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PREFACE

The papers prepared for the seventh annual meeting of
the North American Chapter of the International Group for
the Psychology of Mathematics Education reflect the numerous
ways in which mathematics education has evolved over the
decade since the organization was founded in Karlsruhe, West
Germany. Especially apparent is the diversity of
Psychological studies that are relevant to new research in
Mathematics Education.

While cognitive studies have been the predominant area
of psychological influence in past meetings, the present
volume reflects the importance of other areas of Psychology
as well. Studies reported here include many which focus
upon variables from the affective domain; not only are
studies of attitudes numerous, but so, also, are studies of
the relationships among content-related beliefs and
mathematical behavior. Studies based upon new theories
concerning the relationships between phrysiological variables
and learning are also represented.

The influence of modern technology upon mathematics
education and related research is also evident in these
pages. More than a dozen papers report on investigations in
which the computer plared a significant role in instruction;
while some of these studies investigated the effects of
computer mediation of traditional topics in mathematics
others examine the utility of computer programming
instruction as a means for teaching thinking processes
which, in the past, have been associated with formal
mathematics instruction.

Another way in which these proceedings indicate change
from past meetings is the number of papers which focus
primarily upon methodological issues.

Even as these proceedings reflect change in mathematics
education research, they also reflect continuity in the
depth of study of important topics. Thus, while many topics
are new to these meetings, the "modal paper® is related to
mathematical problem solving and reflects continuing
advances in this very important area of Mathematics
Education research.
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From the point of view of organizing these Proceedings,
the changes outlined above have had interesting
side-effects. Whereas previous PME-NA Proceedings have been
organized into major categories, the standard divisons did
not seem appropriate for the current volume. Many papers
crossed categories, while others had as their primary foci
topics which did not fit the traditional categories,
Therefore, the papers have been arranged alphabetically by
author} symposia are presénted at the end of the volume. In
order to compensate for, and perhaps imprové upon, the
categorization, a topical index has been constructed. Each
paper appears gemewhere in this index; some papers appear
moreé often,

The assembly of thésé Procéedings would have been
iMpossible without the thorough and thoughtful work of
Elizabeth Rhyner and.MhriTyh Shelton, both of whom spent
many, many hours on this project. Many thanks to both of
them.

Suzanne K. Damarin
Columbue, Ohio
October 1985
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APPROACHES TO LEARNING AREA MEASUREMENT AND ITS RELATION
TO SPATIAL SKILL
BY

Candxce B. Beattys and Carolyn A. Maher
Rutgers University

ABSTRACT

National reports of children's performance cite
deficiencies In understanding of area and its
measurement. This paper, the first in a two-part
study, reports research which examines: (1) the
effectiveness of the integration of concrete
embodi ments with 832 children in grades 5-7 for
area measurement instruction and (2) the
rel ationship of achievement to a student's
spati al skill. Results from two-way ANOVAs
indicated significant differences (.01) on both
the post and retention tests favoring the groups
that experienced manipulative treatment. A

mul tiple regression anal ysis indicated
instructional treatment, pretest and spatial
skill interaction to be significant (.01)

predictors of achi evement.

BACKGROUND

Three successive National Assessment of Educational Progress
(NAEP) reports have disclosed major deficiencies in student
understanding of area and its measurement (Lindquist, et al.,
1983; Carpenter, et al., 1989 and 1975). The most recent NAEP
report indicated that only one quarter of nine-year olds and
two-thirds of thirteen year olds correctly identified the number
of square units covering a region. Other research (Maher and

