
DOCUMENT RESUME

ED 411 127 SE 056 279

AUTHOR Damarin, Suzanne K., Ed.; Shelton, Marilyn, Ed.
TITLE Proceedings of the Annual Meeting of the North American

Chapter of the International Group for the Psychology of
Mathematics Education (7th, Columbus, Ohio, October 2-5,
1985).

INSTITUTION International Group for the Psychology of Mathematics
Education. North American Chapter.

PUB DATE 1985-10-00
NOTE 393p.

PUB TYPE Collected Works Proceedings (021)

EDRS PRICE MF01/PC16 Plus Postage.
DESCRIPTORS Academically Gifted; Affective Behavior; *Algebra;

*Arithmetic; Beliefs; Cognitive Development; *Computer Uses
in Education; Educational Research; Elementary Secondary
Education; *Geometry; *Mathematics Education; Metacognition;
Problem Solving; Sex Differences; Spatial Ability; *Teacher
Education

ABSTRACT
This proceedings from the annual conference of the North

American Chapter of the International Group for the Psychology of Mathematics
Education includes the following topics and authors: area measurement (C. B.
Beattys, C. A. Maher); error patterns (H. C. Bebout); formative evaluation
(J. C. Bergeron, N. Herscovics, N. Nantais); interactive computer environment
(J. L. Bohren); emotion and cognition (L. Brandau); meaning (C. A. Brown, T.
J. Cooney); misconceptions research (J. Confrey, A. Lipton); variable (C. L.
Crook); number sentences (E. De Corte, L. Verschaffel); teacher attitude (L.
J. DeGuire); arithmetical schemes (B. A. Eshun); everyday problems (R. Even);
teaching models (E. Filloy, T. Rojano); problem solving (M. L. Frank);
similarity concepts (A. Friedlander, G. Lappan, W. M. Fitzgerald); word
problems in high school (C. Gaulin, A. El Boudali); heuristics (G. A.
Goldin); problem solving (G. A. Goldin, J. H. Landis); metacognition (L. C.
Hart, K. Schultz); proportional reasoning (P. Heller, T. R. Post, M. J.
Behr); algebra (N. Herscovics, L. Chalouh); multiplication (R. Howell, B.
Sidorenko, J. Jurica); word problems (J. J. Kaput, J. L. Schwartz, J. S.
Poholsky); algebraic equations (C. Kieran); linguistic model (D. Kirshner);
learned helplessness (P. Kloosterman); teaching strategies (J. R. Kolb, W.
Truman); error patterns (V. L. Kouba); authoring languages (R. Lesh); problem
solving (C. A. Maher); children's heuristics (C. A. Maher, A. Alston);
chronometric analysis (J. Mestre, W. Gerace, A. Well); predicting achievement
(M. R. Meyer, E. Fennema); preservice attitudes (D. Miller); computers and
mathematical thinking (J. M. Oprea); decimal concepts (D. T. Owens);
preservice views (J. Owens, E. Henderson); iteration (M. K. Prichard);
inclusive solutions (S. K. Reed); research methodologies (D. Reinking);
neuropsychological research (L. J. Sheffield); geometry and computers (M.
Shelton); auditory perception (G. B. Shirk, C. 0. DeFosse); diagrams (M. A.
Simon); anxiety (R. G. Underhill, J. R. Becker); arithmetic books (J. van den
Brink); symbolic algebra computers (R. H. Wenger); and representational
schemes (G. B. Willis, K. C. Fuson). Symposia topics are: research framework
for concept and principle learning (J. L. Kolb; L. Sowder; L. V. Stiff; P. S.
Wilson); multifaceted cognitive domain: implications for teaching (D. Buerk;
R. L. Dees; M. A. Farrell; J. L. McDonald); and Logo and mathematics learning



+++++ ED411127 Has Multi-page SFR--- Level =1 +++++
(S. B. Ludwig, T. E. Kieren; J. Olive; P. W. Thompson; W. Watkins, G.
Brazier; P. S. Wilson). (MKR)

********************************************************************************

Reproductions supplied by EDRS are the best that can be made
from the original document.

********************************************************************************



PROCEEDINGS OF THE

SEVENTH ANNUAL MEETING

PMEMA

NORTH AMERICAN CHAPTER
OF THE

INTERNATIONAL GROUP
FOR THE

PSYCHOLOGY OF MATHEMATICS
EDUCATIO

U.S. DEPARTMENT OF EDUCATION
3flice of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

his document has been reproduced as
eceived from the person or organization

originating it.
3 Minor changes have been made to Improve

reproduction quality.

Points of view or opinions stated in this docu-
ment do not necessarily represent official
OERI position or policy.

_J

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
k INFORMATION CENTER (ERIC)."

COLUMBUS, OHIO

2-5 OCTOBER 1985

2
BEST COPY AVAILABLE



PROCEEDINGS OF THE

SEVENTH ANNUAL MEETING

PME-NA

NORTH AMERICAN CHAPTER
OF THE

INTERNATIONAL GROUP
FOR THE

PSYCHOLOGY OF MATHEMATICS
EDUCATION

EDITED BY

SUZANNE K. DAMARIN
MARILYN SHELTON

COLUMBUS, OHIO

2.5 OCTOBER 1983

3



PREFACE

The papers prepared for the seventh annual meeting of
the North American Chapter of the International Group for
the Psychology of Mathematics Education reflect the numerous
ways in which mathematics education has evolved over the

decade since the organization was founded in Karlsruhe, West
Germany. Especially apparent is the diversity of
Psychological studies that are relevant to new research in
Mathematics Education.

While cognitive studies have been the predominant area
of psychological influence in past meetings, the present
volume reflects the importance of other areas of Psychology
as well. Studies reported here include many which focus
upon variables from the affective domain; not only are
studies of attitudes numerous, but so, also, are studies of
the relationships among content-related beliefs and
mathematical behavior. Studies based upon new theories
concerning the relationships between physiological variables
and learning are also represented.

The influence of modern technology upon mathematics
education and related research is also evident in these
pages. More than a dozen papers report on investigations in
which the computer played a significant role in instruction;
while some of these studies investigated the effects of
computer mediation of traditional topics in mathematics
others examine the utility of computer programming
instruction as a means for teaching thinking processes
which, in the past, have been associated with formal
mathematics instruction.

Another way in which these proceedings indicate change
from past meetings is the number of papers which focus
primarily upon methodological issues.

Even as these proceedings reflect change in mathematics
education research, they also reflect continuity in the
depth of study of important topics. Thus, while many topics
are new to these meetings, the 'modal paper* is related to

mathematical problem solving and reflects continuing
advances in this very important area of Mathematics
Education research.

ii
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From the point of view of organizing these Proceedings,
the chahges outlined above have had interesting
side-effects. Whereas previous PME-NA Proceedings have been
organized into major categories, the standard divisons did
not seem appropriate for the current volume. Many papers
crossed categories, while others had as their primary foci
topics whiCh did not fit the traditional categories.
Therefore, the papers have been arranged alphabetically by
author; symposia are presented at the end of the volume. In
order to compensate for, and perhaps improve upon, the
categorization, a topical index has been constructed. Each
paper appears somewhere in this index; some papert appear
more often.

The atseMbly of these PrOceidiAgs would have been
impossible without the thorough and thoughtful work of
Elizabeth Rhyher and Marilyn Shelton, both of whom spent
many; many hours on this project. Many thanks to both of
them.

K. DaMarih
Columbus; Ohio
October 1985

Suzanne
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APPROACHES TO LEARNING AREA MEASUREMENT AND ITS RELATION

TO SPATIAL SKILL

BY

Candice B. Beattys and Carolyn A. Maher
Rutgers University

ABSTRACT

National reports of children's performance cite
deficiencies in understanding of area and its
measurement. This paper, the first in a two-part
study, reports research which examines: (1) the
effectiveness of the integration of concrete
embodiments with 832 children in grades 5-7 for
area measurement instruction and (2) the
relationship of achievement to a student's
spatial skill. Results from two-way ANOVAs
indicated significant differences (.01) on both
the post and retention tests favoring the groups
that experienced manipulative treatment. A
multiple regression analysis indicated
instructional treatment, pretest and spatial
skill interaction to be significant (.01)
predictors of achievement.

BACKGROUND

Three successive National Assessment of Educational Progress

(NAEP) reports have disclosed major deficiencies in student

understanding of area and its measurement (Lindquist, et al.,

1983; Carpenter, et al., 1980 and 1975). The most recent NAEP

report indicated that only one quarter of nine-year olds and

two-thirds of thirteen year olds correctly identified the number

of square units covering a region. Other research (Maher and

13
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3 Mateyo/Maher

Normandin, 1983) has revealed similar findings. The study by

Lindquist, et al., suggested that area measurement is a complex

concept mastered when underlying principles are understood.

Research has identified two subconcepts inherent in

understanding the concept of area: the selection of an

appropriate unit of measurement for use as the basis for

counting the number of unite of which an object is comprised and

understanding the invariance property of area; that is, that

area does not change with partitioning or recombination of parts

of a particular surface (Hirstein, et al., 1978). Most school

learning of area is based on textbook presentations. Despite

miner variation, area is commonly presented by a single limited

exposure to a square unit and the presentation of a formula for

its calculation. Many, perhaps most, mathematics educators are
committed to the view that the child's experience and

construction of the measurement are fundamental to learning the

concept involved. Nevertheless, research in this field appears

to be inconclusive. This may be attributed to individual

differences in children, the choice of teaching approaches, the

nature of the embodiments employed and the differences in time

allotted for instruction. Among the manipulative materials

employed for area measurement are graph paper, other squared

materials and geoboards. The use of geoboards to facilitate

learning area concepts has been suggested in a variety of

articles (Holcomb, 1980; Harkin, 1975; Schnell and Klein, 1974)

but research into the effectiveness of the geoboard as a single

device has not been reported. The rationale for the use of

manipulatives is that children in the intermediate grades can

benefit by the construction of representations of mathematical

ideas and thus require access to materials that make such

constructions possible (Alston and Maher, 1984).

BEST COPY AVAILABLE
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Beattys/Maher 4

PURPOSE

This study, the first of two parts, sought to measure the

effectiveness of the use of the geoboard as a concrete

embodiment in area measurement instruction, its relative

effectiveness in comparison with other approaches and an

examination of the relationship, if any, between student

achievement in area measurement, instructional method and the

student's spatial skill. Part 2, the clinical component (Maher

and Beattys, in progress), identifies how children acquire

various aspects of the area concept through role playing tasks

and focuses on the process by which children construct

understanding of area and its measurement.

DESIGN

Subjects

Of the 832 children from an urban New Jersey school district,

267 were fifth graders, 279 were sixth graders, and 286 were

seventh graders. The subjects were drawn from 48 intact

self-contained classrooms. Placement for each class in a

particular treatment was random within each of the three grade

levels.

Procedure

Variations in treatment centered on the type of instructional

material employed in each group: a single concrete embodiment

approach (using a geoboard), a multiple embodiment approach

(using flats, transparencies, cloth, squared paper), a textbook

approach using no embodiment, and a control group that received

no instruction in measurement. Teachers in the three treatment

groups attended three thirty minute training sessions conducted

by one of the researchers. Each treatment group's presentation

varied according to the information pertinent to the particular

15



5 Beattys/Maher

treatment. A five day experimental period was preceded by an

area measurement pretest and two spatial tests: the Hidden

Patterns Test and the Space Visualization Tests. The

experimental period was followed by a post area measurement

achievement test and six weeks later by a retention teat.

Analysis

An ANOVA and multiple comparison tests were used to assess the

occurrence of post and retention achievement differences among

the treatment groups. A least squares regression model was used

for modeling the expected posttest area achievement score as a

function of: the treatment, student pretest area measurement

achievement, and student Hidden Pattern and Space Visualization

spatial skill measures.

RESULTS

Differences between the posttest and retention test mean area

measurement achievement scores and the mean pretest scores are

summarized in Figures 1 and 2 by grade level.

5 6 7
GRAVE

Figure 1. pairren ACHTEYEZERT

24

20

16

12

6-

4-

GEO

5 6 7

GRASS

Figure 2. FLITENFICH TEST ACHIEvErawr
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Beattys/Maher 6

An ANOVA and multiple regression analysis of the individual

student scores support the following conclusions:

(1) Both the geoboard and the multiple embodiment approaches to

learning area measurement were found superior to textbook-based

instruction, regardless of the student's spatial ability.

(2) Over six weeks, advantages of manipulative-based learning

over textbook-based learning increased.

(3) On the average, students who were instructed using

manipulatives tended to outperform their textbook-based peers by

a factor of at least two in situations requiring an application

of area measurement skills.

(4) Students who scored high on the Hidden Patterns Test tended

to do better with the geoboard treatment, and students who

scored high on the Space Visualization Test tended to do better

with the multiple embodiment treatment.

(5) Differences among grade levels 5, 6, and 7 were

statistically significant but not practically substantial.

IMPLICATIONS

Results of this study, particularly the evidence from the

retention test, offer convincing support to the proponents of

the manipulative based instructional mode. While pretest

achievement, intermediate grade level, and spatial skill also

influence achievement, none of these factors minimized the

effects of instructional mode. Moreover, manipulative based

instruction permitted the generalization of area measurement

across embodiments. Thus at the intermediate school level,
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better achievement for area measurement can be expected for

children having experiences with manipulative based instruction.

REFERENCES

Alston, A. and Maher, C. A. (1984) Mathematical structures and
problem solving, In H. Thornburg and S. Finnegan (Eds.), Middle
School Research Selected Studies , The National Middle Sch3:7---
Association, Columbus, OH., 5-21.

Beattys, C. B. (1985) The effects ofinstructional approach and
spatial ability on the learning of area measurement in
intermediate grades, (unpublished doctoral dissertation),
Rutgers University.

Carpenter, T. P., Coburn, T. G., Reys, R. E., 6 Wilson, J. W.
(1975) Notes from National Assessments Basic concepts of area
and volume. The Arithmetic Teacher , 22 , 501-507.

Carpenter, T. P., Corbitt, M. K., Kepner, H. S., Lindquist, M.
M., 6 Reys, R. E. (1980) Results of the second NAEP mathematics
assessment: Secondary school. Mathematics Teacher , 73 ,

329 -338.

Harkin, J. B. (1975) Introducing the geoboard. Educational
studies in mathematics , 6 , 113-118.

Hirstein, J. J., Lamb, C. E., & Osborne, A. (1978) Student
misconceptions about area measurement. The Arithmetic Teacher ,
25 , 10-16.

Holcomb, J. (1980) Using geoboards in primary grades. The
Arithmetic Teacher , 27 22-25.

Lindquist, M. M. et al. (1983) The Third National Mathematics
Assessment: Results and implications for elementary and middle
schools. Arithmetic Teacher , 31 , 14-19.

Maher C. A. and Normandin, B. (1983) Spatial ability in the
teaching of introductory geometry through transformation. ERIC,
ED 232-878. ERIC Clearinghouse on Test Measurements and
Evaluation. Educational Testing Service, Princeton.

Maher, C. A. and Beattys, C. B. (in progress) Children's role
playing and the construction of area and its measurement.

Schnell, J. H. i Klein, L. K. (1974) Development of a
mathematics laboratory. Arithmetic Teacher , 21 , 492-6.

18;



8

CHILDREN'S ERROR PATTERNS ON ADDITION

AND SUBTRACTION VERBAL PROBLEMS

Harriett C. Bebout

University of Cincinnati

Abstract

The errors of 45 first graders on addition and subtraction verbal
problems were categorized as to errors of representation or
errors of solution. This sample displayed different error
patterns according to their abilities to concretely model verbal
problem types.

.

Research on early number concepts has documented successful strategies that

children use to solve simple addition and subtraction verbal problems (Car--

penter E..Moser, 1983). In addition to these successful strategies, a large

number of unsuccessful solution attempts exists. As these successful stra-

tegies have provided information on children's thinking, so might their

error patterns indicate additional insight.

Children's errors on abstract mathematical problems and tasks have received

attention from several researchers (Brown & Burton, 1978; Brown & Vanlehn,

1980; Ginsburg, 1977; Radatz, 1979; Vanlehn, 1983); but relatively little

has been written concerning children's errors on verbal mathematics problems

(Briars & Larkin, 1984; Riley, 1979; Riley, Greeno, & Heller, 1983; Verschaffel,

1984). The computer simulations by Briars and Larkin (1984) and Riley et al.

(1983) include error data; Briars and Larkin's model appropriately simulated

60% of the errors reported by Riley (1979), and Riley et al.'s model provided

explanations for the occurrence of some errors. Verschaffel (1984), in a

study of first graders' representations of verbal problems, classified errors

into two categories, thinking errors and technical errors: thinking errors

were those with inappropriate initial representations and technical errors

were those that appeared during the calculation stage of the problem. The

present study follows Verschaffel's scheme and presents children's errors as

related to representation of the verbal problem or to solution or calculation

following the representation.

lit
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9 Bebout

METHOD

The subjects were 45 first graders In two classrooms in a rural Midwestern

elementary school. Using nine problems from the current classification of

verbal problems (Carpenter 6 Moser, 1984; Riley at al., 1984), the children

were individually interviewed and asked to solve the problems using mani-

pulatives. According to their use of concrete items, children were placed

In three levels, Basic, Direct Modeling, and Representing. Their errors of

representation and solution were noted according to problem type and according

to concrete modeling level.

RESULTS AND DISCUSSION

Children's verbal problim errors were categorized as Representation Errors

and Solution Errors. More specifically, Representation Errors, those that

involved the modeling strategies or lack of strategies, included the follow-

ing categories: Wrong Operation, Repeat Given Number, Guess, and No Attempt.

Solution Errors, those that occurred after an appropriate strategy had been

chosen, included the following categories: Computation, Repeat Given Number

(after appropriate strategy choice), and Wrong Model (Incorrectly modeling

of a given element). A third category, Uncodable, contained those few errors

(five responses total) that could'not be categorized as Representation

or Solution.

Table 1 presents for each problem type the total number of incorrect responses

and the total number of Representation and Solution Errors. From the total

of Incorrect responses, these first graders performed as expected: they did

most poorly on Start Unknown, or Change 5 and 6 verbal problems, and somewhat

better on Change 3 and 4 problems. Their least number of errors were on

simple problems, Change 1 and 2.

Representation and Solution Errors. Representation Errors occurred most

frequently on the Change 5 and 6 problems, and somewhat less frequently on

Change 3 problems. Change 4 problems followed next, with Change 1 and 2

BEST COPY AVAILABLE 2 0



Bebout 10

having the least number of Representation Errors. The Repeat Given category

showed a high incidence of error.

The Solution Errors in this study did not follow the same pattern as the

Representation Errors. Children made as few Solution Errors on the Change 3

problem as they did on the simple Change 1 and 2 problems. The highest number

of Solution Errors were on the Change 4 problems. Calculation errors were

most numerous; Repeat Given occurred infrequently after correct representation.

Errors According to Modeling Level. The twelve children at the Basic or

pre-direct modeling level had the most number of incorrect solutions on

Change 3, 5, and 6 problems. These incorrect solutions were due to errors of

representation as opposed to errors of solution. It appeared that if this

group of children could represent a problem they could effect a correct

solution.

The twenty-two children at the Direct Modeling level had their most difficult

time on the Start Unknowns, with comparable numbers of errors in both repre-

senting and solving the problem. Their most successful representation per-

formances were on Change 1, 2, 3, and 4 problems. In general, their errors

of solution were higher than their errors of representation, except for Change

5 and 6 problems.

The elementary children at the Rerepresenting level had their highest total

errors on Change 5 problems. Their errors in general were errors of solution.

This group made no Representation Errors on Change 1, 2, 4, and 6 problems.

SUMMARY

Children at different concrete modeling levels produced different patterns of

errors. By viewing errors according to representation of the problem or solu-

tion of the preceding representation, errors of children may be better under-

stood. Instruction on verbal problem solving may then be better matched to

the type of error.
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Table 1

Verbal Problem Errors of Representation and Solution

Problem
Type

Total
Errors

Concrete Modeling Level

Basic
N.12

Rep Sol Total

Direct Modeling Rerepresenting
N.22

Rep Sol Total
N.11

Rep Sol TotalRep Sol

Change 1 0 6 0 1 1 0 5 5 0 0 0

Change 2 1 7 1 2 3 0 4 4 0 1 1

Change 3 14 7. 12 0 12 1 4 5 1 3 4

Change 4 5 10 4 2 6 1 4 5 0 4 4
_

..,..

Change 5 21 9 11 0 11 7 6 13 3 3 5

Change 6 19 10 11 0 11 8 8 16 0 2 2
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FORMATIVE EVALUATION FROM A CONSTRUCTIVIST PERSPECTIVE

Jacques C. Bergeron, Universitet de Montr8al

Nicolas Herscovics, Concordia University

Nicole Nantaie , Universit8 de Montreal

Within the context of mathematics education, the current view
of evaluation is open to criticism first, in terms of the ra-
ther behavioristic classification of the learning outcomes it
identifies, and second, with regards to the prevalent mode of
obtaining information, the written test. A constructivist ap-
proach affects our perspective of both the learner's and the
teacher's role in a didactical situation, and also that of the
subject matter% In such a perspective, the need for formative
evaluation becomes crucial since in order to follow the stu-
dent's thinking, the teacher requires feedback from him. To
this effect, we have developed a new tool, the mini-interview.
This paper describes an experiment investigating the problems
involved in training teachers in the use of this tool for
formative purposes.

THE CURRENT VIEW OF EVALUATION

As the title of their book implies, Bloom, Madaus and Hastings (1981) concern

themselves with the use of Evaluation to Improve Learning.. This is why they

devote individual chapters to three learning related objectives of evaluation,

diagnostic, summative and formative, instead of focusing on normative tests.

In their view, the role of diagnostic evaluation is to determine school rea-

diness, the proper placement of students, as well as the causes of the diffi-

culties they may experience. In contrasting summative and formative evalua-

tion, they identify three distinguishing characteristics. The first one has

to do with purpose, the main purpose of formative evaluation being the deter-

The research reported here is funded by grants from the Quebec Ministry of
Education (FCAR- EQ-1741, EQ-2923).

We wish to thank Professor Clamant Oases of the Universit6 de MontrEal for
his helpful suggestions.
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mination of "the degree of mastery of a given learning task and to pinpoint

the part of the task not mastered" while on the other hand, summative evalua-

tion is directed toward a much more general assessment covering an entire

course or substantial parts of it. If in the latter case a grade can be at-

tributed to reflect the portion of the course mastered by the student, no

grade is ever involved in formative tests since the anxiety they might then

generate could prevent the student from perceiving them as an aid to learning.

The second characteristic differentiating the two types of evaluation is the

portion of course covered. Tests for formative purposes are given frequently

whenever the inl,tial instruction of a new skill or concept is completed. In

contrast, summative evaluation looks at the mastery of several new skills or

concepts. At the secondary level, it is used two or three times within a

course as part of an overall grading system, while at the elementary level,

teacher-made tests are given every four to six weeks. The third characteris-

tic involves the level of generalization. Formative evaluation might be used

to determine if the student possesses all the pre-requisites needed for a cer-

tain topic, whereas summative evaluation assesses the degree of generaliza-

tion and transfer that he has achieved regarding the subject matter at hand.

As noted by Bloom at al, the main function of formative evaluation is to pro-

vide both teacher and student with feedback enabling each one to take correct-

ive measures when needed. In designing formative tests, they first determine

what new content or subject matter is involved in a new learning unit. This

is then followed by an analysis of the expected "behaviors or learning out-

comes" which are then classified according to a hierarchy involving six levels:

knowledge of terms, facts, rules and principles, skills in using processes

and procedures, ability to make translations (using one's own words, using

different modes of representation), ability to make applications (using rules

and principles to solve problems presented in a new context).

Serious questions can be raised regarding the appropriateness of this view of

formative evaluation when judged from a constructivist perspective of mathe-

matics education. The first one relates to the rather behavioristic classif-

ication of the above learning outcomes. For indeed, a constructivist approach
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takes a more global perspective and identifies the learning of mathematics with

the construction of conceptual schemes.

A second question deals with the form of tests used by Bloom et al. Although

they mention that "there are other ways besides paper-and-pencil tests to

make inferences about student progress" (p.71), no such example is provided

in their book, thus reflecting the prevalent mode of obtaining information:

the written test. This kind of format encourages the student to believe that

the answer is the all-important part of mathematics (Erlwanger1975) and

prevents him from appreciating the mathematical thinking which leads up to it.

Another drawback of the written test is that it presumes a reading competency

which does not yet exist in the beginning grades. Thus, for the early years,

most written work is limited to numerical exercises or to problem situations

represented pictorially,using conventions which the child often does not un-

derstand (Campbe11,1981). However, the major deficiency of the written form-

at is that especially with young children, it cannot inform us about the pro-

cedures they use. For instance, no written test can tell us the procedure

used by the child adding 6 to 3.

A CONSTRUCTIVIST PERSPECTIVE OF MATHEMATICS EDUCATION.

A constructivist approach affects our perspective of both the learner's and the

teacher's role in a didactical situation, as well as that of the subject matter.

The underlying assumption here is that the learner is the principal agent in

the construction of his knowledge. And far from diminishing the role of the

teacher, this approach necessitates on his part a much more difficult contri-

bution. For he can no longer depend on the old belief that he can simply trans-

mit his knowledge: he must now carefully prepare didactical situations enabling

the learner to re-construct it for himself. This can be achieved if the teach-

er starts from the learner's existing knowledge and relies on it to help him

climb up the different steps of the intended construction. For a student in

such a learning situation, each step is an extension of his accrued knowledge

and this endows the learning process with cognitive continuity.
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The very view of what constitutes mathematics is also changed. In a construct-

ivist perspective, mathematics cannot be reduced to the acquisition of skills

and algorithms, for it is more the processes involved in mathematical thinking

which are sought. Our work of the last few years clearly reflects this view-

point. We have been concerned with developing a model which might adequately

describe the processes involved in concept formation. Of course, we take

"concept" in the broader sense of "conceptual scheme", that of a network of

related notions, not just atoms of isolated knowledge. In mathematics, each

fundamental concept (such as number, addition, function, etc.) can be described

as a conceptual schema whose construction may require fairly long periods of

time.

Our model identifies four stages in the construction of such a mathematical

concept: the first one, the intuitive stage, involves the learner's informal

knowledge and previous experience related to the given concept; the second

stage concerns the acquisition of mathematical procedures which the learner

can relate to his intuitive knowledge and use appropriately within the context

of relevant problem situations; the third stage, that of abstraction refers to

both a detachment from any concrete representation or procedure as well as the

construction of invariants; the final stage, that of formalization, encapsul-

ates the given mathematical concept into a formal definition and symboliza-

tion (Herscovics d Bergeron,1984). This model clearly illustrates the empha-

sis on mathematical thinking prevalent in a constructivist approach. For in-

deed, two specific stages are explicitly related to intellectual processes,

that of intuitive thinking and that of abstraction. Of course, these are not

even considered among the behavioral objectives of Bloom et al.

EVALUATION IN A CONSTRUCTIVIST PERSPECTIVE

Before introducing a new concept or continuing with a given construction, the

teacher has to determine the cognitive basis on which the student can build

and progress. He will then have to establish if the pre-requisite notions are

present, and when needed, fill in the gaps and correct the false interpreta-

tions. This implies that the teacher has to be able to monitor each pupil's
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cognitive progression. While written tests are adequate in assessing mathemat-

ical skills, they can, at beet, provide only indirect inferences regarding the

student's thinking and reasoning. Such information is obtained more directly

and more explicitly by questioning the learner. As mentioned earlier, this is

particularly true for young children in the early school years, when their

limited reading skills greatly restrict the value of any written test. Teach-

ers at these levels have an urgent need for another form of evaluation.

It is in answer to such needs that we developed the MINI-INTERVIEW, an adapt-

ation of the clinical interview methodology which takes into account the res-

trictions of the school environment (Nantais et al, 1983). In developing it,

our objective was to provide the teacher with a tool for formative evaluation

which might be integrated to his regular teaching. Since the aim was to un-

cover the student's thinking and reasoning, the MINI-INTERVIEW was to be used

with each and every pupil. As the questioning was to take place in the class-

room, this imposed a time restriction for each interview, 5 to 10 minutes,

which is about the most time a teacher can devote to an individual, even un-

der optimal class organization for independent study. Of course, this limited

time and the number of children involved meant that the tasks and the questions

needed to be prepared in advance, and that their scope be restricted to pre-

cise aspects of key conceptual schemes (e.g. by the end of the first grade,

the mastery of the counting on procedure in addition problems).

In the past three years we have been training future and practicing elementary

schoolteachers in the use of mini-interviews. This topic was dealt with as

part of a university course in mathematics education in which we attempted to

develop a constructivist perspective, using our model to analyze the child's

construction of major arithmetical concepts such as number, the four operations,

place value notation, as well as the addition and subtraction algorithms. We

have been quite successful in inducing a more constructivist perception of

both mathematics and the instructor's role in the teaching of mathematics.

This is evidenced by our teachers' increased preoccupation with the student's

mathematical thinking which for them becomes at least as important as finding

the right answer. Their concern for the pupil's thinking and reasoning created
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a climate favorable for the introduction of the mini-interview. Not only did

we present them with the theoretical background, but we also asked them to as-

certain a few children's thinking about given arithmetical concepts by using

previously prepared mini-interviews. We had expected that such experience

would result in our teachers perceiving the mini-interview as a new tool ena-

bling them to practice formative evaluation. To our great surprise, we dis-

covered that quite often the mini-interview was not used for this objective,

but simply as just another test to verify performance rather than as a source

of feedback. The question of how to induce a formative perspective in these

teachers was thus raised.

AN EXPERIMENT IN FORMATIVE EVALUATION TRAINING

The experiment we have conceived involves five first grade schoolteachers who

were asked to use a mini-interview on the adding-on procedure with each pupil

in their class, the interviews to be completed over a period of three weeks.

This is, in some way, a feasibility study verifying if it is possible for

teachers to integrate such a task to their regular classroom activity. Our

second objective is to determine conditions under which they might come to

view the mini-interview as a way of obtaining feedback. We cannot expect a

teacher who is just starting to use the mini-interviewito perceive it imme-

diately as a tool for formative evaluation. For he is then confronted to a

host of new problems such as classroom organization and management while he

attends to one child, as well as being concerned with the quality of his

questioning while recording the interview. It is only gradually, as he over-

comes these difficulties, that we can hope to see him grasp the formative

potential of this new tool.

But to determine the conditions which might bring him to use the mini-inter-

view for its intended purpose, we had to find ways of following each teach-

er's evolution over the three-week period. To achieve this, we asked every

teacher to record each interview, to evaluate each child, and to keep a daily

diary. The recording of each interview eliminates the need for classroom

observation while preserving, as much as possible, the natural climate of the
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classroom. Moreover, each tape conserves accurately the content of the in-

terview which can then bo used by the teacher to evaluate his pupils. These

audio-tapes can also be used by the researcher to judge the teacher's evalua-

tion, to compare the difficulties he can detect by listening with those re-

ported by the teacher in his diary, and to determine, to some extent, if the

teacher and pupil perceive the interview as one involving formative evalua-

tion or simply testing.

From the checklist he has filled during the interview as well as by listening

to the audio-tape, the teacher had to evaluate each pupil. If in his report

ho indicates the kind of pedagogical intervention he envisages in order to

help the child, either to overcome a learning obstacle or to follow through

with the intended construction, he will then have provided us with evidence

of a formative evaluation. On the other hand, if he expresses himself essen-

tially in terms of success and failure, we will interpret it as indicating a

testing approach. Finally, we expect his diary to reveal his evolution and

progress in tackling the daily problems brought about by performing interviews

in the classroom. The data obtained will be analysed this Fall.
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A STUDY OF FIELD DEPENDENCE/INDEPENDENCE IN AN INTERACTIVE
COMPUTER ENVIROMENT FOR GEOMETRY

Janet L. Bohren
The Ohio State University

This study was conducted to determine if field
independence/dependence affected one's ability
to learn the transformational geometry principles
of translation, rotation, and reflection from an
interactive computer geometry game in which these
moves were embedded. Thirteen students (grade 3 -
graduate school) were observed playing the game.
FDI scores were determined using the Group Embedded
Figures Test. The more field independent students
easily sorted out the three moves from each other,
and were thus able to use them more effectively than
the field dependent students.

Because geometry is a weak area in the elementary curriculum, The

Technology and Basic Skills - Mathematics project (TABSMath)

chose geometry as one of the four areas in which to design

innovative interactive computer programs (Damarin, 1982). One of

the TABSMath's geometry disks is "Funky Chicken". It is a

program of experiential learning in transformational geometry,

which requires the learner to use combinations of reflection,

translation, and rotation to move a chicken within 4 grids to

catch the elusive flies.

Field dependence/independence is a cognitive style defined as a

measure of one's ability to disembed relative information from an

irrelevant background and to analyze and cognitively restructure

information (Witkin & Goodenough, 1981). Many studies have shown

the relationships between FDI and learning (Witkin, et al.,

1977). An analysis of the learning tasks of the "Funky Chicken"
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program indicated that the learner must be able to visualize the

result of each one of a group of moves through 2 -D space. In

other words, students must be able to disembed each move from the

total group of moves and the background grid system. The. fast

pane of the program increases the difficulty of disembedding

individual moves from the context of the game. For this reason,

it was hypothesized that the field dependent learner would take

more turns than the field independent learner to master the use

of translation (eliding), rotation, and reflection' in this game.

One moves through a series of levels when playing the "Funky

Chioken" game. On the first level the flies have one move, the

seoond level two moves, eto. After the moves of the flies are

listed, the student directs the ohioken to make up to three moves

to' (latch the flies. When all directions are entered, one sees

the flies zip through their moves, and then the chicken makes its

3 moves. If it is properly directed, the ohioken rill land in

the same quadrant as the flies and be able to eat them. If the

flies are not eaten, this indicates that the moves did not do

what the player thought they would. From levels 1 to 4, if one

does not oatoh the flies, one returns to level 1. After reaching
level 5, if one fails to catch the flies, one returns to level 5.

METHODS

Fourteen students, %gee 8 to 30+, ranging from third grade to

graduate school, were observed playing the "Funky Chicken" game.

Notes were kept on the moves the flies made (computer controlled)

and the moves the student intended to make and actually made to

oatoh the flies. The game was played until the student had

mastered the sliding and rotation moves or for two hoUrs. As

observations were made, it beoame obVioUs that mastering the

eliding move Was crucial to early success in the game

(reflections do not ocour at the lower levels of the game).

After playing the game, each student was given the Group Embedded

Figures Test (Witkin, at al., 1971) to measure their position on
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the field dependent/independent continuum. The author's work on

other research studies with high school students had indicated

that a score of 0 to 10 could be considered as relatively field

dependent and 13 to 18 as field independent.

RESULTS

After observing the first few students (whose GEFT scores varied

from 4 to 16), it became obvious that the more FD students were

having a much harder time catching the flies because they could

not figure out the results of the sliding move (translation). In

addition, although they recognized that they weren't getting what

they expected from a slide, they did not try to figure out what

was wrong in any systematic manner. They contined to mix slides,

rotations, and reflections together in their three moves. At the

end of two hours, the observer gave some hints such as "watch

where the head of the chicken is" or "try only slides, so you can

figure out what is going on". With such direction, the more

field dependent students were able to figure out what the slide

move did and successfully catch the flies. The more field

independent students recognized quite quickly on their own that

they had to figure out what the slide was doing and were able to

sort out this move from the other two types of moves, and were

able to learn to catch the flies in fewer moves than the more

field dependent players. A time limit of two hours was set. The

most field dependent learners did not ever reach the point where

the computer presented reflections (level 4). The more field

independent learners were generally able to master the horizontal

and vertical reflections after a few tries, because they were

able to disembed the move from the context of the game. The most

field independent learners reached the levels where diagonal

reflections occurred and mastered this move.
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DISCUSSION OF RESULTS

The most interesting question posed by this type of study is what

sort of oognitive processing variables seem to be important in

decision making demanded by the instruction and conversely, what

instructional variables affect decision making strategies of the

learner. Ausburn and Ausburn (1978) discussed the implications

of a number of oognitive styles for instructional design. They

proposed that cognitive processing styles, such as field

dependence/independence, underlie the learner's ability or

inability to build a fink between the demands of a task and the

learner's cognitive processing strategies. The data of this

study suggest that there may be an incomplete learner/task link

between the features of the cognitive processing task as modeled

by the program and the encoding of the information by field

dependent learners, that prevents elaboration which leads to
learning. Ausburn and Ausburn suggest "compensatory

supplantation" to bridge the cognitive processing gap between

learner skills and task demands.

Malone (1984) suggested that challenge, fantasy and curiosity are

three components that make learning fun. Green (1984) noted that

good software design guaranteed the learner a "great deal of

successful action". Flagg (1985) noted that themes of "chasing,

fleeing, catching, or getting naught" were effective

attention-grabbing characteristics for children. The "Funky

Chicken" program incorporates all of the above in a carefully

designed environment for problem solving. With a few

compensatory supplantation segments for the field dependent

learner, the program should serve most students with an exciting

and successful way to learn transformational geometry concepts.
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probably been due to the influence of some of the psychological research

which has frowned upon studies dealing with emotions. But recently, some

mathematics education researchers (such as McLeod, 1985) are calling for

the integration of the affective and the cognitive. And some of the

psychological research community seems to be moving in this direction, as

indicated by the Jean Piaget Society's 1983 meeting titled 'Emotion and

Cognition', during which Jerome Bruner called for the study of the

interrelation between the two.

I view this new endeavor as different from the 'math anxiety' movement of

some years ago however. That movement seemed to spawn many clinics whose

purpose was to 'treat' the math anxious person. The view seemed to be

that anxiety is something to be 'cured' by working with the 'anxious'

individual. 1 would argue for a different view of anxiety and fear of

mathematics. I would argue that it is the SOCIAL SITUATIONS in which

individuals find themselves that evoke the fear and anxiety of

mathematics. We need to study those situations ---- and all the

socio-cultural dimensions to them ---- to gain the most insight into

'fear of mathematics'.

In doing such studies, I would argue against the assumption that fear

resides within an individual. That is, fear cannot be considered one of

a person's attributes in the way that eye color or hair color is. If an

individual shows or feels fear of mathematics, it is because the emotion
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Is evoked by some social situation. For example, many of my students at

Keene State College feel fear of mathematics. And this fear seems to be

first evoked when they register for a math class. It is not that this

emotion exists in them. It is in the recollection of their past

experiences in mathematics classes that the same emotional reaction is

now evoked. Perhaps they were called 'stupid' by a previous teacher (or

students) or failed enough mathematics tests (or courses) to feel

inadequate. Their past experiences with the subject has given them

memories of feelings of failure so that an anticipated experience evokes

the same feelings. Thus registering for a math class in college is a

social situation that can evoke all the unpleasant feelings associated

with previous mathematics classes.

What seems especially important to me are the cognitive blocks to

learning that occur due to the evokation of such fear. I had one student

for whom a test would evoke such fear that her hands would shake and that

problems I knew she could do would be totally muddled. On one qui:, I

gave the students a 'story° problem that involved area and perimeter. It

was a problem which could be solved intuitively, without the usual

'mathematical formulas'. This one student did not do the problem

because, as she later told me, she 'did not trust her intuition, her own

way of doing the problem'. On reflection, it occurred to me that there

was no reason for her to trust her own thinking in mathematics. She had

had at least 14 years of failure in mathematics classes --- failing
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grades and being told, or inferring, she was 'dumb'. Why would her own

strategy of solving this area and perimeter problem suddenly be

worthwhile? After all her years of 'failure', why should she trust her

awn thinking?

This year I hope to study some of my mathematics students who are

studying to be elementary teachers. I am interested in their experiences

with mathematics but also in the situations which evoke or lessen their

fears. An important question seems to be how can a social situation be

created that will enhance students' self-worth and trust in their own

mathematical thinking abilities?

Also important to me are the elementary teachers who are currently in the

classroom. My interest in the interrelationship between emotion and

cognition stems from my dissertation study (Brandau, 1985) of one

elementary teacher and her struggle to encourage thinking in her

mathematics classes. An important result of this study was my insight

into her fears and how they affected her teaching.

This teacher wanted to encourage more than a 'memorize-what-to-do' level

of learning in her students. My analysis of the teaching and learning

that occurred in her classroom showed the following. To have promoted

the kind of thinking she wanted, the teacher needed to place herself and

the children in situations for which more 'risks' could be taken ---
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' risks' that involved more trial and error and more problem solving which

was open-ended. But this teacher felt inadequate about her own

mathematical knowledge and abilities. For example, when she tried to

write some lessons involving probability ideas, she was told by her

husband that her problems for the students were much more mathematically

complex than she realised. Another time she came to me to ask about the

' long division algorithm' and why we do the steps in the way we do them.

A student had asked her about this idea and she felt so uncomfortable

with her knowledge that she could not provide an answer.

In terms of the relation between emotion and cognition, this teacher's

feelings of inadequacy and fear of the students making mistakes had an

effect on the way she thought about teaching, and hence on the way she

taught. Because she felt uncomfortable about her ability to handle what

she saw as student mistakes, she rarely put them or herself in situations

for which 'mistakes' could be made. That is, in trial-and-error problem

solving and/or open-ended problem solving, students can devise many

unusual strategies of their own --- strategies which the teacher may

never have seen before. This situation alone would provoke anxiety and

fear in a teacher concerned with students solving problems in a

successful manner. If a 'new' strategy is invented by a child, how can

one be sure that it will be successful? And if one Is uncomfortable with

one's math knowledge, then how can there be comfortableness with teaching

mathematics?
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Since this teacher felt responsible for the children's learning, the

consequences of them getting mathematically "lost" were high. What if

she could not discern inappropriate or misleading strategies, ones that

would lead the children Into mathematical misconceptions? Thus it was

safer for her to keep the children and herself in situations for which

she felt cognitively comfortable --- situations for which she felt she

could provide appropriate strategies and/or answers.

This teacher, in a sense, was in a similar situation as my students

studying to be teachers. Any situation involving mathematics evoked fear

and created cognitive blocks which in turn affected learning or teaching

mathematics. In terms of research involving teachers in the classroom,

it seems important to investigate those situations which create a

comfortableness with mathematics so that the teachers' methods involve

some risk taking.

In summary, research involving the interrelationship between emotion and

cognition can yield some important insights into the learning and

teaching of mathematics. What needs to be investigated are all

dimensions of the social situations which: (a) evoke fear of mathematics

and how learning and/or teaching is affected and (b) enhance the

learner's or teacher's selfconfidence and comfortableness with

mathematics.
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THE IMPORTANCE OF MEANING AND MILIEU IN UNDERSTANDING

MATHEMATICS TEACHING

Catherine A. Brown

Virginia Polytechnic Institute and State University

Thomas J. Cooney

University of Georgia

It is argued that both the contexts in which mathematics
teaching occurs and the perspectives brought to the mathematics
classroom by teachers and students are important considerations
for understanding mathematics teaching. Research on the
perspectives of teachers, students. and others involved in the
classroom is reviewed and implications for research and teacher
education are discussed.

Our research interests center on mathematics teachers'

conceptions of both mathematics and mathematics teaching. We

are concerned with the meanings teachers ascribe to classroom

events and how the milieu of the classroom influences those

meanings. We believe there is ample evidence (e.g., Thompson,

1984) to suggest that teachers' conceptions are related to their

instructional practice, and, as Delamont (1983) has argued,

"classroom processes can only be understood if their context is

understood" (p. 45). However, although research on teaching has

provided numerous descriptions of classroom activities, little

information is available on mathematics teachers' conceptions of

mathematics and mathematics teaching and classroom actions as

they are related to the milieu of the classroom.

Though teachers play a fundamental role in establishing the

milieu of the classroom, they are by no means the sole

determiners of the environment. Our work has convinced us of
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the importance of considering not only the roles that teachers

play, but also the roles that students and other individuals

such as parents, principals, and teachers' colleagues play in

the development of the classroom milieu. We will consider the

perspectives of teachers, students, and significant others

(parents, principals, and teachers' colleagues) and the ways in

which these perspectives influence meanings and milieu in

mathematics classrooms..

THE PERSPECTIVES OF TEACHERS

There is evidence that beliefs concerning subject matter

influence the ways in which teachers define the classroom

situation. For example, Schmidt and Buchman (1983) found that

elementary teachers' beliefs about subject matter influenced the

amount of time they allocated for the various subjects.

Thompson (1984) found that teachers' conceptions about

mathematics and mathematics teaching were a significant, albeit

subtle, factor in forming their classroom actions. Though she

found some inconsistencies between expressed beliefs and

instructional practices, in general, teachers' conceptions were

reflected in their classroom actions.

There are curricula differences which may also affect the way a

teacher conceptualizes teaching and performs in the classroom.

Most secondary mathematics teachers, for example, find it easier

to think about, to plan for, and to teach mathematically

advanced classes than general mathematics classes (Lanier,

1981). In a case study we conducted of a beginning secondary

mathematics teacher, we found that the teacher's classroom

actions and how he thought about them were different for

different courses and that this influenced his conception of

mathematics teaching.
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THE PERSPECTIVES OF STUDENTS

There is a growing body of research that supports the contention

that students' perspectives are also an important influencing

factor in the classroom. Students bring their own individual

and collective biographies to the classroom. Students may not

appear to have much power, but there are many subtle ways in

which they exert control. Hoyles (1982) reported that secondary

students wanted security and structure when studying

mathematics; they wanted to know when they had gotten it right.

They insisted on being graded and viewed this as a measure of

their mathematical ability. Mathematics was not seen as

something that could be of interest in itself, but only as

something to be mastered, something to be done. Other findings,

such as Metz's (1978) report of low ability students' apparent

dislike for public interaction and classroom lecture and

preference for seatwork, provide additional evidence of the

relatively hidden student factors with which teachers must cope.

The. perspectives of teachers and students are often not

congruent, which often makes consensus in the classroom

difficult to achieve. Negotiations take place as teachers and

students struggle to create a classroom atmosphere in which

learning can take place. Rrummheuer (1983) found that teachers

and students have bodies of mathematical knowledge that are

fundamentally different and involve qualitatively different ways

of thinking about mathematics. These differences seem to

inhibit the teachers' efforts to help students learn mathematics

since teacher and students are often communicating at different

levels and with different meanings. For example, teachers tend

to operate from what Rrummheuer calls an algebraicdidactic

frame while students view mathematics from an algorithmic

mechanical frame. Rrummheuer suggests that teachers must learn

to understand the perspectives of their students and help them
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to understand the perspective of the teacher so that both can

work together toward a common goal.

In a case study we conducted with a beginning mathematics

teacher, we found that his students had conceptions of both

mathematics and of how it should be taught. In general, the

students believed mathematics consisted of rules and definitions

to be memorized and used to solve assigned exercises. They also

believed that a mathematics teacher should define terms and

explain procedures carefully, working examples to show students

how the exercises should be solved. Students viewed assignments

as a means of practicing procedures and of indicating what they

had learned. The conceptions held by the students were in

conflict with those held by the teacher, who believed

mathematics was a body of knowledge to be explored and

appreciated. Problem solving was the essence of mathematics for

this teacher and he expressed an intention to share this view

with his students. His attempts to use problems in his teaching

were met with indifference and sometimes resistance from the

students, motivating a change both in his classroom actions and

his thinking about them.

Stephens and Romberg (1985) studied Australian mathematics

teachers who were attempting to use innovative materials called

RIME (Reality in Mathematics Education). A reoccuring theme

throughout their analysis was the difficulty teachers faced when

they were asked to teach atypical content in atypical ways. It

was clear from this study that a real negotiation takes place

between teachers and students regarding what is judged to be

acceptable mathematics and acceptable ways of teaching

mathematics.
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THE PERSPECTIVES OF SIGNIFICANT OTHERS

Life in the classroom is not shaped totally by the perspectives

and actions of only teachers and students. Other individuals

who contribute to the definition of the classroom situation

include parents, principals, teaching colleagues, and in a

collective sense, society at large. The literature indicates

that these individuals also shape or at least provide

constraints on classroom activities. Bishop and Nickson (1983),

for example, hypothesized that because mathematics is a subject

that is easily identifiable and generally valued by parents the

teaching of mathematics is more open to criticism by parents

than most other subjects. Teachers are forced to justify to

parents their teaching of particular content and its relevance

for the pupils' future life.

The literature and our own work has made clear to us that there

are many individuals, each with unique perspectives, that affect

the mathematics classroom in many ways which we do not yet fully

understand. We do not know how the perspectives of various

individuals interact in the complexity of the classroom setting.

We do not understand why mathematics teachers do not practice in

the classroom that which they have been taught in teacher

education programs. We maintain that research related to

understanding the perspectives of these individuals and the

effects they have on the mathematics classroom can give

mathematics educators additional insight into the teaching of

mathematics and provide a better foundation for preparing

teachers for the compexity of the mathematics classroom.
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MISCONCEPTIONS RESEARCH AND THE CLINICAL INTERVIEW

Jere Confrey and Anita Lipton
Cornell University

This paper discusses the relationship between the
methodology of clinical interviewing and the
conceptualization of misconceptions. It suggests that
with the current methods of clinical interviewing, no
differentiation between students with systematic errors
and weak constructive processes and students with
misconceptions can be made with assurance. Plans to
revise the clinical methods in response to the
reconceptualization of misconceptions are reported.

INTRODUCTION

The clinical interview has been used with increasing frequency in studies of
students' mathematical understanding. Its appeal was in its ability to go
beyond the paper and pencil test in providing us evidence of how students are
thinking about mathematical concepts, processes and reasons.

Early studies showed in dramatic ways that students were not learning what
they were taught. As the work developed, researchers became aware that
while the students were not learning what we expected in large measure, they
were learning something; and the focus of research shifted to try to
determine just what that was. While there were many reasons why students
did not perform well, the pervasive and predictable qualities of the errors
and students' resistance to relinquishing faulty solution strategies lead
researchers to define them as ratacomeations These traits, (especially the
commitment of students to their way of seeing) lead some researchers to
posit that an internally consistent structure was at work behind these
errors.

The clinical interview continues to be the primary data-gathering tool used in
investigating the developing misconceptions research area. Its goal has been
to build a map or model of the student's method of thinking by observing
his/her spontaneous problem solving strategy and asking questions until a
"rational" and predictive model could be abstracted from the student's

J
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statements. To achieve these goals a set of misconceptions tasks must be
carefully structured. While the problems have often been original and
thought-provoking, and have required the students to do more than simply
apply memorized rules and methods, they have done little to clarify the
relationship of misconceptions to the student's larger conceptualization of
the problem; they were simply designed to "reveal" misconceptions.

It Is our position that this state of the theory of misconceptions and
methodology needs attention. We believe that the theory and the methods
must develop dialectically if the empirical results of these studies are to aid
us in Improving our theoretical positions.

CONSTRUCTIVIST ASSUMPTIONS

Some of the thorniest methodological questions come from our decision to
conceptualize the interview as a form of communication in which both the
interviewer and the interviewee must construct meaningful Interpretations
of the setting. At every level of the analysis, we, as interviewers are using
our interpretation of the inputs and of the output evidence. Inputs include
the written problem, the stated goals and the interviewers questions
(we believe the student's interpretation of these Inputs Is likely to be
quite different from ours. Evidence of outputs are verbal statements,
written marks, affective signals (again, it is our interpretation of these
things we use to build on). As constructivists, It is essential in our
viewpoint to be aware that we are building. mndf.1.1 of students' thought and
that these models are, in turn, derived from interpretations and constructs of
Inputs and output evidence. Many studies making use of the clinical
interview take the interpretation of these inputs and outputs as
non-problematic; they assume agreement between the student's and
interviewers interpretation.

DESIGN

The misconceptions test consisted of five problems chosen to represent:
functional and algebraic manipulations, geometric area and identities, and
graph and chart Interpretation (see Appendix). The problems were chosen
to represent a variety of concepts, and were designed to allow for multiple
representations (symbol systems, graphs, tables, applications, etc). Within_
each problem, the multiple representations were Included to allow us to
explore the extent of an error pattern and its internal consistency. For
example, on the first problem, a table of the exponential function ym4x with
the values )(02 and x.3 was included with the problem: 42.5.
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In line with our concept of the Interview as an intervention, we chose two
interview techniques: an introspective, talk-aloud approach and a more
retrospective, review or retelling of work done silently. Fifteen
students, chosen at random from a pre-calculus course solved these
problems individually in audio-taped interviews. These students were
assigned two problems as talk-aloud problems, two as review problems and
were to elect one of the interview styles for the final problem. The order
of the problems was systematically varied.

We tested a larger student population (n- 108) with a written version of the
test to provide another perspective on the interviews. The results of the
written tests were scored, and the strategies students used for each
question (where apparent) noted and tallied. The scores on these tasks
were distressingly low with an average correct performance on the items of
32%. Only 49% could correctly square a trinomial, for example. (The results
are listed in Appendix.) A comparison revealed that the results from the two
methods were largely suppporting. The interview certainly allowed us more
insight into the strategies and beliefs of the students; whereas the written
test sample reassured us that our interview population was representative of
the group and that the problems seemed appropriate for the level of students .

SYSTEMATIC ERRORS AND WEAK CONSTRUCTIVE PROCESSES

At the time of the design of the problems, we thought of misconceptions as a
system of beliefs which formed a relatively stable and internally consistent
cognitive system. We expected misconceptions to be concept-specific and
to be able to be analyzed into prerequisite skills, definitions,
representations, related concepts and use of language. Furthermore, we
expected to find students highly confident of their answers and committed
to them. Our data showed that students often applied repetitive and
predictable faulty strategies, but these lacked the compelling nature or
internal consistency of misconceptions. This suggested the more elementary
notion of systematic errors.

Systematic errors include the systematic (and inappropriate) application of
familiar fragments of arguments, algorithms and definitions without any
attempt to integrate accross representational systems. They are common
across students and permit accurate prediction of what answers the student
will give to a well-defined set of problems. They are not powerful and they
are not conceptualizations. They are akin to snapshots. In contrast with
those who construct full-blown misconceptions, students who make
systematic errors have difficulty expressing their beliefs, their knowledge
appears fragmented and isolated, and their commitment to their ideas seems
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minimal and hesitant, as evidenced by a drop in their voice or a quick and
superficial labelling of the problem. Examples in our interviews are legion:
In Problem 3, 12% of the students squared each term of the trinomial; 42%
of the students did not differentiate between the square of a sum and the sum
of squares; 56% multiplied indiscriminately the side and the base of a
parallelogram to obtain its area in Problem 2.

In analyzing our interviews we found little evidence of more highly
structured or compelling errors that would warrant the name misconception.
This has led us to reconsider our definition and to give more importance to a
dimension we have chosen to label the Constructive process, It is in this
area the dynamic of student's engagement with problem solving, where
differences between successful and unsuccessful students was most
prominent.

The more successful students would lead the interview, confidently and
firmly; when encountering a problem they would paraphrase or reformulate
It. in solving it, they would tap multiple strategies, and use language to
explore ideas. Successful students confirmed, with unexpected frequency,
the importance of key counter-examples as a hedge against both systematic
errors. At certain junctures in problem solving where students were about to
follow the less successful students in making one or another error, these
counter-examples or strategic "don'ts" came to their aid, either in the form of
semantic principles or syntactical rules of thumb: '...negative exponents are
really positive numbers, but ... it's under a fraction, 1 over 'that value'. in
other words, these are not negative here...' When these students were asked
to review a problem they could describe unsuccessful as well as successful
attempts. During the review phase they would engage problems for the second
time.

In contrast, the unsuccessful problem solver would appeal to rules,
algorithms and techniques. 5/He would usually expect these to be produced
full blown from memory. A problem that could not be solved (problem 3b) or
that required exploration (problem 4) would be seen as objectionable, because
in mathematics, one "does" things, and gets answers. When in doubt, the
unsuccessful student tended to reach into his or her grab bag, pulling out
anything which seemed related to the problem. When pressed even
minimally they would drop their voices or express their intense dislike of
being mistaken. They would minimize their risk by stopping at the earliest
possible point when a problem was finished. The review was a routine
reporting of what they did.
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In summary, we are suggesting that with our initial definition of a
misconception and with our current methods, we were unable to distinguish
misconceptions from systematic errors. We believe that this is in part due to
a lack of engagement of students in constructive processes, and this has led
us to reconsider the relationship among systematic errors, weak constructive
processes and misconceptions.

MISCONCEPTIONS AND METHODS REVISITED

In this last section, we will discuss the issues raised by this study that must
be addressed before proceeding. No final resolution of the issues is offered
at this time.

1. One interpretation might focus on the role of constructive processes in the
learning of mathematics. Perhaps if students could be taught to learn
mathematics the way the successful students did, the poor performance on
these types of problems could be lessened considerably.

2. Another possibility to consider is that weak constructive processes mask
misconceptions. If so, and if we wish to continue to pursue misconceptions,
we could identify those students with strong constructive processes, and
search for misconceptions in that population.

3. Alternatively, it might be more appropriate to view misconceptions in the
light of Hawkins' critical barriers (1982). Critical barriers are conceptual
obstacles which are critical in that they involve preconceptions, are
incompatible with scientific understanding, are prevalent across individuals
of different ages, educational experiences and achievement levels, are
structured, and are fundamental to understanding a range of phenomena.
Furthermore, Hawkins emphasized the joy and insight experienced as critical
barriers are surmounted.

In integrating Hawkins' definition of critical barriers with our own
observation of student performance on interview tasks, we feel that
misconceptions must have a powerful underlying conceptual and psychological
dimension; they must aid a student in making sense of some phenomena and
must include an effective constructive process as part of problem solving
behavior. This process dimension seems essential to us in order to
distinguish between a misconception and a systematic error, and even more
importantly perhaps, between a correct algorithmic performance and a
powerful conception. Explication of an affective dimension will probably also
be included.
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4. Lastly, we are struggling to reconceptualize the clinical interview in order
to make It sensitive to the reelsions discussed above. We are convinced that
It needs to be seen as an intervention, and that we need to be less timid about
that intervention. If we conceive of a misconception as a powerful
construction, then we believe that the methodology ought to confront the
student with externally apparent contradictions and multiple representations,
and therefore, to explore how resistent misconceptions are, connecting them
more closely with constructive processes.
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Appendix Teske

1. Fill in the chart for the function: y 41(

for x (-3, -2, -1, 0,1,2,3)

What does 42.5 equal?

correct 63%
nearly correct 12%

incorrect 251
correct 44%
incorrect

What does 41.5 equal? correct 33%
Incorrect 671

2. A person was given the plot of land with the correct 5%
dimensions shown below and she wants to know . Identified height
the area. Calculate the area. of or indicated

that area of
was needed 252
Incorrect 70E

3. Perform the indicated operation: a) (n2 + 3p - 29)2 correct 49X
incorrect 51E

b) \9 4x2 correct 28%
incorrect 12

4 Draw a triangle where a, b, and c are the lengths correct (supported) 10%
of the three sides and a + b c. unable to classify 21%

incorrect fin
5. The Drag Race This question required the correct 22%
students to interpret a graph and chart. incomplete 192
(Carjel, C., R.Joss, aMonk, From Problem; to incorrect 57%
Calculus, Univ. of Washington, 1975, p. 2.) misunderstood prob. 2%
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DEVELOPMENT AND VALIDATION OF AN INSTRUMENT TO ASSESS

FIFTH AND SIXTH GRADE CHILDREN'S KNOWLEDGE OF VARIABLE

Claire L. Crook

The Ohio State University

ABSTRACT

The purpose of this study is to develop an instrument
to assess fifth and sixth children's understanding of
variable. The study was conducted in two phases.
During Phase I student's answers to algebra problems
were analyzed and classified into error types.
During Phase II, a twenty-six item multiple choice
test was developed to assess fifth and sixth grade
children's knowledge of variable. Knowledge of the
kinds of errors that were made, and the common
incorrect responses that occurred on the tests given
during Phase I, formed the basis for creating
distractors for the multiple choice items. The test
was administered to fifth, sixth, and seventh grade
children. An item analysis, factor analysis, and
multiple regression were used to determine the
validity and reliability of the instrument.

Since the advent of computers in the classroom, many educators

believe that there is a relationship between programming and

learning about variables (Blume & Schoen, 1985; Soloway,

Lochhead, & Clement, 1982; Fey et al. 1984). Traditionally,

students have little experience with variables before ninth

grade algebra. With the availability of computers in most

elementary schools, children may be able to learn about

variables at a much younger age. Currently there is no

instrument available to assess an elementary student's

knowledge of variable. The purpose of this study is to

develop and validate an instrument to assess fifth and sixth

grade children's knowledge of variable.
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A twenty-six item multiple choice test was administered to

two fifth, two sixth, and two seventh grade classes. Test

items were categorized according to Kuchemann's (1981)

different categories of letter usage. Categories were

determined by deciding what would be the lowest level of

understanding needed to correctly answer the problem. Since

the results from Phase I indicated that items became more

difficult as the category number increases, more items from

the first four categories were included and only three from

category five and six. Table 1 shows the number of problems

in each category.

