statement Vn [P(n) => P(n#1)) wag transformed into [¥n P(n)J &> P(n+1),

\j-‘aad. s;van students wroter “We have to show that 1f-f(nl=q(n) for
[: l(: ery 'n, then §(nt1)=g(n+1)® or “Let us assume that ¢ he
ne tions =& r235q u'al, and then show that f(n+1)=gin+1)",
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Box 11 Structural vs.operational approach to math. induction

Structural . . N Operational
Representation |(a) ’ (c) vi=03
of recursively £(0)=0 ni=0g
defined f(n+1)=f(n)+2n+1 - while n¢ne
sequence’ (recursion rule begin
: : yizy+2n+1} (recursion rule)
nien+1y
end;
The principle (b) IF KeN and if (d) - If two sequences, f an g
of induction 0€K ‘a. have the same initial -
b. for every néN value
né€K b. can be computed b the
Eﬁen n+1€K- same recursion rule
THEN™ K=N . THEN f(n)=g(n) for every n.

The same misplacement of quantifi:ators might be responsible for another
common anewer (5 cases): "We have to prove. that if f(0)=g(0), then
f(n+1)eg(n+1)¥. It sesms quite  likely that "the students skipped the
inductive assumption simply because .they felt that the "prémise“(they were
going to use was'identi:al with the proposition which had to be proved.

This kind of mistake can be easily explained on the grounds of our
former study, devoted to the notion of function [41]. A::ordinq to our
findings -~ and contrary to the expectations of the designers of
se:ondary-s:hobl Eurri:ula ~ the majority of pupils do not .conceive.
function as “an aggregate of (infinitely many) ordered pairs“. Rather, they
identify it with a certain computational formula. For these students, two
functions are equal only if one of the appropriate formulas can te obtained
from the other by :ertain algebraic manipulation. If-so, the quantifi:ators
have no significance whatsoever, and the equation “f(n)=g(n)" is equivalent
to the statement "f and g are equaf“

Finally let me remark that the students who do manage to put‘the
quantificators in the right places, may still have some problem with the
general logical .structure of the axiom. If an induction is a“method for
proving the propositions ‘beginning with the words "For every hEN...“, the
question'can rightly be asked, why not use ?his very method inside
the inductive proof, while dealing.uith tﬁe siatement ¥n [ P(n) => P(n+1) 1.
.éin:e it seems that theAmethod should be used (recureively!) over and over
again, the student may feel entangled into a v;:ioué circle.

3. Proving by induction. The'?rin:iple of induction is applied in a

series of proofs dealing with yarious properties of numerical sequences.
The problems 2 and 3 presented in Box 2 (Test J) are two typical examples"
né ﬂfﬂrcxses apearing in the :onventional textbooks.

[mc ~ 236
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OPERATIONAL APPROACH TO MATHEMATICAL INDUCTION

For our oaxperiment, new teaching material on induction was preparod.
This time the gubject was prosented in an opernt!onall manner. Hhile
describing the main stages of learning we shall argue now, thag within our
gpecial approach most of tﬁe previously .dencrlbed difficultios can be
either 6uslly ovarcome or avoided nitouethor.

1. Recursion. According to our broqram, at the first stage of -
loarning the pupils get acquainted with many kinds of re:ufslve.:alcula-
F!ono. On the grounds of our pravious oxperimental findings (L4)) we

" assume, that the majority of students conceive function (sequence) as a
computational proéess. rather than ‘a8 a static construct. Accordingly, a
rule of recirsion {5 precented as a proscription for some special kind of
computation. The otudent’'s iaék is not only to understand and to execute
recursive operntlonp (roprecented by the suitable algebraic oxpressions),
but also to foraulate i{terative algorithms for roacursively defined
functions in a simple programming language (see Box lk:)). Th!u'nddltlonal,
operational representation .is an offoctive tool for dealing with a new,
dynnml:al role of a variable n. Indeed,’ in a programming language, a
variable stands for a cell in a computer ‘s memory, $0 its dynaml:al meanlnu
ic selé-evident. After some oexperience with operatlonnl representatlons.
the ntudent‘ nhéuld no longer be confuced by the double role a variable
plays in algebraic representations.

2. The 'prln:tple of mathematical induction is presented in “opera-

tional® terms (see Box 1(d)). Hhile strescing the computaticnal aspects of
the concépt of funct!on._ wo can speak about equivalence of'algor!thms"
instead of dealing with equslity of infinite sets. [ Although the present
vergion may gseem somewhat restricted in comparison to the former one, it is
in fact equally general. Indeed, nnf statemeﬁt of the form “P(n) for every
'ngN“ can be transformed into a proposition on functionss “The charac-
teristic function of P is equal to 4, while f(n)=1 (TRUE) for every néN". )
The operﬁt!onal presentation . is free from all the previously
mentioned didactical digadvantages of the structural version. Firstly, the
confusing proﬁoaltlon Yn [P(n) o>-P(n+1)] practically disappears here under
the cover of .less formal (but by .no meane less exact) statsment “f and g
can be com- puted by the same .recursion rule”. This statement can be
easlly translated into apprépriate actions. For instance, if f is the
ion presented in Box 1; and 1f g(n)=n%2, then the student has only to
[:Iz\!‘::that g(n+1) can_be” obtained from y=g(n) by the same re:urslon rule'

237
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y+2n+1, which - when applied to y=f(n) - would yield f(n+1). Since the
confusing equalities ¢(n)sg(n) and f(n+1)=g(n+1) are not mentioned at all
{the algebraic transfotmatlon y+2n+1 has to be applied to only one function
at a time), thare is no room here for the incorrect quantifications.
Secondly, this .time there is almost no danger of a@p#rent vicious circle,
The principle of induction has been phrased here as a mgia-mathematlcal
rule rather than as a mathematical axiom.: Indeed, instead 6fAdeallng with
a method of(provlng an equality of two infinite sets, we_speak'about a way
of shouing “that flno)=g(no) for any given nao. Thus, in our version
the general quantificator has been transferred to the meta-language, ahd
after this the inductive proofs would involve ‘in  fact only 1limited
Quantifications (Vﬁ(no...).

S.Proving by induction. ‘' In our teaching unit  the principle of

induction is used only,for proving equalities of functions (equivalence of
algorithms). Other properties of numerical sequences {like those mentioned
in problems 1 and 3 in Box 3, Test 3) are not explicitly dealt .with. Hence,
our coverage of the subject is not as broad as redulred by tﬁ; curriculum.
The entire unit, however, is meant for not more than &-8 teaching hours
(provided the students have some previous experience with prog;ammlng
language), so it can be lncorpora?ed into a regular course on induction as

an introductory chapter. N
COMPARATIVE EXPERIMENTAL sTUDY

Our experimental investigation of the structh(al and operétlonal
nethods of teaching is gtill unqér way. Some tentatlye.concluslons,
however, can be already drawn from the results of the pilot study, which
will now be presented in some detail. . A

The experimental material on induction has been taught to four groups
{36 students) .in- the Centre for Pre-academic Studies at the Hebrew
University. After this six-hour introductory course, the pupfls had to’
complete their training in thé reqular mathematics classes, where the
subject was treated in the usual structural manner. ‘The expe;lmental
groups have been comparéd to suitable control groups, in which induction
-had been taught only by traditional 'methods. In this comparison, three
different tests have been applied (ng 2). Because of technical reasons,
each tesﬁ could be administered only to a part of the control groups.

O 1+ Recursion. The problem which was presented in this test was
qlz l(:‘ual'ln comparison to all the quesélons on. recursion our students
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BOX 21 The resulis of the experlment

i TEST 13 Recursion
PROBLEM: Biven §(0)=0, f(A¥YISFInTI+n, and g(n)=f(n)+f(n+1)
- find a recursion rule for gi(n).

REBULTS: . Experimental group Control. group

N . 19 . 19
no. of correct answers| ~ 13 (6B.4%) - 3 (7.4%)

: TEST 23 The principle of induction -
QUESTIONs a. What ara‘tﬁi‘haiﬁ‘%taiih oFf an inductive proof for
a claims “f(n) = (n) for all natural n" (f and g are
functions from N )?
b. How can you be certaln that f(n) = g(n) for any given
n, if the equality of the two sequences has been shown
by induction?

RESULTS:

. ] Exp. group Contr. group

) N 18 .- 16

at -correct answer " 18 (100%) 4 (23%)
b: -"it is an axiom " ' 3 ¢ 28%)1. 12 (75%)

-"f(n) and g(n) are -

obtained from f(0)=g(0)

by the same operations.® 12 (670 -3 (19%)

TEST 3 Provlng bg lnductlon
PROBLEMS: 1. Prove an n)+2" then the last
digit of £(400) ls é.
2. 1§ £(1)=1 and f(n+l)=f(n)+(n+2)/3, and if
gi(n)=(n+1) (n+2) /6 what is the truth set of the
_equation f(n) = gtn)’ Prove this.
3. Prove that mod( 3)=1 for all n.

PROBLEM 1 | PROBLEM 2 | PROBLEM 3
. RESULTS:
) . E [ E c E | C
no. of s's who participated 14 14 13 13 29 29
no. of 8's who those the problem 8 é 8 4 22 .| 23
Average score (out of 10) 7 5.1 8.5 1.8] 8.3] 5.9
no. of s's who got maximal score - 4 -— é -— 16 7

hpd met before. The figures in the table show, that in spite of the non-
standard sequéncé definition, the experimental group was quite successful
in finding the appropriate recursion rule (g(n+1)eg(n)+2n+1). In contra;t,
the majority of the control group failed in the task. It was quite clear
that for the traditionally-instructed students,»flndlng'the recursion rule
usﬁally meant nothing more than uriflng any formula for g(n+1). Indeed,
many students wrote: "The recursion rule of g is qin+i)=2#(n)+§n+l". Those
who -discovered (by: help of numeric examples) the expllcit formula. g(n)=n2"
tlaimed that the rule is g(n+l)=(n+1)z

Test 23. The prlnciple\of lnductlon. The results obtained on this test

ln the: control group have been reported above. Accordlng to our expecta-
)8y the answers- glven by\the experlmental group were much more satisfac-
[: l(: Literally all - the participants of the experiment could restate the

00,
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principle of mathemati:él Jinduction (in its opérational version). and most
of them were able to explain it in quite convincing way.

Test 31 Proving bv induction., The data presented here have been

collected on three different exams in mathematics. Every one of our
students participated {n only one of these exams. The pupiis had to solve
four problems out gf gix. Only one of these problems dealt with induction.
~The gquestion on induction which appeared In the first exam (Problem 1) was
quite unusual for both experimental and control groups. The one which was
given in the second questionnaire (Problem 2) was rather standard, although
it was put in somewhat unconventional terms (“What is the truth seg.."3,<v
The problems like the Jlast one (Problem 3) did ﬁot appear in oufl
experimental teaching unit on inductioq, but they were known to all the
students from the regular course on induction. As can be seen from the
data summarized in Box 2, the experimental group aéhigved'siqnificantly

better results in both standard and non-routine problems.
CONCLUSIONS

It should be pointed out that ‘the presented study suffered from
certain technical shortcomings. Firstly, all our comparisons were based on
rather small fiqures. Secondly, the experimental groups participated in
both experimental and regular courses on induction, so they spent on the
subject slightly more hours than the control groups. Even so, we have
quite good reasons to believe that the unconventional method of teaching'
did contribute to the students’' understanding of the subject. Indeed, since
all the. results indicated the same strong tendency, the general advantage.
of the experimental groups seemed to be undeniablej and since our tests
contained mainly non-gtandard tasks, which required much more ’than
technical skills, .it is rather unlikely tha% this apvantaqe was merely the
result of the few additional hours of training. It remains to be seen if

our future, better controlled sfudies will confirm these conclugions.
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EPISTEMOLOGICAL REMARKS ON FUNCTIONS

Anna Sierpifiska
Institute of Mathematics, Pol.Ac.Sci.

Abstract, The paper contains a tentative epistemo-
logical analysis of the notion of function both- ‘
from-the phylo-.and ontogenetic points of view. -
The analysis is a part of a research aiming at e~

. laborating didactical situations helping studénts
-to overcome epistemological obstacles related to
functions and limits, ’ . i

. The paper presents a further part of'reségrch briefly
reported in the XIth RME Proceedings (Sierpifiska, 1987a). The
research aims at elaborating didactical situations favouring
the overcoming of epletemological obstacles related to _func-

't;onaﬁand_limitg in 15-17 y.o0. students (cf.'Sierpiﬁéka, 1987b,
- 19856). Ongdof questions that such a research raises is the
question of meaning of the mathematical concepts involved.
This 18 the question we ask in this paper; we reflect oa upon
the epistemology of the notion of function,
I.- Epistemological obstacles related to functions
Re e.,0. see. Bachelard (1938) , Brousseau (1977), Sierpifiska
(1985p) .. . ' '
We have distinguished several stages in the historical
develomment of the notion of function (see Fig.1). '

- It seems that the development .of the notion of curve con-
tridbuted in many ways to that of the notion of function: 1t
nrovided a context in which analytical tools for describing
relationships could be developped. The beginnings of célculus
- i%:)-in fact, linked with.exploration of curves. Cuives

F g ) o , ,
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were described by proportions between ‘some aﬁxiliar& segments
'(diameter, axis,..) as in Fermat (Fig°2), or by equations bet-
ween these, as in Newton (Fig. 3) The system of auxiliary 808~
ments was chosen for every particular curve or ‘class of curves
separatelys ‘coordinates were not numbers determined by a syaqu
ten of coordinates chosen beforchand. They. wore .segments - )
geometrical objects. Curves were not regarded as graphs of re-
lationahips between theas auxiliary segments. They. were taken
for what they appeared to our eyess geometrical objects or tra-
Jectories of meving points ("geometrical" or "mechanical®) .

‘Ye shall name this approach to curves fconcrete® - ingo-.
far as it is.based on direct dmfa-and eentextual relations.
Perhaps this. "concrete" approach at. curves was one of the most
serious obstacles in the development of Calculus. Some forms
of this obstacle seem to be still present in today’s students.

II.- Students’ conceptions of functions B : )

Three groups of 15-17 y.o. students were involved in the
' .research. Here we 8hall refer mainly to conceptions of 4 huma-
" nities students: Agnds and Bva (17) and Darok and Gutek (16).
_The students underwent a series of sessBions composed of dif-’
‘ferent didactical situations., A didactical situation is cha-

racterized, among othersD by a_ social context, type of teacher
o 2ntions and a mathematical context. In our ressearch, thg

ERIC
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mathematical context was based on ths topic of properties of fi-
xed points of functions (Engel, 1979). Social contexts such as.
'iorking 1n'snall groups, communication of meaning between stu-
dents were used. Negetiation of meaning, suggestion of a way .
of search, discussion with students are examples of our inter-
ventions. ! ,

In Poland, the notion of function is introduced te 13 y.o.
in its very elaborate abstract form. But the general definitien
is so comprehensive that it says nothing to children that know
very little mathematics and even less physics. Children are gi-
ven oxamﬁles and differentbsymbolic and iconic representations
are shown to them, It is on this material that they build. their
meaning of the term #function” and more often than not this mea-
ning has nothing or very 1ittle to do with the most primitive
but fundamental concepfion I of function (a relationship bet-
ween variable magnitudes). A student{s conception of function
can be a complex (in tﬁe'aense of L.S.Wygotski) composed of one
or more degenerated forms of the historical conceptions II- V, -
Thegé forms may well function'parallellj without there.being
any oonscious link ameng them. - o '

We have divided the students” conceptiocns of functions
into two main categories: "concrete" and "abstract" (Bernstein,
1971) . In these, further distinctions are made (see Table 1) .
conorete conceptiong of functions in students '

- mechanical (CM-f) := a function is a diSplacement of
points (in non-verbaliged versions.thie concaption qorresponds
to the historical stage I)}

-synthetic geometrical (csG-f) s« a function is a fconcre-
te® curve, 1.9, a geometrical obJect 1dealization of a 1line
on paper or a trajectosy of.a moving point,

~ -algebraic (CA-f) = a functIon i8 a formula with "x" and
~y¥ and equality sign; it is a string of symbols, Tattere-and..
numbers;
Abstraot conceptions of functions in- stuﬂents:

-numerical (AN-~f):= a funotion is.a transformation of
some things into other things; these new things or their posi-
Q@ 1 can be descrived by numbers (the vdues~of the function);

[]zJﬂ:unction is given.by a sequence of ita values, This concep-

Ao i e - 234353
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"tion ressembles the historical conception II but it may be va=
gue or implicit.in the student’s.mind} in particular, the necs:
sslty of paming . the parallel sequence of arguments may not ‘be
felt at ally

-algebraic (AA=L) 3= a function 18 an equation or an-al
gebraic expressicn containing variablesj by putiing numbers in
place of variables one gets other numbers; the idea that the
equation deseribes a relationship between variables is absent
here. The conception i8 a degenerated form of the hietoricel
conception I (etege IV without stage I);

-analytic geometrical (AaG-f) t= a function is an “ab—

_ stract® curve -in a system of eoordinatee, 1.8, the curve 15 a
representation of some relationj thie relation may be given by
an equation and curves are ‘claseified according to the type
of this relation (firet degree, algebraic, traneoendental,..)l
it is not the relation that is called function: it is the curve
itself, This conception is a degenerated form of the h.c. Vi

-physical (APn-f) ¢= a function {s a kind of relatien-
ship betwean variable nagnitudes} some variables are distin~
guished as independent, other ape assumed to be dependent of
these} sueh relationships may sometimes.be represented by
graphs. This is cloee to the h.c. VI.

The APh-f was not observed in any of the students, We
have added it here, -however, because we think that such a con~-
ception is attainable by students of this level (indeed it is
implicit in their conceptions but it is not ihis that they
would call "function") previded that appropriate mathematical
contexts are used to develop it. Agnée was quite close to it,
The context of attractive fixed pointe of functione, especiald.
ly if extensive use of graphieal representations is made, pro-
'ved to favour the AaG-f and-seemed even to create obstacles to
the development of the desired conception VI.

To better be able to enaiyee the students®’ speech events
wé have constructed & "frame" for the definition of an attrac-
tive point of a function, The frame divides a possible definis'
tion into parts eech of which answers a particular queetion.

"Lrst question ie~ "Hhat is the'domsain of our inveetiga-

[JQJ!:' Students’ response to this questien allowed us to make

P - 244
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inferences regarding their conceptions of function.

A posteriori wo have established a table of studemts ‘an-
swers to these questiona. Ye have scored these answers, the,
maximum score being atiributed to the best of all students’an-
swers in all casas except the first questiéen mentioned above.
These were scored as shown in Table 1, The scorss were. not u-
sed to ovaluato ;78 answers as right or wrong. We just needed
a toel allowing us to detect im a more objcctive way moments
of important concaptual “jumpe" and thus judge of the influ-
ence. of particular gecial contexts and interventions., The 8-
ooxes.in vulgar fractions can also bo used a8 oodes for an-
swers° '

Table 2 ghous the studenta’ conceptions of functions as
they developped through different social contexts. Further re-
search consisted in close analysis of moments where high con-
ceptual jumps seemed to be made, Por example, Agnéa made her
great jump in the social context of work in emall” groups under

" the influence of criticisma of her group-mates., At the start,
Agnéd conception of function was CM-f. While explaining her i~
deas- of solving the problem she gradually develepped tools for
analytical representation of relationships between the varying
distances of moving points frem the fixed point,,Bux she refuaed

. - eQuations of the form ®y equalaﬂ She preferred proportions,

 Agnds seemed to be recapitulating the history of the notion of
funétion, Iatexr on, while vorking on a written communication of
. the concept of attractive fixed point to a class~mate, she dis-
played an interest in numerical approximations of terms of se-
‘quences.. X, X, qo f(xn) that were included in materials she
and her group received. She made right inferrences about the
ratio-in which the sequences were 1ncreasing or decreasingo
IIX.~ Final remarks . -
1. The most funddmental conception of function is :hat of a re-
lationship between variable magnitudes; If this is not develop—
ped, representations such as equations and graphs loose their
meaning and become 13clated cne from the other. A deviation
from the geaetic line is made. Introducing functions to young
-tf*anta by.their elaborate: modern definition is a didactical
[: l(: - an antididactical inversion (cf.Freudenthal, 198%),
v o e . 221§
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2. The context of attractive fixed points of functions intro-
duced with heavy use of graphical repfeaentat;ona does not
help to develop the above mention ed fundamental con¢eptian
of function., It-is too geometrical-algebraeic. A context of
physical magnitudes and various relationships between them
would probably be better. This demands a cooperation between

" the mathematics agd the physics teachers.
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FORHMATIVE EVALUATION OF A CONSTRUCTIVIST MATHEMATICS
TEACHER INSERVICE PROGRAM
Hartin A. Simon, Mount Holyoke College

The Educational Leaders in Mathematics Project was )
designed to assist secondary mathematics and elementary
teachers in developing a constructivist epistemology as
the basis for mathematics instruction. The Project
provides teachers with an intensive two-wveek summer
institute and a full academic year of weekly classroom
supervision. Formative evaluation, two and a half years
into the Project, suggests that (1) these two components
result in significant ¢lassroom changes, (2) teachers'
classroon implementation efforts can be described by one
of four patterns, and (3) some important training and
support needs of the teachers are not met by this
structure.

INTRODUCTION

sunmerHath for Teachers' Educational Leaders in Mathematics Project
(ELH) at Hount Holyoke College is an inservice program for elementary
teachers and secondary math teachers. The program is designed to (1)
assist inservice teachers in developing a constructivist approach to
mathematics instruction (Hundy, Waxman, and Confrey 1984), and (2) to
R - develop teachers as workshop leaders to introduce their colleagues to a
constructivist approach to mathematics imstruction. This report will
focus on the first of these tvo goals.

PROJECT DESIGN

Folloving is a description of the ELH Project. For the purpose of
this report, we will focus on the first three stages (out of five), the
stages vhich are most directly relateﬁ’to the inservice development of the
participating teachers.

Stage Ono: Summer Institute Tvo two-week institutes (one for
elementary and one for secondary) gfovide an ‘introduction to
constructivist mathematics instruction. -Participating teachers experience

y - C
]E \i(:‘Hork supported by National Science Foundation Grant $TEI-8552391
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the role of student in a constructivist classroom, constructing
mathematical concepts which are new and challenging for them (maybe
familiar concegts, but explored in greater depth). They also focus on
children's learning of mathematics and work on their ability to ask
probing questions and to design sequences.dt constructivist lessons.