O
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3 Beattys/Maher

Normsndis, 1983) hss revesled similar findings. The study by
Lindquist, et al., suggested that ares messurement is a complex
concept mastered when underlying principles sre understood.
Research has identified two subconcepts inherent in
understsnding the concept of asrea: the selection of san
appropriate unit of messurement for use as the basis for
counting the number of units of which an object is comprised snd
understanding the invariance property of area; that is, that
area does not change with partitioning or recombination of parts
of a psrticuler surface (Hirstein, et al., 1978). Moat achool
learning of srea is based on textbook presentations. Despite
minor veristion, area is commonly presented by s single limited
exposure to a square unit and the presentstion of 8 formuls for
its calculation. Many, perhaps most, mathematics educators are
committed to the view that the child's experience and
construction of the measurement sre fundamental to lesrning the
concept involved. Nevertheless, resesrch in this field sppesars
to be inconclusive. This may be attributed to individual
differences in children, the choice of teaching aspproaches, the
nature of the embodiments employed and the differences in time
allotted for instruction. Among the msnipulstive materials
employed for area measurement are graph paper, other squsred
materisle and geobosrds. The use of geobosrds to facilitate
learning area concepts has been suggested in a variety of
articles (Holcomb, 1988; Hsrkin, 1975; Schnell and Klein, 1974)
but research into the effectiveness of the geobosrd as s single
device has not been reported. The rationsle for the use of
manipulatives is that children in the intermediste grades can
benefit by the conatruction of representations of mathemstical
ideas and thus require access to materials thast make such
constructions possible (Alston and Msher, 1984).
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PURPOSE

This study, the first of two parts, sought to measure the
effectiveness of the use of the geoboard as a concrete
embodiment in area measurement instruction, its relative
effectiveness in comparison with other approaches and an
examination of the relationship, if any, between student
achievement in area measurement, instructional method and the
student's spatial skill. Part 2, the clinical component (Maher
and Beattys, in progress), identifies how children acquire
various aspects of the area concept through role playing tasks
and focuses on the process by which children construct
understanding of area and its measurement.

DESIGN

Subjects

Of the 832 children from an urban New Jersey school district,
267 were fifth graders, 279 were sixth graders, and 286 were
seventh graders. The subjects were drawn from 48 intact
self-contained classrooms. Placement for each class in a
particular treatment was random within each of the three grade
levels.

Procedure

variations in treatment centered on the type of instructional
material employed in each group: a single concrete embodiment
approach (using a geoboard), a multiple embodiment approach
(using flats, transparencies, cloth, squared paper), a textbook
approach using no embodiment, and a control group that received
no instruction in measurement. Teachers in the three treatment
groups attended three thirty minute training sessions conducted
by one of the researchers. Each treatment group's presentation
varied according to the information pertinent to the particular

Aruitoxt provided by Eic:
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treatment. A five day experimental period was preceded by an
area measurement pretest and two spatial tests: the Hidden
patterns Test and the Space Visualization Tests. The
experimental period was followed by a post area measurement
achievement test and six weeks later by a retention test.

Analysis

An ANOVA and multiple comparison tests were used to assess the
occurrence of post and retention achievement differences among
the treatment groups. A least squares regression model was used
for modeling the expected posttest area achievement score as a
function of: the treatment, student DPretest area measurement
achievement, and student Hidden Pattern and Space Visualization
spatial skill measures.

RESULTS

Differences between the poattest and retention test mean area
measurement achievement scores and the mean pretest scores are
summarized in Figures 1 and 2 by grade level.

n 25. 24
g ———_—E E ' -~ GO
’ o~ 20 ! ‘/
20 A @o 20+ / v
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— \\\ \
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Figure 1. POSTTEST ACHIEVEMENT Pigure 2. FETENTION TEST ACHIEVEMENT
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Beattys/Maher 6

An ANOVA and multiple regression analysis of the individual
student scores support the following conclusions:

(1) Both the geoboard and the multiple embodiment approaches to
learning area measurement were found superior to textbook~based
instruction, regardless of the student's spatial ability.

(2) Over six weeks, advantages of manipulative-based learning
over textbook-based learning increased.

(3) On the average, students who were instructed using
manipulatives tended to outperform their textbook-based peers by
a factor of at least two in situations regquiring an application
of area measurement skills.

(4) Students who scored high on the Hidden Patterns Test tended
to do better with the geoboard treatment, and students who
scored high on the Space visualization Test tended to do better
with the multiple embodiment treatment.

(5) Differences among grade levels 5, 6, and 7 were
statistically significant but not practically substantial.

IMPLICATIONS

Results of this study, particularly the evidence from the
retention test, offer convincing support to the proponents of
the manipulative based instructional mode. While pretest
achievement, intermediate grade level, and spatial skill also
influence achievement, none of these factors minimized the
effects of instructional mode. Moreover, manipulative based
instruction permitted the generalization of area measurement
across embodiments. Thus at the intermediate school level,

O
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better achievement for area measurement can be expected for
children having experiences with manipulative based instruction.
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CHILDREN'S ERROR PATTERNS ON ADDITION
AND SUBTRACTION VERBAL PROBLEMS

Harriett C. Bebout
University of Cincinnati

Abstract

The errors of 45 first graders on addition and subtraction verbal
problems were categorized as to errors of representation or
errors of solution. This sample displayed different error
patterns according to their abilities to coneretely model verbal
protlem types.