Table 1
Number of Problems in Each Category of Letter Usage

Categories

Letter Letter Letter Letter as Letter as Letter
Evaluated Ignored as Specific Generalized as

Object Unknown Number Variable

Number
of 6 5 4 6 2 1

Items

RESULTS

The means ans standard deviations for grades five, six,

seven, and the total are presented in Table 2.

Table 2
Means and Standard Deviations for Grade 5, 6, 7, and Total Score

Grade n Mean Standard Deviation Standard Error

5 46 10.15 3.59 .529
6 46 11.63 3.79 .559
7 46 15.15 5.67 .836

Total 138 12.31 4.89 .417
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A factor analysis showed that two factors accounted for 25.6%

of the variance. Eleven test items loaded significantly on

one factor and six items loaded significantly on the second

factor, with a cut-off point of .375 for both factors.

Results of regression analysis found that grade level was a

significant predictor of total test score, 2<.0001.

Eighteen percent of the variance in grade can be explained by

the total test score.

A stepwise multiple regression performed on factor 1 and

factor 2 with grade as the dependent variable found that the

combination of factor 1 and factor 2 explained 20% of the

variance in grade. Factor 2 alone accounted for 16% of the

variance. Factor 2 is significantly related to grade level,

p.0001, and factors 1 and 2 combined are also significantly

related to grade, E.< .0001.

Table 3 summarizes the results of item analysis.

Table 3

Summary results of Item Analysis

Average Cronbach's Number
Item difficulty phi' coefficient Alpha of items

Total .52 .69 .81 26

Factor 1 .42 .74 .79 11

Factor 2 .71 .71 .63 6

DISCUSSION

All eleven items that loaded on factor one fit into one of

Kuchemann's first three categories of letter usage. All of

the problems could be solved by hints from key words, recalling

a familiar bond, substituting numbers for letters, or using the
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letter as an object. None of the solutions involved manipulating

or operating on an unknown.

All of the items that loaded on factor two fit into category

four, five, or six. The solutions to the six problems that

loaded on factor two required the ability to do at least one

of the following:

1. to see the relationship between two unknown specified
values and to find those values.

2. to see the relationships between two unspecified values
3. to manipulate and operate on an unknown
4. to regard the letter as a generalized number.

Evidence from Phase I indicates that there was a greater

difference in difficulty between the first three levels and

the fourtfi, and evidence from factor analysis in Phase II

strongly suggests that there are two distinct levels of letter

usage.

The first level, an elementary use of letters, does not require

manipulation of the unknown factor. The solution can be found

by ignoring the letter, substituting a number for the letter,

or recalling a familiar bond.

The second level of letter usage requires at least an

understanding of the concept of a letter representing an

unknown number and the ability to operate on the letter in

order to find the unknown number.

There appears to be a gap between these two levels of letter

usage. This gap may be due to differences in cognitive levels.

However, since the fifth and sixth grade students had very

little experience with any kind of letter usage, and the

seventh grade students had some pre-algebra experience, the

gap could be due to learning experiences.
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Further study may show that a variety of experiences of

letter usage at the elementary level may provide the needed

structure to bridge the gap between the two levels of letter

usage. The key element between the two levels of letter usage

appears to be the concept of a letter representing an unknown

number and the ability to operate on the letter in order to

find the unknown.

Statistical analyses tend to substantiate the assumption

that the variable assessment instrument is reliable and valid.

The test items that do not load on either factor need to be

analyzed, and refined or deleted. Additional factor two

items are needed, especially category five and category six

items.

The results of this study suggest that with a few refinements

the variable test is an appropriate instrument to assess fifth

and sixth student's knowledge of variable.
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WRITING NUMBER SENTENCES TO REPRESENT ADDITION

AND SUBTRACTION WORD PROBLEMS

E. De Corte & L. Verschaffel (1)

Center for Instructional Psychology

University of Leuven, Belgium

Since 1979 we are working on a research project in which we try
to contribute to a theory of the development of children's abi-
lity to solve elementary arithmetic word problems. In this pa-
per we present some results concerning the relationship between
children's processes for analyzing and solving addition and sub-
traction word problems on the one hand, and their skill in wri-
ting number sentences to represent these problems on the other.
The presentation of the results is organized around the follo-
wing three topics : (1) spontaneous use of number sentences, (2)
incorrect elicited number sentences, (3) correct elicited number
sentences.

INTRODUCTION

In the last few years a substantial body of research has been done on the

development of children's problem-solving skills and processes with respect

to elementary addition and subtraction word problems (De Corte & Verschaffel,

1985a). This research has provided a fairly detailed and consistent picture

of the level of difficulty of different types of elementary addition and

subtraction word problems, of the variety of "informal" strategies applied by

young children to solve those problems, and of the kind of errors they

commit. However, the transition from these initial informal problem-solving

processes to the more "formal" addition and subtraction concepts and skills

taught in school is still not very well understood. One important aspect of

this transition is how children gradually turn to these formal concepts and

skills to represent and solve elementary arithmetic word problems. This issue

was addressed in a longitudinal investigation carried out in our Center. Some

findings of this study relating to problem difficulty and to children's

solution strategies and errors were reported elsewhere (De Corte & Verschaf-

fel, 1984, 1985a, 1985b). In this paper we present the main results concer-

ning the relationship between children's processes for analyzing and solving
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elementary addition and subtraction word problems on the one hand, and their

skill in writing number sentences to represent these problems on the other.

Before discussing these findings we give a brief description of the design of

our longitudinal investigation.

DESIGN AND TECHNIQUES

During the school year 1981-1982 we collected empirical data on children's

representation and solution processes with respect to elementary addition and

subtraction word problems. Thirty first graders were individually interviewed

three times during the school year : at the very beginning in September, in

January and at the end of June. Each time they were administered eight word

problems : four addition and four subtraction problems :

Addition problems (2)

Change 1

Change 6

Combine 1

Compare 3

Pete had 3 (5) apples; Ann gave Pete 5 (1) more apples; how
many apples does Pete have now ?
Pete had some apples; Pete gave 3 (5) apples to Ann; now Pete
has 5 (7) apples; how many apples did Pete have in the
beginning ?
Pete has 3 (5) apples; Ann has 7 (9) apples; how many apples
do Pete and Ann have altogether ?
Pete has 3 (5) apples; Ann has 6 (8) more apples than Pete;
how many apples does Ann have ?

Subtraction problems

Change 2 Pete had 6 (12) apples; he gave 2 (4) apples to Ann; how many
apples does Pete have now ?

Change 3 Pete had 3 (5) apples; Ann gave Pete some more apples; now
Pete has 10 (14) apples; how many apples did Ann give to
Pete ?

Combine 2 Pete has 3 (5) apples; Ann has also some apples; Pete and Ann
have 9 (13) apples altogether; how many apples does Ann have ?

Compare 1 Pete has 3 (5) apples; Ann has some more apples than Pete; Ann
has 8 (12) apples; how many apples does Ann have more than
Pete ?

The word problems were read aloud by the interviewer. With respect to each

problem, the children were asked to perform the following tasks : (1) to

retell the problem, (2) to solve it, (3) to explain and justify their solu-

tion strategy, (4) to build a material representation of the story with

puppets and blocks, and (5) to write a matching number sentence. Task 5 was

administered only during the second and the third interview, when the
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children had already received formal instruction on addition and subtraction.

The individual interviews were videotaped. The data were submitted to a

quantitative and a qualitative analysis.

RESULTS

Spontaneous use of number sentences

One of the most striking results of our study is that - although during the

school year the children were explicitly taught to do so - the typical first

grader did not formulate spontaneously an incomplete numerical sentence (e.g.

9-3=. or 3+.=9) as a step in the solution of a word problem (see also

Carpenter, Hiebert & Moser, 1983; Lindvall & Ibarra, 1978). During the second

and the third interview, no one of the eight problems was solved more than

two and five times respectively using a written number sentence. During both

interviews only one and three children respectively applied this "number

sentence writing " - strategy more or less systematically, i.e. for at least

half of the problems. The explanation for this finding is rather

straigthforward. Beginning elementary school children seem to solve word

problems by constructing some kind of external or internal representation of

the essential elements and relations in the problem text; then they select a

quantitative action to determine the unknown in that problem representation

(De Corte & Verschaffel, 1985b). For these children writing a number sentence

as an intermediate step between the construction of a representation of the

problem situation and the selection of the quantitative action to solve the

task is by no means necessary nor helpful to find the answer more quickly or

more efficiently. On the contrary, due to their unfamiliarity with the formal

symbols and rules of school mathematics, translating their understanding of

the word problem into a numerical sentence can lead to difficulties that

interfere with these children's spontaneous solution processes.

Incorrect elicited number sentences

When a word problem was solved correctly without spontaneously stating a

formal equation, the child was asked to generate a 'matching number sentence.

An analysis of the reactions on this task shows that for every problem a

considerable number of children failed to formulate an appropriate number

sentence for a word problem they were able to solve. Similar data were

reported by Carpenter, Hiebert & Moser (1983) and by Lindvall & Ibarra
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(1978). A detailed description of the different erroneous number sentences

for the distinct problem types is given elsewhere (Verschaffel, 1984). Here

we only discuss some data with respect to the two problem types that elicited

most incorrect sentences, namely change 6 and compare 1.

During the second and the third interview more than one third of the children

who had solved the change 6 problem correctly, were unable to write an

appropriate number sentence. A closer look at these children's protocols

suggests that for many of them the failure was due to the ambiguity of the

sentence-writing task. Indeed, number sentences can fulfil two different

functions with respect to word problems : they can be used either as a formal

mathematical representation of the semantic relations between the known and

the unknown quantities involved in the problem, or as a mathematical notation

of the operation that should be or has been performed on the two given num-

bers to find the solution of the problem. Sometimes the same number sentence

can fulfil both functions, like in the following example. Suppose a child is

given the problem "Pete had 6 apples; he gave 2 apples to Ann; how many

apples does Pete have now ?" and solves it by decrementing 6 by 2. In this

case the number sentence 6-2 .. represents the semantic structure of the

problem as well as the arithmetic operation performed by the child. In other

cases both aspects have to be expressed by different number sentences. For

example, consider our change 6 problem ("Pete had some apples; he gave 3

apples to Ann; now Pete has 5 apples); how many apples did Pete have in the

beginning ?" being solved by adding the two given numbers. The numerical

sentence .-3.5 represents the semantic structure of this problem, but the

arithmetic operation applied by the child matches either the number sentence

5+3.. or 3+50. Especially with respect to our change 6 problem, several

children failed on the sentence-writing task, because they tried to combine

both functions into one single equation, which lead them into an unsurmoun-

table conflict : on the one hand they acknowledged that the numerical senten-

ce should contain a minus sign, because the word problem mentioned that Pete

gave away 3 apples; on the other hand they thought that the number sentence

should comprise a plus sign, because they had added the two given quantities

to solve the problem.

Another remarkable finding is the great number of failures on the compare 1

problem ("Pete has 3 apples; Ann has some more apples; Ann has 8 apples; how

many apples does Ann have more than Pete ?"). About half of the children

solving that problem correctly, were unable to write an appropriate number
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sentence. The most common incorrect responses were : 3+8=5, 3+8=11, 3-8=5,

3...8=5, and "no answer". This may at least partially be due to the type of

mathematics program used to teach these children arithmetic. First, in the

beginning of that program, the arithmetic operations of addition and subtrac-

tion are introduced using concrete change and combine situations; it provides

almost no experience in comparing the relative size of two sets (compare

situations). Second, once the children have obtained a certain competence in

writing and solving addition and subtraction number sentences, the program

offers almost no opportunity to apply these skills to compare word problems.

Therefore, it is not surprising that the children had considerable

difficulties in connecting their intuitive understanding and their informal

solution strategies of compare problems to the formal mathematical symbols

and rules they were taught in school.

Correct elicited number sentences

We finally discuss some findings concerning the types of valid number senten-

ces for the addition and subtraction word problems.

Three addition problems elicited only canonical addition sentences (i.e.

a+b=. or b+a=.) (3): change 1, combine 1 and compare 3. This is not at all

surprising. Indeed, children who try to formulate a numerical sentence that

corresponds to the semantic structure of these three types of word problems

as well as those seeking to express the nature of the operation performed,

have to apply such a canonical equation. Interestingly, a considerable number

of these canonical sentences started with the larger given quantity in spite

of the fact that in the verbal text of the problem the smaller quantity was

mentioned first; they were all generated by children who had solved the word

problem using a strategy that starts with the larger given number ( Verschaf-

fel, 1984). Apparently these children had interpreted the "sentence-writing

task" as a request to formulate the number sentence that expresses the

arithmetic operation performed to find the solution of the word problem.

Although the fourth addition word problem - change 6 - also elicited a great

number of canonical addition sentences, non-canonical equations (.-a=b) were

generated by a significant minority. As explained before, the number sentence

expressing the semantic structure of a change 6 problem and that correspon-

ding to the operation commonly performed to solve the problem can be quite

different.
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With respect to the subtraction word problems, only the change 2 problem

elicited a substantial number of canonical subtraction sentences (a-b..); for

the,three other problems - change 3, combine 2 and compare 1 - almost no

subtraction sentences were generated. This is also not surprising, taking

into account the structure of these word problems on the one hand, and the

kind of strategies the children used to solve them on the other. Contrary to

the change 2 problem, the structure of these subtraction word problems is

expressed most appropriately by a non-canonical addition sentence (a+.=b).

Moreover, while the change 2 problem was solved mostly with direct subtracti-

ve strategies (i.e. strategies in which the answer is found by subtracting

the smaller given number from the larger one), the other subtraction problems

elicited almost exclusively indirect additive strategies (i.e. strategies in

which the child determines what quantity the smallest given number must be

added with to obtain the larger one) (Verschaffel, 1984).

NOTES

(1) L. Verschaffel is a Senior Research Assistant of the National Fund for
Scientific Research, Belgium.

(2) The numbers in brackets were used during the third interview.

(3) The symbols a and b represent the first and the second given number in
the word problem.
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AN ATTITUDE SURVEY OF MATHEMATICS TEACHERS IN ELEMENTARY GRADES

Linda J. DeGuire
University of North Carolina at :reensboro

A 40-item attitude survey was given to 259 elementary
teachers as part of a lager survey about variables related
to the teaching of mathematics. Factor ana:ysis of the
results indicated 5 factors among the attitude items:
Enjoyment of Teaching Mathematics, Ease in learning Mathematics,
What Mathematics is, Students as Learners of Mathematics, and
How to Teach Mathematics.

The quality of mathematics learning depends on a variety of variables,

including affective variables within the student and within the teacher.

Reyes (1984) reviewed the effects on learning of affective variables within

the student. Such research leads to the question of the effects on learning

of affective variables within the teacher. The p -esent paper reports on

part of a study of such variables among teachers in the elementary grades

and their effects on student achievement.

The study is based on data collected from all teachers of mathematics (K-12)

in one school district (see DeGuire, 1985), with 259 of the respondents on

the elementary level. The teachers were surveyed about the following areas:

1) their mathematics backgrounds,

2) their mathematics education backgrounds,

3) the amount of class time they give to mathematics,

4) how they use the instructional time in -athematics,

5) their confidence in teaching various to:Ics in mathematics,

6) their attitudes and beliefs about themselves as learners of

mathematics, about themselves as teachers of mathematics, about

students as mathematics learners, and about what mathematics is.

Also, the results on the mathematics portions of the California Achievement

Tests (CAT) for grades 1, 2, 3, and 6 were obtained. These results are

composite for each grade in each building
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The present paper examines the structure of the 40-item attitude section

of the survey for the elementary teachers. Further analyses will examine

relationships among the attitude variables, the confidence variables, the

use-of-instructional-time variables, and the student achievement variables.

Method

The Subjects

The respondents to the survey were all the teachers who teach mathematics

in the elemetnary grades (K-5/6) in a single district. Within the district,

some 6th-grade classes are in middle schools (grades 6 to 8); other 6th-grade

classes are in elementary schools (grades K to 6). Only 6th-grade teachers

in elementary schools were included in the analysis reported here. The

district contains 24 schools (6 high schools, 5 middle schools and junior

high schools, and 13 elementary schools) and covers approximately 800 square

miles. Its student population is from mid-to-lower middle class, mostly

rural families. It serves approximately 17,000 students. Its teacher

population is drawn mainly from nearby small cities and towns.

The Attitude Section of the Survey

The attitude section of the survey contained 40 statements about the teacher's

attitudes towards mathematics and mathematics education. The teacher used

one of five categoires (from Strongly Agree to Strongly Disagree) to respond

to each statement. The statements were hypothesized to represent four

randomly-merged subscales of 10 items each-- attitude toward self as learner

of mathematics, attitude toward self as teacher of mathematics, attitude

toward students as learners of mathematics, beliefs about what mathematics is.

The Procedure

The survey was sent to all teachers of mathematics, grades K-5/6, even those

who taught only one class of mathematics, through a designated teacher in

each building. The response sheets contained no identifying information

other than that requested in the items and were returned to the designated

teacher in each building, who then returned them to the Elementary Supervisor.

The anonymity of the responder and the non-involvement of principals were
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intended to provide maximum opportunity for openness in responses. There

were 259 respondents to the survey, representing a return rate of more than

95%.

The responses to the attitude section of the survey were subjected to factor

analysis to determine the construct validity of the hypothesized subscales.

If the hypothesized structure could not be substantiated, the factors would

be used to define subscales appropriate to the structure of the items. A

significant loading of a variable on a factor was defined to be 1.30lor

greater. Numerical values of responses to certain items were reversed so

that all "favorable" responses would have the same value.

Results

The factor analysis was performed using the factor procedure in SAS (1979)

with iterated principal factor analysis, followed by Varimax (orthogonal) or

Promax (oblique) rotation. The Kaiser-Guttman criterion (i.e., minimum

eigenvalue of 1.0) indicated 13 factors. However, an examination of the 13-

factor solution showed many singleton and doubleton factors. The solution

was rejected. Cattell's scree test (1978) indicated 5 or 6 factors. The

hypothesized structure indicated 4 factors. The 4-, 5-, and 6-factor solutions

were examined. The orthogonal and oblique solutions for a given number of

factors differed only slightly. Both 6-factor solutions contained a double-

ton factor and were rejected. The only difference between the 4- and 5-

factor solutions was the split of the first factor in the 4-factor solution

into two factors in the 5-factor solution. The 5-factor oblique (Promax)

solution was accepted.

The 5-factor solution of the attitude items of the survey did not correspond

exactly to the hypothesized subscales. Space does not permit the repro-

duction of the entire table of factor loadings. The items loading highest

on each factor are given in Table 1 in descending order of their loadings.
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Table 1
Items Loading on Each Factor

Factor 1: Enjoyment of Teaching Mathematics
1 11 Math is one of my favorite subjects to teach.

1 18 I look forward to teaching math every day,

In 3 I would rather teach reading than math.

1 19 I find many math problems very interesting.

In15 Math is more difficult to teach than reading.

In 7 Math is so hard to understand that I do not like it

as well as other subjects.
1 34 I think math is beautiful.
In16 There is so much hard work in math that it takes the

fun out of it.

Factor 2: Ease in Learning mathematics

In 2 I find many math problems too difficult to be enjoyable.

In22 Many sutdents get very nervous before math tests
because such tests are very difficult.

In 4 No matter how hard I try, I find math difficult to

understand.
I 12 I have usually found math courses easy.

I 30 Students would like math better if it were not so

hard to understand.
In 5 Even the thought of taking a math course scares me.

In13 Math courses have usually been one of my weak spots.

I 29 Math is more of a game than it is hard work.

I 17 I understand math concepts easily

In32 Most students must work very hard to do well in math.

I 26 Most people can learn the math taught in elementary

and secondary schools.

Factor 3: What Mathematics Is
I 39 Math should be enjoyed for its own sake.

135 Most of my students can understand the math I

teach.
I 23 Problem solving is an integral part of math.

I 28 Math is a good subject for mental discipline.
In36 Math class is not a place for a student to show

creativity.
I 21 Arithmetic computation is only a small part of math.

In31 Students would like math better if it were not so

hard to understand.

Factor 4: Students as Learners of Mathematics

In37 Boys are usually better at math than girls.

I 8 I believe it is just as important for students to
understand math as to be able to do computation.

In38 Most math is too concerned with ideas to be

really useful.
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In33 Many girls have math phobia
1n27 To do well in math class, you have to be smarter than

you have to be to do well in other subjects.
1n24 Math can only be understood by a few.

Factor 5: How to Teach Mathematics
In14 I believe that math classes should be mostly practice

work.
In 6 I feel that manipulatives are only appropriate in

math classes in the early grades.
1n25 Math is basically a collection of rules about

numbers.
In20 I believe teachers should not try to prove math

statements to children until at least high school,
In 9 When my daily class schedule is disrupted, I skip

math class rather than other classes.

Items not loading significantly on any of the factors:
In 1 Problem solving cannot be taught until children

have learned the basic arithmetic skills.
In10 I do not understand how some people can say that

math makes a lot of sense to them.
I 40 Most students find math interesting.

Items for which the numerical values of the responses were reversed are in-

dicated with an "In" preceding the number; other items have only an "I" pre-

ceding the number. Items Inl, In10, and 140 did not load significantly on

any of the factors.

Discussion

The factors of the attitude section on the survey are quite independent.

They have been named as follows: Enjoyment of Teaching Math, Ease in Learn-

ing Mathematics, What Mathematics Is, Students as Learners of Mathematics,

and How to Teach Mathematics. For further analyses, the items which load

highest on each factor will be used to define a subscale of the attitude

section of the survey. An arithmetic function of the responses to each

attitude subscale will be defined to serve as measurements of the variables

represented.

It is important to note that the correlation of factors 1 and 2 indicates that

a teacher's perception of the ease or difficulty of learning mathematics

and the teacher's enjoyment of teaching mathematics are related. Also, the
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items about the teacher's difficulty in learning mathematics, as well as the

items about a teacher's perception of the student's difficulty in learning

mathematics, load on the same factor. If either of the attitude subscales

defined by these factors is significantly related to student achievement,

that relationship would have consequences for the education and selection of

mathematics teachers for elementary students.
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JOHN'S ARITHMETICAL ADDING AND SUBTRACTING SCHEMES

Benjamin A. Eshun

University of Kentucky

The adding and Aulsticonting AchemeA 06 John, a second gnadet,
W4A4. chonactentzed 44 anithmeticnt in a teaching expeniment
inuotuing eight ch2tdAen in SpA2ng o6 1983. The aAithmetindt
acheme4 wee identified 64 one o iouA developmental tevete
o ch2tdAen'A adding and au schemes. John'A AchemeA
did not involve counting, Adthek, he operated di/catty on
numbends and /waited number WA to Aotve cRt typeA od addition
and AubtAaction taAkA. schemes included paAtitioning
negating Atlas uAing doubles, adding to a decade, and onatting
&um& using peace value. He undeutood pant-u*ote Aetation-

Aadt:Lnd Aubtnaction de the invem.ion oi addit2on. HiA
n and Aubtructkon concepts were openat2ve.

This paper characterizes the arithmetical adding and subtracting schemes of

John, a second grader. Children create countable items, in order of sophis-

tication, by counting with perceptual, figural, motor, verbal or abstract

unit items (Steffe, von Glasersfeld, Richards & Cobb, 1983). John did

not use counting at all to solve tasks even when he was hinted to do so,

but he had constructed numbers so he was classified as a counter of

abstract unit items together with four other children (Eshun, 1985e). The

other four children found counting crucial in solving addition and sub-

traction tasks.

DEVELOPMENTAL LEVELS IN CHILDREN'S SCHEMES

Piaget (1952) classified children in his third stage of development as hav-

ing arithmetical understanding of addition and subtraction. While the behav-

ior of the four other counters of abstract unit items revealed some of the
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characteristics of Piaget's (1952) third stage (cf. Eshun, 1985a). John's

behavior was far more advanced in several other ways than the other children.

For example, John had fully internalized his operations of addition and

subtraction, and could partition independently composite units (addends) and

recombine them with other addends. Also, he could decompose independently

a composite unit into units of tens and units of ones. He used his under-

standing of part-whole relationship to solve several tasks including

missing-addend, comparison, and equalizing tasks.

Figure 1 shows the revised developmental levels of Eshun's (1982) proposed

experimental model of children's addition concepts. The four developmental

levels, in order of sophistication, are sensorimotor, preoperational, oper-

ational and arithmetical schemes. Each child's schemes and concepts in

the revised model were limited to only one developmental level. John was

classified as using arithmetical adding and subtracting schemes whilst

the four other children were classified as using operational schemes, one

level below John's (cf. Eshun, 1985a, 1985b).

The revised model was based on the interpretation of the behavior of

eight first and second graders involved in a teaching experiment in Spring

of 1983. Individual teaching episodes were held with the eight children

selected from among 25 others in a school in Clarke County, Georgia.

Each child was taught from four to six times, and each episode was

video recorded and lasted from 20 to 30 minutes. Addition and subtraction

tasks were presented using a function machine and numerals on cards,

ranging from "2" to "61".

JOHN'S ARITHMETICAL SCHEMES

John's ability to partition numbers spontaneously was the underpinning

strategy for most of his schemes. Also, John showed flexibility in re-

calling number facts. He combined his partitioning strategy and the re-

calling of addition and subtraction facts to construct specific thinking

strategies for solving tasks. John's schemes were synonymous with
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Legend: Level for more advanced counters during

this part of the period

--> Level for all counters during this part

of the period.

Figure 1: Revised Developmental Levels of Children's Adding and

Subtracting Schemes and Counting Scheme Periods.

Carpenter and Moser's (1984) derived facts and Houlihan and Ginsburg's

(1981) indirect method. His concepts of addition and subtraction were,

therefore, operative (Piaget, 1970) or numerical.

Recalling Sums Using Doubles Scheme

In this scheme John recalled an addition fact that was the double of one of

the given addends. He then increased or decreased the partial sum to obtain

the required sum. Consider the explanation to his solution to the missing-

addend task "N(15) + N(_) --) N(31)."
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J: If 15 plus 15 is 30, you need one more to make 16 and it

should be 31.

Adding to a Decade Scheme

In this scheme John interpreted an addition task as adding a number to the

larger addend to yield the next decade. He then increased the new decade

to get the smaller addend. The following illustrates how John used the

scheme to explain his solution to the task "N(8) + N(7)."

J: You have eight and take two from seven and you get 10,

and that leaves five left. And you take five and add

it to the 10 and is 15.

This is a more general scheme than a relating to ten scheme, because John

used the scheme to solve tasks involving larger decades, for example,

"N(34) - N( ) --) N(20)."

Recalling Sums Using Place Value Scheme

This scheme involved recalling the sum for the numbers in the tens and ones

places separately and coordinating the two sums to form the appropriate

number (result). For example, to solve the task "N(13) + N(15)," John

answered, "Twenty eight" (immediately) and explained, "You've 13 and 15 and

you take the five and three and add them up and put eight down. And you

take the two ones you have left and add, and that gives you two." This

scheme is consistent with the algorithmic procedure children are taught in

school. But the scheme might be a construction by John, because it was not

used by Jeff from the same second-grade classroom.

Inversion Strategy

John understood subtraction as the inversion of addition. This was evi-

denced by his inverting subtraction tasks into additive tasks before solv-
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ing them. For example, John used the inversion strategy and the adding to a

decade scheme to explain his solution to the missing-subtrahend task

"N(34) - N(_) --) N(20)."

J: Because you need 10 to make 30 and four more is 14, and

that makes 34.

John's coordination of 10 and four to obtain 14, and 20 and 14 to get 34

also indicated his understanding of part-whole relationship.

DISCUSSION

John was the only one of the eight children to be classified as using

arithmetical schemes. His behavior clearly showed arithmetical understand-

ing of addition and subtraction (Piaget, 1952), and meaningful habituation

of number combinations (Brownell, 1928). Steffe et al. (1983) identified

Christopher, who used a recalling sums using doubles scheme to solve

"7+ 5 . __" (p. 106), but he did not consistently use recalled number

facts and thinking strategies like John.

There was a clear distinction between John's arithmetical schemes and the

operational schemes of the other four counters of abstract unit items,

because the latter found counting crucial and hardly used thinking

strategies. But Carpenter and Moser (1984) identified 40 percent of the

children in their three-year longitudinal study as using five or more

derived facts and 80 percent of the children as using derived facts at some

time. Thus, the question of what proportion of a child's schemes should

involve recalled number facts in order to be characterized as using arith-

metical schemes as John is significant and requires further research.

However, the significant aspect of John's behavior was the flexibility in

the use of his schemes.

Note: This paper is based on the author's doctoral dissertation at the

University of Georgia under the direction of Leslie P. Steffe.
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A FUNNY THING HAPPENED ON THE WAY FROM THE

PRESENTATION OF AN EVERYDAY PROBLEM TO ITS SOLUTION

Ruhama Even

Weizmann Institute of Science

A mathematical problem, phrased as an everyday situation, may
cause difficulties in the solving process, even for good students.
A solution of such a problem may have only one stage - a direct
one, or may have two stages: the first is to find a mathematical
model of the problem, and the second is to solve the mathematical
problem.

Analyzing responses of good students may show us the most
essential difficulties in the solution of this kind of problem.
In this study we have analyzed the answers of good ninth grade
students for two problems phrased as an everyday situation. The
main results are: Constructing a mathematical model seems to be
a necessary stage for a solution, and the most common errors
for this kind of problem are caused by basing the solution on
arguments that appear correct, but are not suitable to the data
and the situation described.

INTRODUCTION

"Indeed this is probably the most crucial and largely unsolved difficulty of

mathematics teaching in schools - to enable pupils to identify the mathematical

task - however simple - required in an everyday situation". (Eggleston, 1983).

The difficulty depends, of course, on the given problem. Analyzing students'

answers in this subject may lead us to a better "attack" on the weak points

and on the typical errors.
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The student population we are dealing with are pupils in grade 9 who have

participated in a mathematics correspondence course given by the Youth Activ-

ities Section at the Weizmann Institute of Science in Rehovot (Even & Kreimer,

1983). This course is meant for students who are motivated to occupy them-

selves with mathematics in their free time, so we can assume that they are

above average ability in mathematics. The analysis of the responses is

obviously important in the case of average children and for low achievers, but

is also important for above average students. Although these students indeed

make relatively fewer errors, and less effort is required to bring them to a

correct solution, the analysis of their responses can teach us much about

their mental processes. The errors of good students can teach us the most

essential difficulties in any kind of problem, and their analysis can help us

to choose and word the problems according to our aims, - in preparing text-

books, worksheets and enrichment sheets, or in asking questions in classroom

lessons.

In this paper we shall present two different problems phrased as everyday

situations, and we shall analyze them according to similarities and differences.

We shall try to classify the students' answers according to the typical errors

in the method of reaching a solution, and attempt to identify their causes

according to the level of the student and the kind of problems given.

PROBLEM - MATHEMATICAL MODEL - SOLUTION

The two problems are:

The problem of the bakeries -

A baker who owns 2 bakeries decided to build a flour storeroom to be used for

both. Where should the storeroom be built so that transporting the sacks of

flour from the storeroom daily will be cheapest? (Suppose that the daily

requirement of flour for each bakery is constant).

The problem of the greeting cards -

In honor of Israel's Independence Day, each city sent a greeting card to its

nearest neighboring city. Supposing that the distances between cities are

8
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different, prove that each city got no more than 5 such greeting cards for

Independence Day.

Both problems are phrased as problems in everyday reality, where the main

difficulty in solving them is the stage of rewording them as mathematics pro-

blems:

The problem of the bakeries -

Let a be the distance from bakery A to bakery B.

x - the distance from the storeroom to bakery A.

c - the cost of transporting a unit of flour a unit of distance

p - the daily consumption of flour at bakery A.

q - the daily consumption of flour at bakery B.

y - the daily coat of transportation.

Now a suitable mathematical model for the original problem can be constructed:

What is the minimal value of the function y pxc + q(s - x)c, when s, c, p,

q are constants?

The problem of the greeting cards -

Given a finite number of points in the plane at different distances from each

other. Prove that there is no polygon (whose vertices are the above points)

whose number of sides is greater than 5 and fulfils the condition: the distance

from a point inside the polygon to any of its vertices, is smaller than the

length of each of the two sides that meet in that vertix.

After overcoming the first stage of constructing a mathematical model we reach

the second stage - the solution.

The problem of the bakeries -

a) if p w q the function is

y- pxc + P(s - x)c

pxc + psc - pxc

psc

That is when the daily consumption of the two bakeries is equal, the function

is constant. Therefore, the storeroom may be located anywhere on the line

joining the two bakeries.
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b) If p # q then the function is

y= pxc + q(s - x)c

= pxc + qsc - gxc

xc(p q) + qsc

i) If p > q then one gets the minimum of the function when x is minimum,

that is x = 0.

ii) If q > p one gets the minimum when x is maximum, that is x = s.

In both cases we found that if the daily consumptions of the two bakeries

are not the same, the storeroom should be placed in the bakery whose daily

consumption is biggest.

The problem of the greeting cards -

Suppose there is a polygon with more than five sides, and a point A in it.

Let us draw lines from A to each vertix. Since there are at least six vertices

there will be at least six angles having A as their vertix.

The sum of the angles is 360°, so at least one of the angles will be smaller

than or equal to 60°. Suppose it is the angle BAC.
a

If t BAC < 60° then BC < AC or BC < AB. If that is so, a polygon of more than

five sides cannot satisfy the desired condition: the distance from the point

inside the polygon to each vertix of the polygon is less than the length of

each of the two sides of each vertix.

STUDENTS' RESPONSES

We can divide the student-solvers into three main groups:

a) those who do not try to go over to a mathematical model.

b) those who manage to get to a partial mathematical model.

c) those who succeed in getting to a completely mathematical model.
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Ab examination of the students' responses shows that almost all of them tried

to find a mathematical rephrasing of the problems; that is to say, they felt

the need to convert. the problem to a mathematical one.

The problem of the bakeries, because of its lack of data and because its wording

is open and invites original suggestions and does not compel the student to

prove any given statement, encouraged the students to provide practical solu-

tions: Here are two examples for such suggestions:

"The baker must locate the storeroom at one of the bakeries, otherwise he has

to buy more land".

"If there is a difference in height between the bakeries, he has to build the

storeroom at the highest. bakery in order to save gasoline," Such errors were

typical of students that did not make any attempt to go over to a completely

mathematical model:

But even a student who solved the problem correctly with the help of a minimum

of function, ended his solution as follows:

"Therefore the storeroom must be built In Bakery A (or as close as possible to

it) so that the transportation will be cheapest".

Some of those students who attempted to solve the problem by way of a solution

froM everyday life, without going over to a mathematical phrasing, ignored the

problein of the site of the storeroom and offered alternative methods of

decreasing expenditures, such as paying less to the drivers, building a cheaper

storeroom, etc.

Such phenomena did not appear in the solutions to the problem of the greeting

cards. Evidently this was so, because from its wording it was clear that a

mathematical proof was required.

The typical errors made by those who tried to solve the above problems were

caused by their basing themselves on arguments that perhaps appeared correct,

but were not suitable to the data given in the problem and the situation

described. Here is an example for such a "solution" of the problem of the

bakeriet:

"If the consumption of flour by the two bakeries is the same, then the store-

room must be located in the middle between them. But if the consumption is not
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the same we have to take it into consideration. For example, suppose the daily

consumption of bakery A is 10 tons, and the daily consumption of bakery B is

5 tons. The relation between them is 10:5 that means 2:1. Therefore, the

storeroom should be built
1
of the distance between the bakeries, closer to

the one that uses the most flour." The pupil based it on an argument that

seems correct: the relation between the distances from the bakeries to the

storeroom has to be opposite to the relation between the consumptions. But

this argument is unsuitable for the given situation.

This phenomenon originated in the fact that there was no transfer to a complete-

ly mathematical model.

In conclusion, we would like to point out that the construction of a mathemati-

cal model that suits the problem phrased as an everyday situation was a necess-

ary condition for solving the problem. Not one of the students succeeded in

reaching a correct solution without first rephrasing the problem in mathemati-

cal terms, (partly or wholly). Therefore it is necessary to work on this

stage with the pupils and to make them conscious of it.

The most common mistake in solving problems of the above kind was made by

students basing themselves on mathematical arguments that did not suit the

situation described. This happened because there was no transfer to a complete

mathematical model. Another common mistake was the inclination to a practical

solution with, or even without, a connection to what the problem demanded.

Such a mistake was typical of pupils who made no attempt to rephrase the

problem in mathematical terms.
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OPERATING THE UNKNOWN AND MODELS OF TEACHING
(A Clinical Study Among Children 12.13 with High Proficiency In Pre-Algebra)

Eugenio Fi Roy and Teresa Rojano
Centro de investigation y de Estudios Avanzados del IPN, Mexico

ABSTRACT. Operating the unknown is one of the first properly algebraic actions. As re-
ported In a former paper (21 extending arithmetical operations to new objects (e.g., the un-
known) Is not a spontaneous process in children, and requires special attention In the field of
teaching. In this paper, we are reporting the most relevant results from the research work
"Operating the Unknown" which refers to the constant, as well as to the variable aspects
that were observed when using various models for operating the unknown in the resolution
of linear equations having the form Ax t B = Cx t D, where, A. B, C and D are given posi-
tive Integers and D ) 0. Observations were performed through clinical interviews to chil-
dren 12-19 who had had no previous instruction In algebra, but had showed a high proficien-
cy in pro - algebra. By way of conclusion, our study shows that all teaching strategies should
contemplate a dialectical process between the most concrete Meanings and the operational
syntax, because both aspects are always present (due to the students' anticipatory mechan-
isms), even if they have not been taken Into account at the time of devising the didactic situ-
ations (as it occurs In the usual teaching strategies).

INTRODUCTION.- it has always been thought that more concrete models possess the virtue
of providing more stable meanings to new concepts, whereas more syntactic models have a tend-
ency to introduce a certain senselessness to everything new that is taught. It is also commonly
believed that the latter aspect is the one that contributes most strongly to the lack of interest on
the part of children towards the study of mathematics (at the affective level), and to the tend-
ency to commit the typical and spontaneous errors (cognoscitive level) when operative abilities
required by algebra come into play. The results of this paper, however, show that even models
where meanings are taken from a more concrete language, will pose, when used as teaching strate-
gies In the resolution of linear equations, the same problems; naturally, these problems will have
particular manifestations depending on the model under consideration.

GENERAL FRAMEWORK AND SPECIFIC OBJECTIVES OF THIS WORK.- "Operating
the Unknown" is a part of the research program, "The Acquisition of Algebraic Language",
which has been developed since 1980 at the Seccion Matematica Educative and the Centro Esco-
lar Hermanos Revueltas, in Mexico City. Probing into the difficulties involved both in the syn-
tactic handling of algebra, and the utilization of algebra to solve problems, In reiation with didac-
tic phenomena that appear during the child's transit from arithmetical to algebraic thought, are
among objectives of the wider research. This study, "Operating the Unknown", has the following
specific aims: 1) to observe the sponteneoui responses of children that are faced, for the first
time with "non-arithmetical" equations (I.e., those where resolution demands operating the
unknown, as, for instance, in some linear equation with more than one occurrence of the un-
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known) and 2) to observe how children develop by themselves the use of some "concrete" model
for operating the unknown in the solving process for these new equations. Results referring to
objective 1) have been reported in a previous article 2) ; in the present paper, we describe
results concerning objective 2), where two different "concrete" models are being tested in order
to teach how to operate the unknown.

METHODOLOGY.- Detection and observation of transition phenomena were performed
through clinical interviews to three successive classes of children 12-13, within a controlled teach
ing system and at the time when children already know how to solve "arithmetical" equations
(i.e.,those whose solutions does not require operating the unknown) and related problems, and
are faced for the first time with the resolution of "non-arithmetical" equations. During the inter-
view, and after observing their spontaneous approaches to the new equations, children with
medium and high pre-algebraic proficiency levels are given instruction elements for the operation
of the unknown, by making use of two "concrete" models in the resolution of such equations
(results presented here refer only to observations made among children with high pre-algebraic
proficiency).

A SYNOPTIC DESCRIPTION OF THE TWO MODELS USED.

I. The geometric model.- Proposed equation: Ax +8 =Cx , where A, B and C are given
positive integers, and C > A, in this case.

1. Reproducing the model (translating
the equation into the model).

2. Comparing areas.

:4,Vg131

3. Preparing the simplified equation: (C A)x = B.

4. Solving the simplified equation.

5. Verifying the answer.

II. The balance model.- Proposed equation: Ax + B = Cx, where A, B, and C are given
positive integers, and C > A, in this case.

1. Reproducing the model (translating the equation into the model).

noci

A situation of equilibrum

DOD OD
A number A of objects A number B of objects A number C of objects having each a
having equal (unknown) having equal (known) weight equal to the unknown weights
weights. weights. of the objects on the left pan.

SD CI
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2. Iteratively reducing the number of objects with a known weight, although maintain-
ing a balance, until all such objects have been removed from one of the pans.

B objects

3. Preparing the simplified equation (C A)x= B.

4. Solving the simplified equation.

5. Verifying the answer.

C A objects

0 0

In both models, children with a high pre-algebra proficiency level are given only the first
elements of the model (translation phase 1), and are left to develop subsequent stages by thorns-
selves or with the least possible help from their Interviewer. Once they have mastered the use of
a model for one mode of equation (Ax + B = Cx), more and more complex modes ( Ax + B=C.x +
Ax B = Cx 0; etc.) are proposed to them, in order to observe how they transfer the use of
the model to these modes, as well as the abstraction processes of repetitive operations on the
model.

RESULTS.- a) Spontaneous development of the use of the model to operate the unknown
does not show a uniform pattern, not even among children having the same level of.pre-algebra
proficiency; such a development is strongly linked to tendencies of a general nature in the subject
and which range from the syntactic or operational perspective on one end of the spectrum, to the
semantic perspective on the other. In fact, extreme cases were detected, presenting remarkably
dissimilar develpment paths in the use of the same model; in one first case, this development was
carried out with a permanence in the model context, even In modes of equations presenting a
highly complex model structure. In the other contrasting case, that is, when dealing with an
operational tendency, there is a constant search for the syntactic elements present in the model's
actions, that are repeated for each equation and for each equation mode; this search provokes a
quick aloofness from the model's semantics, in order to inscribe these actions within a more ab-
stract language, by creating personal graphs (signs or symbols) that belong neither to the model
nor to algebra, but to an intermediate level preceding the algebraic operational level.

b) There are obstructors to abstraction of the model's operations towards a syntactic-alge-
braic level, that depend neither on the particular model being used, nor on subjects' tendencies
such as those mentioned under a) above; they depend on the emphasis placed in the component
of the model structure that permits relying on previous knowledge, and operations already mas-
tered by the subject, in order to Introduce the new objects, concepts and operations; this process
of reducing the situation to what is already known, carries with it the risk of hiding such difficult-
ies as arise when trying to operate with new objects and making new concepts to intervene. Thus,
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in the processes of abbreviating and automating the actions in the two models used here, a tend-
ency is seen towards hiding the actual operation of the unknown. In the geometric model.
abbreviation leads to a blurring of areas involving the unknown; in fact, the linear dimension lost
is the one that represents the unknown, and operations are performed only between the equa-
tion's "data": the unknown stops playing a role. In the balance. due to the discrete representation of

x's coefficients, as well as of constant terms, the same type of operations can be performed with
both, i.e., operations between numbers of objects with known weight and numbers of objects
with unknown weight. Such an automation (in both models) will later on lead to the typical
mistakes in algebraic syntax, such as effectively adding (or substracting) terms possessing differ-
ent degrees; even subjects with a great operative tendency commit this kind of mistakes, due to
their use of personal graphs, which are also generated in a process of automating the actions.

The following are some of the aspects that vary from one model to the other:

c) There are specific ways (depending on the model) of translating the equation's elements
into the model, that represent an obstruction to the use of the latter; in the geometric model,
such an obstructor consists in breaking up the rectangular area represented by the constant term
(B, in Ax + B= Cx) into linear dimensions; this leads to the application of the "coupling of linear
dimensions" method for resolution purposes (i.e., to find b and h, such that b x h = B and
b = C A or h = C A), which is not applicable if B cannot be divided by C A. In the bal-
ance, trying to assign weight to the objects in the pan can cause a confusion in the development
of the model's initial "natural" strategy, to wit, the iterated cancelling of weights.

d) Some transfers in the use of the model, from one mode of equation to the other, are
more "natural" in one model than in the other. Passing from the Ax + B = Cx mode to the
Ax + B = Cx + D mode is more natural in the balance, since the action of iterative cancella-
tion is essentially the same in both modes; besides, in this model the simplified equation stands
stated in the model itself and can be solved without having to translate it into the graphs of alge-
bra. In the geometric model, on the other hand, it is necessary to realize that in order to state
the simplified equation it should suffice to superimpose corresponding areas to terms of degree
one, without effecting any action on those corresponding to constant terms, i.e., transference in
this case is not trivial. However, passing to modes such as Ax B = Cx or Ax B = Cx + D,
requires interpreting in the model the "negative" constant terms, which have no "concrete" rep-
resentation in the balance (unless one resorts to representations of mental actions, as, for instance
reestablishing an equilibrium), whereas in the context of areas, such terms can be interpreted as
"concrete" actions consisting in the removal of areas equivalent to the absolute values of the
terms in question, without thus making violence to the model's semantics.

CONCLUSIONS.- With respect to the constants observed in these two models (results a)
and b)) the conclusion can be reached (and this applies also the observations) that only when it is
possible both to attribute meanings to the new objects, situations, and operations, as well as to
provide these with new senses within the over-all perspective of the solving process, will teaching
strategies based on these models permit to reach the desired levels of abstraction in the opera-

tions. In order to confer these new senses to objects and operations, the following are required:
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I) a contrasting process of the various concrete situations that arise from the use of the model;
II) a certain level of awareness that such differences exist; and iii) a good syntactic level that
avoids anchoring at a more "concrete" language level, at the time of momentary loss of previous
abilities or when losing the capacity to operate with more "concrete" objects, once this capacity
had already been developed. (See [3] Filloy, E./Rojano, T., 1985).

As to variations from one model to the other (results c) and d)), some of these seem to indi-
cate that one of the models, for certain modes of equations, favors more than the other the trans-
fer to a syntactic approach (due to the difficulties Involved in the evocation of a model in some
modes of equations, for instance), whereas the other favors progress because of Its iterative
application -- in the resolution of several modes of equations; these variations, however, as al-
ready mentioned In a) above, are modulated by the type of tendency shown by the subject. On
the other hand, both models share limitations, such as the fact that they have no way of repres-
enting, within their respective contexts, equations with a negative solution; for the treatment of
such equations using the model-structure as a starting point, it is necessary to have previously
undergone a process of operational abstraction, that such operations have been extracted from a
syntactic level, and that they are applied, at this level, to the solution of equations; in other
words, new operations must have been given meaning through processes I), ii), and Hi) mentioned
above. The only paradigmatic model into which itseemsto be feasibleto translate every mode of
linear equation is algebra itself, with or without the usual graphs and codes.
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A FRAMEWORK FOR PROBLEM SOLVING

Martha L. Frank

Purdue University

Four junior high school students were interviewed to investigate the
role of mathematical beliefs in problem solving. Mathematical
beliefs were found to influence what these students did when they
solved problems. Problem solving woe conceptualized as being part
of a larger context or framework with many components.

The purpose of this study was to investigate the role of students' mathema-

tical beliefs in explaining their mathematical problem solving processes.

The subjects were four junior high school students participating in Purdue

University's STAR program, a two-week intensive summer program for the mathe-

matically and verbally talented. These subjects were enrolled in the begin-

ning section of a Math Problem Solving with Computers class. These four

students, Sara, Dan, Cindy, and Mark were individually interviewed throughout

the program. The interview sessions were audiotaped. In the interviews the

students were questioned about their classroom experiences in mathematics

and were encouraged to discuss their beliefs about mathematics. However,

most of the interview time was spent with the student using the "think-aloud"

technique to solve problems.

The premise on which this study was conceived, designed, and implemented was

that problem solving does not depend only on cognitive factors. Other ele-

ments, such as mathematical beliefs, are necessary to explain what an idi-

vidual does when he solves a problem. This is not a completely new idea in

mathematics education problem-solving research (see, for example, Silver,

1982; Schoenfeld, 1983; Confrey, 1984).
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MATHEMATICAL BELIEFS

At the time that this study was designed and carried out, the focus wee en-

tirely on the role of mathematical beliefs in explaining problem-solving

processes. After a preliminary analysis of the interview data, five general

categories of mathematical beliefs were distinguished. All of these beliefs

were found to influence problem - solving behavior..

Beliefs about one's ability to do mathematics. All of the interview students

confidently tackled pnohleanatlichappmnalroutine to them. Clearly they be-

lieved they would be able to solve such problems. This may account for their

avoidance on some problems of what could be called the understanding/exploring

mode of problem solving. They may have been so confident of their ability

that they did not feel a need to explore, but would instead immediately select

a plan and carry it out.

Beliefs about mathematics as a discipline. Examples of beliefs about mathe-

matics as a discipline are Sara's statement that "math has a definite answer"

or Cindy's claim that "math is figuring." For the interview students, math

tee what they all called "the basics" (addition, subtraction, multiplication,

and division) plus a collection of routine problems with "definite answers"

which could be obtained relativepygpacklyandadthout too much effort through

the application of known arithmetic or algebraic algorithms. The interview

students' beliefs about mathematics as a discipline were related to their

problem-solving behavior. They had a tendency toquicklybail out on problems

which did not appear routine. This may have been because they all, like

Sara, perceived such problems as "extra-credit" problems--not really mathe-

matics.

Beliefs about where mathematical knowledge comes form. For most of the stu-

dents in the beginning section of the Meth Problem Solving with Computers

class, mathematical knowledge, at least in the case of programming, came

from The Teacher. (All of these students agreed with a pretest questionnaire

EST COPY AV ILABLE 94



Frank 82

statement "computer programming is a kind of mathematics.") Their purpose

for doing this type of mathematics was to get right answers. The teacher,

at least at the beginning of the STAR program, was the only one who could

tell you if your answer was right. Later, a few of the students were willing

to ask other students if their programs were right, or even to test the

"rightness" by running the programs on a computer.

Beliefs about solving mathematics problems. Further analysis of the interview

data revealed at least five types of beliefs that these students held about

solving math problems: beliefs about what counts as a math problem, beliefs

about what strategies are appropriate, beliefs about when a problem is solved

and what constitutes an acceptable answer, beliefs about how long it should

take to solve a problem, and beliefs about what to do when one gets stuck

while trying to solve a problem. Space does not permit discussion of each

of these types of mathematical beliefs. The interview students did seem to

share the belief of Schoenfeld's (1985) college students that "mathematics

problems are always solved in less than 10 minutes if they are solved at

all." This belief has what Schoenfeld calls a corollary: "give up after

10 minutes." This corollary also held in the case of the STAR interview stu-

dents.

Beliefs about how mathematics should be taught and learned. Again, a more de-

tailed analysis of the data suggested that there were several ccuronents of

this type of mathematical belief. Same of these components included beliefs

about the roletof the mathematics teacher and the mathematics student. These

beliefs were so stereotyped that they seemed to be part of a set of mathe-

matics myths, rather like the civic myths (such as the myth of the good citi-

zen) discussed by same political scientists (Milker & Milbrath, 1972). After

reviewing some of the political science and math anxiety literature on myths

and some studies of teachers' and students' beliefs about mathematics, I

developed several categories of math myths which also seemed useful in ex-

plaining the interview data. These include the Myth of the Good Math Student

and the Myth of the GoodMethTeexber. The Good Math Teacher transfers infor-
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nation to the student through explanations and demonstrates procedures and

methods. The Good Math Student follows directions, listens to the teacher,

does all his homework, and gets good scores on tests.

DEVELOWENT OF THE FRAMEWORK FOR PROBLEM SOLVING

After a preliminary analysis of the interview data it became apparent that

beliefs alone could not adequately explain what these students did when they

solved problems. Mthematicel problem solving, for these students at least,

was conceptualized as being part of a larger framework. Components of this

framework include the individual's prior experiences in mathematics, his

mathematical knowledge, and his mathematical beliefs, needs, and motivation..

Mathematics myths (popular public beliefs) are also pert of the framework,

since they influence the individual's view of mathematics. Some of these

framework components are discussed briefly below.

fitgaiLmalmtim,211124engg. Maslow's (1970) !mammy of basic

needs was used to classify the "mathematical needs" of the four interview

students as inferred from the interview data. Many of their mathematical

needs appeared to fall into the category of safety reeds, which are described

by Maslow as involving the needs for the familiar, for security, stability,

protection, structure, ceder, and freedom from moiety and chaos. Safety

needs are one of the lowest orders of needs in Maslow's hierarchy. Some of

the interview students' mathematical needs which fell into this category

included: the need to know if a problem is "possible" (has an answer), the

need to know that your answer is right, the need to have the teacher tell

you exactly Mat to do, and the need to know and remember all mathematical

facts ;demented in class. According to Maslow, safety needs are particularly

strong in children in our society because they tend to groalup in a threaten-

/ma, non-loving family environment.

Given the mathematical needs of the interview students, it is quite reasonable

that their motivation in mathematics tended to be what Nicholls (1983) calls
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extrinsic motivation and ego involvement as opposed to task involvement. The

extrinsically-motivated or the ego-involved child views learning as a means

to an end for example, an ego-involved child wants to avoid looking stupid.

The task - involved child, on the other hand, values learning and understanding

for their own sake, and what he can get cognitively out of working on a task.

The task-involved child seems to be operating at a higher level of need than

the extrinsically-motivated or ego - involved child. If Maslow's theories are

applicable here, it is compaetely'unreasonable to expect children--gifted or

not--to exhibit many higher order needs (suet' as the need for self-actualiza-

tion or the cognitive or aesthetic needs) until their lower order needs have

been satisfied. It is also easy to see why the math myths described earlier

are so tenacious. The main function of myths is to make the world seem like

a safer place. Since the child is supposed to have powerful safety needs,

is it reasonable to expect that junior high school students, being children,

are capable of experiencing many higher order needs? Is it reasonable to

expect society's math myths to disappear and students' beliefs about mathe-

matics to change overnight? Maslow puts the blame for children's overwhelming

needs for safety on the family. Holt (1982) would put the blame not just on

the family but on the schools.

Where do we go from here? Children's mathematical beliefs do seem to in-

fluence what they do when they solve problems. It seems unlikely that stu-

dents can learn to become better problem solvers unless they learn to change

their mathematical beliefs. But beliefs appear to be only part of a larger

framework for problems solving and thus probably cannot change without changes

in the rest of the framework.

One issue that needs to be addressed in future research is the applicability

of the framework to the problem-solving behavior of other age and ability-

level students. Informal observation of five sections of a college mathe-

matics class for preservice eleaentary teachers suggests that the framework

also fits what these students did when they solved problems.
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THE GROWTH OF SIMILARITY CONCEPTS OVER

THE MIDDLE GRADES (6, 7, 8)

Alex Friedlander, Glenda Lappan, William M. Fitzgerald

Michigan State University

Undeutanding simitanity essential in the development o6 chitd-
ten's geometrical undeutanding and o6 the it abitity to /mason
ptopontionotfy. The purpose o6 this study is to determine the
extent to which sixth, seventh, and eighth graders exhibit an
undeutanding o6 concepts o6 similarity. Six ctasses wets taught
an instauctiona unit on simitakity, and 6i6ty avenge -abitity
student% werce selected 6o4 pm and post intetviews.

Student sthategies on 6ourc rectangle eimitatity tasks pkesented in
the intekview showed Litt& consistency within subject ot within
task. Fon each o6 the 6ourt tasks, the level o6 pet6o/mance was
sttongty in6tuenced by the numbeu .involved. As a /watt o6
ins-auction, 90 percent o6 the interviewed students employed same
ct higher &vel attategies as compacted to their 6iut intertview:
a considaabte decrease in the numbe4 o6 students that operated on
a visuat Level on employed an additive strategy ccutd be 064e/wed.

INTRODUCTION

In the Proceedings of the Sixth Annual Meeting of PME-NA, October, 1984, the

authors reported on a pilot study entitled "The Growth of Similarity Concepts

at the Sixth Grade Level." The present study grew out of that pilot study.

Understanding similarity is an essential stage in the development of children's

geometrical understanding of their environment. A firm grasp of the concept of

similarity may also enhance children's development of porportional reasoning.

Inhelder and Piaget (1958), consider proportional reasoning as one of the six

abilities that characterize the formal-operational thinker. Even though the

ability to use proportional reasoning is widely required in everyday life,

there is a great deal of evidence that children have difficulty using such

reasoning effectively (Karplus & Karplus, 1972; Pagni, 1983).
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The present study has three major concerns--finding growth patterns in children's

development of the concept of similarity over grades six, seven and eight;

doocribing the effects of a specific instructional intervention over these three

grade levels; and determining whether instruction in similarity had' any effect

on children's more general ability to reason proportionally.

METHODOLOGY

The instructional intervention was the Similarity Unit developed by the Michigan

State University Middle Grades Mathematics Project. The unit consists of nine

activities designed to help students explore, in a concrete way, the concept of

similarity and its applications. The unit was taught in six classes and took

from ten to fifteen days of instruction.

Two classes at each grade level; six, seven and eight, comprise the sample for

the study. The oaventh and eighth grade classes had the same instructor. The

oixth grade classes had different instructors. All three teachers had taught

the instructional unit previously and were confident with the material. The

students in all six elapse° were given two paper and pencil tests pre- and

post- instruction. These toots were the Middle Grades Mathematics Project (MGMP)

Similarity Teat and a Ratio and Proportions Test which included the

Mr. Tall/Mr. Short problem from a study by Karplus and Karplue (1972), and

selected items from the Concepts in Secondary Mathematics and Science (CSMS)

Ratio and Porportion Test (Hart, 1982). In order to avoid a large student

variability, eight to twelve etudents were selected from the middle

rangeoftest scores in each class. The fifty selected students were interviewed

pro-post-instruction. These interviews took from 30 to 60 minutes each. The

teaks to bo performed wore presented in a uniform way to each student. The

otudonto wore asked after each response to explain their reasoning in detail.

The students ware presented with four different kinds of tacks related to

determining similarity of rectangles. Each of these tasks was varied along a

numerical scale designed to teat the student's facility with handling

proportions of increasing numerical difficulty. Table 1 shows the four tasks

and the four ways in which the numbers in the proportions were varied.
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Table 1. Interview Questions

1 2 3 4

INAlLRI4ML ITIL a by b
c by d

TASK

alb
a 1 c

alb
a

I c

alb
alc

a/b
I alc

1. Decide whether two drawn rectangles
are similar or not.

3 by 6

and

9 by 18

2 by 3

and

8 by 12

3 by 9

and

4 by 12

6 by 8

and

9 by 121=
2. Decide whether two cut-out rectangles

are similar or not.
2 by 4

and

6 by 12

2 by 3

and

6 by 9

2 by 6

and

3 by 9

4 by 10

and

6 by 15=
3. Given the lengths of three sides of

two similar rectangles, find the
fourth side.

2 by 6

and

6 by ?

2 by 5

and

6 by ?

4 by12 6 by 10

and and

7 by ? 19 by ?a 1---1 c( 1

b

4. Cut a strip to make a rectangle
similar to a given one.

2 by 4

and

6 by ?

2 by 3

and

8 by ?

1

2 by 6
i

4 by 6

and 1 and

5 by ? if, by ?0 1

MAIN RESULTS

Student performance on the comparison of pairs of drawn rectangles (Task 1) and

on the completion of a strip to a rectangle similar to a given one (Task 4) will

be analyzed in more detail. Task 1 was chosen because it has a lower potential

to attract visual answers as compared to the comparison of cut-out rectangles.

The latter was given first in the interview (serving accordingly as a "warm-up"

activity) and also allowed for manipulations (i.e., nesting the two rectangles

to a common corner and visually considering the diagonals or the part

"left over" in the larger rectangle).

Task 4 is mathematically equivalent to finding the missing measure in a pair of

similar rectangles (Task 3). Task 3, however, is a frequently used activity

and has the potential of attracting mechanical answers (i.e., an algebraic
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solution of the proportions). Task 4 was not used during instruction and

requires a better understanding of the proportionality principle involved.

Leval of success. Figure 1 presents the percent of students that answered

correctly on Tasks 1 and 4 at each grade level, before and after instruction.

The graphs clearly indicate the positive influence of the instruction. A

100
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70
(a) 60

30
40

30

20

10

2

too

90
e 60

70

(b) 60

30

40

30

20

to

I 2

Grade 6

3 4 1 2 3

Grade 7

.7:N___ ' ... '... ..
.

AI 2 3 4 2 2 3 4 2 2 3 4 Numerical
Grade 6 Grade 7 Grade 8 Try.

4 I 2 3 4 Numerical
Type

Grade 8

Figure 1. Level of success for Task. 1(a), and for Task 4(b).

otrong influence of the numerical type may also be observed: for all tasks and

grade levels, there is a considerable gap (20-45 percent) between level of

performance with numbers that are Aivisible across rectangles (Types 1 and 2)

and between cases in which such comparisons do not render whole numbers

(Type° 3 and 4). Figure 1 also indicates that after instruction, an average

mastery level of above 80 percent has been achieved for the first two numerical

types but not for the others.
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The average levels of performance on each of the four tasks did not allow a

hierarchical ordering of tasks by degree of difficulty.