Stage Two: Acadenic Year Follow-up "feachers participate in the
follov-up program from September through May following their involvement
in the summer institute. An ELM staff member meets on a weekly bas1s with
each participating teacher in that teacher s classroom. During the math-
class, the staff member either observes the teaching of the part1c1pating
teacher or prov1des demonstrat1on teaching. Following the math class, the
teacher and ELH staff memher meet to discuss what happened during the math
lesson, to informally evaluate the learning, and to discuss possible next
steps. Each teacher chooses those aspects of the summer’'s work that she
vants to work on implementing. During this academic year, teachers also
meet with their ELM colleagues and Project staff in four workshops in
which further work is done on developing constructivist instruction, and
discussions take place betveen teachers about implementation successes and
difficulties.

Stage Three: Advanced Inotitute The Rdvanced Institute is designed
for teachers to deepen their knowledge and understanding of constructivist
math instruction and to further develop their teaching skillsi The
institute begins, once again, with an opportunity for the teachers to
experience the role of learners of mathematics. A far greater portion of
this institute is spent in the development and critiquing of
constructivist lessons.

STRENGTHS OF THE PROGRAM

Feedback from participatiﬂg teachers has helped us to identify
‘several strengths of the program: '

1. In the summer institute, teachers construct their own concept of
constructivist education. Through reflecting on their own learning of
mathematics and the learning of children, teachers reorganize their
internal models of mathematics instruction. Teachers have written:

] Rs the week has progressed, my conceptions of how :
[E l(: mathematics is learned have changed daily, sometimes even
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hourly. I know that what I think and feel now is not the
total picture or a final answer.

a3 I participate in this institute and experience
first-hand the growth of my own mathematics..., my
conceptions have had to start to change to resolve the
conflict of my previous beliefs and the techniques I have
seen work this week. ' .

After this week, I discovered that ny most meaningful .
learning experience was not when I was on the correct
path, but when I was off on a tangent that led absolutely
novhere. I out of ignorance have almost consistently
prevented this type of valuable learning experience from
happening in my classroonm.

The opportunity for teachers to construct their own understandings
about mathematics learning and teaching results in teachers' personal

-commitment to implement their learnings and teachers' sense of control
over the changes to be made.

2. The follow-up program: Teachers have reported that they value
the moral support, the opportunity to discuss difficulties as well as
successes with ELM staff and colleagues, the modeling of demonstration
lessons in their classrooms, and the help in critiquing lessnns and
thinking about next steps. The consistency of the structure, knowing that
a staff member would be there every week, prevented their putting
implementation efforts on the back burner. Teachers commented:

It is every week. I enjoyed the chance to reflect on what
has been going on. It provides me with a focus, a time to
set aside for thinking about what I want to accomplish,
and how to determine if that happened. Without the, weekly
meetings, I fear the time would be spent doing other
things.

My consultant keeps mé.!tesh, prévides alternatives when I
have run out, puts the issues in a different perspective,
provides an excellent model for questioning skills.

I like best the support of the consultant and the ongoing
notivation that she provides. Without the follow-up
program, I would not have had the stamina to continue."

The-major commitment of consultant time and financial resources
required to carry out -a follow-up program of this scope seems to be
necessary for successful implementation of constructivist principles.

3. Teachers valued the chance to return for additional summet work

[: inzrinq a-year of classroom implementation. The most ¢onsistent comment
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that we heard is that durjng the Advanced Institute, previous learnings
"really seemed to come together." Teachers wrote:

The Advanced Institute is most important because you have
one year's experience to draw upon when you arrive, and
pany questions and concerns. I feel that I have *
internalized many of the behaviors that I had been
approaching rather tentatively. :

Learning to teach math using a constructivist and problem
solving view is an overwhelmingly difficult and expansive
undertaking. In no way is a two-week institute adequate
in hel)ing us develop our understanding of how students
learn and guiding us in making the necessary changes in’
how we teach. actually,'I think I would profit from
coming to the Advanced Institute any and every summer.

ASSESSMENT AND CHARACTERIZATION OF iﬂPLEHBNTATION

Assessment of Implementation: The Levels of Use. (LoU) structured
interview (Hall, et al 1975) was used with each of the'teachgrs at the end
of the follow-up program to determine- the extent to which they had
inplemented a constructivist approach to instruction. The LoU interviews
are scored by assigning one of the following levels:

Level 0 - nonuse Level IVa - routine
Level I - orientation Level IVb - refinement
Level II - preparation Level V - integration

Level III - mechanical use Level VI - renewal

As the Project proceeded, we settled on a refinement of the LoU
scoring to>hetter differentiate among the various implementation efforts -
of our teachers; separate Lou levels were determined for teachers' '
implementation of "constructivist teaching strategies" and for thé'level
of implementation of a "constructivist epistemology."

Teachers who implemented "strategies" chose to use one or more tools
of constructivist teaching because of their perceptions that these tools
would contribute to their students' learning. (Ed. "I bave been asking
probing questions, because it is important that my students think about
vhy things that they do work.") Teachers who implemented strategies may
not have had a sense of the part that these strategies can play in.
facilitating the construction of mathematical understanding. The
strategies that teachers identified and which emerged as significant in
the program -were the following:

Q : '
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-Use of non-routine problems
-Use of Logo, the Geometric Supposers or other computer
tools : -
for exploration
-Use of manipulatives and diagrams
~Exploring alternative solutions
-Problem solving in pairs and groups
. -Use of probing (non-leading) questions
-Providing wait time .
-Asking for student paraphrasing of other's ideas
-Pursuing thought processes following right and wrong
answers : ’

The teachers who were judged to have implemented a “constructivist
epistemology"” saw the sttatggies_as serving the larger goal of
construction of mathematical understandings 'and consequently made
decisions on if and vhen to use particular strategies based on whether
this larger goal would be served. These teachers tend to be more
concept-oriented and more self-sufficient in generating ideas for
instruction and evaluating the results of instruction.

Lou scores for the 1986-87 ELH teachers ‘indicated that all
“‘twenty-eight had implemented at least one strategy at Level III or higher
and twenty-five at Level IVa or higher. Twenty-one had adopted a

- constructivist epistemology at Level III or Eighet, nineteen at Level Iva
or higher. '

Characterizing Inplenentation: Combining the LoU ratings, which described
only the_implementation level in Hay, with weekly observations throughout
the follow-up yeat; four patterns of implementation became clear.

1. For some teachers the combination of their previous ..
experiences/ideas and their eipetiences in the summer institute resulted
in the adoption of a constructivist_epistemology from the beginning. Such
teachers described themselves in the following ways, "I knew that based
‘on what I sav and understood this summer that I had to completely change

’

pv approach to teaching." and "The nighf before the first day of school I
vas paralyzed, I couldn't just teach the way I bad in the past. I knew
what I wanted to do, but I didn't know where to begin."

Teachers in this group began, sometimes awkwardly, to develop lessons
that focused on student construction of concepts. Throughout the year,
. working with an ELY staff person, they refined their efforts.
-]E \i(:~ 2. Some teachers chose to integrate particular teaching strategies
s €9 vait time, probég,,g gstions, group work, use of manipulatives) into



- 5811=.'

’

their ttaditional_whys otvteaching. Some of these teachers never
progressed further. They were pleased, sometimes excited about the
benefits that they petceived from using these strategies and continued to
include these sttateg1es as a regular part of their teaching. Others of
these teachets, through their work with ELH staff and regular analysis of
student learning, were able move from the im#lementation of isolated
st:ategies-to the development and implementation of a comstructivist
_epistenology. .

3. Some teachers characterized their efforts as "doing SummerHath”
qnce.ot twice a week. At these times, they used non-routine problems
-and/or manipulatives, they asked probing questions, refused to givé the
answers to the problems, and often had the studengs vorking im groups.
They seemed to believe that these types of expe;iences were valuable for
enrichment. Howvever, they considered it separate from the curriculum that
they were supposed to "cover." . .

As the follow-up year progressed, some of these teachers began to see
connections betweem "doing SummerHath" and the curriculum.. Seeing the
understandings that.wete developing as a result of the new strategies,
they began to see how aspects of this work could enhance or replace the
curriculum work that they vwere doing. - For some the tesult was the
‘development of a constructivist epistemology. ’ .

4. A few teachets seemed to employ one or more strategies once a week
vhen the ELH staff person was there because they felt that was expected of
them. The lack of personal coumitment was generally an obstacle.

However, occasionally positive response on the part of the students
persuaded the teacher of the value of one or mote_df the strategies.

LIMITATIONS OF THE PROGRAM

In observing teachers in the classroom, talking to teachers and
xead1ng their written feedback, a number of 11m1tat1ons of the current
progran have become clear. ’

(1) Hany of the elementary teachers are limited by their ovn .
understanding of mathematical concepts, and of mathematical thinking in
general. Hany of these teachers were not successful as mathematics
students and took very little mathematics.. Those who are developing

[:Iz:f(zj strategies to help students discover important mathematical
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concepts are feeling the limitation of not understanding the concepts
further, or not having more insight into the interconnections .of different
nathematical concepts. Many of them express the feeling that during the
summer institutes, they had their first taste of success in mathematics.
and a feeling that they could learn to understand pathenatics. They

express a willingness to study more mnthematics, but they are looking for
an opportunity to study mnthenatics'taught using a constructivist
approach.

(2) Because of the greater complexity of mathematical concepts
taught in the secondary schools, secondary teachers struggle more than
elementary teachers in designing concrete activities as a foundation.
Also, they are often unable to do the task analysis necessary to identify
subconcepts and connections with prior concepts.

(3) Both e;ementary and secondary teachers, while novices in
constructivist teaching, are being put in a situation of having to create
their own curricula. This is an overwhelming task, only somewhat mediated
by the support of the ELM staff member during follow-up. Constructivist
teaching requires a certain amount of creation on the part of the
teachers, but does not require teachers to invent everything from scratch.
Curriculum materials consistent with constructivist teaching must be
developed, and macerials and references that are concept-baséd rather than
topic-based, as in conventionai textbooks, must become available.

" (4) The higher the grade level, the more trustratidn and conflict

" the teachers experience because of the weak conceptual foundations of

their students. The constructivist teacher who spends more time listening
to students, evaluating thgir understanding, and creating activities which
- allow them to build on previously firm understandings, come into contact
frequently with the huge gaps in understanding that students have.
.Hhereas the primary school tencher may_be confortable working on concepts
that should have been learned a year or two before, the high school
teacher, faced with students who need a course in fractions or ratio but
find themselves in an algebra II or trigonometry class, experience a great
amount of conflict between the schools'_expectations of what they should
teach and théir avareness of. what their students actually need. .

~
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CONCLUSION

The ELX Project has demonstrated the power of combining a
constructivist summer institute experience with an intensive follow-up
program. Classroom implementation ranged from the incorporation of new
and powerful teaching strategies to the construction of mathematics-
programs based on constructivism. The Project's work has also highlighted .
some of the unmet needs of teachers which prevent them from functioning
more fully using a.constructivist approach. The identification of ;heée
needs can inform and direct future efforts.

The extent to which ELM teachers were able to develop and implemedt a
constructivist approach varied greatly. This large variation can be
attributed to characteristics of the teachers prior to entetigg the
program. The relationship of teachers' chargctéristies (pedagogicai'
schema, attitudes, beliefs, and personal factors) to the development of a
constructivist approach to imnstruction is poorly understood and needs to
be investigated. V
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CONSTRUCTION AND RECONSTRUCTION: THE REFLECTIVE.PRACTICE. IN.
MATHEMATICS EDUCATION

Beth Southwell
Nepean College of Advanced Education

. An initial study was carried out to investigate the
relationship between experience and reflection on that
experience. In this study third yeér teacher education
students were asked to prepare a structure of meaning
diagram using problem solving as the focus. Students’

. lresp_cnses were encouraging, and indicat~? that they
~perceived ‘the technique as being valuable in . helping
them to synthesise isolated understandings and prompt
connections not previously seen.

The use of the structure of meaning technique has been
further refined in.the light of the pilot study and
applied to a more. closely defined area of problem
solving. It has also’'been applied to other areas,
namely geometry and measurement.

This investigation into the relationship between actual
experience and reflection on that experience was
extended to another technique. The one chosen was the
repertory . grid by which subjects were encouraged to
explore their -own thoughts and feelings in relation to
their problem’ solving program. The technique relies on
subjects establishing poles at either end of a
continuum -and ccmparing elements of the subject with
these pcles.

The students found that constructing the grid following
a fairly structured procedure was a valuable task in
itself. According to their reports the completed task
was even more valuable. .

Some attempt is made to evaluate this and other
reflective practices in the process of learnina.

One of the critical issues in learning mathematics which none of
the psychologists seem to have adequately covered is the balance
between theory and practice or the interplay between experience
and actual acquisition of concepts. The' reflection upon the
problem solving process 1is a key element in learnlng through
problem solving. Techniques devised to enhance the reflective
process need to be applied to mathematical prcblem solving and to
mathematics education research.

LRI 287
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Several have. emphasised the role which reflection has in 1earning
mathematics. Skemp (1979, 1980) makes a distinction between
intuitive and reflective intelligence. Kilpatrick (1984) in. his
address to ICME V in Adelaide stressed its 1mportance. Wittmann
(1985) has developed a theory of reflective practice. Burton
(1984) and Mason (1986) apply reflection to the problem solving
process. :

REFLECTIVE PROCESSES

Despite the general acceptance of the necessity ~for reflection -
for 1learning to be effective, not many have attempted to define
or describe reflection or to develop reflective strategies.

The processes involved in re-evaluating experience are
association, ‘integration, validation, and appropriation.. New
ideas need to be associated or connected with what we know
already. Then associations need to be integrated into a . new
whole in an organised way. what we have started to integrate
must Dbe validated or tested for such' things as internal

consisténcy and for consistency between our new ideas and those
of others. Then for some, though not all, learning tasks,  we
need to allow them to enter into our sense of identity and become
part of our value system. Commitment to action is then possible
and should follow. ' :

Strategies to help learners to reflect on their experience are
varied. Some have been in use for a long time, though not always
in mathematics. Such simple procedures as discussion, keeping
logs or conversation, while recognised as valuable, are not often
used consciously to assist the reflective process. Several moré .
dramatic _strategies have been developed at the Centre for the
Study of Human Learning at Brunel University. One of these is
the Structure of Meaning Techhique. Its purpose is to help a
learner reflect on how he or she is structuring new knowledge.
It allows learners to depict diagrammatically what they consider
important items of meaning.

A REFLECTIVE STRATEGY IN ACTION

- It seemed to the writer that this would be a useful technique to:
employ with trainee teachers both as a means of clarifying and
integrating their own knowledge, but also as a model. for modified

-use in school. Third year students at Nepean College of Advanced
Education were completing’' a sequence of three .courses in
Mathematics, during ., which problem solving and mathematical
investigations had been stressed. .Thirty three students agreed-

LS BESTOOPYAILABLE 235
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to participate in a .brief study to test out the effect of
vapplying the Structure of Meaning technique to the area of
problem solving. They were not given any warning as to when the
process would be applied, hence had no opportunity to. do any
preparation.

The students were in two groups, the first of thirteen, and the
second of twenty. The task was explained to them in terms of
constructing a diagram 1linking critical aspects of their
understanding of the process of teaching problem solving. The
first group were given a simplified version of a Structure of
Meaning diagram with an example of how it might relate to problem
solving. The second group was given the simplified version but
not a specific example. They were, however, given the suggestion
that ‘they might find it worthwhile to list some of the critical
aspects first ~before trying to put them into the diagrammatic
‘form. They were all asked to construct the diagram, then explain
it to their neighbour. The final '‘part of the task was to write
down how they felt about the task, what was good about it, what
was not good and how it helped them - if it did.

The students responded well to the task. Some found it difficult
to get started and their final products were not as sophisticated
as they might have been, but everyone expressed their feeling
that it was a beneficial process. The following are some of the
reasons given:

"It was a form of revision.”
"It made us think for ourselves.”

"The procedure was helpful in culminating thoughts i
problem solving.”

"It reveals the importance of teaching being organised in a
logical sequence.”

"It shows how s8kills learnt in other areas ‘of the
curriculum can be used and are necessary for problem solving."

‘"It drove home the inter-relatedriess of aspects of problem
solving -~ making it clearer to:view problem solving as a
process in totality, rather than a number of discrete
aspects.”

"This was helpful in providing the opportunity for me to
evaluate my own ideas about what the aspects of "teaching are
and thé inter-relationships between these aspects. Through
reflection on my previously held knowledge about the aspects
of problem solving I am now more sure about the needs of the
children when learning problem solving.”

.
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The example given by the writer appears to have influenced the
line of approach taken by a number of students in the first. group
in that their diagrams included the three approaches to teaching
problem solving, namely, teaching for problem solving, teaching
about problem solving and teaching through problem solving.

The second group completed a list of ideas before putting them
into their diagram. The lists were quite extensiveé, but the.
diagrams were more limited than the first group. As the point of
the exercise was to give the students experience in a - technique
which they might find helpful in their study, the "quality® of
the diagram is of little importance.. - - —_

~
Several suggestions were made by the participants to improve the
effectiveness of the &xercise. Some felt they were handicapped
by not having their lecture notes with them, while those who did,
felt the strategy helped them revise their notes. One student
felt a whole class discussion would have been helpful. Several
expressed the need for a starting point, though at least one said
it was better not to be given much direction. The second group
reported that they had felt unsure of the task at first but when
they got going, they found it very helpful.

While the study appears to indicate that the Structure of Meaning
technique can be applied to programs in mathematics education in
pre-service courses, and does achieve positive results in that
the participants admit to being encouraged to think because of
it, there were still one or two who wanted others to do their
thinking for them. This can be seen in this report: .

"I think it would be a good idea to have you write what you
think the main aspects of problem solving are on the board
in case someone has the wrong idea."
e
A further group of subjects were asked, not only if they were
‘willing to participate, but alsc when they would be ready to
carry out the task involved. The task itself was only explained
briefly in the recruitment stage, but sufficient information was
given to alert the subjects to the possible need for bringing
notes and any material they wished to refer to. As it happened,
they felt that their notes were all they needed on the occasion,
though some did express their wish to follow up certain elements
that arose as a result of the activity.

(a) Probem Solving
The subjects who participated in the second Structure of Meaning

Activity were from two different sources. The first group were a
3-"’1 group of five secondary teachers who attended a five hour

o0
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in-service workshop ‘on problem solving organised by the
Mathematical Association of New South Wales. During the
workshop, participants, twenty five in number, were given the
opporiunity to actually work on problems of their choice in
groups, then reflect on the processes and strategies they had

-used in solving their problems. ‘Input from three. speakers

included theoretical and practical ideas both for solving
problems and for implementing a problem solving approach in the
classroom. The five who volunteered to-contribute a structure of
meaning diagram were all secondary teachers though there were a
few primary teachers present.

Again, comments by - this small group endorsed those made by
participants in the previcus study.

(b) Geometry.

Another group of subjects to use the structure of meaning
technique was taken from the third year students at ‘Nepean
College of Advanced Education. These students were within a week
of completing their sequencé of three/ mathematics course units
and during the last of these had been concentrating on problem

" solving, geometry and measurement. Thirteen subjects in this

O
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study worked on geometry and twenty thrge on measurement.

In the geometry section, ' subjects were given a brief explanation
of the structure of meaning diagram, and an example. They were
then asked to list- the elements of geometry which they considered
should be covered in Years K - 6 before putting them into their
diagram. It was interesting to note that while most ' students
listed concepts or topics, a few listed general principles, such .
as the importance of using environmental instances or. examples. .

As before, the diagrams varied considerably. There were three: who
used a central focus, e.g. shapes, while three others strung
ideas together in a sequential manner. The remaining subjects
drew diagréms which included some clusters, and some Sequences.
The diagrams are a powerful evaluation of the process and, as
such, provide very useful data for course development,

Again, the comments of "the participants in evaluating the

technique are most interesting..

"It is a good strategy for refreshing me with the knowledge
that my grasp of geometry is abysmal."

"This exercise is good for revision of the concepts and
their relationships to each other. It helps to bring
together concepts and in doing so how they can be studied.”

"~ 281
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Subsequently, a small number of the subjects have indicated that
they did in fact use the technique when preparing for their
examinations. One used it as a means of determining her weak
areas, the others as a means of structuring content.

(c) Measurement

The task relating to measurement was structured rather
differently from the geometry task. Subjects were presented with
a series of written situations and asked to extract from them the
basic principle they would need to remember when providing
measurement activities for children. These basic principles
.dealt with conservation, developmental levels, the importance of
"hands-on"” experiences, estimation and, the use of informal

. measures. They were then asked to draw a structure of meaning
diagram using these basic principles.

The diagrams drawn indicated that the subjects saw measurement as
a gseries of basically unrelated activities, ' and consequently the
activity proved to be a very yood diagnostic instrument. - The
insights "gained by the writer as z  result of the subjects'
diagrams enabled her tg prepare worksliop activities to present
some structured ideas.

REPEATORY GRID TECHNIQUE

The Repertory Grid is a mgqans of providing subjects with-a way of
recording their understgndings about some part of their
environment or thinking. The subject on this occasion was asked
to name a range of elements in teaching problem solving. These
elements were then written on cards and the subject was presented
with three of them at a time and asked to decide which of the
three were the most alike. The subject was then asked to say why
they were alike and why the third unselécted card was different.
In this way, poles of the construct under consideration were
established. Once the poles were established, the subject was
asked to rank all the other elements along that construct
continuum.  The procedure was repeated using a different set of
three elements until all 'of.them had been used.

At the conclusion of the process, the subjects were asked to
reflect on the process itself and write some comments about it.
They responded as follows:

"This tecnnique was good as it made me think more deeply
about what I would do when preparing activities for
Q children. I think I tend to work the other way around, find
ERIC 262
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an activity then think of a way to teach it. I don't think
I consciocusly plan it the way we just did it, but if I think
about it, it would probably be the best way.”

"This has certainly made me think about words and how you

" can write down what you think are two very different’ ideas,
but when pointed out to you are similar. This can be of great
help when wording problems or even writing reports or
keeping records for various subjects. Has made me think
about what I have been doing with problem solving."