Research on early number concepts has documented successful strategies that
children use to solve simple addition and subtraction verbal problems (Car--
penter & .Moser, 1983). In addition to these successful strategies, a Iéfge
number of unsuccessful solution attempts exists. As these successful stra-
tegies have provided information on children's thinking, so might their

error patterns indicate additional insight.

Children's errors on abstract mathematical problems and tasks have received
attention from several résearchers (Brown & Burton, 1978; Brown & Vanlehn,
1980; Ginsburg, 1977; Radatz, 1979; Vanlehn, 1983); but relatively little

has been written concerning children's errors on verbal mathematics problems
(Briars & Larkin, 1984; Riley, 1979; Riley, Greeno, & Heller, 1983; Verschaffel,
1984). The computer simulations by Briars and Larkin (1984) and Riley et al,
(1983) inciude error data; Briars and Larkin's model appropriately simulated
602 of the errors reported by Riley (1979), and Riley et al.'s model provided
explanations for the occurrence of some errors. Verschaffel (1984), in a
study of first graders' representations of verbal problems, classified errors
into two categories, thinking errors and technical errors: thinking errors
were those with inappropriate initial representations and technicél errors
were those that appeared during the calculation stage of the problem. The
present study foliows Verschaffel's scheme and presents children's errors as
related to representatlon of the verbal problem or to solution or calculation

following the representation.
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'METHOD

The subjects were 45 first graders In two classrooms in a rural Midwestern
elementary school. Using nine problems from the current classification of
verbal problems (Carpenter & Moser, 1984; Riley et al., 1984), the children
were individually interviewed and asked to solve the problems using mani-
pulatives. According to thelr use of concrete items, children were placed

in three levels, Basic, Direct Modeling, and Representing. Their errors of
representation and solutlon were noted according to problem type and according
to concrete modeling level.

RESULTS AND DISCUSSION

Children's verbal problem errors were categorized as Representation Errors

" and Solution Errors. More specifically, Representation Errors, those that
involved the modeling strategles or lack of strategles, Included the follow-
ing caiegorles: Wrong Operatlon, Repeat Glven Number, Guess, and No Attempt.
Solution Errors, those that occurred after an approprlate strategy had been
chosen, Included the following categorles: Computatlion, Repeat Given Number
(after appropriate strategy cholce), and Wrong Model (incorrectly modeling
of a given element). A third category, Uncodable, contained those few errors
(five responses total) that could not be.categorlzed as Representation
or Solution.

Table | presents for each problem type the total number of Incorrect responses
and the total number of Representation and Solution Errors. From the total
of Incorrect responses, these flrst graders performed as expected: they did
most poorly on Start Unknown, or Cf\ange 5 and 6 verbal problems, and somewhat
better on Change 3 and 4 problems. Their least number of errors were on
simple problems, Change 1 and 2.

Representation and Solutlon Errors. Representation Errors occurred most

frequently on the Change 5 and 6 problems, and somewhat less frequently on
Change 3 problems. Change 4 problems followed next, with Change | and 2

-
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Bebout 10

having the least number of Representation Errors. The Repeat Given category

showed a high incidence of error.

The Solution Errors in this study did not follow the same pattern as the
Representation Errors. Children made as few Solution Errors on the Change 3
problem as they did on the simple Change | and 2 problems. The highest number
of Solution Errors were on the Change 4 problems. Calculation errors were

most numerous; Repeat Given occurred infrequently after correct representation.

Errors According to Modeling Level. The twelve children at the Basic or

pre-direct modéllng level had the most number of incorrect solutions on
Change 3, 5, and 6 problems. These incorrect solutions were due to errors of
representation as opposed to errors of solution. It appeared that if this
group of children could represent a problem they could effect a correct

solutlon.