Analysis of Strategies. As stated in an earlier report Friedlander et al. (1984)

student strategies in similarity tasks followed roughly the classification of

responses for proportionality tasks indicated in Karplus and Karplus (1972).

The following categories of responses were found in this study:

1. Visualization - using intuition without considering the lengths
of the sides.

2. Addition - considering the difference rather than the ratio of
the numbers.

3. Multiplication and Adjustments - multiplying to enlarge, and
"adjusting" by subtraction or addition (e.g., in the proportion
2:6::5:x, x = 13 because 5 = 2.2 + 1, and thus 2.6 + 1 = 13).

4. Whole Multiplication - "fitting in" the sides of the small figure
a whole (but not necessarily the same) number of times into the
sides of the bigger figure. This kind of reasoning leads
characteristically to the conclusion that if the scale factor is
not an integer, the figures are not similar.

5. Proportional Reasoning - setting up two ratios and a correct or
incorrect consideration of their equivalence, or more frequently,
considering the scale factor by which the small rectangle is
enlarged.

Student responses on Task 4 (Completion of Rectangle) for Numerical Types 3

and 4 were chosen for a more detailed analysis. As stated before, Task 4

requires a higher degree of transfer. Moreover, numerical Types 3 and 4 in this

task were found to clearly distinguish between "whole multipliers" (i.e.,

children who give the right answer just by considering number divisibility) and

"real" proportional reasoners: The "whole multipliers" would cut the strip at

any multiple of the length measure of the given rectangle, without measuring or

disregarding the measures of the given widths, whereas the proportional reasoners

considered in most cases the fractional ratio of the two eiven widths.

Table 2 presents the distribution of strategies employed at different grade

levels for this task. A comparison of pre- and post-instructional performance

indicates a remarkable decrease in the number of students that operated at a

visual level. It should also be noticed that before instruction, most sixth

and seventh graders used the visual and the whole multiplicative strategies,

whereas the eighth graders relied less on visualization and tended to employ

the "more advanced" additive strategy.
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Table 2. Distribution of strategies (in percent) employed in Task 4

for Numerical Types 3 and 4.

Strategy Grade 6 Grade 7 Grade 8

No, Pre Post Pre Post Pre Post

1 40 7 41 6 3 -

2 13 13 12 12 26 16

3 - 10 3 3 3 3

4 44 50 34 19 18 10

5 3 20 9 59 50 71

A Hierarchy of Strategies. Following the suggestions in Karplus and Karplus

(1972), the strategies employed in the rectangle similarity tasks may also be

hierarchically ordered. The list of strategies presented above is already

arranged according to a developmental approach: the lowest strategy would be

the intuitive visualization (1), followed by the additive scheme (2), a

combination of addition and multiplication (3), and then an incorrect, or a

correct scaling scheme (4 and 5 respectively), Karplup and Karplus tie their

classification to Piaget by considering visualization, addition, and scaling

as indicators of a subject's being respectively at an intuitive, preoperational,

or operational level.

Table 3 presents a summary of the distribution of strategies employed in Tasks 1

and 4 for Numerical Types 3 and 4 by the whole sample before, and after

instruction. In the two matrices, the numbers located on the main diagonal

indicate no change of strategy between the two interviews. The upper, and

the lower halves with respect to the diagonal mark students that employed

more advanced, or respectively.lower strategies in the post interview as

compared to the strategy employed in the same task in the first interview.

The results for both Tasks 1 and 4 indicate that about 90 percent of the

students were either stable or advanced (with an almost equal division of
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Table 3. Pre/post student progress on Task 1(a) and on Task 4(b)

for Numerical Types 3 and 4.

PRE 2 1 3 4 I 5

1 11 12

2 1 4

3 1

4 3 4 27 14

5 1 2 15

(a) (b)

of 45 percent for each of the two categories) and only about 10 percent

employed in the post-interview lower level strategies than they did before.
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The influence of Context Familiarity on Solving Word
Problems in Matnematice.at the High School Level

Claude Gaulin and Abdeslam El Boudali
Laval University

Abstract

Since a famous study by Brownell & Stretch (1931), relatively few

investigations have been conducted about the influence of context

familiarity on solving word problems with a context external to

mathematics. Results of a study conducted on that theme in

Morocco, during 1983-84, will be presented here.

In order to study the influenoe of context familiarity, the first

author prepared 16 word problems, that is 4 initial problems (on

elementary number theory or algebra) each one couched in four

analogous versions differing by a more or less familiar context.

He used those sixteen problems to administer a test to 256 high

school students from Morocco, and to further conduct individual

interviews with 32 of them. Results obtained show that the

degree of familiarity of the context -- familiarity being defined

here in terms of the studti11.8 -- has an unquestionable,

appreciable influence on both the performance and the

comprehension in solving mathematical word problems.
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STUDYING CHILDREN'S USE OF HEURISTIC PROCESSES
FOR MATHEMATICAL PROBLEM SOLVING

THROUGH STRUCTURED CLINICAL INTERVIEWS

Gerald A. Goldin, Rutgers University

This paper describes the creation of a script for
conducting structured clinical interviews with
academically talented children in grades 4-6, in
order to study their use of the heuristic process
"think of a simpler problem" (TSP). The children are
guided through a complex plan to solve the problem,
"What is the remainder when two to the 50th power is
divided by three?" and their competencies in various
subprocesses of TSP are observed. The prototype script
is also intended as a model for the study of other
heuristic processes.

BACKGROUND

In earlier work, Goldin and Germain (1983) and Goldin (1984,

1985) proposed that heuristic processes could be analyzed into

subprocesses with respect to four main categories: (1) advance

planning reasons the solver may have for using the process, (2)

ways of applying the process, (3) domains to which the process

may be applied, and (4) prescriptive criteria suggesting that

the process should be applied. To be able to study the

psychological structure of heuristic processes as they develop,

it is important to give operational meaning to such an analysis- -

i.e., to measure children's competencies in the use of particular

subprocesses in as much detail and with as much reliability as

possible. The present paper describes the creation of a script

for the use of clinicians during structured interviews, designed

to observe academically talented children's use of various

subprocesses of the complex heuristic process "think of a

simpler problem" (TSP) discussed in the above-cited papers. The
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prototype script is also intended to serve as a model for the

study of other heuristic processes that have been similarly

analyzed, such as "special cases" and "trial and error."

DESIGN OF THE SCRIPT

Clinical tape-recorded interviews were conducted during 1984-

85 with children in grades 4-6, enrolled in a Saturday morning

mathematics program for the academically talented at Montclair

State College. The interviewers were graduate students in

mathematics education at Rutgers University; most were also

elementary and secondary school teachers. The purpose of the

script was to prescribe (to the extent possible, verbatim) the

clinician's role in such an individual interview. The clinician

guides the child through a complex plan, applying TSP to solve

the problem:

"What is the remainder when two to the 50th power
is divided by three?"

The major steps in the plan are the following: (a) understanding

the original problem, and recognizing that it does not yield

to direct computation; (b) deciding to construct and solve one

or more simpler, related problems; (c) generating and solving

a sequence of simpler related problems, in which the exponent

in the original problem is changed successively from 50 to 2,

3, 4, etc. (the special case in which the exponent is 1 is

omitted as a difficult instance of the concept of "power"); (d)

detecting the pattern which occurs; (e) making a table of the

remainders, if necessary, and conjecturing a value for the

remainder in the original problem based on the pattern; and (f)

when feasible, finding a "reason" for the pattern. The script

based on this plan is presently 19 pages long, and typically

requires about 30 to 45 minutes per interview to administer.

It is still undergoing refinement and revision. An outline of

its major sections is presented in Table 1.
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Table 1. Outline of the Script for "Think of a Simpler
Problem" (TSP)

I. Explanation of prerequisites for understanding the problem

a. the meaning of 3 to the 4th power, and similar problems;

b. the remainder when 17 is divided by 4, and similar
problems;

c. the remainder when 3 to the 2nd power is divided by 5,
and similar problems.

II. Presentation of the main problem

a. posing the problem of finding the remainder when 2 to
the 50th power is divided by 3;

b. determining if the child is willing to tackle the
problem;

c. observing the heuristic process or processes the child
spontaneously uses;

d. observing whether the child spontaneously decides to
think of a simpler problem, and if so, observing in
detail how far the child takes the process (see below);

e. observing other noteworthy occurrences, including
expressions of affect;

f. noting whether the child states a coherent reason for
what he or she did.

III. Guided use of the heuristic process TSP (if the child has
made no prior use of this process, we continue here without
"correcting" any prior conceptions or misconceptions)

a. observing whether the child seeks to think of a simpler
related problem when prompted to do so; if so,
observing whether the child successfully generates one;

b. if not, observing whether the child does so when
suggestions of how to obtain a simpler problem are made;

c. observing other noteworthy processes.

IV. Presentation of simpler problems (if simpler problems have
already been obtained, we enter this section at the
appropriate place)

a. suggesting the child try, "What is the remainder when
2 to the 2nd power is divided by 3?" and guiding the
child to its solution;
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b. suggesting the chili try the main problem again;
observing if the child now spontaneously generates
additional simpler problems; cycling back through
III.b, increasing the exponent in IV.a by 1 each time;

c. observing the point where the child spontaneously
generates simpler problems, and/or detects a pattern in
the remainders;

d. observing other noteworthy processes and expressions of
affect.

V. Guided detection of the pattern in the remainders (if not
previously found)

a. observing whether the child detects a pattern when
prompted to look for one;

b. if so, noting whether the child spontaneously infers or
conjectures a solution to the main problem;

c. if not, guiding the child to detection of the pattern
and observing whether a solution to the main problem is
inferred;

d. observing other noteworthy processes.

VI. Guided conjectured solution to the main problem using the
pattern in the remainders

a. observing whether the solution is conjectured by the
child when prompted;

b. if not, guiding the child through construction of a
table and observing whether solution is conjectured;

c. if necessary, guiding the child to conjecture a correct
solution to the original problem;

d. observing whether the child recognizes spontaneously
that the solution is only a conjecture, and/or looks for
a "reason" why the pattern occurs;

e. observing transfer to related problems.

VII. Looking back

a. noting the child's feelings about the problem;

b. noting the child's recognition of previously-encountered
similar problems;

c. asking for a coherent retrospective account, asking for
alternate methods or shortcuts;

d. correcting conceptual misunderstandings which may have
occurred during the problem-sclving interview.
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The following is a guiding principle applied throughout the

script which, in my opinion, is crucial to its validity in

permitting us to make inferences about children's cognitions:

Whenever a question is asked or a suggestion made, the child

is permitted to work freely until he or she arrives at a

conclusion or an impasse. At the outset (Sec. I), the concept

of "power" is reviewed or introduced, and the child is asked

to explain it. If necessary, the clinician illustrates its

meaning, assisting the child until examples are solved correctly.

When the main problem is introduced (Sec. II), if it seems that

it is being totally misinterpreted, the clinician asks, "Could

you explain what two to the 50th power means?" and corrects the

child's understanding of the meaning of the problem if necessary.

However, the clinician does not at this time correct conceptual

misunderstandings or misapplications of arithmetical rules, such

as the assumption that two to the 50th power is the same as 50

to the second power. The child does not receive feedback

correcting conceptual misunderstandings until the very end of

the interview--even when the child's conclusions at a particular

point reflects such a misconception, the clinician simply

proceeds with the next suggestion in the script. Thus the child

has the opportunity either to generate a more adequate

conceptualization (through the application of the heuristic

process), or to bypass the original misconception and solve the

problem in a different way. The child is led to self-correct

computational errors only after observation to see that this

does not take place spontaneously, and only when necessary to

implement a required step in the overall plan.

PROTOCOL ANALYSIS AND SCORING

The script provides for various response alternatives--for

example, if the child spontaneously conjectures a correct answer

to the original problem, based on the pattern in the sequence
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of remainders, he or she is not led to construct a table. Thus

not every subprocess associated with TSP is encountered in every

interview. But for each subprocess encountered, transcripts

of the tape-recorded interviews, together with the child's

worksheets, permit an assessment of competence: (1) Does the

child use or attempt to use the process spontaneously? (2) Does

the child use or attempt to use the process when prompted to

do so? (3) Is the child's (spontaneous or prompted) application

of the subprocess successful? Thus it is possible to measure,

for instance, a child's ability to generate spontaneously a

sequence of simpler related problems (a) when presented with

the main problem (Sec. II), (b) when prompted to think of a

simpler related problem (Sec. III), (c) when a specific simpler

related problem is presented (Sec. IV), and so forth. More

details of the script and its proposed scoring are provided in

an accompanying paper (Goldin and Landis, 1985).
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A PROBLEM SOLVING INTERVIEW WITH STAN (AGE 11)

Gerald A. Goldin and Judith H. Landis
Rutgers University

The interview script developed by Goldin, based on
the heuristic process "think of a simpler problem,"
is described in an accompanying paper. This script
was used in a pilot study with children in grades 4-6,
enrolled in a Saturday morning mathematics program for
the academically talented at Montclair State College.
We analyze some of the problem-solving processes of
"Stan," an eleven-year-old boy, as they were recorded
in the interview, illustrating how a child's
competencies in various subprocesses of the heuristic
process can be observed and scored.

BACKGROUND

In an accompanying paper, Goldin (1985) reports on the creation

of a guided discovery script for conducting individual clinical

interviews with academically talented children, in order to study

their competencies in subprocesses of a complex heuristic

process, "think of a simpler problem" (TSP). In the Fall of

1984, versions of this script were administered in a pilot study

to children in grades 4-6, enrolled in a Saturday morning

mathematics program for the academically talented at Montclair

State College. One boy, "Stan" (not his real name), who was

11 years old at the time of the interview, displayed some

interesting and remarkable insights as he solved the problem

that was posed. This paper describes some of the problem-solving

processes that he employed. It is intended to illustrate how

a child's competencies in various subprocesses can be observed

and scored in the context of an extended and complex problem-

solving activity.
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PROCEDURE

Graduate students in mathematics education at Rutgers University,

many of whom were also K-12 teachers, were trained to act as

clinicians in administering the script. Early drafts of the

script were read and criticized, and revisions were made based

on the students' suggestions. The students then rehearsed the

script in pairs, interviewing each other and taking turns playing

the child's role. Further revisions of the script took place

as rough spots were uncovered during these sessions. Finally

each student, now familiar with the script, administered it to

a child; the tape of this interview was replayed, and the

clinician's adherence to the script discussed. After such

practice and discussion, the pilot study at Montclair State

College began in November 1984. The process of revision of the

script continued for several weeks during the ensuing interviews.

in each interview, the child was provided with pencils and paper

for use during the problem solving. One graduate student

functioned as the clinician, sitting beside the child, posing

the problem in accordance with the script, and making notes on

a copy of the script. A second graduate student functioned as

an unobtrusive observer, tape recording the interview and

following along, making notes on a copy of the script. The

observer was permitted to ask questions only at the very end

of the interview. After the interview, the tapes were duplicated

and transcribed. A file for each child thus consisted of the

tape of the interview, a verbatim transcript of the tape, the

child's actual worksheets, and scripts with notes made during

the interview by the clinician and by the observer. J. Landis

was the clinician for the interview with Stan, who was then in

the 6th grade.

114



Goldin/Landis 102

HIGHLIGHTS OF STAN'S PROTOCOL (ABRIDGED)

Stan had previously learned about exponents in school, and had

no difficulty with the prerequisites (Sec. I of the script).

When asked to find the remainder when 2 to the 50th power was

divided by 3 (Sec. II), he did not write out an expression using

2 as a factor 50 times, nor did he begin to calculate products.

(Stan:) Okay. First I have to figure out 2 to the 50th power,
and I don't remember a short way of doing it. Okay. Should
I do the whole problem? (Clinician:) Try and think out loud,
tell me what you're thinking as you're doing it, okay? (S:)
I'm trying to find a shorter way to doing 2 used as a factor
50 times, and I'm thinking that 50 might be able to be done to
the 2nd power; just reverse it, and that would be 50 times 50,
that would be 2,500 divided by 3, that would give me ... the
remainder would be one. (C:) Okay, can you tell me why you did
what you did? (S:) Because I think that 2 to the 50th power,
which is 2 used as a factor 50 times, you would just reverse
the numbers, that would be 50 used as a factor 2 times.

Note that Stan did not spontaneously monitor for the correctness

of his generalization, for example by trying a special case.

He had arrived at an answer to the problem, and was satisfied

with his conclusion. Therefore, without correcting his

"overgeneralization" of the commutative property, the clinician

next prompted him (Sec. III):

(C:) ... Can you think of a simpler problem that might help you
to solve this one? (S:) Umm ... 2 to the 25th or 2 to the 12th,
maybe. (C:) Okay. Which one would you like to use? (S:) Umm
... I'll do to the 6th, which is half of that. ... And I got the
answer is 64, and 64 ... I got the remainder would be one, again.
(C:) ... will that help you solve the original problem? (S:)
Umm. I don't really think so, because 6 does not go into 50.
... I could try 5, because that goes into 50. ... That would
be 32, and 32 divided by 3 is ... the remainder would be 2.
Actually, ... that would be 10 remainder 2. (C:) ... Now would
that help you if you were trying to find the remainder of 2 to
the 50th divided by 3? (S:) Yes. I think so, because I would
take my answer and try and work it into 50. ... Like, okay. Two
to the 5th is, um, 32, so if I wanted to get to the 50th, I could
multiply it by 10, which would give me, 5 times 10 is 50. That
would be 2 to the 50th, and that would be 32 times ten, 320,
divided by 3, is one ... (computes) ... the remainder would be 2.
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We see that Stan successfully generated simpler problems when

prompted to do so, and formulated a plan for using them. This

time he "overgeneralized" the property of associativity and,

as with the commutative property, he did not monitor for the

correctness of his generalization. Prompted now to think of

another simpler problem that could help him (cycling back through

Sec. III), Stan suggested 2 to the 25th ("which would be even

closer to 50"), but changed his subgoal spontaneously:

(SO Okay. Two to the 6th equals 64 ... I want to get to the
25th ... 2 to the 10th is 1,024 and I could use 10 to get into
50. ... Now I have to ... I could ... hmm I could maybe divide
that by 3 and multiply the answer by 40, I mean, by 5, that would
give me 50 after I divided, and then I wouldn't have to divide
at the end and that would be ... the remainder would be one.

Here Stan conjectured in'effect that 250 4. 3 =

(210 x 5) + 3 . (210 ÷ 3) x 5. Though he seemed slightly
dubious about his procedure, he still did not test for its

correctness, or note the contradictions among his answers to
this point. His mention of multiplying by 40 may merely reflect

momentary confusion of division with subtraction, or it may

reflect a fleeting intuition of the law, of exponents. Since

Stan generated many simpler problems when prompted, but did not

spontaneously look for a pattern in the remainders he found,

the clinician continued with Sec. IV of the script:

(C:) Okay, let's suppose we tried 2 to the 2nd power divided
by 3. What would that remainder be? (S:) Umm, one. (C:) Do
you have any new ideas now for solving the problem of the
remainder when 2 to the 50th power is divided by 3? (S:) Umm,
yes, I could try and find a pattern. (C:) What do you mean?
(SO Like I would try 2 to the 3rd, and 2 to the 4th, and 2 to
the 5th, and if the remainder was the same in each one, I think
it would be safe to assume that it would be all the way up to
50 ... but, it doesn't work. Well, actually the remainder would
be 2 in that ... the remainder would be one ... 2 ... okay, I
found a pattern. (C:) You did. What did you find? (S:) In
2 to the 2nd the remainder is one, 2 to the 3rd it's 2, 2 to
the 4th it's one, 2 to the 5th it's 2, 2 to the 6th it's one
and it keeps on going. And all the exponents are even when the
remainder is one, therefore, the remainder would be one in 50,
because 50 is an even number.
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Stan spontaneously articulated his plan to look for a pattern

in the answers to a sequence of problems. Though he did not

find the pattern he anticipated, he found one that enabled him,

without further prompting, to infer a solution to the main

problem. Thus Secs. V and most of Sec. VI, guiding the child

through these steps, do not appear in scoring Stan's

competencies. Asked if this problem reminded him of any others

he had solved before (Sec. VII.b), Stan described in detail a

problem from his class at Montclair State College, where each

of 1000 students in turn opens, closes, or leaves unchanged 1000

lockers--student 1 opens all the lockers, student 2 closes the

even-numbered ones, student 3 reverses every 3rd locker, etc.

(S:) ... And the problem was which lockers would remain open.
And you had to figure it out. I did all the way up to 20, and
I noticed that the numbers that were opened in the 20 were 1,
4, 9 and 16. When I looked at those numbers, I realized that
those numbers were perfect squares, and 1 would be one times
one, 4 would be 2 time 2, 9 would be 3 times 3, and I also
noticed another pattern. Uh, the difference between 1 and 4
is 3, the difference between 4 and 9 is 5, the difference between
9 and 16 is 7, and it keeps going up by 2, all the way to 961,
and that was the highest number, and it turned out that there
were 31 lockers that would be open. And I listed all of them.

The resemblance Stan recognized between the two problems was

based not on any surface similarity in syntax or context, or

structural similarity in required arithmetic operation; rather

it was based on the similar applicability of a process of

constructing a sequence and detecting a pattern in it. Stan

then gave a coherent retrospective account (Sec. VII.c) of his
discovery of a pattern in the remainders, and at that point

sought (successfully) to articulate a reason for the pattern.

SCORING OF COMPETENCIES

For each subprocess of TSP, at each stage of the problem-solving

interview, we seek to determine whether the child uses the
subprocesses: (1) spontaneously, (2) when prompted to do so,
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(3) successfully. Table 1 reports the scoring of some of the

subprocesses evidenced in the interview with Stan.

Table 1. Partial Scoring of Stan's Competencies(a)

(a) Roman numerals refer to the script outline sue- spon- when not
presented in the accompanying paper cess- taneous- promp- at
(Goldin, 1985). fully ly ted all

II. Presentation of the main problem

Decides to seek a simpler method no
Monitors for correctness of generalization
Conjectures solution to original problem no
Recognizes solution as merely conjecture
Decides to think of simpler problem

III. Guided use of the heuristic process TSP

Decides to think of simpler problem
Solves simpler problem
Generates sequence of related problems
Looks for a pattern in the sequence
Conjectures solution to original problem no

IV. Presentation of simpler problems

Generates sequence of related problems
Looks for a pattern in the sequence of

simpler related problems
Conjectures solution to original problem x

based on pattern in sequence
Recognizes conjectured solution as merely

conjecture, seeks reason behind pattern

VI. e. Observing transfer to related problems

Applies the pattern to 2
44

3

Applies the pattern to 2
75

3

.

Describes application of TSP to 3
50

7. 4

VII. Looking back

Recognizes previously solved problem
related by heuristic process

Provides coherent retrospective account

x

x

Reference: Goldin, G.A. (1985) Studying Children's Use of
Heuristic Processes for Mathematical Problem Solving
Through Structured Clinical Interviews. To be
published in Procs. of the 7th Annual Mtg. of PME-NA.
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METACOGNITION RESEARCH: TECHNIQUES OF PROTOCOL ANALYSIS

Lynn C. Hart

University of New Orleans

Karen Schultz

Georgia State University

ABSTRACT

Some mathematics educators have taken the position that
metacognition (knowledge and beliefs about cognitive activity
as well as awareness and control of that knowledge) is critical
to mathematical performance and that research in mathematical
problem solving would benefit from exploration of this
phenomenon. The goal of the current work was to explore the
use of Schoenfeld's (1983) framework to recognize, record and
analyze observable metacognitive activity during mathematical
problem-solving sessions. The protocol of three preservice
middle school teachers solving an applied mathematical problem
was studied. Several factors were found to influence our
analytical process. These included number of members in the
group, expertness of the problem solver, and type of problem.

BACKGROUND

In the last few years much attention has been given to metacognition in

research on cognitive development, memory, and reading. Mathematical

problem-solving researchers, however, have just begun to question the

impact metacognitive activity may have on problem-solving success and to

offer a clear definition (Lester & Garafalo, 1985) of what is meant by the

term. Some mathematics educators (e.g., Lesh, 1982; Lester & Garafalo,

1985; Schoenfeld, 1983; Schultz & Hart, 1985; Silver, 1984) have taken the

position that knowledge and beliefs about cognitive activity as well as

awareness and control of that knowledge is critical to mathematical

performance and that research in mathematical problem solving would

benefit from exploration of this phenomenon.
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GOALS OF THE STUDY

The short-term goal of the current work was to develop methods and

approaches to recognize, record, and analyze observable metacognitive

activity during mathematical problem solving. Using a framework developed

by Schoenfeld (1983), it was our intention to describe the process of

recognizing, recording, ana analyzing this phenomenon as it actually

developed, with an eye for sharing our data-gathering and interpretive

procedures with others. Our long-term goal is to ascertain a correlation

between problem-solving success and metacognitive activity.

THE STUDY

Data Source

Data for this study were videotapes and transcripts from pilot studies

(Lesh & Schultz, 1983), where the problems solved were applied problems

taken from Lesh's (1982) applied Mathematical Problem Solving Project.

One protocol of a group of three preservice middle school teachers was

selected for analysis.

Procedure

The process for the transcript began by parsing the protocol into episodes

of six different types: reading, analysis, exploration, planning,

implementation, and verification. A brief synopsis of Schoenfeld's (1983)

description of each episode type follows.

Reading. A reading episode of a problem-solving protocol starts when

a subject reads the problem aloud and continues on through preliminary

ingestion of the problem conditions and any silence immediately

following--implying nonverbal rereading. It may include assessment

of the current state of the problem-solver's knowledge related to the

problem-solving task.

Analysis. An analysis episode occurs when there is no obvious

solution path after a reading episode. In this kind of episode the
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subject makes an attempt to understand a problem fully, to select an

appropriate perspective and reformulate the problem in those terms.

Analysis sticks rather closely to the conditions and goals of the

problem.

Exploration. An exploration episode is less structured than an

analysis episode and is further removed from the original problem.

It frequently includes a variety of problem-solving heuristics.

Schoenfeld describes it as "a broad tour through the problem space"

(p. 358).

Planning-Implementation. Planning and implementation are self-

explanatory. Planning, however, is not always evident in a problem

solution. If a problem solver moves directly into "doing" the

problem, the episode is identified simply as implementation. Where

planning is evident as a separate activity it is classified as a

planning episode. When both planning and implementation seem to be

occurring simultaneously an episode is identified as planning-

implementation.

Verification. Verification involves assessing, reviewing, and

testing a solution and evaluating the solution process.

After parsing, a problem-solving protocol is mapped in a flowchart-type of

diagram from episode type to episode type with notations at transitions

between episodes. The introduction of new information and local assessment

of progress within an episode as well as transitions between episodes are

critical points. It is at these three points that metacognitive activity

may be observed.

The protocol was analyzed by two doctoral students and ourselves. After

lengthy discussion on interpretations of episode types, we developed fairly

high consistency in parsing.

121



109 Hart /Schultz

Discussion

As with any model in its formative stages, Schoenfeld's model presented

some problems for us--given our long-term research goal of ascertaining a

correlation between problem-solving success and metacognitive activity.

The most obvious problem was number of persons in the problem-solving

session. While two- and three-person groups may be quite useful in some

research settings (e.g., Nodding [1983] and Hart [1984] found that average

and below-average subjects learned problem-solving skills while working in

a group), for this type of analysis it produced.certain difficulties. The

most obvious one was when members of the group were actually operating in

different episode types. Consider an excerpt from the videotape of Caran,

Magda, and Chuck solving Lesh's (1982) Carpentry Problem. The problem is

presented in parts. The first part asks the solver to determine how much

baseboard is needed for a 21-foot by 28-foot room if baseboard comes in

16- and 10-foot sections. The group answered this question by multiplying

length times width to obtain 588, dividing it by the length of the longer

board which was 16, and concluding that they needed 37 16 -foot boards.

The second part of the problem asks the problem solver to calculate the

baseboard needed to have the fewest seams. In attempting to answer the

problem with this new stipulation, Caran aiscovers that they have made an

error in the earlier solution for part one. She and Magda begin

implementation of a new plan. Chuck, however, has already worked out a

solution (which finds the least waste, not the fewest seams) and he

continually tries to offer it to the group. It is unclear from the video

or the transcripts at what point Chuck planned and implemented his

solution and what metacognitive activity may have monitored his work.

This excerpt is presented below.

Caran: So what's 28 divided by--oh, you know what, you guys?

Magda: Huh, what? What?

Caran: We figured it out, this is--this 588 is area, not

perimeter. That's what nervousness will do for you.

Magda: Okay, so --

Caran: Cause when I started figuring out this I was going how

come we only need 1.75 boards and we've got 36 we're

buying?
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Magda: Well, let's start over then.

Caran: That's great.

Magda: Well just have to slow down.

Caran: Right [calculating]--42.

Magda: Okay.

Caran: Oh, God.

Chuck: I'll tell you what we need. I wrote it down.

Magda: Let's see--no, we need- -

Chuck: 98 feet of board is what we need.

In analysis of the protocol the group was said to be in an implementation

episode at the end, but Chuck had already developed a plan, implemented

his plan, and had a solution to offer to the group. Using group protocols

we were not able to isolate individual metacognitive activity.

Our intention for future work is to modify the format so we can more

closely monitor individual metacognition. We propose to do this by

videotaping teachers solving totally unfamiliar problems before a group of

students. By being in the teaching setting subjects will be forced to

think aloud in order to model problem-solving behavior. In this way we

will obtain the thought processes of an individual problem solver. These

sessions will be videotaped and analyzed for metacognitive activity, using

the Schoenfeld model.

Another problem is one suggestea by Schoenfeld (1983) in his description

of his technique.

There are both objective and subjective components to the

framework for analyzing protocols. The objective part

consists of identifying in the protocols the loci of potential.

managerial decisions. The subjective part consists of

characterizing the nature of the decision points and describing

the impact of those decisions (or their absence) on the overall

problem-solving process. (p. 354)
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We found the objective analysis quite challenging. An issue such as

interpretation of episode typing is initially critical in developing

consistent parsing. Other factors that influence both the objective and

subjective components of the analysis must be considered. Some of these

are novice/expert problem solvers, number of members of the group, and

problem type. Careful examination and documentation of all these factors

must be considered in light of the research questions being raised.

The subjective analysis is still not resolved in our minds. We were too

quick to try to quantify the presence of metacognitive activity with a

score at critical points. Expert problem solvers may show little

metacognitive activity and come to a quick and elegant solution of the

problem, whereas novice problem solvers might show extensive metacognitive

activity and never arrive at a solution. The amount of metacognitive

activity therefore is not necessarily a predictor of problem-solving

success. A score is a function of the expertness of the problem solver as

well as the problem type, as well as other factors. Our inclination at

this time is to observe the ratio of productive critical points to total

critical points for a single problem solver and to work toward identifying

types or levels of metacognitive activity into which problem solvers may

be placed. One control for the expert/novice factor is to be certain the

problem we give is really a problem for the individual--certainly not an

easy goal.

SUMMARY

We have no definitive conclusions about the analysis procedures at this

point. It is expected that our interpretations and characterizations will

be cyclic in their development. An initial conceptualization must be

filtered, organized, and interpreted through several phases of refinement

before it becomes a more usable model. We feel confident in our progress

and encourage reaction and input to our work.
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THE EFFECT OF RATE TYPE, PROBLEM SETTING AND RATIONAL NUMBER ACHIEVEMENT ON
SEVENTH-GRADE STUDENTS' PERFORMANCE ON QUALITATIVE AND NUMERICAL PROPORTIONAL

REASONING PROBLEMS
The Pilot -

Patricia Heller - University of Minnesota
Thomas R. Post - University of Minnesota

Merlyn J. Behr - Northern Illinois University

ABSTRACT

This study investigated how different rate types (buying, speed,
consumption) and problem settings (familiar and unfamiliar) affected 254
seventh graders' performance on qualitative and numerical proportional
reasoning problems. Six forms of a proportional reasoning test were
designed reflecting the three rate types and two settings. Each form
consisted of 17 questions in a single context and included missing value
and numerical comparison word problems, 1 non proportional reasoning word
problem and 10 qualitative reasoning problems. Each student was given one
of the 6 forms and a 20 item rational number test. Rate type and rational
number ability affected student achievement on both numerical and
qualitative subscales of the proportional reasoning tests. As expected
the less familiar rate (consumption) was more difficult for both
subscales. Correlations between different parts of both tests were
moderate to low suggesting that students do not perceive that rational
number concepts and proportional reasoning skills are in fact related to
one another.

We are indebted to Nadine Bezuk, Kathleen Cramer and Andrew Ahlgren who
assisted in this research. The research was supported in part by the National
Science Foundation under Grant No. DPE -847077. Any opinions, findings, and
conclusions expressed are those of the authors and do not necessarily reflect
the views of the National Science Foundation.
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The purpose of this study was to investigate how different rate types and
problem settings affect student performance on qualitative and numerical
proportional reasoning problems. In addition, relationships between
qualitative directional reasoning about rates and numerical proportional
reasoning, and relationship between rational number skills and numerical
proportional reasoning were explored. The following questions were posed:

1. Does the type of rate differentially affect student performance cn
qualitative and numerical proportional reasoning problems?

2. For a given rate type, do differences in problem settings affect
student performance on qualitative and numerical proportional
reasoning problems?

3. To what extent is qualitative directional reasoning about rates
related to numerical proportional reasoning?

4. To what extent are rational number skills related to student
performance on proportional reasoning problems?

Numerous studies have shown that early adolescents and many adults have a
great deal of difficulty solving proportional reasoning problems (Hart, 1978,
1981; Karplus, 1981; Karplus et al., 1979; Rupley, 1981; Suarez, 1977;
Vergnaud, 1980, 1983).

Why is proportional reasoning so difficult? What factors affect problem
solving success? Several studies have shown that factors such as problem
format, the numerical characteristics of the problems, the problem context,
and even the immediately preceding problem affect student performance on
proportional reasoning problems (Jesunathadas and Saunders, 1985; Karplus et
al., 1984; Lybeck, 1978; Rupley, 1981; Vergnaud, 1980). In this study we
investigate the effect of two aspects of problem context on the level of
student performance on qualitative and numerical proportional reasoning
problems. The intent eventually is to explore the practicality of using a
graded series of exercises to lead students from proportions that are fairly

easy to understand to those more difficult proportions essential to the
sciences (e.g., density, acceleration, concentration, definite proportions,
genetics, etc.) and to more advanced mathematical applications, i.e., algebra.

Several studies have shown that student performance on proportional
'reasoning problems is affected greatly by the problem context (Karplus et al.,
1983; Lybeck, 1978; Vergnaud, 1980). Jesunathadas and Saunders (1985) found
that familiarity with the content of proportional reasoning tasks affected
ninth-grade students' performance on these tasks. Students had significantly
greater success solving problems with familiar content than solving problems
that were the same numerically but with unfamiliar science content. Familiar
content was defined as those words, processes, and concepts which most
students encounter quite frequently in their daily lives. Unfamiliar science
content was defined as those words, processes, and concepts which are found in
high school science textbooks.
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There may be two aspects of "context" that car be usefully distinguished
in proportional reasoning problems. The first has three sub-considerations:
(a) the objects in the problem, (b) the variables used to describe the two
properties of the objects of interest in the problem (e.g., length, area,
weight, time, etc.), and (c) the units of measurement used to specify these
variables (e.g., for length--inches, feet, centimeters, kilometers, miles,
etc.). We will call this set of context aspects the "problem setting." For
example, in speed problems students may be more familiar with people running
foot races and measures of distance run in laps and running time in minutes
than they are with driving oars and measures of distance traveled in miles and
driving time in hours.

A second aspect of context is the type of ratio or rate involved in the
problem. A survey indicated eight types of rates that can be found in
standard textbook proportional reasoning problems. They are: Distribution
(cookies per person), Packing (books per foot on shelf), Exchange (dollars per
hour), Mixture (orange juice concentrate and water), Speed (nails hammered per
minute), Consume or Produce (miles traveled per gallon), Scale (inches per
mile) and Conversion (points per kilogram). Most can be interpreted with
direct or continuous variables. Each type of rate can be used in familiar or
unfamiliar problem settings. Even with familiar problem settings, however,
students may be more or less familiar with the rate types themselves. For
example, junior high school students typically have more experience buying or
mixing than they have scaling or converting units of measurement.

Familiarity with what is called the problem context may consist of
familiarity with both the rate type and the problem setting. Knowledge of the
hierarchy of difficulty for uninstructed students on proportional reasoning
problems with different rate types and problem settings may contribute to a
better understanding of how proportional reasoning skills develop in
adolescents and to the design of better proportional reasoning instruction for
students.

Another factor which could affect student performance on proportional
reasoning problems is qualitative reasoning skills, which seems to be a
significant variable in mathematics and physics problem solving performance
(Chi, Feltovich and Glaser, 1981; Larkin and Reif, 1979; Larkin et al., 1980).
Some proportional reasoning studies indicate that many early adolescents use
faulty qualitative reasoning or use additive comparisons where multiplicative
comparisons are required (Karplus and Peterson, 1970; Karplus et al., 1983;
Noeltinr, 1980 a & b). The frequency of these incorrect strategies seems to
depend on the problem context (Jesunathadas and Saunders, 1985; Karplus et
al., 1983). However, no systematic research has been conducted to explore
students' ability to reason qualitatively about rates, to determine the effect
of different contexts on their qualitative reasoning about rates, or to
determine how qualitative reasoning about rates contributes to proportional
reasoning skills.

In this study we introduce a new type of qualitative question about rates
that may be important in understanding the development of proportional
reasoning skills in adolescents. These questions ask in what direction a rate
will change (decrease, stay the same, or increase in value) when the numerator
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and/or the denominator decreases, stays the same, cr increases. Such
qualitative directional reasoning about rates may be important prerequisite
skill for successful performance on numerical proportional reasoning problems.

The presence of integral ratios or rates in proportional reasoning
problems and small numerical values less than about 30 make problems
considerably easier than those without integral ratios or larger numbers
(Karplus et al., 1983; Noelting, 1980 a,b; Rupley, 1981). It would seem,
then, that rational number skills could be an important prerequisite skill for
successful performance on proportional reasoning problems.

In this study, we limited our investigation of numerical proportional
reasoning to problems with easy, integral ratios or rates. Since we were
interested in the effect of rate type and problem setting on problem solving
performance, we did not want to add a numerical difficulty interaction effect.
We did, however, examine the relationship between rational number skills and
performance on numerically easy proportional reasoning problems.

Three types of rates were examined in this study: exchange rates
(buying), speed, and consumption rates. The two problem settings selected for
each rate type were (a) Buying - gum and records, (b) Speed - running laps and
driving cars, (c) Consumption - gas mileage of trucks and oil burning in
furnaces. These rate types were chosen because we expected them to have
different difficulties and because they have been studied previously (Karplus
et al., 1983; Vergnaud, 1983). We expected speed problems to be slightly more
difficult than buying problems, and consumption problems to be the most
difficult of the three rate types.

Numerical Proportional Reasoning Problems

Two formats of numerical problems, missing-value and numerical
comparison problems, were used in this study, as illustrated by
the problems below:
Missing-Value:

Steve and Mark were running equally fast around a track. It took
Steve 20 minutes to run 4 laps. How long did it take Mark to run
12 laps? Please show all your work carefully.

Numerical-Comparison:

Tom and Bob ran around a track after school.
Tom ran 8 laps in 32 minutes.
Bob ran 2 laps in 10 minutes.
Who was the faster runner?

Tom Bob they ran equally not enough information
fast to tell

Missing-value and numerical-comparison problems have been used
extensively in instruction and research. The inclusion of both types of
problems in this study complements previous studies with the same rate types
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by Karplus et al. (1983) and Vergnaud (1980). The numerical values chosen for
each type of problem are contained in Table 1 below.

Table 1
Data Used in Numerical Problems

Person 1 Person 2

Missing-value 1 4 202 4 ?2

Missing-value 2 8 24 ? 6
Missing-value 3 3 12 ? 36
Comparison 1 8 32 2 10

Comparison 2 3 15 9 45

Comparison 3 6 24 2 6

* VI and V2 are the two variables in the problem setting (for example, number
of pieces of gun and price in cents).

Qualitative Proportional Reasoning Problems

Two formats of qualitative directional questions about rates were
invented for this study, as illustrated by the questions below:

Qualitative Rate Change:

If Nick ran less laps in more time than he did yesterday, his running
speed would be

a) fester

b) slower
o) exactly the same
d) there is not enough information to tell

Qualitative Comparison:

Bill ran the same number of laps as Greg. Bill ran for more
time than Greg. Who was the faster runner?

a) Bill
b) Greg .

0) they ran at exactly the same speed
d) there is not enough information to tell

Since both the numerator and the denominator of a rate can decrease,
increase, or remain the same, there are nine qualitative rate change and nine
qualitative comparison questions that could be asked. T cases are
ambiguous. Ambiguity occurs when the numerator and denominator both increase,
or both decrease. The correct answer to these
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questions is that there is not enough information to tell what happens to the
value of the rate (qualitative rate change) or which object has the larger
value of the rate (qualitative comparison), because the numerator and
denominator can decrease (or increase) proportionally or non-proportionally.
These are the only qualitative questions that require a truly numerical
understanding of proportionality for a correct answer.

METHODS

Subjects

Our subjects were 254 seventh graders in a middle-class urban school in
St. Paul, Minnesota. They included all seventh-grade students in attendance
on the day the tests were administered. About half of each group were girls
and about half were boys. The teachers reported that the students had nct
received instruction on proportional reasoning problems in their seventh-grade
mathematics classes.

The Instruments

Six forms of the proportional reasoning test were designed, each
comprising 17 questions in a single context, three rate types--two settings
within each. The first section of the proportional reasoning test consisted
of three missing-value and three numerical-comparison problems. The numerical
values in the six problems, shown in Table 1, allow students to solve the
problems correctly using integer ratios or rates. The second section of the
test contained qualitative questions similiar to those already described. One
item did not involve proportional reasoning.

The second instrument used in the study was a 20-item rational number
test. This test consisted of problems on order and equivalence, finding
equivalent fractions, qualitative changes in the value of a fraction,
operations with fractions, estimating rational number computations, a
quantitative notion of a fraction, and the concept of a unit. The test was
constructed so as to correspond numerically to the numbers used in the
proportional reasoning test.

Procedure

The tests were administered according to a set of instructions which was
read and explained to the students. The six different forms of the
proportional reasoning test were randomly distributed to the students in each
class. After each student completed the proportional reasoning test, he or
she was given the rational number test.

ANALYSIS

Table 2 contains means and standard deviations for the three rate types, and
two settings within each for the numerical (missing value plus numerical
comparison) and for the qualitative problems.
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TABLE 2
Means and Standard Deviations

Numerical Qualitative
(possible Score = 6) (possible Score = 8)

Type of Familiar (Less Familiar Familiar Less Familiar
Rate Setting Setting Setting Setting

Buying 4.23 (1.70) 4.37 (1.64) 6.85 (1.48) 6.53 (2.21)
gum records gum records

Speeds 3.95 (1.78) 3.40 (1.80) 6.28 (1.75) 5.35 (2.26)
laps cars laps cars

Consumption 3.53 (1.89) 2.97 (1.44) 6.00 (2.18) 4.00 (1.96)
car/gas furnace/oil car/gas furnace/oil

*Means (Stantard Deviations) - i.e., Mean = 4.23; Standard Deviation = 1.70.

Students were divided into 3 roughly equivalent groups on the basis of
their scores on the rational number test. Separate 3-way ANOVAS [rational
number ability (3 levels), rate type (3 levels), and setting (2 levels)] were
conducted for students' numerical and quantitative scores. Significant main
effects for rational number ability and rate type were significant (p < .001)
for both types of scores. Setting was significant only for the qualitative
score. No significant two- or three-way interactions were observed. Figure 1
depicts the plot of the mean scores for each rate type and setting within each
rate type.
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As expected, the less familiar rate (consumption.) was more difficult for
both the numerical and qualitative scales.

Correlations between the numerical (missing value plus numerical
comparisons) and qualitative subscales scores on the proportional reasoning
test and achievement on the rational number test were r = .49 and r = .35
respectively. Although these were significant at the .00001 level, the small
percentages of variance accounted for, .24 and .12 respectively suggests that,
in the latter case, students do rot perceive that rational number concepts and
the proportional reasoning skills measured by these tests are in fact highly
related to one another.

There were very substantial achievement differences or various test
items. The range was 5 to 92 percent correct. The two most difficult were
those qualitative items requiring a determination of the qualitative effect Cr
the overall rates (increase, decrease, stay the same, cr impossible to tell)
when both the numerator and the denominator increased cr decreased. In these
two cases the resulting direction of change is indeterminate. The correct
interpretation is, of course, dependent or the rate of change of the numerator
and the rate of change of the denominator in relation to one another.
Requiring relativistic thinking, these items may in the future provide
valuable insight into students' ability to process information in proportional
reasoning situations. It should be noted that these two items were not
included in the statistical analyses reported here because they did not load
on the main factor in a'factor analysis which was conducted. Achievement
levels on the more/more, less/less items were by far the lowest of all items
on both tests.

Postscript:

The actual study (of which this was the pilot) was completed by The
Rational Number Project in the spring/summer of 1985, with over 900 7th and
8th grade students utilizing four different rate types (mixture, speed,
scaling, and density), 2 settings for each rate type, and a test of rational
number concepts which closely paralleled the proportional reasoning tests.
Similiar data for 100 preservice elementary teachers at the University of
Minnesota were also included as part of this effort. Results are currently
being incorporated into a series of papers.
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CONFLICTING FRAMES OF REFERENCE IN THE LEARNING OF ALGEBRA

Nicolas Herscovics & Louise Chalouh

Concordia University

In constructing meaning for algebraic expressions, the learner
experiences obstacles due to his existing arithmetic frame of
reference which interferes with his construction of an algebraic
framework. In experimenting a teaching outline aimed at over-
coming this initial cognitive problem, we uncovered evidence
of different types of conflict between the arithmetic and alge-
braic frames of reference: one month after instruction in algebra,
students reverted back to their arithmetic framework. However,
when jolted back to algebra, their answers changed significantly.

In dealing with the cognitive difficulties involved'in the learning of algebra,

Davis (1975) has identified two major obstacles encountered by the learner,

that of a lack of a numerical referent ("How can you multiply by x when you

don't know what number it is!") and that of a "name-process" dilemma by which

an expression such as x + 3 represents both the process of adding 3 to x , .

as well as naming the result. Another cognitive obstacle has been identified

by Collis (1974), the beginning student's inability to accept the "lack of

closure" of such expressions. However, it was Marilyn Matz (1979) who per-

ceived that the student's arithmetic background might, to some extent, inter-

fere with his learning of algebra. She pointed out that since in arithmetic,

concatenation (the juxtaposition of symbols) denotes implicit addition, both

for place-value (23 = 20 + 3) and in mixed fractions (4i. 4 + i), this addi-

tive connotation might bring the novice to conclude when given that x = 6,

that 4x must be 46 or , when given x. -3 and y. -5 , that xy must be -8 .

Research funded by the Quebec Ministry of Education (FCAR grants EQ-1741,2923)
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In a previous paper (Chalouh 8 Herscovics, 1983) we communicated results which

supported Matz' observation. We gathered our data by interviewing 6 students

who had not been exposed to any formal instruction in algebra. Asked to res-

pond to the question "Can you tell me what 3a means to you?" , five of the

six students interpreted 3a in terms of a subdivision label (e.g. third

problem, first part), three students provided a place-value interpretation

(e.g. 3a is 30 or 3a is 31 because a is the first letter of the alpha-

bet), two students showed evidence of a first letter abbreviation (e.g. 3 ants).

Of our six subjects, three of them supplied us with more than one interpret-

ation. Asked what they would get by replacing the letter a with the number 2 ,

one student responded "I would put 3 times or plus 2...", four students res-

ponded with "32", while the sixth student wrote "3 2 , 3 x 2 , 34'2, 32" .

These results show the very natural tendency by the students of interpreting

an algebraic expression new to them in terms of the only numerical frame of

reference they possess at this point, that of arithmetic. But this does not

constitute cognitive conflict. Different frames of reference can come into

conflict in various circumstances. They can be considered as conflicting when

the existence -of one interferes with the learner's construction of a new one.

This is very well illustrated by the student who does not feel he can multiply

a letter and a number.' To him, the letter does not as yet represent a number

and his arithmetic framework forces him to instantiate, that is, to substitute

a numerical value for the literal symbol. But conflict between different

frames of reference is not restricted to epistemological obstacles encountered

in initial learning situations. Indeed, after the consecutive acquisition of

two different frames of reference, the first one may prove to be predominant

and interfere with the use of the second one. Yet another conflict occurs when

a lack of delineation between two frames of reference existing in the learner's

. mind prevents him from identifying which one is relevant in a given situation.

This paper will report how in a teaching experiment dealing with the first kind

of cognitive problem, that of constructing meaning for algebraic expressions,

we found evidence of the latter two types of conflict between the students'

algebraic frame of reference and their arithmetic one.

137



125 Herscovics/Chalouh

THE TEACHING EXPERIMENT

In order to introduce algebraic expressions in a way which might be meaningful

to beginning algebra students we developed a new approach, one which sought

to identify these expressions as "answers to problems". Since we wanted the

students to focus on the algebraic expression, we selected problems of a highly

pictorial nature, easy to visualize, which would not by themselves create

cognitive obstacles. The types of problems we chose involved the quantifica-

tion of a rectangular array of dots, the length of a line segment divided into

parte, and the area of a rectangle.

The purpose of our teaching experiment was to uncover the possible new cogni-

tive obstacles inherent in our teaching outline, and to assess whether or not

differences in ability and grade level were relevant variables. Since we were

interested in following the students' thinking, we opted foc a case study

approach. With each one of the six students mentioned earlier, we conducted

a teaching experiment consisting of five semi-standardized interviews - a

pre-test, three lessons, a poet-test. Teachers selected three of them from

grade 6 and from grade 7 of low, average and high mathematical ability as de-

termined by their school performance. The reason for a semi-standardized

format was to allow for inter-subject comparison.

Our first lesson started out very cautiously with our three types of problems,

but each one involving a quantity hidden by a cardboard cover. In a prior

paper (Herscovice 6 Chalouh, 1984) we reported how initially the students were

introduced to the usebf the placeholder box to represent the hidden quantity

in completing statements such as "number of dots. 7 x length,. 4 x [1],

area 6 x0n. The removal of the cover exposed the hidden quantity which

was then inserted in the placeholder box. Students had no difficulty in fol- .

lotting this up by the use of letters instead of the placeholder box within the

context of hidden quantities. As reported last year in a companion paper

(Chalouh 6 Herscovics, 1984), our success with lesson 1 led us to believe that

the transition to their use for the representation of unknown quantities

(as in writing the area of 377 ) would proceed without difficulty.
a
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In fact, all six subjects indicated that they were experiencing some cognitive

discontinuity in this transition. This led us to re-assess our impression that

they were developing an acceptance for the lack of closure of algebraic expres-

sions. Although this cognitive discontinuity was easily overcome, nevertheless

it brought out the complexity and relevance of the name-process dilemma.

While the first part of lesson 2 dealt with the use of letters as specific

unknowns, the second part of this lesson was devoted to concatenation.Students

were introduced to the notation 3a as representing 3 x a or a x 3 . We

pointed out that this notation was unambiguous in algebra but could not be used

in arithmetic since 3 x 5 # 35 . It is in our third lesson that we started

finding evidence of the algebraic frame of reference conflicting with the arith-

metic one. When we asked students to write the area of the rectangle

3 7 for the small rectangle on the right-hand side, two of our subjects
c ,2

said "three times two" but wrote "32", one of them explaining that she meant

"three two in algebra". However, it was the post-test that revealed the extent

of this conflict.

THE POST-TEST

The post-test was administered one month after the third lesson was completed

with all six subjects. It consisted initially of two parts: the first part

repeated the questions raised in the pre-test in order to determine the change

in our students'interpretation of algebraic symbolism; the second part con-

tained questions intended to ascertain how much the subjects had learned from

the three lessons. The first subject to be interviewed, Wendy, our average

grade 6 student, surprised us by answering the questions in Part I almost

identically as in the Pre-test, where she had used an arithmetic frame of

reference. At the beginning of the second part of the post-test,.when she was

asked the meaning of the expression 5b , she questioned whether we wanted her

to respond "in algebra". This chance remark by her led us to modify the post-

test to include a third component assigned to review some of the questions in

Part I, but specifically asking the students to answer in "algebra".
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Here are some of the questions asked in both the pre-test and the poet -test:

- When I show you this, 13a1, can you tell me what it means to you ?

- If you replace the letter a by the number 2, can you tell me what you get ?

- When I show you 4 b , can you tell me what it means to you ?

- Look at this workcard: (Simplify 2e + Sal Can you tell me what it means?
Can you do it ?

- Can you simplify: rs t 4e t 5 , 2c + 3d -4- 4c1 Why do you think different
letters are used ?

- Can you add 4 onto n+ 5 ? Can you add 4 onto 3n ?

Comparing the initial Post-test results with those of the pre-test, we found

that our subjects' responses were almost identical, that is, our subjects were

still essentially responding within an arithmetic frame of reference. We had

expected that after the work done in the three lessons, the responses gathered

in the post-test would have been significantly different and reflect an alge-

braic context.

The questions dealing with the concatenated expression 3a showed that four of

the students answered as in the pre-test: Wendy our average grade 6 subject,

thought of place-value and alphabetical rank (a.1, b.2) and wrote "3a m 31" ;

Frankie, our weak grade 6 student tought algebraically, "3a is 3 times a" ;

Gail, our strong 7th grader, said "three apples, three ants" and referred to

place value ; Filippo, our average 7th grader, referred to place-value and to

subdivision label. Two students demonstrated some evolution. Yvette, our weak

grade 7 student, indicated that she had expanded her initial subdivision label

and place-value interpretation of 3a by drawing a rectangle whose area was 3a.

Antoinette, our strong 6th grader, was the only student showing a complete change

from her initial arithmetic interpretations (subdivision label and place-value)

to a purely algebraic one ("3a is 3 times a"). All students, except Frankie

and Antoinette, answered "32" instead of "6" when asked to substitute 2

for a in 3a , thus confirming that most of them remained in their initial

arithmetic frame of reference.
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The questions dealing with the meaning of the letter within the context of

addition ( 4 + b ), yielded some changes between the pre-test and the post

test. For Frankie and Gail, the change was significant: in the pre-test they

had transformed the expression into an equation, that is, they interpreted the

letter as a "specific unknown". In the post-test, they indicated that the

letter could take on more than one value " 4 + 2, 4 A-3" (generalized number).

A minor change was observed in the case of Wendy who in the pre-test had used

an alphabetical interpretation ( 4+ b m 4 +2 ) and who now wrote "4 + b m 6

and 4 A.n = 12". Antoinetta and Filippo showed no change from the pre-test.

Antoinette maintained her interpretation of the literal symbol as a generalized

number ( 4 + b is 4 + 3 or 4 + 6 ) and Filippo still used a specific

unknown interpretation for the letter by writing "4 + b m 8" . Yvette's re-

sponse was too vague to draw any conclusion.

For the simplification question involving only like terms (2a + 5a), five of

the six subjects maintained their original place-value interpretation such as

2a + 5a m 22 + 53 . Antoinetta was the only exception: she read the expression

correctly ("2 times a plus 5 times a") but then she wrote "2a + 5a m 10"

explaining "You don't know what the a is so I just times the 2 and the 5".

For the simplification question involving unlike terms (3a + 4a + 5), Wendy,

Filippo and Yvette maintained the place-value interpretation they had ex-

pressed in the pre-test. The other students indicated some change. Antoinette

solved the problem by simply adding the numerals (12a). Frankie first drew

a rectangle whose area was to correspond to the given expression and also said

that it could mean "3 x 2 4 x 2 + 5". Gail drew a correct line problem

aaaaaaa5
, but still could not simplify and wrote "3 + 4 4 5"

For the questions requesting the addition of 4 to given expressions, the

responses of all subjects , excepting Antoinette, were similar to those of the

pre-test: Wendy continued to ignore the letter ("4 plus n + 5 is 9") and used

her alphabetical place-value interpretation ( "4 plus 3n is 4 plus 314");

Frankie and Gail still ignored the letter or used a place-value interpretation

(4 + 5 , 4 + 32); Filippo continued to form equations and used a place-value

interpretation (4 + N + 15 m ?6, 4 plus 3n is 4 plus thirty something);
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Yvette still added 4 to the expression ( 4 + n » 5 ) stating that it was in-

complete and she also used a place-value interpretation (" 4 + 3n is 4 + 30")

Antoinette did indicate some change in that she no longer evaluated the letter

nor used a place-value interpretation. Nonetheless, she was unable to find a

correct answer to the additive problems.

From these results, one can conclude that Wendy, and to some extent Filippo,

operated in the post-test, in a purely arithmetical frame of reference. Frankie,

Gail and Yvette used both arithmetic and algebraic frames of reference.

Antoinette was the only student who did not revert back to her arithmetic

framework and exhibited a significant evolution, since most of her responses

were within an algebraic context. The fact that five of the six students did

revert back to a framework which was essentially an arithmetic one, indicates

how difficult it is to replace it by an algebraic one for the learner.

RETURN TO AN ALGEBRAIC FRAME OF REFERENCE

As pointed out earlier, the second part of the post-test was to ascertain how

much our students had learned from the three lessons. However, to achieve this

it was necessary to bring them back to the algebraic frame of reference esta-

blished in the teaching experiment. This was done by raising the question:

"IN ALGEBRA, WHAT DOES 5b MEAN Z "

Upon the request to respond in algebra, Wendy, Gail, Filippo and Yvette, who

had initially given an arithmetic interpretation for the concatenated expres-

sion, changed their response to an algebraic one and said "5 times b" . Not

only did these four subjects respond differently as to the meaning of the

expression 5b , but also, in substituting a numerical value for b, they no

longer used a place-value interpretation, but used the intended algebraic

meaning, that of multiplication: in substituting 2 for b, they did not say

"fifty-two" as before, but now read it as "5 times 2". This change in response

is interesting since it shows that all these subjects knew the meaning of 5b

within the context of algebra, but unless specifically requested to respond

within that context, they remained in an arithmetic one.

142



Herscovics/Chalouh 130

Once our students were induced to work in an algebraic frame of reference,

they continued to answer accordingly for the remainder of Part II of the

post -test. However, some of them needed continued reassurance that they were

to respond within that context. Filippo, and often Yvette, constantly asked

"in algebra?". Antoinetta and Frankie have not been mentioned here since they

had both initially stated that 5b meant 5 times b without being prodded.

Since at the end of the second part of the post-test, our subjects were clearly

in an algebraic frame of reference, we returned to some of the questions asked

in both the pre-test and at the beginning of the post-test, expecting that

some changes in their responses would occur. A change did occur, but it was

not always a clearcut cne. Five out of the six subjects indicated the pre-

sence of both an algebraic and an arithmetic frame of reference. Wendy had

previously ignored the letter in the question "add 4 onto 3n", but now she

wrote "3n + 4". However, when replacing a by the number 2 in 3a she claimed

3a could be "thirty-two or 3 times a". Frankie had previously used a place-

value interpretation ( 4 + 32 ) but now claimed that 3n was "3 times a

number", but he was unable to accept the lack of closure of the expression as

evidenced by his replacement of the letter n by the number 4, thereby reverting

to an arithmetic framework. Further indication that Frankie had abandonned

his place-value interpretation can be found in his rewriting "2a - 5a" as

"2 x a + 5 x a" whereas before, he had written "22 * 53". Gail now provided

only algebraic answers. For "add 4 onto 3n" she now wrote " 4 + 3n " ; in

simplifying "3a + 4a + 5" she wrote "3 x a 4 4 x a + 5". However, in commen-

ting her initial answers, she claimed that "2a 4 5a" could be "twenty something

plus fifty something in ...adding or subtracting". Thus she hinted at the pos-

sibility of an alternate answer in arithmetic. Filippo answered only within

the context of algebra. For example, he wrote "4 x 3 x N" for "Add 4 onto 3n".

However, before answering any question he preceded his answer by "in algebra?"

Yvette responded "3n + 4" to the question "add 4 onto 3n", but the remainder

of her answers were very erratic indicating a conflict between the two frames

of reference. Our sixth subject, Antoinette, was not listed above since she

was the only student who had spontaneously answered the questions in Part I

of the post-test within an algebraic frame of reference.
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CONCLUSION

The research reported here presents strong evidence regarding the cognitive

conflict created by the existence of both an arithmetic and an algebraic frame

of reference in the mind of the novice algebra student. Our six subjects were

taught individually, and after three lessons could generate non-trivial

algebraic expressions as answers to given dot array, line segment length or

rectangle area prOblems, and conversely, they could geneiate such problems

for given algebraic expressions. Yet, a month later, five of our six subjects

reverted back to a framework which was primarily an arithmetic one. The expli-

cit instruction to answer in algebra led to a remarkable shift in their res-

ponses. This is most evident in the answers to the problem "add 4 onto 3n".