These comments seem to indicate that the technique is a useful
one in providing a means of recording thoughts and feelings. The
benefit possibly comes from the necessity of sifting carefully
through the similarities and differences involved. The drawback
is the length of time it takes to present the procedure
individually to each subject.. :

" RETELLING

Thirty four subjects from the third year teacher education
program_ participated in the Retelling activity in two groups of
seventeen subjects each. A statement concerning the use of
calculators in the primary school was introduced to the groups,
but, hefere they actually received it, they were asked ‘to
predict, ‘on the basis of the title alone, what it was likely to
be about. This tended to raise issues in their minds and enabled
them to state explicitly their existing knowledge or lack of it.
Thus it Jbecame a means of diagnosis. The subjects were told the
purpose’ of the.retelling, then given the paper to read. Two
purposes were Euggested and the groups were told they could
“choose whichever appealed to them. The two purposes were, from
the viewpoint of a teacher, to convince the executive of the
school ta buy a set of calculators for the class, and to
convince an uneducated parent about the value of using a
calculator in mathematics .to develop concepts, etc. At this
stage, they wvere working in .pairs or a group of three. Having
read the paper, they were then to retell orally to each other the-
content and spirit of the papéry —taking on the : role they had
selected. Finally, they were asked to write their arguments in
whatever role they had assumed, ~ and to evaluate the process in
terms of its potential for assessment and learning.

e 263
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The evaluations of the procedure indicated that the students
found it very helpful in sorting out their ideas and coming to a
position about the use of calculators in the primary school. A
sample of the subjects' comments follows: )

"The practical activity showed that children can be
motivated to do maths and that maths can be fun.

Role playing the teacher,. the executive teacher, and the
innumerate mother, gave an interesting perspective on the
use of calculators. It made us (me) think of the practical
advantages of children using calculators and also
necessitated a framing of my own attitude.

There 1is much more to, and more advantages of, using
calculators -than I thought.
Role playing was much more relevant than straight exposition
on their use.. I had to empathise with the teacher, chilqd,
mother and executive.” \

“As a parent, I have myself" queétioned the use of
calculators. However, the exercise we did yesterday made me
think about the potential of calculators and having seen
young children play with them, I know that they hold a great
deal of fascination for children. The exercise put me in a
situation I may well be in one day as a teacher and helped
me to order my thoughts and develop an opinion.” '

ACTION RESEARCH IN REFLECTION

This study of reflection in action calls for further reflection.
Further reflection is needed to improve the effectiveness of the
implementation of the strategy used. It is also needed to assess
or evaluate the effectiveness of the strategy and the reflection,
and-to plan for further stimuli to promote reflection. In this,
reflection ceases to be a purely individual activity and becomes
a social act. '

The three techniques condidered all have a valué in mathematics

education There is, as yet, insufficient evidence to claim that

they are all equally valuable for all branches of mathematics.

Many variations are possible, so it could be that they can all be

adapted to suit the subject matter. This in itself would be an

effective reflectional procedure. If ways of introducing . these
procedures, and others of a similar nature, could be found,

students at all levels would benefit from their use.

Commitment to action is one of the outcomes of the reflective
processes. If students of mathematics are encouraged to reflect
on their experience, either in completing exercises or in solving
pr%blems, learning will result. ’

©
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GRAPHICAL LESSON PATTERNS AND THE PROCESS OF KNOWLEDGE
- DEVELOPMENT IN THE MATHEMATICS CLASSROOM
HEINZ STEINBRING & RAINER BROMME
INSTITUTE FOR THE DIDACTICS OF MATHEMATICS (IDM)
'UNIVERSITY OF BIELEFELD F.R. OF GERMANY

A method for analyzmg mathematics teaching is presented
which permits to ‘take into account the different levels of
mathematical meaning within teacher-students interactlons.
Conceptual structures of the development of mathematical
knowledge are visualized by means of graphical diagrams.

1. The construction of meaning in mathematics teaching
The meaning of mathematical knowledge cannot be established in
teaching processes by formal definitions of concepts alone; meaning is
developed, negotiated, changed and agreed upon ir; interaction between
teacher and students. On phe one hand,. the joint construction of'\ meaning
depends on socio-communicative conditions of teaching processes (cf.
Bauersfeld 1982, Voigt 1984); on the other hand, the epistemological
nature of mat..hem-atical knowledge fundamentally influences the construc-
tion of meaning. Meaning is not immediately "included" in the symbolic
representations of knowledge; the meaning of a'sign—sysiem is contained
in its "intentions", its-  use or its reference to an "objective"
situation. Accordingly, the meaning of a mathematical concept is
conceived of as a relational-form which has to be established between
'sign’ and ’object’ in the epistemological triangle:
" Object &~—————--—3 Sign

Concept

- {(cf. Mellin-Olsen 1987, Ogden/Richards 1923, Otte 1984, Steinbring 1985,
1988). Meaning as a relational-form, in particular, means that knowledg'e
realizes an objective relation between -'sign’ and ’object’, a relation
which simultaneously has to be constructed by the learning subject and
which has to be agreed upon with others in communication. :

On the basis of this epiétemological triangle, a schema ‘of coding
was con_st.ructed for analyzing the development of mathematical knowledge
in the (verbal) interaction of teaching. The novel type of a graphical

- -visualization for the coded data (cf. the diagrams Al, A2, Bl, B2) in
‘--—1 ~* an "epistemological cardiogram (ecg)" shows global patterns and -

EMC structures of knowledge develoﬁiﬁtﬁ
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2. The coding of transcribed lessons

From a sample of 26 teachers, two are chosen (teacheré A and B) who
showed significant differences with regard to individual variables of
the quality\of teaching in lesson observation (for further details see
Bromme/Steinbring 1987). For each of these teachers, two transcribed
lessons (in the 6th form) introducing stochastics are analyzed. Accor-
ding to the epistemological triangle, the statements of students and .
teacher referring to ‘the mathematical content have been coded in the‘
following way: The contt“ibutions are coded as 'object’ (abbr. O0), when
theyv only_ contain aspects of a given problem-situation; when only
aspects of the mathematical caculus or model are involved, the contribu-
tions are coded as 'sign’ (abbr. S). Statements are ihterpreted as
‘b.elonging to the level of 'conéept', if they simultaneously ‘contain
elements of 'object’ and of 'sign’ in the shape of relations, and they
are coded as ’'relation’ (abbr. R) accordingly. (A fourth category
represented statements which could not be related to the other three,
but referred indirectly to the mathematical content; all four categories
were distinguished according to ’teacher explanation’, ’'teacher ques-
tion' and ‘'student s_tatement', giving a total of 12 different catego-
ries, -In the following only the three - "main" categories 'object’ (0),
'relation’ (R) and ’'sign’ (S) will be discussed.)

The basis of coding was an epistemological analysis of the
mathematical tasks presented in the lessons which led to a differentia-
tion between the level of 'object’ and ’sign/model’ with regard to the
particular lesson. Two external coders performed. the technical coding of
the transcribed statements independently. The transcripts were divided
into time intervals of 2 minutes before; statements were subdivided into
semantic units - if necessary. Every semantic unit’ was coded according
to tﬁe given coding schema; by means of a computer program, the lists of
coded data were translated into graphical diagrams (see for instance
Al): Every black beam represents a contribution (of the teacher or of a
student) on the respective level of mean"m'g;'beams drh‘;ln through all
three levels express the presentation of mathematical tasks. (For more
details, particularly concerning the reliability of coding and the
g‘i‘aphicdl representation of all 12 categoriés see Bromme/Steinbring
1987). ‘ ’

3. The mathematical topic of the lessons
The "complementarity of mathematical concepts" fundamentally
inherent in .probability as simultaneously empirical and theoretical
conceptual aspects (probability as relative' frequency and as relative
Q rtion) causes, . even in the teaching of elementary stochastics, a
E letinctio’n between simple models of probabilistic aspects (for instance
P o
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in form of "ideal" random generators as the ideal coin or the ideal die,
etc.) and intended resl random phenomensa (as for instance produced by
games with dice or other random mechanisms). The complementaristic '
interplay between 'model’ and ’situation’ (cf. Dérfler 1986) is very

typical for probability theory, but is basically a fundamental epistemo- '

logical quality of every mathematical concept. It is the basis for
characterizing mathematical knowledge as relations in the epistemo-
logical triangle, which serves as a conceptual means for coding the
. knowledge interactively negotiated in the classrcom.

) With regard to the four lessons concerned witli' elementary
probability, the study describes how the meaning of knowledge develops
in the interaction between teacher and students. The general topic of
these four lessons is the introduction of the representational concept
of "tree diagram" and its initial interpretative use. The situation used
to begin the introduction for both teachers is a task describing a
little boy who wants to gq from his home to different playgrounds
(soccer field, playground, ‘swimming pool). At the crossings of his
paths, the boy cannot decide which direction to follow, and he has the
idea of leaving his choice entirely to. chance by tossing a coin. If
tails appear, he takes the path to the left, otherwise, he takes the
path to the right. In this imagined real context, a tree diagram of two
degrees must be elaborated as a "decision" diagram for analyzing this
situation. The cohtra_st between path-diagram and tree. or decision-
diagram expresses in an exemplary way the complementarity of representa-
tional and situational aspects of mathematical knowledge. Furthermore,
‘the establishment of a relation between the path diagram and the .
decision diagram became a severe didactical problem which caused great
difficulties of understanding for many students. In the lessons of
teacher A, the tree diagram was tréeated and ‘investigated in an
experimental manner, i. e. by "simulating” the - situation several times-
with coin experiments and by noting and discussing observed data.-In the

lessons of teacher B, the understanding of the tree diagram was lilaiply
supported by some kind of terminologiéal codification of paths and
- crossings, and by the ‘construction of a schematized diagram {which
should serve to count ideal numbers for -determing the probabilities).
4. The graphical representations of the lesmns
) With regard to the differences between the lessons of teacher A
and teacher B, the question is how the level of ’‘relationship’ develops ’
in the graphical lesson patterns. .There, the differences in the
graphical patterns become immediately salient. In teacher A's lessons,
 ‘lational.level is of almost equal rank with the other two levefs,
EMC yacher B, however, this level has a subordinate position (cf. the
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diagrams Al, A2, Bl1, B2). This visual impression is created by the
larger number of contributions and by the clearer structurization of the

+  contributions of the middle - relational ~ level in case of teacher A.
Teacher B, in contrast, treats this level far less than the other two (a
fact proved by counting them out; 28%, resp. 37% of contributions on the
relational level in the lessons of teacher A as opposed to 14% of
contributions in the lessons of teacher B). Besides, it -is seen that
the relational level increases over time in case of teacher A. Teacher
A's first lesson, in particular, clearly shows this gradual focussing on
the relational level; in the second lesson, a homogeneously high
proportion on the relational level is attained even earlier.

In contrast, the graphical lesson pattern of teacher B's lessons
gives the impression that the relational level is never truly stabi-
lized. During the first lesson (Bl), the 'sign’ resp. ’'model’ level
predominates, while the level of ’object’ seems to prevail as the second
half of the lesson begins. In the second lesson (B2), it is evident that
teaching switches back and .forth between the ’'object’ level and the
'gsign’ level, and without any recognizable systematical integration of
the relational level. Considering the graphical iesson patterns. shows
phenomenally that the two teachers handle the . relational level quite
differently. A
5. The particular significance of graphical diagrams

uraphical representations of numerical data are "not simply
illustrative images offering a direct access to the data. Graphical
diagrams must not be conceived of as imperfect picturee' of teaching
phenomena or other real situations which still have to be completed.
They offer geometrical visual frames- for exploring, explaining and
analyzing hidden relations and structures in the data; graphical
diagrams are theoretical means of exploration. "1. Graphical representa-
tions possess autonomous functions in processes of understanding, which
in general cannot be substituted by other means. 2. Graphical represen-
tations are genuine cognitive means ... and do not belong only to the
sphere of communication... 3. Graphical representations are explorative
means. .. It is possible to operate with them formally - relatively
independent of references ... to contribute in this way to an investiga-
tion of unknown facts." (Biehler 1985, p. 70)

In the case™of statistical data, this theoretical and explorative
interpretation of graphical diagrams is particularly necessary. Here one
has to take into account that the given set of statistical data is only
a '"representative" of a Vaﬁety of "similarly" structured data. For
Q :ov_ering in the concrete and individual case of a fixed set of data, -

E lC‘ne géneral strucures and tendencies, graphical means of representation
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are estremely helpful if used in this theoretical and exploratory sense.
The variation of graphical visualizations and the operation on graphical
diagrame help discover general underlying structures which are inherent
in the concrete individual case of observation. '

. The different exploratory functions of graphical lesson patterns,
as developed for the analysis of knowledge development in the classroom,
refer to different levels of investigation:

- gRlobal patterns of development and types of structurea in the

- course of teaching

- _@ detailed _Structures and patterns of mutual effects of

" the interactions in the teaching process

- ' the geparation of data types in contrastmg patterns according

to different characteristicse of the real phenomena
6. An emple. The seperation of data types

The segregation of teachers statements and aléo of students’.

statements is -an lmportent "graphical operation belonging to, the
separation of .data types into contrasting groupes in order to construct-
dlfferent graphical lesson pattegps for the same lesson. The separatxons
of the sec0nd lesson of teacher A (A2) and of teacher B (B2) as well,_
show in an exemplary ~ way the partxcular s;gnlfxcanc_e of graphical
representations (see the g!:aphical lesson patterns A2T, A2S, B2T, B2S).
The separated graphical lesson patterns -of teacher A’s lesson
(A2T, A2S) give the impression that the structure of knowledge develop-
ment related to the teacher’s statements is quite in conformity with
the knowledge development caused by the students’ statements; his
means, the general pattern generated by all non-separated statements
shows up more or less in each .individual separated pa.ttern.r In contrast,
the separation of the data of teacher B’s lesson (B2T, B2S) leads to two
differently structured .graphical - patterns. The pattern produced by the
students’ statements reinforces the graphlcal structure observable in
the general pattern of this lesson. The switching back and forth between
the ‘’object’ level and the ’sign level seems - to be ‘paricularly
determined by the students’, ‘not by the ‘teacher’s contrlbutlons. Thq'
students’ contributions dominate the particular structure of the graphl*
cal pattern, not the teacher’s statements. . .
The separation of the contributions ‘of students and of the
teacher produces, for the lesson of teacher A, two graphical patterns
with a similar structural coursé (also compared with the general
graphical pattern of this lesson); for the lesson of teacher B, the
separation produces two different graphical patterns among which the
its’ pattern reinforces the structure of the. general pattern of

‘ysson. ' ' 2 7 O
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The comparison of separated data with the help of different
graphical lesson patterns exemplarily explains the theoretical peculia-
rity of graphical diagrams. On the one hand, graphical visualizations
permit a concise representation of knowledge together with the possibi-
lity of discovering structures hidden in observed phenomena and situa-
atons. The quick overview of the whole structure of a lesson’s course
Z"by the ‘general patterns and by the separated patterns as well) is an
important possibility to comprehend a teaching lesson in a specific
conceptual way, an achievement otherwise preveﬂted by the great complex-
ity of concrete teaching processes. This does not mean that graphical
diagrams are simply reductions or incomplete models of real situations
- in this respect, every theoretical concept must contain reductions (or
abstractions) towards the complexity of concrete phenomena. It is
impoxjtant. that graphical diagrams are theoretical means for recognizing
new relations and developing a new theoretical perspective on seemingly
known facts. With regard to this, the graphical lesson patterns offer a
new conceptual view on the problem of the development of mathematical
knowledge and its meaning in teaching/learning processes.
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_'LONGERQTERM CONCEPTUAL BENEFITS FROM USING
A COM]PUT]E]R ]IN ALGEBRA TEACHING

Mnchael Thomas & David Tall

Mathematles Education Rescarch Contre
Unlversity of Warwlek, U.K.

This paper provides e'vl'dence for the longer-term conceptual benefits

of a pre-formal algebra module Involving dlrected computer

prolrammlnl. soﬂware and other practical actlvltles designed to

promote a dynamic_ view of ‘algebra. The resuits of the experimonts -
Indicate the.value of thig mpproach in Improving early learners’

understanding of higher level algebralc concepts. Our hypothesis Is

that the Improved' concoptualisation of algebra resulting from the

computer paradigm, with lts emphasis on mental Imagery and a

global/holistic viewpoint, will lead to more versatile learning. '

Xhe Background

-In a prevxous paper ‘(Tall and Thomas, 1986) we descnbed the value of a three week “dynamic
algebra” module de51gned to help 11 and 12 year-old algebra novices improve their conceptual
understanding of the use of letters in algebra. The activities include programming (in BASIC),
coupled with games involving the physical storage of a-number in a box drawn on card,
marked with a letter, and software which enables mathematical formulae to be evaluated for
given numerical values of the letters involved. This paper carries the work further with'two
experiments that test the nature of the learning and its longer term effects. :

1 ical Considerati
The formal appméches to the early learning of algebra have nearly always considered the topic
as a logical and analytical activity with very little, if any, emphasis on the visual and holistic
aspects of the subject. Many researchers, however, have identified the existence of two distinct
learning strategies, described variously as serialist/analytic and global/holistic respectively. The
' Q ia charactexiéﬁcs distinguishing these two styles have been recorded (e.g. Bogen 1969),

ERIC |
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with the former seen as essentially an approach which breaks a task into paris which are then
studied step-by-step, in isolation, whereas the latter strategy encourages an‘overall view whic_:h
sees tasks as a whole and relates sub-tasks to each other and the whole (Brumby, 1982,
p.244). Brumby’s study suggests that only about 50% of pupils consistently use both
strategies, thus meriting the description of versatile learners. The advantages of versatile
_ thought in mathematics dre described by Scott-Hodgetts :

Versatile leamers afe more Ilkely to be successful in mathematics at the higher

levels where the ability to switch one’s viewpoint of a problem from a local

analytical one to a global one, in order to be able to place the detalis as part of a

structured whole, is of vital Importance. ...whilst holists are busy speculating

about relationships, and discovering the connections between initiaily disjoint

areas of mathematics, it may not even occur to serialists to begin to look for such
finks. [Scott-Hodgetts, 1986, page 73]

These observations on learning styles cox;relate well with a number of physiological studies
which indicate that the mind functions in two fundamentally different ways that are
complémentary but closely linked (see, for example, Sperry et al 1969, Sperry 1974, Popper &
Eccles 1977). The modél of the activity of the mind suggested by these studies is a unified
system of two qualitatively different processors, linked by a rapid flow of data and controlled

_bya control unit. The one processor, the familiar one, is a sequential processor, considered to
be located in the major, left hemisphere of the brain, responsible for logical, linguistic and
mathematical activities. The other processor, in the minor, right hemisphere, is a fast paralle]
processor, responsible for visual and mental imagery, capable of simultaneously processing
large quantities of data. The two processors are linked physically via the corpus collosum, and
controlled by a unit located in the left hemisphere. This image of the two interlinked systems,
one sequential, one parallel, is a powerful ‘metaphor for different aspects of mathematical
thinking. Those activities which encourage a global, integratii'é view of mathematics, may be
considered to encourage the metaphorical right brain. Our aim is to integrate the work of the
two processors, complementing logical, sequential deduction with an overall view, and we
shall use the term cognitive integration to denote such an approach, with the production of a
versatile leaner as its goal (see Thomas 1988 for further details).

The approach to the curriculum described here uses software that is designed to aid the léamer.
to develop in a versatile manner. In particular, the software provides an environment which has
the potential to enable the user to grasp a gestalt for a whole concept at an intuitive level. It is
designed to enable the user to manipulate examples of a specific mathematical concépt ora
related system of concepts. Such programs are called generic organisers (Tall, 1986). They are
intended to aid the learner in the abstraction of the more general concept embodied by the
examples, through being directed towards the generic properties of the examples and
l: l{[lc ;réntiating t.hf%lf ;'?gl non-generic properties by considering non-examples. This
s . ~{£0
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abstraction is a dynamic process. Attributes of the concept are first seen in a single exemplar,
" the concept itself being successively expanded and refined by looking at a succession of
exemplars.

The generic organiser in the algebra work is the "maths machine" which allows input of
algebraic formulae in standard mathematical notation and evaluates the formiulae for numerical

- values of the variables. The student may see examiples of the notation in action, for example

2+3*4 evaluates to 2+12=14, and not to 5*4=20". Although this contravenes expericnce using
a calculator, the program acts in a reasonable and predictable manner, making 1t possible to
discuss the meaning of an expression such as 2+3a and to invite prediction of how it evaluates
for a numerical value of a. In this way the pupils may gain a coherent concept image for the
manner in which algebraic notation works.

The teacher is a vital agent in this process, acting as a mentor in guiding the pupils to see the
generic properties of examples, demonstrating the use of the generic organiser, and

. encouraging the pupils to explore the software, both in a directed manner to gain insight into

specific aspects, and also in free exploration to fill out their own personal conceptions. This
mode of teaching is called the enhanced Socratic Mode. It is an extension of the Socratic mode
where the teacher discusses ideas with the pupil and draws out the pupil’s conceptions (Tall,
1986). Unlike the original Socratic dialogue, however, the teacher does not simply elicit

. confirming responses from the pupil. After leading a discussion on the new ideas to point the .

" pupils towards the salient features, the teacher then encourages the pupils to use exactly the

same software for their own investigations.

, The generic organiser provides an external represcntation of the abstract mathematical concepts

* which acts in a cybernetic manner, responding in a pre-programmed way to any input by the

user, enabling both teacher and pupil to conjecture what will happen if a certain sequence of
operations is set in motion, and then to carry out the sequence to see if the pfediction is correct,

The computer provides an ideal medium for mampulaung visual images, actxng as a model for .
the mental manipulation of mathematical concepts necessary for versanhty Traditional
approaches which start with paper and pencil exercises in manipulating symbols can lead to a
narrow symbolic interpretation. Generic organisers on the computer offér anchoring concepts

- on which concepts'of higher order may be built, enabling them to be manipulated mentally in a

powerful manner. They can also encourage the development of holistic thinking patterns, with
links to sequential, deductive thinking, which may be of benefit in leadmg to better overall
perfmmanoe in mathematics.

ERIC 278 _
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In order to test the long-term effects of the "dynamic algebra module”, a follow-up study was
carried out over one year after the initial experiment previously described (Thomas and Tall,
1986). By this time the children were now-13 years old and had transferred to other schools
-where they had completed a year of secondary education. Eléven of the matched pairs attended
the same secondary school and were put into corresponding mathcmaucs sets, so that during
their first year (aged 12/13) they received equivalent teaching in algebra. At the end of the year
they were all given the algebra test used in the original study. A summary of the results and a
comparison with their previous results are given in table 1. This demonstrates that, more than
" one year after their work on basic concepts of algebra in a computer environment, they were
still performing sxgmﬁcamly better.