The twenty-two children at the Direct Modeling level had their most difficult
time on the Start Unknowns, with comparable numbers of errors in both repre-
senting and solving the problem. Their most successful representation per-
formances were on Change 1, 2, 3, and 4 problems. In general, their errors

of solution were higher than their errors of representation, except for Change

5 and 6 problems.

The elementary children at the Rerepresenting level had their highest total
errors on Change 5 problems. Their ¢rrors in general were errors of solution.

This group made no Representation Errors on Change 1, 2, 4, and 6 problems.
SUMMARY

Children at different concrete modeling levels produced different patterns of
errors. By viewing errors according to representation of the problem or solu-
tion of the preceding representation, errors of children may be better under-
stood. Instruction on verbal problem solving may then be better matched to

the type of error.
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Table 1

Verbal Problem Errors of Representation and Solution

Concrete Modeling Level

Problem Total

Type Errors Basic Direct Modeling Rerepresenting
- N=12 N=22 Nell
Rep Sol Rep Sol Total Rep Sol Total Rep Sol Total
Change 1 0o 6 0o ] o 5 5 o o 0
Change 2 17 12 3 0 4 4 o 1 1
Change 3 W7 o2 o0 a2 1 5 13 ]
Change 4 5 10 4 ’2 6 1 4 [ 0 4 4
Chenge5 21 9 1 o M 7 6 13 3 03 s
Change 6 19 10 n 0 N 8 8 16 0 2 2
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FORMATIVE EVALUATION FROM A CONSTRUCTIVIST PERSPECTIVE

Jacques C. Bergeron, Universit& de Montré&al
Nicolas Herscovics, Concordia University
Nicole Nsntsis , Université de Montréal

Within the context of mathematics education, the current view
of evaluation is open to criticism first, in terms of the rs-
ther behavioristic classification of the learning outcomes it
identifies, and second, with regards to the prevalent mode of
obtaining information, the written test. A constructivist ap-
proach affects our perspective of both the learner's and the
teacher's role in a didactical situation, and also that of the
subject matter. In such s perspective, the need for formative
evaluation becomes crucial since in order to follow the stu-
dent's thinking, the teacher requires feedback from him. To
thies effect, we have developed a new tool, the mini-interview.
This paper describes an experiment investigating the problems
involved in training teachers in the use of this tool for
formative purposes.

THE CURRENT VIEW OF EVALUATION

As the title of their book implies, Bloom, Madaus and Hastings (1981) concern
themselves with the use of Evaluation to Improve Learning. This is why they

devote individual chapters to three learning related objectives of evaluation,
diagnostic, summstive and formative, instead of focusing on normative tests.
In their view, the role of diagnostic evaluation is to determine school rea-
dineaa, the proper placement of studenta, as well aa the causes of the diffi-
cultiea they may experience. In contraating aummative and formative evalua-
tion, they identify three distinguiahing characteriatica. The first one has
to do with purpose, the main purpoae of formative evaluation being the deter-

The research reported here is funded by granta from the Quebec Ministry of
Education (FCAR- EQ-1741, EQ-2923).

We wiah to thank Professor Clément Dassa of the Universit& de Montr&al for
his helpful suggestions.
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mlnation of "the degree of mastery of a given learning task and to pinpoint
the part of the task not mastered" while on the other hand, summative evalua-
tion is directed toward a much more general assessment covering an entire
course or substantial parts of it, If in the latter case a grade can be at-
tributed to reflect the portion of the course mastered by the student, no
grade is ever involved in formative tests since the anxiety they might then
generate could prevent the student from perceiving them as an aid to learning.
The second characteristic differentiating the two types of evaluation is the

portion of course covered. Tests for formative purposes are given frequently

whenever the initial instruction of a new skill or concept is completed. In
contrast, summative evaluation looks at the mastery of several new skills or
concepts. At the secondary level, it is used two or three times within a
course as part of an overall grading system, while at the elementary level,
teacher-made tests are given every four to six weeks. The third characteris-

tic involves the level of generalization. Formative evaluation might be used

to determine if the student possesses all the pre-requisites needed for a cer-
tain topic, whereas summative evaluation assesses the degree of generaliza-

tion and transfer that he has achieved regarding the subject matter at hand.