Whereas their initial response in the post-test was essentially arithmetic

(4 + 32, 4 + 314), when jolted into an algebraic frame of reference, they all

answered "4 + 3n". These results imply that in early algebra, the teacher and

the researcher cannot take the student's responses at face value. We must

first reassure ourselves that he is well aware of the frame of reference

relevant to our inquiry.
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THE EFFECTS OF COMPUTER USE ON THE ACQUISITION OF MULTIPLICATION FACTS BY A
LEARNING DISABLED STUDENT

Richard Howell, The Ohio State University
Betsy Sidorenko, The Columbus Public Schools
James Jurica, The Ohio State University

INTRODUCTION

Although there are a camber of articles concerning the use of microcomputers

with special populations, there is little research being done on the

effectiveness or impact of the use of microcomputers with these populations

(Boffmeister, 1982; Blaschke, 1985). This is especially true as it concerns

students who are diagnosed as having learning disabilities (Hasselbring and

Crossland, 1981; &liftman, Tobin and Buchanan, 1982). It may be that the use of

computers and educational software will facilitate the renediation of specific

learning problems associated with various types of learning disabled students,

and for the learning that takes place to ranain stable over time. This study

will attempt to investigate the effects of the use of computer and two types of

zaathenatical software on the acquisition of multiplication facts by a learning

disabled student in a special educational setting.

The demand for integrating computers into special education programs for the

mildly handicapped is presently oriented primarily to the use of computer

assisted instructional (CAI) software intervention. The primary models, or

vehicles, for the delivery of instruction have been drill and practice programa,

which still oonsititute approximately 60% of the high priority instructional

courseware needs according to special education administrators. The other 40%

of the courseware reflects an expressed need for more tutorial, or

tutorial-based programs (Blaschke, 1985).
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Research on the usefulness of drill and practice that is specifically focused on
the use of mathematical concepts with learning disabled students has shown that

drill and practice programs do not affect students' performance if they are

using a reconstructive strategy for determining a solution to a addition problem

(Hasselbring, 1985). However, this study also found that: 1) almost all of the

students increased their rate of correct responding as a result of exposure to

the drill and practice program; and 2) few students moved frau the use of

reconstructive processes (a more primitive strategy) to the use of more

sophisticated reproductive processes for solving mathematical computing

problems.

In view of this information, we are undertaking a aeries of investigations which

seek to discover the relevant dimensions of the use of both software and teacher

intervention strategies with mildly handicapped L.D. students within the area of
mathasatioa. In this particular presentation, two studies are presented, a

pilot study (Study #1) involving the use of drill and practice software, and a

oontinuation study (Study #2) involving the use of tutorial-based software under

varying conditions of teacher intervention. Study 41 used a single subject,

multiple baseline AHAB design, while Study 42 used the same single subject with

a multiple baseline withdrawal design (Tawney and Gast, 1984) in order to
determine if:

1. The use of drill and practice software as an effective intervention
strategy for a specifio mathematics disability involving the multiplication
tables.

2. The use of specialized tutorial-based software employing a "gradual
recall" method (Skinner, 1974) under varying conditions of teacher
intervention as an effective intervention for the aoquisition of
multiplication facts by a leaning disabled student.

3. The long-term effects of computer-based learning when it is directed at
information meant to be committed to memory, in this case, the
multiplication tables, 7 - 9.
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PROCEDURES

SUBJECT: The student selected for this study was a male, 16-year old high

school student with a specific learning disability in the area of mathematics.

The student exhibited no innappropriate behaviors and was highly motivated to

learn the multiplication tables, but had experienced years of failure in their

acquisition.

METHOD: The multiple interventions for this study were sequenced as follows:

STUDY #1: A drill and practice program providing instruction in a variety
of multiplication problems, without teacher intervention, followed by a
return-to-baseline condition, and the final intervention phase.

STUDY #2: A tutorial-based program that provided practice using a "gradual
recall" technique, without teacher intervention, followed by a
return-to-baseline period. A shift was then instituted using the same
tutorial-based program with specific teacher intervention in teaching a
problem-solving strategy for computing multiplication problems. Finally, a
series of probes will be conducted over the following three months to check
on the stability of the learning over time.

The student was exposed to each of the conditions successively and, upon
stabilization (a minimum of three trials of criterion responding (Tawny
and Gast, 1984)), were returned to a baseline condition for at least three
sessions. The return-to-baseline conditions consisted of no computer
intervention and evaluation of daily performance using a standard set of 24
multiplication problems involving the 7, 8, and 9 times series.

RESULTS

STUDY #1 : Figure 1 displays the number of errors across the sessions. In the

first baseline condition, errors increased from 0 during session 1 -- to 4

errors during session 3. During the first intervention the drill and practice

software was introduced to the student. The subject used the software for about

20 minutes a session and errors decreased to 1 by session 6. After the baseline

14 7 131EST copy NUM InLE



135 Howell/Sidorenko/Jurica

condition was reintroduced, the error rate climbed back up to 2 by season 9. The

second intervention period started off with an increase in errors. The subject

decreased errors tram 3 during session 10 to 0 during section 11. The error rate

then began to climb tram 1 during session 12 to an average of 2 during the final

session.

Figure 2 illustrates the average amount of time that the subject required to

answer each of the 10 problems. The student's time went from a lbw of 14.6

seconds to a high of 26.9 seconds during the first baseline period. The first

intervention period started on session 4 and the student's times for the

intervention were 10.1, 6.6, and 6.1. The average time in the second baseline

went tram a low of 7.2 during session 7, to a high of 17 during session 9. The

subject decreased his response time during the first 2 sessions of the second

baseline period. The subject's time then began to increase during session to

8.3 seconds and to 10.3 eeoonds during the last session.

FIGURE 2

a
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STUDY R. : Figure 3 illustrates the results-to-date of the second study, which

involve an initial baseline period, followed by the use of the tutorial package.

After the baseline responding stabilized (4 days) on the timed tests, the

student was exposed to the tutorial software with the lumber of errors slowly

decreasing to an average of 1 error per 20 problems by the 10th day of

intervention. The study is presently at this point and once the responding has

stabilized at 1 error per 20 problems for three days, a return-to-baseline

condition will be in effect during which probes will be conducted to test for

the stability of the learning. If the error rate increases over time, then the

teacher intervention phase of the study will be instituted and carried out unil

error rates are nce again at a stable rate, at which time another baseline

condition will be instituted.

FIGURE 3

3

18
SESSIONS

Figure 4 illustrates the student's responding under untamed testing conditions,

where the student had as much time as he wanted for responding. Beeline

responding was generally more erractio, with a median response error rate of

approximately 6 errors per 20 problems. However, the first intervention phase

(tutorial software) shags a similiar pattern of responses as with the timed

conditions. At the present time, error rate has begun to stabilize at 1 error
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per 20 questions, the pre-experimental criterion level of "acceptable" errors.

SEAMS

CONCLUSIO)14

These findings indicate that drill and practice software may make an initial,

but transitory effect upon the cumber of errors and the amount of time required

to successfully complete multiplication problems. It appears that wihout a

specific intervention treatment which seeks to change the strategy by which the

student approaches the problems, any gains made during to the computer

interaction will not hold over time. One of the primary limitations of the

pilot study was that none of the baseline or intervention periods were long

enough during the first study which may have introduced more variation in

response patterns if 5-10 days were given to each period. In addition, it was

found that the measure of rate of problems solved was not as sensitive a measure

of behavioral change as having both timed and untimed tests of problem solution.

This mode of testing is more realistic in that it allows the student the

opportunity to respond under Icw-stress and high-stress situations that more

closely resemble normal testing situations.

The directions for additional research indicated a need to use CAI software that

1.50
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introduced a strategy for solving multiplication problems within a

tutorial-based framework, and to possibly manipulate the type of teacher

intervention. It was with these considerations in mind that the second study was

designed so that the student was first exposed to a tutorial software program

that was designed to remediate memory-deficit problems. Provisions were also

made to intervene with a specific teacher intervention in the form of a new

reproductive strategy if the gains made with the tutorial software did no hold

over time.
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EXTENSIVE AND INTENSIVE QUANTITIES IN MULTIPLICATION
AND DIVISION WORD PROBLEMS: A PRELIMINARY REPORT

AND A SOFTWARE RESPONSE

James J. Kaput, Southeastern Massachusetts Uhiversity and the
Educational Technology Center, Harvard Graduate School of
Education
Judah L. Schwartz, the Educational Technology Center and the
Massachusetts Institute of Technology
Joel S. Poholsky, the Educational Technology Center

Two studies examined, respectively, the kinds of one step
multiplication and division problems generated by students
in grades 4-13, and then the kinds of problems such students
found difficult. Results confirm and complement recent
work by others regarding the shortcomings of student
cognitive models of multiplication, division, and intensive
quantities (generalized rates). Results also show a tight
fit between problem types not generated by students and the
problems they find difficult. We describe a coordinated
multiple representation software environment under development
intended to help build and coordinate the student cognitive
models now lacking.

Recent work by Fischbein, Greer, Bell, and others has made plain

the paucity and inflexibility of student models for

multiplication, division and rate - or "intensive" - quantities,

(Ekenstam, 1983; Greer & Managan, 1984; Bell, Fischbein, & Greer,

1984; Fischbein, 1985). They manipulated the numbers in word

problems to violate the numerical assumptions of student

primitive cognitive models. The resulting decline in performance

highlights the shortcomings of the students' primitive models,

and also confirms specific characteristics of those models. In

particular, the primary student model of multiplication is
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repeated addition. Others, most notably Usiskin and M. Bell

(1983) and Freudenthal (1983), have analyzed the various meanings

of multiplication and division and have likewise concluded that

students now receive little instruction that would build richer

and more flexible cognitive models. Our approach is based on (1)

the distinction between extensive, E, and intensive, I,

quantities (Freudenthal, 1973; Schwartz, 1976, 1984), and (2)

attention to the semantic relationships among the referents of

the quantities in a given problem (Quintero, 1981, 1983).

There is a direct relationship between the two types of division

and the role of intensive quantities (generalized rates) in

division problems. (Given a set of size p to be subdivided, the

partitive interpretation of p/q answers the question of what is

the size each of q parts, while the quotative interpretation

answers the question of how many parts of size q.) First note

that the quotient of two extensive quantities with different

units, E/E, yields an intensive quantity, I. Now, using Bell's

example (1984), we can illustrate the relationship between the

two types of division and quantitytypes concretely.

Partitive: distance (E) / time (E) = speed (I)

Quotative: distance (E) / speed (I) = time (E)

While Bell (1984) found better performance on the partitive (E/E)

problem, he showed performance to be sensitive to the interaction

between the contextual and numerical features of the problem. He

found that multiplication problems amenable to a repeated

addition interpretation were easier than those involving the

product of an extensive and an intensive quantity (ExI or IxE in

our terms and a "rate" problem in theirs), and these were easier

in turn than sizechange problems. These results are consistent

with the other work cited above.
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We now describe a pair of experiments that support the general

theme of the paucity and inflexibility of student cognitive

models for these operations. Finally, we shall describe the

outlines of a software environment under development designed to

help build the appropriate cognitive models and to link students'

primitive models to more powerful mathematical ones.

TWO STUDIES

Study. A requested 290 public school students approximately

uniformly distributed across grades 4-13, abilities, and sex to

write single step multiplication or division word problems. 84%

of the multiplication responses were true single step

multiplication word problems, and 90% of the division responses

were single step division word problems. Of the multiplication

problems generated, 84% were of the IxE (rate) type, and 16% of

the ExE type (all of which were area problems). Of the division

problems generated, 81% were of the E/E (partitive) type, 17%

were of the E/I (quotative) type, and 2% were of the I/I type.

Study B requested 255 students from grades 4 -12 to write (but not

execute) the arithmetic computation they would use to solve each

of 11 single step word problems. Overall, the three most

difficult problems at all grade levels were the I/I, the I/E, and

the ExE - combinatoric. Apparently, direct use of a partitive

analysis with an "I" dividend was difficult for most students,

although an independent request of high ability 12th graders to

picture their approach revealed a uniform use of partitive

pictures, even when the quantities were not amenable to direct

depiction (Kaput, 1985). Subsequent clinical work has also

indicated that the combinatoric ExE case is learnable at the

earlier grade levels via a tree diagram approach, but, as with

the other meanings for multiplication and division, it is not in
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the typical student's repertoire simply because the student has

not been offered significant experience with it.

The congenial numbers used throughout the two studies complement

the work cited earlier in that (1) the earlier studies used less

congenial numbers within the categories that our students found

reasonably easy, hence exposed subtleties within those categories

that our studies would not have found; and (2) we included

problem types in Study B that were not represented in Study A or

in the cited work, hence confirming the boundaries of existing

student models. Note further that the unrepresented problems of

Study A as well as the most difficult problems of Study B were

those that were least amenable to simple partitive, quotative or

repeated addition interpretation, likewise defining the limits of

operant student models. As might be predicted, students were

most able to solve those problem types for which they had ready

cognitive models (as evidenced in Study A) - although the cited

work shows that the cognitive models the students were employing

were decidedly limited in their flexibility. Full data on these

studies and a discussion of some of the semantic features of

quantity referents can be found in (Schwartz, 1984).

A SOFTWARE DEVELOPMENT RESPONSE

We are currently involved in a combination of clinical work and

software development intended to create a learning environment

that includes multiple and coordinated visual representation of

intensive quantities and operations on them. This will provide a

traversable ramp from students' primitive models first to

intermediate models and then to more powerful ones. Our strategy

is to display how actions and consequences in one representation

have counterparts in the others, thereby accomplishing two major

objectives beyond the first order objective of introducing new
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and flexible representations. We shall make visually explicit,

hence discussable and internalizable: (1) the coordination of and

translations across representations; and (2) the structural

mathematical commonalities present across representations

(Shavelson & Salomon, 1985).

Our plans utilize four linked representations: (1) a series of

concrete iconic models of intensive quantities (varying as to

differing semantic features, including discreteness and

continuity of number referents), (2) a table of data that records

the numerical data resulting from actions in the other

representations, (3) a coordinated graphical representation of an

intensive quantity as the slope of a line in a labeled coordinate

plane, and (4) a numerical workpad that also provides for

tracking the operations on the units involved in the problem

similar to The Semantic Calculator (Schwartz, 1983). The

variation in the iconic representations provides multiple

linkages to differing student primitive models as well as

different starting points for different problems. The total

environment provides several tools for attacking a problem, and

its different components engage the major portions of a student's

cognitive apparatus - involving concrete perceptual processing in

(1), visual imagistic processing (in 1 & 3), and the

formal/linguistic processing associated with the manipulation of

formal expressions (in 4). The new ingredient of such an

environment is the increasing computational power now becoming

available in school microcomputers that makes possible seriously

interfaced multiple window learning situations that support

activities with no simple analogs in static media because the

latter limit the coordination of representations to serial, and

often clumsily executed, actions. Further detail can be found in

(Kaput, 1985).
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USE OF SUBSTITUTION PROCEDURE IN LEARNING ALGEBRAIC EQUATION-SOLVING

Carolyn Kieran
univoroite du Quebec a Montreal

Leaaning atgebut .64 aasumed to invave ahiSting 6kom an
atithynetic approach toward numbeaa and opeaationa to an
atgebnaie approach. It hypotheaized that dua.ing a
peaiod o6 ticanaition, panto o6 the ad approach are dis-
waded as new methods arte liound to aegace them. Thia
hypothesis was ezOolted in a study on equation-eaving.
The use o6 the eubatitution ixocedune was bound to be
inadequate by aix atgebna novicea and ma gamilintyy
aeptaced bon ceatain equal on -types by atgebuic methods.

It is assumed that the learning of algebra implies a shifting from a reliance

on knowledge of numbers and arithmetic operations to a reliance on algebraic

operations, rules, and numerical structure. In elementary school, children

learn to add, subtract, multiply, and divide pairs of numbers. The sight of

an addition sign between two numbers means simply to add the two numbers and

give the answer. There is no ambiguity to the task. However, in algebra,

an addition sign does not necessarily imply that one is to add the given num-

bers. For example, the addition sign in 2x + 5 - x = 27 does not mean that

one should add the 2 and the 5. Here the addition sign means something else.

This gives rise to the following question. How do children entering secondary

school make the transition from what we night call the arithmetic approach to

numbers and operations to what we might call the algebraic approach? What are

the major factors involved in this transition period?

The main feature of the arithmetic approach, as far as our argument here is

concerned, is the sequential nature of the performance of operations. This

means two things. First, any string of arithmetic operations is carried out

in a left-to-right order (Kieran, 1979). For example, the problem

"3 + 4 - 1 + 5 ?" is calculated in the sequence: 3 + 4 yields 7, 7 - 1

yields 6, 6 + 5 yields 11. Second, it also means that equations like

4 + x - 2 5 m 10 are attempted by trial-and-error replacement of the unknown

term, each replacement being tried out according to the left-to-right sequence

of operations until a value is found which yields a total of 10 (Kieran, 1981).
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In equation-solving, this implies that the arithmetic approach does not include

methods involving inverse operations. The given operation signs are used as

they are; they are not signals to use the inverse operations. Finding the

value of the unknown term of an equation by means of the arithmetic approach

involves using the surface operations.

The algebraic approach, on the other hand, makes use of the structure of the

number system. The relationships among the four operations, in particular the

inverse relationship between addition and subtraction, multiplication and divi-

sion, allow for solving methods which are unavailable to those possessing only

the arithmetic approach. For example, an algebraic approach to solving the

equation 4 r x - 2 r 5 = 10 might use the given signs as indicators for

selecting the required inverse operations, e.g., x . 10 - 5 2 - 4. Then

the resulting operations are carried out as in the arithmetic approach. Thus,

the algebraic approach includes the arithmetic approach. That is, it includes

the ability to decide when the addition sign means that one is to add and when

it means something else. But the algebraic approach involves more than the

use of both surface and structural operations. Though it cannot be discussed

fully here, the algebraic approach also includes systematic rules fcr comparing

numerical expressions without having to evaluate them directly and allows for

operating on literal terms as opposed to operating solely on numbers.

An issue which arises here is why anyone whose arithmetic approach has worked

well for them in the past would change it for an algebraic approach. A second

issue is how the change occurs. Does the learner attempt to throw out the old

arithmetic methods and start afresh, or is there rather an attempt to graft

some new processes and rules onto the old system? Matz (1979) suggested that

algebra learners fit and stretch their existing knowledge in acauiring new

knowledge. We agree that this probably forms the basis of acquiring the

algebraic approach, that children beginning the study of algebra do not attempt

to discard completely their old arithmetic approach and start afresh. Rather

they attempt to fit the new approach which they are being taught to what they

already know. This suggests that they will be receptive to instruction which

makes some sense in terms of their old approach. They will adopt new methods

for tasks which cannot be handled by old methods. But we take as a working

hypothesis that this is only part of the picture. Just as they will keep
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certain petit' of the old'approach. which' work for them in certain tasks, they

will diseard the parts of it which dd'hOt Work'. Thus, this period will be

chariCierized' by a seiedtii6'of parte of the new approach and' reiection of

parte of the Old' apprOaeh'.. In effect; during the early part of this' transition,

learnerd will not be searching' ior One dingle Method Which will work for all

task-tyPes: Rather they will latch onto Specific methods for specific tasks.

The result will be a kind of patchwork quilt of various methods, each one

being effeCtiVe for eparileular type of taek. As' the structure of the system

gradually beComes clearer; it is hypothesized that one of the methode of the

patchwOrk* Will emerge and replace all. the °there; By' this time; the' transi-

tion period' Will be nearly completed:

The aim of this paper is to report on a subset of the results from a study

dealing with' the early part Of this transition period. SpecifiCally, we

intend to 166i at one parii641ai equationediVihg method which is based on

the arithmetic approach' -- that of substitUtiOn; In discussing the evolution

44 the use Of iriie procedure; we bring' in bath of the issues mentioned above,

k.13;; why the novice algebra learner changes her arithMetic approach and how

she Changes it:

TES STUDY

Thi first phase of the thretzPhase study involved interviews with ten seventh

graders (12i to 13} years) whO had never studied algebra before( thit phase

Wad designed to uncover some Of their pre-aigebreic notions, in particular

Those On equations and eghation=soiVingi A dubset of this pre-algebra group

(siX children) was retained for the second phase of the study: a three -month

thachih4 experiment on equation-solVing. The solving method emphasized was

one which focused on the equivalence structure of equations and equation-

solVing, that of perforMing the same operation on both sides of the equation.

The teaching experiment with these novices included a pretest interview and

two p6eiteet interviews, one in June and the second one in September after the

summer break. The third phase involved interviews with nine intermediate

algebra students who had all had at least one year of algebra instruction.

They were from grades 8 to 11 (six from grade 8, one each from grades 9 to 11).
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This last phase was included to provide us with 1) a clearer idea of the qua-

lity of the algebraic approach of more experienced students and 2) a barometer

against which to compare the novices' equation-solving methods and views of

equivalence structure.

The data for this paper are drawn from the following equation-solving

situations. The novices were presented with several sets of equations which

they were asked to solve throughout Phase 2: in the pretest, at each session

of the teaching experiment, in the two posttests. Each of the equation-sets

of the teaching experiment contained 12 equations of the following types (only

the numbers were changed in each set): 6b = 24, 2x - 6 = 4, z + 596 = 1282,

16x - 215 . 265, n + 6 = 18, 13x 196 = 391, 4c + 3 = 11, 32a = 928,

4 *x- 2 5 = 11 + 3 - 5, 3a + 5 4 4a= 19, 2xc. 5 lxc 8,
4x + 9 = 7x. The pretest and posttests included equations of the same types,

plus some extra ones (pretest: 37 - b = 18, 30 = x 7; posttests:

x/4 + 22 = 182, 25z 13z + 76 * 380, 12 + 15a - 7 4 6a . 4a + 107). The

intermediate subjects were asked to solve one set of eauations during their

Phase 3 interview. This was the same set as was presented to the novices in

their Phase 2 pretest.

RESULTS

The substitution procedure consists in replacing the unknown term(s) of an

equation by various numerical values until the correct one is found. For

example, one uses the substitution procedure if in attempting to solve

4c + 3 = 11, one tries, let us say, 3 as a value for c (4 times 3 is 12, plus

3 is 15), and then perhaps 2 (4 times 2 is 8, plus 3 is 11). In this case,

the solution has been found after two trial values.

In the Phase 2 pretest, four of the six subjects used the substitution proce-

dure 26 times while attempting to solve 72 equations in all. The remaining

two subjects began to use substitution only after the first instructional

session. In that session, the instruction had focused cn the construction

of equations from arithmetic identities and on the explicit left a- right

equivalence structure of equations. However, over the course of the three-

month teaching experiment, all subjects except one clearly decreased their use
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of the substitution procedure. They tended to retain it only for the last

four equations of each equation-set (see Table 1). By the time of the June

posttest, the frequency of usage of the substitution procedure had dropped

to 14 out of 72. This is in comparison with the group of intermediate

subjects one of whom used the substitution procedure only once on the same

set of equations.

Table 1. Frequency of Use of Substitution in Each Equation-Type per Set

Equation-

Sample
Set le 2 3 4 5 6 7 8 9 .. JP SP

Equations

6b 5 24

2x - 6 4 2 3 3 1 1 2 2 2

+ 596 1282

16x - 215 265 2 2 1

n * 6 a 18 1 1 1

13x + 196 391 3 1

4c 3 11 1 2 1 2 2

32a 928 2 1

4 +x- 2 5 a 11 4. 3 - 5 4 3 2 2 3 4 1 1 4 3 3

3a + 5 + 4a 5 19 4 5 5 4 4 4 4 4 2 3 3

2 xc+ 5 5 1.xct 8 4 6 6 5 4 6 4 3 5 4 4

4x 9 11 7x 4 6 6 5 5 6 6 6 4 4 4

Note. *Two of the six novices did not use Substitution at all in Set 1 (the
Pretest). JP June Posttest. SP a September Posttest.

An analysis of the equation-solving errors committed throughout the study led

to some interesting findings regarding the use of the substitution procedure.

Of all the errors in the study, giving-up before finding the correct trial

value when using the substitution procedure was the most frequently committed

error. It accounted for 20% of the novices' errors. Subjects gave up more

quickly with the more complex equations. The average number of trials for the

equations which "looked easy" exceeded the average number of trials for the

equations which "looked difficult". Thus, because of their persistence with
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the less complex equations, there was a greater probability that they would

find the correct solution with these equations.

Individual sessions of the teaching experiment.were preceded by and also often

followed by a set of equations to be solved. We had hypothesized that since

subjects would be more tired at the end of a session than at the beginning,

they would be less persistent and less efficient in their use of substitution

as a solving procedure. But this was only half correct. They became more

efficient with the equations which "looked easy" but in general less persistent

with the equations which "looked difficult". Nevertheless, despite their

success with substitution as a means of solving the less complex equations,

they eventually abandoned substitution in favor of other procedures.

DISCUSSION

Why did the novices attempt to decrease the use of substitution, an arithmetic

approach with which they were fairly successful, at least with the simpler

equation-types? Substitution is very time-consuming. It also places a heavy

burden on working memory. If the subject has not written down her trial value

(and none did), she must keep track of it while performing the computations.

:f the left side is found to balance with the right, she must then remember

what value proved successful in order to state the solution. If the equation

has two occurrences of the same unknown term, she must remember when she reaches

the second occurrence what it was that she used in the first occurrence and also

remember the running-total up to that point. Furthermore, for the trials that

are not successful, she must try to remember not to use those numbers again as

trial values.

As seen earlier, the majority of the novices did not seem to use the. substitu-

tion procedure with very much confidence in equations with two occurrences of

the unknown. If success did not come within some predetermined range of num-

ber values that seemed inversely proportional to the difficulty of the equation,

then the chances were that it would be left incomplete.
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Thus, they attempted gradually to let go of substitution if they could find

another procedure with which to replace it for specific equation-types. For

the one- and two-operation equations, the novices began to rely more on the

use of inversing -- a procedure not emphasized in the teaching experiment.

For example, they began to solve 4c 4 3 . 11 by subtracting 3 from 11 and

then dividing 8 by 4. For the last four equations of each set, half of them

were slowly moving towards either inversing or the procedure being taught --

that of performing the same operation on both sides of the equation. The

choice of one over the other was found to be dependent on their initial pref-

erence at the outset of the teaching experiment for either asymmetric or

symmetric solving procedures (Kieran, 1983), and was related to their view of

the structure of an equation.

Therefore, a partial answer to the question, "How is the algebraic approach

acquired?", can be found in the way that these novices stopped using substitu-

tion, an arithmetic approach, for certain equation-types as soon as they were

comfortable with some replacement procedure. The replacement procedures,

inversing or performing the same operation on both sides, are both algebraic.

They rely on the relationships of inverse operations as their basis. But the

latter procedure seamed to appeal more to those novices who had a strong view

of an equation as an equilibrium structure, that is, left and right sides had

always to be in balance. However, half of the novices were still using sub-

stitution for the more complex equations by the end of the study. Thus, the

early part of this transition period can be said to be characterized by the

use of both arithmetic and algebraic approaches, depending on the equation-

type. Furthermore, it appears that the algebraic approaches which fit best

with the learner's view of equations and equation-solving are the ones which

are chosen to gradually replace the old arithmetic approaches.
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A LINGUISTIC MODEL OF ALGEBRAIC SYMBOL SKILL

David Kirshner, University of British Columbia

The fact that algebraic manipulations use a specified
symbols system permits !heir interpretation as a language
in the sense of Chomsky (1957). Methods of generative
transformational linguistics have been adapted to the
study of this language.

INTRODUCTION

Methods of generative transformational linguistics have been

adapted to the study of algebraic symbol skill. In this paper, I

shall:

1. -Describe the linguistic methods used;

2. Sketch the linguistic model derived from those methods;

3. Discuss the psychological evaluation of a linguistic model;

4. Compare linguistic methods of psychological investigation

with the dominant cognitive science approaches; and, time

permitting,

5. Illustrate the formulation of psychological hypotheses from

the linguistic model.

BEST COPY AVAiLaJil
1 66



Kii:shner 154

Table 1

Sample Sentences

28 7x2 7(4 x') 7(2 x)(2 + x) 7(2 + x)
a' 6 5x + x' 6 5x + xr (3 x)(2 x) 3 x

b. 3x 5 = -7x

10x = 5

1

x = 7

x 1 4 - 4 3 x + 13 7y/x 4

" 1'x x++ 1 33 x- 8

d. 3x + 2y = 8

2y = -3x + 8

3
y = -7x + 4

THE LINGUISTIC ENTERPRISE

Generative transformational linguistics is a formal enterprise.

A language is idealized as "a set (finite or infinite) of

sentences, each finite in length and constructed out of a finite

set of elements" (Chomsky, 1957, p. 2). For natural languages,

the elements are phonemes, however, as Chomsky acknowledges, "the

set of 'sentences' of some formalized system of mathematics can

be considered a language" (p. 2).

In symbolic elementary algebra, the sentences are taken to be the

usual simplifications of expressions, solutions of equations,

etc., as are ordinarily produced by competent manipulators of

algebraic symbols. See Table 1. In the present grammar,
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however, only expression simplification sentences (such as a and

c in Table 1) are considered. The basic elements of the grammar

are the symbols , +, V. ., 0, 1, 2, 3, 4, 5, 6, 7, 8,

9, a, b, c, x, y, z, (, ), (, J, (, ), as well as the spatial

markers of horizontal juxtaposition, vertical juxtaposition, and

diagonal juxtaposition.

For languages, not all of the possible sequences of symbols are

well formed (grammatical) sentences. In the simplest terms, the

formal objective of the linguistic analysis is the specification

of a set of rules, called a grammar, which generates all of the

sentences of the language but none of the non-sentence

combinations of elements.

THE LINGUISTIC MODEL OF SYMBOLIC ALGEBRA

Each expression simplification sentence can be considered as a

sequence of algebraic expressions. Consequently, the grammar is

concerned first with generating individual expressions, and then

with generating expressions compatible with a given expession.

Each expression is presumed to have a deep form (DF) which

explicitly represents the parse and the operations which may only

be implicitly represented in surface form (SF). For example, the

surface form 3x2 has a deep form 3MIxE21, where the capital

letters are abbreviations for operations, and the parentheses

indicate parsing in the usual way.
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PHRASE STRUCTURE GRAMMAR

The first component of the grammar is a phrase structure

grammar which generates the deep form for every possible

algebraic expression. A phrase structure grammar is a series of

rewrite rules which takes an initial symbol "Z" and specifies

replacements for symbols until only a special class of terminal

symbols remain.

The rewrite rules of the grammar are

z --> [Z0Z)

Z --> (NZ)

Z --> V

Z --> Q

O --> A, S, M, D, E, R

--> a, b, c, x, y, z

Q --> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, .,

The symbol "0" represents "operation" and its replacements

reresent the six usual operations on real numbers. "N" is

interpreted as the unary operation "negation." "Q" and "V"

represent "quantity" and "variable" respectively. "Q" can be

replaced by any rational number constructed from the symbols 0,

1, 2, 3, 4, 5, 6, 7, 8, 9, ., -- according to a presumed

"grammar" of arithmetic. The arithmetic grammar is not

elaborated in the present theory. A derivation is completed when

all of occurences of Z, 0, V and Q are eliminated.

As an illustration, the deep form of the expression V7Tric7 is

generated from the phrase structure grammar by the following
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application of the rewrite rules:

Z --> (Z0Z) --> (ZRZ) --> (c)RZ] --> (2RZ) --> (2R(Nz]] -->

(2R(N[Z0Z))) --> (2R[N(ZMZ))) --> [2R(N(QMZ))) --> (2R[N(16MZ)))

--> (2R[N(16M(Z0Z)))] --> (2R(N(16M(ZEZ)))) --> (2R(N[16M(vEZ]]]]

__> (2R[N(16M(xEZ)))) --> (2R(N(16M(xEQ)])] --> (2R(N[16M[xE3]]))

The claim for this phrase structure component is that every

possible derivation employing these productions and ending with

only terminal symbols results in a valid deep form for an

algebraic expression. Furthermore, the deep form for every

possible algebraic expression is so derivable.'

TRANSLATIONS

Once equipped with the DF for every possible algebraic

expression, the next component of the grammar concerns the

translation of DF to SF. There are four distinct stages of

translation postulated in the present theory, each of which must

be completed before the next commences. The first stage involves

the deletion of parentheses made redundant by a conventional

heriarchy of operations. For example, in Stage 1, the DF,

[2R(N(16M(xE3))]] is reduced to 2R[N16MxE3]

The next stage involves the translation of operations to surface

form. For example, in this Stage 2R(N16MxE3) becomes 2VT=7Wri.

'Actually, this claim is exaggerated. Obligatory transformations
are needed to block certain DF's (e.g. xDO, 2R(N4], etc.), and to
carry out stylistic adjustments (e.g. xM3 --> 3Mx, etc.).
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Stage 3 effects the removal of parentheses made redundant by

physical artifacts of the representation of operations: :1(-16x 4T

becomes 27777. Finally, Stage 4 performs certain final

adjustments to SF such as the deletion of "2" in square root

signs. In similar fashion, the translation component derives the

SF of any expression, from its DF.

TRANSFORMATIONS

Having dealt with the generation of DF's by the phrase

structure grammar, and the translation of DF to SF, the next

component of the grammar generates the deep form of one

expression from the deep form of another. For example, a

transformation faMO)A[aMy] ---> aM(0A7) would allow the

derivation of [3Mx]M([yE2]Az] from H3Mx]M[yE2])A[[3Mx]Mz]. The

transformations of the grammar. .correspond to selected properties

of real numbrs.

Figure 1 displays the linguistic model of expression

simplification sentences of algebra. As an example, the sentence

(2x)2 4x2
= 4x is generated by the grammar as follows: The

phrase structure grammar generates the DF, ([(2Mx)E2)Dx].

)2xTranslations carry this DF to the SF, (2x
. Successive

transformations are applied to deep forms carrying [(2Mx)E2]Dx

---> ([2E2]M[xE2))Dx ---> [4M[xE2]]Dx ---> [4M[xMx]]Dx --->

[[4Mx]Mx]Dx ---> [4Mx]M[xDx] --> [4Mx]M1 --> 4Mx. The dotted

lines between DF's indicate that only some of the intermediate
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Figure 1

The Linguistic Model

SF, SF2 SF, ... SF

I I I I
PSG+(0T)-->DF

1,1
-->DF -- -- DF --...-->DF31--...--->DFn1

1,2 > 21
"SF" represents surface form.
"DF" represents deep form.
"PSG" stands for phrase structure grammar.
"OT" stands for obligatory transformations.

DF's are translated to SF.

SEMANTIC COMPONENT

Besides-sentences such as (2x)2 4x2
4x, the grammar can

y y)2also generate sentences such as 141! . (2x +
xi

(2x +4,-
4

v)
2 which are syntactically correct, but seem to lack

15-x

some quality of direction or meaning. A semantic component of

the grammar is needed to formalize such notions as "simplify,"

"reduce," "rationalize," "factor," etc., in order to constrain

the generation of such sentences. What is proposed is the

delineation of canonical forms for these procedures, however, the

semantic component of the grammar has not yet been undertaken.
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PSYCHOLOGICAL EVALUATION

The grammar generates the sentences of algebra by means of a

phrase structure component which produces the deep forms for

expressions; transformations which map DF to DF; and translations

which permit DF's to be manifest in standard algebraic notation.

what kind of psychological claims can be advanced for such a

model?

Clearly, a grammar is not a process model. An actual instance of

algebraic simplification would presumably start off with an

expression already given.2 It would not be generated through the

internal processes of the algebraist, by a phrase structure

grammar or any other device. Nevertheless, in its overall shape,

the grammar does characterize certain structures (deep and

surface forms) which may be hypothesized to underlie mental

representations. As well, it details translations and

transformations which mediate between these structures. Thus,

while not itself a psychological theory, a grammar, provides for

many of the operations which could be included in a process

model. Informally, a process model might correspond to Figure 2,

which is closely related to the linguistic model. Presumably an

expression given in surface form would be translated into deep

form and subsequently transformed into a series of further deep

2This might be derived from translation of a "real world"
situation; represent an application of a scientific formula; have
arisen in a calculus computation; or simply been presented in an
algebra text.
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Figure 2
Informal Process Model

SF, SF2 SF, ... SF

Ilin
DF1,1-->DF12--...-->DF21--...-->DF3,1--...--->DFn1

"SF" represents surface form.
"DF" represents deep form.

forms with occasional translation for transcriptive purposes into

surface form. The double arrows between DF and SF indicate that

in the process model it is necessary to account for the decoding

as well as the encoding of SF's. (In the present grammar, the

translation component has been devised so that it functions

bidirectionally.)

The overall veracity of the model may be assessed by ordinary

psychological research techniques involving conjectures related

to processing. Psycholinguistics, however, offers a variety of

techniques for selection of one grammar from amongst competing

alternatives (competitive argumentation in the terminology of

VanLehn, Brown and Greeno (1984)) when more than a single grammar

is proposed. These forms of evaluation prove to be fruitful when

educationally related alternatives are proposed.
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LINGUISTIC VERSUS COGNITIVE SCIENCE MODELLING

As a means of exploring psychological phenomena, a

linguistic approach differs markedly from the dominant cognitive

science paradigm. First of all, a formal linugistic approach can

only be adopted for the study of a "language," i.e. a set of

sentences comprised of specified symbols. Thus the linguistic

paradigm does not obtain for the study of word problems,

translation from natural language to mathematical language, and a

host of other phenomena of special interest to mathematics

educators.' In contrast, cognitive science methods have been

applied to a wide range of psychological domains, and indeed, to

reasoning and problem solving functions per se. Nevertheless,

within the restricted domain of algebraic symbol skill, a

linguistic approach offers certain significant advantages.

A grammar is a formal entity. It can be evaluated logically as

to its fulfilment of formal objectives (namely the generating of

all and only the sentences of the language). Thus, before

psychological issues are raised, a grammar has stood the test of

logical consistency within its entire domain of application.

Cognitive scientists frequently use methods of artificial

intelligence or computer simulation to guarantee the logical

'If an algebraic language is identified which lists phonemes or
words amongst its basic elements, then the grammar of the
language must, in effect, subsume an entire natural language
theory.
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consistency of a theory. In practise, however, the

implementation of the theory in a program is often of little

assistence in psychological evaluation. As Davis and McKnight,

1979 observe, "the general tendency of simulation-writing is to

be pushed toward dealing with minute details - and frequently

details that are more characteristic of computers than they are

of human thought" (p. 31). Thus cognitive science rarely

achieves a truly formal character in psychological investigation.

Most importantly, however, a linguistic model describes cognitive

functioning at a level which may be more immediately useful for

educational application. Cognitive science is concerned directly

with the architecture of the mind. The basic elements of

computational theory are taken to be metaphors for psychological

processes (Davis 6 McKnight, 1979). In contrast, Chomsky (1965)

observes:

A generative grammar is not a model for a speaker or a
hearer. It attempts to characterize in the most neutral
possible terms the knowledge of the language that
provides the basis for actual use of language by a
speaker-hearer. (p. 9)

It is the knowledge underlying algebraic skill rather than the

mental processes whereby that knowledge is manipulated which

would seem to have the most chance of informing educational

practice.
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Defining Mastery Orientation/Learned Helplessness in Mathematics

from Students' Attributions for Success and Failure

Peter Kloostermen, Indiana University

The connection between attAibution6 and achievement in mathematice
4,4 dependent upon how maAteny oltientation/teaued hetpte66nua
(MO/LH) id deiined 15Aom 6tudent41 att2bution6. In thiA 6tudy
124 ategebna atudent6 it MIA bound that using a theo4eticatty based
60AnutAlion o6 MO/LH (fSA+SE+FEHFA+ST+S011 Auutted in
Atatisticatty 6igni6icant cometationa between MO/LH and
achievement 04 Females. A aimpti6ied tfortmuta (MO/LH . (SA-ST] )

gave Atungek cometation4 bon. 6emate6 white a lioAmata ()cued only
on help Pcom others (MO/LH . -[S0+FO)) gave 6tataticatty
eigni6icant colmetation4 between MO/LH and achievement 6ot mates.

In recent years, a number of studies have investigated what students perceive
to be the reasons for their successes and failures in mathematics (Dweck,
1975; Parsons, Mace, Adler 6 Kaczala, 1982; Pedro, Wolleat, Fennema E. Becker,
1981). These reasons, usually referred to as attributions for success or
failure, are believed to be associated with achievement in mathematics
(Kloosterman, 1984; Reyes, 1984). The key to the association between
attributions and achievement is knowing how attributions effect motivation
which in turn effects achievement. In discussions of attributions and
achievement, the terms "learned helplessness" and "mastery orientation" have
often been used to classify individuals based on the type of attributions they
make (Dweck 6 Goetz, 1978). Learned helpless students blame their failures on
lack of ability and believe that effort has little to do with success or
failure in school. In contrast, mastery orientated students are confident of
their ability and believe that effort will improve performance and thus be
rewarded in school. However, few students are totally mastery oriented or
totally learned helpless and thus I prefer to think of mastery orientation and
learned helplessness as endpoints of a mastery orientation/learned
helplessness (MO/LH) continuum. As the connection between a student's
attributions for success and failure and his or her achievement in mathematics
is dependent upon how MO/LH is defined from attributions, it will be the
purpose of this paper to explore both theoretical and empirical methods of
defining MO/LH in mathematics from student scores on attribution scales.

THEORETICAL FORMULATIONS OF MO /LH

While there are a number of ways of classifying attributions for success and
failure, classification of attributions in academic settings has most often
been based on Weiner's (1974) categories of ability, effort, task difficulty,
and luck. Some authors have focused on the ability dimension as the one of
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primary importance (Blumenfeld, Pintrich, Meece & Weasels, 1982) while others
have focused more on the effort dimension (Covington & Omelich, 1979).
Fennema and Peterson (1984) defined an MO/LH formula as follows:

MO/LHm(SA+SE+FEI-(FA+ST4S01
(SA m success due to ability, SE m success due to effort, FE m failure due to
lack of effort, FA m failure due to lack of ability, ST m success due to ease
of the task, and SO m success due to unusual help from others or luck.) In

brief, the Fennema and Peterson (1984) formula implies, as suggested above,
that students who feel they have ability and that effort makes a difference
will be more mastery oriented (and thus less learned helpless) than students
who feel they lack ability and that their successes are the result of an easy
task or unexpected help from others. Table 1 summarizes the attributions
mastery oriented and learned helpless students are expected to make along with
an explanation of how those attributions lead to steady or increased effort
for mastery oriented students but decreased effort for learned helpless

students.

Table 1

Attributions, Expectation of Success, and Effort for Mastery Oriented and
Learned Helpless Students

Attribution
SUCCESS attributed to:

1. Sufficient Ability

2. Sufficient Effort

FAILURE attributed to:
1. Lack of Effort

MASTERY ORIENTED STUDENTS

Expectation of Success

Expectation of success
on similar tasks
Expectation of success
on similar tasks

Expectation that
increased effort will
lead to success

LEARNED HELPLESS STUDENTS

SUCCESS attributed to:
1. Ease of Task No reason to expect

success on tasks of
reasonable difficulty

2. Help from Others No reason to expect
help and thus no reason
to expect success

FAILURE attributed to:
1. Lack of Ability No reason to expect

success on similar task

Effort on Similar Task

Continued effort

Continued effort

Increased effort

No reason to put
forth effort

No reason to put
forth effort

No reason to put
forth effort
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EMPIRICAL FORMULATIONS OF MO/LH

Design and Instrumentation. To test the relationship between attributions,
MO/LH, and achievement in mathematics, 124 ninth grade algebra students were
given an achievement measure and an attribution measure. The achievement
measure was the Mathematics Basic Concepts eubteet (Level I, Form X) of the
STEP Basic Assessment Tests (1979). Students answer using a multiple choice
format, receiving an overall score between 0 and 50. Scores were also broken
down by cognitive level. Of the 50 items, 30 were classified as low level
(knowledge or skills); 18 were classified as high level (understanding or
application); and 2 items were not classified. Split-half reliability of the
scale was reported as .91 for ninth grade students (STEP Basic Assessment,
1979).

Students' attributions were measured by the ALB Mathematics Attribution Scale
(Fennema & Peterson, 1984). This attribution scale consists of 8 subscales
with five Likert-type items per subscale. The success subscales measure
success perceived to be the result of (1) ability, (2) effort, (3) ease of
task, and (4) help from others. The failure subscales measure failure
perceived to be the result of (1) lack of ability, (2) lack of effort, (3)
difficulty of the task, and (4) lack of help from others. For example, the
first success due to ability item was "When you figure out how to do a thought
problem, is it because you are smart?". All items contained the phrase
"thought problem" which was explained to subjects as one which required the
development of a strategy before it could be answered. K-R 20 reliabilities
for each of the subscales were calculated as pert of this study (SA...86;

SE...81; ST.76; SO..78; FA...82; FE....89; FT...73; F0...82).

Table 2 shows correlations between achievement and attributions for each of
the subscales of the ALB Mathematics Attribution Scale. Because there is
evidence that males and females attribute their successes and failures in
mathematics differently (Pedro at al., 1981) all analyses were done separately
for females and males. While only a few of the correlations were
statistically significant, those that were significant were in the direction
expected. For females, there was a significant positive correlation between
success perceived to be due to ability and overall achievement (r....29) and a
significant negative correlation between success due to ease of the task and
overall achievement (r-.23). For males, there were significant negative
correlations between overall achievement and success (r.-.21) or failure
(r. -.22) due to help from others.

Table 2 also contains three definitions of MO/LH and their correlations with
achievement. Using the Fennema-Peterson (1984) definition of MO/LH
(0A+SE+FEJ - [FA+ST+SOJ), significant correlations between MO/LH and
achievement were found for females regardless of whether high level
achievement (r...21), low level achievement (r -.31), or overall achievement
(r -.29) was considered. When the second definition of MO/LH ([SA-STJ) was
used, higher correlations with achievement for females were found (r.30 for
high level; r....39 for low level and overall achievement) than had been the
case with the first definition. Using the third definition of MO/LH
(-1S0+1,01) gave significant correlations with high level achievement (r...22)
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and overall achievement (r...25) for males. Factor analysis was used to see if
additional combinations of the attribution subscales could be found which
resulted in MO/LH formulations which had stronger relationships with
achievement. No additional MO/LH formulations were found.

Table 2

Correlations Between Attribution Subscale Scores, MO/LH, and Achievement

Attribution
Variables Overall

aFemales

Achievement

Males

Low
Level

STEP Mathematics

High
Level

Low
Level

High
Overall Level

Success Ability .27* .19 .29* .12 .13 .10

Success Effort .03 .04 .01 -.10 -.11 -.06

Success Task -.23* -.20* -.21 .02 .01 .04

Success Others -.14 -.17 -.11 -.21* -.19 -.14

Failure Ability -.17 -.12 -.19 -.05 .01 -.04

Failure Effort -.08 -.15 .00 -.07 -.13 -.02

Failure Task .15 .20 .08 -.06 -.07 -.01

Failure Others .03 .01 .03 -.22* -.18 -.18

MO/LH(1) =
ISA+SE+FSI-(FA-ST-SOI .29* .21* .31* .06 .02 .05

MO/LH(2) ,.. ISA-ST) .39* .30* .39* .07 .08 .05

MO/LH (3) .= -ISO+FOI .06 .08 .04 .25* .22* .18

*p<.05 an..61 bn=63

DISCUSSION

MO/LH(1). The significant correlations between MO/LH(1) and achievement for
females support the definition of MO/LH from the psychological literature as
outlined in Table 1. The fact that the definition appears unrelated to
achievement for males is rather surprising. While there is literature to
support the possibility that MO/LH may have more effect on achievement for
females than for males (Dweck, Davidson, Nelson & Enna, 1978; Parsons et al.,
1982), there is nothing in the literature to suggest that MO/LH is not a
useful construct for males.

MO/LH(2). The second definition of MO/LH gave stronger correlations with
achievement for females than the first. While MO/LH(1) follows closely from
the psychological literature, the strong correlations for MO/LH(2) indicate
that success effort, success others, failure effort, and failure ability
attributions are not as important as expected. One possible explanation to
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account for the lack of importance of effort is that in algebra more so than
in other subject areas, effort may be perceived to be important by all

students. Thus effort would not differentiate mastery oriented and learned
helpless students in algebra as well as it would in computational mathematics.

MO/LH(3). The third definition of MO/LH was formulated to try to explain
something about how attributions mediate achievement for males. The fact that
this definition includes only the effect of others on achievement indicates
that those males who do not see help or lack of help from others as factors in
their successes and failures are the ones who have higher achievement.

High vs. Low Cognitive Level Mathematics. Given the current massive push for
teaching problem solving in mathematics, an attempt was made to identify the
extent to which attributions and thus MO/LH affected high as opposed to low
cognitive level mathematics. As can be seen from Table 2, the correlations
between attributions and achievement were generally strongest in the case of

low cognitive level mathematics. This is somewhat surprising given that the
ALB attribution instrument spoke specifically of "thought" (high cognitive
level) problems. One possible explanation for this is that students were so
used to computational mathematics that even the presence of the term thought
problem in the attribution items was not enough to make them reflect on high
as opposed to low level mathematics when filling out the attribution
instrument. Another possibility for the smaller correlations with high level
achievement is that there was more variation and thus less consistency in the
high level problems on the standardised achievement test than among the low
level items. This would lead to greater measurement error which would effect
the else of the correlations found. The fact that there were fewer high level
than low level items (30 low level and 18 high level) may also have affected
the accuracy of the high level scores. In short, factors other than cognitive
level of mathematics could have accounted for the differences in correlations
between high and low level mathematics achievement and MO/LH. Thus,

conclusions about differences in the MO/LH and achievement relationship based
on cognitive level must be taken cautiously.

CONCLUSION

While the three definitions of MO/LH proposed from this study are somewhat
diverse, all do agree with some aspect of the literature. Definition 1

follows closely from the psychological literature as outlined in Table 1.
Definition 2 reduces the importance of effort in comparison to ability and
task as factors influencing achievement. This is possible given that
attributions for ability have, at times, been offered as the key to
achievement (Blumenfeld et al., 1982). Definition 3 shows that perceptions of
the importance of help from others is more of a factor in achievement for
melee that for females. This agrees with sex-related difference literature
(Fennema & Peterson, in press) which indicates that boys may be more
independent learners of mathematics than girls.
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THE CONSTRUCTION OF A MULTI- FACTOR TEST FOR
TEACHING STRATEGIES RESEARCH IN MATHEMATICS

John R. Kolb

North Carolina State University

William Truman

Pembroke State University

In teaching strategies research, it is hypothesized that
different instructional treatments of a content topic re-
sult in different patterns of learned performances. To
investigate this hypothesis, tests are needed that identify
and measure a variety of student outcomes. Several itera-
tions of item construction and try-out procedures resulted
in the production of a thirty-six item test that assesses
up to nine facets of the topic of slope and equations of a
line.

Tl'e purpose of this research was to develop a prototype test to be used to

compare teaching strategies based upon the kind of learned performance they

produce.

The work of Anderson, J.R. (1976), Gagne and White (1978), Paivio (1971),

Ponte (1982), and Tulving (1983) indicates that learners encode information

and represent it to themselves in four types of memory structures: procedural

memory, propositional memory, visual memory, and episodic memory. Procedural

memory stores "know how"; the application of rules and the carrying out of

routines in a habitual, often unthinking way. Capabilities in propositional

memory give rise to "knowledge stating" behavior and the preservation of

the meanings of verbal statements and symbol systems. Visual memory stores

images that are analogical representations of concrete things and configura-

tions that are encountered. Episodic memory retains personal experiences
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and events in relation to time sequences and is autobiographical in

nature.

When teaching strategies differ in their treatment of the learner's inter-

action with mathematical content, different patterns of learned performances

should result. As the learner engages in learning task, the kinds of en-

coding utilized and the forms of memory representations should be in-

fluenced by the instructional strategy. The knowledge that gets stored

and where it is stored determines the pattern of acquires capabilities

the learner comes to possess. To compare strategies on this basis, a

test is needed that is sensitive enough to measure different performance

outcomes resulting from the various structures.

The test to be developed had to a) contain factors that could be related

to the performances associated with the various memory structures, b)

have questions within the factors that had high internal consistency but

low correlations with all other questions in other factors, and c) estab-

lish that the factors are distinct by showing that the pair-wise correla-

tions between factors are small. A test plan was developed that identified

characteristic performances associated with propositional,procedural , and

visual memory structures. Within each of these representations, three

levels of questions were defined: knowledge, technique and manipulation,

and comprehension. This test plan resulted in nine categories and these

became the nine factors that were hypothesized.

Test questions were generated over the topic of a slope of a line. After

several iterations in pilot studies, a final version of a test was con-

structed containing 36 items, four for each factor. A panel of five

mathematics educators evaluated each question and chose the type of memory

and the level of understanding the item represented. The panel agreed 82%

on the memory type, 77% on the taxonomic level, and 64% on both level and

type.
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The final administration of the test was to 395 high school and college

students in twelve classes enrolled in Algebra II or equivalent. Gene -

rally, correlations of questions with the factors to which they are hypo-

thesized to belong are high. The difference between a question's

correlation with its factor and the next highest correlation with another

factor is approximately .35. Correlations among the nine factors are

generally low with 28 of the 36 correlations between factors being less

than .30. Correlations between dimensions that represent different memory

structures ranged from .50 to .55 while correlations between questions

that represent different taxonomic levels ranged from .44 to .54.

The low interfactor correlations suggest that the test measures distinct

dimensions of the mathematical topic of slope. The test appears to be a

good first approximation to a testing instrument that can measure sensi-

tive differences in learning outcomes and establish effects that can be

attributed to a particular instructional treatment of a mathematical

topic.
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YOUNG CHILDREN'S ERROR PATTERNS ON ADDITION,

SUBTRACTION, MULTIPLICATION AND DIVISION WORD PROBLEMS

Vicky L. Kouba

State University of New York at Albany

Abstract

The present analysis is part of an investigation of first -
through third-grade children's acquisition of multiplication
and division concepts and processes. As part of this study
errors were coded on six addition and subtraction word problems
and six multiplication and division word problems. Using the
wrong operation and stating, as an answer, a ?umber given in
the problem were the most common errors. Individual error
patterns indicated groups of children who responded systemati-
cally with Given Numbers, children who added on all problems,
children who seemed to add when in doubt, and children who
used only addition and subtraction but who did not seem to
systematically apply those operations to multiplication and
division in ways expected.

Research on additionand subtraction word problems has resulted in systematic

classification structures for problems, detailed descriptions of solution

strategies and their relationship to the semantic structure of the problems

and classification systems and models for the development of the solution

strategies (Carpenter & Moser, 1983; Nesher, 1982; Nesher, Greeno & Riley,

1982; Riley, Greeno & Heller, 1983; Briars & Larkin, 1982). A subsequent
and increasingly important concern is that of generating the parallel results

for multiplication and division word problems and investigating the common-

alities of the character and development of strategies across content domains.
As part of such a larger study, error strategies across addition, subtraction,

multiplication and division were investigated.
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METHOD

Subjects. The subjects were 43 first-grade, 35 second-grade and 50 third-

grade children in one school in a predominantly white Midwest community of

15,000 people. The sample included two classrooms at each grade level.

Procedure. In an individual interview, each subject was read and asked to

solve twelve one-step word problems: 2 addition, 4 subtraction, 2 multipli-

cation and 4 division problems. Three types of physical materials were

available for use in solving -- bowls, counters, and sticks. Children's

responses were coded and tape-recorded. Data collected included physical

materials used, correctness of response, strategy or explanation used, and

type of error if answer was incorrect.

RESULTS AND DISCUSSION

The types of errors noted were: a) Miscount-- the child used an appropriate

strategy, but miscounted in some way; b) Forgets -- the child used an appro-

priate strategy but forgot a number and substituted a different one; c)

Given Number -- the child responded that the answer was one of the numbers

given in the problem; d) Wrong Operation -- the child used an incorrect

operation; e) Guess -- the child incorrectly guessed at answer or used an

incorrect number fact; f) Other -- the child made some other identifiable

error such as giving "one" as an answer, making unequal groups for a division

problem and forgetting to make the groups equal, or using the number of sets

as the number of elements in a set; and g) unknown or uncodable.

The percentages of addition, subtraction, multiplication and division problems

on which the error strategies were used are given in Table 1, along with the

respective percentage out of the total errors on that type of problem. On

addition and subtraction problems, the most frequent errors for first- and

third-grade children were Given Number and Wrong Operation. For second-grade

children, Given Number was still the most frequent, but Miscount occurred
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Table 1

Percentage of Error Strategy Use on Each Problem Type

Problem Type

Error
Addition Subtraction Multiplication Division

'ci.,

>Strategy -Jw u s_ s. s_
L L L i
W W W W

W W W W WV vl 4- V. 4- VI 4- tn 4-
(0 7 0 7 0 7 0 7 0u

CO 2-4 242 23 2-2 23 IA LC 1,1

1 31 55 17 35 20 22 31 38

Given Number 2 20 64 12 37 17 32 24 37

3 9 35 5 26 5 12 11 25

Wrong Operation

1 8 14 16 32 40 44 33 39

2 1 4 6 17 24 45 15 23

3 14 54 7 41 26 63 19 44

Guess

1 3 6 4 8 7 8 5 6

2 3 14 6 17 1 3 3 4

3 1 4 4 21 2 5 3 6

Miscount

1 10 18 9 19 13 14 4 5

2 4 14 8 24 4 8 6 10

3 2 8 2 9 3 7 2 5

Forgets

1 3 6 0 0 5 5 0 0

2 0 0 1 4 0 0 4 6

3 0 0 0 0 1 2 1 2

Other

1 0 0 0 0 2 3 3 4

2 0 0 0 0 0 0 4 '6

3 0 0 0 0 0 0 3 7

Unknown or
Uncodable

1 0 0 3 6 3 4 6 7

2 1 4 0 0 7 13 9 14

3 0 0 1 3 4 10 5 11
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more often than Wrong Operation. The two error strategies most used by all

three grades on multiplication and division word problems were Given Number

and Wrong Operation.

With Given Number errors children fell into several distinct groups. First,

there were children who, when asked why they responded with a given number,

said, "because you said it in the story." These children seemed not to

understand the mathematical context of the story. A second group of child-

ren, who responeded with a Given Number on the Compare forms of the addition

and subtraction problems (problems involving a statement or question of one

person having more than another), interpreted the problem in a mathematical

way -- as a comparison. These children could explain that there was a com-

parison, but they interpreted a "how many more" question as "which number is

more" or, as one child explained, ".
. . you asked how many is the more."

Thus, as Hudson (1980) found, the wording of the problem did not make clear

the mathematical structure of the problem.

For multiplication and division problems, a group of children who responded

with a Given Number explained their answer in terms of a one-to-one corres-

pondence. If the problem involved placing 6 marshmallows in each of 5 cups,

the child answered "You need 5 marshmallows in all because there are 5 cups- -

so one marshmallow for each cup." This seemed even more prevalent on divi-

sion problems. Finally, there was a group of children who, for division

problems, would model the Problem reversing the roles of the numbers. With

24 carrots to be put equally with 3 apples, they would group by 3's, but

would correctly remember that the question was how many carrots with one

apple. Thus, they gave "3" as answer. This error is similar to one children

make with fractions, which is interpreting "thirds" as "group by 3's."

(Hunting, 1985)

The Wrong Operation strategy was the most used strategy, appropriate or inap-

propriate, for solving multiplication and division problems, and also

accounted for about 9% of the answers on addition and subtraction problems.
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The majority of Wrong Operation erro.. were in incorrectly chosing addition.

The distribution of Wrong Operation errors is shown in Table 2.

Table 2

Distribution of Wrong Operation Errors

Wrong Operation

Grade Level

1 2 3

Addition 37% 13% 20%

Subtraction 10% 3% 11%

Multiplication 0% 1% 4%

Division 0% 0% 1%

First- and second-grade children made more wrong operation errors, propor-

tionally, on subtraction than on addition, whereas, third-grade children did

the reverse. Children at all grade levels made more Wrong Operation errors,

proportionally, on multiplication problems than on division problems. For

individual error patterns, there was a group of children, mostly first grade,

who viewed the story problems as a world of all addition problems. A second

group appeared to think, when in doubt, add." These results have implica-

tions for previous studies. If many children have a general, addition-

dominant approach to solving word problems, their correct performance on

addition word problems cannot be solely attributed to understanding the word

problems. How much of the correct performance on previous studies is a

result of fortuitous general strategies rather than specific understanding of

the concepts in the word problems? Then, too, what underlies the formation

of the general strategies, and does this have implications for instruction?

Are the general strategies low-level responses born of confusion or are they

high-level attempts by children to build structure where none has been pro-

vided? Implications for future studies include a heightened emphasis on

determining why a child chores a strategy. Current interview techniques and

problems are not sufficient for detecting the "whys," especially with less

191



179 Koubn

verbally inclined or less critically objective children.