Test - Experlm. Control [Mean [ SD. [ N | 1t df P
Mean Mean Diff. . o ’

{max=79) }(max =78) _ .
Post test 3255 | 19.98 | 12.57) 10.61] 21 | 5.30 20 <0.0005
Delayed | - ' .
Post-test | . 34.70 | 25.73 | 8.47] 11.81] 20 ] 3.13 19 <0.005
one year .
later 44.10 | 37.40 | 6.70] 7.76] 10 | 2.59 9 | -<0.025

Jahlad

This lends strong support to the idea that the introduction of a module of work, such as the’
dynamic algebra package, with its emphasis on conceptualization and use of mental images
rather than skill acquisition, can pm\nde S1gmﬁcam long-term conceptual benefits.

A second teaching experiment was held in which a dynamic algebra approach using the

computer was compared with more traditional teaching methods. The subjects of this second

. experiment were 12/13 year old children in'six mixed ability classes in the first year of a 12-
plus entry c,ox_np;-ehenswe schqolf The school is divided into two halls \Ynh children
apportioned to provide identical profiles of pupil ability, but the teaching is done by a unified
‘team of teachers, allowing direct comparisons of different teaching methods. On the basis of an

. algebra pre-test it was possible to organise 57 matched pairs covering the full abxhty range in '
the classes. :

:‘ +hs first stage o4 the’ companson the expenmental group used the dynaxmc algebra module

l: l C g their normal mathemaucs periods, uamg computers in small groups of two or three over

Aruitoxt provided by Eic: ~
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a three week period during the autumn term. At the same time the control group used a
wraditiona] skill-based module employed in the school over some years, covering basic
simplification of expressions and elementary equation solving in one unknown. Immediately
following the work they were given a post-test containing the same questions as the pre-test.

The results (given later in table 5) superficially showed that there was no significant difference
in overall performance, but analysis of individual questions presented an interesting picture, On

skill-based questions related to the content of the traditional module, the control group -

performed signiﬁcanﬂy better, whilst on questions traditionally considered to be concéptually
more demanding, the experimental group performed better. Table 2 shows typical skill-based
questions and the better performance of the control group: '

Question Experimental Contro! z p
% %
Multiply 3cby§ - 14 41 3.07°] <0.005
Simplity 3a+4b+2a 50 . 73 2468 | <0.01
i Simptify 3b-b+2a 29 61 3.36 | <0.0005
Simplify 3a+4+a 38 78 1160] n.s.
|G figsaws and J jigsaws =7 _ 55 78 2.39 | <0.01
Iable2

Table 3 shows the better performance of the experimental group on questions considered to be
more demanding in a traditional approach, requiring a higher level of understanding, includirig
the concept of a letter as a generalized numbser or variable:

Question Experimental Control z P
% . " %
For what values of a e .
Is a+3>7 ? 31 12 2.33 <0.01
For what values of a
I56>a+3? ) 22 .6 . 1233 <0.01
a+b=b, always, never, L.
sometimes ... when? 31 17 1.65 <0.05
M+P+N=N+M+R, always, . . ]
never, sometimes ... when? .38 28 1.08. n.s.
Perimeter of rectangle D.by 4 50 27 2.46 <0.025 .
1 Perimeter of rectangle 5 by F 50 29 224 | <0.025°
Largerof2nandn+2? 7 0 1.91 ] <0.05
‘Jahle3
) O | .
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The differential effects of the two treatments could be considered as a manifestation of the skills
versus conceptual understanding dichotomy, in terms of the levels of understanding defined by
Kiichemann [1981]. His level 1 involves purely numerical skills or simple structures using
letters as objects, level 2 involves items of increased complexity but not letters as specific
unknowns. Level 3 requires an understanding of letters as specific unknowns; level 4 requires
an understanding of letters as generalized numbers or variables. It is important to understood
that these levels were not intended to be a hierarchy but rather a description of children’s
functional ability. However, it is only at levels 3 and 4 that children are really involved in
algebraic thinking rather than arithmetic and few children (17% at age 13) attain this level of
understanding. Table 2 shows that the control pupils outperform the experimental pupils at
levels 1 and 2, whilst table 3 shows that the experimental pupils outperform the control pupils
at the higher levels.

“This suggests that there are differential effects from the two approaches in respect of surface
algebraic skills (in which the control students have a greater facility at this stage) and deeper

‘ conceptual understanding (in which the experimental students perform better). An alternative
(and, we suggest, more viable) explanation is that the traditional levels of difficulty depend on
the approach to the curriculum and may be altered by a new approach using the computer to
encourage versatile learning.

In the summer. term, some sixth monis later, the pupils were all given the same traditional
revision course on their earlier algebra, without any use of the computer. Both groups were re—

* tested and a comparison of matched pairs was made again. Table 4 shows the pupils
performance on the test as a whole. On this occasion the experimental students now performed
significantly better than the control students.

Test | Experim.| Control [Mean] S.0. ] N t | dl P
Mean Mean Diff. (1-tail)
{max=87) |(max=67)

Post test 36.0 359 |01 11046 | 47 | 0.06 | 46 n.s.
Delayed .
Post-test 421 | 393 1276 | 8.91 46 { 2.08 | 45 <0.025

. Jable 4

In the conceptually de;mar'nding questions of the type mentioned in table 1, the experimental
students continued to maintain their overall superiority (table 5).

ERIC 279
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Test Experim. | Control |Mean | S.D N t df p
Mean Mean | Diff. ' (14afl)
max=26) |({max=26

Post test 9.28 7.77 1150 | 4.81 48 | 2.14 | 47 <0.025 --

Delayed -
Post-test | 10.97 | 945 | 1.51 | 4.73 47 | 2.17 | 468 | <0.025

Jable
Meanwhile, on the skill-based questions, the experimental students marginally surbas'sed_the
control students, although the difference was not statistically significant.

The effects of Gender

Although the researchers did not set out to look specifically at the Trelationship between
performance and gender, a factor analysis including ability and gender among its variables was -
included. A random sample of girls and boys was taken and a comparison on pre-test and post-
test made. In the sample the girls performed less well than the boys on the pre-test, but made a
statistically significant improvement to perform better than the boys on the post-test, The
reasons for this are not altogether clear at this stage. It was certainly noticeable that the more
able boys, with previous computer experience, were constantly showing their prowess at
making the computer print screensful of coloured characters, and some saw the clementary
activities as a little beneath their dignity. Meanwhile some of the girls had initial difficulties and
took the task extrémely seriously, discussing the problem and helping eaclj other in small
groups. Thus the experiment was unable to distinguish whether the difference was social or
cognitive. . ‘
Conclusions

The experiments provide evidence of a more versatile form of thinking related to the computer
experiences. Further this improved understanding of concepts usually considered tobeofa -
higher level and difficult to attain by u:aditional methods, was shown to of a long-term nature.

There is also support for the hypothesis that the computer can be used in the enhanced Socratic
“mode to provide experiences to encourage versatile learning through cognitive integration. .
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YTHE ROLE: ‘OF AUDIDVISUALS IN MATHEMATICS TEACHYNG

TOMPA, KLARA: National Centre for Educational Technology
Hungary ’

The use of a number of means.characterise$the mathematics
classes. Objects which can be taken into one’s hand or
their pictures can greatly promote the active partici- -
pation of children in the process of problem.solving

and concept formation. The functions of the symbols as*
defined by R.R. Skemp are very well realised by means

of the audio-visual media. Explanation, understanding,
the promotion of the abstraction process and other
*symbol-functions’ can be realised with the help of the
representational possibilities of slides, overhead trans-
parencies, films and videos. .

The teaching of mathematics has greatly changed over the past
decades. The-basic reason for the change was in mathematics
itself, in the development of mathematics. The development
of the discipline of mathematics, its self-renewal made it so
effective that more and-more other fidds of discipline apply
nathematics in ever newer ways /economics, linguistics, psycho-
logy, computer science, etc./. Application means two things:
the application of new fields of mathematics on the one hand,
and the application of a mathematical attitude, way of thinking,

activity on the other. Nowadays all professions require speci-
alists who are familiar with the methods and attitude of mathe-’
matics, hhat’s more, who are able to apply mathematics as well.
So the most important task of the teaching of mathematics be-
side providing a certain amount of factﬁal knowledge, is also
the shaping of the personality with the help of mathematics.

In order that mathematics should be built into the personali-

ty as a way of thinking and form of activity the pupil has to
face a large number of situations in which they can trace the
feel of mathematical kinds of activity, try them out themselves,
practise them and on the basis of several individual cases they
can formulate their characteristic features. So the process of
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the teaching and learning of mathematics has changed consider-
ably in a number of ways:

- In its contents and structure.

- Pupils do thfoniy use paper and pencil in a class of mathe-
-matics but a number of'bther things /especially in the lower
elementary forms/.Mathematical activities needed for concept
formation and problem solving are carried out by the children
with the help of objects taken.into their hand or their pic-
ture symbols.

- The behaviour of pupils during class has also changed. In-
stead of being a passive receiver he is now an active parti-
cipant, not only in his psycho-motoric manifestations but in
the field of cognitive processes  as well. )

- The teachers’ behaviour in preparation for, and during the
class has changed as well, it has become richer. Beside the
offering ‘of information new tasks are set for the -teacher, like
the organisation of the work of individual pupils'and small
groups as well as the direction of this work, giving extra

jobs to. the very fast ones and the very slow ones, etc.

This changed process of teaching and learning requires ‘the more
'unified design of .the contents, the means, the methods, the
differén; activities of the teacher and the pupil.

The present paper deals only with one of the means of mobilis-
1ng'£he pupils for active participation, i.e. audio-visual
aids and the opportunities offered by them.

What can audio-visual aids offer for the teaching of mathe;
matics? ;

Because of the nature of the subject -first of all the audio-
Vvisual media .» like slides, overhead transparencies,
films and videos can be used in the teaéhing of mathematics.

/I do not wish to deal with the ever growing role of the
~computer and the extremely.useful possibility of interactivity./

O
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We can have great expectations when we use visual aids because
mathematics uses visual symbols very comprehensively. R.R.
Skemp differentiates between ten different functions of sym-
bols, which are: commdnication, réstration of information,'
formation of new concepts, the facilitating of multiple class-
ification, explanation, understanding, the facilitating of the
representétion of structures, the formation of routine sk;lls,
‘the recollection and the understanding of bits of information.
/Skemp, 1975/ o

The above mentioned audio-visual media. can very well realise
these functions of symbols.

Let me show one by one what each of the visual média is capable
of doing in promotion of the teaching of mathematics. |

SLIDES, SLIDE SERIES

Slides might be very different as far és their representation
technique is concerned, ranging from true, realistic colouréd
pictures of objects to, simple linear drawings showing the out-
line of objects.
Looking at it from a different point: graphic slides prepared
with a clear representation method and showing aesthetic quali~
ties as well may greatly help convey information about things
which cannot be sensed by vision. Mathematics teaching can make
best use of such colourful graphic slides.They are the ones
which can make the visual symbols indispensable in various
fields of mathematics much more efficient.
We have érepared 405 coloured graphic slides to be used in the
mathematics classes of the lower primary grades /faged 6 to 10/
with the following expectations:
- The redundance of lengthy explanations and information giving
" can be avoided or decreased with the help of the adequate
combination of mathematical and graphic symbols.
- The ready made slides which can be pfojectéd on the spotsave

| 284
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the energy and time .of the teacher, which-he can spend in
some useful other way.

- As the majority of the slides contain problems and tésks_to

be solved, they can be used as "a visual collection of prob-

lems" to be used for teaching any new area of the teaching
material.

v - The representation of the tasks ipdividual use possible. this
way, using individual slide-viewers the pupils can be given
individualised tasks.

- The simple, -aesthetic pictures in line with the taste of
the lowe; elementary age group help the pupils carry out real
mathematical activity. The graphic representations might
also heip yisua; training beside the teaching of mathematics.

Children ‘generally like film pfojections and working with,
slide viewers. All the saﬁe the application of these slides
is ley effective if the pupilé do the tasks and mathematical
activities that the slides tell them to. And as the tasks re-
quire serious ‘work the teacher has to decide very carefully

which slide to use, when and who to give it. to.

OVERHEAD: TRANSPARENCIES

Overhead projectors are the most widespread aids used in the

most'Qarious ways in Hungarian classrooms nowadays. This is

understandable because there are so many kinds of transparencies

poSsiblé.»The one consisting of one page or several pages build-.

ing up the figure or the ones that can-be méved can all fulfil

a number of functions iﬁ the process of teaching in'general

and also in teaching mathematics. S

Co- Aﬁong the "one-page" transparencies great importance can be

given to the ones which can be used to help work in the class.
'They usually ,contain some basic figure, network-and the teacher
and the pupils. working together or separatély prepare on it
some mofe comblicated figure, having important details. show-

O
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ing important connections, relationships. Typical examples
are square dgrids, number lines with different units,
systems of axes, empty charts, Venn'diagrams, auxiliary
grids and other. ’

- The transparencies consisting of several .pages, the so called
building=-up transparencies can elso bé hsed for multiple-
functions. They can help prove mathematical theorems step
by step. The given bits of information may guide or promote’
the thinking towards the possible solutions. In problem
solving the pupils can check their solution by turning the
page with the solution onto the original task page.

- Common problem solving can also be_heiéed by the teacher
with the help of figures built up uf severdl steps.

. = Overhead transparehcies containing movable parts can also be

of great use in the mathematics class. E.g. the understanding_

"of geometrical transformations, function transformations

can be made much clearer, -much easier to understand.

FILMS, VIDEO RECORDINGS - - - . . .

© Films and videos as otheyr audigevisual media o ) ‘
have proved'that . they are capable of- transferring true
knowledge and thus widening the range of experiences of pupils.
-‘They do so because they are capable of the following:
-. They can show processes which cannot be viewed in any other
way. ' '4
- They can widen the limits. of human perception. With the
technique of speeding up or slowing down they might show
processes to the viewers which would otherwise be not ]
. perceptible .for the human eye. The possibllity of reducing
and amplifying and other special techniques all open up -the
limits of the human eye and observation so as to be able to

f see phenomena not perceived earlier.
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--Limitations of space and time can be overcome with the help
of'filﬁs and videos. A possibility is opened up for the re-
cording and multiple viewing of rare phenomena which can
thus be shared with others. ]

-The applicatibh of animation and computer graphics in films.
and videos-makes it possible to picture things and phenomena
not perceivable-visuaily.

- Film and video give the feeling of involvement and the ex-

" perience of presence more than any other programs using
pictures foi illustration.

Taking into aécouﬁf all these characteristic features of films

and videos it can be said that motion pictures on mathemati-

cal topics /eépecially from the field of geometry/ use anima-
tion and graphic techniques, because mathematics operates with
symbols on the level of abstraction first of all, although

its concepts are rooted in reality. With the motion of plain

and spafiai figures hardly conceivable facts can be made visi-
ble" like the one that there is no shortest one among the chords.
of a circle but there is a loﬁgest one. : )

Films are generally not prepared for individual learning, but

they are shown to the whole class. Their viewing must always ‘

be prepared‘with-great care, so that the pupils were able to
perform the mental processes the film asks them to. during

the viewingf'

Slides, transparencies, films and videos can be used right in

the class thus promoting the teaching of mathematics. But on

the 6ther hand there are means which exert their influence in
an indirect way, like the mass media, radio and television
which'might broadcast mathematical tasks and problems for the
children interested in the form of a competition. Videos may
- have. other impacts on mthematics teaching. In teacher train-
ing students’ micro-teaching can be recorded thus developing

Aruitoxt provided by Eic:
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the efficiency of their own teaching. Tne'effibiency of the
teaching and the»éerformance oflthe}sthdents are.greatly in-
fluenced by the teacher’s ability of setting the problems,
his skill of askihg.questions.

HOW TO EDIT THE INFORMATION

It must be clear for those who develop audid-visual. media

that learning from a picture is.a differeﬁt process from learn=-

ing frbm a -book ‘by reading. Rea&ing is. a linear process of

éutting the words one after the'othet; building up the meaning

of a sentence. As opposed to this the 1nformationAéQn£a1ned in

a picture is present at the same time and it depends on the

viewer how;,; in what order he comprehends the 1hformation

‘gained from éagh part. Beéides, the'motién picture might dis-

appear too fast, before its essence could be understood.

Taking all this into account Visual'infofmation must be edited

very carefully so that it had the desired result in learning.

There are soﬁe practical bits of advice to be followed during

the technical realisation of the pictures:

- Text and figure sho .support cr complété each other but
they should never repeat what the other sais.

- Visual elements and inscriptions shoud be clearly organised
so0 as to convéy an aesthetis message as well. 4 ]

- Irrelevant details should bé omitted, pictures should not
be overcrowded.

- Types and sizes of letters and numbers should be carefully
conceived and not varied too often.

-~ In order to avoid-false impressions the pictures should con-
tain some points of refe:enée about.the size of figures.

-Taking into consideration one of the important elements of
human learning, i.e. selective perception all must be done
to direct the attention to the important features.”

ERIC
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Ve havé_to underline the most important details. /Arrows,

coloured plots, numbering, le;tering, frames, animation,

repetition, slowing down, speeding up, electronic light

effects, etc./. . . B
Carefully edited witty audio-visual média can raise the
attention and keep it awake, so they are very effective aids
in the teaching of mathematics.

+ /Gagné, 1980/
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SPECIFYING THE MULTIPLIER EFFECT ON CHILDREN'S SOLUTIONS
OF SIMPLE MULTIPLICATION WORD PROBLEMS

L. Verschaffel, E. De Corte & V. Van Coillie
Center for Instructional Psychology

University of_Léuven, Belgium

It

Abstract

One important finding from recent research on multiplication
word problems is that children's performances are strongly
affected by the nature of the multiplier (whether it is an
_integer, decimal larger than 1 or a decimal smaller than 1).
On the other hand, the size of thé multiplicand has little or
no effect of problem difficulty. The aim of the present study"
was to collect empirical data concerning this "type of
multiplier” effect in combination with two additional task
-variables which have not yet been seriously addressed in
previous research, namely (1) the symmetrical/asymmetrical
character of the problem structure and (2) the mode of
response (choice of operation versus free response mode) .
While the data of the present study provide additional’
evidence for the above-mentioned effect-of-multiplier
hypothesis, they also show that the two other task variables
also strongly influence children's difficulties with
multiplication problems. ’

INTRODUCTION

During the last years researchers have started to analyze pupils'
solution skills and processes with respect to multiplicative word
problems (for an overview see Bell, Grimison, Greer & Mangan, 1987). A
robust finding from these studies is that children's difficulty in
choosing the correct operation. depends strongly on the nature of the
multiplier. For example, Mangan (1986) found that children performeq
signifi_antly better on problems with an integer as multiplier than when
the multiplier was a decimal larger than 1; problems with a multiplier

- smaller thag 1 were still much more difficult. (The most common error on

the latter problem type was dividing instead of multiplying the two
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&

Q : N
5 O 2

BEST COPY AVAILABLE



- 618 -

given nuﬁbers.) On the other hand, the size of the multiplicand had no
significant effect on problem difficulty.
Fischbein, Deri, Nello and Marino (1985) have developed the following
theoretical account for these findings: each’ arithmetical operation
" remains linked to an implicit and primitive "intuitive model", which
mediates -the" identification of the arithmetic! operation needed, to solve
a word problem. According to the authors, the primitive model associated
" with multiplication is "repeated addition" , in which a number of )
collections of the same size are ﬁut together. A first consequence of
this "repéated addition" model is that, while the multiplicand can be
~any positive number, the multiplier mﬁst be an integer. A second
implication is that multiplicatién necessarily results in ‘a number that
ts bigger than the multiplicand. When theée constraints of the
hndérlying model are incongruent with the numerical data-giveh in the
problem, the choice of an inadequate operation may be the result
(Fischbein et alf.'1985). While the available experimental and
observational data concerning the effect of number type are consistent
.with Fischbein et al.'s (1985) theory, there still remain several
questions requiring further investigation.

- First — with the exception of Mangan's recent study (1986) . - the
ev1dence on the effects of the type of mu1t1p11et on the choice of
operation (regardless the nature of the multlpllcand) is not conv1nc1ng.
because it is based on comparisons between problems that differ also in
several aspects other than the nature of the numbers (Bell et al.,
1?87). Consequently, a first objective of the present study was to
collect additional data aboui‘the effects of type of multiplier and type

of multiplicand in a more carefully designed way.

Second, the word problems included in previous investigations always
had asymmetrical structures. This means that the two quantities
multiplied play psychologically a différent role in the problem
situation, and -are thereforg non-interchangeable. This.raises the
question whether -the type of the given numbers affects also the solution
of sgmme#rical problems, in which the roles plaved by the quantities
multiplied are essentially equivaient

Third, in most previous studies pupils were not asked to arswer the
problems; but to indicate which formal arithmetic operation would yield
the correct solution. However, selecting a formal arithmetic ovperation
Cjifh the two given numbers, is not the only way in which a 6ne?step wOrG

[E l(:)lem can be solved. Besides, there are.a lot of inﬁormal solution
e ttegies that may lead to the correct answer. Therefore, one could ask

-~ OO 4
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whether the number of wrong-operation errors would be as large when the
item format does not force children to'choose'a formal arithmetic
operation, but allows them to rely on other, more informal solution

stiategies.

METHOD

A paper-and-pencil test consisting of 24 one-step problems was
constructed. The test contained 16 multiplication problems; the
remaining eight items were included to reduce the likelihood of
stereotyped, mindless response strategies on the 16 target problems.
Half of the multiplication problems. had an asymmetrical structure (rate
problems like "One litre of milk costs x francs; someone buys y litres;
how much does he have to pay?"); the other half were symmetrical (area
problems like "If the length is x meters and the breadth is y meters,
what is the area?"). All eight symmetrical and asymmetrical problems
differed with respect to the type of the multiplier or the multiplicanc
(either an integer, a decimal larger than 1, or a decimal smaller than
1). This 24-items test was given to a group of 116 sixth-graders twice:
once in a choice-of-operation form and once in a free-response form.
Aftervards an analysis of variance (with a randomized block factorial
design) was performed with the following four task characteristics as
independent variables: (1) type of multiplier: an integer, a decimal
larger than 1 or a decimal smaller than 1; (2) type of multiplicand: an
integer, a decimal larger than 1 or a decimal smaller than 1; (3)
problem structure: symmetrical or asymmetrical; (4) response mode:
choice of ppefation or free response. In the multiple—choice format, the
dependent variable was the number of children that indicated' the correct
operation; in the free—reéponse format it was the sum of the correct

answers and the technical (or computational) errors, the underlying idea

‘being that answers resulting in technical errors nevertheless reflect
correct thinking about the problem as is shown by the appropriate
solution strategy chosen. Main and interaction effects significant at
_the 5 Z level were further analyzed using Duncan's multiple range test
(p €.05).