As noted by Bloom et al, the main function of formative evaluation is to pro-
vide both teacher and student with feedback enabling each one to take correct-
ive measures when needed. In designing formative tests, they first determine
what new content or subject matter is involved in a new learning unit. This
is then followed by an analysis of the expected "behaviors or learning out-
comes” which are then classified according to a hierarchy involving six levels:
knowledge of terms, facts, rules and principles, skills in using processes

and procedures, ability to make translations (using one's own words, using
different modes of representation), ability to make applications (using rules

and principles to solve problems presented in a new context).

Serious questions can be raised regarding the appropriateness of this view of
formative evaluation when judged from a constructivist perspective of mathe-
matics education. The first one relates to the rather behavioristic classif-

ication of the above learning outcomes. For indeed, a constructivist approach
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15 Bergeron/Herscovics /Nantgis

tskes a more global perspective snd identifies the lesrning of msthematics with

the construction of conceptual schemes.

A second question desls with the form of tests used by Bloom et sl. Although
they mention thst "there sre other ways besides paper-and-pencil tests to
mske inferences about student progress” (p.71), no such example is provided
in their book, thus reflecting the prevalent mode of obtaining information:
the written test. This kind of format encoursges the student to believe thst
the answer 1s the sll-important psrt of mathematics (Erlwanger, ,1975) and
prevents him from sppreciating the msthematicsl thinking which leads up to it,
Another drawback of the written test is that it presumes s reading competency
which does not yet exist in the beginning grades. Thus, for the early years,
most written work 1s limited to numerical exercises or to problem situations
represented pictor;plly.using conventions which the child often does not un-
derstand (Campbell,1981). However, the major deficiency of the written form-
st is that especially with young children, it cannot inform us about the pro-
cedures they use. For instance, no written test can tell us the procedure
used by the child adding 6 to 3.

A CONSTRUCTIVIST PERSPECTIVE OF MATHEMATICS EDUCATION

.A constructivist spprosch sffects our perspective of both the learner's and the
teacher's role in s didacticsl situation, as well as that of the subject matter.
The underlying assumption here is that the learner is the principal sgent in
the construction of his knowledge. And far from diminishing the role of the
teacher, this approach necessitates on his part a much more difficult contri-
bution. For he can no longer depend on the old belief that he can simply trans-
oit his knowledge: he must now carefully prepare didactical situations enabling
the learner to re-construct it for himself. This can be achieved i1f the teach-
er gtarts from the learner's existing kndvledge and relies on 1t to help him
climb up the different steps of the intended construction. For a student in
such a learning situation, each step is an extension of his accrued knowledge
and this endows the learning process with cognitive continuity,

Q 26
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The very view of what constitutes mathematics is also changed. 1In a construct-
ivist perspective, mathematics cannot be reduced to the acquisition of skills
and algorithms, for it is more the processes involved in mathematical thinking
which are sought. Our work of the last few years clearly reflects this view-
point. We have been concerned with developing a model which might adequately
describe the processes involved in concept formation. Of course, we take
"concept" in the broader sense of "conceptual scheme", that of a network of
related notions, not just atoms of isolated knowledge. In mathematics, each
fundamental concept (such as number, addition, function, etc.) can be described
as a conceptual schema whose construction may require fairly long periods of

time.

Our model identifies four stages in the construction of such a mathematical
concept: the first one, the intuitive stage, involves the learner's informal
knowledge and previous experience related to the given concept; the second

stage concerns the acquisition of mathematical procedures which the learner

can relate to his intuitive knowledge and use appropriately within the context
of relevant problem situations; the third stage, that of abstraction refers to
both a detachment from any concrete representation or procedure as well as the
construction of invariants; the final stage, that of formalization, encapsul-
ates the given mathematical concept into a formal definition and symboliza-
tion (Herscovics & Bergeron,1984). This model clearly illustrates the empha-
sis on mathematical thinking prevalent in a constructivist approach. For in-
deed, two specific stages are explicitly related to intellectual processes,
that of intuitive thinking and that of abstraction. Of course, these are not

even considered among the behavioral objectives of Bloom et al.
EVALUATION IN A CONSTRUCTIVIST PERSPECTIVE

Before introducing a new concept or continuing with a given construction, the
teacher has to determine the cognitive basis on which the student can build
and progress. He will then have to establish if the pre-requisite notions are
present, and when needed, fill in the gaps and correct the false interpreta-

tions. This implies that the teacher has to be able to monitor each pupil's
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cognitive progression. While written tests sre sdequste in sssessing mathemat-
icsl skills, they can, at best, provide only indirect inferences regarding the
student's thinking snd reasoning. Such informstion is obtained more directly
end more explicitly by questioning the lesrner. As mentioned earlier, this is
particulsrly true for young children in the early school yesrs, when their
limited reading skills greatly restrict the vslue of sny written test. Tesch-

ers st these levels have an urgent need for another form of evalustion.