For the second-grade children and, more so, the third-grade children, there

is a group who use a mixture of addition and subtraction strategies. How-

ever, their inappropriate use of addition and subtraction on multiplication

and division problems is not what maybe expected. On multiplication prob-

lems, of the seventy-seven Wrong Operation errors 90% were addition and 10%

were subtraction. One might expect, then, a large majority of the division

errors to be subtraction. However, of the 114 Wrong Operation responses,

601 were addition, 32% were subtraction, and 8% were multiplication. This

distrubution, as well as the large number of Wrong Operation errors brings

into question the assumption that repeated addition and repeated subtraction

are the "natural" interpretations of multiplication and division.
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AUTHORING LANGUAGES. A CASE STUDY

by Richard Lesh, Northwestern Univ.
& W1CAT Math/Science Division Director

This paper will briefly describe a variety of different kinds of authoring

languages that have been used at WICAT to develop whole courses in

mathematics and science. Comparisons will be made to courseware

development without the use of authoring languages. Pros and Cons will be

discussed, and research possibilities will be sited that are particularly

relevant to psychological investigations of mathematics learning and

instruction. Particular attention will be given to a project, currently

midway in development, called STATISTICS BY EXAMPLE: BUILDING YOUR OWN

COMPUTATIONAL PROCEDURES.

Because the instructional development utilities discUssed have been linked

to several types of programming languages (e.g., LISP, Forth, C, Prolog.

Pascal), several programming related issues will be considered.

Computer utilities being developed for the STATISTICS course include a

"spread sheet" style data base, overlaid graphing and computational

capabilities which students can use to construct, modify, refine and adapt

their own statistical "number crunching" programs.

In this statistics course, computational routines are treated as "models,"

or useful oversimplifications of reality. Non-answer-giving phases of

Problem solving are emphasized, including problem formulation, trial

solution evaluation, the quantification of qualitative information, the

examination of underlying assumptions and sources of error, and the

organization, filtering, and representation of information - i.e., phases

of problem solving that are the most important to people in business. law,

or other professions where intelligent decision making frequently involves

statistics, but seldom requires computational proficiency.



181 Lash

Students are treated as future users of statistics, not as future gogrs of

statistics (i.e., those few individuals, largely residing at computer

centers, who actually carry out complex statistical computations).

However, students are actively engaged in the "model building" process;

they build their own coaputatonal procedures, and examine how changes in

the "model" influence the result produced. The goal is to develop "first

hand" experience about how complex procedures are assembled from

understandable simpler pieces, and to become comfortable at criticising,

modifying, and adapting models to suit concrete needs.

Rather than beginning topics with "pre-fabricated" principles or

procedures, followed by a few (usually artficiell "applications" designed

to minimize computational difficulties, students pegin units by

considering realistic problem solving situation with realistic data.

Then, they build, refine, modify, and adapt their own computational

procedures in a manner similar to the way children build geometry

procedures using LOGO programming techniques,.i.e. by trying to accomplish

concrete goals in mathematically rich example situations.

With computer-driven "conceptual amplifiers" (like the "symbol-manipulator

function-plotter" utility that will be described in this paper, or even

familiar tools like VisiCalci, problem solving in the presence of such

amplifiers is becoming as important in science and mathematics as that in

their absence. The problem solver no longer can be assumed to be a person

working alone with only a pencil end paper for tools. Consequently,

assumptions based on such an 'amplified problem solving organism" may have

to be considerably different from those common in past cognitive science

studies. Distinctions between instruction and assessment also will become

blurred as detailed instructional paths can be documented, and as profiles

of both learning and forgetting can be produced.
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TEACHER-CLINICIANS' EXPERIENCE IN MATHEMATICAL PROBLEM-SOLVING SESSIONS WITH
INDIVIDUAL CHILDREN: IMPLICATIONS FOR THE DEVELOPMENT OF TEACHERS

Carolyn A. Maher
Rutgers University

ABSTRACT

An earlier model for the development of teachers based en the
teacher as learner, as observer, and as philosopher is extended
here to the teacher as clinician with data developed in a year-
long project studying the heuristics employed by academically
talented children of grades 4-6 in problem solving. The obser-
vations of clinicians' interview behavior form the basis for the
expanded model. The implications from clinicians' preparation
and actual clinical conduct will be discussed as will the deve-
lopment of teachers generally in the expectation that they will
encourage children's construction of solutions to problems lead-
ing to understanding of mathematical concepts and processes.

BACKGROUND

A model for the preparation of teachers of mathematics at the elementary level

was developed and a portion of it tested with a group of teachers in the sum,

mer of 1984. The results of the pilot study were reported at the American

Educational Research Association Conference by Maher and Alston (1985). In

summer 1985, the further study was conducted and the results are now being

reviewed. The present paper is intended as an extension of the earlier one

and its elaboration is based upon the preliminary observations of teachers

who were preparing to conduct structured clinical interviews with children

for a study involving children's use of the heuristic process, "think of a

simpler problem (TSP)" as they were engaged in solving the problem, "What is

the remainder when two to the fiftieth power is divided by 3?" A description

of the script for the structured clinical interview is contained in a paper

by Goldin (1985).

PURPOSE

An extension of a model for the development of mathematics teachers is

1
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suggested. Observations of four teacher-clinicians conducting interviews

with academically talented children fran grades four through six provide

the preliminary data for this report.

PROCEDURES

Approximately twelve clinicians, working in pairs, participated in the prob-

lem solving study. Because of the diversity of experience among them, teams

were organized so that a more experienced clinician could be paired with a

novice. Alternately, one team member was responsible for the conduct of the

interview and the other served as observer and recorder. On average, the

interviews lasted fifty-minutes with none longer than an hour.

Data for this report came fran the Observations of interviews conducted by

four clinicians, two male and two female. Their teaching experience varied

from less than one-year to fifteen-years and ranged fran elementary to high

school mathematics teaching. Transcripts of audio-tapes and records of the

specific responses to questions of the protocol were used.

The Interview

For purposes of this report the interview will be divided into five sections

each representing a different aspect of the problem. Section 1 involves assess-

ing a child's knowledge of the prerequisite skills with exponents and remain-

ders and provides for reviewing and/or introducing the concepts. Section 2

presents the problem "What is the remainder when two to the fiftieth power

is divided by three?" Here the clinician is instructed to encourage the child

to talk aloud and all the child to work freely without intervention until

he/she gives '..110, guesses, discontinues justifying guesses, is satisfied with

the response, or works for 10 minutes without apparent progress. No conceptual

misunderstandings or misapplications of arithmetic rules were to be corrected

at this time. Section 3 directs the clinician to offer a graduated series of

hints that lead to the heuristic process TSP, if the child had not already

done so. Section 4 provides specific simpler problems for guiding the child

through the heuristic TSP. The clinician was instructed to provide guidance

only if the child, encouraged to work freely, did not detect a pattern. Sec-

tion 5 provides two equivalent problems with different exponents and a third

problem, "What is the remainder when three to the fiftieth power is divided

by four?" In the latter case, the child should be asked to describe how to

go about solving the problem and specifically instructed not to work it out.
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RESULTS

Results will be given according to the five sections outlined below.

Section 1, Prequisite Skills

Some deviations in language from the script occurred in this section. For ex-

ample, Clinician D (C/D) asked: "Can you do a more difficult one?" Also, in

presenting the problem "What is the remainder when 17 is divided by 5?", C/A

began with "Now I have an easy question for you." C/J anitted the introduct-

ory definition of exponent and moved immediately to the language of "factor".

Section 2, Problem Presentation

Clinicians experienced difficulty restraining the impulse to interrupt or

lead the. child in this section, contrary to the instructions in the script.

CAD stated: "And now we volt' to the height of the interview." The problem was

then presented and after 20 seconds, C/D continued: "Can you tell me what you're

thinking now?" The child responded: "Trying to figure out what two to the

fiftieth power is." After 30 seconds, C/O interrupted: "Do you think it might

be possible that there might be a way to do the problem without multiplying

2 to the fiftieth power? Can you try answering 25 divided by 3?"

In another interview, CAD stated: "Now I have a problem for you." The problem

was presented and the child began to speak and was interrupted by C/10: "Maybe

you should think about it and after you've thought about it, then talk." The

child immediately responded: "Two to the fiftieth power is 100; 3 into 100 is

90; 100 minus 90 is 10 and that's the remainder." C/D replied: "Can you try

to think of a problem that's similar to this? One that's easier to solve but

looks..." Child: "Like this?" C/D: "Close to that one." The clinician

waited 30 seconds and interrupted: "How about by trying a power that's less

than 50? Two to a smaller power..."

In an interview by C/J, he asked: 'What did you do for two to the fiftieth

power?..." Child: "Instead of taking a whole page of writing all twos,

used 50. I sort of like changed it. Sort of like opposite and I could work

it, but faster than would be working it out; faster than to have to write 2,

2, 2 keep going." C /J: "All right. Do you remember. what 3 to the fourth

power was?" Child: "Yes." C/J: "And what was that?" Child: "Three to the

197



185 Maher

fourth per is when you have to use 3 four times. That's 3 times 3 times 3

times 3." C/J: "So what do you think 2 to the 50th power would be?" Child:

"Using either 2, 50 times or you can use 50 writing like that 2 times." C/3:

"Do you think that would be the same?"

In C/A's interview, she stated: 'Now I have a problem for you, sort of a longer

problem." The clinician presented the problem and the child responded that the

remainder was 1 because 2 to the fiftieth power was 100 and divided by 3 was 1.

The clinician continued: "What was 2 to the third power?" Child: "Six." C/A:

"Can you tell me again what it means?" Child: "CK, eight; because it's 2 times

three." C/A: "So it makes it sort of a different problem. So does that mean

the remainder might not be that anymore? You've written down 2 times 2 equals

4." Child: "And next is 8, 16, ... It's going to take me forever to do it this

way." Immediately C/A responded: "Do you think there might be someway without

doing it?"

In C/P's interview, providing less than one minute for the dhild to work out

the problem on her own, she offered: "Can you think of a problem like this only

easier to solve?" The dhild suggested 1 to the 50th power. C/P directed the

child to change the base to two and then suggested a problem "with a little

number smaller than 50..."

Section 3, TSP Suggested and Sectia 4, TSP Guided

For C/D, section 4 followed without opportunity for the child to think of a

simpler problem. After presenting the simpler problem 2 to the second power

divided by 3, he readily offered the next. C/D: "Can you try a different prob-

lem, let's say, 2 to the 3rd divided by 3?" Similarly for his other interview.

For C/A; "Can you think of a problem in terms of finding the remainder for a

simpler problem? What about 2 to the second divided by 3?"

In C/J's interview, there is some deviation from the script in permitting the

Child to think of a simpler problem. C/J: "Can you think of a simpler problem

that would give you that answer? It's like this one, only simpler." In his

second interview he mimes to the second level question directing the Child

to a "simpler problem like this one" rather than a "simpler problem".

In C/P's interview, specific simpler problems were presented to the dhild.
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Section 5, Assessment of Understanding

Once the child was guided by the clinician to detect the pattern through the

generation of a series of simpler problems, a correct response was given for

the two equivalent problems with base 2 and divisor 3, but different exponents.

However, when the problem "3 to the fiftieth power divided by 4" was presented,

either the children began by raising 3 to the fiftieth power or made an

incorrect generalization from their work with the preceding problem. For

example, Clinician D presented the problem of 350 divided by 4 and was inter-

rupted by the observer who emphasized: "This is another problem. Think about

it. How would you go about solving it T" C/D added: "You don't have to do it;

just what would you have to do to solve it?" The observer, interjected: "What

would you have to do if you had to go about solving that one?" The child re-

sponded: "So first I would figure out what 3 to the fiftieth power would. be."

C/D interrupted: "Would you? Is that what you did for two to the fiftieth?"

Child: "Yah, I tried." C/D: "But what did you do to eventually solve it? How

did you core up with the answer? Child: "I was doing these weird things in ry

head." Laughter followed, and the child responded with: "Well, it would be

remainder one but." C/D interrupted: "Why do you think that?" Child: "Because

50 is an even number and even numbers have remainder one.."

ccua.usiaNs

Clinicians fared well in sections of the protocol that required guiding and

presenting information but had considerable difficulty in allowing the child

to construct a solution to the problem presented in section 2. Sore prema-

turely jumped to section 4; others offered the simpler problems directly to

the student, precluding the possibility of a spontaneous response from the

child. In sections 3 and 4, acre clinicians did not give the child sufficient

time to think of a simpler problem but instead offered it. Hints, given too

soon, did not produce learning as measured by the child's succeess in generaliz-

ing the heuristic to a problem of similar structure.

Despite some errors and occassional risuse of the script, teacher/clinicians

were beginning to recognize that learning had indeed not occurred when the child

was unable to construct the kno,dedge in the course of the interview and was

unable to generalize to another similar problem. Clinicians' reflections and

discussions on their own behavior with respect to the child appeared to lead
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to a deeper recognition of the constructive process by which children learn.

Preliminary examination of these data suggests that changes in clinicians

were beginning to occur. What requires further study is how teadhers them-

selves conceptualize learning and how they become aware of their own and

their students' learning processes.

IMPLICATICNS

The teacher/clinician, able to focus on individual learning, can became a

better observer of children's learning. For teachers to deal adequately

with the complexity of the classroom and learn effectively to allow children

to construct their mathematical ideas and procedures, it is suggested that

participation in a variety of integrated experiences as learners, clinician/

observers, and philosophers be studied. As learners, they could experience

learning environments parallel to those recommended for the construction of

knowledge by Children. As clinician/ observers, they could participate in the

construction of learning environments for individual and small groups of

Children. As philosophers, they could reflect cantinously on what it is they

are trying to accomplish, why, how, and for wham. Then, perhaps, the tran-

sition from "direct instruction-lecture teachers" to "constructors of effect-

ive learning environments for children" night be possible.

REFERENCES

Maher, C. A. and Alston, A. (1985). "Elementary School Mathematics as a
Problem - Solving Activity." Paper presented at the 1985 AERA Annual Meeting,
Chicago, Illinois.

Goldin, G. A. (1985). Studying Children's use of heuristic processes for
mathematical problem solving through structured clinical interviews. Pro-
ceedings of the Seventh Annual Meeting of PME-NA, Columbus, Ohio: Ohio State
University.

200
BEST COPY AVAILABLE



188

CHILDREN'S HEURISTIC PROCESSES IN MATHEMATICAL PROBLEM SOLVING

DURING SMALL GROUP SESSIONS

BY

Carolyn A. Maher and Alice Alston .

Rutgers University

ABSTRACT

The paper describes individual and group problem
solving behavior of seventeen sixth grade

children engaged in small group problem solving
sessions to determine (1) whether and in what

ways the heuristic "think of a simpler problem"
is employed spontaneously, after prompting, and
with guided suggestions and (2) whether the

individual learner profits from the small group

activity. Analysis of student responses showed

that individual learning is pursued in a small

group organization and that the cooperation of

small groups supported the directions of

individual learners.

BACKGROUND

The use of structured clinical interviews for studying

children's problem solving has begun to provide useful

information regarding competent problem-solving performance.

Work by Goldin and Germain (1983) and Goldin (in press)

regarding children's use of the heuristic process "think of a

simpler problem" has provided the basis for considering the

problem-solving behavior of children working in small groups and

their use of the heuristic. Silver (1985) and Noddings (1985)

have suggested the study of the processes of cooperative small

groups for such activities as planning, monitoring, evaluating

and the constructing of representations of mathematical ideas.
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An early study by Alston and Maher (1984) in which small groups
of mathematically able middle-school children were provided an
opportunity to construct the properties of an Abelian group
using concrete, symbolic, and abstract embodiments in a

non-numerical context and relate the activity to work with

numbers showed promise for creating effective classroom

environments for children's learning.

PURPOSE

The study examines the effectiveness of organizing instruction
in such a way as to allow children working in groups the
opportunity to construct solutions to a problem employing the
heuristic "think of a simpler problem" without direct teacher
interference but with a structured group problem protocol.

DESIGN

The Problem Task

A single-person script based on the problem "What is the

remainder when 2 to the 50th power is divided by 37" (Goldin, in
press) was modified for small group use in order to observe
whether and in what ways the heuristic "think of a simpler
problem (TSP)" might be employed. The problem task, divided into
five parts, each to be administered after the former is

completed, was designed to provide the children with

opportunities to solve the problem (a) spontaneously, (b) with

the heuristic suggested and (c) with specific examples using the
heuristic given. The prerequisite skills for the TSP task,
presented in Part 1, are raising a number to a power, finding

the remainder when dividing a whole number by a one digit
divisor and finding a remainder when dividing a number expressed
in exponential form by a one digit divisor. In Part 2

presentation of the problem, "What is the remainder when 2 to
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the 50th power is divided by 3 ? ", is presented without other

comment. Provision for noting all the ideas emerging from the

group as they seek a solution is made. In Part 3 the use of the

heuristic TSP is suggested. The children are asked to generate

problems that are simpler than the original problem and to solve

each simpler problem, considering whether the solutions might be

helpful in solving the original problem. In Part 4 the heuristic

"TSP" is specifically presented by asking the children to solve

a series of simpler problemi structurally equivalent to the

original, to organize these solutions into a chart, to look for

the pattern of remainders and to give the solution to the

original problem. An assessment of the depth of understanding is

made by asking for the remainder when 2 to the 44th power is

divided by 3 and when 2 to the 75th power is divided by 3.

Finally the children are asked how they would approach the

problem of finding the remainder when 3 to the 50th power is

divided by 4. In Part 5 the children are asked to review what

they have done.

Subjects

Seventeen eleven and twelve year old sixth grade children, five

girls and twelve boys, from an independent school participated

in the study. Six groups were formed, five with three children

and another with two.

PROCEDURES

The 90 minute sessions, held in the school library, were audio

taped with three also video taped. An observer for each group

administered the problem, took notes and monitored the audio

equipment, having been instructed to answer only procedural

questions. Each group of children was instructed to select a

recorder responsible for keeping a record of the responses to

each question based on agreement of the group. Each child was

given a protocol, blank sheets of paper and pencils.

203



191 Maher/Alston

Approximately 45 minutes to one hour was needed to complete the

task. Analysis is based on the children's Completed protocols,

the work they did on other paper, observers' written notes and

the audio and video tapes.

RESULTS

The data were organized according to the problem outline to

describe (a) the six groups' problem solving behavior'and (b)

problem solving activity of the seventeen individual students.

Part 1

Results of Part 1 indicated that all of the children had the

mathematical skills necessary to solve the problem. Mistakes, in

one case conceptual giving 3 to the 2nd power as 6 and in a

second computational responding with 3 as the remainder when 17

is divided by 5, were recognized by others in the group and

corrected apparently. with understanding by the individual.

Part 2

For Part 2, four of the groups attempted to compute 2 to the

50th power by multiplying the factors of 2 even though one or

more individuals in each group suggested that there should be a

simpler way. None of these groups reached a correct solution.

In Croup 5, J worked individually but in dialogue with the

others to generate several attempts at simpler means of

solution. Each solution was discarded, however, when the group

together saw that the structure was inappropriate. The

activities of individuals within the group indicated that two of

the groups solved the problem in Part 2 by using a simpler

problem. In Group 2, C reasoned that 2 to the 50th power is

proportional to both 2 to the 10th power and 2 to the 2nd power

and so must have the same remainder when divided by 3, requiring

the remainder to be 1, a correct answer that was inconclusive as

to understanding. In Group 5, J, leading G and L, reasoned

that since 2 to the 4th power is the same as 4 to the 2nd power,
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2 to the 50th power must be equal to 10 to the 10th power, which

the children computed and divided by 3 for a remainder of 1. The

children expressed pleasure at having constructed this "simpler

problem" and indicated a preference to this method over the

pattern later suggested.

Part 3

All of the groups generated simpler problems in Part 3 although

only three of the groups came up with problems of similar

structure to the original and Group 1 was alone in generating a

series and recognizing the pattern of even and odd exponents

corresponding to 1 and 2 as remainders without guidance.

Part 4

Each of the other groups recognized the pattern in Part 4 and

all six predicted that 1 would be the remainder for 2 to the

44th power and 2 for 2 to the 75th power when each was divided

by 3. Three of the groups responded to the question "What is the

remainder when 3 to the 50th power is divided by 47" by

immediately generating simpler problems of the same structure

with both even and odd exponents and finding the pattern of 1

and 3 as remainders. Group 2 and Group 5 each returned to the

strategy used to solve the original problem. Group 3, the only

group with an incorrect answer to the original problem even

after successfully generating the pattern, seemed confused and

predicted that the pattern of remainders for 3 to the 50th power

would be 2,2,1,1,1,1 ......

IMPLICATIONS

During mathematics class on the next day, the children discussed

the problem, compared strategies and results, and were guided by

the teacher to consider proposed solutions so that

misconceptions might be addressed. These results suggest that

the group context can be one in which children might construct

understanding of mathematical ideas. The heuristic "TSP" was

proposed and considered by the children and discarded when they
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were not ready to use it. For some, the arithmetical

representation of the problem was applied. For others, "TSP" was

used spontaneously or in response to guiding questions. The

group organization permitted each child freedom to pursue

various paths to solution but also guidance by peers to examine

those paths and to consider alternatives. Research and analysis

should follow in which other problem tasks are developed and

tested, presenting problems that call for various heuristic

strategies to similar groups of children. Methods need to be

developed to compare group problem solving activity with that of

children working individually and in whole class activities in

order to make intelligent inferences for classroom instruction.
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A CHRONOMETRIC ANALYSIS OF ADDITION AND SUBTRACTION
PROCESSES USING POSITIVE AND NEGATIVE NUMBERS *

Jose Mestre, William Gerace and Arnold Well
University of Massachusetts
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Fihding4 at40 neveat that Angtaz wene eign4icantty paten than
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In recent years, a considerable number of research studies have focused on

understanding mental processes involved in the addition and subtraction of

simple numbers. These studies fall into three major types. One type of study

uses the interview approach. The subject "thinks aloud" while he/she is

engaged in some addition or subtraction task, and the resulting record of the

interview, called the "protocol," is analyzed to identify the processes that

the subject used. Studies of this type have been successful in identifying

counting procedures of varying degrees of sophistication as well as stages by

which children make the transition from less, to more sophisticated procedures

(Carpenter & Moser, 1984; Fuson, 1984).

A second type of study attempts to test models by implementing them on

computers. The success of these models is measured by the extent to which

they are capable of predicting the types and frequency of use of both

successful and erroneous strategies. Some of these models are not only quite

elaborate, but are capable of "solving" a wide range of addition and

subtraction problems (Briars & Larkin, 1984; Riley, Greeno & Heller, 1983).

However, some researchers (Carpenter & Moser, 1984) argue that these precise

models do not capture the variability of children's performance.

* Work supported by National Institute of Education Grant #G-83-0072. The
contents herein do not necessarily reflect the position or policy of NIE.
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In the third type of study, the insights come from analyzing the "reaction

time" (RI) it takes subjects to perform an addition or subtraction task.

Generally the tasks in RT studies with young children consist of pressing a key

to designate the answer to a problem (e.g. pressing the "8" key in an array of

labeled keys when given the problem "3+5"). With older children and adults,

the tasks generally consist of verifying an equation (e.g. pressing a "true" or

"false" key in response to a stimulus such as "3+5.8"). The advantage of the

RT approach is that it can potentially provide insights into mental processes

involved in tasks that are generally performed correctly by adults (limiting

the usefulness of analyzing error patterns) and tasks that are highly automated

(making it very difficult to elicit subjective, introspective reports). The

difficulty in a RT analysis comes in deciding which processes should take a

constant amount of time regardless of variations among the task (e.g.

representing numbers, such as "3", in memory), and which process(es) varies in

time as a function of variations among the tasks. The time-varying process is

designated by a "structure variable" which is then fit to the RT data. In a

seminal RT study, Groen and Parkman (1972) determined that the best structure

variable in predicting RT in problems such as m+n.s was min(m,n) which implies

the use of a "count on from larger" strategy. Reaction time studies have been

quite successful at identifying important structure variables in both addition

and subtraction (Ashcraft, 1982; Woods, Groen II Resnick, 1975).

One area which has not been investigated in RT studies is the effect of

manipulating mathematical operations upon performance. For example, if we

allow both negative and positive integers within the context of addition and

subtraction, we can usually construct several three-digit mathematical

statements which are equivalent to each other. The following cases illustrate

three different manipulations on the digits 3 and 4 that maintain the overall

result equal to negative one: "( +3) +(- 4) "( -1) ", "(+3)-(+4).(-1)", and

"(-4)+(+3).(-1)". It may be, however, that among these equivalent equations,

certain ones may be considerably easier to process than others. One question

that can be answered by comparing the RTs required to verify equations in the

example above is whether adding a positive and a negative number is easier or

harder to carry out than subtracting the corresponding two positive numbers.

Another important question that we can investigate with such manipulations is

whether there are differences between the RT patterns of Anglos and Hispanics

2Q8



Mestre/Gerace/Well 196

in verifying mathematical statements containing two negations, such as

"(+3)-(-4)-(+7)". The significance of this question comes from the fact that

in the Spanish language, certain double-negative constructions retain an

overall negative meaning, rather than reverting to a positive meaning as is the

case in grammatically correct English. We have investigated this question

within verbal comprehension tasks using different number and types of negations

(Mestre, 1984; in press) and found that the overall performance of Anglos was

better and significantly faster than that of Hispanics. However, because of

generally poor performance by both groups, there was no clear evidence that

Hispanics were particularly worse than Anglos on the double-negative tasks. We

thus think it would be interesting to look for Hispanic-Anglo differences in

double-negative performance within a mathematical context.

Finally, are we not aware of any manipulations of the affirmation-denial dimen-

sion within a RT math study; this would mean investigating the differences in

RT patterns between "=" statements (affirmations) and "i" statements (denials).

There have been affirmation-denial studies outside the domain of mathematics.

In a sentence verification task, Carpenter and Just (1975) measured RTs of sub-

jects as they determined the truth value in a situation where a simple sentence

was followed by a picture. They found that RT increased in the following

order: True affirmatives (e.g. "The dots are red" followed by a picture of red

dots), false affirmatives, false denials, and true denials (e.g. "The dots

aren't red" followed by a picture of black dots). It would therefore prove

interesting to see if this same pattern emerges within a mathematical context.

In this paper we report a preliminary analysis of a RT study investigating the

effect of manipulating equality as well as addition/subtraction operations

among Anglo and Hispanic college students.

Procedure

Subjects: A total of 58 subjects participated in the experiment. All subjects

were majoring in technical fields such as engineering, math and chemistry. Of

the 58 subjects, 27 were Anglo monolingual speakers of English and 31 were

bilingual Hispanics. Subjects were paid for their participation in the study.

Tasks: Reaction times were measured as subjects determined the truth value of
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mathematical statements of the following forms:

(t6)t(t2). 8 . (t6)t(t2)rit ant(t6). 8
. CtOta6) :

A total of 128 such statements can be constructed, 64 with um" and 64 with

"i". Of the 64 statements with No, 16 are true and 48 are false, while of

the 64 statements with ue, 16 are false and 48 are true. To balance the

number of true and false cases from the " statements, an additional 32 true

cases were included in the pool of statements; similarly, 32 additional false

cases were included in the pool of 1° statements. Each subject therefore

received a total of 192 statements.

Method: Subjects answered "true" or "false" by pressing one of two keys with

the index fingers of both hands; the "true" key was assigned to the dominant

hand. Statements were randomly selected and presented on the screen of an

Apple II-E microcomputer and a Mountain Clock recorded the RTs with

millisecond accuracy. Only correct responses were kept for the analysis.

Errors were recycled into the pool of statements so that every subject

eventually answered all 192 statements correctly. Subjects were instructed to

move as quickly as possible without sacrificing accuracy. Statements were

presented in blocks of 24, with feedback about speed and accuracy given after
each block. Two practice blocks preceded the actual experiment.

Results

The error rates for Anglos and Hispanics were 6.7% and 8.2%, respectively. To

a first approximation, the patterns of RTs were quite similar for Anglos and

Hispanics, although Hispanics in our sample averaged about 600 msec longer per

response. Averaging over trials, we find the same order of increasing RT for

both Hispanics and Anglos as in the sentence verification study of Carpenter

and Just, although there were significant differences in overall speed between

Anglos and Hispanics (see table below). A Group (Hispanic vs. Anglo) x Equality

(= vs. #) x Truth Value (T vs. F) x Statement Type analysis of variance was
conducted on the RT data. By Statement Type we mean the 8 possible orderings

of the three signs on the left hand side of the statement, namely (+++), (++-),
(+- +), ( -++), (t--). ( -+-), (--+), and (---). All main effeits were significant
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True False

. Anglo 2.29 2.65

Hispanic 2.77 3.24

Anglo 2.97 2.84

Hispanic 3.61 3.46

(p .< .001). This means that 1) Anglos per-

formed significantly faster than Hispanics,

2) The statements took significantly longer

to process than the = statements, 3) False

statements took significantly longer to proc-

ess than True statements, and 4) There were

significant differences in processing times

among the 8 Statement Types. There were two

significant interactions (both p< .001): 1) Equality x Truth Value (see table

above) indicating that the difference between true and false RTs was much dif-

ferent for = and i statements, and 2) Equality x Truth Value x Statement Type

indicating that the pattern of RTs for the 8 Statement Types varied across the

four possible combinations of Equality x Truth Value. There was no evidence

that the pattern of RTs for statements involving one and two -'s were different

for Anglos and Hispanics. However, the difference in RT between Hispanics and

Anglos was significantly smaller (p <.05) for the (+++) statements than for the

average of the 7 Statement Types containing at least one -.

Statement Type RTs broke down into four clusters that were nearly the same

across all four Equality x Truth Value cases for both Anglos and Hispanics.

The table below shows this clustering where we have averaged. over Equality and

Truth Value. With only one exception each for Hispanics and Anglos, Statement

Types (+++) were processed significantly faster (p <.05) than the cluster of

Statement Types (++-), (+--) and (-+-), which in turn were processed

significantly faster than the cluster (+-+), (-++) and (--+), which in turn

were processed significantly faster than the Statement Type (---); the two

exceptions were that (-+-) was not significantly different from (+-+) for

Anglos, and (--+) was not significantly different than (---) for Hispanics.

(+++) ( + - -) (-+-) (++ -) (+-+) (-44) ( - - +) (---)

Hispanics 2.32 3.24 3.26 3.29 3.49 3.47 3.47 3.64

Anglos 1.93 2.63 2.64 2.64 2.77 2.84 2.92 3.11

Difference .39. .61 .62 .65 .72 .63 .55 .53

Finally, including the order in which the digits "2" and "6" appeared on the

left hand side of the statements in the ANOVA resulted in a significant main

effect (p< .01) predominantly due to the faster RTs in the subtraction
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Statement Types (+-+) and (++-) when the '6" preceded the "2".

Discussion

The presence of various statistically significant main effects as well as sig-

nificant interactions in our analysis indicates that measures of RT are a good

means for unravelling the mental operations and processes used by adults in

performing simple arithmetic manipulations. Although we have not as yet

explored the predictive ability of various models for our observed RT

patterns, it might prove interesting to speculate on the mental processes

which might account for some of our findings. The processing time for the

tasks of this study can be subdivided into four stages: 1) Encoding, 2) Com-

puting, 3) Verifying, and 4) Responding. Since Encoding and Responding are

likely to take the same amount of time for each trial, the variation among RTs

comes from the Computation and Verifying stages. By averaging over all

Statement Types, the processing time can be collapsed into the Verifying stage

for the four Truth Value x Equality cases (i.e. T", Ti. Fn. and Fit). The fact

that our observed RT pattern for these four cases is the same as that in the

Carpenter and Just (1975) study, despite a lack of parallelism between our

Equality dimension and their affirmation-denial dimension, suggests that

subjects used a similar verification process in both studies.

A successful model for the Computing stage would have to explain the cluster-

ing among the Statement Types observed in the table above. For example, the

data indicate that latency is not simply determined by the number of -'s in

the statement, but rather by the efficiency with which the various operations

can be combined to yield an answer. As evidence, consider the relatively fast

RTs on (+--) which suggest that the double negative is encoded as an overall

positive. The data also suggest that processing is relatively fast for

"adding like numbers", as in the cases (+++) and (-+-). Another general trend

is that cases in which the - is at the end of the statement are processed

faster than cases In which the - appears in the middle or at the beginning of

the statement (i.e..(++-) is processed faster than (+-+) and (-++)). Finally,

the faster latencies when the "6" preceded the "2' in the (++-) and (+-+)

Statement Types indicates that subtracting a m2" from a "6" is more

"ecologically natural" than subtracting a "6' from a "2".
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The fact that the RT pattern for Hispanics did not differ appreciably from that

of Anglos on Statement Types containing two negatives indicates that the lack

of parallelism between Spanish and English in the meaning of double-negations

does not interfere with arithmetic performance. It was surprising that on the

simple tasks administered Hispanics took approximately 600 msec longer than

Anglos, especially since all subjects were technical majors; the cause of this

large difference in speed remains a mystery. We will only remark that for

Hispanics, SAT scores were negatively correlated with RT (p <.05) implying

higher SAT scores for those Hispanics with faster RTs; this suggests that SAT

scores may be a poor predictor of academic performance because Hispanics pro-

ceed at a slower pace and therefore complete fewer items. Further support of

this conjecture comes from the fact that, despite Anglos scoring approximately

200 points above Hispanics on both Verbal and Math SATs, their GPAs did not

reflect this large difference (GPAH,2.46, GPAA,2.94 out of a possible 4.0).
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PREDICTING MATHEMATICS ACHIEVEMENT FOR FEMALES AND MALES
FROM CAUSAL ATTRIBUTIONS

Margaret R. Meyer
Ohio State University

Elizabeth Fennema
University of Wisconsin-Madison

The study reported here investigated the relationship
between causal attributions as measured by the Mathematics
Attribution Scale in grade 8 and achievement in grade 11.
Correlations and linear regressions were done separately
for females and males in order to see if the relationships
differed by sex. Success Ability and Failure Ability were
correlated with achievement for both females and males.
Grade 8 attributions ware more important for females in
predicting grade 11 achievement. A score for mastery
orientation / learned helplessness based upon attributions
was correlated with achievement for males.

Causal attributions, or the reasons students give for their successes or

failures, have been the subject of study in recent years as they relate to

achievement in mathematics (Wolleat, Pedro, Becker, & Fennema, 1980; Eccles,

Meece, Adler, & Kaczala, 1982). Much of the appeal of these variables lies

in the intuitive connections that can be made between various attributions

and subsequent achievement related behaviors. Causal attributions are also

of interest in attempts to explain sex-related differences in mathematics

achievement. There is some evidence that females and males attribute

causation differently and that these differences are related to achievement

differences (Wolleat et al, 1980; Eccles, 1983).

TWo of the problems associated with causal attribution research are those

of measurement and interpretation. Typically, attribution instruments are

designed to reflect the Weiner (1974) model with subscales written to
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measure student perceptions of the importance of ability, effort, luck and

task difficulty for their success or failure. It has proven difficult to

sort out relationships when 8 subscales are involved. Some research has

attempted to identify which of the subscales might be more important

relative to achievement. Combining subscale scores is another way that has

been used to simplify using causal attributions. Fennema and Peterson (1984)

derived a formula based on constructs of learned helplessness and mastery

orientation. The formula was defined as follows:

MO/LH = (SA + SE + FE) - (FA + ST + SO)

The theory based formula suggests that mastery orientated students perceive

that their successes are a result of their ability (SA) and effort (SE)

and that their failures are due to a lack of sufficient effort (FE). In

contrast, learned helpless students perceive their successes as being the

result of either task ease (ST) or help from others (SO) and their failures

as resulting from their lack of ability (FA). Kloosterman (1984) used this

formula in a study of Algebra I students. (See paper by Kloosterman in this

proceedings.) Another limitation of studies involving causal attributions

related to sex differences in mathematics achievement is that the data are

usually collected at a single point in time. As result, the ability to

predict future achievement based upon attributions is limited.

The study reported here attempted to address some of the issues just

discussed. Specifically, the objective was to see if causal attributions

measured in grade 8 could predict mathematics achievement four years later.

Females and males were considered separately in order to look for sex

differences in the predictions. The MO/LH score formula discussed above

was also used to test if its relationship to achievement was stronger than

those of the individual subscales.

DATA SOURCES AND PROCEDURES

Causal attributions and mathematics achievement data were collected on

151 students in grade 8 in a Midwestern city. The sample included 84 females

and 67 males. The instruments used to measure achievement were the Basic
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Concepts (Level I) and Computation tests of the STEP Basic Assessment Tests.

Causal attributions were measured by the Mathematics Attribution Scale

(MAS) (Fennema, Wolleat, & Pedro, 1979). The MAS contains eight subscales:

Success Ability (SA), Success Effort (SE), Success Others (SO), Success

Task (ST), Failure Ability (FA), Failure Effort (FE), Failure Others (FO),

and Failure Task (FT). The "Others" category is an expansion of Weiner's

"Luck" category and it includes other unstable, external factors like help

from others. Each subscale score can range from 4 to 20. At the end of

grade 11, achievement was again measured using the STEP Computation and

Concepts (Level J) tests. The cognitive level of the items was used to

derive three scores from the STEP Concepts test: a low level score (0-24);

a high level score (0-24) and ; a total score (0-48).

RESULTS

Table 1 contains correlations and descriptive statistics for females and

males for grade 8 achievement and attribution scores. In grade 8, the mean

score for the males was significantly higher than that of the females on

both STEP Computation and STEP Concepts. In terms of attributions, the only

significant differences by sex were on the subscales Success Task (ST) and

Failure Task (FT). Mean scores on these subscales indicated that females

were more likely than were males to focus on the task as a reason for both

success and failure. Considering the grade 11 achievement measures, the

mean scores for the males were significantly higher than those for the

.females on STEP Concepts High and STEP Concepts Total.

Success Ability (SA) and Failure Ability (FA) were the two attributions in

grade 8 that were most consistently correlated with achievement in grade 11.

for both females and males. Success Effort (SE) and Failure Effort (FE) were

also significantly negatively correlated with STEP Concepts Total and SAT

Concepts High, but only for the females. For the males, achievement on STEP

Concepts Total and STEP Concepts High were significantly correlated with

the attribution of Failure to Others (FO). Somewhat surprisingly, MO/LH was
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Table 1

Descriptive Statistics and Correlations for Grade 8 Achievement and Causal

Attributions and grade 11 Achievement.

COMP12 CONC12 CONCL12 CONCH12 MEANS

CCMP8 F .49 *** .49 *** .47 *** .46 *** <43.38>a(10.24)
M .67 *** .62 *** .53 *** .59 *** <46.58> (6.17)

CONC8 F .58 *** .51 *** .56 *** .43 *** <37.80> (9.28)
M .70 *** .61 *** .47 *** .61 *** <42.10> (4.72)

SA8 F .24 * .27 ** .20 * .28 ** 13.69' (3.12)
M .27 * .41 If** .27 * .44 *** 14.25 (3.15)

SE8 F -.17 -.21 * -.13 <-.24 *> 12.64 (3.92)
M -.02 .11 .11 < .11 > 12.73 (3.70)

S08 F .12 .04 .03 .04 14.33 (3.04)
M -.09 -.04 -.10 .02 13.64 (2.71)

ST8 F -.13 -.06 -.05 -.05 <14.70> (2.47)
M -.18 -.20 -.20 -.16 <13.88> (2.63)

FA8 F -.23 * -.28 ** -.18 -.30 ** 10.67 (2.85)

M -.25 * -.37 ** -.32 ** -.34 ** 10.64 (3.13)

FE8 F -.29 ** -.27 ** -.17 -.30 ** 11.99 (3.51)
M -.02 -.03 .00 -.04 11.76 (3.05)

F08 F -.07 -.11 -.07 -.12 12.26 (2.99)
M -.05 -.25 * -.15 -.28 * 12.00 (2.97)

FT8 F -.05 -.12 -.06 -.15 <14.12> (2.67)
M -.06 -.15 -.09 -.17 <12.84> (2.76)

MO/LH8 F <.00 > <.02 > <.03 > <.01 > -.31 (2.43)
M <.31 ** > <.45 *** > <.41 *** > <.41 *** > .39 (2.46)

F 49.52 <38.94> 21.03 <17.90>
MEANS (4.90) (6.96) (2.88) (4.56)
(s.d.) M 50.03 <41.74> 21.85 <19.87>

(5.03) (5.24) (2.31) (3.46)

* p<.05, ** p<.01, *** p<.001 ;a brackets indicate significant diff. p<.05.
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significantly correlated with grade 11 achievement only for the males. None

of the correlations for the females were significantly different from zero.

To investigate the predictive ability of the attribution variables, each of

the four grade 11 achievement variables was regressed on the 8 attribution

scores from grade 8. The two grade 8 achievement scores were also used as

predictor variables in order to see the contribution of the attribution

scores independent of prior achievement. For the males, attribution scores

contributed to the accounted for variance only in the equation for STEP

Concepts High. Failure Others (FO) added .08 to the accounted for variance

and Success Ability added .03. For the Females, attributions entered each

of the four equations for grade 11 achievement. Failure Ability (FA) added

.09, .04, and .03 to the variance accounted for in the equations for STEP

Concepts Total , Concepts Low and Concepts High respectively. Failure Effort

(FE) added .10 and .13 to the variance accounted for in the equations for

Computation and STEP Concepts High. In separate analyses, MO/LH added .07

to the variance accounted for in a regression equation for Concepts High

when it was regressed on grade 8 achievement and MO/LH for females. MO/LH

did not enter any of the regression equations for males.

CONCLUSIONS AND DISCUSSION

Based upon the results presented above, several tentative conclusions can

be drawn. First of all it was clear that the attribution subscales were not

all related to achievement equally well. Success Ability and Failure Ability

were the two most strongly correlated with achievement for both females and

males. The MO/LH score was significantly correlated with achievement only

for the males, but it still might be important in predicting achievement

for females as evidenced by its contribution to a regression equation

predicting Concepts High for females. The results of the regression analyses

suggest that for the males causal attributions might not be important as

predictors of future achievement independent of prior achievement. However

for the females, attributions do have predictive ability independent of

prior achievement and for this reason further research is indicated. The
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differing results for both females and males based upon cognitive level

suggest that this classification is important and that cognitive level

should be a factor in future research. In summary, although it is far from

clear what role causal attributions play in determining achievement for

females and males, it is clear that they do play a role and that perhaps

this role is more important for females.
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PRESERVICE ELEMENTARY TEACHERS

THEIR ATTITUDES TOWARDS MATHEMATICSAND THE ANXIETIES THEY SUFFER
Diane Miller, University of Missouri--Columbia

An inatruunent dee.igned .to meazurte math anxiety watt adnaniatened
to a group 06 ionezavice etementany

teacheA4. The kaatta
indicated that than math anxiety 1.41a4 no greater than .the
"average" adnitia. Howevet, the neautta o6 two teds4 60Ama2
aaaeoemento indicated that borne poputah betielie may need
eto.seA acitutinizing.

INTRODUCTION

Since September, 1976, when MS Magazine published an article by Shelia Tobias
entitled "Math Anxiety," the term "math anxiety" has become.a popular expression
in social and academic circles.

Fear of mathematics, avoidance of mathematics,
even poor attitude toward mathematics

are often associated with the popular
term. Many people point an accusing finger at our nation's elementary school
teachers as the source of mathematics

anxiety developed in xhildren at an early
age. The purpose of this study was twofold: (1) to ascertain to what extent
a select group ofspreservice elementary

teachers suffer with math anxiety; and,
(2) to assess their feelings and attitudes towards mathematics.

THE INVESTIGATION

During the 1984-85 school year, seventy students from a mid-western university
and a private college participated in the study. The students were enrolled
in a math methods class for elementary teachers. All seventy students were
administered the Mathematics Anxiety Rating

Scale (MARS) constructed by Frank
Richardson and Richard Suinn (available through the Rocky Mountain Behavioral
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Sciences Institute,

attitude assessment

Texas. Fifty-eight

sentence completion

mathematics.

Fort Collins, Colorado); and, a 25-item True/False

instrument designed by Jim Daniels at the University of

of these seventy students also completed a 10-item

exercise designed to assess a person's beliefs about

MATHEMATICS ANXIETY

Math anxiety involves "feelings of tension and anxiety that interfere with the

manipulation of numbers and the solving of mathematical problems in a wide

variety of ordinary life and academic situations." (Richardson and Suinn, 1972)

The norm mean score for the adult form of the MARS is 215 with a standard

deviation of 65. The mean score for the 70 participants in this study was 221

with a standard deviation of 61. Using the Cochran and Cox method to test the

significant difference between two means resulted in no significant difference

between the mean MARS score of the participants in this study and the norm mean

score. (Ferguson, 1976) The conclusion drawn at this point was that this

group of preservice elementary teachers did not have a significant greater

degree of math anxiety than the "average" adult. On the surface, this is a

pleasing conclusion. However, the participants' responses to some of the items

on the True/False instrument and the sentence completion exercise warrant

further consideration.

A review of the literature revealed that people with math anxiety range in

age from nine to sixty-five. In one study, nine to eleven year-old children,

who were underachieving in mathematics, demonstrated that anxiety was the

most significant contributor. (Sepie and Keeling, 1979) To prevent maximum

damage to a student's self-concept, math anxiety must be conquered in the early

years of intellectual development. A teacher's attitude is a potent force in

the classroom. One conclusion drawn from a survey,of 124 dissertations

written from 1969-75 was that teachers' attitudes and their enthusiasm toward

a subject have greater impact on students' attitudes than instructional

variables do. (Burton, 1979)
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The general attitude exhibited by the participants in this study seemed to

be negative. The two statements of the sentence completion exercise which

received the greatest percentage of negative responses were: When it comes

to math, I . . . " and "Doing math makes me feel . . . " Sixty percent of

the responses to the first statement were of a negative nature and seventy

percent of the responses to the second statement were negative.

Doyle and Graesser (1978) conducted a study using math anxious and math

comfortable college students in which they were trying to degermine if the

math anxious students exhibited characteristics distinguishable from the math

comfortable students. One trait deemed characteristic of highly math anxious

students is that they express the belief that the problem they are trying to

solve has a simple solution, but that they are too dumb to see it.

The responses to two statements on the True/False assessment instrument combined

with one item from the sentence completion exercise support Doyle's and

Graesser's hypothesis. Statement: Good math solutions are usually complicated.

Thirteen answered true, 57 answered false. Statement: Some math problems are

just plain easy. Sixty-three answered true, 7 answered false. Complete: Doing

math makes me feel . . . Seventy percent of the responses were negative. If a

person generally feels that solutions are not complicated and problems are easy,

then of course they are going to feel dumb if they cannot "get it."

A review of the literature revealed that the development of attitudes toward

math is a summatory phenomenon with each conditioning experience building

upon the one that precedes it. The initial attitudes seem to be affected

by all the teachers of mathematics with whom the student is associated.

Pupils who have done poorly or failed math have deflated egos and therefore,

tend to develop attitudes of dislike and hostility toward math. Indicative

of findings reported throughout the literature, a poor attitude seems to

breed math anxiety.
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WHAT CAN BE DONE TO PREVENT AND/OR CURE MATH ANXIETY?

There are two positive facets about math anxiety; it is curable at any

stage; and, its hold is never irreversible. Research conducted in the

math anxiety program at the University of Minnesota supports the hypothesis

of past experiences being a contributing factor to math anxiety. (Mathison, 1977)

These past experiences are generally associated with the effect of teacher

influence. Math teachers have a reputation of being hard. One item on the

sentence completion exercise supports this attitude. Complete: Math teachers

are . . . Responses: "insensitive," "strict and not very understanding,"

"intimidating to me," "to smart to teach it," "hard for me to communicate with,"

etc. (Thirty-three percent of the responses were of this negative nature.)

Faculty in teacher education colleges can help to dispel this image of math

teachers. They can also do much to resolve the dilema for preservice

elementary teachers who are adversely effected by mathematics anxiety. They

can provide a mechanism to diagnose math anxiety and then provide support

groups, math classes, and tutorial sessions to help dispel whatever is

causing the anxiety. Within college classrooms, teachers can build an

atmosphere in which students are not afraid to ask "dumb questions" and then

encourage them to do the same when they become teachers. Math content should

be taught using methods with which students can identify. Preservice

elementary teachers should be given a strong foundation in how to use

manipulatives and concrete examples in their future classrooms. They should

be encouraged to talk about personal math difficulties and allowed to work

together on challenging problems.

SUMMARY

Math anxiety is a threat to our society's intellectual advancement. Teachers

are a very important educational influence on students' learning mathematics.

Therefore, educators should start early, in the formative years, to conquer

math anxiety. College and university personnel should become more attuned to
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the anxieties and attitudes of preservice elementary teachers. They must

address their students' needs in being prepared to prevent and/or fight the

anxieties of their future students and to instill an improved attitude

toward mathematics in general.
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COMPUTER PROGRAMMING AND MATHEMATICAL THINKING

Janeal Mika Oprea

Cleveland State University

The effects of computer programming instruction on mathematical
thinking skills and development of fundamental concepts were in-
vestigated. After six weeks of programming instruction, two
randomly selected sixth grade treatment groups were compared to
a control group on posttests measuring programming ability,
generalization,'and understanding of variables. For each depen-
dent variable, it was determined that the average of the mean
scores of the groups receiving programming instruction was
significantly greater than the mean score of the control group.

If the present trend continues, there will be two million computers in the

U.S. public schools by 1988. The proliferation of computers in schools is

partially due to the implicit belief that computers are powerful educational

tools. However, although computer programming advocates have argued its

efficacy in terms of both academic and attitudinal benefits, to date there

is a disturbing lack of empirical evidence substantiating these arguments.

The potential positive effects computer programming could have on mathe

matics learning are numerous and varied, ranging from the enrichment of

mathematical concept learning to the enhancement of deductive and inductive

reasoning. Proponents of computers often cite apparent relationships

between certain mathematical cognitive processes, such as generalization,

and the processes involved in computer programming (e.g. Hatfield, 1984;

Papert, 1980). Hatfield, for instance, described the process of programming

as "successive approximation" since a programmer often solves a problem for

a restricted set of data first and then extends and modifies the program for

a larger universe. Hatfield asserts that this refinement and extension of

already successful programs will foster thinking strategies such as
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generalizing and conjecturing.

Unfortunately, most claims of a relationship between mathematical thinking

and cognitive processes used during computer programming have been based on

rational argument, individual observation, and the experience of "expert

witnesses" -- such as practitioners and educators -- and not supported by

systematic empirical research. The few mathematics education studies of the

cognitive consequences of learning to program had only marginally positive

results (Milojkovic, 1983; Foster, 1972). Several psychological studies

comparing expert and novice programmers seem to indicate a relationship

between programing ability and mathematical generalization (e.g. Pea and

Kurland, 1984; Jefferies, 1982).

In light of the limited but positive empirical results, the intent of my

research was to investigate the effects of computer programming instruction

on one specific mathematical thinking process; namely, generalization. Since

computer programming and expression of mathematical generalizations rely ex-

tensively on the use of variables, a second facet of my study was an inves-

tigation of elementary students' understanding of variables and the relation-

ship of this understanding to the students' mathematical generalization

process and computer programming ability.

While generalization is only one of the mental processes that correlates

positively with mathematical aptitude, many mathematicians feel it is an

extremely important attribute of mathematical maturity (e.g. Mason, 1982;

Krutetskii, 1976). Mason refers to generalization as "the life-blood of

mathematics (p. 9)" while Krutetskii states that "abstractions and generali-

zations constitute the essence of mathematics and mathematical thinking

(p. 86)."

PROCEDURE

As previously mentioned, my investigation focussed on the effects of computer

programming instruction on sixth grade students' mathematical generalization
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ability and understanding of variables. Sixth grade classes of two elemen-

tary schools were the treatment groups. The classes of one school acted as

a control (Group C) while the students of the other were randomly assigned

to experimental group W or experimental group E. For 6 weeks, both groups

W and E studied BASIC computer programming during 60-90 minute sessions 2 or

3 times a week. Overall, these students participated in approximately 20

hours of programming instruction. Pre- and posttests assessing programming

ability (PROG), mathematical generalization (GEN), and understanding of

variables (VAR) were administered. Table 1 is a summary of the three treat-

ment groups and includes means and standard deviations of the pre- and

posttests.

Table 1

Summary of Treatment Groups

Group
W E C

Subjects (N) 26 29 29
Sex (M/F) 12/14 14/15 15/14
Ability 54.5 52.6 52.2
GEN Pre 13.4 (5.3) 14.4 (6.5) 11.6 (5.9)
(29) Post 15.0 (6.5) 14.6 (6.2) 11.9 (6.5)
PROG Pre 2.6(4.1) 2.3 (2.1) 2.8 (2.2)
(29) Post 9.5 (5.0) 8.8 (5.0) 3.1 (4.6)
VAR Pre 2.2 (1.4) 2.4 (1.6) 2.9 (2.7)
(14) Post 2.8 (2.3) 3.8 (2.2) 1.8 (1.5)

Integration of computer programming into the elementary mathematics

curriculum is still in its infancy. Thus the purpose of two separate experi-

mental groups was to study the effects of two different instructional methods.

The Wholistic approach (Treatment W) began instruction at the whole program

level. The focus was on mathematically relevant problems with commands

introduced only as needed to solve the problem. On the other hand, the

Elemental approach (Treatment E) focussed on the individual BASIC commands

and proceeded stepwise until the students were capable of programming complex

problems. Further explanations of these two treatments can be found in

Oprea (1984).
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In accordance with Dienes (1961) operational definition of generalization, I

developed a paper and pencil instrument (with items similar to Krutetskii's

interview questions) to measure generalization ability. This generalization

instrument, with a reliability of .80 (Cronbach's a, N=78), consisted of

four subtests, each of which involved one of the following mathematical con-
cepts: combinations, exponents, number patterns, and geometrical shapes.

The items of each subtest were ordered and weighted so that hypothetically

the number of items successfully completed indicated the student's level of

generalization. Instruments measuring programing ability (reliability = .82)

and understanding of variables (reliability = .67) were also developed.

RESULTS

Multivariate statistical methods were used to measure the effects of the

treatment on the three groups. Using Mathematical Ability (as measured by

the Mathematical Application subtest of the CTBS).as a concomitant variable,

multivariate analysis of covariance was calculated and found to be statis-

tically significant (Wilk's lambda = .667, approximate P = 4.81, 2 < .0002).

Follow-up analysis included individual ANOVAs using approximated mean squares

for the three dependent variables and Dunn's multiple comparison test. For

each dependent variable, it was determined that the average posttest mean of

the groups receiving programing instruction was significantly greater than

the posttest mean of the control group. The alpha levels were as follows:

Generalization (e < .1), Programming (2 < .005), and Understanding of

Variables (2 < .05). Based on these statistical results, the following con-
clusions can be drawn:

1. Sixth grade students can learn to program.

2. Learning computer programming enhances sixth grade

students' understanding of variables.

3. There is preliminary evidence that programming

instruction enhances sixth grade students' mathe-

matical generalization.

4. The researcher was unable to substantiate the claim

that different instructional methods would influence
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the student's mathematical generalization, pro-

graming ability, and understanding of variables.

CONCLUSIONS

From the considerable number of students that are being taught computer pro-

gramming, one might conclude that programming aptitude and skills can be

developed in any student at any grade level. Yet there is little mathematics

education research to support this assumption. Thus my study served to

verify this contention for sixth grade students. This result also has prag-

matic implications since among educators or rractitioners, there is no

accepted level of programming competency. Inasmuch as the programming

instrument proved reliable and valid, these results can serve as a measuring

stick in future research and curricular development.

My research addressed the issue of whether computer programing promotes the

development of thinking skills. Inasmuch as the statistical results were

marginally significant, my research can be considered preliminary support of

this hypothesis. Since the research theories about learning and teaching

computer programming in elementary schools are still evolving, it is

probably premature to draw definitive conclusions regarding the effects of

computer programming instruction on mathematical generalization. Yet, the

positive -- although marginal -- results and relative importance of this

issue justifies further investigation.
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DECIMAL CONCEPTS AND OPERATIONS: WHAT DO STUDENTS THINK?

Douglas T. Owens
University of British Columbia

Ninety-six students in grades six, seven, and
eight took a test of 33 free response items on
various aspects of decimal concepts, computations,
and problems, but emphasizing multiplication in
particular. Following the written test 15
students were interviewed to identify rationales
and probe students' understanding of decimals as
numbers. Performance was generally acceptable on
computation. Students rely on rules they have
been taught, rather than reasoning, for example in
an estimation task. Other conceptual tasks of
translating from words to numerals and supplying a
number between two decimal numbers were
troublesome.

For at least 50 years mathematics educators have been
concerned about the quality of students' understanding of
mathematics as well as being able to cipher. The CSMS group
in England (Hart, 1981) concluded that work with decimals is
not as simple as recalling place names and rules for
computation. Rather a whole series of relationships is

involved in the integration of decimals as numbers into the
system. In their investigations Hiebert and Wearne (1983)

concluded that students have generally created few links
between form and understanding. From a series of tasks

focusing on the meaning of decimals in various contexts, they

concluded that students are more influenced by form than
understanding in making decisions.

The purpose of this paper is to investigate the relationship

between performance on computation, especially multiplication

of decimals, and the more conceptual notions of estimation of
product, translation from words to symbols, and naming a
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number between two decimal numbers. It is hypothesized that

students' performance on computational procedures will

outstrip their understanding of decimals as numbers.

METHODS

The study involved 24 grade six, 26 grade seven, and 46 grade

eight students at two schools in the Greater Vancouver area.

In British Columbia elementary schools go through grade seven.

The two classes of grade eights were in a junior secondary

school.

A test of 33 free response items was constructed. The

Addition, Subtraction and Multiplication computation items

were presented in horizontal format. The numbers were chosen

to minimize the difficulty with facts and whole number

algorithms. The Number Line items asked students to name a

marked point between two designated points. The Order items

required ordering three given numbers. The Problems were one-

step applications such as average speed, cost of gasoline,

fuel consumption and enlargement. The remaining tests will be

described and examined in detail in the Results section.

On the basis of the written test and teacher recommendation,

students with a range of competency were selected for

interviews. Originally six from each grade were selected, but

five from each grade had usable transcripts of the interviews.

The informal interviews, conducted by a graduate assistant,

varied in length from 40 minutes to an hour. The interview

format was adjusted to the subject's written test performance

and was designed to ascertain computational strategies and

probe understanding of decimals as numbers.
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RESULTS AND CONCLUSIONS

Descriptive data for the written tests are displayed in Table
1. While particularly difficult computations were avoided,

TABLE 1

MEANS OF THREE GRADES ON EIGHT WRITTEN SUBTESTS

No. of Grade 6 Grade 7 Grade 8
Items N=24 N=26 N=46

ADD AND SUBTRACT 5 3.70 3.58 4.54

MULTIPLY 10 7.38 7.23 9.20

PLACE DECIMAL 3 1.04 1.77 1.46

TRANSLATE & MULTIPLY 2 1.00 .73 .76

NUMBER LINE 2 1.33 1.54 1.39

ORDER 2 1.25 1.69 1.52

PROBLEMS 6 4.29 4.12 4.22

BETWEEN 3 .92 1.00 1.13

the results confirm that generally these students had a good
grasp of setting up and placing the decimal point in the
computed result. Decimal numbers were not a particular
obstacle to solving the application problems in multiplication

settings. In retrospect the quality of the Problems test

would be improved by at least one divide item and at least one

less obvious multiplication such as a reduction situation.

Ragged decimals in the Number Line and Order subtests would
have been more difficult and more revealing of understanding.

One item from each of the remaining subtests has been chosen
to detail from the interview data. Item 17 was stated:
Estimate the answer, and place the decimal point in the given
"answer ": 3.25 x 6.25 = 2119. Item 16 was similar. While
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Item 18 required placing the decimal point in one of the

factors, a "count the decimal places" strategy was sufficient.

As a result Item 18 was easiest. Results of the interviews on

Item 17 are summarized in Table 2. Of the 15 students inter-

viewed only one was successful on the Item 17 of the written

TABLE 2

INTERVIEW SUMMARY FOR "PLACE THE DECIMAL POINT"
ITEM NUMBER 17

. GRADE SIX

Tony 14,0,0*
7x1 -7: .3671
Agreed estimation may
help. He couldn't
explain.

Carl 16,1,0
"5 times 7 is 35,...
and the decimal will
be lined up here:
36.71

Jay 23,1,0
8x1 -8: 36.71
The product must be
larger than either
factor.

Lulu 30,1,0
7x5=35 : .3761
"Four decimal places"

Jed 31,9,1
7.000x1.0=7.000 3.500
"About half of 7:"
3.671

GRADE SEVEN

Max 9,1,0
When you can't
line up decimals
you count: .3671

Glena 12,2,1
5x7.000 35.000:
36.71. Changed to
3.671 because 3
places in 35.000

Josh 18,2,0
7.0x1.0. Two
places: 36.71

Jo 20,0,0
7x1=7 "I don't
remember."