ERIC
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RESULTS

Main effects

The -results of the analysis of variance revealed a significant main

effect for the independent variable type of mult1pl1er (F (2,3565) =

237.75, p  .001). A supplemental analysis (us1ng Duncan's test) showed
that the problems with an integer as multiplier were significantly
easier than those where the multiplier is a decimal larger than 1, and
that the latter were easier than problems with a multiplier smaller than
1. The proport1on of appropriate solution strategies for these three

problem types was 9& ..89 and .71 respectively. On the contrary, no

main effect was found for the independent variable type of multiplicand:
the proportion of correct strategy choices’ for mult1pl1cand as 1nteger,v
decimal larger than 1, and decimal smaller than 1 was .86, .83 and .82
respect1vely. To summarize, our .results confirm the hypothesis that the
type of multlplier strongly influences children's choice of an
appropriate . solut1on strategy, while the nature of the multiplicand has
no significant- effect on their choices. N :
“The analysis of variance also showed a main effect for the third

_independent variable, namely problem structure (F. (1 3565) = 55.69, p(

©.001). The supplemental ‘test revealed that the symmetrical problems ‘
elicited a larger proportion of correct strategies (.88) than the
asymmetrical ones (.80). However, in . this study symmetr1cal as well as
asymmetr1cal problems were represented only by one single subtype
(respectively "rate" and "area"). It therefore would be premature to
‘conclude that in’general symmetr1cal problems are easier than
asymmetrical ones. . '
Finally, there was no significant d1fference between the proportion
of correct operations for the problems presented in the two response
modes, namely multiple.choice'(;83) and free response (.85).

- Interaction effects

A main goal of the present study was to analyze how two additional task
characteristics, namely problem structure and response mode, affect the
influence of the type of multiplier on the proportion of correct
( trategy choikces. :
[: l(: First, the analysis of variance showed a significant disordinal type

WA f multiplier by problem str, re interaction (F (2,3565) = 295.72, p(
R R
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.001). The supplemental Duncan test, based on p { .05, revealed that for
the asymmetrical structure, problems with an integer as multiplier were
significantly easier than those with a decimal larger than 1 as
multiplier, and that the latter were easier than those in which the
multiplier was a decimal smaller than 1 (see Table 1); :this is entirely
in line with the overall results reported 1n the previous section. For
the symmetrlcal structures, on the other hand, there was much less
difference between the proportions of correct strategy choices for the
three distinct "type of multiplier” problems. Moreover, although here
too significant differences were found, they were not in the expected
direction: "decimal smaller than 1" and "integer" problems were both
significantly easier than "decimal larger than 1" problems, but did not
differ mutually (see Table 1). Furthermore, a comﬁhrison between the
proportion of correct operations in the context of a symmetrical and
asymmetrical structure for each of the three types qf multiplier,
revealed that integer and decimal larger than 1 probleﬁs were-easier
when embedded in an asymmetrlcal structure; for problems with a decimal
smaller than 1, on the other hand, the symmetrlcal structure was the

easiest. All three differences were significant.
Table 1. Proportion of appropriate solution strategies for the distinct

"type of multiplier” problems in the two problem structures

‘Type of multiplier ) Problem structure

Asymmetrlcal Symmetrlcal

Integer o .99 .89
Decimal larger than 1 ' .93 .84

Decimal smaller than 1 . . .52 " .90

A significant disordinal type of multiplier by response mode
interaction was also found (F (2,3565) = 53.28, p { .001). The Duncan
test revealed that in both response modes, problems with an integer as

multiplier were 51gn1f1cantly easier’ than those with a decimal

‘multiplier larger than 1, and that the latter were in turn 51gn1f1cantly'

Q" han. those having a dec1mal smaller than 1 as multiplier (see
[: l(: However, when we compared ‘the proportlon of correct operations

WIETEETE response modes for-each of. these three types of multiplier, it

fod
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"

. was observed that "integer” and "decimal larger than 1" problems were

easier in the choice-of-operation than in the free-response condition,
whilst the reverse was true for problems having a decimal smaller than 1

as the multiplier. All three differences were significant.

Table 2. Proportion of appropriate solution strategies for the distinct

"type of multiplier" problems in the two response modes

Type of multiplier Response mode

Choice of operation Free response

. Integer : ‘ .97 91
Decimal larger than 1 : 91 .86
Decimal smaller than 1 .64 .78

DISCUSSION

Recent research on multiplication word problems has shown that problems
with an integer as multiplier are much easier than those with a decimal
multiplier larger than 1, and that problems with a multiplier smaller
than 1 are still more difficult. By contrast, the nature of the
multipiicand seemed to have.only a marginal effect on problem
difficulty. Generally speaking, the results of. the present study support
these findings. However, our results enable us to specify the
"multiplier effect hypothesis" in two respects: (1) the differential
effect of number type for the mul;iplier is only found in asymmetrical
problems, not'in'syﬁmetrical ones, and (2) this differential effect is
much weaker in a free-response situation as compared.to a forced-choice
formar.. .

The observeﬁ multiplier by prob;em strﬁcture interaction raises an
important question, namely what mechanisms might account for the absence
of a "type of multiplier" effect in our symmetric problems. In line with
with Fischbein et al.'s (1985) theory, one could argue that the

constraints of the "repeated addition” model do not affect negatively

\ihn solution process of symmetrical problems with decimals, because

ERIC

‘it symmetry does not require the problem solver. to attribute the role

ey multiplicand” and multiplie?}to\pgrtiwlar numbers. But another
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explanation might_be that the representation of "area” problems is not
influenced by the "repeated addition" model, but rather by another
primitive model, such as the "rectangular pattern" model (with other
constraints imposed on the numbers that can be used.and their role in
the structure of the problem). A final plausible account for the absence
of the multiplier effect in our symmetrical problems is that pupils’
selection of the eperation does not result from a mindful matching of
the "deep" understanding of the problem structure with a formal
arithmetical operation (mediated by a primitive model), but is simply
based on- the direct and rather mindless application of a well-known
formula (area = length x breadth). associated with the key word "area"
in the problem text.

The multiplier-response mode interaction is the second additional
finding of our study: the negative influence of the multiplier being a
decimal smaller than 1 was much weaker in the free—response than in the
multiple-choice format. Our collective paper—and pencil tests did not
yield much information about the precise nature of the cognitive
processes in the free—respohseimode'that led to the correct strategy
choice on probleme with a multiplier smaller than 1. Previous work has
demonstrated that pupils can often solve correctly simple multiplication
problems with small integers using informal strategies without
apparently being aware that the solution could be obtained by
multiplying the two given numbers. However, the specific question raised
by our data is: which solution paths - ‘other than multiplying the two
yiven numbers - can lead to the solution of a problem in which the

multiplier is a decimal smaller than 1?

In view of answering the remeining questions we intend to collect in
~our future work more systematlcally data on children's ‘solution
processes wh11e solving different types of mu1t1p11cat1on problems using
individual 1nterviews and eye-movement registration as the main
data—gathering technlques. ' - - .
To conclude, whilst our data about the interaction effects of type. of
‘multiplier with problem structure and response mode are not necessarily
inconsistent with Fischbein et al.'s {1985) theory, they suggest
nevertheless that we may have to search for a more detailed and more
comprehensive theory, based on the principle that the ‘selection of an
riate solution strategy is- affected by a large number of. factors

[E l ing for attention and ifiteracting in complex ways (see also Bell

et al., 1987). . QQB
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Is There Any Relation between Division and MultiPlication?
Elementary Teachers' Ideas about Division

Shlomo vinner & Liora Linchevski
Israel Science Teaching Center
Hebrew University, Jerusalem

Abstract

Some aspects of division with whole numbers and with fractions were
examined in 309 elementary teachers. and preservice teachers. One of the
main Questions was whether these teachers have any kind of formal
approach to .division or they only nhave concrete models for it as the
Quotative and the partitive divisions. we also tried to expose these
models " by direct methods and not by indirect methods used in previous.
studies (Fischbein et al., 1885 and others). In addition to well known
results as ‘'multiplication makes bigger and division makes smaller' we
also found the beliefs that multiplication hy a fraction makes smaller
and division by a3 fraction makes bigger. ADOUt 64% failed to point at
the relation between division and nulchlicaclon when asked about in a
particular QqQuestion.

Several studies have been done on children's ideas about
multiplication and division (Bell et ai.. 1881: Hart. 1881; Fischbein et
al., 1985) and also on preservice teachers (Tirosh et al., 1886: Tirosh
.ec “al., 1887). The hypothesis was that certain models for the
multiplication and civisipon imply certain ideas about these operations.

The aim of this study is to extend the above stugies in two
gimensions. 1. wWe try to investigate the models for division and the
iceas about multiplication and division directly and not in an indirect
way as in the above studies. This we 0o by asking Questions ﬁnac
stimulate the respondents to speak directly about their models and
igeas. 2. About 374 of our study Population were inservice elementary
teachers and about 1/4 were preservice elementary teachers whereas the
former studies examined either children (Béll et al., 1881: Fiscnhbein et

al., 198s:; énd Hart, 1881) or preservice elementary teachers (Tirosh et
.. al., 1986, 1987).

Together with the view that multiplication makes bigger there exists

a belief that multiplying by a fraction makes smaller. we examined how
common this view is in teachers. we dealt also with the pProblem of
division Dby zero as part of the models for division. we assumed that

this problem could help us to getérmine whether the teachers have

concrete modeis for divisioq or formal models, as implicitly assumed by

Fischbein . (1985). Tne.Droolem of division by’ zero is connected with the-

oroblem Of the relation between multiplication and givision. a Droblem
[E l(:ﬁnicn we also deal in our study.
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Method
——

Questionnaire

In order to create a questionnaire we interviewed several teachers.

The interviews led us to form the following Questions:

1.

O

ERIC
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-In an in-serv;ce teacher training course, the following. question
was posed ‘to fne supervisor: Is it Dossiblé to explain division in_
a mathematical way without telling stories about dividing cakes to
children or similar stories? For instance, what is 381 : 84 7
what would you tell this teacher if you were the supervisor?

The qperacion 15 : 3 or even 3 : 15 _can be explained by -:cakes
divided to chilagren. Does the operation % : g nave a similar
meaning or is 1c*on1y a formal operation?

Given 1B:: 3, 15 this a Darc1c1ve givision or a Quotative div1s1on?

_How much is 5 :: 0 ? Please.;expla1n your answer!

.A reccangle whose area is 1/3 cm2 is given.

‘ta) 3 x 1% ='af

A student claimed that any number divided by itself makes 1.
Therefore, also 0 : 0 = 1. wnac 15 your reaction?

whicnh of cne following is cne most suitable for demonscrac1ng
that 4¢ '3 = 1% ».

(b)) 9 : a4y

tc) 14 ¢ 1¢ 1

t@) al-13-13-1f:=0""
tey 1t'x 3

In each oOf rhe following pairs of excercises, circle the one

which gives a greater result. Please, explain your answer!

I ¢(a) Bxa (o) B8:4

II t(al Bx0.4 . to) 8 : 0.4
III (a) 0.8 x 0.4 to) 0.8 : 0.4
IV (a). 0.8x4 ( 0.8:4

(Parts I-III of this Question were taken from Brown, 1881,
who examined 12-16 year o0ld students. We agdeg part IV to
them in order to complete the structure,)

How will you explain to a Student which of the Sympols: ¢ , > | =

should be written between the two.numerical expressions without

carcving ouk the gomputavionsd ' Please, exPlain your: apswer!..
' Yy.8 3,2 S

1 3.us...--g- m 33 g xg

III Bx7 ...8:7 -

The length of one of
its sides is 3/5 cm. wWnat is the length of the adjacent sige? |

- 299
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Figure 1

(1/33cm=

{This Question was giVen only to half of the sample. It was cayen

from Hart, 1981. The other half of the ;ample got Question 10_for

the sake of comparison.} : ) ' .
"10. A rectangle whose area is 1/3 cm® is given. The length of one of

its sides is 5 cm. What is the length of the other side?

Figure 2

(1/31cm=

The * reader: can See that Questions 1-6 are related to the models. of
division and Questions 7-10 .are ‘related to the views ~ about

multiplication @nd division Possibly or partly implied by these models.

Sample
The above Questionnaire was distribuced‘co 237 teachers and 72 pre-
service teachers. 54 teachers out of ?he‘237 had the otk?cial title of
Mathematics coordinators in ‘their schools. These are teachers who have
more interest in Mathematics than the average teacher and also underwent
some in-service mathematical training. In the result section they will
"be referred to as Math. coordinators while the other teachers will e

referred to as teachers.

Results

The answers of the respéndencs were analysed and classified to some
main categories. Guestions 1-5 were supposed to expose the models of
_the respondents for the division operation. More precisely, there was
an attempt in tne questions to direct the resbondents toward the formal
approach. Formal approach can be understood in two ways: 1. Not
concrete: namely.} no reference to qQuotative o; partative dgivision. 2.
In addition to 1, conceiving the division qs.che inverse operation of
multiplication. Hence 1in Questions 1-5. the formai approach and the
concrete models (partitive ang quotative givisions} play a central role.
Thére are special categories in some of the auéstions. resulciﬁg from

the. special situations in these questions; The informatioh is giveh in
" Tamie 1.
Q
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Jagle !
Modeis for umsmn
.ustrxbutm'\ ‘of answers {in percantages) to Gues, 1-3 in the three IroUES.
T-teachers(N=183) ,P-greservice teacners(N=72),M-tath.coareinatersin=: ":)

Category} Forsal | Partitive | Guatative | Partitive aCategcry SpeCitic | Mo snsmdr

gnly iy ar to the Guesticn ang Giner
Juatative (see oelowi

Guesi:’icn HE BRI YRR EAEE R B B T Frol-n HE IR

H FH] It b2 I ] B O Y PR B PRI VI o I FU P A

2 [ B s I B N & 3 [V T YO
3 36 :? 16 30 {32 |37 {34 17 W7

4 144 8|2 59 {578 40 {35 |55

H 3 0 1Y 212243 26 |38 il

The saecific stegaries ror Juestions 1 7 weres .
Questian 1t he aocais for aivision ére restrictad to smail avavers. For tig auaters, divisian
) lS aechanical, - . . .
Juzstion 2: Sxnianatizng ter divisiaa 2 3 ustead ot divisien by /3 {in other “atras, 3ivisian
N ‘oY 15 uNoErstasd 35 I1tis:
& -ou.d tike to litustrate the '.:Lé;"(‘.ES 12y scae Quolations.

Eecause of lack of space we do not Drmg here their analysls This will
be given elsewnere. '

Guestion 1t (*) Division can be used as tne inverse operation of
mulcialicécion. 8y what snould we mult:i'aly-Bd in orger to get 381 (The’
formal approach). ’

(*) we want to know now many times there are 84 in 381 (Guatative
givision]. ' A )

(*) 381 is consisted of 381 partidl numpers wnich should be agiviced to
‘84 sets (Partitive division).

- -

K') You do not illustrate the meaning of division by means or large
nun'roers.' The goal is to explain’' what ._aiw'sion is. One snoul_q stay at
the rahge of small numbers (The specific category for this question).

(*) ‘You should explain what is 8 divided by 4. ' 351:84 is carried out

automatically (The specific category for this operation).

Question 2: (*) (1/2):(1/3) is @ formal operation only. Tnis is because

aivision ay @ fraction appears a&s multiplication t1/2)xt3/11. (The
formal approacn. ) ' '

TR

\) One nau of a cake is given co one cmra or a person. Since every

E leon is @& whole. he or she gets one cake -and & half. (Partitive.

W ision. ) ) 8 O 1
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(*) (1,21:(1/3) "is oiviging nalf a céke to one third of a class
(Partitive division.) : ‘

(*) How many times does 1/3 go into 1/2. (Guatative division.)

(*) If I have a half of & certain quantity, like nhalf a cake, I giviage

by 3 ana each part is 1/6, (1/8] : (1/3) = 1/6.

(N

(The specific category for this question)
(*) Half a cake was left In the rerfrigerator. I gave 1/3 of it to each

of my chilaren.(The specific category for this gquestion.)

Guestion 3: The correct answer to this question is, of course, that
18:3 is neither partitive nor guotative. 18:3 has ﬁne chencial to be
either partitive or guotative, it depends on the situation where it is
used. Such answers were classified as »partitive or guotative' in fable
1. In the other answers 1t was claimed, that 18:3 was either partitive
or guotative, but cannot be both. Namely, 66% of the teachers, 81X of
the preservice ' teachers and 53% of the Math. cooradinators diga not
gemonstrate in this quesc1on the understanding that division is an
abstract operation and partitive and quotative divisions are two of its

concrete models.

@Guestion 4a4: (*) Division by 2zZero- IS mesningless. (The formal

approach.)

*) Qz'visjon by 0 is not permitted. The answer is not reasonable
(Formal.) .

(*) This is 2 meaningless expressinn. ' Every aivision exercise can be
checkea by & multiplication exercise. For .Instance: 6:2.:=4a.

6 =28 x 3. But 5:0:=7? §=0x?. Every number multiplieag by 0 is
0 ang not S§. (Formal.) . .

(x) 5§ : 0 = 5. To aavzae five cakes. to O chilaren, I'l1l be left with
Five.(Partitive) S

(*) & :0=0. (] represent:s here nothing. Therefore, ‘aivision by

_nothing of any numper is O. (Partitive or quotative.)

@Guestion 6: (*) Essentially the stugent is -'rignt.:. However, 1n the

case of Os0 it Is meaningless because it can be any number, even’'8, 0/0

0 x 8 = 0.(Formal).

]:MC 0/0 = 1 because O x 1 ='0.- (Formal.)

IEWIEE g js not l1ke other numpers. (Formal
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(*) O of something givided by O children gilves O.(Partitive.)

(*)} O has no numerical value, therefore it is jﬁvossible that agivision

by O will give @ numerical value. The answer must be O. (Partitive or

qQuotative.)

(*) (0r/0) = 1 because O is less than 1 and when you divide the result

should be less than the aiviaend._(Parcicive'or quotative.)
(*) It is wrong. vYou should always ask the division question: now many

times the divisor is in the dividend. when you consider 0, the answer

to the question ‘‘how many times ther is O in 0?" is O. (Guotative.)

Question 6 was designed to examine the relation between division ang

other

arithmetical operations (multiplication, repeated adgition and
repeated subtraction). Distractor (b) was an irrelevant gistractor
whereas in 3all the other distractors there was a real offer. The
results are given in Table 2.
Table 2
Distribution of answers to Question 6. )
The relation between -division-and other arithmetical operations
(The numbers indicate percentages)
Category [Multiplication Repeated Repeated Distractor |[No answer
(g1stractors agagition subtraction (€}
(a) and (e)) [rdistractor|(oistractor

Group (el (a))

Teachers 30 16 13 3 38

(N = 183)

Preservice -

Teachers a2, 16 3 6 3

(N = 72) .

Math.Coor-

dinators. S0 16 S 3 26

(N = 84) :
We would 1like to note that the only case where respondents chose more

than one gistractor was the compbination of (a) angd (e). No other

combination nhas been found. Thus, in the context of this Question, the

of

percentages these who are aware of the special relation between
givision and multiplication in the three groups are 30, 42, ango S0,
respectively.

The analysis of the answers .to Guestions 7-10 is organized in a

similar manner to those -of Question 1-S. Because Of lack of space we

L4

Qf 7ot illustrate the answer categories by Quotations.

RNE - gp3 -
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D1=‘rxb"-1on ¢t anewere iin o s “Le'. 7-10 in the ‘uree g g 0s.
1- teatuan\.-!~3),?-'reserv ; toordinatorsii=Sd)
Catagory Multiplication { A “reng answer
. aakes pigger _ hased on WO answer
and Hivisi ou atner principles
1aies saalle
Zuestion T F x TR R H 13 | T O LI B
: ) i LU 1 SN I I N B 9§73 b 19 420 iS5 s
H 33 ] LU o2l KA IR B IR ) H 35 124 |19
3 3 & 7 i2f s 2 s 3 3ORTjEG:
it i 3 te ) 2% [15] 9] 3 019 120 1s

fiote that Duectizn 7 wes sdainisteres %2 half of the seapiz :nc Suestion 10 to the ather
hﬁr

Tae coecific categories for Juestions 7,3 aere:

Juestion 7 The answer was tiven after i coaputsticn was carried cut, There was no attespt

ssliza the ansaer on generai argusents like: aultipiication sy s {possidla;
atizn saailer than | aakes smalier.

Discussion

As we explalned 1n the 1ntroduction, our goal in this. study was to
verify and examine directly some claims about models for givision and
some views about division and multiPlication, claims whlch were made by
ingirect methods wusing psycnological interpretation of certain oata
(Fischbein et al.. 1985). we found that these claims were basically
correct Dbut the situation is much more complex than it-is gescrivted in
Fiscnbein et al., 1985 and Tirosh et al., 1986, 1987. In Fiécnbein,
198S, the elementary teachers are treated as if they have the required
matnematxcal knowledge. (“Teacnefs of anitﬁmetic face a fundamental
dxdactxcal gilemma. ... Tnis is one instance of a general gilemma facing
mathematics teachers™. p.1S, there, last Paragraph.) This study and

" also previous ones (as Tirosh et al., 1986, 1987) clearly Show that
Fischbein's implicit assumptions have no ground. The elementary

teachers, as a group, lack Dbasic mathematical understanding of

="i"fi'm°tic.
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THE INFLUENCE- OF SOCIALIZATION AND FMOTIONAL FACTORS
ON MATHEMATICS ACHIEVEMENT AND PARTICIPATION

Delene Visser, University of South Africa.

This study concerns the explanation of sex differences

that typically occur from adolescence onwards and favour

males in achievement and participation in mathematics.

In the absence of conclusive biological evidence,
social, emotional, and attitudinal factors were investi-

gated in this regard. The subjects were 1 605 Afrikaans-
speaking seventh and ninth grade studeénts and 2 506 of

their parents. Cognitive measures included mathematics

achievement and several aptitude tests. Also measured

were attitudinal. variables such as confidence and

enjoyment of mathematics, perception of the attitudes of

significant others ~towards self, personal and general

usefulness of mathematics, .and the stereotyping of -
mathematics. For ninth grade students, but not for

seventh grade students, significant differences favouring
males were found in spatial .abilities and several

attitudinal variables. The intention to ‘continue

participation in mathematics was accurately predicted by.
attitudinal variables-in the case of ninth grade females,
but not males.