It 18 in answer to such needs that we developed the MINI-INTERVIEW, sn adapt~
stion of the clinical interview methodology which takes into account the res~-
trictions of the school environment (Nantais et al, 1983). In developing it,
our objective was to provide the teacher with s tool for formative evaluation
which might be integrated to his regular teaching. Since the aim was to un-
cover the student's thinking and ressoning, the MINI-INTERVIEW was to be used
with each and every pupil. As the questioning wss to take place in the class-
room, this imposed a time restriction for each interview, 5 to 10 minutes,
which is about the most time a teacher can devote to sn individual, even un-
der optimal clsss organization for independent study. Of course, this limited
time and the number of children involved meant that the tasks and the questions
needed to be prepared in advance, and that their scope be restricted to pre-
cise aspects of key conceptual schemes (e.g. by the end of the first grade,
the mastery of the counting on procedure in sddition problems).

In the past three years we have been training future and practicing elementary
schoolteachers in the use of mini-interviews. This topic was dealt with as
psrt of a university course in mathemstics education in which we attempted to
develop a constructivist perspective, using our model to snalyze the child's
construction of major arithmeticsl concepts such as number, the four operations,
place value notation, as well as the addition and subtraction algorithms. We
hsve been quite successful in inducing a more constructivist perception of

both mathematics and the instructor's role in the teaching of mathematics.

This is evidenced by our teachers' increased preoccupation with the student's
mathemstical thinking which for them becomes at least as important as finding
the right answer. Their concern for the pupil's thinking and reasoning created
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a climate favorable for the introduction of the mini-interview. Not only did
we present them with the theoretical background, but we also asked them to as-
certain a few children's thinking about given arithmetical concepts by using
previously prepared mini-interviews. We had expected that such experience
would result in our teachers perceiving the mini-interview as a new tool ena-
bling them to practice formative evaluation. To our great surprise, we dis-
covered that quite often the mini-interview was not used for this objective,
but simply as just another test to verify performaéce rather than as a source
of feedback. The questicn of how to induce a formative perspective in these

teachers was thus raised.
AN EXPERIMENT IN FORMATIVE EVALUATION TRAINING

The experiment we have conceived involves five first grade schoolteachers who
were asked to use a mini-interview on the adding-on procedure with each pupil
in their class, the interviews to be completed over a period of three weeks.
This 1is, in some way, a feasibility study verifying if it is possible for
teachers to integrate such a task to their regular classroom activity. Our
second objective is to determine conditions under which they might come to
view the mini-interview as a way of obtaining feedback. We cannot expect a
teacher who is just starting to use the mini-interview, to perceive it imme-
diately as a tool for formative evaluation. For he is then confronted to a
host of new problems such as classroom organization and management while he
attends to one child, as well as being concerned with the quality of his
questioning while recording the interview. It 1s only gradually, as he over-
comes these difficulties, that we can hope to see him grasp the formative

potential of this new tool.

But to determine the conditions which might bring him to use the mini-inter-
view for its intended purpose, we had to find ways of following each teach-
er's evolution over the three-week period. To achieve this, we asked every
teacher to record each Interview, to evaluate each child, and to keep a daily
diary. The recording of each interview eliminates the need for classroom

observation while preserving, as much as possible, the natural climate of the

O

ERIC 29

Aruitoxt provided by Eic:



Borgoron Horscovice/Nantais 19

classroom. Moroovor, each tape consorves accurately the content of the in~
torview which can then bo used by tho teacher to avaluate his pupils. These
audio-tapos can also be used by the resoarcher to judge the teacher'’s evalua-
tion, to compero the difficultics he can detect by listoning with those re-
ported by tho toachor in his diary, and to determine, to some extent, if the
toacher and pupil porceive the interview eas ono involving formative evalua~
tion or simply testing.