Eva 28,2,0
7x1=7 "Closer to
3 than to 36."
Less than 7
because .5 < 1.

GRADE EIGHT

Rhoda 15,1,0
7x1: Alternated
between 3.761 and
36.71. "I can't
remember."

Sue 18,1,0
367.1 . 7x1 .

"I'm not sure."

Bert 21,1,0
"Four places."
Provoked to
estimate. "7
times 1/2 is
3-1/2:" 3.671.

Will 28,1,0
"About 7. Four
places:" .3671

Wanda 31,1,0
"About half of
seven."

*
Student Pseudonym, Total Score (max=33), Place the Decimal
Point Score (max -3), Score on Item 17 on written test.

test and only four during the interview. All interviewees

except one went through some form of estimating, but most were

unable to make use of it. It is clear that the overriding
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force is the rule to count decimal places. The responses of
Glena and Josh, of allowing the number of places in
estimate (zeroes at that) drive the "count rule" is

epitome of form without understanding.

TABLE 3

SELECTED INTERVIEW DATA FOR TRANSLATION
ITEM NUMBER 20

the

the

GRADE SIX

Tony 14,0,0*
.31

2.07

Carl 16,0,0
13 "This would be

x27 13 and 27."

Jed 31,2,1
0.31
2.07
217
0000
6200

0.6417

GRADE SEVEN

Max 9,0,0
103

x207

Glenn 12,0,0
1302 "No
7000 decimals"
many zeroes

9114000

Josh 18,1,0
Written: 1.3

x2.7
comp.correct

"I can't remember
how."

GRADE EIGHT

Rhoda 15,0,0
103

x702
comp.correct

Sue 18,0,0
130
270

Bert 21,1,0
.13
.72

comp.correct
"Four after the
decimal."

*Student Pseudonym, Total Score (max=33), Translation Score
(max=2), Score Item 20 on the written test.

Table 3 briefly summarizes the results of the interview
regarding Item 20: Multiply the number 1 hundredth, 3 tenths,
by the number 2 ones, 7 hundredths. In most cases in the
interview, the student was not asked to complete the

computation, but just to "set it up", thus translating. It is
striking that four

translate correctly.

the substituting of

"tenth". Wanda, who

it in the interview,

of the five grade sixes were able to
Jo's response, 130 x 702, characterizes

"hundred" for "hundredth" and "ten" for

missed the written Item 17 but corrected

put it this way: "I always get confused

on the endings...I can't remember if it's the decimal or the
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other one because they are so similar." This situation is not

helped by the common practice of referring to 3.26 for

example, as "three point two, six" rather than "three and

twenty-six hundredths".

The most difficult subtest was the last. The general

direction is: "Write a number which would be between the two

numbers. Item 32 (3.7 and 3.71) is judged to be the best of

the three for judging understanding. Of those writing the
test, 31 were successful on Item 32 including 5 of the

interviewees. An additional two were successful during the
interview. Surprisingly in the interviews four responded
3.70. Jo explained: "Zero is lower than 3.71 and higher than

that [3.7]." Three grade eights expressed on the written test

or orally, "I don't know." Jed indicated any one of 3.701,
3.702, 3.703.... "I would get nine correct answers." Will

used the strategy of finding the average on Item 33.

In conclusion, students can perform computational procedures

for multiplication of decimals. Rows of partial products as

Jed's response in Table 3 show inflexibility. There is a

dependence on algorithmic rules such as "count the decimal
places", even in the face of conflicting information from

estimation of the product. Concepts of decimal numbers are
not well understood, even by grade eight students.

Recommendations include long term teaching experiments to

study the processes by which students get an early grasp of

the concepts before proceeding to algorithms.
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EFECTS OF A SECONDARY MATHEMATICS METHODS COURSE ON PRESERVICE

TEACHERS' VIEWS OF TEACHING MATHEMATICS

John Owens, University of Georgia

Elizabeth Henderson, University of Georgia

Two levels of effect are found and discussed. The first is a
practical level which provides training and experience in
developing lesson plans and presenting material in a classroom
situation. This level fulfills the students' expectations for
the course, with the exception of coping with disciplinary
problems. The second level focuses on the preservice teachers'
conceptions of mathematics teaching and looks for growth during
the course. Both the range of conceptions with which the
students enter the course and the changes during the course vary
widely. Perry's (1970) scheme is found to be a useful tool in
attempting to understand these changes.

THE STUDY

During the winter of 1985 a study was begun to investigate how

students in a secondary mathematics methods course viewed

themselves as mathematics teachers and what effect the course had

on their views. The course consisted of six weeks of oncampus

instruction, followed by a four week practicum in a ninth grade

advanced geometry class at a local high school. The first part

of the course emphasized different ways of teaching concepts,

generalizations, and problem solving. Each intern made three

observations of the high school class during this period. There

were 14 methods students (interns) grouped in seven pairs.

Assigned to each group was a doctoral student who helped them
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prepare mathematically for teaching geometry, observed the

geometry class with the interns, helped prepare teaching

assignments, and provided feedback after each lesson taught.

Each intern taught a minimum of two class periods to half the

geometry class and was assigned two students from the class to

monitor (including grading of homework and classwork) for the

four week period. About one-half of the lessons taught were

videotaped for subsequent analysis by the intern and doctoral

student. Each intern was also required to keep a diary on each

day's activities. The emphasis on each entry was to reflect and

critique the various teacher education activities from the

perspective of what the material meant to them as emerging

professionals. Twenty to forty-five minute interviews were

conducted during the final week of the course with each methods

student. The interviews were designed to elicit student

assessment of the course activities and to generate self-

assessment of the student as a teacher. Follow-up interviews

were conducted during the summer, subsequent to student teaching,

to provide evidence of how student teaching affected their

perspectives on teaching and on the methods course.

STUDENT EXPECTATIONS

The initial diary entries reflected the goals the students

imparted to the course and their perception of their individual

strengths and weaknesses as mathematics teachers. There was a

general tone of excitement at the prospect of student teaching,

mixed with a marked fear that centered on two areas: lack of

knowledge of mathematical content, and not knowing the

"mechanics" of teaching, particularly the preparation of lesson

plans. Instruction in these mechanics is seen by the interns as

the main purpose of the methods course. A typical comment was:

This is the class where my questions on lesson plans,

material on tests, and other classroom ideas are
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supposed to be answered.

The most common strength mentioned was an ability to "get along

with kids." Several students documented this assertion with

stories of substitute teaching, working in day care operations or

coaching various sports. The fear of lack of content knowledge

arose in different forms which provided some insight into the

students "levels" of thinking. While some of the students seemed

concerned about their ability to "do" geometry - i.e., to make an

"A" on homework and tests - others questioned their

understanding of geometry at a level that will help them in the

classroom. This difference in perspective, between viewing the

course and its contents as merely subject matter (as one student

put it: "guessing what the instructor wants") and beginning to

see oneself as a teacher, was evident in both the mathematical

content and the pedagogical content of the methods course.

TEACHING

The students found their first teaching experience to be

generally traumatic - both in anticipation and in practice. One

student stated:

At times I felt like I was teaching to a two-

dimensional picture. I really was not aware of

anything or anyone other than myself.

Most interns tended to focus on the experience from an ego-

centric viewpoint, stressing "performance" in a mechanistic

sense (How many times did I do that?). The students' ability to

be analytical about their own teaching was rare although two of

the students did demonstrate some ability to reflect on their own

teaching. While added experience tended to lessen the initial

nervousness and facilitate their concentration on student

performance, their classrooms were far from student-centered.

The diaries emphasized the desirability (from the interns'

perspective) of a teacher-centered classroom.
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Bush (1982) found that enculturation, i.e., learning from prior

experience as a student, was a primary source of pre-service

teachers' knowledge of teaching techniques. Similarly, we found

that the students held strong beliefs as to how they will teach,

formed in part from favorable past experiences or in reaction to

unfavorable ones. These views were social or mechanical in

nature. They viewed their role as a teacher in terms of, for

example, being a friend to the students, giving homework

regularly, or giving extra credit, in a content-free context.

Few had given consideration to the student's learning of

mathematics or are aware of alternative methods of presenting

mathematics. The methods course material, instruction on different

types of lessons, different "moves" used in developing concepts,

was generally regarded as only tangentially relevant to the real

classroom. Several students reported that they saw some benefit

in such knowledge, but were precluded from using that knowledge

in student teaching because of perceived stringent curriculum

requirements.

One characteristic exhibited by some interns was a tendency to

map their own learning styles onto the student. For example one

intern who credited all of her success in mathematics to "hard

work and practice" was suprised at her ninth graders' proficiency

with fractions and she commented "they must really have done a

lot of those." These students, an advanced group, had actually

spent less time practicing such skills than average students.

INDIVIDUAL CONCEPTIONS AND GROWTH

In addition to an overall look at the class, several more

detailed case studies were prepared. Below are brief capsules of

four of these.

JIM. The students were, in general, reserved in their comments.
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Few strongly declarative statements were made. This student,

however, had no compunctions about stating his mind. He was

quick to suggest improvements in nearly every phase of the high

school and college curricula. His comments concerning his peers

were often caustic, to the point of being insulting. Every

problem seemed to have an answer - his. For Jim, whose worldview

was dualistic, the course seemed to serve only to reinforce his

previous beliefs.

JANICE. This student exhibited, from the beginning, a degree of

insight well above the average student. She seemed to have the

ability at every stage to view what was transpiring from a

"teacher" perspective. She was generally acknowledged by her

peers to be the best teacher during the field experience. She

was the only one to discuss the effect a teacher might have on

students' conceptions of mathematics. Janice had recently

graduated with a degree in management science, and readily found

applications from this field during student teaching. For the

other interns, any discussion of the relevance of mathematics to

other fields was typically relegated to the area of developing

motivational examples to begin lessons.

TOM. Along with Janice, Tom was the only student that could

be considered to be in a relativistic position. He was

acknowledged by his peers as having the most,"style" among the

members of the class; he had a dominating personality. At the

beginning of the course he viewed teaching as a performance -

showing little concern for his students'learning. He

demonstrated, more than anyone else, a marked degree of

development from student to teacher during the course. This

seemed to result from his ability to perceive weaknesses in

himself and to try to address those weaknesses. He accepted

criticism in a constructive manner, and was able to observe

characteristics in others that'he viewed as possessing himself.
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BARRY. This intern, early in the methods course, made the

statement:

I didn't know it took so much to prepare a lesson.

Teaching isn't easy like I thought it was in high

school. I thought the teacher only went by the book.

In the post-student-teaching interview he described his teaching

style as "going by the book." Barry's worldview was generally

regarded as multiplistic, but his reaction to student teaching

was basically dualistic.

CONCLUSIONS

The role a methods course plays in a teacher's development is far

from uniform. In one sense each student participated in the same

course and received the practical preparation for student

teaching they anticipated. But for some this was a time of

significant growth in their conceptions of their role as a

mathematics teacher. Others seemed to gain only mechanical

teaching techniques from the course. Perry's scheme proved

useful in attempting to understand this variation. Those deemed

to have a more relativistic worldview seemed to profit most from

the course. Few students exhibited levels of development above

the multiplistic stage.
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ABSTRACT

Mathematical iteration is a process which is used in the
execution of a variety of algorithms for a variety of purposes.
It results in the production of a sequence in which each non-
initial term is determined from its predecessors in the same way.
Mathematical iteration is not a common topic in school
mathematics, despite recommendations that it be included in the
mathematics curriculum. A knowledge of iteration may give
students a framework for understanding mathematical concepts,
such as real numbers and the derivative, for exploring problems,
and for carrying out procedures. As an instructional topic,
mathematical iteration also provides a context within which
students may develop and extend their knowledge of mathematical
concepts and procedures.

The development of students' knowledge of iteration was
investigated as four ninth and tenth grade students were engaged
in BASIC computer programming tasks. The students developed
their knowledge of iteration as they.were involved in the
construction, execution, revision, and refinement of computer
programs. The emphasis was on the students conceptualizing and
developing their own algorithms which employed iteration and then
operationalizing their algorithms in computer programs.

Four students, two girls and two boys, were selected to
participate in the study. One of the boys was enrolled in a
second-year algebra course; the other students were all taking
high school geometry. The students had very little experience
with computing and had not previously written their own programs.

The treatment extended over 10 weeks and consisted of 13
group teaching sessions and 3 individual interviews for each

student. The first five teaching sessions and the first set of
interviews dealt with problems related to the generation of
numerical sequences. The remaining sessions dealt with iterative
methods for solving quadratic equations.

The sources of data included video-tapes and audio-tapes of
tho interviews and teaching sessions, written student productions
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such as printed copies of their programs and their notes on
problem solutions, and my own notes taken during the sessions and
during reviews of the tapes. The process of analyzing the tapes
was ongoing throughout the study. After each session, I reviewed
the tapes and filled out indexing sheets to identify emerging
patterns of behavior and indicators of their knowledge of
iteration. The students' errors and difficulties as they
developed computers programs were also noted.

Three components of a 1nowledge of iteration were
identified: fa) specifying one or more initial values, (b)
repeatedly executing a procedure to produce subsequent terms of
the sequence, and ic) applying en appropriate rule for stopping
execution of the procedure. These components can be identified
as parts of computer programs that were studied and developed by
the students during the investigation.

The students used various strategies as they operationalized
their algorithms and modified and refined their programs. For
example, during the sessions related to the generation of
sequences, the students developed a chart first and then
attempted to 'teach' the computer to produce an identical chart.
The students either identified a pattern in the chart and used
that pattern to express the changes in the variables, or they
attempted to 'teach* the computer the steps that they followed
when they set up the chart. These steps may or may not have
involved a pattern which was identified.

Difficulties that the students had as they developed the
programs were also identified. All of the programs involved the
use of two or more variables whose values changed throughout the
execution of the program. The use of a FOR/NEXT loop seemed to
be conceptually more difficult for the students because it
required them to reorder the steps in their own algorithms used
to construct their tables.

During the proposed session, samples of the students' work
will be presented. Indicators of the three components of their
knowledge of iteration will be discussed as they were evidenced
in the programming activities. Programming difficulties related
to the three components will also be discussed.

BEST COPY HAMA LE

244



232 Reed

METACOGNITIVE AND PERFORMANCE ASPECTS OF INCLUSIVE SOLUTIONS

Stephen K. Reed

Florida Atlantic University

One solution is more inclusive than the other if it contains all
the information in the other solution plus some additional
information. Students in college algebra classes were given
word problems of different inclusiveness and rated their complexity,
their typicality, and their potential usefulness for solving a
similar problem. Students' selection of potentially useful
solutions failed to support the hypothesis that they would prefer
more inclusive solutions, but they did show significant preferences
for the more simple and the more typical solutions. A less-
inclusive solution was not effective in helping students solve any
of 6 test problems but a more-inclusive solution helped students
solve 3 of the 6 test problems. The limitation of metacognition
is revealed by the finding that the 3 effective solutions were
the ones least often selected as being potentially useful.

Imagine that you are given two problems to solve and don't know how to

solve either one. You have the opportunity to see the solution to one of

the problems and have to chose the solution that will help you solve both

problems. Which solution would you choose?

Although there may not be an obvious correct choice for many pairs of

problems, a correct choice should exist if one problem is a special case of

the other. For these kinds of choices, the solution that is more inclusive

should provide the most complete information for solving both problems.

One solution is more inclusive than the other, according to the definition

used here, if it contains all the information needed to solve the less
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inclusive problem plus some additional information. Table 1 shows the

problems used in the experiment, which are ordered from the least to the

most inclusive in each category.

The purpose of this study was to determine how the inclusiveness of a

solution influences students' choices of solutions and their ability to

solve problems of different inclusiveness. These issues were studied by

giving a questionnaire to students in a college algebra class. In the

first part of the questionnaire students selected, for different pairs of

problems, the solution they would prefer to use in order to solve both

problems. They also rated the complexity and typicality of the problems.

In the second part of the questionnaire they received a solution of one

member of a pair and were asked to use it to solve the other member of the

pair.

The results did not support the hypothesis that students would select the

most inclusive solution when it was paired with a less inclusive solution.

Although solution inclusiveness did not significantly influence students'

selections, the complexity and typicality of solutions did have a

significant effect. Students showed significant preferences for avoiding

the most complex solutions, and for selecting the most typical solutions.

The hypothesis that students would select solutions of greater

inclusiveness was based on the normative principle that inclusive solutions

are more informative. The second part of the experiment determined whether

inclusive solutions were, in fact, more useful than less inclusive

solutions. For each of the six problem categories, some of the students

had to solve a problem that was more inclusive than the solution. The

other students solved a problem that was less inclusive than the solution.

Table 2 shows the percentage of students who were able to formulate a

correct equation to represent the problem. They had 3 minutes to construct

the equation (Attempt 1), 2 minutes to study a detailed solution to the

related problem, and an additional 3 minutes to use the solution to

construct the equation (Attempt 2). The z-score measures whether the

246
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Table 1
Problems Used in Experiment 1

Category Problem

Area 1. A lot is 4 times as long as it is wide. What is the width
of the lot if its area is 7500 square yards?

4w x w = 7500

2. A side walk, 1 yard wide, surrounds a lot that is 3 times
as long as it is wide. What is the width of the lot if the
total area (including the side walk) is 8000 square yards?

(3w + 2) x (w + 2) = 8000

3. A side walk, 2 yards wide, surrounds a lot that is 2 times
as long as it is wide. What is the width of the lot if the
area of the walkway is 450 square yards?

(2w + 4) x (w + 4) - (2w x w) = 450

Cost 1. A group of people paid $238 to purchase tickets to a play.
How many people were in the group if the tickets cost $14
each.

$14 = $238/n

2. A group of people paid $306 to purchase theater tickets.
When 7 more people joined the group, the total coat was $425.
How many people were in the original group if all tickets had
the same price?

$306/n = $425/(n + 7)

3. A group of people paid $70 to watch a basketball game.
When 8 more people joined the group the total cost was $120.
How many people were in the original group if the larger group
received a 20% discount?

.8 x ($70/n) ° $120/(n + 8)

Distance 1. A pilot flew 1575 miles in 7 hours. What was his rate of
travel?

1575 = r x 7

2. A pilot flew from City A to City B in 7 hours but returned
in only 6 hours by flying 50 mph faster. What was his rate of
travel to City B?

r x7 = (r + 50) x6

3. A pilot flew his plane from Milton to Brownsville in 5
hours with a 25 mph tailwind. The return trip, against the
same wind, took 1 hour longer. What was the rate of travel
without any wind?

(r + 25) x5 = (r - 25) x6
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Table 1 (continued)

Category Problem

Fulcrum 1. Laurie weighs 60 kg and is sitting 165 cm from the fulcrum
of a seesaw. Bill weighs 55 kg. How far from the fulcrum must
Bill sit to balance the seesaw?

60 x 165 . 55 x d

2. Tina and Wilt are sitting 4 meters apart on a seesaw. Tina
weighs 65 kg, and Wilt weighs 80 kg. How far from the fulcrum
must Tina sit to balance the seesaw?

65 x d . 80 x (4 - d)

3. Dan and Susie are sitting 3 meters apart on a seesaw. Mary
is sitting 1 meter behind Susie. Dan weighs 70 kg, Susie
weighs 25 kg and Mary weighs 20 kg. How far from the fulcrum
must Susie sit to balance the seesaw?

20 x (d + 1) + 25 x d . 70 x (3 - d)

Mixture 1. An alloy of copper contains 232 pure copper. How much of
it must be melted to obtain 5.3 pounds of copper.

.23 x p 5.3

2. One alloy of copper is 212 pure copper and another is 31%
pure copper. How much of the 312 alloy must be melted together
with 9 pounds of 212 alloy to obtain 6.7 pounds of copper?

.21 x 9 + .31 x p 6.7

3. One alloy of copper is 202 pure copper and another is 12%
pure copper. How much of each must be melted together to
obtain 60 pounds of alloy containing 10.4 pounds of copper?

.20 x p + .12 x (60 - p) . 10.4

Work 1. Tom can mow his lawn in 1.5 hours. How long will it take
him to finish mowing his lawn if his son mowed 1/4 of it?

.67 x h .75

2. Bill can paint a room in 3 hours and Fred can paint it in 5
hours. How long will it take them if they both work together?

.33 x Si + .20 x h 1

3. An expert can complete a technical task in 2 hours but a
novice requires 4 hours to do the same task. When they work
together, the novice works 1 hour more than the expert. How
long does each work?

.50 x h + .25 x (Si + 1) . 1
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Table 2

Effect of Solution Inclusiveness on the Successful Use of Solutions

Category Solution Inclusiveness Percent Correct 2 - Score

Attempt 1 Attempt 2

Area Intermediate 0 0 0

High 0 11 1.73

Coat Intermediate 0 4 1.00

High 7 47 3.20*

Distance Intermediate 3 20 2.24

High 13 43 3.00*

Fulcrum Intermediate 0 10 1.73

High 10 57 3.74*

Mixture Intermediate 0 0 0

High 20 20 0

Work Intermediate 0 3 1.00

High 0 11 1.73

* Significant at the p < .01 level
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second attempt (when students had a solution) was significantly better than

the first attempt. A 2 < .01 level of significance is used because of

multiple comparisons.

The results indicate that the solution of a less inclusive problem (at the

intermediate level of inclusiveness) did not help students solve a more

inclusive problem. The improvement on the second attempt was

nonsignificant for all six categories. In contrast, the solution of a more

inclusive problem (high level of inclusiveness) did result in a significant

improvement for three of the six categories.

A closer look at the three effective solutions (the most inclusive cost,

distance, and fulcrum problems) is revealing. Each of these problems was

considered by students to be high in complexity and low in typicality. The

consequence was that students avoided selecting these solutions in order to

solve both Problems 2 and 3. Only 16 of 42 students selected the more

inclusive solution for the Cost problem, only 17 of 47 students selected

the more inclusive solution for the Distance problem and only 18 of 48

students selected the more inclusive solution for the Fulcrum problem.

Thus students show a consistent preference for an ineffective solution

(Problem 2) over an effective solution (Problem 3).
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ON CONCEPTUALIZING RESEARCH METHODOLOGIES
FOR COMPUTER-BASED INSTRUCTION

David Reinking
Rutgers University

Current research methodologies may be inadequate to significantly
enhance our understanding of computer-based instruction (CBI). In-
consistent findings and methodological shortcomings in media
research, including CBI, raise this possibility. This paper suggests
that considering fundamental issues in educational research may help
researchers conceptualize more productive research methodologies for
CBI. An examination of these issues should lead to specific
recommendations for conceptualizing and conducting experiments
involving the computer in instruction. Specific recommendations are
discussed in the following categories: moving towards theory building,
expanding research methodologies, and setting priorities for applied
research.
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On Conceptualizing Research Methodologies
for Computer-Based Instruction

Reinking

The pitfalls of educational research are legion. The risks

of succumbing to these pitfalls may be amplified when research

involves innovative technologies like the computer. The

exciting potential of the computer for enhancing instruction

generates spontaneous enthusiasm and a concomitant need to

justify this enthusiasm. Consequently, there may be a

temptation to short-circuit the research process by asking

superficial questions, by sacrificing sound methodology and by

over-generalizing' findings. The history of research

investigating a variety of instructional media also suggests

caution for those interested in researching topics in

computer-based instruction (CBI). Several writers have

chronicled the failure of researchers to create a useful

research base for guiding the selection and use of instructional

media (Clark and Bovy, 1983; DiVesta, 1975; Jamison, Suppes, and

Wells, 1974; Leifer, 1976; Oettinger and Zapol, 1971; Saettler,

1968).

Existing CBI research appears to fare no better. Evidence

that methodology, for example, is a serious concern can be found

in Kulik's (1983) meta-analysis of CBI studies in which a

majority of the available studies were eliminated due to

methodological shortcomings. Before we accept the possibility

that strong empirical evidence is not possible or alternatively

continue to muddy the .empirical waters, we should compare the
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goodness of fit between research methodology and the types of

questions for which we seek answers. The purpose of this paper

is to highlight a set of conceptual and methodological

considerations which may be relevant to such a comparison.

Fundamental Conceptual and Methodological Concerns

Research methodology' is presumably a function of the types

of questions the researcher chooses to address. A

conceptualization of a research study begins, therefore, with a

question. in the mind of the researcher. The old saw about

getting a good answer only if there is a good question is

important at this stage but the process is more complex when put

into the context of educational research. The researcher must

also consider potential answers to the question, how those

answers might be explained, and use these notions to formulate a

methodology for research. The challenge of research is not

simply generating good questions, but evolving strategies for

generating a limited set of answers.

Put another way, the fundamental issue is whether or not

research methodology will permit what Platt (1968) has termed

strong inferences as opposed to weak generalizations. Strong

inferences are, of course, preferred but are similarly more

difficult to ferret out. They demand careful control of

variables which sometimes means a movement towards "laboratory"

as opposed to "real world" conditions. Achieving strong

inferences is also facilitated by the presence of a guiding

theory. A theory aids in the generation of testable hypotheses,
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expedites methodological decisions, and also serves as a bench

mark for interpreting the data gathered. A theory enables

experimental results to be interpretted as "a case in point" as

opposed to an isolated phenomenon with many alternative

explanations. Without a theoretical perspective isolating a set

of significant variables for study becomes difficult.

As an example consider the following question which is

typical of those motivating existing CBI research: Can a

computer help students learn concepts in biology? Without

theoretical guidance or a concern for the level at which

findings might be generalized a .conceptually simple experiment

may emerge from this question. A biological concept is selected

and taught via a computer town appropriate population after

which some achievement measure is employed to compare these

subjects to others taught the same concept via alternative

media. The best a researcher can do using this methodology is

to report results and speculate broadly as to what may have

caused them. At worst, a misguided or over-enthusiastic

researcher will on occasion use the resulting data to make

getieral statements concerning the usefulness of computers to

teach biological concepts.

Raw empiricism is the dominant characteristic of this type

of study and many of the benefits of experimental research are

lost or risk being perverted. Very little is contributed to an

overall understanding of the computer in instruction or for that

matter its utility in teaching biological concepts beyond the

specific conditions of the experiment. Methodology in this case
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has been conceived as only a loqical extension of the question

without considering the realm of possible answers. Current

conceptualizations of CBI research methodology may suffer from

this fundamental weakness.

Specific Conceptual and Methodological Recommendations

Even a casual review of CBI research indicates a tendency

to duplicate the methodologies of other media research with

little reason to believe that results will be any more

enlightening. One way to address this concern is to re-examine

the conceptual and methodological foundations of research

involving instructional media. To be valuable, however, this

exercise must result in specific recommendations which can guide'

the researcher. Below. is an attempt to move in this direction.

Recommendations have been grouped into three broad categories:

moving towards theory building, expanding research

methodologies, and setting priorities for applied research.

Moving Towards Theory Building

Lachenmeyer (1970) has argued that the predominant view of

experimentation in the social sciences has been inefficient in

that it does not facilitate the formulation of general theories.

The typical research study in psychology and education

investigates isolated hypotheses which are generated primarily

from a review of previous research as opposed to observable

phenomena. Presumably, the cumulative effect of many

experiments will be the, development of a general theory which

consolidates findings into a unified whole. This has rarely, if
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ever, occurred, however, in educational research.

Most successful theory building, on the other hand, occurs

when general principles are inducted from directly observable,

naturally occurring phenomena. The initial goal of the

researcher is to develop adequate measurement instruments and

methodologies for studying a readily observable phenomenon.

Later, after fact finding pilot studies, a theoretical statement

may emerge to explain facts related to the phenomena studied. At

this point, the theoretical statement can be used deductively to

generate hypotheses for experimental verification.

The need for developing a theoretical orientation to media

research has been articulated by a number of writers. Salomon

(1979) and Salomon and Clark (1977), for example, have

attributed the lack of consistent findings in media research to

the absence of a theoretical orientation. They feel that most

of the existing research is a result, in their words, of

investigations with media to determine instructional

effectiveness. Instead, they propose that a theoretical

oreintation leads to research on media to determine

psychological effects. This puts the investigation of

instructional media like the computer within the realm of

psychological and educational theory instead of existing in a

theoretical vacuum. Similarly, Clark and Bovy (1983) have

cautioned against the confounding of technology and

instructional method in formulating and conducting research

involving instructional media. Ellis (1976) presaged these

positions when he argued that understanding the use of computers
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in education really begins with an understanding of education.

A move towards a theory building orientation in CBI

research would have significant impact on research

methodologies. More studies would be conceived, carried out,

and interpretted as pilot or exploratory studies. The

importance of studies which focus on sharpening measurement

instruments and developing workable methodologies would be

recognized. In addition, the likelihood that findings would be

over-generalized would be reduced. In short, even the most

applied research would be judged in terms of its contribution to

a broader understanding of the'computer's role as a medium of

instruction.

At the same time focusing on theory building would provide

a rationale for basic research in CBI. Basic research, for

example, is possible when the computer is integrated into a more

general' theory of instructional media. Theoretical positions

like those developed by Salomon (1979) and Olson (1976) could be

used to guide the conceptualization of basic research hypotheses

and the development of suitable methodologies. By carrying out

basic research founded on accepted theoretical positions

researchers would be forced to confront and tease out the

significant attributes of the computer as a medium of

instruction. We would see fewer studies which make

recommendations as to whether the computer is a viable medium

for instruction and perhaps more that would give us insight into

when, where, and with whom the computer might best be suited for

particular categories of instructional content.
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Expanding Research Methodologies

Building theory implies a search for those variables which

may account for or predict the occurrence of a range of

phenomena. When dealing with human behavior and learning, the

researcher is assured that the number of variables and their

interactions will be enormously complex. While a theory will

reduce the number of variables to consider relevant for study,

considerable complexity remains. When investigating

instructional uses of the computer, identifying relevant

variables becomes even more difficult. Computer technology

makes the options for delivering instruction so open ended that

even the set of possible variables may not be intuitively

obvious (Reinking, 1984).

What does this imply specifically for research involving

computers in instruction? In general this means expanding

methodology to recognize a wider range of variables and to

permit those which are significant to surface. Methodologies

which recognize and pursue only technological differences may be

too simplistic. Few useful inferences can be made about the

computer's relationship to instruction when so many potentially

significant variables are ignored.

A desire to contend with more variables may dictate the

need for more complex methodologies in experimental research. A

wider range of statistical techniques may be necessary;

multivariate and regression analyses may need to supplement

univariate ANOvAs. Even simple designs and straightforward

statistical analyses, however, can be made more powerful by
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including multiple dependent measures and attempting to

replicate results. The latter option will, of course, require

the cooperation of journal editors. The experimental bias of

educational and psychological research may also need to be

tempered in order to encourage non-experimental methods

employing correlational analyses or even case studies. Caution

may also be necessary in foreclosing areas of inquiry on the

basis of accepting a single null hypothesis.

Examples of how creative research methodologies could

proceed from theoretical underpinnings and a concern for

relevant variables can be found in Salomon and Clark's (1977)

examination of research methodologies for media research. They

have offered several viable research designs and statistical

techniques which would be directly applicable to CBI research.

More productive methodologies may also be a result of

collaborative research which brings together colleagues of

varying expertise. The interacting variables which operate

simultaneously when using the computer in instruction can rarely

be seen clearly by one individual. Ideally expertise would be

sought out to insure knowledge of media, the instructional

content and its pedagogy, and cognitive psychology. Even these

areas do not exhaust all of the sources of significant variation

(eq. social and environmental factors).

Setting Priorities for Applied Research

A perhaps healthy tension has always existed between basic

and applied research. Under ideal circumstances these research

emphases complement each other so that both theory and practice
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are mutually enriched. Under less than ideal circumstances the

distinction between the two is unclear and research proceeds

haphazardly with little clear.direction. One of the theses of

this paper is that the latter condition is more characteristic

of media research in general and CBI research in particular.

A common misconception, however, is that basic research is

uniformly more essential to the theory building process.

Lachenmeyer (1970) has cited several examples from the history

of science which suggests that the opposite is more likely the

case. Theory building is at first more often a result of

observing events in the real world which is the domain of the

applied researcher. The applied researcher, however, must

recognize the unique contribution applied research can make to

theory building and conceptualize methodologies accordingly.

This means more than suggesting theoretical explanations

for findings; it also means seeking out real instructional

problems that may contribute to a broader theoretical

understanding of CBI. Wilkinson (1984) has suggested priorities

for selecting research topics to explore computer applications

in the teaching of ascontent area. First, the computer should

be used to manipulate content in a. fashion which is not readily

duplicated by other instructional media. Secondly, the use of

the computer should be guided by accepted pedagogical principles

for teaching the content selected. Finally, a high priority

should be given to research which addresses areas of instruction

which have proven to be problematic.

Researchers who subscribe to these priorities will increase

2



Reinking 248

the likelihood that their research will he more relevant to the

practitioner as well as contributing to the theory building

process.

Conclusion

In summary, current research methodologies may be

inadequate to significantly enhance our understanding of CBI.

Inconsistent findings in media research, including CBI, raise

this possibility. ConsiderAng fundamental issues in educational

research suggests a broader range of research methodologies may

be appropriate. The goal of CBI research should probably be

.identifying significant variables in an effort to build

theoretical perspectives. Finally, the topics of applied

research may need to be evaluated closely to insure their

usefulness for both practice and theory development.
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SOME AREAS OF NEUROPSYCHOLOGICAL RESEARCH WITH POSSIBLE IMPLICATIONS
FOR MATHEMATICS EDUCATION

Linda Jensen Sheffield

Northern Kentucky University

Understanding the functioning of the brain has tremendous implica-
tions for both teaching and learning, yet it has only been recently
that brain research has begun to give us some insights into the
workings of this very complex part of our anatomy. Although the
neurosciences are stiZZ in their infancy, the following areas show
possible promise for research by math educators in collaboration
with neuropsychologists and neuroscientists. These areas include:
differences in hemisphericity, processing and 'learning styles:
learning style preferences vs. learning style strengths or weak-
nesses; maturational differences including growth spurts and
mylenation; effects of stimulation and enriched environments; the
hierarchy of the triune brain; effects of emotions; control of
attention; sex differences; and other related factors.

INTRODUCTION

The brain has been called education's next frontier, and research into this area

has tremendous implications for all of education (Loviglio, 1980). Within the

brain lie answers to such questions as "How do people learn? Can we increase the

learning of all people from infancy to old age? Why do some people seem to learn

differently than others? What makes a teaching method or material effective?

Can children overcome learning disabilities?" These questions are only a few of

the myriad possibilities in the area of brain functioning research. Research in

this area is relatively new and definite implications cannot yet be drawn for

education, but some promising areas for further exploration are being mentioned.

This paper will note a few of those areas and some of the research which has

already been done. Certainly much remains to be done and we must beware of

"jumping on bandwagons".

DIFFERENCES IN HEMISPHERICITY, PROCESSING AND LEARNING STYLES

This is probably the most publicized area of brain functioning research and
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many educators have begun to talk about teaching right and left brain children.

Since Roger Sperry won the Nobel prize for his "split brain" research, educators

have been trying to apply his results to the classroom. A caution must be

noted here because the work of Sperry and others was performed on patients who

had had the corpus collosum severed. In normal children, impulses pass rapidly

from one side of the brain to the other through the corpus collosum and actions

cannot be thought of as being performed on solely the right or left side of the

brain. Current research by educators and neuropsychologists does seem to

indicate, however, that different children do have different learning styles.

Davidson (1983) has identified two distinct learning styles among students

learning mathematics which correspond to the different processing styles of the

two sides of the brain. One style is a more holistic style corresponding to

the right brain functioning and the other style is more sequential, corres-

ponding to the left brain. While the evidence strongly disputes the notion

that we learn with only one side of the brain, the two hemispheres of the

brain do perform in different ways (Levy, 1983). Wheatley (1977) described

the right hemisphere as "thinking" in images and the left hemisphere as

"thinking" in words. This may be a simple way of looking at the differences

in functioning of the two hemispheres. We must be careful not to simplify

this functioning too much, however. It cannot be said that math and reading

are left brain subjects and art and music are right brain subjects. Both

hemispheres of the brain are important to the full understanding of any

subject. Research is needed to determine better ways of fully utilizing the

whole brain for all children.

LEARNING STYLE PREFERENCES VS. LEARNING STYLE STRENGTHS OR WEAKNESSES

Many researchers are using paper and pencil tests to determine the learning

style preference of students. Several of these tests ask students such

questions as whether they would rather give a speech or sing a song, read a

book or listen to music, etc. Results from these instruments are supposed to

determine if students are right brained or left brained. Davidson (1983)

warns that even if a student does indicate a preference for one style that

style may not be the student's strongest one. It is possible that the student
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may even have brain damage impairing the functioning of a preferred style.

Recent developments in brain imaging technologies such as electrophysiological

recording, magnetoencephalographic recording and nuclear resonance may give us

more information about a child's strengths and weaknesses in processing

information.

MATURATIONAL DIFFERENCES

Epstein (1979) has found evidence of growth spurts in the brain which roughly

correspond to the four periods of cognitive development described by Piaget.

Neuron development and mylenation of the brain also progresses in stages which

match those of Piaget and may account for the growth spurts (Johnson, 1982).

This has implications for education in terms of the optimal time and mode of

presentation of topics. Johnson (1982, p.49) has stated, If we present a

child with learning tasks prior to the mylenation of the areas needed to handle

these tasks, we may-be forcing the child . . . to use less appropriate neural

networks. By asking the learner to perform before the appropriate area is

developed, we may be causing the failure and frustration seen in many children

today." She also hypothesizes that many adults may never reach the stage of

formal operations because they lacked the concrete development of concepts as

children. Math is an ideal subject for the development of concepts through

physical manipulation of objects, but this manipulation is often neglected in

favor of paper and pencil exercises. Formal operations may be possible only

if the concrete operational brain growth of the previous period has been

properly developed through concrete stimulation and experiences. It thus

appears that their are optimal times for the development of certain skills and

children of different ages will perform differently at least in part due to

the different physiological makeup of the brain. MacLean (1978, p.39) has

stated, "There is now abundant anatomical and behavioral evidence that if

neural circuits of the brain are not brought into play at certain critical

times of development, they may never be capable of functioning." Much

research is necessary to determine the relationship of learning tasks and the

timing of their presentation to the growth of cognitive abilities.
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EFFECTS OF STIMULATION AND ENRICHED ENVIRONMENT

Stryker and Sherk found that cats raised in an environment of only vertical

lines did not later respond normally to horizontal lines. Apparently they

had not developed the brain structures to see horizontal lines (Esler, 1982).

Greenough found that animals raised under environmentally impoverished

conditions had fewer neural connections than animals in enriched conditions

(Esler, 1982). Some researchers hypothesize that the Japanese have trouble

pronouncing the Letter L because of lack of experience with the sound during

infancy. This tends to indicate that the physical makeup of the brain is not

totally determined at birth but develops according to experience. It is

important for educators to determine what experiences can promote optimal

growth in children. Indeed, recent experiments with rats indicate that the

brain can continue to grow even into old age when give the proper stimulation.

THE HIERARCHY OF THE TRIUNE BRAIN

MacLean (1978) argues that the mind is made up of a hierarchy of three brains

which reflect evolutionary stages. The reptilian, or R-complex, located in the

midbrain, seems to be responsible for certain "instinctive" behaviors in humans,

such as impulses and routine habits. The second formation, the limbic system,

representing the old mammalian brain seems to have a role in emotions. It is

the third formation, the neocortex, or the new mammalian brain, which is

divided into left and right hemispheres and performs tasks involving reason,

language, and other cognitive thought. Behaviors are a result of a complex

interaction between all parts of the brain and cannot be understood by looking

at only one part.

EFFECTS OF EMOTION

Emotions controlled by the midbrain with no apparent external cause, or emotions

controlled by the forebrain such as anxiety or worry can have a great effect on

the learning of mathematics. The right brain seems to play a special role in

emotions. Research has shown that when the right brain is positively engaged
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emotionally, ::th sides of the brain will participate regardless of subject

matter and learning will increase (Levy, 1983).

CONTROL OF ATTENTION

The reticular 'ormation, the limbic system, and the thalamus actively select

the stimuli tc which a person will respond. The human brain responds to

novelty. Wher asked to repeat the same task numerous times the brain

"habituates" and does not consciously think about the task. Therefore, much

of the drill and repetition in teaching mathematical operations may actually

be counterprod.ctive to learning.

SEX DIFFERENCES

Many researchers state that there are clear differences in the male and female

brain (Grow and Johnson, 1983; Loviglio, 1980; Weintraub, 1981). There are no

clear indications whether these differences are due to sex hormones, differences

in the rate of maturation, differences in experiences or other factors, but the

differences are most likely due to a combination of these causes. Researchers

are agreed, however, that sex alone does not determine the makeup of the brain.

Differences within each sex are greater than the differences between sexes. It

would not be advisable to set up separate math classes for boys and girls,

simply because there are sex differences. It is important to look at each child

as an individual.

OTHER RELATED FACTORS

Other factors have been found which are related to brain functioning and may

also have implications for teaching. Space does not permit discussing all

of these fully. These include such factors as hand preference, allergies,

use of biofeedback and levels of cognitive awareness, and the tendancy of the

brain to seek patterns. Readers and researchers will note others.
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We are on the precipice of exciting new discoveries about that universe which

lies within the brain of each one of us. Emerging technologies are giving us

the means to begin our explorations. We cannot wait until someone gives us all

the answers about how this brain functions, because those answers may not come

in the foreseeable future, but we must actively seek to understand how one

learns and how we might best use this knowledge to teach.
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GEOMETRY, SPATIAL DEVELOPMENT AND COMPUTERS:

YOUNG CHILDREN AND TRIANGLE CONCEPT DEVELOPMENT

Marilyn Shelton

The Ohio State University

A BST R A CT: A research study was conducted to see if a computer program
could help young children expand their pre-conceived conception of
"triangles" as a figure which is equilateral and painting straight up. The
random triangle program from the geometry section of the TABS
(Technology and Basic Skills) software was used. The random triangle
program generates three randomly placed dots on the monitor, then the
dots are connected to form a triangle. Twenty five preschool children were
pretested on their conception of triangle. Twelve children had the
conviction that the shapes were triangles only when they were equilateral
and pointing straight up. After the children interacted with the random
triangle program several of the children immediately generalized their
conception of triangles to include all shapes and orientations, including a
child who had just turned two-years-old. Some of the children also made
connections between the triangle outlines on the screen and triangles cut
out of paper.

CONNECTION BETWEEN SPATIAL ABILITY AND GEOMETRY

The importance of spatial abilities in the development of geometric understanding has

been studied by many scholars (Davis and Silver, 1982; Fey, 1982). Some of the
documented connections between spatial abilities and geometry are: to recognize a

shape (Fuys, 1984), to see a rotated shape (Rosser, Horan, Mattson and Mazzeo, 1984),

to predict what a shape will look like when rotated or flipped (Pellerey, 1984), to
recognize patterns, to see symmetry, and to form a concept image (Vinner and
Hershkowitz, 1980). The first two of these connections can be broken down into a
somewhat flexible sequence that the author has observed young children go through on

their way to understanding the concept of triangles.
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MALLEABLE SEQUENCE OF TRIANGLE CONCEPT LEARNING

1. Not able to match any shapes; circle, triangle, square, etc.
2. Able to match shapes; circle, (equilateral - horizontal base) triangle, square.
3. Match shapes; oval, diamonds, rectangles.
4. Associate name of shape with those listed in # 2 and # 3.
5. Recognize that a rotated equilateral triangle would be a triangle if it were put

"Right side Up", and the child will physically turn the triangle "right side up".
8. The child calls a disorientated triangle a "Funny Triangle".
7. The child recognizes disorientated triangles as triangles, no qualifiers needed.
8. Right triangle with a horizontal base recognized as another kind of triangle.
9. The child recognizes disorientated right triangles.
10. The child recognizes "other triangles" with horizontal bases.
11. The child recognizes "other triangles" when disorientated.
12. The scalene triangle with a base at a 45 degree angle is the last to be recognized.

The sequence has been called malleable because it seems to be dependent on the
child's experience with shapes and shape names. The above list is flexible in that a
child may have not completely learned one thing' before starting to work on another.
Many children seem to get stuck between steps 5 and 7. It is the author's observation
that the children who get stuck have been presented with equilateral triangles (and
maybe right triangles) with a horizontal bases, at the same time they were presented
with "circles" and "squares". The significance of this is that circles can only vary in
size and color, not in outline. The same is true of squares! Have you ever heard anyone
tell a very young child that, "Triangles are strange because they do not always have
the same shape."? Herbert Klausmeier's (1970 model for attainment of concepts would

help identify the problem as the child failing to generalize that two or more forms of
triangles are examples of the same concept. Evidence has been documented that one
contributing factor is the lack of good examples and of non-examples (Dienes, 1981;
Shummway and White, 1980).

Triangles are one of the shapes which are usually taught to young children. The

example of triangles which is most often presented to young children is that of a solid
figure. with three straight sides and a horizontal base. The mathematicians who deal

with the concept of teaching shapes to young children stress that the shape is the
outside, not the body (Richardson, Goodman, Hartman or Le Pique, 1980). The idea that

the real shape of the triangle is the outline isn't usually taught, and the points of the
triangle are not focused on. Very little of this mathematical understanding has
transcended into early childhood classrooms. Most of the teaching materials, hands on
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materials and examples in books, only include the equilateral triangles and usually with

a horizontal base. Once in a while an isosceles triangle will be included, and very
rarely will a right triangle or a scalene triangle be presented to young children.

One of the reasons for this discrepancy between research and practice in early

childhood centers could lie in the fact that teaching points and lines between points is
harder to do, and teachers have a hard time of generating enough samples for children
to interact with and grasp the concept. One solution for this problem may be the
computer. The technology of computers makes it possible to generate an infinite
variety of triangles in a short time, and as Dreyfus (1984) pointed out - the computer
is an appropriate tool to use for teaching mathematical concepts.

The TABS (Technology And Basic Skills) Exploring Triangles disk was conceptualized
and developed to help 4th and 5th graders to intuitively understand that triangles do in
fact come in different shapes and orientations. A draft version of the TABS Exploring
Triangle disk had two interactive programs which could generate many different
examples of triangles. The first program was "Random Triangles", and it is the program
that was used in the reported study. In this activity the child pushes any key and three
dots randomly appear on the screen. The child can look at the dots for as long as he or
she wants, and can guess whether or not there will be a triangle when the dots are
connected, and can then push any key and the connecting lines will be drawn.

STUDY

The purpose of this study was to check out the hypothesis that the "Random Triangle"
program could help young children grasp a concept that usually is beyond their
understanding because it is presented in abstract ways with few examples. Children

often develop misconceptions of triangles which they keep for many years. It was
reasoned that young children have no trouble learning complex concepts like dog, so
why do some children at all ages have trouble with the concept of triangles?
Mitchelmore (1984) reported that even though young children are aware of the shapes
in their environment, most of them are not presented with the concepts in a way they
can understand.
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PROCEDURE

1. Sample: Twenty five children were pre tested for knowing the concept of triangles,
and triangles other than an equilateral triangle pointing straight up. The children were
from middle class families and attended a day care center. The children ranged in age
from 21 months to 5 years, 7 months.

2. Pretest: The twenty five children were shown various shapes and asked if they were
triangles or not. The shapes were cut from red construction paper. The set included 7
assorted triangles, and 5 non-triangles which were rectangles or other shapes with
straight sides. Seven children recognized all of the triangles in all orientations on the
pretest. Three of the children (all less than 2 1/2 years old) did not recognize any
shapes. Twelve of the children tested were at the stage where they recognized
triangles only if they were equilateral and pointing up, or said that it would be a
triangle if it were turned "right side up". The eighteen children who did not recognize
all of the triangles in all orientations became the treatment group.

Some of the children who only recognized the equilateral triangles with a horizontal
base had names for some of the other triangles. The right triangle from the unit blocks
was often called a "ramp", and was usually described with accompanying arm
movements of driving a car up a ramp, and often with sound effects. One girl
identified a tall isosceles triangle as "on the church ", a boy called the same triangle a
"tent".

3. Treatment: Participation by the children was voluntary on their part, during their
free play time at the center. The children interacted with the program from 2 to 4
times each. The children could stay with the "game" as long as they wished. The
children used the TABS Random Triangle program on an Apple lie clone. The author sat
by the computer and assisted the children when they needed help. The author helped
the children make a "game" out of guessing whether or not there would be a triangle
when the dots were connected. This "game" was played by the child pushing any key on
the keyboard to get three random dots on the screen. The dots were counted, the child
guessed whether or not it would be a triangle when the dots were connected, and then
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the child pushed a key on the computer key board to find out. If the child guessed

wrong, the "computer tricked him/her." Some of the children were asked to describe
what the triangle would look like; tall, short, fat, big, little, etc.

The children were encouraged to make up their own games. They often counted the
dots, including a two-year-old who did not have one-to-one correspondence yet (but got

the intuitive concept image of triangles from this program). This two year old led the
way for a several of the older children. He would occasionally stop with a triangle on
the screen, and then hunt through the red paper shapes from the pretest and pick out
the one that matched the triangle on the screen. He would then put the paper triangle

on the screen and rotate it until the screen triangle was covered up. Sometimes he

would say things like "all gone now", other times he just smiled.

4. Post test: Several days after last interacting with the computer and the adult, the
children were given the same set of cut shapes that were used on the pretest, and
asked to tell if they were triangles or not. The shapes were presented in a variety of
orientations to test for level of concept.

5. Results: The children averaged the same length of time to play with the "Random
Triangle" program as they did with software which was designed for preschoolers. That
average time was 9 minutes per game. The actual times ranged from 45 seconds to 1

hour and 25 minutes!

Eight of the children could identify all of the triangles (in any orientation) and all of
the non-triangles on the post test. Three children made progress by moving from one

stage to another, but not reaching the stage of recognizing all triangles in all
orientations.

CONCLUSIONS

Young children can intuitively understand the broad concept of triangles. The computer
can help the young child acquire the concept of triangle by producing an infinite
variety of examples. The interaction and use of the TABS Random Triangle program

was fun for the young children and helped many of them form a broader concept of
triangles.
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Concept learning research is needed on comparing computers to the other materials
that are usually available in early childhood classrooms. Materials with which large
'numbers of examples and non-examples can be generated are things like; geoboards,
tinker toys, clay, and the sand box. Research is needed which would help the preschool
and kindergarten teacher know how and when to teach concepts and with standard
materials and/or with the computer.
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MATHEMATICS LEARNING AND AUDITORY PERCEPTION

George B. Shirk, Department of Elementary and Early Childhood Education

Carleton 0. DeFosse, Department of Communication

The University of Toledo

A three-phase assessment procedure was implemented to identif ?
possible areas of dysfunction in auditory-visual perception and
processing by mathematics-impaired subjects. This assessment
included testing of peripheral acui;y, central auditory process-
ing, and cortical integration. Assessment results indicate
epecific difficulties with memory for sequence, sound mimicry,
and the ability to recognize symbols presented orally.

INTRODUCTION

The difficulties that a child has learning mathematics have commonly been laid

to such 'causes' as lack of motivation and inattentiveness, with the inference

made that a child is a slow learner or is 'learning disabled'. Experience

with children enrolled in The University of Toledo's Mathematics Clinic has

led us to question the appropriateness of those labels. Although each of

the children had experienced difficulty learning mathematics, many demon-

strated instances of deep mathematical insight.

The purpose of this investigation was to determine if there were any auditory

reception, auditory conduction, or auditory processing difficulties among the

children studied that may account for any of the mathematics learning diffi-

culties. Cathcart (1974) identified listening ability'as being the most

significant non-mathematical variable but did not define what he meant by the

term 'listening ability'; although he did suggest that future researchers

investigate general attentiveness as an independent variable with respect to

mathematical achievement. Sawada and Jarman (1978) examined the relationship

between mathematics achievement and specific cross modality functions. They
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determined that a relationship does exist and that it varies with the IQ of

the student.

MATHEMATICS TEACHING

Fuson and Hall (1983) demonstrate that most children bring a wealth of informa-

tion to school. In the first grade, this background is reinforced with the

focus placed upon learning to count, basic addition, and basic subtraction.

In the early primary grades the mode of instruction is to a large extent

iconic and somewhat tactile; however, by the end of second grade the dominant

mode becomes verbal/graphemic. The child is able to rely upon pictoral rep-

resentations, counting, drawing directly from visual representations to

develop the abstractions necessary for understanding mathematics. By the

end of second grade, algorithms such as addition and subtraction with regroup-

ing are first taught. Hiebert (1984) terms this "site 2" and defines it as

the stage where "form and understanding are linked when children connect a

procedure or algorithm with the underlying concept or rationale that motivates

the procedure".

Because mathematical algorithms are commonly presented as series of oral/

visual instructions to be memorized, an adult or child with below normal

auditory/visual perceptual abilities may have difficulty understanding these

instructions. That person may view the instructions as a series of meaningless

words or phrases and thus be unable to transcode the verbally received instruc-

tions into graphemic representation. The child may also have trouble moving

from the graphemically presented stimulus, e.g., blackboard demonstration, to

an oral response.

It is possible for a child or an adult with an auditory/visual perception

impairment such as those described in this presentation to acquire a good

understanding of mathematics taught in the primary grades, e.g., basic

addition, subtraction, etc., yet experience difficulty learning mathematics

in the middle school classroom. This can occur because the nature of the

content to be learned in the early grades requires an understanding of a

277



265 Shirk/DeFosse

limited number of graphemic symbols which can be acquired visually or

tactually by the student without resorting to complex auditory processing.

However, understanding mathematics in the upper grades requires that the

student be effective perceptual processor in both the visual and acoustic

symbol systems. If the transcoding process is inefficient and requires addi-

tional processing time, the student places heavy demands upon his auditory

memory system with the result being a loss of information prior to completion

of problem solving tasks.

METHOD

A three-phase assessment procedure was established and implemented to identify

possible areas of auditory dysfunction and to identify contrasting normal

and abnormal performance patterns. Phase I of the study determined the status

of the peripheral auditory system. This was accomplished by obtaining a

pure-tone air conduction and bone conduction audiogram. In addition, Speech

Reception Thresholds (SRT) were obtained for both ears using the Central

Institute of the Deaf (CID) spondaic word lists. Speech Discrimination

Percentages (SDP) were obtained at the 34dB sensation level. All speech

stimuli were presented from tape to the child.

In Phase II, a battery of tests shows functional ability of the auditory

system from the inner ear to the primary auditory reception area in the

temporal lobe of the brain. Speech signals were distorted in ways that made

speech more difficult to decode. The methods included filtering the speech,

providing competing signals, and providing alternating signals, thereby placing

gradually increasing burdens upon the central auditory pathways. Individuals

with normally functioning central auditory pathways are capable of correctly

decoding the messages. Those individuals who have impairments in the con-

ductive system will show decreased accuracy in decoding the test messages.

Phase III consisted of administering the Goldman-Fristoe-Woodcock battery of

auditory skills (GFW) (1970) for the purpose of identifying possible dysfunction

in the auditory/visual perception system. The series consists of twelve
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subtests which are divided into two screening subtests, three auditory subtests,

and seven sound-symbol processing subtests. These tests and their tasks are

as follows: 1.) Selection attention; 2.) Recognition memory; 3.) Memory for

content; 4.) Memory for sequence; 5.) Sound mimicry; 6.) Sound recognition;

7.) Sound analysis; 8.) Sound blending; 9.) Sound-symbol association; 10.) Read-

ing of symbols; 11.) Spelling of sounds.

Nine subjects, aged 9 to 15, (6 males, 3 females) enrolled in the University

of Toledo's Educational Improvement Center were examined. Each child had

experienced difficulty learning mathematics but none qualified for Special

Education. None had been diagnosed as having 'hard' signs of neurological

impairment.

Table 1

GFW Percentile Scores, Key-Math Grade Equivalencies

Students SB JD RG SL RM AM BN ED KW

Sel Attention 6 8 18 1 25 1 15 1 1

Diag Discrimination 95 1 95 95 45 12 64 65 75

Recog Memory 9 26 62 30 78 18 5 35 5

Mem Content 1 1 38 12 95 58 25 35 62

Mem Sequence 1 16 24 8 62 12 18 25 35

Sound Mimicry 1 22 22 95 30 5 12 10 12

Sound Recognition 60 62 58 18 65 25 75 29 18

Sound Analysis 12 80 32 16 48 65 22 5 1

Sound Blending 25 68 26 26 25 28 48 18 18

Sound-Sym. Assoc 12 80 99 55 1 1 1 5 35

Reading Symbols 32 42 80 24 55 80 60 35 20

Spelling Sounds 32 70 28 5 78 38 32 1 1

Key Math Level 4.3 3.7 5.0 3.3 6.2 2.5 3.8 3.4 5.6

Grade Level 6.6 6.0 8.7 5.9 8.0 3.1 8.0 4.0 8.0

Age 14 10 15 13 13 9 10 10 13
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The results of our study are as follows:

Pnase I assessment revealed that all subjects had normal peripheral hearing

acuity. Phase II assessment revealed that all subjects performed in the

normal range. Table 1 presents percentile results of Phase III testing. The

results indicate that all subjects were classified as having abnormal auditory

perception performance.

Because of age-related ceiling effects, the results for the categories of

Selective Attention, Diagnostic Discrimination, Recognition Memory, and Sound

Recognition need further examination. With one exception, all students scored

below the 50th percentile in their ability to recall sequences. Of particular

importance is Sound-Symbol Association, the ability to identify named symbols.

Six of the students scored well below the 50th percentile level in that

category.

REVIEW AND RECOMMENDATIONS

Some of these math-impaired students are better able to process visual

symbols than auditory symbols, while others reverse the process. We should

be prepared to design our instruction to emphasize the area of most efficient

processing. Additional testing is needed to determine if there is a set of

standard auditory perceptual profiles that can be related to specific types

of math breakdown. Our preliminary work with individuals who have been

enrolled in the Auditory Perception Clinic and the Mathematics Clinic indicates

that utilization of test results in designing mathematics remediation has been

fruitful.

Rehabilitation attempts must take into account each individual's strength and

weaknesses when designing a program for that student. If it can be demonstrated

that a child has difficulty understanding a series of spoken instructions, and

has difficulty attending to simple listening tasks, it should be readily

apparent why the child has difficulty understanding instruction which is

primarily oral.
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DIAGRAM DRAWING: EFFECT ON THE CONCEPTUAL FOCUS

OF NOVICE PROBLEM SOLVERS

Martin A. Simon, University of Massachusetts and Mount Holyoke College

Novice problem 4otvet4 seem to Ocos mote on choosing ptocedate4
and less on the concepts involved than do export ptobtem solvers.
A study was undettahen .to determine whether novice problem 4otvet.4
would limo mote on concepts i6 they were encouraged to solve
problems using diagrams. The study examined pencil and papet
woth o6 ten subjects on a problem involving 6raction4. The pencit
and paper (with wits ifottowed by a ctinicat interview with each
subject. Dating the intetview each subject mu asked to explain
het wtitten ,sotations and then was asked to solve the problem
using a diagram. Although the problem requited a two step
sotation, subjects chose one atithmetic opetation. Diagram tooth
tesutted in gteatert success, mote conceptual involvement, and mote
con6idence in the 4otation.s.

Landau (1984) hypothesized that imaging can offer the student the opportunity

fora conceptual approach rather than a procedural approach to mathematical

problems. She defined conceptual as "how should I think about this problem?"

and procedural as "what should I do next?". She also cited data from the

Applied Problem Solving Project (Lesh 1983) that indicated that a conceptual

approach was more often associated with a successful solution than a

procedural approach.

The National Assessment of Educational Progress (NAEP 1979) demonstrated

that American students score much higher on routine problems that require a

single step than they do on multistep problems. A possible explanation for

this phenomenon is that the single step problems are often solvable using a

procedural approach (i.e., "should I add, subtract, multiply, or divide?"),

while such an approach is inadequate for the solution of multistep problems.

In the Fall of 1984, the exploratory phase of a study on diagram drawing for

mathematics problem solving was begun. The subject population was novice

problem solvers from the remedial course Math 010 of the University of
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Massachusetts. Part of the data from this study was analyzed to see whether

novice problem solvers would focus more on concepts and less on procedures

if they were encouraged to solve problems using diagrammatic representations.

METHOD

Volunteers from the remedial math class were paid to attend two research

sessions on problem solving. In the first session students were given a set

of problems to work and asked to show all of their work. Students returned

one week later for a videotaped clinical interview in which they were asked

to explain their work from the week before and to attempt diagram solutions

for problems where no diagram solution had been attempted. For this study,

the subjects' work on Problem #2 was analyzed.

Problem #2: Chan has 3/4 of a gallon of ice cream. He gives

2/3 of what he has to Barry. How much ice cream does he have

left?

The work of ten subjects was involved in the study.

RESULTS

Of the ten students who participated in this study, only three successfully

solved Problem #2 on the pencil and paper test (first session). Of these

three, two spontaneously used diagrams to solve the problem. Only one of the

ten students successfully solved the problem using a straight arithmetic

(symbol manipulative) approach. She (Eileen) solved the problem: 2/3 of

3/4 = 1/2, 3/4 - 1/2 = 1/4 gal. Of the seven incorrect written solutions,

all attempted to do the problem in one step. Four chose multiplication, two

chose subtraction, and one chose division. The work of three of the subjects

is briefly described below. Their responses to both the written work and to

the clinical interview characterize the full range of responses received in

the study.
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MARK solved the problem originally, 3/4 2/3 = 1/12. When asked why he

divided he responded, "Maybe it's subtraction...No, definitely division."