Adequate preparation in mathematics has aptly been called the
- 'critical filter' in' the job market. As a result of technological

advances and the information explosion, a certain degree of mathema- =

tical sophistication has become a prerequisite for most pres_tigious
occupations. Students .who elect to discontinue their mathematics
studies while they are still at school thereby effectively eliminate
themselves from the maj;)rity of l;etter‘ paid occupations. '?urther-
more, in a developing country such as South_ Africa where every
effort should be made to alleviate the shor_.tage of scientific,
research, anc-ll technical personnel, an o.bvious' starting point is to
.ensure that as many students as possible complete the mathematics
courses offered at school. .
In South Africa mathematics is con'np_ulsory‘ u.ntil the ninth grade, o
whereafter students may opt either to discontinue their mathématics”
st_.uo_:liés,hor to continue until the twelfth glrade. The far-reaching
(%)

RIG ™ ™ e

‘..on to discontinue school mathematics is.therefore made by 14
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to 15 year old adolescents, which makes it especially important to
establish which factors influence their decision during this period.

It has been reported frequently that no or few sex differences in
mathematics achievement or ability are evident until the age of
about 13 years, whereafter the performance of females begins to de-
cline in relation to that of males, especially in areas suchvas
problem solving (Armstrong, 1985; ETS, 1979; Husén, 1967; Maccoby &
Jacklin, 1974; Preece, 1979; Wise, 1985; Wood, 1976). At the upper
end of the achievement scale it seems that sex differences favouring
males are even more pronounced. Benbow and Stanley (1980, 1983) re-
ported sex differences among mathematically gifted students from
about ‘the seventh grade, while the ETS (1979) report also confirmed
superior performance by males among the top scorers on the Mathema-
tics SAT. Males are also far more likely to enrol in high school
mathematics courses than are females (Fennema & Sherman, 1977;
Sells, 1978; Wise, Steel, & MacDonald, 1979).

In South Africa similar tendencies are found. During 1980 727 of
the twelfth grade males as against 48% of the females in the Transvaal
(vhite population only) studied mathematics. It should be remembered
that not all of these students passed mathematics or attained levels
of achievement which would have allowed them access to mathematics-
related 'university or technikon courses. The corresponding figures
for 1984 were 847 for males and 627% -for females. It is gratifying
to note that the position has improved for both sekes, but the fact
remains that notable sex differences in school mathematics participa-
tion still exist in South Africa.

With regard to achievement, no noteworthy sex differences in
twelfth grade final mathematics examination results were found.
Among the top _scorers, however, males predominate. During 1982,
4,6% of the males as against 3,57 of the females scored over 80%,
whereas the corresponding figures for 1984 were 3,2% for males and
2,6%Z for females. A nation-wide mathematics.olympiad is arranged
annually for mathematically gifted students. In the period 1966 to
1985 only 12 females gained silver medals as against the 183 silver
medals awarded ‘to males. No gold medal hag yet been awarded to a

female, and in 1986 only five females as against 98 males progressed
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to the-final round of the olympiad.

The differentiation in mathematical functioning between males and
females which is manifested from early adolescence onwards, needs to
be explained in terms of developmental changes which occur during
this life period. In the absence of conclusive biological evidence
to expla:in the said differences, it was decided to investigate the
role of affective, motivational, and socialization factors in this
regard. X

Although sex-role socialization starts at birth, it is from early
adolescence onwards that sex-appropriate behaviour is increasingly
expected from males and females (Mussen, 'Conger, Kagan & Huston,
‘1984).  Mathematics has traditionally been regarded as a male
domain, because so few women have distinguished themselves in this
field. Even in recent years mathematics is stereotyped as a male
domain, particularly by adolescents (Brush, 1980; Ormerod, 1981).

Important socializers such as parents, peers, and teachers put
pressure on adolescents to conform to sex role standards (Mussen et
al., 1984). It is therefore to be expected that males would be
encouraged in mathematicds, whereas females would be discouraged in a
variety of subtle ways. Females may consequently develop anxiety
about mathematics achievement and feel less motivated than males to

participate in the subject.

METHOD

Seventh grade students were selected to represent the early
adolescent group in this study, whereas ninth grade students were
selected to represent the adolescent group. The students were
randomly selected from Transvaal Afrikaans schools after stratifica-
tion by sex and tural-urban location. Thirty-six high schools and
36 primary schools were included in the study. The parents of each
student were also invited to participate in the study, and almost
807 of them agreed to participate. The -sample consisted of 824
seventh grade students and 781 ninth grade students.  Altogether 1
186 fathers and 1 320 mothers participated in the study. The mean
age on the first day of testing for seventh grade students was 12,4
)-. Q " for ninth grade students 14,4 years. -
ERIC
308
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The measuring instruments included standardized aptitude tests,-

mathematics achievement tests developed specially for this study,
translated versions of American questionnaires, and questionnaires
developed with this study in mind.
" Six subtests of the Junior Aptitude Tests (JAT), standardized by
the Human Sciences Research Council (HSRC), were used for measuring
verbal and reasoning ability, numerical ability, and spatial visuali-
zation.

Two mathematics achievement tests, one for seventh and one for
ninth grade, were developed especially for this study by the HSRC.
The tests were based on the students' current mathematics curricula.

Eleven Likert-type attitude scales were developed and/or trans-
lated to measure students' and parents' attitudes to mathematics.
The first four scales mentioned below arve similar to the Fennema-
Sherman Mathematics .Attitudes Scales (Fennema & Sherman, 1976) with
the same titles and were developed by Visser (1983). Items adapted
from Aiken's E- and V-scales (1974), items from the Fennema-Sherman
Scales, and several original items, were included in the final
‘'scales. ’

The Confidence Scale was developed to measure a subject's confi-

dence versus his/her discomfort, anxiety, and uncertainty when
dealing with mathematics.

The ‘Motivation Scale measures a, subject s interest in and willing-
ness to become more deeply involved in mathematics.

Other scales were the Male Domain, General Usefulness, Personal

: Usefulness and Attitude toward Success Seales.

The Perception of Father's (Mother's, Teacher's, Male Peer

Group's) Attitude Scales were included to measure the perceived

interest and. encouragement from significant others.

The;;ggg;tanee for 'X' Scale measures the importance attached by

parents to their child's mathematics studies and the degree to which
they encourage the child.

The attitude scales were scored such that a high score indicates
a positive attitude toward mathematics. ~On the Male Domain Scale a
low score is indicative of the stereotyping of mathematics as a male

Q omain.
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RESULTS
Interesting results included the following:
As éarly as grade 7 more males than females intend to pe.r_sist
with mathematics until the twelfth grade. In the ninth grade
94 percent of the males as against 65 percent of the females
indicated that they wished to.complete their mathematics studies. .
In accordance with the findi_.ng_s of. -ov;rseas studies, a clear
picture failed to emerge for se:l( differences in mathematics
achievement over the entire range of the achievement scale. It
was s.hown that in the USA males predominate’' at the top end of the
scale, but also that males do not usually obtain higher school
‘marks in mathematics. In the present study t tests using sex as
independent variable were performed on each of the student
variables. No sex differences were found on the mathemaﬁics
achievement tests in either of the grades. Fﬁrthermo;e, no sex
difference was found in. either of the two standards on the
computation test, JAT Number;. A ’ '
It has been hypothesized that sex differences in mathematics
achievement may be explained by sex differences in spatial
orientation and visualizatior:n which are also typically found from
adolescence onwards (Connor & Serbin, 1_980; .'Fennema & Sherman,-
1977; Maccoby & Jacklin, 1974). No sex differences were found
-for seventh 'g;:ade stuaents on the JAT Spatial 2-D and Spgtial 3-D
tests, whereas significant differences on these tests févouring
~ males were found for ninth grade students. If sex differences
had been found on the achievement tests, particularly with regard
to certain branches of mathematics, the.obtained sex differences
in spatial visualization for ninth graders might have provided an
explanation. '
As far as the attitudinal variaples were concerned, it was found
that seventh and ninth grade males were more -inclined than their
female counterparts to regard mathematics as personally useful
and had a more positive perception of the male i)eer group's
attitude toward themselves as learners of mathematics. Males
.wer,:'e also more inclined to stereotype mathematics as a male
domain. However, on the Confidence, Motivation, Father and
Q -
g
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Mother Scales significant sex differences favouring males were
found only in the older age group.

Although parents agreed on the general usefulness of mathematics,
fathers had higher scores-than mothers on the other attitudinal
variables. Both mothers and fathers regarded mathematics as more
important for their sons than for their daughters.

These findings lend support to the hypothesis that developmental
changes caused by the environment during adolescence may be
partially responsible for.sex differences in mathematics partici-
pation.

It was decided to use_a_purely predictive model rather ‘than "a
‘causal' model for determining the relationships between the
.various cognitive and attitudinal variables and the dependent
variables, mathematics achievement and mathematics participation.
Step-wise multiple regression analyses were performed for each
grade and sex for mathematics achievement asﬂdependent variable
and for intended -participation as dependent variable.

It was found that cognitive variables are the best predictors of

. mathematics achievement during “the seventh and ninth grades, but

.

that several attitudinal variables and some parent variables correla-

te highly with the achievement of ninth grade females.

Furthermore, attitudinal varidbles predominated over cognitive
variables as predictors of intended mathematics participation. It
was found. that the pattern of high correlations varied according to
the sex and grade of students. In the case o6f males, especially
ninth grade males, very few variables correlated highly with intended
participation, whereas cognitive variables seemed to be almost
irrelevant. Only Personal Usefulness had a substantial correlation
with intended participation for ninth grade males. The low squared
multiple correlations (0,33 and 0,26) reflected the above observa-
tions. The decision of adolescent males tdkoontinue their particiba-
tion in mathematics is therefore to a lafge extent taken independent-
ly of the study variables.

A different picture emerged for females. Several student attitude
variables correlated highly with intended participation for both
zrades, wherez; iome cognitive variables and the Importance for D'y

RIC
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(father and Mother) Scales also correlated substantially with the .
dependent variable for -ninth grade females. Five attitude variables
and one cognitive variable accounted for as much as 65% of the
variance of ninth grade females' intended mathematics participation,
whereas the squared multiple correlation for.seveath grade females - °
was only 0,41. Encouraéement of parents seemed to be a major
influence on the mathematics behaviour of adolescent females. For
males as well as females, perceived personal usefulness of mathema-

tics was the strongest predictor.

DISCUSSION

The purpose of this study was to identify and explain the factors
affecting mathematics participation and achievement during adoles-
cence and, in particular,'to find explanations for sex differehces
which typically occur from adolescence onwards in mathematics
behaviour.

Developmental changes do seem to occur .in the period- between
early adolescence and adolescence which negatively affect the
affective and attitudinal position of females with regard to mathe-
matics, as well as their perception of the expectations and encoura-
gement of significant others.

The findings of this study support the view that early adolescen-
ce is a critical pericd during which achieverent patterns in mathema-
tics are established, with almost inevitable implications for future

vocational options.
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METACOGNITION AND ELEMENTARY SCHOOL MATHEMATICS

HMiriam A. Wolters, Department for Developmental Psychology. State
University Utrecht, The Netherlands.

Abstract
Recent research on cognitive development, memory, reading and mathematics
indicates that much attention is given to metacognition. This paper is
intended as an introduction to the operationalisation of metacognition
and the role elementary school mathematics plays in metacognitive
development. o .
The longitudinal study assessed the effects of two approaches in school
mathematics on the development of -metacognitive skill. In each condition
15 students were followed from the first through the fourth grade. During
these years they were tested four times in order to assess the
developmental level of metacognitive skill. The data are analyzed by
trend- and t-test analysis and the results are discussed. o

Introduction

The basic purpose of the study is to develog.a instruments for measuring
metacognition and -to determine the effects of elementary school mathema-
tics on metacognition. In recent years metacognitive processes duriné
mathematical problem solving have become an importane topic of discussion
in mathematics education (e.g. Garofalo, lambdin Kroll & Lester 1987;
DeGuire 1987; Hart 1987). However, none of these studies look at meta-
cognitive functioning in students aged 6-10. Therefore, in this paper we
refer to Studies of metacognition as a developmental. phenomenon. Two
categories of metacognitive activities are mentioned: (1) those concer-
ning conscious reflection on one's own cognitive activities and abili-
ties, and (2) those concerning self-regulatory mechanisms going on during
an attempt to learn to solve problems (cf. Wertsch 1985.)

In this paper we are concerned with this second category of activities.
This category involves content-free. Strategies or .procedural knowledge
such as self-interrogation skills, selfchecking, and so forth. In Aoth'er
words it is an activity by means of which the learner manages his (or‘
‘her) own thinking behavior. '

A central problem in the research on metacognition is the adequacy of
assessment techniques designed to measure metacognition. Meichenbaum,
B:{land, Grusoﬂ & cameron (1985) consider several different techniques .
E lCcan and have been employed to Study metacognitive activities in 8 1 41
T YD . They point out that one of the pitfalls of the interview and
think-aloud techniques is that the interpretation of the data yvielded by
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such techniques is problematic. The most serious problem here arises when
a subject has trouble verbalizing his answers or thinking pattern. The
absence of an adequate response does not necessarily mean that subjects
are not involved in netacc;gnitive‘activities. For example, Gruson demon-
strated on the basis of observations that there are subjects who ahow
cohsistent strategies, but who fail to verbalize such strateglies. The
sage phenanonon was also observed in Burland's and Cameron's data. Thus,
the use of interview and think-aloud techniques raises an important theo-
retical issue: do we indeed 1limit the definition of metacognition to the
subject's abilities to verbalize their thinking process?

A somewhat different approach without the above mentioned pitfalls is
to assess métacognitive involvement directly on the basis of performance
without the subject reporting his thinking process either during perfor-
mance or afterwards. Gruson (1985) has shown that it is possible to infer
the use of metacognitive strategies on the basis of repeated patterns ’
evident while carrying out the task. Examples of how one can formally
conduct metacognitive ames;lient without using self-reports come from the
work of Sternberg (1983), Butferfielﬁ, wambold & Belmont (1973) and the
Sovietpsychological work of Isaev (1984) and Zak (1985).

In our study we further develop the line of investigation introduced by
the Soviets, i.e. conducting metacognitive assessment directly on perfor-
mance, thus making less use of verbal qQuestioning and focusing more on
behavioral observations. The Soviets see the issue of rt.aflective thinking
or metacognition as a continuum beginning with manipulative strategies
and eventually progressing through empirical towards more theoretical
strategies. A manipulative strategy consists of moves that are not guided
by the goal. Such a move does not logically follow subject's preceding
move and neither is it the basis for the next move; the moves are not
connected. Most often a large number of superfluous moves is needed to
reacr,:' the er;d result. Subjects using an empirical strategy approach the
task through moves or actions that chqnge the situation step by step. The
subject expects a specific result froa a move and takes that into account
when making the next move. Subjects using a theoretical strategy think
over their solution beforehand. These subjects use the £irst and second
item to search for most efficient way of solving the task by testing in
their mind sometimes three or four non-optimal alternative strategies.

In this study the tasks measuring metacognitive skill are designed in &

\}such a manner that the observer is allowed to draw inferences about the
E lCel of metacognitive functj.oning. The non-mathematical task 1is con-
ucted to elicit different sq;vij_)g strategies. An integral part of the
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task are the specific procedures for scoring the different strategies a
subject uses when solving a given task. The tasks and scoring procedures
are designed in such a way that subjects who cChange strategies can be
identified as well. Subjects require no special knowledge and are not
familiar with the tasks. The subjects apparently like to do the tasks.
They can not fail them because they are constructed in such a way that
nobody can do them wrong; the only thing that matters is the way in which
the subject handles the task. .

METHOD

Subjects

Students from four middle class schools participated in the longitudinal
study. The schools were choosen because of theiy willingness to partici-
pate. Two schools followed a traditional nathe-ntics'curriculun.and for-
med the so called control condition. The other two schools followed an
experimental structuralistic mathematics curriculum and forned the expe-
rimental condition. 15 students were selected froa the control condition
and 15 comparable students were Selected from the experimental condition
on the basis of a pretest score, administered when they entered first

grade. ) 4
Procedure

When entering first grade students !gfe pretested'to assess a general
cognitive developmental level. The pre-test was administered.by the-class
teachers, but always with an expérimenter present. The pretest score was
used to arrange two matched groups of 15 students. The mathematic activi-
ties then took place during the regularly scheduled nathematiés lessons
fromn the first through the fourth ‘grade. Tne traditional progran.was
given in all four grades for the control group and in grade 3 and 4 of
the exzperimental group. Only in grade 1 and 2 an experimental struc;ﬁra-
listic approach was used. Four times in total the selected groups of
.students were tested on‘metacognition. Twice in the second grade, in
December the Token task and in June the Mole task. In the third grade in
June the Strip task and in June of the fourth grade the Token task.

Instruments

&) 2 pretest. The pretest was designed to assess children's abilities

[E l(:nbining classification and seriation.”
[ B ’

D e
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2. Assessment of metacognitive skil}. We used three tasks: the Token
task, the Strip task and the Mole task. Each task consists of 8 items.
Aftér four items a moment of reflection for the subject is induced. This
happens indirectly by way of a special instruction. In the Strip task a
reflection moment is induced by indicating to the subject the need to
think before solving the -task which . is timed. After four items of each
task the subject is given the opportunity to think about the efficiency
of the strategy used and possibly change the strategy to a more efficient
one. In the Token task the activity is to make a pattern of tokens simi-
lar to a given patternhin a ninimal number of moves. In the Mole task the
activity_ is to find the shortest route of a mole to hié feeding place in

a structured garden.
- Instruction and scoring of these tasks will be illustrated by a detailed
descfiption of one of the tasks: the Strip task.

STRIP TASK .

The strip task was originally developed by the Soviet psychologist Zak
(in Wwolters 1987) and was designed to measure reflection as a metacogni-
tive skill.

The material used is a board with an area of 30 x 60 cm on which two
parallel lines, with a distance of 15 cn.
Strips are used in the following numbers and measures: °
stripindex 1 2 3 4.5 6 7 8 9 10 11 12 13 14 15 16
length 3 6 912 1518 21 24 27 30 33 36 39 42 45 48
number 101010 5 6§ 5 3 .2 1 1 1 1 1 1 1 1
The length is given in cm. All strips are 3 cm wide

INSTRUCTION -

The instruction consists of two phases. In the first phase the subject is

shown a model strip and asked ! to make up a strip of the same length as
, the model. The subject is given a number of strips of varying length

and then told to use a specified nunber of strips for constructing a

length ‘equal to the model. It is emphasized that he has to think care-
- fully before setting out to solve the task.

Before starting - the task-items two introductory items are presented.
first a model strip with a length of 9 units is presented and the subject
is instructed to build a matching strip using two parts. The item is
coded as 9(2); the 9 indicating the length of the model and the (2) indi-
cating the number of parts to be used in matching the model. Task items
for the first phase are: 10(4), 14(5), 13(6), 12(7)

After the subjects have done four items they are given instructions for
the second phase. These are designed so as to encourage them to think
about the task before they actually begin selecting the strips to match
the model. They are told "from now on we wWill see how much time you need
to do a strip". The subjects are told that they can take as much time as-
they want to think about the problem and that they will be timed only
when they begin selecting and placing the strips. For this .phase four
°i“‘1ona1 items are presented to each student. This second phase is used

stermine if students change the strategy they used in the first phase
[: l(: result of instructions given prior to, the second phase items. Per-
T ince time is taken fjit?s 16(9), 15(8), 11(7) and 13(6). One item
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13(6) is used twice, once before time instruction and.once after time
instruction. This  item is meant as an extra check to =see if subjects
change their strategy.

SCORING
ITEM SCORING
Manipulative category {includes scores i, 2 and 3)

This category includes behaviors that are haphazard and without any plan-
ning. The subject is unaware of the end result until after it has been
accomplished. It is only at that time that the subject recognizes that
the task is completed. The subject behaves according to the rules while
attempting to match the model in length but looses track of the requested
number of strips. The subjects in this category are characterized by
placing and replacing the strips ("removing behavior") eventually coming
to use the correct number of strips by less'removing behavior. Score 1
means that they end up with an incorrect number of strips. The difference
between score 2 and 3 is the number of strips removed and replaced.

Empirical category (score 4 and 5)

<
This category implies tnat a subject has in mind a strategy characterized
as inductive which means that ' the subject recognizes the goal of the
task. The subject has no need to remove strips once they are placed, but
rather adjusts the size of the strips as the task is being solved. The
subject behaves in a step by step fashion, placing one or two strips,
making a decision, placing another strip and adjusting the next and
continuing in this fashion until all the strips are correctly placed. The
difference between score 4 and 5 is that more steps are used for score 4
than 5.

Theoretical category (score 6 and 7)

The behavior in this category is the most efficient since the subject
proceeds in a deductive manner. The subject does all the planning prior
to the moment he actually puts the strips in place. In this fashion the
subject takes a stack of strips one less than the necessary number, pla-
ces these in correspondence to the model and then determines the size of
the 1last strip completing the comparison. With score 6 an estimation
error is made with the completing strip.

COD1NG OF METACOGNITIVE LEVELS

For each of the three tasks a score-level was calculated by taking the

mean score over the eight items. Apart from a score-level a so called

code-level was calculated, indicating the effect of the moment of reflec-

tion induced halfway each task. The procedure to obtain the code-level

for each task is as follows: for each of the three tasks for the first

four items and the second four items scores were placed in one of the

three categories: manipulative - empirical - theoretical. It was then

possible to obtain a coded score for each subject on each of the three

tasks based on whether or not the strategy changed from the first to the

second phase of each task. These coded scores. were placed in a numerical

hierarchy from 1 to 7 with a code-level of 1 demonstrating the strategies

using the least metacognition and a code-levél of 7 demonstrating the

(&) J)r example, a subject with a code-level of 1 on the strip task

[E l(:|ave used a manipulative strategy for the first four items and
rd with a pmanipulative strategy for tthgur itens after reflec-
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ting was requested. A subject coded 6 uses an empirical-strategy for the
first four items and changes to a theoretical strategy for the second
four items. Fig.1 illustrates the seven code-levels that were used. A
student with a mean score smaller than 3.50, falling between 3.50-5.00,
or greater than 5.00 was classified as manipulative, empirical or theore-
tical respectively. The criteria for change from the first four items to-
the second four items is that the difference between the mean score a-
chieved on the second four items had to be .equal or greater than 0.75
than the mean score achieved on the first four items. In .addition the
mean score for the second four items had to fall in a category above the
mean score of the first four items.

mean score mean score

item 1-4 item 4-8
code 1 manipulative remains - manipulative
code 2 empirical changes manipulative
code 2 theoretical changes . manipulative
code 3 manipulative changes empirical
code 4 empirical remains empirical
code 5 theoretical changes erpirical
code 6 empirical changes theoretical
code 7 theoretical remains theoretical

£ig.1 Calculation of the code-levels

3. Elementary school sathematics curricula

In the control condition the teachers used a traditional arithmetic pro-
gras. In the experimental condition this traditional arithmetic brogram

. was used from the third grade onwards. In the first and second grade an
experimental mathematical program was used. This experimental.program has’
a structuralistic nature and is very' much inspired by the Soviet psycho-
logist Davydov. 'rhe program consists of three main structures: numeration
systen, operations and relations. In the first grade the three structures
are taught separately and in the second grade the students leam to 1nte-
‘grate ‘them when learning to add and subtract two-digit numbers. The nume-
ration system of the program is described in Wolters (1986a), the opera-
tions part in Wolters (1986b). The part on relations follows a line of
thinking introduced by Davydov (1962).