Prom the checklist he has fillod during the interview as well as by listening
to the audio-tape, the toacher had to evaluate each pupil. If in his report
he indicates the kind of pedagogical intervention he envisages in order to
holp the child, either to overcome a learning obstacle or to follow through
with tho intended construction, he will then have provided us with evidence

of a formative evaluation. On the other hand, if he expresses himself essen-
tially in terms of guccess and failure, we will interpret it as indicating a
testing approach. Finally, we expect his diary to reveal his evolution and
progress in tackling the daily problems brought about by performing interviews
in the classroom. The data obtained will be analyzed this Fall,
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A STUDY OF FIELD DEPENDENCE/INDEPENDENCE IN AN INTERACTIVE
COMPUTER ENVIROMENT FOR GEOMETRY

Janet L. Bohren
The Ohio State University

This study was conducted to determine if field
independence/dependence affected one's ability
to learn the transformational geometry principles
of translation, rotation, and reflection from an

interactive computer geometry game in which these
moves were embedded. Thirteen students (grade 3 -
graduate school) were observed playing the game .

FDI scores were determined using the Group Embedded
Figures Test. The more field independent students
easily sorted out the three moves from each other,
and were thus able to use them more effectively than

the field dependent students.
Because geometry is a weak area in the elementary curriculum, The
Technology and Basic Skills - Mathematics project (TABSMath)
chose geometry as one of the four areas in which to design
innovative interactive computer programs (Damarin, 1982). One of
the TABSMath's geometry disks is "Punky Chicken"™. It is a
program of experiential learning in transformational geometry,
vwhich requires the learner to use combinations of reflection,
translation, and rotation to move a chicken within 4 grids to
catch the elusive flies.

Field dependence/independence is a cognitive style defined as a
measure of one's ability to disembed relative information from an
irrelevant background and to analyze and cognitively restructure
information (Witkin & Goodenough, 1981). Many studies have shown
the relationships between FDI and learning (Witkin, et al.,
1977). An analysis of the learning tasks of the "Funky Chicken"
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program indicated that the learner must be able to visualize the
result of each one of a group of moves through 2-D space. In
other words, students must be able to disembed each move from the
total group of moves and the baokground grid system. The fast
pace of the program inoreases the diffioculty of disembedding
individual moves from the oontext of the game. For this reason,
it was hypothesized that the field dependent learner would take
more turns than the field independent learner to master the use
of translation (sliding), rotation, and refleotion in this game.

One moves through a series of levels wvhen playing the "Funky
Chicken™ game. On the firet level the flies have one move, the
second level two moves, eto. After the moves of the flies are
listed, the student directs the ohicken to make up to three moves
to ocatoh the flies. When all directions are entered, one sees
the flies zip through their moves, and then the chicken makes its
3 moves. If it ie properly directed, the ohioken will land in
the same quadrant as the flies and be able to eat them. If the
flies are not eaten, this indicates that the moves did not do
vhat the player thought they would. PFrom levels 1 to 4, if one
does not oatoh the f£lies, one returns tc level 1. After reaching
level 5, if one faile to catoh the flies, cne returns to level 5.

METHODS

Pourfeen students, ages 8 to 30+, ranging from third grade to
graduate sohool, were observed playing the "Funky Chiocken" game.
Notes were kept on the moves.the flies made (ocomputer controlled)
and the moves the student intended to make and actually made to
oatoh the flies. fThe game was played until the student had
nd8tered the sliding and rotation moves or for two houre. As
observations were made, it beocame obvious that nastering the
8liding move was orucial to early sucoess in the game
(refleotions do not ooour at the lower levels 6f the game).

After playing the game, eaoh student was given the Group Embedded
Figures Test (Witkin, et al., 1971) to measure their position on
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the field dependent/independent continuum. The author's work on
other research studies with high school students had indicated
that a score of O to 10 could be considered as relatively field
dependent and 13 to 18 as field independent.