His explanation suggested that he was choosing division because the ice cream

was being "divided up". When asked to solve the problem using a diagram,

he quickly solved the problem correctly, accurately indicating the areas of

the rectangle which corresponded to the different amounts. He made no refe-

rence to any of the four arithmetic operations.

He was then asked if he could now solve the problem without the diagram. He

responded, Its subtraction not division, because division's wrong." He

was taking for granted that his diagram solution was correct. He explained,

"I can see it out."

MARILYN solved the original problem, 3/4 x 2/3 = 6/12. She explained her

work, "I know that you are supposed to multiply and that will give you the

answer." When asked to draw a diagram, she drew, an appropriate rectangular

area representation, indicated the appropriate regions, but was unable to

name the fraction that Chan had left. She could not decide whether it was

1/4 of a gallon or 1/4 of 3/4 of a gallon. In the latter case she was using

of to mean out of"; the 1/4 was out of the original 3/4.

Marilyn made no reference to arithmetic operations while working on her

diagram solution. She seemed to be figuring out how the ice cream had been

parcelled out.

MELISSA also originally solved the problem, 3/4 x 2/3 = 1/2. She explained

that "'of' means to multiply." When asked to attempt a diagram solution of

the problem, she first wanted to draw 2/3 and 3/4 separately but realized that

she had no idea how to show that they are multiplied together. She settled

on drawing a rectangle with 3/4 shaded. She realized that she needed to find

2/3 of that amount, but did not know how. She was stuck at that point until

asked to represent 1/2 of 3/4. She thought about it, and then announced that

she knew how to draw 2/3 of 3/4, which she did. Like Marilyn, Melissa was
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unable to name the fraction that Chan had left. She failed to divide up the

unshaded 1/4 and confused the notions of a part of a whole and a part of a

part.

OBSERVATIONS AND DISCUSSION

Several trends were observed in the pencil and paper (non-diagram) solutions.

Students chose one step, arithmetic algorithms to solve the problems. They

explained their work with statements like "It's a take-away problem" or "of

means times." When questioned about their confidence in the solution, they

gave the impression that it ought to be right because they could not think

of another operation that seemed more likely; a process of elimination expla-

nation. All of these trends suggest that the students were taking a procedu-

ral approach, trying to recognize or remember the appropriate algorithm.

Such an approach is consistent with instruction that focuses on key words and

textbooks which feature predominantly one step, routine word problems.

Students approached the diagram solutions differently. They seemed to think

about what was happening in the problem and how to represent it. They often

did not know what they were going to do after the step that they were working

on (an exploratory approach). They used what they knew and understood, rather

than what they had been shown. Those who solved the problem felt confident

in their answers, "You can just see it!" and rejected algorithmic solutions

which yielded different answers.

Mark used understandings of fractions in his diagram solution that were

unavailable to him when he was searching for an algorithm. Melissa and

Marilyn also used understandings of fractions, but got stuck at the point

where their conceptual understanding broke down. It seems desirable that

their conceptual difficulties were highlighted by their work. In the algo-

rithmic solutions, these students were not even aware of difficulties.
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CONCLUSIONS

The work described here is very preliminary. The two cases (the written

solutions and the diagram solutions) were not completely parallel since the

first session's work was done with no questioning by the researcher, while

the diagram work was done in an interview. The subjects were, however, asked

to explain their original work and they generally stuck to their original

solutions.

This study does however point out the procedural focus of novice problem

solvers. It also suggests that involving these novice problem solvers in

diagram solutions may be a valuable way to get students to work conceptually.

It offers them a medium in which they can build on what they know and can

see." The increased understanding may result in a greater sense that they

can determine the correctness of their own solutions. Lessons would be

necessary to create bridges from the understandings gained from the diagram

work to the symbol manipulative approach. This would insure that the latter

approach also would be based on conceptual understanding.
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AN ETHNOGRAPHIC STUDY OF MATHEMATICS ANXIETY
AMONG PRE-SERVICE ELEMENTARY TEACHERS

Robert G. Underhill
Virginia Polytechnic Institute and State University

Joanne Rossi Becker
San Jose State University

This exploratory study investigated the mathematical instructional
milieu of prospective teachers with high and low mathematics
anxiety to determine if there are behavior differences. To high
and two low anxious students were audio- and videotaped in their
mathematics instruction with small groups of children. The domains
of teacher gestalt, responses to learners' needs, verbal feedback,
peer inr.eraction, mathematical language, and personalization of
instruction are discussed. Subjects' comfort in the teacher role
seems to have more impact on teaching behaviors than does level of
anxiety.

INTRODUCTION

Articles decrying the mathematics anxiety of elementary school teachers are

common. For example, Bulmahn and Young (1982) discuss the mathematics anxiety

of elementary school teachers as a communicable disease. The effect is thought

to operate in two ways. First, it is presumed that positive teacher attitudes

influence the development of positive attitudes in children (Johnson, 1981;

Larson, 1983), and the development of positive student attitudes is one goal of

teaching mathematics (Donady & Tobias, 1977; NCTM, 1980; Reyes, 1980). Second,

many presume that negative teacher attitudes effect students through poor

mathematics teaching, which may result in reduced student achievement (Early,

1970; Pearson, 1980; Phillips, 1973).

These two points of view have little empirical foundation. Few data are

available which document the level of anxiety of elementary teachers (NCTM, 1982;

Widmer & Chavez, 1982). In fact, data available concerning teachers' overall
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attitudes show that they have attitudes which are neutral at worst (Becker,

in press; Begle, 1979; Hosticka & Traugh, 1981). In addition, evidence is

mixed as to whether teacher attitudes are related to student attitudes or

achievement. Although Phillips (1973) and Banks (1964) found that teacher

attitudes are related to children's attitudes and achievement, Begle (1979)

points out that most research studies report low correlations. Causal relation-

ships remain undocumented.

Few researchers have investigated the instructional effectiveness of HI and LO

mathematics anxious teachers. Teague and Austin-Martin (1981) found pre-service

teachers' teaching performances positively correlated with their overall attitudes

about mathematics, but they found no significant correlation between teaching

performance and mathematics anxiety.

This study investigated the instructional behavior patterns of prospective

teachers with HI and LO mathematics anxiety. They were in their sophomore spring

quarter aide experience. It was their first professional education course.

METHOD

Subjects

All students enrolled in the course were administered the Anxiety subscale of

the Fennema-Sherman Mathematics Attitudes Scales (Fennema & Sherman, 1976) as

part of a test battery. Two HI anxious and two LO anxious were selected for

observation during their field experience; all four were female.

Procedure

Each subject worked twice a week for eight weeks with two to four second or third

graders. Each subject participated in two audiotaping and four videotaping

sessions covering mathematical and non-mathematical content so that the mathe-

matics focus of the research was not apparent. The taping sessions were as

follows: (1) audio - nonmath, (2) video - nonmath, (3) audio - math, (4) video -

nonmath, (5) video - math, (6) video - math. This schedule was designed to allow

children and subjects to get accustomed to taping gradually. By the time the math

videotapes were made, the equipment was a minor distraction, if any. The following
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content was taught by the subjects: (1) long division, (2) telling time and

multiplication concept, (3) multiplication facts, and (4) subtraction with

regrouping and division.

Notes were made by a GA concerning the context of the taped lessons; any unusual

circumstances which might have affected the lessons were recorded. The classroom

teachers gave instructions to the subjects immediately preceding each lesson as

to the content of the session of which the subjects were in charge and sometimes

gave them an activity with little or no instruction about how to use it. The

activities and the content were both straightforward. Each subject worked with

the same children throughout the series of lessons.

After all videotapes were made, the subjects were interviewed twice, first by

a graduate student supervisor, then by one of the researchers. The audiotaped

interviews focused on the subjects' thoughts and feelings concerning the taped

lessons. The interviewers did not know which subjects were HI and LO anxious.

Analysis

The analysis was conducted using the steps outlined by Spradley (1980) including

participant observation, preparing ethnographic records, interviews, domain

specification, using tapes for focused observations, and conducting taxonomic

analyses. Through a cyclical process of reflection, literature review, and

interview tape analyses, several domains appeared to hold prospects for differences

including feedback, type of instruction, use of time, affect, and use of mathe-

matical language. Blind review of videotaped lessons (no researcher knowledge

of HI and LO anxious students) yielded observable differences in several domains.

RESULTS

Teacher Gestalt

As the data were analyzed, mosaics of attributes emerged which partitioned the

subjects into pairs. This partition was consistent across three dimensions of

behavior; we labeled them flexibility, comfort, and empathy.

Flexibility describes an observed propensity of some students to adjust their

work with children to meet changing needs. The flexible subjects handled
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disruptions smoothly; did more than one thing at a time; varied activities;

seemed spontaneous; and showed some creativity in activities. The less flexible

subjects had an authoritative manner; had difficulty keeping children on task;

could not easily manage children working on different tasks; did not vary acti-

vities; expressed the need for tight control; and lacked spontaneity.

Comfort describes how at ease the subjects were in their teaching. The more

comfortable pair of subjects displayed body language indicative of an open,

accepting, casual manner; showed few signs of nervousness; expressed relative

confidence in their abilities as teachers; and interacted frequently with the

children. The less comfortable subjects seemed nervous; maintained a

psychological distance from the children; expressed ineffectiveness and insecurity;

and were more affected by taping.

Empathy was exemplified by sensitivity to children's needs. The more empathic

subjects were accepting of children's responses; asked helping and sustaining

questions; were supportive; monitored individuals; and maintained a friendly, non-

threatening atmosphere. The less empathic subjects lacked awareness of when they

should change approach; were brusque, condescending, or maintained a distance

from the children; and talked "at" rather than "with" the children.

These descriptions of the three dimensions might seem intuitively like possible

characterizations of the teaching of HI and LO math anxious teachers. However,

this was NOT the case. There was one HI and one LO anxious subject in each of

the pairs. Thus, one HI and one LO anxious teacher displayed Positive teaching

Gestalts (PG) characterized by flexibility, comfort, and empathy, and one HI and

LO anxious teacher displayed Negative teaching Gestalts (NG) characterized by

inflexibility, uncomfortableness, and detachment. These attributes were

consistent in both mathematics and non-mathematics lessons.

These three dimensions seemed important not only because they describe patterns

of behavior, but also because differences in other behaviors seemed related to these

three in combination.

Response to Learners' Needs

When researchers observed opportunities for instruction arising from students'

questions or difficulties, the subject responses were coded as product (give an
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answer, no instruction), Socratic, didactic, or a combination of Socratic and

didactic. No appreciable differences were found in use of Socratic or didactic

instruction between the HI (24%) and LO (33%) anxious students. However, it was

found that PG used Socratic in 46% of instruction ?l instances, and NG in only

13%. In fact, there was an increased use of Socratic from NG (12 and 14%) to

HI/PG (38%) to L0 /PG (52%). Neither NG subject used any purely Socratic

instruction.

Verbal Feedback

Two tapes were coded on subject responses to learner correct and incorrect

answers. Responses were coded as affectively positive, negative, or neutral.

NGs tend to use more positive feedback for correct responses (57% and 35%)

than PGs (33% and 9%). PGs are more likely to give neutral responses than

positive responses (77% vs. 23%); NGs, 55% and 44%. HIs tend to use more

negative feedback for incorrect responses (17% and 18% versus 14% and 4%). HIs

tend to use more positive and negative feedback on incorrect responses (18%,

18%) than LOs (11%, 10%). When all responses are combined, HIs tend to use more

negative feedback (6%, 6% versus 3%, 1%).

Personalization of Instruction

Three components were examined: communications, social distance, and touching

during instruction. One lesson for each subject was coded for communications

data; LO/PG spoke to individuals 96% of the time, compared with 76% for LO/NG,

62% for HI/PG, and 78% for HI/NG; frequencies ranged from 190 to 240 for number

of interactions with learners. The number of times the social distance decreased

during a lesson by "leaning towards" was 13, LO/PG; 9, LO/NG; 35, HI/PG; and 10,

HI/NG; there is a tendency for PGs to use more of this form of nonverbal communi-

cation. Since the subjects sat in various configurations and sometimes stood to

work with students, a coding was made which combined touching students and their

materials; touching was coded in three categories: management, positive affect

for instruction or feedback, and negative affect for instruction or feedback.

L0 /PG tends to use touching most for positive reasons (67%) and less for manage-

ment (21%). HI and NG tend to use quite a bit of touching for management (52%,

46%, 54%) and less for positive (46%, 46%, 36%).

Summary 1 -- HI and LO Anxiety

Using a criterion difference of 10%, the following statements can be made about

LOs. They (1) give more neutral feedback to incorrect student responses, (2)
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use a greater number of precise mathematical terms (Ns = 6 and 22), and (3)

have more student-student interactions (Ns = 0 and 20). Further, using a

criterion of more than 5% but less than 10%, LOs (4) use more purely Socratic

instruction, (5) use less touching of students and materials for management,

and (6) communicate with single students more without using their names.

Summary 2 -- Positive and Negative Gestalts

Using a difference of more than 10%: (1) Positives use more Socratic instruction,

isolated or in combination with didactic. Further, using a difference of 5% to

10%, Positives (2) use less purely didactic instruction, and (3) use a decrease

of social distance more frequently as a form of non-verbal communication.

Summary 3 -- LO/Positive and HI/Negative

Gestalt and anxiety appear to combine effects as noted in this list, all of which

represent differences of at least 10%.

1. LO/Positive uses less positive feedback to correct and incorrect

responses.

2. LO/Positive uses more neutral feedback to correct and incorrect

responses.

3. LO/Positive uses more Socratic instruction.

4. LO/Positive touches less for management.

5. LO/Positive touches more for positive reinforcement.

6. LO/Positive uses more correct mathematical terminology (Ns = 2 and 15).

7. LO/Positive uses a greater volume of correct mathematical terminology

(fs - 18 and 110).

8. LO/Positive refers less to a single child by his/her name.

9. LO/Positive refers more to a single child without a name.

10. LO/Positive talks more to one learner than 1:2 or more.

11. LO/Positive has more student-student interaction (Ns = 13 and 0).

DISCUSSION

Again these early preservice teachers, there appear to be two significant constructs

related to their instructional behaviors, (1) math anxiety, and (2) teacher Gestalt.

When viewed separately, each has some impact as noted in Summaries 1 E. 2. However,

when viewed together, they seem to interact to produce great differences as noted

in Summary 3. In the LO/Negative and HI/Positive subjects, strength in one seems

to compensate for weakness in the other.
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This helps account for the big differences between Summaries 1 and 2, and

Summary 3.

Possibly our results were influenced by two factors which need exploration:

(1) grade level and content, and (2) novice rather than expert. It is possible

that because of the grade level and content (math in grades 2 and 3) that anxiety

was not readily produced during the aiding sessions. It is also possible that

these novices were so concerned about themselves as teachers that they were

operating with concerns that took precedence over their own feelings of math

anxiety. Further research with higher grades, more advanced content, and more

experienced subjects is needed to clarify the roles played by these choices in

the present research. In our judgement, the negative Gestalt observed in this

study is of more concern in fostering poor attitudes about schooling in general

than are the specific differences we found related to anxiety, especially since

we observed the characterizations in non-math as well as math sessions. The

anxiety-related problems noted in Summary 1 seem to lend themselves more readily

to remediation than do the attributes of inflexibilty, lack of empathy, and

uncomfortableness associated with the negative teaching Gestalt.

REFERENCES

Becker, J.R. (in press). Mathematics attitudes of elementary majors. Arithmetic
Teacher.

Begle, E. G. (1979). Critical. variables in mathematics education. Washington,

D.C.: The Mathematical Association of America.

Bulmahn, J. & Young, D.M. (1982). On the transmission of mathematics anxiety.
Arithmetic Teacher 30, 55-56.

Donady, B. & Tobias, S. (1977). Math anxiety. Teacher, 95(3), 71-74.

Early, J. E. (1970). A study of the grade level teaching preferences of
prospective elementary teachers with respect to their attitudes toward
arithmetic and achievements in mathematics. Dissertation Abstracts
International, 30, 3345A-3346A.

Fennema, E. & Sherman, J.A. (1976). Fennema-Sherman mathematics attitudes
scales: Instruments designed to measure attitudes toward the learning of
mathematics by females and males. Journal for Research in Mathematics
Education 7(5), 324-326.

293



281 Underhill/Becker

Hosticka, A. & Traugh, C. A descriptive study of pre-service teachers' attitudes
toward and aptitude in mathematics. College Student Journal, 15(1), 32-37.

Johnson, G. S. (1981, February). An investigation of selected variables and
their effect upon the attitude toward the teaching of mathematics by
prospective elementary school teachers. Paper presented at the meeting of
the Southwest Educational Research Association, Dallas, TX.

Larson, C. N. (1983). Teacher education: Techniques for developing positive
attitudes in preservice teachers. Arithmetic Teacher, 31(2), 8-9.

National Council of Teachers of Mathematics (1980). An agenda for action:
Recommendations for school mathematics of the 1980s. Reston, VA: author.

National Council of Teachers of Mathematics (1982). Resources on mathematics
anxieties of teachers. Reston, VA: author.

Pearson, C. (1980). New hope for the math-fearing teacher. Learning, 8(5),
34-36.

Phillips, R. B. (1973). Teacher attitude as related to student attitude and
achievement in elementary school mathematics. School Science and
Mathematics, 73, 501-507.

Reyes, L. H. (1980). Attitudes and mathematics. In M. M. Lindquist (Ed.),
Selected issues in mathematics education (pp. 161-184). Chicago:

National Society for the Study of Education.

Spradley, J. P. (1980). Participant observation. New York: Holt, Rinehart
and Winston.

Widmer, C. C. & Chavez, A. (1982). Math anxiety and elementary school teachers.
Education, 102(3), 272-276.

Teague, P. T. & Austin-Martin, G. G. (1981). Effects of a mathematics methods
course on prospective elementary school teachers' math attitudes, math
anxiety and teaching performance. Paper presented at the Annual Meeting of
the Southwest Educational Research Association. (Dallas, TX). (ED 200557).

EST COPY AVAILABLE

299



282

CLASS ARITHMETIC BOOKS

Jan van den Mink

Abstract

"Class arithmetic books"is part of a larger research project which focuses on

the concept of "addition and subtraction" as given during the first grade in

a 4eatiet4c and a mechanZstic form of instruction (respectively at the Drees-

school (D) and at the Nieuwlandschool (N)).

The Dreesschool has long served as a testing ground for the IOWO (Wiskobas).

The Nieuwlandschool has worked for years with the typically mechanistic arith-

metic method "Niveaucursus Rekenen ",

In this case-study the instruction given at the above-mentioned schools is

compared, as well as their influence on student achievement and the educat-

ional ideas of both first grade instructors.

By this means, an indication is given of why the realistic arithmetic instruct-

ion is "better" than the purely mechanistic instruction.

The children from both first-grades (D and N) were divided into two evenly

balanced groups: the "T-students" (test-students) and the other, non-T-stud-
ents

. During the year I had regular (once or twice a week) testtatka with the T-

students (OT and NT). With the non-T-students these talks occurred about

once every two months. The idea behind this division (T and non-T) was to

judge the influence of these discussions on the students.
The test talks with the students involved all sorts of first-grade arith-

metic topics. Four of these were regarded in depth:

- equationA at the 0 as well as the N

- alLkow Language only at the D

- slius arithmetic books; at the D as well as the N.

arithmetic stills; at the D as well as the N.
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Research section: the class arithmetic book

rwipeiC

In march it was decided that the children would make an arithmetic book for

the children entering first grade the next year.

One class arithmetic book at the 0 and one at the 0, respectively the Drees-

school arithmetic book (Dr) and the Nieuwlandschool arithmetic book (0).

The class arithmetic books could be used as an instrument to recognize the

various ways of instruction at the D and the N through the students'designs

for the books. The children put the ideas they had gained from one year of

arithmetic instruction into the class arithmetic books.

The basic question in this section of the research is: can the specific qual-

ities of the D-instruction be found in the D-students'arithmetic book? And is

this also the case for the N-instruction? And do both class arithmetic books

give an indication as to research questions on:

a. introduction

b. repetition and consolidation

c. practice rows of sums

d. equations (such as 3.11,.10)

The Oen o6 the ctazie arLithinetie book4

There were six assignments for the class arithmetic books which the children

carried out according to various data.

Intaoduction and page 1 /36 the etaze aaithmeti.c beck U.laach 21, 1983)

"I want to make an arithmetic book of suits thought up by children. Make one

page for that book. It can consist of all sorts of sums and drawings. May be

we can use the book next year in the first grade when you are all in the se-

cond grade."

This assignment (page 1) was the introduction of the idea to the students. It

was striking that all the children were directly motivated to make an arithme-

tic book for others: it gave the assignment sense.

The assignment was more or less OCC: the sums didn't have to be connected to

a given period in the schoolyear.

Page 2 (Aptit 25)

Page 2 was made a month later. The assignment was more limited than the first

one. It went as follows:

"A while ago we made a page for an arithmetic book. Now well go further. Soon

the kindergarteners will be entering 1st grade. Make all sorts of sums for

them."
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This assignment was primarily intended for the young children at the beginning

of 1st grade.

Page 3 (May 30 at the D, June 6 at the N)

One month later again I asked the children to make a page for their arithme-

tic book with sums that the new 1st graders would do around ChiiihtMaZ.

At that time the students at the D are involved in doing arrow-sums, so it

was decided to make as many kinds of arrow-sums as posible.

At the N, the students began to do "real" arithmetic (+, =) around Christmas,

so it was decided to make as many kinds of sums as possible, often illustrated

with graphic pictures.

Page 4 (May 30 at the D, June 6 at the NI

On the same day I asked the children to think up and to draw all sorts of an-

ithfnetic gannet for their book, which the new children could play. They could

think up the games themselves but they had to have something to do with ar-

ithmetic.

Page 5 (June 1 at the D, June 6 at the N)

Finally, I asked the children to think up a page of sums for the last sheet in

the arithmetic book.

At the D, this assignment was written on the reverse side of a worksheet At

the N, the sums were performed on graph paper because at that time the students

were learning this "neat" form of.notation.

Remalan

During the same week in June I also gave a drawing assignment:

"Draw yourself and a friend. You see three rabbits and your friend only sees

one.

As this assignment was not given in the framework of the class arithmetic books

we will not take it into consideration here.

Page 6 (June 27)

(Mich 04de,1?

Finally, I submitted to each child his/her three pages from may and June:

page 3 (the Christmas sums)

page 4 (the games) and

page 5 (the final sums).

I put to them the following editional problem:

"I have to make an arithmetic book. but I no longer know what order to put it

in. I don't know which should go first and which after. Help me."

The children were then asked to state their arguments behind the choice of or-

of the three page:;.
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Anattfsi..s 0S the cta64 a.t.(1.thwc,t4.c book

Both class arithmetic books were investigated for a Large number of variables.

1. The category kind:

Kinds of sums as to notation (arrow-language, "="-language) or as to con-

text (graphic; substantial contexts; people, animal or object contexts;

bare);

Kinds of games (inside or outside the school; with or without chance;

dramatization, etc.).

2. The category 6tta.tegic 6um6

zero sums (3 + 0 = 3; 5 - 5 = 0)

counting sums (5 + 1 = ...; 5 - 1

doubling (3 + 3 = 6; 5 + 5 . 10)

multiples of ten (20 + 10 = 30)

positional sums (100 + 6 = 106)

equations (10 + = 15)

3. The category ctiticZem, such as:

- the ohdv. the children chosen for the arithmetic topics and their argu-

ments for this order.

- a compited c4i.aei.4m consisting of:

the total number of sums made

o correct, incorrect or open sums

division of the signs +, - and >

the largest number used

These numbers were determined and the work was classified per student.

For each of the four categories 1, 2 or 3 points was given.

The more variety or the larger the number or amount, the higher the score.

With 8 points or more, one belonged to the category "varied". Less than

8, to the category "uniform".

The report will be continued in the conference.
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Presentation by: Ronald H. Wenger, University of Delaware
Address: Mathematical Sciences Teaching and Learning Center,

032 Purnell Hall, University of Delaware, Newark, DE 19711.

ABSTRACT

ALGEBRAIC EXPRESSIONS AND PLANNING STRATEGIES: USES OF SYMBOLIC
ALGEBRA COMPUTER ENVIRONMENTS TO STUDY AND TEACH THEM

information necessary for carrying out many high level tasks
in the existing curriculum in algebra and elementary functions is
contained in the structure(s) of algebraic expressions. Examples
are: changes of representation of functions FORMAL ALGEBRAIC
!--> GRAPHIC; or strategies for comparing expressions (as in

solving equations or inequalities).

The ways learners perceive the algebraic expressions appear
to strongly influence their inclination to exhibit common
symptoms of misunderstanding such as: their inclination to make
many common algebraic errors (e.g., variations of linearity
errors f(EXPR1 + EXPR2) f(EXPR1) + f(EXPR2)): or inability to
use heuristics present in the structure of expressions to build
strategies for solving equations with quadratic structure even
when they demonstrate ability to use the relevant subskills such
as the quadratic formula !e.g., inability to solve 2x2y-y(l+x)
1-x for x).

Protocols with high school and college students in algebra
and precalculus courses were conducted. Many of these students
were selected because they had made many common algebraic errors
on the state-wide Junior Test in Delaware administered the the
Mathematics Teaching and Learning Center. These students were
given similar tasks a year later. They were also given algebraic
tasks to carry out using a symbolic algebra environment developed
in the Math Center. This environment was designed both for
research and instructional purposes. This work was partially
supported by the Greater Wilmington Development Council. Results
will be reported. If time permits, the computing environment
will also be demonstrated.
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TEACHING REPRESENTATIONAL SCHEMES FOR THE MORE DIFFICULT ADDITION

AND SUBTRACTION VERBAL PROBLEMS

Gordon B. Willis and Karen C. Fuson

Northwestern University

A teaching experiment was implemented to study second-graders'
solutions of verbal problems containing three-digit numbers.
Pictorial representations were used as intermediates in
problem solution. Children were effectively taught to distin-
guish problem semantic type, and they improved in solution
ability on several subtypes of problems.

Some types of verbal addition and subtraction problems are particularly

difficult for young school-aged children (e.g., Carpenter and Moser, 1983).

The present study was initiated to study such children's performance when

large (three-digit) numbers were used as the givens in these problems. This

was possible because these children had learned to perform single-digit

computations by using finger patterns to keep track when counting on for

addition and counting up for subtraction (Fuson, in press), and had then

learned the algorithms for solution of multi-digit addition and subtraction in

the second grade (Fuson, 1985). A'second focus of the study was the

implementation of a program intended to teach the abstract representation of

these problems. The teaching made use of pictorial representations drawn by

children as intermediates between the given problem and an arithmetic solution

strategy. These representations modelled the action or state represented by

the semantic content of the story, and thus distinguished problems by semantic

type. Three-digit problems were a focus of the study because they are more

representative of general mathematical problem solving than are single-digit

problems: they require the explicit choice and execution of an arithmetic

procedure rather than only a solution that is a direct model of the action in

the story.

METHOD

Subjects were children from two second-grade public school classes, one (Class

A) categorized by the school as containing high and the other (Class B) of
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average math-ability children. One pictorial representation, or picture, was

developed for each of the major problem types taught. These are illustrated

in Figure 1. Any of the three labelled elements of a problem may be missing,

giving 12 possible problem subtypes. When given a problem, the child first

identifies the major type of problem and then applies the appropriate verbal

labels to the information in the problem. The child then draws the picture

and fills in the known elements. He or she then uses the relationships in the

picture to identify the needed arithmetic operation and writes down and

carries out this operation. Addition and subtraction are therefore involved

both as solution strategies, and as descriptors of the overall semantic nature

of the given problem (Put-Together and Change-Get-More may be seen as additive

and Change-Get-Less and Compare as subtractive in this sense). The more

difficult variants of the defined problem types were selected for inclusion in

a 10-item test given to children prior to and subsequent to teaching. Numbers

used in problems were all three digits, and one trade (a carry or borrow) was

required to obtain the sum or difference.

PUT-TOGETHER (COMBINE): missing PART
(All) (Part)

John and Bill have 814 toys altogether. John has 342 toys.
How many toys does Bill have?

(Part)

p

342

('1
A

CHANGE-GET-MORE: missing START
(Change)

r_.4_14a) a
(Start) -----> $11

John had some toys. Then Bill gave him 342 more toys. Now
John has 814 toys. How many toys did John have to start with?

(End)

(Start) (Change) I 4 C5-i
CHANGE-GET-LESS: missing CHANGE

John had 814 toys. Then he gave some toys to Bill. 1819 i ---->
Now John has 342 toys. How many toys did John give to Bill?

(End)

COMPARE: missing BIG
(Small) (Difference)

John has 342 toys. Bill has 472 more toys than John has.
How many toys does Bill have?

(Big)

Figure 1: Examples of verbal problems and associated pictorial
representational schemes with verbal labels.

All teaching was done by one of the investigators. The early teaching units
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each focused upon the three possible subtypes within one of the major types of

problems. The order of teaching was Put-Together, Change, Compare, followed

by mixed (all 12) problem subtypes. Teaching consisted of one math period in

which the classification and labelling for verbal problems of a major type

were described, and the complete solutions for different variants of the

problem were illustrated. Then the children spent between two and four days

completing practice worksheets. Little systematic individualized feedback was

able to be given on the worksheets, as these were all kept for purposes of

analysis. Unfortunately, teaching and testing conditions proved to be

inadequate in both classes. Due to other pressures the teaching time was

scattered, and insufficient time was available for practicing the mixed

problem types (this was particularly true for Class B). Teaching was for each

unit restricted to the current major problem type; when a new semantic type

was introduced the differences between it and previous types were emphasized.

RESULTS

The variables of posttest correct picture selection and correct placement of

numbers into the picture were first analyzed. For the picture-selection

measure, Class A children were found to select correctly 88% of the time. The

only problem type for which performance was below 85% was Put-Together, for

which a Compare structure was often selected. This is not a serious error,

because the pictures for Put-Together and Compare are very similar. For the

measure of correct placement of the numbers into the picture, the average was

81% correct, with the lowest performance obtained on Compare type problems.

The results for Class B paralleled those of Class A, but were overall about

15% lower. An analysis of the mixed-problem practice worksheets (on which all

12 possible subtypes were given) contrasted performance on the major problem

types for Class A (Class B did not finish three worksheets). No differences

were observed across problem type in ability to select the proper picture, but

the ability to fill in the picture with the given numbers correctly did vary,

with Compare problems significantly more difficult than the rest (81%, 83%,

83%, and 63% for the Put-Together, Change-Get-More, Change-Get-Less, and

Compare types, respectively, F(3, 72) = 4.78, 2<.01).

Mean correct strategy (adding or subtracting) and correct answer scores on the
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10-problem pretest and posttest for both classes are provided in Table 1. For

Class A, the mean strategy score rose significantly from 79% to 89% (2.<.05).

Thus, a fairly high initial level of performance improved to near ceiling.

The mean correct answer scores improved somewhat more, from 56!, to 72%. There

was a fairly large disparity between the levels of correct strategy and

correct answer in this class, mostly because many of the children often failed

to write down the numbers to be added or subtracted, and as a result made

computational errors. When analyzed at the level of individual problem

subtype, large variations in difficulty were observed (see Table 1).

Significant improvement was found cn strategy scores for two problem subtypes

and on answer scores for three.

Table 1
Percent Correct Performance for Correct Strategy and Answer Measures

STRATEGY ANSWER

Class A
pre post

Class B
pre oost

Class A
pre post

Class B
pre post

PUT-TOGETHER Missing first part 86 95 67 83 43 86* 33 67*
Missing second part 95 95 58 100* 71 67 58 92+

CHANGE-GET-MORE Missing start 81 90 67 83 48 81* 58 83
Missing change 57 100* 58 83+ 33 86* 42 83*

CHANGE-GET-LESS Missing start 52 62 58 42 52 57 42 42
Missing change 95 100 67 83 76 81 67 83
Missing end 86 86 67 83 62 71 58 67

COMPARE Missing difference 100 100 75 75 67 67 67 58
Missing small 86 86 67 92+ 62 67 58 75

Missing big 52 76* 50 42 43 57 42 42

Notes. * improvement significant at the .05 level.
improvement significant at the .10 level.

For Class B, correct strategy use increased for all subtypes except those that

involved addition as the correct strategy (Change-Get-Less-missing- start and

Compare-missing-big). Much cf this across-subtype increase (53', of all

improvement) was found to be due to the fact that several of the children

subtracted for all problems cn the posttest. However, the significant

improvement in strategy usage found for the starred items in Table 1 were not

due just to these children. Thus across both classes the teaching seemed to

BEST COPY MIAMI 304



Willis/Fuson 292

have affected the solutions of additive problem types (Put-Together and

Change-Get-More) more than those of the subtractive problem types (Change-

Get-Less and Compare).

Class A worksheet data were also analyzed for these variables. For the

measure of correct solution strategy, a large effect of major problem type was

observed, such that the ordering of difficulty from easiest to hardest was

Put-Together, Change-Get-More, Change-Get-Less, and Compare, F(3; 72) = 5.05,

.p.01. This parallels what is generally found for small (1- digit) problems.

No significant differences were found, however, in the correct answer data,

though the trends were in the same direction as the strategy data. The

children from Class B who had subtracted on all problems on the posttest did

not do so on worksheets. Thus these children did not simply learn always to

subtract for word problems.

An important question that relates to the central focus of the study concerns

the nature of the children's use of the pictorial representations in solving

the problems. Children could, on the whole reliably select the correct

representations, but this does not indicate that they actually used the

representations as a solution aid. Although this is a difficult issue to

address in the absence of detailed interview data, further analyses of

posttest and worksheet data did reveal that there is a strong relationship

between quality of the representation and correctness of solution strategy.

Few correct strategies were observed in the absence of correct pictures, and

few correct pictures without correct strategies. Further, except for Compare

problems, few pictures were recorded that seem "trivial" (the two given

numbers in the story simply filled into the first two available boxes,

independent of story structure).

DISCUSSION

The data indicate that children did improve in their abilities to represent

correctly and to solve certain addition and subtraction verbal problems.

Children learned to use a subtractive solution strategy fcr the relevant

problems with an additive semantic structure but did not succeed at those
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problem subtypes having a subtractive structure but requiring addition as the

solution strategy. Some of the children manifested "subtract-only" behavior

on the posttest, but they did not so behave on the worksheets. It seems

possible that, under test conditions, the context of many other problems that

required subtraction operations prompted the operation of the subtraction

algorithm even though the current problem was understood as one requiring an

answer greater than either of the two givens. In the present study, both

demonstration and worksheet problems favored subtraction by a factor of two to

one, simply because there exist twice as many kinds of problems requiring

subtraction than requiring addition as the solution strategy. This ratio may

bias responding toward subtraction.

Finally, although the gains obtained in problem-solving performance were not

large, some impressive amounts of learning seem to have occurred. Especially

in the high-quality class, children were by the posttest extremely proficient

at identifying the class of word problem represented. At the beginning of

instruction, when asked "What kind of problem is this?", children had

classified problems simply as addition or subtraction problems. This

classification permits confuOon between the semantic structure of a problem

as additive or subtractive and the required arithmetic solution procedure

(addition or subtraction). The picture representations allow distinctions to

be made between these aspects and provide an organization of the problem

elements which may facilitate the decision concerning the arithmetic solution

procedure. Thus the pictorial representations may provide a more general and

flexible basis for the learning of the relationships between concrete

situations and the arithmetic operations which describe those situations.

Carpenter, T. P., 8 Moser, J. M. (1983). The acquisition of addition and
subtraction concepts. In R. Lesh and M. Landau (Eds.), Acquisition of mathe-
matical concepts and processes (pp. 7-44). New York: Academic Press.

Fuson, K. C. (1985). Teaching multi-digit addition and subtraction. In

Proceedings of the Ninth Annual Meeting of the International Group for
the Psychology of Mathematics Education. Noordwijkerhout, The Netherlands.

Fuson, K. C. (in press). Teaching subtraction as counting up. Journal for
Research in Mathematics Education.

This research was funded by a grant from the Amoco Foundation.
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SYNPOSIUm: Nesearcn Framework for Concept
and Principle Learning - Revisited

Organizer: John Kolb, North Carolina State University

Presenters: John Kolb, North Carolina State University

Larry Sowder, northern Illinois University

Patricia Wilson, Ohio State University

Lee Stiff, North Carolina State University

Within the past few years the number of research studies and

research studies and researchers dealing specifically with

concept and principle learning in mathematics appears to have

diminished. This symposium is designed to renew the focus upon

concept learning and principle learning research. Some new

perspectives and approaches to this important research area will

be offered. The goal of the symposium is the development of a

framework in which future research efforts can be centered and

the establishment of personal communications among researchers

interested in the area.

This symposium will be a two hour session is which those

attending will be given an opportunity to become actively

involved in the discussion of ideas. Each presenter will serve

as a catalyst for the exchanging of observations and ideas

between the symposium leaders and participants. An informal

follow-up session to tne symposium will be scheduled for those

participants who wish to continue the interchange.
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DISTINGUISHING CONCEPTS AND PRINCIPLES IN
MATHEMATICAL TEXT

John R. Kolb

North Carolina State University

Concepts, principles and identities are defined as
types of mathematical content and their properties
are discussed in the context of mathematics text.

Concepts and principles form the bulk of cognitive knowledge and

the componentt of further learning. All relationships in mathe-

matics are based in principles and principles in turn are formed

from concepts. Mathematical symbols and words are signs with

no meaning of themselves. They stand for something called their

referents. The referents are the "real world" objects, events,

actions, or constructions and these are represented with mathe-

matical symbols and labeled with words in the natural language.

A concept is a set containing all referents which possess a com-

bination of attributes commonly shared. Thus a concept is a

class of things that can be responded to as one entity when the

focus is on the characteristics that are common to all the

members. To refer to the concept it is usual to associate with

it one or more word labels or other symbols. When a referent or

its representation from the set comprising a concept is displayed

it is called an example of the concept. Any referent that does

not belong to the set is called a non-example of the concept.
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When a propositional statement is provided that identifies all

the relevant attributes that are common to the set of referents

then that verbal statement is called a definition of the concept.

In summary, a concept is a class of referents, it has an associ-

ated label to designate it, any member of the set is an example,

and a statement that identifies all the salient characteristics

for membership in the set is a definition.

In Figure 1 at the end of this paper is a two page layout of a

textbook page of mathematics with annotations in the dotted

boxes. Three concepts are introduced in this material. The

presence of concepts in text is signaled by their labels: central

angle, intercepted arc, and inscribed angle. One example of

each concept is provided and two nonexamples of inscribed angle

is shown. Definitions are provided for two of the concepts.

A principle is some relationship between classes of referents

and thus a relationship between concepts. In Figure 1, an ex-

ample of a principle is The measure of an inscribed angle is

one-half the measure of the arc it intercepts." The concept of

inscribed angle is related to the concept of intercepted arc.

The concepts are connected to the tranformation of halving their

measures. This suggests a more formal definition of a principle:

A principle is an ordered relation consisting of a domain set

of concepts, an operation or rule, and a range set of concepts.

(Merrill and Wood, 1974, p.22).

A principle may be presented in mathematical text in either of

two modes. A propositional statement can be given that names

the domain concepts by their labels, and states the rule that

relates them. In Figure 1, three principles are expressed as

BEST COPY AVAIABLE 310



Kolb 300

propositions (generalizations). In the second mode, a .specific

case of the principle can be shown by displaying a referent or

representation from each of the concept classes in the domain

and the range as well as the specific application of the rela-

tional rule. A specific case of a principle is called an

instance of the principle. In Figure 1, an instance is given of

the principle whose propositional form is "A central angle and

its intercepted arc have the same measure in degrees." Some-

times principles will have name labels associated with them just

like concepts. They have labels such as the Fundamental Theorem

of Arithmetic or Divisibility Rule for Nine. In summary, a

principle is like a function on the set of concepts. It may have

an associated label, a specific case utilizing particular members

of the domain and range concepts is called an instance of the

principle, and a verbal statement that generalizes the rule in

terms of the labels of the domain and range concepts is a pro-

positional statement or rule generality. (Merrill and Wood,

1974, p.37)

A third type of content is a verbal association (Gagne, 1985, p.5)

or identity (Merrill and Wood, 1974, p.19). An identity is a

pair of entities that are associated one-to-one. The entities

can be pairs like symbol to symbol, label to object, event to

symbol, etc. Some identities in Figure 1 are the connection of

the label "arc AB" and the symbol "AB" and the association of

the letter "0" with the word phrase "center of the circle." To

learn an identity is to be able to recall one member of the

pair when presented with the other member as stimulus.

Concepts and principles may a) be formed by examples (instances)

and non-examples (non-instances) that are encountered or b) be

acquired by detecting the meaning conveyed by the concept's
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definition or the principle's propositional statement. These

two methods of presentation appear to engage the learner in two

different types of learning processes. The first mode which

Sowder (1980, p.253) calls attainment requires the student to

identify the salient attributes and use these to generate a

classification rule for concepts or the transformation rule for

principles. This is a kind of generative learning in which the

student must devise an abstraction from a set of specifics. The

second mode which Sowder (1980, p.254) terms assimilation re-

quires the student to read meaning into verbal statements in an

effort to make an abstraction more concrete and specific. It is

an interpretative type of learning.

Gagne, R. M. (1985). The conditions of learning (3rd. ed.).
New York: Holt, Rinehart and Winston, Inc.

Merrill, M. D. & Wood, N. D. (1974). Instructional strategies:
A preliminary taxonomy. Columbus, Ohio: ERIC/SMEAC.

Sowder, L. L. (1980). Concept and principle learning. In

Shumway, R. J. (Ed.), Research in Mathematics Education
pp.224-285). Reston Va.: National Council of Teachers of
Mathematics.
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IDENTIFYING TYPES OF CONTENT IN INSTRUCTIONAL MATERIAL

Angles in a circle.

A circle has many special angles associated with it. One important kind of

angle is a central angle. A central angle in a circle is one that has its

vertex at the center of a circle. In the circle below, LAOB is a central

angle.

EONCEPT: Defined by a verbal statement. An example of the concept is given.;

Recall that we always denote the center of a circle by O. Thus, the symbol

for a central angle must always contain an 0 for its vertex.

,IDENTITY: 0 and center of circle are interchangeable symbols.

IDENTITY: 0 and vertex of central angle are interchangeable.

ach side of a central angle cuts the circle in a point, and these points

form two arcs, one smaller than the other. (Remember that when we write

AB for arc AB, we mean the smaller of the two arcs formed by A and B.)

PRINCIPLE: 4 statement that gives a relationship between central angles and

arcs of a circle.

IDENTITY: Arc AB same as AB

IDENTITY: Al means smaller arc formed by A and B

The intercepted arc of an angle is the smaller of the two arcs it forms. In

the circle below, CB is the intercepted arc of the angle LCOD.

cct
-,t-

.S

ONCEPT: Defined by a verbal statement. An example of the concept is given. :
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An important fact to remember is:

A central angle and its intercepted arc

have the same measure in degrees.

In the circle mLAOB = 90° and mAB = 90°, so mLAOB = ma.

PRINCIPLE:

90°

The rule or operation is equality.

the principle.

An instance is given of

There is an implied technique or prescription (some may call it a skill)

that is not stated. Stated in a to do language, it is: To find mAB

(where it is smaller than a semi-circle) construct its central angle, mea-

sure it with a protractor, and that will be the nil.

LABC in the circle at the left below is called an inscribed angle. In the

circle at the right, LXYZ and LKJL are not inscribed angles.

X
A

CONCEPT: This concept is not defined by a statement characterizing its

attributes. Instead, one example and two non-examples are shown;

and from this the students are to learn the concept.

An important relationship is:

The measure of an inscribed angle is one-half

the measure of the arc it intercepts.

PRINCIPLE: A statement that gives a relationship between inscribed angles

and their intercepted arc.

Figure 1. Analyzing the types of content in a textbook-like presentation
of a mathematical topic.
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PRINCIPLE LEARNING - REVISITED

Larry Sowder

Northern Illinois University

Principle learning unfortunately has not received much attention.
Some areas that invite exploration are given here, organized
around the initial, basic Zearning, of the principle, its incor-
ation into a memory network, and the improvement of its accessi-
bility and retention in the network.

Interview studies to ascertain how students are thinking quite often have re-

sulted in the dismaying realization that many students have at best a super-

ficial grasp of their school mathematics. Indeed, Davis (1984) refers to such

studies as "disaster" studies. Principles (relationships among concepts) are

the bases for understanding algorithms and play central roles in solving many
problems. It is clear that instruction in concepts and principles, the under-

pinnings for non-rote behavior, is falling far short of success.

Compared to concepts, principles have received much less research attention

(cf. Shumway, 1980), and there does not seem to have been much research on

principle learning as such in recent years. Hence, the following is a pot-

pourri from my outlook, rather than a review of research in the area.

THE BASIC LEARNING OF A PRINCIPLE

Kolb's model for concept learning (Shumway, 1980, pp. 269-274) almost begs that

a similar analysis be done for principle learning. No one seems to have

carried out such an analysis, perhaps because there are more types of moves

for principles (stating, justifying, instantiating, applying, for example -

see Cooney, Davis, and Henderson, 1975) and it is arguable what criterion is

most appropriate for principle learning.
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The learning of concepts through examples and counterexamples has its counter-

part with principles. Indeed, "discovery learning" is perhaps more appropriate

for principles than for concepts in that verification of results in discover-

ing a concept depends on someone other than the learner, whereas learners can

(at least in theory) check their hypotheses about a principle. From examples

alone, students could never be certain that their notion of the concept

"trapezoid" is the conventional one. On the other hand, generation and

checking of other cases can lead to a great confidence in, for example, the

principle about equality of measures of alternate interior angles with par-

allel lines. Hence, it is disappointing that discovery learning, with princi-

ple learning as the object, is no longer fashionable.

Discovery learning can be viewed as a subset of problem solving. What can be

easily lost under that view is attention to the claim that discovery learning

results in-greater retention. Do discovered principles fit into one's per-

sonal mental framework better than "told" principles do, and thus give greater

accessibility during memory searches? Such a question is unlikely to be asked

if problem solving, rather than principle learning, is the focus.

Is there a counterpart, for principles, to the notion of a rational set of

examples and counterexamples for concepts? That is, can one design a set of

instances and noninstances for a given principle which should equip the learner

to apply the principle to, and only to, appropriate places?

FITTING A PRINCIPLE INTO A MEMORY NETWORK

Most of us would hope that, eventually, a principle could be related to other

information and to new applications and problems. Most mental models recognize

that many pieces of information can be linked in one's mind, and are linked by

better-performing learners. Whether one calls such a network a semantic net-

work, a schema, a frame, a template, or a script, the disaster studies make

obvious that we need greater curricular and research attention to these net-

works. Either these networks do not exist for many learners, or the learners

are not calling on them.
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Are there "linking" moves teachers can use? What teacher actions, for example,

might lead a student to relate the principle to a great number of other con-

cepts, principles, applications, and problems?

Two aspects of the use of language seem worth examining further. (a) Would

greater use of small groups give richer networks in learners? Rather than the

learners relying only on the teachers' language, would the give-and-take pos-

sible in a small group (and at the learner's level of language), result in a

less rote-driven grasp of principles? (b) Is it helpful to have a label for

a principle, perhaps mnemonic in nature? School concepts have verbal labels,

of course, as do some principles, such as the Pythagorean and binomial theorems,

the "laws" from trigonometry, or properties like commutativity of multiplica-

tion. Occasionally one sees this idea used more extensively, as in Coxford

and Usiskin's BAIT label (for "Base angles of an isosceles triangle are con-

gruent") or their "side-splitting" label for a theorem about a line parallel

to one side of a triangle (1971). Do such labels help, for example, in

searching a network for a key to some problem, perhaps by giving a more "com-

pact" representation of the principle? This question overlaps into the next

section.

REMEMBERING A PRINCIPLE, AND MAKING IT ACCESSIBLE

Accessing concepts and principles already learned is often a key to solving

problems. (Perhaps it was extensive practice at accessing such information

that lay behind whatever success can be claimed for our pre-heuristics

approach to the teaching of problem solving: Do lots of problems.) Thus the

question of whether giving labels to principles would improve their accessi-

bility is of great interest. Are there other methods that might enhance the

accessibility of learned principles? Instruction at the time of the principle

learning might, be planned with later retrieval in mind. For example, a

teacher might merely state, "Whenever you've got a problem with a triangle and

angles in it, you should remember that the angles of the triangle add up to

180."
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Periodic review is usually accepted as necessary for remembering information

over the long term. Saxon's unfortunate advertising campaign may have obscur-

ed some promising information about the frequency of review that many be nec-

essary to maximize retention (see, e.g., Klingele and Reed, 1984, but con-

trast Swafford, 1984).

Finally (and applying to all aspects of principle learning) is the establish-

ment of a learner's intent to use, to remember, and to relate the principle.

The finding that the purpose of a lesson for some young learners is simply to

"get it done" is, lamentably, no doubt applicable to many older learners as

well ("Do students learn from seatwork?" 1982). With so much instruction in

mathematics centered on mastery of algorithms and generation of answers, it

is no wonder that many learners expect to rely on, and to need only, their

memories of "the way to do this kind" for all work in mathematics. Learner

expectations must be re-formed through a redirection of the curriculum to

higher-level thinking, perhaps through a genuine commitment to a problem-

solving emphasis.

REFERENCES

Cooney, T. J., Davis, E. J., & Henderson, K. B. (1975). Dynamics of teaching
secondary school mathematics. Boston: Houghton Mifflin.

Coxford, A. F., & Usiskin, Z. P. (1971). Geometry, a transformation approach.
River Forest, IL: Laidlaw.

Davis, R. B. (1984). Learning mathematics. Norwood, NJ: Ablex.

Do students learn from seatwork? (1982). Communication Quarterly, 5, 2-3.

Klingele, W. E., & Reed, B. W. (1984). An examination of an incremental
approach to mathematics. Phi Delta Kappan, 65, 712-713.

Shumway, R. J. (Ed.) (1980). Research in Mathematics Education. Reston, VA:
National Council of Teachers of Mathematics.

Swafford, J. 0. (1984). Critical abstract of Saxon's Incremental development:
a breakthrough in mathematics. Investigations in Mathematics Education,
17(1), 42-46.

En COPY AVAHA

318

19 LE



308

CONCEPT AND PRINCIPLE LEARNING

IN MATHEMATICS - REVISITED

Lee V. Stiff

North Carolina State University

Researchers seek superior instructional strategies for teaching
mathematical co::cepts an principles. A brief discussion of
teaching strategies research with emphasis on the Kolb .Yodel of
concert learning is presented here.

Henderson (1967) presented a taxonomy of teaching behaviors for

teaching math concepts based upon classroom observations.

Instructional dialogue between teacher and students were analyzed

into identifiable segments called "moves". Teaching behaviors

such as giving examples, providing definitions and comparing

characteristics are instances of moves. There are E moves

(giving examples or nonexamples) and C moves (stating analogies

or definitions).

Henderson's taxonomy provides a means for analyzing and defining

constituent moves of instructional dialogues. A sequence of

moves used to teach a concept is a teaching strategy. The type,

sequence and number of moves in a strategy characterizes the

strategy. A sequence made up entirely of E moves is an E
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strategy. A sequence of E moves followed by C moves followed by

E moves is an ECE strategy. Persumably, some strategies are

better than others.

Researchers have tried to identify teaching strategies

(Henderson, 1970) that are superior for teaching given

mathematical concepts. However, no such instructional strategies

have been identified (Cohen & Carpenter, 1980; Dossey, 1976,

1980; Dunn, 1983; Klausmeier & Feldman, 1975). Several

possibilities might explain why no superior strategies have been

found. Among these are (a) no real differences exist among

strategies, (b) the right combination of moves has yet to be

produced and (c) previous investigations have not been sensitive

to actual differences among strategies. In any case, the need

for a systematic approach to the problem of selecting teaching

strategies existed (Kolb, 1977; Tennyson, Chao & Youngers, 1981).

One such approach was the Kolb model (1977) of concept learning.

The model described the effects of strategies consisting of

either all E moves or C moves and the relationship between these

strategies while considering the learner's prior relevant

knowledge of the concept being taught and the number of moves

that made up the strategy. It was hypothesized that C moves

would be used more effectively by learners with high relevant

knowledge and that E moves would be more useful to learners with
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low relevant knowledge. In addition, it was reasoned that

increasing the number of moves in an E strategy would increase

the likelihood of learning the concept for learners with low

relevant knowledge more than for learners with high relevant

knowledge. In contrast, increasing the number of moves in a C

strategy would not significantly affect concept attainment for

learners at low or high relevant knowledge.

Gagne's (1970) type 6 and type 7 learning were used to define

concept attainment. Type 6 learning is characterized by a

learner's ability to sort instances of the concept, to produce

new examples of the concept and to generate an informal working

definition of the concept. Type 7 learning is characterized by a

learner's ability to comprehend an idea or message conveyed by a

verbal statement. Based upon the Kolb model it was hypothesized

that an E strategy induces type 6 learning and a C strategy

induces type 7 learning.

Several studies (Stiff, 1978; Weiger, 1978; Sikes, 1979) have

examined the Kolb model of concept learning. In general, these

studies support the hypotheses of the model subject to concerns

about the methodology used in each study. Relevant knowledge was

defined operationally in the studies in two ways: by exposure of

contrived concepts subordinate to the contrived concept to be

learned or by achievement on relevant knowledge tests
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administered to determine groupings of low, medium and high by

which learners could be identified. Using either method to

define relevant knowledge overlooks the learner's ability to

process written information, to memorize detail not to mention

the learner's I.Q. Number of moves as a factor in the studies is

not well-defined in that it has not been demonstrated that all

moves are equally effective in producing concept attainment.

For instance, a strategy of two example moves and one non-example

move may be more powerful than a strategy of two analogies and

one single characteristic move even though each strategy consists

of three moves.

Research in principle learning has received less attention than

research in concept learning (see Shumway, 1980).

Classifications of "moves" for principle learning (Cooney, Davis

& Henderson, 1975) may be useful to future research efforts,

particularly if the Kolb model of concept learning is significant

in explaining how students learn math concepts. There may be a

Kolbian model for principle learning that explains how students

learn the relationships among concepts that form mathematical

principles.
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RESEARCH METHODOLOGIES FOR CONCEPT AND PRINCIPLE LEARNING

Patricia S. Wilson

The Ohio State University

Rationalistic and naturalistic methods of inquiry are compared
and common criteria for rigor are discussed. Improving concept

learning research through triangulation is suggested.

Concept learning and principle learning are extremely complex. Researchers

in these areas have the task of finding, adapting or creating methodologies

that will probe the learner's mind and extend the present knowledge about

how concepts and principles are learned.

diSessa defines science as refined intuition. He explains that since science

is integrated, it is not as context dependent as common sense. There is a

depth and richness of intuitive knowledge that can be developed into scien-

tific thinking. We need "... to convey the sense of incredible complexity,

interrelation and depth of scientific knowledge as compared to commonsense

reasoning" (diSessa, 1985, p. 17). Although diSessa was addressing the

responsibilities of teaching science, his comments are relevent to research.

We need to construct better methodologies that will explore concept and

principle learning. The research techniques will necessarily be complex,

interrelated and probe deeply; research should not be as context dependent

as common sense.

RATIONALISTIC AND NATURALISTIC INQUIRY

Rationalistic inquiry is often conducted using quantitative methodology and

naturalistic inquiry is linked to qualitative methods. The separation does

not seem necessary since both methods can and should contribute to both

rationalistic and naturalistic inquiry.

Guba (1981) claims that rationalistic and naturalistic inquiry do differ
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in the following areas.

Philosophy

The rationalistic paradigm assumes there is one reality and that inquiry

can converge. For example, it is appropriate to single out one variable

for study and to combine information in order to approach truth. The

naturalistic researcher assumes multiple realities and that inquiry will

diverge as more is learned. Believing that all variables are related,

the study of one variable is senseless.

Quality Criterion

The rationalistic approach demands rigor and assures it by controlling or

randomizing variables. The naturalistic approach seeks relevance and looks

for external validity.

Source of Theory

Hypotheses and questions are generated and tested by researchers using a

rationalistic paradigm. Theory emerges from the data collected in a

naturalistic paradigm.

Knowledge Explored

Restricted by instruments and hypothesis testing, rationalistic researchers

operate at the level of propositional knowledge. Naturalistic researchers

are able to explore tacit knowledge such as intuitions, apprehensions, or

feelings that can not be expressed in language.

Instruments

In order to obtain objectivity, rationalistic inquiry uses instrumentation

that protects the subject from the influence of the researcher. Naturalistic

researchers use themselves as instruments in order to gain flexibility and

insight.

At first glance, these differences seem to make the two paradigms completely

incompatible. Closer inspection offers some possibilities for collaboration.

For example, naturalistic inquiry generates theories and rationalistic inquiry

tests hypotheses. The fit seems natural, but we should not stop with this

limited effort to combine two powerful ways of investigating learning.
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CRITERIA OF RIGOR

In order to draw knowledge from different paradigms, there must be a system

of measuring accountability and a vocabulary that accomodates both systems

of inquiry. Guba and Lincoln (1981) suggest that the following tests of

rigor are appropriate for both rationalistic and naturalistic inquiry.

Truth Value

How do you establish confidence in the "truth" of the findings in the given

context? Rationalistic inquiry uses measures of internal validity and

naturalistic inquiry uses measures of credibility.

Applicability

How do you determine how well the findings apply in another context or with

other subjects? Rationalistic inquiry seeks external validity and general-

izability, and naturalistic inquiry focusses on transferability.

Consistency

How do you determine if the findings would be consistent if the inquiry were

replicated? Realiability is an important criterion for rationalistic

researchers. Naturalistic researchers believe that instability is natural

making the task of measuring consistency difficult. They measure depend-

ability which includes both stability and trackability of explainable changes.

Neutrality

How do you determine to what degree the findings are related to the subjects

and context and to what degree the researcher influenced the inquiry? The

rationalistic researcher strives for objectivity. The naturalistic researcher

looks for confirmability which shifts the focus from the investigator to the

data.

TRIANGULATION

Triangulation is the combination of methods in order to study the same

phenomenon. The term came from the navigation practice of using geometry and

multiple viewpoints to improve the accuracy of a course. By employing differ-

ent paradigms and different methods, we can improve the accuracy of research

in concept and principle learning. "Triangulation may be used not only to

to examine the same phenomenon from multiple perspectives but also to enrich
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our understanding by allowing for new or deeper dimensions to emerge" (Jick,

1983, p. 138)

In the theory, triangulation offers the possibility of interfacing much of

the current rationalistic research in concept acquisition with the more

naturalistic research in how knowledge is constructed by various individuals.

There are problems to overcome. The theory assumes that the weaknesses of

a particular method will be compensated for by another method. We must be

certain that combining methods increases the assets rather than compounding

the liabilities. We must also guard against artifically using one paradigm

as an add-on to strengthen weak findings from a poorly conceived study.

Pragmatically, we must consider how to implement triangulation. At the

present time there is limited information on how to proceed. Most researchers

have been trained in one method and are fairly naive about other options.

Journals tend to specialize in one methodology and discourage mixed-breed

research. Since vocabulary differs between paradigms, even informal

communication is difficult.

Jick (1983) offers some reasons for pursuing the possibilities of triangula-

tion. If the different methods of research present convergent findings, the

researcher has greater confidence in the truth value of the research. If

the combined research presents divergence results, the researcher is

challenged to alternative and more complex explanations. Diverse theories

may spawn innovative methods of inquiry. By integrating multiple methods,

researchers become more sensitive to all the issues of a study.

IMPLICATIONS

In concept and principle learning research, we can begin to address the

pragmatic needs of using multiple methods by explicitly defining terms we

use as well as methods of investigation. Research programs can be networked

so that a variety of research teams approach the same problem with different

methodologies. Individual research projects should include qualitative and

quantitative phases. Research reports need to discuss fully the limitations
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of studies. As we create new methods of inquiry and data analysis, we must

maintain high standards of rigor that are mutually respected.
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SYMPOSIUM: THE MULTIFACETED COGNITIVE DOMAIN OF
ADOLESCENTS AND ADULTS: IMPLICATIONS FOR TEACHING MATHEMATICS

Organizer: Dorothy Buerk, Ithaca College

Presenters: Dorothy Buerk, Ithaca College

Roberta Dees, Purdue University Calumet

Margaret Farrell, State University of New York at Albany

Janet McDonald, State University of New York at Albany

Discussant: Joan Mundy, University of New Hampshire

The symposium will focus on the cognitive domain of adults and adolescents

and on the issues that are unique to this age range and that are raised by

our diverse work. Once people develop the abilities to think abstractly

and come in contact with the complexities of the world of mathematical

ideas, the research questions and research issues change dramatically from

those posed for younger learners. We will look at particular reasoning

abilities of adolescents and young adults, students' views of mathematics

as a field of knowledge, the way students apparently structure their know-

ledge, and the impact of cooperation on learning. We are concerned with

what students bring to the learning situation in each of these areas and

have both quantitative and qualitative data to present. We have chosen

diverse theoretical frameworks to look at different facets of the cognitive

domain. We are particularly concerned with the implications for teaching

and learning and for'curriculum modification that could result from this

research.
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ADULT CONCEPTIONS OF MATHEMATICAL KNOWLEDGE*

Dorothy Buerk, Ithaca College

My research with adult women and college students of both genders, most

of whom would prefer not to be in mathematics classes, has shown that for

many of these people mathematics is a collection of right answers with

correct methods and exact symbols. While this may be secure for those who

can correctly use the symbols, it is devastating for those who cannot. For

them the struggle is to memorize symbols and processes that have no meaning.