RESULTS
To measure metacognitive skill validated instruments are needed. The .pro-
cedures and - tasks were validated in another Study. In that Study we com-
puted with a group of element'ary schoolchildreﬁ correlations between the
three tasks and the pretest. The correlations are: pretest with Token
Q & .31 (p=.09), pretest with Strip task .52 (p=.009); pretest with Mole
]: lC;k .68 (p-.OOl) The correlation between Token and Strip task is .50
:.01), Token and Hole task .73 (p=.001); Strip and Mole task .69

R
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(p=.001). This means that the metacognitive measures are highly related
to each other and for two of the three metacognitive tasks also highly
related to the pretest.

The results of a trend analysis of the changes 1n metacognitive code
per condition (_expe_rinental versus control) is depicted in f£ig.2. Fig.2
shows that the metacognitive code ‘in. the ?control group 1ncrea§es with age
) : and years of llﬂ.thelatics
coievel instruction. For the
6 experimental group a
‘ different picture emer-
ges. At the first measu-
rement in the second
grade this group tends
to perform better on
metacognitive tasks.
Here 'the experimental

group outporfones the

- - — matched control group
gf:r'aad:e ;f;r;:: -';‘-'::.;25‘ :'_l::,;:s But at the second measu-
;’.34 rement in the second

grade the difference
decreases and diésappeam'conpletely at the end of the third grade. These
results indicate that the students in the experimental group have develo-
ped their metacognitive abilities through working with a structuralistic
sathematics procram in the f£irst grade. The effects do not last long.
This can be explained first of all by the fact that after two years the
experimental group goes back to a traditional program. Sec'ondly although
the method of teaching. still differs during the second grade both groups
learn to add and subtract two-digit numbers. As the teachers have to
teach material that they are familiar with they easily fall back on well
known teaching methods. So even during the latter part of the second
-grade the metacognitive ‘lead of the experimental group diminishes rapid-

ly.
1 Ir 2 sur ke ¢ Ir 4 ir
. Mean SD Mean SD Mean SD Mean SD
exp 4.22* 1.56 2.44 1.01 4.00. 1.50 5.33 2.00
“Cf"‘ 2.11 1.17 2.13 1.15 3.66 .70 5.00 2.00

E lC 1 Means and standard deviations for metacognitive code-level for
e 'imental and control group 3 2
0 ,
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A t-test analysis on the data of table 1 shows a significant difference
between experimental and control group at the first measurement in the

second grade (p=.003)
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THE DEVELOPMENT OF THE COUNTING SCHEME OF A FIVE YEAR OLD CHILD:
FROM FIGURATIVE TO OPERATIONAL

Bob Wright

Northern Rivers College

\

‘Aspects of a constructivist teaching .experiment (Cobb &
Steffe, 1983) involving weekly teaching sessions with four
Australian children in their kindergarten year are
.described. The study extended the theory of children's
counting types (Steffe et al., 1983) by studying children
younger than those studied in an earlier teaching
experiment which was the basis for the counting .types
theory. 1It-also included aspects of numerical development
not in the earlier study. A description, illustrated by
excerpts from teaching sessions, of one child's progression
from the figurative to the operaticonal stage is given. The
child creates motor, verbal, and abstract unit items when
counting screened portions of collections.

Allan was one of four children in the kindergaften year of schbol who
pa?ticipated in a constructivist teaching experiment (Cobb & Steffe,
1983) during 1984. The participants were selected on the basis of an
initial interview, from.a kindergarten -class iﬁ a school which is
situated in a smali regional city in New.South Wales, Australia. Allan
joined the teaching experiment in July 1984 and was taught approximately
weekly from then until December 1984.. Nine of these teaching sessions
were video-taped by an assistant, and the remaining eight were audio-
taped. The purpose of the teaching experiment was to e3tend the theory
of countlng types (steffe, von Glasersfeld, Richards & Cobb, 1983) by
inveolving younger partlc;pants in" a settlng culturally different. from
that involved in the study by Steffe and his co-workers (cf. Steffe et
al., 1983; Steffe, Cobb &vvon'Glasersfeld, 1987). This study_alsp
focussed on the role that tempopél sequences of sbundsvand_movements
might play in the development of the counting scheme.

Steffe et al. (1983) identified a prdgressiop of five counting types;
perceptual, flgural, motor, verbai, and abstract; characterized by
progressxvely less dependance on sensory input. Steffe (1984) '

[: l(:orated the counting types into three stages in the construction of
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tbe counting scheme. The first is the perceptual stage, where the child
-ca; count perceptual unit items only. The.second is the f%gurative

stage in which the child counts figural, motor,- or verbal unit items.

Finally, at the operational stage, the.child counts abstract unit items.
. The child at the last stage is labelled numerical and the child at the

perceptual or figurative stage is labelled prenumerical.
THE FIGURATIVE STAGE

Allan's solutions of tasks in the teaching sessions of the 19 July and 3
August 1984, indicated that he had advanced beyond the perceptual stage
in the construction of the counting scheme. Each of the tasks involved
countinj the items .of a partially screened collection. In each of those
two teaching sessions he counted the items of four partially screened
collections.. The number of screened items ranged from one to four.

That Allan consistently counted the items of partially screened
collections indicated that, at this timé, he had advanced peyond the
firat:couﬂting type. »

Those teaching sessions weie audio-taped but not video~taped. Therefore
it was not possible to determine the nature of the items that Allan
created_as he counted. Allan typically did not count aloud.
Nevertheless a consideration of the relative times he took to count the

. collections indicated that he was probably counting from "one". In the
same teaching sessions Allan had consistent difficulty with a second
kina of task. This also involved a partially screened collection but in
this case the teacher would tell Allan how many counters there were
altogether and ask him to find hOw.many were in the screened portion.
.The observation that Allan could not solve these tasks together with his
likely counting from "one"™ on the first ﬁentiongd tasks indicated that
he could not construct abstract unit items and therefore was in the

figurative stage.
COUNTING MOTOR AND VERBAL UNIT ITEMS

In the teaching session on 14 August 1984 Allan counted the items of six
Q rtially -screened collections and four collections partitioned into two

[E reened portions. Two distinct types of counting activity were

- 323
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observed when Allan counted these collectibns. One type of couﬁting
involved tapping. The other usually did not involve Sequential
movements but occasionally involved nodding. Neither type involved
vocal utterances or discernible lip movements. Nevertheless, as an
inference from the times taken, there was ‘little doubt that Allan
counted each collection from "one". For the firgt task the teucher
displayed five counters and directed Allan to count them. After Allar
had done so the teacher screened &he five counters and displayed three

.
more. The session continued as below. . Nt

. ’KKL
T: How many would that be altogether? . R

A: (Places his left hand in his mouth and makes vertical
movements with his lower jaw while looking at the
teacher.)

T: (After eight seconds; interprets Allan's looking at him as
not understanding.) If I put those (Points at the three
unscreened counters.) with those how many would that be?

A: (Looks downward. After six seconds looks up at the
teacher, and smiles.) Eight.

In the last pa;t,of his solution Allan neither looked toward the
counters nor made any‘movehents. His behavior was consistent with
having subvocally uttered the number words from "one" to "eight"™. This
indicated that his nuﬁber words signified countable items and therefore
he.counted ve;bal unit items. Allan was continuously engaged in
counting the second collection for fifty seconds énd‘dﬁ;ipg that period
he spontaneously restarted the task three timés. Allan}§ :1:$: attempg
to count this collection is described in the féiloying protocol. Seven

counters were screened and three were visible.

T: (Screens tﬂe seven counters and then places three visible
- counters on the desk.) How many would that be if I put
all of those together?

A: (rPauses for five seconds and then places his hands on the
desk. Looks at the screen. Taps three times slowly,
pauses, then taps four times slowly as before. Looks at
the unscreened counters for two seconds.)

Théq he ‘was apparently unable to continue counting when he looked at the
unscréened counters indicates that, when he was looking at the screen

(} pping, he -was counting his mbvemeﬁts rather than items which
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corresponded to the screened counters. His movements merely signifiea
the screened items. Because he was focusihg on his movements rather
than substitutes for the screened items he was not aware that he could
continug to count the visible items. This was an indication that he
counted motor unit items. 1In this teaching session Allan also counted
two collections each of which had been partitioned into two screened
portions. The first of these contained two screened portions of five;
Allan counted moto?'unit items'when counting each portion of this
collection. The second collection pontained a screened portion.of eight

and one of six. Allan solution is described below.

B (Points to the two screens in turn.) Eight, and six. How
’ many altogether?

"A: (Makes eight deliberate movements of the fingers of his
right hand while looking toward the portion containing -
eight counters. Looks toward the screened portion of six.
Makes six nods of his head, each of which involves opening
and closing his mouth by holding his lower jaw and raising
and lowering his head. Then looks at the teacher.)
Fourteen.

When he counted the first screéned portion of eight counters Allan
focused on his finger movements and therefore was counting motor unit
items. Although Allan nodded his head when counting the second portion
it is unlikely that he counted his nods. Steffe et al. (1983} "found no
evidence that ... nods ... are ever taken as countable motor items

[and suggested that] this may be due to the fact that the kinesthetic
feedback ... is automatically used by tﬁe nervous éystem in compensatory
computation that keep's the perceiver's visual field stable" (p. 39).
The most plausible suggestion is' that when Allan counted the second
collection his subvocal number words signified countable items and

therefore he counted verbal unit items.

In the teaching session of 14 August 1984, Allan counted motor unit
items on at least six occasions and verbal unit items on at least five.
In the teaching sessions'that followed Allan frequently counted verbal
unit items but was not observed to count motor unit items. This
indicated that, during tha. period, he was at an advanced level in his

figurative stage.
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FAILURE TO CREATE ABSTRACT UNIT ITEMS -

In his weekly teaching sessions from.19 July 1984 onward Allan was
presented with tasks which from an adult, perspective would be regarded
as subtractive. In one kind of task, usually referred to as ﬁissing
addend, the teacher would place out a collection partitioned into a
screened and an unscreeﬁed portion. The teacher would ‘then tell Allan
how many were in the whole collection and direct him to work out how
many were screened. In a second kind of task the teacher would display
a collection of counters -and ask Allan to ceunt them. The teacher would
then ask Allan to turn away and, when he had doﬁe 30, the teacher would
separate and screen a portion of the collection. Allen's task was to
figure out how manf counters had been screened. Allan coésistently
failed to solve these tasks.until the final teaching session on 12
December 1984. In the excerpt below, from the teaching session on 6
November 1984, it can be seen that Allan fails on a missing adcdend task

in which five counters were visible and two were screened. .

T: (Points to the scregn.) How many under here to make seven
altogether? Five (Points to the unscreened counters.),
and what {(Points again to the screen.)?

A: (Closes his eyes, looks down,'and touches the backs of his
hands to his forehead.) Umm, five! (Guesses.), umm.

T: When I put them together I shall get seven. (after four
seconds) Allan, you cover your eyes. (Removes the screen
while pushing the counters together.) Okay, watch! There
are seven. Now (Places the screen over the seven ’
counters. Removes two which remain screened, while the
other five counters are visible.), how many are under here
to make seven?

A: (After two seconds) Three!

Miseing addend tasks such as tﬁese'were presented to Allan in most of ’
the teaching sessions. The solution described above, in which Allan
apparently could do little more than guess was typical of his soletion
attempts in all but the final teaching session. Examples of the second
kind of task described above were also presented in most teaching
sess;ons. Allan also consistently failed to solve these tasks until the
finel session. The following example, from the Leachlng session on 28
November 1984, was typical; The teacher began by asking Allan to count
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T: (Passes the screen to Allan.) Cover them up with the piece
of paper Allan please. (after Allan screened the
counters) Now reach under and take two away. Without
looking! Use your hands. (after Allan removed two

counters) Now my question is how many are left (Points to
the screen.).

- A: Umm (Thinks for eleven seconds while looking forward and
rocking in his chair.), Four! Five!

T: I shall show you again. (Pushes the two counters under the
screen and then removes the screen.) How many are there
now?

‘A:  Umm (Subvocally counts the collection of ten counters.),
ten!

T:. (Replaces the screen and then removes the two counters as
before.) How many would be there now?

A: (Thinks for seven seconds.) 8Six!

Until the last teaching session on 10 December 1984, Allan consistently
failed to solve missing addend tasks as well as tasks similar to the one
described above. This led to the conclusion that he could not create

abstract unit items.
CREATING ABSTRACT UNIT ITEMS

In his final teaching session, on 10 December 1984, Allan indicated that
hé had advanced beyond the figurative stage. On five tasks he
identified two missing addends of two counters and ;wo missing addends

of three. He failed to identify a missing addend of four counters.

Allan's solutions of two of the tasks are described below.

T: (Places out eleven yellow counters.) I think there are
eleven there. Can you see if I am right?

A: (Counts aiouud while pointing to the yellow counters in
turn.) One, two, ...eleven.

T: (Places out a screen which conceals two red counters, while
' leaving the eleven yellow counters unscreened.) Now, with
these it makes thirteen. "

A: ' (Looks at the screen ror .uur seuunas and then looks up at
" the teacher.) Two!

T: Let us see.
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A: (Lifts up the screen and smiles after seeing the two red
counters.)

T: Oh! Very good!
A: I know that because after eleven comes twelve and thirteen.

T: You Qere“right! (Removes all of the counters except two of
the yellow ones.) Okay, well how many are there now?

A: Two.

T: (Places out a screen which conceals three red counters,
while leaving the ‘two yellow counters unscreened.) Now
with these it makes five.

A: (Looks at the screen for three seconds and then looks up at
the teacher.) Three!

T: (Removes the screen to reveal the three red counters.) Very
good.

Allan indicated that he could now keep track of a continuation of
counting, and in so doing, identify missing addends. He had been quite
unable to do this before. This counting involved creating abstract unit

items.

In his final teaching session he also solved three of five tasks which
involved a comparison of two screened collections. He had failed to
solve similar tasks on each of four éarlier occasions when these had
been presented to him. One of the tasks he solved in the final teaching
session (10 December 1984) involved comparing seven cubes and ten

counters. Allan's solution is described below.

T: (Places out seven cubes.) Let us have that many jockeys.

A: (Looks steadily at the cubes for nine seconds and does nat
point.) Seven! :

T: Will you cover them up! There are seven jockeys (Places
out ten counters.). Tell me how many horses we have?

A: (Covers the cubes.and then looks steadily at the counters
for twentv-four seconds and does not point.) Ten!

T: Will you cover them up! (Slowly touches the screens in
turn.) Seven jockeys, ten horses, how many horses would
not’ have a jockey? :

A: Umm (Looks at the teacher for three seconds.), three!

) T: (Motions Allan to remove the screens.) You try it. Let us
v figure it out. Let us put the jockeys on the horses.
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A: (Siowly puﬁs a cube on each counter. Then looks steadlly
L at the counters which do not have a cubé on them, and

after six seconds looks up at the teacher smiling. ) It
waa!

Al}an's ability to solve tasks in his final teaching session thaf, in
'p:evious sessions, he':esponded to by guessing, indicated that a re-
o:ganizatlon of his counting scheme was undeérway. THiS'suggested that’
he was advanc1ng to the ope:ational stage in his construction of the <

counting scheme.
. FINAL REMARKS

‘This paper describes one aspecﬁ of a teaching expe;imenq which wasA
designed to extend the-théo:y of children's counting types (Steffe et
al., 1983). It is clear from the teaching experiment that the theo:x
can guide the teéchiné of five &ear old children who are p;enuﬁericai,
and can be used to explain and predict the mathematical behavior of such
jchildgen._ All four children who participated in the teaching experiment
madé'Substantial progress in the construction of thei:(counting schemes
during their kindergarten year (cf. Wright, 1988). .kllan, whose ]
progress is described in this‘pabe:, was observed to construct @otor and
yerbal unit items when counting the itéms of screened collections &nd,

in his last session, he created abstract unit,items on subtractive

tasks.
REFERENCES
Cobb, P. & Steffe, L. (1983)". The constructivist researcher as teacher
and model builder. Journal for Research in Mathematics Education, 14,
-83-94.
Steffe, L. P. (1984). Communzcatzng mathematzcally with children.

Paper presented at the Fifth International Congress on Mathematical®
Education, Adelalde, Australia..

Steffe, L. P., -Cobb, P.,-& von Glasersfeld, E. (1987). 1In press.

Steffe, L. P.; von Glasersfeld, E., Richards, J: & Cobb, P. (1983).

Children's counting types: Philosophy, theory, and application. New
York: Praeger. .

‘Wright, R. J., (1988). Communication in early childhood mathematics.
pPaper prepared for the Sixth International Conference on Mathemat1ca1
IPHucation, Budapest, Hungary.

ERIC -~ 329 |

Aruitoxt provided by Eic:



- 657 - -

SAY 1T*S PERFECT,- THEN PRAY IT'S PERFECT:
THE EARLY STAGES OF LEARNING. ABOUT LOGO ANGLE.

Vicki Zack
MeGil! University, Montreal, Quebec

Abstract: The longitudinal naturallistic study has been
“investigating elementary school children’s understanding of
angle. Findings indicate that while discoveries about angle
are indeed being made, the pace of the learning has been
slow.- There is a need for more time and continuity in the
learning and teaching of Logo,. and -for more expiicit
teacher-elicited connections between Logo geometry and
school geometry, if Logo is to play a role in the -
nathematics curriculunm.

Within the emerging nucleus of work concerning the learning of the
concept of angle in the Logb environpent, there are a number of stﬁdles
which devote attention to the early phases of the learning (Hillel and

_Erlwanger, 1983; Hillel, 1984; Noss, 1985; Hoyles, Sutherland and Evans,
1985; Kieran, 1986). This phper‘focuses on the lea}nlng about angle which
takes place in the early stages of work with Logo-- the first"30 hours or
so of Logo learning.

In my-study, the exploratory groplng" stage tovard the learning of
~angle has been more prolonged, on the part of some of the children, than I
had anticipated at the outset. This longitudinal study in a naturallstlc

elementary school, and then secondary school, classroom computer
laboratory setting has traced some of the children's work in Logo
(approxlmately 12 sessions. per year) from grade 3 (8 to 9 year-olds) to
grade 7 (12 to 13 yearfoids); and.yet the majority of .the children can be
seen, in grade 7, to be still at the ex}loratory stage of work with
angles. The difficulties experienced by the children in this study confirm
some of the flndlﬁgs reported by the afore-mentioned researchers, but the
pace of the learning has been siower. The discrepancy in pace between this
study and those cited above might in part be attributed to differences in
setting and curriculum agenda (for example: assigned tasks; time frame;
mathematics agenda; staffing by research and matﬁpmatiés experts). What
is certain is that the children have more difficulty with the ‘séemingly
simple’ aspects of Logo than the litératu;e would sometimes have us
pelieve.

Research was supported by a Social Sclences. and Humanities Research

'Couqcll Doctoral Fellowship.
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In a previous paper (Zack, 1986), | presented tindings concerning the
level of attainment vis-3d-vis angle of all of the 23 (grade 5, 10 to 11
year-old) children in my.study, using as a means of focus their
understanding of "right angle.” This companion paper will feature two of
the children from that class. It will touch upon (a) their difficulty with
deteraining the size of a 90" and other turns; (b) the language the
children use to describe turtle’s location, heading, amount of turn; (¢)
their problem solving and recording strategies; and (d) the fact that they
do nZt»hake connections between Logo geometry and school geometry.

RESEARCH DESIGN

The setting was a private, nultlllngual Jewish day school. All
partlclpants (11 girls, 12 boys) came from a middle class background. In
1985-86, the heterogeneous grade five class of 23 chlldten. split into two
groups, attended twelve 50-minute Logo computer sessions in the computer
classroos equipped with 8 Apple lle -lctoconputets; Apple Logo | software,
and one printer. The axbettrLogo teachar, Monica Shapiro, used an
individual{zed apptoaéh with the student palts.‘The projects were child
selectad.(exceptlon: Monica assigned an across-class task during the last
sesgion). No changes were made to the Logo software (exceptions: use of
sloutqttle in grade 3; addltloﬁ of a HELP comsmand to the stattqp aids to
help students check turtle’s heading when needed). The researcher was a
non-participant observer. An obgservational-clinical .research design w;s
used. The data inciuded: the researcher’s, the teacher's, the children’s
no;es; interviews with the Logo teacher; three clln;gal interviews with
the children (one at the start, one at the close of -the grade five
session, 1985-6, with 23 children; one at the end of the grade six year,
Hay 1987, with 56 children); and in-depth videotape records, transcribed,
of the work of five pairs of children (both the Logo work and the camera
record of their interaction). Monica, the Logo teacher, wanted the
children to learn the Logo theorems via exploration, and via her input
when her help was solicited; but the learning of mathematics concepts via
Logo was not the primary objective in her agenda.

0t the tive pairs whose work was vldeotaped;_;tansctfped and
analyzed, | have chosen the work of one pair to discuss in_this paper,
that of Lilly and Rina. Their attainment in relation to the rest of the
class was évetnge; on the class grid, they will be found in the middle
range of the class (Zack, 1986, p. 100).

O
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STRIVING TO MAKE SENSE

The subtitle "Striving to make sense" pertains both to the children’s
trying to make sense of Logo angle, and to the researcher’s trying ‘to make
sense of what the children were doing and saying vis-a-vis their turns.
Lilly and Rina, and 18 of the other children in the class, used a purely
visual (Kieran, Hillel, and Erlwanger, 1988) feedback gtrategy for
deteraining inputs to RT/LT. i have termed it a gontext-referenced
strategy, for they only made decisions on inputs to RT/LT when in
{iosediate mode, using the screen as contextual reference. Rina and Lilly
used their own terms, what Kieren (1987) calls athno-nathamatlcql
language, to describe the turtle’s location, and amount of turn (See
below, eg. "it’'s straight,” "go halt,” "go all the way around”). It was
only via contextual reference to the videotape that the researcher was
able to comprehend how Rina and Lilly's verbal descriptions matched the
end result of the back. and forth, left and right, axplofatory moves that
they had- made. !