As the symbol systems and processes become more complex, they become more

difficult to memorize. For these people, mathematics becomes sheer magic,

a magic of which they are in awe, but a magic which they cannot perform.

A woman colleague, not in mathematics, expresses this view of mathematics

in a creative and delightful way:

On the eighth day, God created mathematics. He took stain-

less steel, and he rolled it out thin, and he made it into

a fence, forty cubits high, and infinite cubits long. And

on this fence, in fair capitals, he did print rules, theorems,

axioms and pointed reminders. "Invert and multiply." "The

square on the hypotenuse is three decibles louder than one

hand clapping." "Always do what's in the parentheses first."

And when he was finished, he said "On one side of this fence

will reside those who are good at math. And on the other

will remain those who are bad at math, and woe unto them,

for they shall weep and gnash their teeth."

Math does make me think of a stainless steel wall--hard,

cold, smooth, offering no handhold, all it does is glint

back at me. Edge up to it, put your nose against it, it

doesn't take your shape, it doesn't have any smell,

This work was supported by the Mina Shaughnessy Scholars Fund of the Fund

for the Improvement of Postsecondary Education.
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all it does is make your nose cold. I like the shine of

it--it does look smart, in an icy way. But I resent its

cold impenetrability, its supercilious glare. (In Buerk,

1982)

Her words serve as powerful metaphor for me and indicate clearly two very

distinct issues which are problematic for many as they experience math-

ematics. One issue is the view that mathematical knowledge is absolute

and all known. The second concerns the desire to find a way to make a

connection with the material in some personal way--to gain a "handhold."

MATHEMATICS AS ABSOLUTE KNOWLEDGE

Many people I meet, in and out of my classroom, believe that mathematics

is made up only of rules, formulas, and proofs to be memorized; skills to

be practiced; and methods to be followed precisely. They believe that math-

ematics is a discipline where certainty is secure; where all questions have

answers which are known to authority (mathematician, professor, TA, text-

book); where memorization, hard work, and some mystical quality called a

mathematical mind are required.

This conception of knowledge is called "dualistic" by psychologist William

G. Perry, Jr. (1970, 1981). His theory of intellectual growth suggests a

sequence of ways that college students and adults view knowledge. His

theory gives us a frame of reference to use in interpreting this conception

of mathematics as a field of knowledge. He defines dualism as:

Division of meaning into two realms--Good versus Bad, Right

versus Wrong, We versus They, All that is not Success is

Failure, and the like. Right Answers exist somewhere for

every problem, and the authorities know them. Right Answers

are to be memorized by hard work. Knowledge is quantitative.

Agency is experienced as "out there" in Authority, test scores,

the Right Job. (1981, p. 79)
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This dualistic view of mathematical knowledge was made very clear to me

recently. In a class discussion on exponents, an eighteen-year-old fresh-

man told me that exponents were added when multiplying factors with the

same base. I asked him way. He said, "That's the rule." I asked him why

the rule said that. "It just does," he replied, "it's the rule I was

taught." But "why?" I asked again. He looked at me very seriously and

asked, "You mean there's a reason?"

A woman whom I have interviewed indicates that her dualistic view was

reinforced by her teachers.

I think of math problems or situations as having right and

wrong answers (very black and white), but having a variety

of ways to reach the answer. Unfortunately, my math teachers

never stressed the fact there could be more than one way to

approach a problem. For this reason, and there are other

reasons, I do not see math as a "creative activity." It is

most definitely not linked to language, or music, or the

other humanities. (In Buerk, 1981)

MATHEMATICS AS AN INHUMAN CREATION

The colleague I quoted earlier does not recognize the "person-made" quality

of mathematics, but views the knowledge as handed down as if by God, as a

finished product--a view that prevents her from finding a way to relate to

it. She finds, therefore, that mathematics "offers no handhold," "it

doesn't take your shape." Even those of my colleagues and students who do

acknowledge that mathematicians create mathematics believe that the proofs

that verify mathematical statements come out of the heads of mathematicians

full - blown- -like Athena from the head of Zeus. They believe that the

succinct, formal statements which clarify mathematical ideas represent the

way the minds of mathematicians work. (See Buerk, 1985a.)
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STRATEGIES TO ENHANCE MEANING MAKING

In my twenty-five years of teaching in various settings (two-year college,

four-year private college, state university division of continuing educa-

tion, experimental high school, overseas military base, maximum security

correctional facility, and individual tutorials with women) I have developed

strategies to help students to move away from a dualistic view of mathematical

knowledge, to become aware of the person-made quality of mathematics, and to

develop confidence in their own ability to do mathematics. These strategies

include: placing topics in their historical context, acknowledging and en-

couraging alternative methods and approaches, encouraging collaboration in

mathematics learning, making concerted attempts to avoid absolute language,

offering opportunities for students to reflect on paper about their ideas

and feelings about mathematics. (See Buerk 1985b for a complete listing

of these strategies.)

These strategies are the basis for intervention programs I developed to

change the conception of mathematical knowledge in adolescents and adults.

With the change in conception of knowledge come changes in confidence and a

reduction in mathematics avoidance. Individual experiences from a study of

adult women (Buerk 1981, 1982), a writing seminar in mathematics, and a

basic skills course will be presented.
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HOW DOES WORKING CO-OPERATIVELY HELP STUDENTS
IN INCREASING PROBLEM-SOLVING ABILITY?

Roberta L. Dees
Purdue University Calumet

This paper describes a clinical study, or teaching experiment,
conducted during spring semester, 1985, in a pre-algebra de-
velopmental mathematics course to explore how college students
work together to solve word problems. While co-operative
learning may yield gains in students' higher cognitive thinking,
the attitudes of students may inhibit true op-operation. In
this study we attempted to investigate and address these atti-
tudes and to develop a reoordkeeping system to simplify the
management of a co-operative classroom.

There are several definitions of co-operative learning. In one

approach (Slavin, 1980), students work in teams to master mathe-

matics content, sometimes competing with other similar groups.

Within groups, students work individually on their own learning

goals, assisting each other by checking work, drilling each other

and tutoring when possible. In the other major approach (Johnson

and JOhnson, 1975), students work together on the same learning

goal and produce one end product or solution. In this method,

students perceive that they can attain their goals if and only if

other team members also attain theirs. This method, using co-

operation as a mode of learning, is the intended one in this study.

Some studies seem to indicate that the greatest benefit of the

co-operative method may accrue in complex tasks, such as concept

learning and problem solving (Cohen, 1982; Dees, 1983; Sharan and

Hertz-Lazarowitz, 1980; Webb, 1978).

In discussing the nature of learning in small groups, Webb (1982)

reviews four studies on student interaction and achievement in

mathematics. Students were in seventh, eighth, ninth and eleventh
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grades. Giving and receiving help were categorized as either

explanations or terminal responses (giving the correct-answer

with no explanation or pointing out an error with no explanation

of how to correct it). Webb found that giving explanations was

beneficial for achievement but giving terminal responses was not.

Furthermore, receiving explanations tended to be positively re-

lated to achievement but receiving terminal responses and re-

ceiving no response to a request for help were detrimental for

achievement. Webb observes that the composite variables "giving

help" and "receiving help" may not be meaningful, since the posi-

tive and negative components of each may cancel each other.

The questions raised by the studies include the following: How

does working co-operatively help students in increasing their

skill in problem-solving? Does it matter which students work

together? How can an instructor observe and record the way in

which students work together?

In a teaching experiment, the researcher works intensively with

a small number of students. Attempts are made to modify and up-

date the procedures as the experiment yields information.

THE TEACHING EXPERIMENT

Students were 14 adults in an intact developmental mathematics

class at Purdue University Calumet. The course consists of two

8-week segMents, Arithmetic Skills and Pre-Algebra Problem-

Solving Skills. Students were given a battery of diagnostic

instruments at the beginning of the semester. The class meets

6 hours per week; about half is lecture-discussion and the rest

is laboratory, in which students are working individually, with

partners, or in small groups, with the help of the instructor

and/or teaching assistant.
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Data was kept about how many times students worked together, with

whom, and who had which role (Helper, Helpee or relative equals).

Efforts were made to see that everyone had an opportunity to

work with everyone else in the class and to play different roles,

sometimes helping and sometimes being helped. Shortly after mid-

term, students were interviewed individually concerning their

progress and how they viewed working together, especially in

solving word problems. The interviews typically took a half-

hour or more and were audio-recorded.

RESULTS AND FINDINGS

We developed a chart (Figure 1) which is fairly easy to maintain

and which holds information about who has worked with whom, how

often, etc. The instructor can enter the initials of a student's

partners or group members. We entered a "+" when we thought a

person's role was primarily that of a Helper, "-" when the per-

son seemed to be basically a Herpee, and nothing if we weren't

sure or they seemed to be equal. The "working together" record

should be on a separate sheet from the grade book because of the

space required; we used pages from large bookkeeping ledgers.

After a few weeks we could tell at a glance whether someone had

always been absent when we had co-operative activities or with

whom students had worked.

C,11 If ?) i/A .A42. P/S-
1Carol Anderson CP I7 JM

Lisa Andretti YOJ
rR
t.

Chris Doolittle 5-M C (J 47

NZ 141 EHBennie Griffith

V I. 1
'st.
.40 ZI 1.

..;

!

:,
Z ol Figure 1 1.10
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From observations and interviews, formal and informal, we re-

ceived some insights.

I. Most of the students in developmental classes can be placed

in one of the following two categories:

A. Highly motivated, often mature students. They are high

in drive and ambition, but may be low in skills and confidence.

B. Unmotivated, directionless, often just out of high

school or unemployed. Sometimes they are being sent to school

by parents or others.

When students were required to work together, certain generaliza-

tions can be made about their reactions. Group A students were

independent persons, determined to master the material. They did

not mind helping others, once they felt confident that they un-

derstood it themselves and as long as the person to be helped

wanted their help. They usually were not eager to co-operate

with someone that they felt was not serious about the task at

hand. Group B students, though sometimes lazy and apathetic,

usually enjoyed the interaction and attention they received in

the group (or from a partner); they usually responded to being

helped by trying to hold their endsup. They sometimes took a

passive role, merely copying the leader's solutions. They did

not initiate much, but often assumed the role of cheerleader,

encouraging or complimenting other students who made suggestions.

II. The students helped me arrive at models (shown in Figure 2)

to illustrate what they had been doing and what I was asking

them to do. Model I shows working in a co-operative manner,

while Model II shows the results of actually working together,

or us ing co-operation as a learning mode. We observed that in

this class, Model II was used only when I required it. (This

was accomplished by giving teams one answer sheet among them so

that they were forced to collaborate; simply asking them to work
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Figure 2

Model II

Student R Student S

One

joint

solution

together tended to produce only Model I behavior.) During the

interviews we discuss the reasons for this; students often cited

their previous training to "keep your eyes on your own paper,"

especially in mathematics classes.

III. With regard to questions raised earlier, I make the follow-

ing conjectures:

a. Working co-operatively forces students to actually attend to

the problem at hand. Peer pressure to help is motivational.

b. Discussing what the problem means clarifies it for the speaker

as well as the listener.

c. Women in remedial or developmental matheamtics courses are

often lacking in confidence; working together seems to increase

their confidence. Peers in the class were lavish with praise
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when someone did a good job. Also, the women seemed to either

not mind or actually relish the helping role. Thus, in trying to

help others, they were also helping themselves.

d. Students generally do not know how to work together; they

need instruction in this. Also, by sometimes choosing who works

with whom, the instructor can assure that students sometimes

have the role of Helper, sometimes of Helpee.

IV. No harmful effects of the co-operative method were observed:

In addition to the usual affective benefits expected, I believe

that the co-operative method has great potential for helping

students to learn difficult mathematics concepts.
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COGNITIVE DEVELOPMENT AMONG ADOLESCENTS AND YOUNG ADULTS

Margaret A. Farrell

State University of New York Albany

The studies referred to in this paper were completed by doctoral students or

faculty at the State University of New York Albany over the period from 1980
to 1985. Cognitive development of adolescents and young adults was one of

several variables studied by these researchers who were investigating

curricular or instructional issues in mathematics or science education. In

most cases, the kind of reasoning demonstrated by the subjects in response

to particular measures was the central issue for these researchers, rather

than claesfication of subjects by stage.

INSTRUMENTATION

Several group classification instruments were used across more than one

study. These merit particular attention here. Mr. Tell and Mr. Short

(Earplug, Lawson, Wollman, Appel, Bernoff, Howe, Rusch & Sullivan, 1917)

measures first-order direct proportional reasoning. A second commonly used

group instrument was Longeot's Test of Formal Reasoning (Longeot, 1962,

1964). From a mathematics teacher's point of view, Longeot's three subtests

assess one of the following: proportional or probabilistic reasoning,

hypothetico-deductive reasoning, or reasoning about permutations and

combinations. The third commonly ueed group test was the Test of Logical

Thinking, or the TOLT (Tobin and Capie, 1981). The TOLT consists of ten

items, two each designed to assess one of five reasoning abilities:

proportional reasoning, controlling variables, probabilistic reasoning,

correlational reasoning and combinatorial reasoning.

Three of the fifteen Inhelder and Piaget (1958) tasks were used in more than
one study. These were the Chemical Solutions, the Bending Rods and the

Projection of Shadows tasks. They were designed to measure combinatorial

reasoning, controlling variables and proportional reasoning, respectively.

In Table 1, each of these common measures is listed with the kind of
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reasoning which it appears to assess. Decisions on the reasoning

classifications were reached on the basis of achievement test results

matched with performance on the measures and assessments of construct

validity, when available, rather than on the author's title of the measure.

For example, Longeot used the label "test of combinations" for a set of

problems which include permutations and combinations. Further, even the

combination items do not fully test combinatorial reasoning which is more

complex than merely listing, in a patterned way, all the possible

combinations in some finite set.

Table 1
Kind of Reasoning Assessed by Each Measure

Instrument Reasoning

Tall-Short Puzzle Assesses first order direct proportional reasoning
(metric) and understanding of non-standard unit.

Volume Puzzle Designed to assess effect of submerging different
weight, but same volume, ball in water. May assess
recall of relationship from science class.

Mealworm Puzzle Requires understanding of controlling variables and
ability to analyze design.

Longeot-Logic Assesses ability to reach an appropriate conclusion
given premises in story form.

Longeot-Proportions Requires ability to choose the more likely of two
situations--each described in terms of two factors.

Longeot-Combinations Assesses ability to count or list different orders
(permutations) or different collections (combinations)

Chemical Solutions Assesses ability to recognize all possible combina-
tions and to use the results to decide next steps or
to explain pairs of results.

Shadows Assesses qualitative direct and inverse proportions and
metric joint proportion in four successive subtasks.

Rods Assesses understanding of controlling variables.

TOLT Two items each assess proportional, probabilistic, cor-
relational and combinational reasoning, and controlling
variables.
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There will be no attempt in this summary to include detailed information on

the reliability or the validity (construct, predictive,...) of the cited

measures. Nor will detailed information on test administration, interview

training, administration and test scoring be included here. Such

information is available in the original references.

RESULTS FROM STUDIES

A summary of the results of those studies which used one or more of the

measures listed in Table 1 is included in Table 2. The students in each

sample were classified in the Piagetian vernacular, as concrete operational

(CO), transitional (TR) or formal operational (FO). In some cases, further

data on student strategies and error patterns wore analyzed and may be

found in the original source. For the purposes of this report, the code

(F0) found in Table 2 always indicates success on the type of reasoning

assessed by the measure. The code (CO) always represents, at best,

performance characterized by reliance on trial and error approaches,

inductive reasoning and dependence on concrete experiences or familiar

objects or events. The code (TR), as one would expect, represents behavior

developing from early concrete operational to full or late formal

operational. In some of the paper-pencil tasks, TR may include both late

concrete operational and early formal operational behaviors. On the

Projection of Shadows task, scoring allows for both early and late,

concrete (ECO and LCO) and formal (EFO and LFO) operational.

In addition to the summary in Table 2, all' researchers provided other data

on students' performance on tests of mathematical reasoning and

achievement. In his study of instructional modes at the college level,

Pluta (1980) tested student achievement on unit emphasizing mathematical

structure. Pluta found that for students classified as TR or FO,

mathematical learning was enhanced by instruction which incorporated active

manipulation of physical objects and an inductive approach While CO

students were unable to achieve a satisfactory level of understanding,

regardless of treatment. In a study of the validity of several paper-

pencil measures, Farmer, Farrell, Clark & McDonald (1982) administered
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three original Piagetian tasks, the Chemical Solutions, Projection of

Shadows and Bending Rods (Inhelder & Piaget, 1958). Only the data for the

Shadows is displayed in Table 2. Results for all three tasks are given in

Table 3.

Table 2

Percentages of Students Classified on Measures by Study
Tall -

Study Short Volume Mealworm Longeot TOLT Shadows

Pre-Service
El. Teachers
Flute (1980)

(N=48)

C0 =40

TR=31
F0=29

9/10th Grade (8=506) (8=506) (N=506) (N=506) (N=69)
MSC Ss
Farmer CO=65 CO=39 C0 =87 CO=34 ECO=10
et. al. F0=35 F0=61 F0=13 F0=66 LC0=86
(1982) EFO= 1

LFO= 3

10th Grade (N=150) (N=136)
Geometry
Ss McDonald C0 =19 C0 =33
(1982) TR= 0 T11=30

F0=81 F0=37

Nigerian (N=99) (8=99)
Form 3 Ss
Fajemidagba C0 =84 C0 =84
(1983) F0=16 TR=16

FO= 0

Gifted (N=30) (8=30) (8=30) (8=30)
Middle
School Ss C0 =13 C0= 0 C0 =20 ECO= 0
Farmer F0=87 F0=100 F0=80 LCO =74
(1983) EFO= 3

LFO =23

10th, 11th (N=901) (N=128)
12th MSC Ss
Farrell and ECO=26 ECO= 4
Farmer LC0=21 LC0=72
(1985) F0=53 EFO= 7

LF0=17
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Table 3
Percentages of Students Classified (8 . 69) on Three Inhelder and Piaget
Tasks

Task
Classification Chemicals Shadows Rode Total

Concrete 76.8 95.7 63.8 84.1
Formal 23.2 4.3 36.2 15.9

McDonald (1982) obtained estimates of students's cognitive structure with

respect to the topic of similarity and compared these with the ways experts

and their own teachers structured the similarity material.

Fajemidagba (1983), in a study of achievement on ratio and proportion

problems, found that TR students succeeded on first order direct proportions

when the items included concrete referents and real world examples. In a

study of reasoning displayed by gifted middle school youngsters, Farmer

(1983) gave data for each of the reasoning areas purported to be assessed by

the TOLT (Table 4).

Table 4
Frequency of Success of Gifted Middle School Students (8 o 30) by TOLT
Reasoning Sections

ReaeoninR Path Items Exactly One
Neither
Item

Proportional 22 4 4

Controlling Variables 23 1 6

Probabilistic 20 7 3

Correlational 15 12 3

Combinatorial 12 10 8

In order to follow up questions raised by performance on proportionality in

several of these studies, Farrell and Farmer (1985) designed a study which

focused on older students with more course experience in mathematics and

science and evidence of success in the area of direct proportions.

Students (8 . 901) enrolled in tenth, eleventh or twelfth grade college-

bound mathematics and/or science classes were administered Tall-Short. From

the successful group of 474 students, a random subsample of 128 was

interviewed on the Projection of Shadows task. (Table 2) The responses of

the subsample were analyzed to identify the effects of feed-back and second
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trials and the effect of centering on direct proportions. It is especially

revealing to note that only 7 of the 22 late formal students succeeded on

the first trial for each subtask. Thus, feedback and the opportunity to try

again were necessary so that these students could demonstrate their optimal

competence.

ISSUES

An examination of the reasoning patterns listed in Table 1 shows that all of

these are of concern to mathematics and science educators. A command of

most of the reasoning strategies is necessary for meaningful learning of the

typical mathematics curriculum required at the grade levels tested. What is

particularly disturbing is the level of performance of college-bound

"advanced" students. To what extent is the cognitive development of these

students being retarded by the curriculum, instructional approaches or the

usual classroom tests of learning? Are teachers' erroneous expectations of

students' competence contributing to the failure of otherwise capable

students to develop higher cognitive skills? These are some of the issues

to be raised in the symposium.
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STABILITY OF COGNITIVE STRUCTURES AND RETENTION
OF GEOMETRIC CONTENT RELATIVE TO COGNITIVE STAGE

Janet L. McDonald
State University of New York at Albany

This study was designed to investigate the stability of cognitive
structure of content by comparing cognitive 'maps' generated by high
school geometry students with those generated by the same students
one year earlier and to determine the impact of structural differences
on long-term retention of the subject matter. The results of the
analysis indicated that the content structures created by subjects
who were formal operational when they learned the material were
significantly more stable than those who were concrete at the time of
instruction. Those same subjects also retained significantly more
geometry content.

INTRODUCTION

In a previous study, this researcher investigated the role of cognitive stage

in the development of cognitive structures of geometric content (McDonald,

1982). That research indicated that cognitive "maps" of geometric content

formed by formal operational subjects were significantly more like those of

subject matter experts than the maps formed by concrete operational subjects.

The purpose of the present study was to investigate the stability of those

cognitive structures by analyzing the cognitive maps of the same subjects one

year later, and to determine the impact of structural differences upon the

long-term retention of subject matter content. If the significant differences

between formal and concrete operators in the previous study were based upon a

reliance of the concrete operators on "rote" memorization, then re-examination

of the same subjects at a later date should yield significant differences in

both the structural stability and subject matter retention as a function of

cognitive stage.
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METHODOLOGY

Subjects: Subjects consisted of the 40 subjects from the previous study drawn

from .a pool of 161 tenth grade "Regents" geometry students from a suburban New

York State school. Twenty had been classified as concrete operational and

twenty had been classified as formal operational.

instruments: Classification of subjects was accomplished through the use of

Sheehan's (1970) adaptation of the Longeot Test of Formal Operations (1964)

and the Test of Logical Thinking (TOLT; Tobin & Capie, 1981). The instrument

designed to map expert and student structure consisted of a similarity

Judgment task built from 13 terms chosen from the similarity unit in

geometry. The subjects were directed to make pairwise similarity judgments

for each of the 78 combinations of terms by assigning a number representing

the degree of relationship. Patterns of cognitive structure were obtained

through multidimensional scaling analyses of the similarity judgments. An

expert target matrix, formed by consensual agreement among six mathematics

educators, was used as a model of the subject-matter structure and as a basis

of comparison with corresponding student structures of the same content. All

subjects were also given a test on geometry content.

Procedure: Students were administered the similarity judgment task one year

and one week after the original administration. Students were requested to

make each of their judgments considering the relationship of the terms in the

similarity unit. One week later, students were administered the content

instrument. They were requested to make an attempt to complete each question

even if they felt that they might have forgotten the material from the

previous year.

DATA ANALYSIS AND RESULTS

Data Analysis: Each student's matrix of proximity judgments was standardized

and distance coefficients were determined for each pair. The resulting

distance matrices were subjected to nonmetric multidimentional scaling

analysis using a four-dimensional MDSCALE solution. The new student maps were

then compared to the original expert and student maps. The rank order

BEST CUPY AVAILABLE 350



McDonald 340

correlations between each of the students and the target matrices were

determined, converted to z-scores, and tested for significance using a

one-tailed t-statistic.

The content unit test was scored by assigning partial credit to the numerical

problems and to the proofs. Total raw scores and subtest scores were

standardized and correlated with the target correlation scores from the

MDSCALE analysis.

Results: The results of the analysis of the stability of structure indicated

that the structures of the formal operational subjects were significantly more

stable (t(38) . 5.25, p .001) and remained significantly closer in structure

to subject matter experts (t(38) = 6.36, p .001) than those of the concrete

subjects. The formal operational subjects also retained significantly more

content than the concrete operational subjects (t(38) = 2.68, p .01). On

the True/False subtest of the content test, the two groups showed no

significant difference. Differences on the numerical problems were

significant at the .025 level (t(38) = 2.56). Differences on the proof where

students only filled in the reasons were significant at the .01 level (t(38) =

2.55) while differences in the proof where students supplied both statements

and reasons were the most significant (t(38) = 3.66, p .0005).

DISCUSSION

Figure 1 shows a composite of three cognitive maps. The expert map was

derived for the original study and used for this analysis as well. The

vertical dimension represents a range of equality, the positive pole being

most equal quantities and the negative pole being least equal quantities. The

horizontal axis represents the whole versus part dimension with whole figures

at the positive extreme and their parts at the negative extreme.

In comparison to the expert map, the prototypical concrete map from the

initial study (not shown) was much more confused and compressed on the whole

versus part dimension and indicated a general confusion of several significant

terms. As shown in Figure 1, the prototypical concrete group member during

the follow-up study, departs even more drastically from the expert map. Here

most similarity in dimensionality to the expert map is lost.
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The prototypical formal representations from both studies more closely

approximate the expert target than either of the concrete maps. Although a

certain amount of clustering of terms resulted in a compression of the axes

for these subjects during the follow-up study (Figure 1), the extreme

clustering apparent in the concrete maps is not as prominent.

The lack of significant differences in the True/False items is probably due to

the guessing factor and their relatively simple content. That less

statistically significant differences were found in the numerical problems

than in the proofs is probably a result of their being algebraic in nature.

The general inability of concrete students to be able to successfully complete

the proofs is a factor correlated significantly to the lack of an integrated

structure representing the interrelationships of the required concepts. The

concrete subject was unable to relate terms outside of the given cluster to

terms within the cluster, and it is these types of interrelationsips that are

the basis of proof.

CONCLUSIONS AND IMPLICATIONS

The combined findings of these two studies would indicate that there are

inherent qualities in the content of high school geometry which make it

extremely difficult for certain students to develop meaningful cognitive

structures of its concepts. As a result, it appears that these students may

be forced to learn the material by rote methods, resulting in unintegrated

cognitive structures and lack of retention. To promote the cognitive

development needed, changes in instructional methods, modes, and strategies to

match the cognitive developmental level of the student would seem mandatory.

The results are also indicative of the importance of consideration of the

reciprocal implications between knowledge representation and general control

strategies as students develop an understanding of any abstract domain.

Efforts to understand the acquisition of knowledge might benefit from

application of a control systems framework or from the use of microcomputer

simulation and graphics.
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SYMPOSIUM: LOGO AND MATHEMATICS LEARNING
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Reactors:
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Since its inception, Logo has been touted as more than a

computer language; it has been offered as a learning

environment. Unlike the use of the computer as a support to

instruction, the Logo environment has been presented as one in

which the student is free to create his own world--not only to

solve problems but to pose them as well. The appeal of this

kind of promise for mathematics education is very strong.

Many questions arise when considering Logo and mathematics

learning. Is the promise something that can be fulfilled? Are

there special aspects of the Logo environment that create

opportunities for investigating mathematics learning that other

environments do not provide? This symposium will address a wide

range of questions associated with Logo and will, with the

contributions of other conference participants, spark

discussions of many others.
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Logo Geometry: Ego Syntonic?

Susan Blair Ludwig

Thomas E. Kiereh

University of Alberta

This study represents one test of a proposed theory
which specifies levels of Logo use and relates such
levels to the way van Hiele levels of geometric think-
ing. A motion geometry curriculum modelling this
relationship was developed and validated. Two heter-
ogeneous classes of students used the curriculum. A
sample of 10 students were studies for 2 eighty min-
ute periods a week for eleven weeks. An analysis of
videotapes of these students working in pairs revealed
the following: students who were at the Basic level
in geometry were able to do sophisticated things in
Logo mostly in direct mode. Naive procedure writing
in Logo appeared to foster students knowledge of
geometric properties. These students appeared able
to transfer the'knowledge to paper/pencil tasks and
satisfactorally met the geometric objectives through
the Logo use.

1. Background to the Study

It was the purpose of this research and is the purpose of this

report to explore the ego syntonic nature of motion-geometry in a

Logo environment. Ego syntonic geometry is taken here to mean

geometry derived from and matched to the natural idea development

of the learner. Thus, although experiences are provided, the

kind of concept and level of language used is determined by the

learner. So the question is, in what ways and to what extent is

Turtle geometry ego syntonic (Papert, 1980)?

The van Hiele theory (Wirzup, 1976, Hoffer, 1983) presents one

way of looking at geometry stratified in levels which match the
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perception/thinking process of the learner. Briefly stated these
levels are: Basic Level: The objects are seen as wholes and are

recognized by appearance alone. Level I: The objects are seen

as carriers of properties which are not yet related. Level II:

The objects are seen in terms of logical relationships among pro-

perties and among figures. Level III: The objects represent re-

lationships which are deducible from an axiomatic system. This

development occurs through learning, the process of which in-

cludes five phases: information, directed orientation, explan-

ation, free orientation and integration. In these terms, Turtle

geometry is ego syntonic if these levels and processes are evi-

dent in student Logo geometry activities.

For this to be the case it would seem that there should also be

levels in Logo use. Martin, Paulsen and Prata (1984) have sug-

gested such levels of Logo programming exist and Kieren (1984)

has suggested the instructional structure for Logo used in Fig.

1 below.

Kieren and Olson (1983) saw a link between the van Hiele levels

and levels of Logo use also illustrated in Fig. 1 below.
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Direct
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Naive

Planned
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van Hiele Levels

3 c) families of procedurese-
_plevel II

4. Structure oriented

4 a) variables

4 b) driver programs

4 c) sub procedures

4 d) tool recursion
Strong

5. Inc oriented

5 a) a:tel.:led recursion

5 b) advanced logical prenutives

5 0 advanced list procedures

Connections

Lesser
Connection

Figure 1

From this perspective geometry using Logo appears matchable with

van Hiele levels and is thus ego syntonic in that sense.

To date there is some evidence of the levelled nature of Logo in

the work of children. For example, Hillel (1984) observed that

although children (8-9 years old) were encouraged to pre-plan

Logo work after an initial period of introduction to Logo pro-

cedures most functioned at Levels 1 and 2 above, writing proced-

ures mainly as a device to save lists which accomplished tasks.

Even those who appeared to be at Level 3 and pre-planned pro-

cedures reverted to a lower level (screen debugging) when pro-

cedures didn't work as planned.

There have been related findings in research on van Hiele theory.

For example, Burger (1985) notes that even high school students
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do not use properties to define geometric situations even though

they might memorize adult or text given definitions or proofs.

To explore the ego syntonic nature of Logo based geometry and to

test the relationship between Logo use and van Hiele levels theo-

rized as signalling such nature a teaching study with the follow-

ing purpose was done.

(1) Can one develop a set of experiences entailing Logo use

at the Grade 7 level which allow for van Hiele levels

and processes in student behaviour?

(2) In working in such an environment what are the Logo and

geometric behaviours of the students?

(3) Are these behaviours consistent with the level theory in

Figure 1 above?

(4) In what way does this curriculum facilitate movement

from one level of Logo use or geometric thinging to the

next? What are the evidences of such movement?

2. Research Procedures

2.1 Sample

Two heterogenous grade seven mathematics classes in an

Edmonton junior high school were involved in the project.

The work and progress of ten students, six in one class and

four in the other was closely monitored, although all members

of the classes were involved in the project.

2.2 The Curriculum

Following the principles for van Hiele geometry described in

Hoffer (1983), a curriculum following the Grade 7 objectives

for motion geometry and involving Logo activities was devised.

The following major topics in motion geometry were covered:

translations, rotations and reflections. For each topic the
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following tasks were devised. An "Inquiry" phase involved

computer demonstration and class discussion. In the second

phase, "Turtle Tracking" the students used teacher designed

procedures, created a motion in direct mode or debugged given

procedures to complete the motion. The "Extensions" phase

was intended for students to design and debug procedures re-

lated to the topic. They were assisted in writing procedures

by the lists of commands recorded in the previous phase.

"Turtle Excursions" for students at higher Logo or van Hiele

levels was to extend students procedures to include variables

or explore recursive procedures related to the topic. The

final "Project" phase encouraged students to find their own

solutions given some initial suggestions. The students were

to use their knowledge gained through the previous four phases

to write their own procedures. An intent of this phase was

to integrate their previous knowledge gained. The motion

geometry curriculum was taught for 2 eighty minute periods

over an 11 week time span.

2.3 Observation and Data Analysis

One researcher served as a teacher observer in the experiment.

Daily and at the end of the project videotapes of 10 students

work were analyzed and coded to allow the following analysis:

identifying behaviours at various van Hiele and Logo levels;

document Logo processes used and difficulties encountered;

identify examples of facilitation of geometric thinking if

they exist; correlate geometric and Logo levels behaviourally.

3. Results

- The curriculum was validated three ways, through interactive

design processes, by successful use in a class whose teacher was

not previously Logo experienced, and in the teaching experiment

itself.

- Subjects in the teaching experiment and cohort class learned
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geometry as assessed on a 35 item paper/pencil test. They also

scored higher than five prior classes in the same school on a

standard geometry test.

- Students were mainly at the Basic level of geometry and were

moving to Level I. That is they were starting to independently

find properties of motions but attempts at definitions were very

imprecise.

- Similarly in Logo students in general moved from Direct mode to

Naive programming through recognition of Direct mode patterns.

They realized the value of writing preplanned procedures, but

usually did not do so. Instead they normally worked on short

lists of commands (debugging in Direct mode). Procedures usually

came as concatenations of such efforts. Only one student indepen-

dently recognized families of procedures and used variables in

his programs.

- Logo procedure work (and even work with given geometric primi-

tives) facilitated growth to Level I geometric thinking by giving

students an opportunity to relate visual patterns in notions to

verbal lists which formed the basis for properties.
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LOGO PROGRAMMING AND RELATIONAL LEARNING IN A
GEOMETRIC MICROWORLD IMPLICATIONS FOR INSTRUCTION

by

John Olive, Emory University

Ninth grade students in an urban high school were taught Logo

programming through Turtle graphics during an intensive sixweek
course. All students' interactions with Logo were captured in

disk files and analyzed in terms of the SOLO/Skemp Synthesis to

determine progressions through SOLO Learning Cycles and the

appropriateness of the instructional sequence for generating

relational learning. The analysis highlighted critical gaps in

the instructional sequence and important pedagogical steps that

need to occurr in order to generate relational learning.

INTRODUCTION

This research project was a pilot study for a larger investigation, now in

progress, into students' understanding of geometric relationships: the

Atlanta Emory LOGO Project, which is supported by grants from the Apple

Education Foundation and the National Science Foundation. The purpose of the

pilot study was to investigate the potential of the LOGO computer language for

generating relational learning cycles for students, in a geometric microworld,

and to assess the appropriateness of the teaching methodology, sequence and

content for generating relational learning.

A Logo teaching experiment was designed to help ninth grade students progress

through the levels of the SOLO taxonomy (Biggs & Collis, 1980) in order to

achieve a higher level of abstraction in their mathematical thinking. The

mathematical focus of the instruction was on geometric relationships. The van

Hiele model of geometric thought provided the rationale for this focus. The

teaching methodology and curriculum ideas were based on a theory of relational

learning cycles (Olive, 1983) which emerged from a synthesis of the SOLO

taxonomy and Skemp's (1976) model of mathematical understanding within the

context of Skemp's model of intelligence (1979).

BEST COPY AVAILABLE 362



Olive 352

METHODOLOGY

Twenty students were randomly chosen from an intact, ninth grade class of 39

students in an urban high school. Each student worked with a microcomputer

in a lab situation for 18 days (two hours a day, three days per week for six

weeks). The investigator taught the group, introducing the students to the

microcomputer and the LOGO language through a series of "guided discovery"

learning episodes.

Each student's interactions with LOGO were saved on disk files and analyzed in

terms of the SOLO/Skemp synthesis. This analysis provided a picture of each

student's developmental growth in the use of LOGO and helped to determine the

appropriateness of the teaching methodology and curriculum ideas for

generating relational learning cycles and helping students achieve a higher

level of mathematical abstraction.

RESULTS

The results of the analysis indicate that for many students, the instructional

sequence was too fast. There was not enough time for them to explore new

programming ideas or to investigate the various geometric relationships before

new ones were introduced. Consequently, their understanding of both the LOGO

language and the geometric concepts was generally instrumental. However, for

those students who were able to keep pace with the instruction, progression

through SOLO learning cycles was evident. These students demonstrated a shift

to a more abstract mode of functioning with the LOGO language and relational

understanding of many of the geometric concepts that were introduced.

IMPLICATIONS FOR INSTRUCTION

The analysis of the data files also enabled the investigator to identify the

gaps in the instructional sequence. These gaps highlighted the critical

importance for introducing ideas at the appropriate SOLO level for individual

students, for sequencing activities according to a SOLO cycle, and for

encouraging reflection by the students on emerging relationships. The
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instructional sequence has been modified to better reflect these

characteristics. An example of such a modification is given in the next

section.

A RELATIONAL LEARNING SEQUENCE FOR POLYGONS

Critical gaps were discerned in the pilot curriculum where variable inputs to

procedures were introduced and where a generalized procedure, which required

three inputs, was introduced for the investigation of complex polygons. The

following sequence was designed to fill these gaps and help develop relational

understanding of both the use of variables in LOGO procedures and the

mathematical relationships which emerged out of the investigation' of complex

polygons.

NOTE: This sequence begins at a point where students are comfortable with the

definition of fixed procedures for generating individual geometric

shapes, and with the use of REPEAT to generate regular polygons.

A. SHAPES

Step 1: Generation of individual shape procedures

Students define procedures for squares, equilateral triangles, pentagons,

hexagons etc., using the REPEAT command.

EXAMPLE: TO HEX
REPEAT 6 (FD 50 RT 60]

END

Step 2: Construction of a Shape Table

Students complete the Shape Table (figure 1.) and construct the

relationship between "angle turned" and "number of repeats" (Rule of 360).

>E 0 0
Angle turned

heptagon0 own n-qcn
make your

Number of repeats

Product

Figure 1.
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Step 3: Varying the size of shapes with individual procedures

Students define a series of square procedures and triangle procedures

which create different sized shapes. The size of the shape is indicated by

the procedure name: e.g. SQ.20, SQ.30, SQ.40, SQ.50

EXAMPLE: TO SQ.20 TO SQ.30
REPEAT 4 [FD 20 RT 90] REPEAT 4 [FD 30 RT 90]

END END

B. SHAPES WITH INPUTS

Step 1: Variable inputs to change the SIZE of shapes

Students compare each procedure in the series above to discover what is

changing in each (the SIZE of the FD move), and what is staying the same

(everything else). By analogy with the requirement that LOGO makes on FD to

have an INPUT, the teacher can elicit from the students the idea that SQ could

have an INPUT to tell it how big a square to draw. It is at this point that

the LOGO syntax, to create variable inputs to procedures, can be meaningfully

introduced. A variable name is used to pass the input from SQ to the FD

command inside SQ:

TO SQ :SIZE
REPEAT 4 [FD :SIZE RT 90]

END

Students can now generate variable procedures for changing the SIZE of

each of their different shapes.

Step 2: Variable inputs to change the SHAPE of the polygon

After a great deal of exploration and building with the variable

procedures for each shape, a discussion comparing similarities and differences

among the different shape procedures, and the relationship between "angle

turned" and "number of REPEATS" (Rule of 360) inherent in each procedure, can

lead to a more generalized form of each shape procedure, using this

relationship:

EXAMPLE: TO HEX :SIZE

REPEAT 6 [FD :SIZE RT (360 / 6)]
END

The only difference now between each procedure is the number of REPEATS.
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A discussion shOuld elicit the idea of using a variable to stand for the

number of REPEATS. It would be appropriate to generate a shape changing

procedure of a fixed size at this point:

TO FPOLY :N (fixed size polygon)
REPEAT :N [FD 50 RT (360 / :N)]

END

Step 3: Variable inputs to change both SHAPE and SIZE

Students will want to change the SIZE of shapes created with FPOLY. A

discussion should elicit the idea of having TWO INPUTS:

TO RPOLY :N :S (regular polygon)
REPEAT :N [FD :S RT (360 / :N)]

END

C. SHAPES WITHOUT RESTRICTIONS

Step 1: Removing the restriction on the angle relationship

RPOLY always produces a simple, closed, regular polygon because of the

built-in relationship between "angle turned" and "number of REPEATS." A

discussion of what would happen if we lifted that restriction so that we could

input any angle should precede the introduction of the more generalized, three

input procedure:

TO APOLY :N :S :A
REPEAT :N [FD :S RT :A]

END

Step 2: Explorations with APOLY

Students can now explore a wider class of geometric figures, including

open figures and complex polygons. An investigation of inputs to APOLY that

produce closed, complex polygons (star shapes) can lead to an understanding of

the highly complex relationship between :N and :A needed to produce a star

polygon, and the creation of a generalized procedure which embodies this

relationship:

TO MPOLY :N :S :M
REPEAT :N [FD :S RT (:M * 360 / :N)]

END

MPOLY produces an N-pointed star when :M (modulo :N) and :N have no common

factor, and :M is greater than one.
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FINAL COMMENT

The above instructional sequence progresses through SOLO levels (Unistructural

through Relating) for a particular type of LOGO object (Fixed Procedure,

Variable Procedure, Generalized Procedure) before introducing the more complex

LOGO object. Each new LOGO object is introduced after students have had the

opportunity to reflect on what they have been doing with existing LOGO objects

and the relationships they have discovered using those objects. These two

sequencing elements emerged as key elements for generating relational learning

cycles for students, and helping them achieve Extended Abstract SOLO

responses, indicative of higher levels of mathematical thinking.

The results also demonstrate the enormous potential for process analysis of

data provided by the "dribble" file technology. The ability to visually

recreate every step a student takes when working on a problem brings us closer

to being able to directly observe an individual's cognitive processes.
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UNDERSTANDINO RECURSION: PROCESS ro OBJECT

Patrick W. Thompson

Illinois State University

/1 is hypothesized that to recognize conputatibn as regal"; recurs/on,
students must conalotualize a rechroca/ refatiaishh Lvtissen processes
and their resuithg objects. An exempla is given, along with a discusshn
of the role of recurshn withh a mathematics curricular.

Ask arty Instructor of Pascal, Logo, LISP, data structures, or algorithms to name three topics

that students find most difficult. Most probably his or her list will include ASCU/510/Z In this

brief paper I will propose an hypothesis for explaining students' extreme difficulty with

recursion, and will justify the importance of recursion's place in a mathematics curriculum.

First, let us ensure a common vocabulary. The term racursiveprwess will mean any process

that employs itself as a subprocess. The term rwursive object will mean any object which

contains an instance of itself as a component. RECUPSiefl will mean the class of recursive

processes and recursive objects.

AN HYPOTHESIS

The distinction I have drawn between recursive processes and recursive objects is essential to

formulate my hypothesis concerning students' difficulties with recursion. The hypothesis is

this to be able to recognize a problem solution as one requiring a recursive process, students

must formulate their solution as a recursive object. Conversely, to recognize an object as

having a recursive structure, they must formulate their description of It so that It is the result

of a recursive process. That is to say, students must approach a problem with the anticipation

that every object is the result of a process and every process results in an object. An example

will illustrate this point. 1

1 The examples are written In Experlogo, which In these examples is identical to Apple Logo.
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AN EXAMPLE

The figure below is one I regularly give my introductory Logo students with the intention that

they write a procedure to construct a class of figures of which this is but one example.2 Here is

the kind of analysis that corresponds to this paper's hypothesis:

1. Name the class of objects: (Of those names that have been suggested, ASHTRAY is my

favorite).

2. Describe an ASHTRAY: An ASHTRAY of order n and of size s is a square-with-tails with en

ASHTRAY of order n- I and of size s/.3 at the tip of each tail.

3. State the minimal case: An ASHTRAY of order 0 is a point.

The descriptiondescription of the class ASHTRAY not only describes the class, it suggests a process by which

to construct one. Since, in Logo, graphics is created by moving a turtle we also need to specify

the relationship between the turtle and the to-be-drawn figure and to specify the relationship

between the turtle's beginning and ending states when making an ASHTRAY.

4. The relationship between the turtle's initial state and a to-be-constructed ASHTRAY is that

the turtle is, from its perspective, in the middle of the bottom side pointing

perpendicularly toward the opposite side of the square-with-tails. (Other relationships

are possible; this one merely turns out to be convenient)

2 It actually requires a sequence of pictures to veridically suggest that the clew has a recursive
structure. To conserve space, I give a sequence of length one.
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5. The effect upon the turtle of making en ASHTRAY is nil. That is, the turtles beginning and

ending states are identical. (This is merely a convenient assumption; any relationship

between beginning and ending state is possible).

Notes I through 5 can be thought of as design specifications for making an ASHTRAY. To write

the corresponding procedure, a student need only implement the description of the class as given

In notes 1 through 3, keeping In mind the relationships specified by notes 4 and 5. However, to

implement the description of en ASHTRAY OW 17)10tenlielOate that the phress one is ebscribing

profitless en objal of the 4ft:crated clew, and that to obtain en Ole& in the class one invokss the

nalfle of the proms To make an ASHTRAY of order n and of size s, we will invoke the process

named ASH.

TO ASH :N :S
IF :N..0 [STOP]
SOUARE.WITH.TAILS :N :S

END

TO SQUARE.WITH.TAILS :N :S
REPEAT 4 [ LT 90 FD :S/2

RT 135 FD :S/3

ASH :N-1 :S/3

BK :S/3 LT 45
FD :S/2 RT 90 )3

END

An of order 0 /se point (well note 3)
54414RE- W/TH- TA/LS will put en ASHTRAY et the tip of
awn tell (recall note 2)

c to the end of the immrhete4e- left toil (race / /note
4)

/lateen A.VITRAY et (Agenda the teil (recall note 2)
Turtle effliS **ere it now sits (re:el I note 5)

0 to the mit:We of the next sic&

The decision to write ASH :N- I :S/3 in line 4 of SQUARE.WITH.TAILS is where it is essential to

relate process and object as two sides of a coin. Many students, instead of writing
ASH :N-1 :S/3, will begin to write LT 90 FD :S/2 RT 135 .... which is the beginning of
another SQUARE.WITH.TAILS. That is, they become trapped in the proms of constructing an

ASHTRAY, do not recognize that what is required at that point is another object called an

ASHTRAY, and that any ASHTRAY can be created by Invoking ASH.

3 In most versions of Logo, the commends in the REPEATed list must be typed as one logical line
( i.e., without carriage returns).
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The necessity of relating process and object applies equally well to problems of writing
recursive functions that operate upon data. However, students generally find writing recursive

functions more difficult then writing recursive graphics. Apparently, when writing recursive

graphics it is often sufficient to use an image of the finished product as a stimulant to cue
themselves as to when to make recursive cells. When writing recursive functions, it is
generally insufficient to imagine only the finished product (the function's output). Students

must also reflect the dates structure In the function's structure. This Is what Touretzky
( 1983) cells structure,' rwurvi2n. An example of reflecting a datum's structure within a

function for processing it will be given in the presentation.

THE HYPOTHESIS REFORMULATED

To be able to write recursive procedures or functions (as distinct from merely reeding a

recursive procedure or function written by someone else), students must first describe the

object to be created by the procedure in a way that reflects Its recursive structure. They then

can use that description as a guide for writing the procedure, keeping in mind that whenever

they require an object of a particular class they invoke the name of the procedure that creates

it, regardless of whether or not (at the time they invoke the name) the procedure has been

completely defined. The cognitive prerequisites for this ability amount to a mindset, or belief
system:

1. Any process produces an object.4

2. One obtains an object of a particular class by invoking the name of the process that creates
it.

3. One can name (and hence invoke) a process before the process has been defined (with the

intention that it will be defined eventually).

RECURSION IN MATHEMATICAL UNDERSTANDING

The kind of object oriented thinking discussed above permeates theories of mathematical

understanding. Skemp (1979) discussed a two-level model of mathematical thinking: at the
lower level, one thinks by doing. At the higher level, one thinks adout doing. Freudenthel

4 This includes "nonterminating" processes, which allows the set of natural numbers to be
considered as en object. However, I would imagine that in practice most intended objects result
from terminating processes.
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(1972) discussed mathematical development in terms of progressively higher levels of object

construction. Pieget's constructs of reflection end reftexion (Plaget & Inhelder, , 1969)

addressed the distinction between actions and represented actions. In each case, descriptions of

intellectual advancement Involve hypothesizing that what is process at one level becomes object

at another level. Here, in students' study of recursion, we have the opportunity to provoke

students' into making the relationship between process and object explict to themselves. One

must be cautioned, however, by the empirical question as to whether or not such an awareness

will actually assist students in their mathematical development.

RECURSION IN THE CURRICULUM

The school curriculum is rife with opportunities for casting mathematical cadent recursively.

One example is given here. It defines a "grammar" for integers and integer operations (Dreyfus

& Thompson, 1985). Here, the semantics of an integer is:

number Do number steps in your current direction.

-number Turn around, do number, turn back around

The grammar for integers is:

1. A whole number is e number.

2. The negative of a number is a number.

3. The composition of two numbers is a number (one composes numbers by doing them

consecutively).

4. The representation of a composition is equivalent to a number.

5. An operation defined as a composition of numbers is equivalent to a number.

The recursive property of the system (grammar and semantics) manifests itself when one

evaluates espressions, as in -( -70 30] , which denotes the negative of the composition of -70

and 30. Our research suggests that for students to employ a rule of substitution when
evaluating expressions, they must construct the distinction between process and object, as was

hypothesized earlier in this paper for writing recursive procedures (Dreyfus & Thompson,

1985; Thompson & Dreyfus, 1985). Other examples can be found in topics ranging from whole

number numeration to mathematical analysis.
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CONCLUSION

It should be noted that the focus In this paper was explaining students' difficulties In creating

recursive processes and objects. This is quite different from studies that focus on students'

abilities to recognize already- written procedures as being recursive (cf., Kurland & Pea, no

date) or their abilities to write iterative processes under the guise of recursion ( "tail-end"

recursion; cf., Anzei & Uesato, 1982). The ability to create recursive processes and objects is

much more difficult to cultivate than abilities to recognize "recursiveness in already-written

procedures, but at the same time once attained is much more useful.
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THE CHAIN RULE IN THE LOGO ENVIRONMENT

Will Watkins and Gerald Brazier
Pan American University

Abstract

Two university students were introduced to the
list-processing primitives of Logo and were
presented with the task of producing a symbolic
differentiation procedure. Under the non-directive
direction of the two investigators, they were able
to complete the task and refine their own thinking
about composite functions and the chain rule.

INTRODUCTION

Logo has been highly touted as the computing environment par

excellence for mathematics learning. Papert's (1980) enthusiasm

has been infectious but a body of research investigating Logo

and mathematics learning has been slow to develop.

"An environment in which students can gain control over their

own learning," is the way in which Logo is described. Such a

description has particular appeal to mathematics education

reserachers who are directed by a constructivist point of view

of learning (von Glasersfeld, 1983). Opportunities to truly

construct new knowledge in an overt, conscious way are very rare

in school settings. Rarer still are opportunites to study such

learner activity in a scientific way. This investigation

represents the barest beginnings of an effort to use the Logo

environment to study a learner's construction of knowledge. The

content chosen was symbolic differentiation--material dominated

by rules and form.

PROCEDURES

The two students who participated in the investigation were

volunteers from two different calculus classes. The first
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student, Vicki, was enrolled in the one semester survey of

calculus for business majors. It was her first experience with

the calculus. The second student, Neal, was enrolled in the

second semester of the calculus sequence for science majors.

Each of the classes was presented with the opportunity to spend

an hour each day "doing some calculus on the computer." Several

students expressed interest but Vicki and Neal were the only

ones who followed through on the complete program. No attempt

was made to gather background information on the two students

other than having them describe their understanding of the

mechanics of the chain rule. Neal was well-acquainted with the

material and Vicki had been taught the chain rule (in the

context of the power rule) just before the first session on the

computer.

The first phase of the investigation consisted of an

introduction to the MIT version of Logo for the Apple with

particular attention to a subset of the list-processing

primitives--namely, FIRST, LAST, BUTFIRST, BUTLAST, FPUT, LPUT,

and LIST. Much of the first session was taken up with

familiarization activities, some graphics, and an introduction

to creating procedures. In the second session the students

began their investigation of the list-processing primitives by

creating their own procedures to solve certain kinds of standard

problems--find the second element in a list, determine whether a

given element is in a list, and so forth. The two investigators

worked with the students individually and as a pair in

developing their understanding of Logo's handling of inputs and

its conditional IF construct. By the end of the second session

the students were writing short procedures employing the

list-processing primitives described above. The third session

was spent solidifying these ideas by presenting the students

with some more challenges along the same line.

The second phase consisted of developing a scheme for

representing functions in the Logo environment. The
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investigators presented these three examples for consideration:
2

[PW X 2), [P 3 X], [S X 7). These were representations for X ,

3X, and X + 7, respectively. At this point the students were

given exercises in translating standard composite functions into
4

this new form--expressions like (3X + 8) to be represented as

[PW (S [P 3X] 8) 4]. At the end of this session, the task of

writing a procedure to produce the derivative of a function was

proposed to the students. Since both students' work in the

calculus to this point had been dominated by power functions,

they were immediately drawn to the task of differentiating X .

Each of the students by the end of the next session had created

the following linked procedures (with minor differences):

TO PWR :F

OP ( LIST "P LAST :F DER :F )

END

TO DER :F

OP LPUT (LAST :F) -1 BL :F

END

At this point the investigators posed the question of how to

incorporate the chain rule into the scheme and then after

discussion proposed the following skeleton master procedure:

TO DX :F

IF :F = "X OP 1

IF NUMBER? :F OP 0

IF FIRST :F = "PW OP DPWR :F

. . .

OP LIST "DX :F

END

This skeleton required building the procedure DPWR from what had

been done in PWR as follows:

TO DPWR :F

OP ( LIST "P PWR :F DX FIRST BF :F )

END

The recursive nature of the procedure DX is clear and yet was

not emphasized in any way by the investigators--the students

knew that the chain rule required a product so simply wrote
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their implementation of the chain rule that way.

The third and final phase was simply the students' carrying out

the task of filling out the skeleton procedure DX to incorporate

as many different functions (sum, product, etc.) as they could.

It was in this phase that the monitoring of their work become

the major focus of the investigation.

RESULTS

Detailed records of the students' procedures in various stages

of completion are available from the authors. These records

capture some of the flavor of the students' experirence but

there were many other aspects of the investigation that can

only, at present anyway, be observed in a very informal and

imprecise way. There is no question of the rapidity with which

both students were able to produce the subprocedures necessary

to symbolically differentiate sums, products, quotients,

exponentials, and logarithms. In observing their work, the

pattern of decomposition of large task to smaller tasks was

evident at every turn. Both students very quickly developed a

"case-study' approach by which they made the machine mimic their

own thought processes in praticular elaborated examples. They

recognized the necessity for having a sufficiently complicated

prototype to work with as they taught the machine to think like

they thought. Vicki, though less experienced mathematically,

developed an extremely efficient algorithm by which she

developed the procedures--a fascinating bit of meta-cognition.

Each of the students become extremely adept at decomposing

elaborate functions and in creating standard notation for

results created by the infix notation of their procedures. In

fact, Neal spent time at the end of the investigation writing

procedures to simplify expressions like [S X 0] and [P 3 1] to X

and 3, respectively. Both students were successful in their

classroom work within which the ten day investigation took place
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but there is no way to attribute that to their Logo experience.

In a formal way, very little can be noted in the way of results,

yet informally it was seen that each of students engaged in

thinking about mathematics in a way they had not before.

CONCLUSION

In the spirit of a bare beginning, the investigation reveals

some of the potential of the Logo environment for creating a

workplace for mathematics learners. With very minimal start up

cost students can be working on significant tasks that allow

them to reflect on their own mathematical knowledge. How they

proceed needs to be monitored more carefully and needs to be

correlated more carefully with what else we can know about their

mathematical knowledge. The potential for using the Logo

environment for a laboratory both for students and for those

studying students seems very great.
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LOGO: A POWERFUL RESEARCH TOOL

Patricia S. Wilson

The Ohio State University

Current research using Logo is discussed with a focus on the
special opportunities presented by Logo.

"Do Not Ask What Logo Can Do To People, But What People Can Do With Logo"

was the borrowed challenge that Papert (1985) presented to researchers at

the Logo 85 Conference. Papert's comments were a reaction to the criticism

of Logo resulting from studies finding little or no significant difference

in Logo treatments (Bank Street College, 1983-84; University of Edinburgh,

1970- ; Brookline). He claimed current empirical research asks the wrong

questions. Insisting that a scientific paradigm is not appropriate, Papert

strongly opposed using a treatment study to investigate the value of Logo.

He explained that one should not try to evaluate the effect of Logo, but

should report how it was used and the consequences.

Papert (1980) claims that Logo microworldscan be created that are incubators

for knowledge. This is supported by Leron's explanation that most of the

students he has worked with seem to have gained "some sort of vague, partial

understanding of many powerful ideas" (1985a, p. 32). The idea of a knowl-

edge incubator where partial understandings of powerful ideas are developing

is an exciting laboratory situation for a researcher! The following sections

discuss the research opportunities in a Logo environment.

LOGO PROVIDES A WINDOW

Logo can be used as a research tool that provides a window into a student's

complex world of thinking. In this sense, the researcher is not interested

in studying Logo but is interested in using Logo. The Logo task (structured

or unstructured) provides an opportunity for the researcher to learn more

about what a student is thinking by observing and interacting with the student.
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Papert (1985) offers an example of studying students' styles of working.

Student A knew exactly what he wanted to do and set out to achieve the goal.

The student continually made modifications but continued to work toward the

goal. Student B messed around. He tinkered with one idea, jumped to

another idea and continued to explore ideas as they occurred. Eventually

select ideas were integrated into a project. Logo exploration allowed

the students the freedom to exhibit their preferred style of working.

Using a moderately structured Logo task, Wilson (1984) found upper elementary

school students were able to share their understanding of algebraic ideas

such as variable and iteration. The Logo task provided a source of examples

and vocabulary for the students to use as they expressed their ideas. Given

a task to create a regular polygon with 6 sides, a fourth grader proclaimed

that The numbers have to fit!". Her vocabulary did not permit her to explain

verbally that the angles in a regular polygon are a function of the number of

sides. She could display an example where the numbers fit (a hexagon) and

where the numbers did not fit (a open figure with 6 equal sides).

LOGO PROVIDES A PROGRAMMING BACKGROUND

Noss (1985) is studying how children with extensive Logo programming experience

construct mathematical meaning. Noss notes that previous research has

focused on how children learn Logo and what mathematical knowledge has been

learned by using Logo. He is interested in a third question of what mathe-

matics children can learn via Logo. He uses a series of "solve-aloud"

problem interviews which often ask eleven year-old children how they would

explain their ideas to a first grader. The Logo environment permits children

to construct their own notation and to formalize their own rules. He has

found that students often use programming vocabulary. The student is in

control of how the ideas are expressed rather than trying to interpret an

instrument with conventional notation.

Logo provides structured programming with an emphasis on procedures. In a

carefully documented study at Concordia University, Erlwanger and Barfurth

(1985) are using the idea of a Logo procedure to link mathematics and
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programming concepts. The students begin with concrete materials (i.e.,

building blocks, popsicle sticks) in order to investigate ideas associated

with distance, length, direction, angles and shapes. Next they use paper

and pencil to write programs and finally they use the computer to see if the

screen image matches their mental image.

LOGO OFFERS A VARIETY OF DATA FOR ANALYSIS

Olive and Scally (1985) are using dribble files that record all student

interaction with the computer. Several researchers have used videotapes of

children working, screen output, and paper and pencil activities to supple-

ment their observations (Erlwanger 8 Barfurth, 1985; Noss, 1985; Hillel,

1985).

The opportunities for examining how ideas are developed are exciting, but

words of caution are necessary. Anecdotes are a useful way to explain or

report student activity; however, researchers must be careful not to report'

only favorable or idealized anecdotes. Leron (1985b) adds that the researcher

must not confuse the mathematics that the researcher sees with the mathematics

that a student sees in a Logo situation. Erlwanger and Barfurth (1985)

convincingly argue for careful documentation of the setting. organization

and the procedures in any description of results.

Logo offers a powerful tool for investigating the development of mathematical

ideas.
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