PROBLEM SOLVING STRATEGIES AND RECORDING STRATEGIES

Lilly and Rina used the turtle to navigate (Sylvia Weir) around the
page as they drew. Because they did not yet have a sense for the size of
the rotational turn, they would "tiddle around” (Rina, May 1987) until it
looked like it was perfect. They would then often say."It’s perfect,” and
sometimes pray aloud that it be perfect.

They recorded step by step in their Hilroy book concurrently with
‘their moves. They combined on paper by bracketing in pencil the "like"
inputs. (There were no occurrences of the combining of unlike inputs,
either FD X-+ BK Y = FD (X-Y), or, more difficult, RT X + LT Y = RT
(X-Y).) Lilly and Rina used the editor as a (hopetully) accurate trace of
their immediate mode commands. No debugging was done in the editor. Rina
especially subscribed to a "Be safe but sure" aotto concarnfng her Hilroy
entries: "I’m not taking any chances (Dec. 4) . . . . I'll write down the
nistake. As long as it turns out (Dec. 18)." In checking their Hilroy
notebook inputs when atteapting to find a bug, they could only resort to
reconciling the number and sameness (and for Lilly, the aqulvalanca)'or
the actual written entries. In trying to resolve an error in angular
rotation, they were never heard to use a "Does it make sense?” test, most
probably because they did not have a concept of the size of the turn
against which to gauge their input.
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EXPLORING THE RIGHT ANGLE TURN

| would like to consider more closely the difficulties for Rina and
Lilly entafled in what might seem to an observer to be a simple task,
namely that of constructing a rectangle. In grade 3 the children had been’
rgiven" RT/LT 90 for making corners. And yet when Lilly and Rina embarked
upon the first part of their chosen project, the rectangle part of the
tape/stereo "ghetto-blaster” they wished to make, they had to work through
each corner turn. The ebisode below took place midway through their Logo
segsions (November 20, 1985--Session #6). | chose it as a focal point of
reference because {t offered a glimpse at the children’s moves, their use
of language, their awareness of visual cues which signal error, and their
interaction with neighbouring peers vis-3-vis their product.

They arrived at the first turn (marked 1 below) by keying RT 35, RT
35, RT 10, RT 5. Lilly declared: "lt's»straight.".As soon as they
proceeded with Line A, they saw that the line was Jagged. Their evaluation
followed. Lilly said, "lt's good™; Rina said, "it's bad"; Lilly countered
with: "lt doesn}t-natter." [However, as became clear in subsequent
comnments, the jagged line did bother them--Rina especially‘- very much ]

At this point they let it be. Rina expressed ) A 2
surprise at. the conbined sum--85 and stopped

to reconfirm with Lilly that it did - indeed 8
take "RT eighty-five" to "get all the way

around.” i 4 N 3

For turn 2, Rina used the information from the previous turn. She
stated: "We wanna go half, we want RT 85." (It is only by contextual

- ‘reference to the screen, and by the fact that one knows that they are
'almlng for a "corner” that one follows that "all the way around” and "ue

‘'wanna go half" both refer to a quarter turn.] Rina and Liily then
proceeded to disagree about the input, and it sounded as if they were
still digsagreeing when they both decided on an input of RT 95. which, with
serendipity, was-the correct input. The subsequent line, Line B, was
gtraight. -

-Turns 3 and 4 were the results of inputs of 90; there were

"lateralisation errors, but both children agreed that 90 was the input, and

they used porrectlons 'of 180 when'needed. One might think that they'had
now grasped the importance of 96 in making a smooth corner with straight
line arms. It was clear however that they had not yet mastered the 90 when
one listened to Rina and Lilly's interaction with nefghbouring peers (Russé
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chhael) which followed shortiy after the teacher had come by and "ticked
off" that the rectangle part was done.:

Russ: Rina, Rina- Shouldn’t the line on top be straight?

Rina: Ya, but we didn’t do that.

Russ: So why didn’t ya do it?

Rina: We didn’t do it. (Points to the CRT) It turned out like that.

Russ: Ya, 'cause you did something wrong.

Rina: No, we didn’t do °anything wrong.

Lilly: °No, we didn’t.

Russ: (inaudible)

Rina: (getting back to work, leafing through the pages of her
recording book) .
'Kay, we have to get into the editér.

Michael: You DID, 'cause you went downwards. (inaudible)

Russ: A line would npever be like that..

Rina: You wanna bet it would? It happened *(? to me a couple
o' times)

Lilly: . *BIG DEAL! (Now sitting straight, looks at her book)

Rina: 0.XK. Logo editor. (Looks away from Russ and Michael,

signalling the end of their interchange with the boys.)

The jagged .dine served as a cue to Russ and Michael, as it had. served
to Lilly and Rina, that something was wrong. But the giris did not respond
wel! to the peer intervention by Russ and Michael. Rina and Lllly;s-
lukewara reception of Russ and Michael's comments may be due to the fact
that (1) the boys were offering an unsolicited,negative evaluation of
their product; and (2) Lilly and Rina had just completed the "rectangle”
part of their project and were anxious to'get on with the nexé part of
their work.

I wondered when reviewing the tapes whether Lilly and Rina had
_desisted from debuggtng because they were rushed, or because they were
unable to correct. | therefore looked at subsequent tapee clogsely and
noted evidence as late as January 29, 1986 that Lilly was not completely
in command of the 80 ag input. In the January 29 teacher-agssigned
across-class task requiring squares, Lilly groped for the input to LT ( LT
S0, LT 19.fLT 11), then suddenly cleared the screen and said sharply: "LT
901" During the clinical interviews in Feb. 1986, and in May, 1887, |
asked Lilly and Rina about the rectangle. When asked (in Feb. 1986) what
gshe could have done differently lh making the rectangle, Lilly was able to
state that she would have had to turn RT 90 "to make (the line) straight.”

FRIC -+~ - 334

Aruitoxt provided by Eic:



- 662 -

Rlna, however, 'in both the February 1966. interview, and in the Hay 1987
lntervldw. asserted that she did not know how she could have made "that
corner even. . . .1 don't know why that (i.e. the jagged iine) happens.”

Durlng the February 1886 (Zack, 1986) and the May 1987 interviews, it
was clear that Rina and Lilly had pade progress in their understanding of
‘certain aspects -of angular rotation, ﬁhough there were stiil gaps to be
filled. Rina was abla to identify a right aﬁgle in different orientations
(on paper). She was able GQ use it as a point of reference when needed.
For example, in provlng that' the blackboard angle must be obtuse, she
showed how it was more than 80; 14/58 - students were seen .to use 90 as a
reference in this way. Rina was not-able. to use- an analytlc (Hillel,
Kieran and Erlwanger, 1986) problem- solvlng approach to determine the
supplement for an angle of 175. She stated that she "would fiddle around”
until she got uhere she wanted to be. She was not able to use analytically
.the classroom geometry lnformatIOn ahe knew by rote, namely that there are
180° in a straight line. She vag aiso stlll uorklng toward consolidating
the fact that the input to RT/L1 is equal to the number.of degrees in an
angle (Zack,” 1968). . .

.Lilly vas able, with promptlng, to flgure out the amount of turn _
needed tor the supplement of a 50° turn. (A total of 10/56 or 17.8% of the
studentg interviewed were able to use an analytic approach with prompting;
and 5/58 or 8.9% of the students were able to. do so without prompting.l
Lilly used a method employed by three of the atudents who were able to use
an analytic approach. She first moved the cardboard turtle through a turn
of 90; and then worked within the one remaining. quadrant, determining that

- the complement of the given angle -was 40.

IMPLICATIONS FOR THE. CURRICULUM--NOV UHAf?

The pace may aeem slow, but the learning offers a rich foundation upon
which to build. For Lilly and Rina, the right angle and its relationship
to other angles would be a frultful startlng polnt, in view of the time
they apent maklng aome . gense of it. The flndings indicated that Rina and
Lilly, and the majorlty of\QPe chlldren lntervlewed, had not béen able to
pake connections between Logo geometry\and school geometry (Zack, 1988),
nor to uork analytically ulthln\the Logo envlronment ltaelf, indeed, the
fact that t;e?‘were "draulng precluded the need to do'ao. And yet as the
project drew to a close in January, 1988, 1t was clear that major
obstacles lay in the way ‘of future progess in the chlldren 8 learnlng of
angle via Logo, namely- (1) the children's perceptIOn about Logo.

. . \‘ .
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(2) the time frame; and (3) WHO was going to help make the connections.
The perception of some of the children interviewed in Hay‘1987 wag that
Logo was "just drawing” (13/54, or 24%); ‘the majority felt that they had
learnt every(hing there was to know, and that they had outgroun;LOgo by
grade 5 or 6. When asked "Do you feel that Logo can help you learn about
angles? How?", -eleven out of the fifty-six children interviewed, including
Lilly, said that they never tﬁought of angles while doing Logo. But:
certainly.a teacher could highlight the vital connections. The ques(ion
then is when and who. It was the glenentary Logo teachérﬁs (ﬁonica's)
expectation that the high school currlcuium uou!d be the most appropriate
stage for the explicit invoking of connections., At the end of ‘the grade 7
Logo component (again apprbxlnately'10-sesslons in November to January,
'1987-88, and the jast year of Logo), it was clear that Monica's
expectation wvas not going to be realized. The reasons were, brietly, as
follows. The computer teacher spoke of the limited time span He‘could
allot to Logo within the grade seven computer curriculum, he noted the
pupil-teacher ratio (1/24), and the desire to cover topics such as
"variables" and programming skills. The computer teacher (who had’ also
taught the mathematics grade 7 course) overestimated what the children
knew about angles and Logo geometry. The two Grade 7 mathematics teachers
-1lntervleued gtated that they did not make any connections to Logo geometry
in their mathematics classroom; one said this was due 1n part to her
unawareness of what the children had learnt. ' '

It the siow pace of the learning detected in this study reflects the
pace in many current Logo school programs, this factor may in part explain
the frustration with Logo that Watt and Watt (1987a) have reported
teachers are feeling. The Watts (1987b) have cited teachers’ complaints
that "Logo isn’t working” and that "students‘gren't learning iaportant
pathematics and computer science through exploration and discovery.” We
are in some danger, then, of throwing out the proverbial "baby with the
bath water." Findings from this study indicate tﬁat there is a_need for a
more concentrated, continuous time frame for the Logo jearning. a need for
an underlying but pot restricting ma(hematids agenda, and a need for

_ teacher-elicited explicit connections to be made concerning both the
under lying structures of Logo geometry. and the relationship between Logo
geometry and school geonetry. lf Logo is to piay the contributing role 1t
can play in the mathematics curriculum.

—
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SUBSTITUTIONS LEADING TO REASONING
Nurit Zehavi
Thé Weizmann Institute of Science, Israel

A software package'which combines skill and, reasoning for

substitution in algebraic expressions was developed. in the

Department of Science Teaching at the Weizmann Institute. A

study based on the .gmplementation of the software was

conducted (n=85), and teachers were involved in cognitive

workshops. The workshops incorporated aIps chometric method

that applies an index called the Caution Index, which detects

unusrual response patterns. The research instruments were a

test which required a combination of skill and 1logical

reasoning in substitution tasks, and the last program in the

software (a game). The test's results can be related and

explained by the kinds of effect of the software on various

types of student. Observation of students playing the game

and evaluating their achievement of thé learning goals led to

patterns for adaptive implementation of the software for

individual students. ’ : }
The problems and difficulties which students. have in algebra have been
the shbject of much investigation (Rosnick and Clement, 1980; Matz,
1981). ‘According to Wheeler & Lee (1986), the algebra school currievlum
forces pedagogy to oscillate inconsistently between presenting algebra as
a universal arit;metié and as a formal symbolic system. This affects
student conception of Justification in algebra; for example, a single
numerical substitution can 1lead to incorrect reasoning and the
"Justification" for changing an algebraic equation. ) R
In the traditional repertoire of activities in the Jjunior high school
algebra curriculum, the student is mainly concerned with manipulation of
expressions, word problems and solving equations and inequalities. The
introduction of microcomputers in the classroom enables the design of
novel activities which may-help to bridge the arithmetics/formal symbolic
Jivide. These activities fall into three main types: the learning and
practice of algebraic skills as part of a strategic environment,
algebraic tasks. involving programming, and ' microworlds that provide
access to multiply linked representations.
Kaput (1986) believes that novel software environments will help shape
the direction of mathematics tedching and learning, if reasonable teacher

training support is given. On the other hand, he mentions (in reiation

The author is grateful to Naomi Taizi and Nira Schwarzberg for their
contribution to the development of the software and to the study.

anks to Prof. M. Bruckheimer for his contribution to the consoclidation
of the ideas presented in this paper.
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to ‘an example of a software in algebra) that we are a long way from
understanding how to exploit this new tool pedagogically.

The Department of Science Teaching at the Weizmann Institute maintains a
curriculum projept in mathematics which integrates educational cognitive
iesearch with the practicel activities of development and implementation.
This integration applies equally to the development of software within
“the curriculum project (Zehavi et al, 1987; Zehavi, in press). In this
papef’ we describe a lstudy based on the implementation of a software

package of the first type'above with focus on cognitive workshops with -

teachers as part of the guidance process.

The workshops incorporated a psychometric method that applies an index
called the "Caution Index", which detects unusual response patterns and
is obtained from a atudent-problem curve developed in Japan by Sato (see
Tatsouka, 1984; Birenbaum, 1986). A binary data matrix is -suitably
téarpanged so that an unusual response pattern for either an item or a
student can easily be identified. The anomalities expressed by the
caution indices can be related and explained by the kinds of effect of
the software on various types of student

THE SOFTWARE

The rationale in the dévelopment of the software is that we want to offer
aétivities which combiﬂe .8kill and reasoning for substitution in
algebraic expressions. The activities involve one-dimensional dynamic
presentation of the role of ‘parameters in algebraic expressions. The
software contains two tutorial units and two competitive games.

The basic task is to separate a list of increasing numbers, according to
the sign of the Eesult of .their substitation into a given expression. At
the beginning the tasks involve exéressions. for which there is only one

change of sign:
b

X + a

b(¢x + a) or

In Figure 1 the numbers to the left of the dividing stroke give negative.
results when substituted in x - 7 and the numbers to the right give

-

positive results.

O
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-6 -1 -2--2 1 3] 8 18 15 19

\ o )

-23-18 -14 -9 -6 -4 1 3 '8 D

Figure 1: Substitution in x - 7.

A game forAtwo, *Warring Expressions", offers a strategic environment )

which requires mathematical logical reasoning in addition to skill-drill.
Each player gets a random list of numbers, which remains throughout the
game and an open phrase which ‘changes at each turn (see Figure 2). The:
aim of each player is to be thé f‘irsi: one to "turn on" all the numbers in
his/hér list. To achieve this,.at each tﬁrn, a player can choose to
“turn on” numbers in his list that give positive resﬁlts,‘or "turn off"
numbers that .give negative resulté in the opponent's list. ’

[ ahbbbbdllls |
AALLLLLALL

i

Player 8

Play"ar A
H 7

_

To illustrate the skills and reasoning which are ;invpl\}ed,,-_..we coné;der

Figure 2: Warring Expressions.

the situation in Figure 2. It is player B's turn. If (s)he chooses 1ist
B, the divider should be moved to the right and placed between -10 and
-7, lighting of the humbers to the left. (If a player places the divider
incorreétly (s)he,loses the turn. This may . possibly happen here because
of difficulties in dealing with the double negative, in the list and in
the expression -9-x.) If -hlayer B chooses 'li_st A, in order to cause
’ his/her opponent trouble, the divider should be placed between -10 and
-5, and then the three numbers to the right'will be “turned off". Note
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that at each turn a player can (and should) consider the other player's
expression. In the ékample. if player B does not stop player A, the
latter can win the geme in the following move. ’
The next tutorialiunic deals with expressions which have two changes of
sign: '

ix + a

(ix + a)(x + b) or X+ b

The following game, "The Expression Strikes Back”, requires a higher
level combination of ski;l_and reasoning. This game and its role‘in the
study will be described later.

THE STUDY A
Three Grage 8 classes in one junior high school participated in the
study. Une of them was the experimental class and the two other classes
formed the control group. The three classes were of about the same
average ability as measured by an achievement test administered by the
school teachers: .. '
Experimental class (n=28): mean score 75.7, standard deviation 13.4.
Control classes (n=57): mean score 74.6, standard deviation 14.2.
The software was presented to the expertimental class after the students
were taight: the techniques for solving linear equations and inequalities.
Théy worked on theAthree first programs {(the .first tutorial, the first
game and the second tﬁtorial) for three lesson periods. Thé study was
conducted as part ot an in-school,cooperative‘guidance system and thus
the teachers of the three classes and three student-teachers observed the
students using the software.

" A test which required combination of skill and logical reasoning in

substitution tasks was given to all three classes. Student responses
were checked by the researchers and the Sato statistical method was
applied. The findings were described and discgssed with the teachera in
cognitive. workshops.

Test results and discussion

Student scores. for the experimental class had a correlation of 0.73 with
the school-achievement test scores. As expected higher correlation was
found for the control classes since no treatment was given.

The substitution test contains four parts. In the following we: bring the

O o N
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results for the two groupé on the last two parts. An asterisk (*) is
used to indicate an item for whiéh the caution index (CI) was found to be
larger than 0.3. This indicates the existence of an anomality in the
response pattern; that is, some low s¢orers on the test answered that
item cofrectly and some high scorers missed it.

The third part requires high level combination of skill and reasoning,
regular techniques do not help. The items were presented in ascending

order of complexity as can be seen from the results.

""" Group | Experimental | Control
Item n=28 n=57
S T B
10 75 51%
11 68% 39
12 54% 11
13 50 8
14 43 0

Table 1: Results for Part III
The difference in favor of the experimental class, probably due to the
effect of the software, ig very clear. We found high caution indices for
Items 9 and>10 in the control group which means that some low scorers did
not stick to techniques and reasoned correctly. Items 11 and 12 are of
interest for the experimental group.
Item 11: {xlx < 2} is the truth set for 4(x + |_|) < O.
¥ill in the blank.
Item 12: {x|x (:) 3} is the truth set for -2(x + |_|) > 0.
Fill in the blanks.
These two items are the only ones in this part that involve an expression
of the form (x + |_| ). where the blank has to be filled by a negative
number. In the software, students had a chance to practice with
expressions of this sort and we observed difficulties. It seems that the
feedback given to some generally low achieving students caused their
awareness of such situations.
The last part deals with quadratic expressions, and the students were
also asked to generalize their answer.'
For example..Item 17:
O
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The number -3 belongs to the truth set of (x + 6)(x + 1”1 > o.
Which numbers can fill the blank?
The results are given in the table.

| Group | Experimental | Control
Item n=28 © n=57 .
T 9% | 81
16 86 61
17 75% 39
18 61 39
19 B 37
20 ©32 1. 9 i

Table 2: Results for Part. IV

. Here again we..can compare the responses of the two groups and discern the
possible effects of the software. " From the student-problem data matrix, A
we can also detect the students who seem to benefit more than others.
Let's look at two possible solutions of Item i7: One can argue as
follows: since -3 + 6.is positive, the second factor must be positive,
and -3 + |°| is positive for 71 > 3. Another way is to substitute -3
and obtain & numerical inequality (-3 + 6)(-3 + |_| ) > 0, simplify to
obtain -9 +3 . l—l > 0 and. then solve for |_| . The software provides
opportunities for arguments such as those in the first solution. 1In
fact, 21 students out of 28 gave a correct answer using such arguments.
Some of them were low ‘scorers- on the whole test (CI=0.43). Among the 7
students who made mistakes, 2 used the second method. In the control
group 14 students (out of. 57) used the second method, of which, some
solved it correctly and others made mistakes.

" We notice that ‘Item 17 includes an expression of the type (x' + |:| ) as
in,; other items with anomalies in the response pattern. Item 18 was
similar but more difficult with a low caution index (0.12), it involved
ah expression of the type (x - |_| ).

Creative observation .

In the cognitive workshop the teachers considered the structure of the
-software in depth. They were now ready. to observe individual students
plwing the second ganme, The Expression Strikes Back (see Figure 3). A
brief description of the game follnws, ’

ElC
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(Lhitlassdd

Choose a rod

T
2-X -

. \:, )
L - 4 _/
Figure 3: The Expression Strikes Back

There is one list of numbers, two dividers and an expression ot the four
X +

(a+x) (x+ || ), or Numbers are "turned on" if they give
a positive outcome when substituted in the currént expression, and turned
off if the outcome is negative. The first player aims to "turn on" all
the numbers in the list and the second aims to turn them off. In Figure
3, it is the turn of the second player, who has to choose dng divider,
move it and then fill in the blank so that the dividers separate those
numbers that give a positive result when substituted in expression - from
those which give a negative result. In this case, if the player reasons
correctly, (s)he will prefer to move divider 1 to the right of the number
-1 and write -13 in the blank. The "computer" will then turn off the
lights, but the light above the number 3. In the design of che game we
had two intentions. To provide.opportunity to crystallize and generalize
the tasks of the first three programs, so that the learner will achieve’
the goals-of the software. At the same time, we wanted to be.able to
evaluate student actions. Therefore, we designed it in such a way that
it is, in fact, free of strategic considerations (which creates "noise"
in the evaluation process). However, since the tasks and the rules are
quite complex, the game attracts students before they have gained mastery
and is thué a learning environment. ]
We chose six students whose achievement differed as measured .by" the
'substitution test and who had different chption' indices, thus
representing various response patterns. We agked the six téachers and
student-teachers to play the gaﬁe ihdividually with the students. The
teachers were instructed to make the legst move, with no explanation and

to record and assess the student's actions. Based on their observation
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they suggested patterns for ei’fective implementation of cﬁe software
includiné related ‘worksheets for individual students. ASome of the
observation protocols and teacher suggestions will be presented in the
talk.
CONCLUDING REMARKS

There exist several attempts to use computer software in the teaching of
investigation of algebraic expressions by using graphs of function. Such
prosentation requires formal - interaction of algebraic and graphical
concepts. Our experience with Junior. high school algebra teaching
indicates that informal one-dimerisional presentation could serve as a
preparacor.y stage. This was our starting point in the development of the
software described above. Tue idea was to enhance student ability to
combine skill e‘md reasoning.

Another aspect of the study was teacher involvement in the evaluation and
adaptation system. A repetition of the method in some more schools will
help us to fomalize_ diagnostic patter}xs for effective implementation
which willl be used in the f‘urther development of flexible adéptive

versions of the software.
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