RESULTS

After observing the first few students (whose GEPT scores varied
from 4 to 16), it became obvious that the more PD students were
having a much harder time catching the flies because they could
not figure out the results of the sliding move (translation). 1In
addition, although they recognized that they weren't getting what
they expected from a slide, they did not try to figure out what
was wrong in any systematic manner. They contined to mix slides,
rotations, and reflections together in their three moves. At the
end of two hours, the observer gave some hints such as "watch
where the head of the chicken is" or "try only slides, so you can
figure out what is going on™. With such direction, the more
field dependent students were able to figure out what the slide
move did and successfully catch the flies. The more field
independent students recognized quite quickly on their own that
they had to figure out what the slide was doing and were able to
sort out this move from the other two types of moves, and were
able to learn to catch the flies in fewer moves than the more
field dependent players. A time limit of two hours was set. The
most field dependent learners did not ever reach the point where
the computer presented reflections (level 4). The more field
independent learners were generally able to master the horizontal
and vertical reflections after a few tries, because they were
able to disembed the move from the context of the game. The most
field independent learners reached the levels where diagonal
reflections occurred and mastered this move.
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DISCUSSION OF RESULTS

The most interesting question posed by this type of study is what
aort of oognitive prooeseing variables seem to be important in
deoision making demanded by the instruotion and oonversely, what
inetruotional variables affeot deoision making strategies of the
learner. Ausburn and Ausbura (1978) disoussed the impliocations
of a number of oognitive styles for instruotional design. They
proposed that oognitive prooceesing styles, suoh as field
dependence/independence, underlie the learner's ability or
inability to build a Iink between the demands of a task and the
learner's oognitive prooessing strategies. The data of this
8tudy suggest that there may be an inoomplete learner/task link
between the features of the oognitive prooessing task as modeled
by the program and the encoding of the information by field
dependent learners, that prevents elaboration whioh leads to
learning. Ausburn and Ausburn suggest "oompensatory
supplantation™ to bridge the ocognitive proocessing gap between
learner gkills and task demands.

Malone (1984) suggested that ohallenge, fantasy and curiosity are
three oomponents that make learning fun. Green (1984) noted that
8004 software design guaranteed the learner a "great deal of
suoocesaful aotion". Flagg (1985) noted that themes of "ohasing,
fleeing, oatohing, or getting oaught"™ were effeotive
attention-grabbing oharaoteristios for ohildren. The "Funky
Chioken"™ program inoorporates all of the above in a ocarefully
designed environment for problem solving. With a few
oompensatory supplantation segments for the field dependent
learner, the program should serve most students with an exoiting
and suococessful way to learn tranaformational geometry oonocepts.
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EMOTION' AND’ COBNITION' -==" EFFECTS- OF° FEAR®
OF NATHEMATICS' ON'LEARNING: AND' TEACHING®

Linda’ Brandau

" gtate’ Colilege), Kewne:,: Néwa! Himpshire

Thi's' paper call's for' research’ into the Interrelatedness: between.
emotion and cognition, especially as to! hou fear of mathematics
retates Qo the lnrnlng M’ mthmulu and: to ite wbnquon(
effects on anhlng. P in' thils' paper sten: from an
i'ntense one year study’ of one elementary t cher who' taught: at.
a prluh school for abou't' 25' chi'ldren)); aged % = 10 years old.
The proto:ol.‘ from vided and audlohp
oxplaln Qh [ 3 anhor's s(rqulo to
mathemstiés To' have prmhd the
the teacher would have nudod to pl
situations Oor which risks could hl
proposed that the teacher was at she would not. Fave
been able Qo handie the nis ' that could have arisen in such
rlsky situations. Any situad on' involving mathematics evoked
her feelings of inadequacy and fear.

on’ nkon. M was

The purpose of this paper Is to highlight tRe need for mathematics
education Fésedrch ifte the Inferrelatedness between emotion and
cognition, espéciaily in connection fo fear of mathematics. I will
disciss my bellied that by studying emotion AND cognition, we will gain

sems important iAsights into the leaFning and téiching of mathematics.

1t seems to havé been & long tradition in mathiematics education research

to sepirate the study of "affective” and *cogiitive® Gariables. This has
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probably been due to the influence of some of the psychological research
which has frowned upon studies dealing with emotions. But recently, some
mathematics education researchers (such as MclLeod, 19835) are calling for
the integration of the affective and the cognitive. And some of the
psychological research community seems to be moving in this direction, as
indicated by the Jean Piaget Society’s 1983 meeting titled "Emotion and
Cognition®, during which Jerome Bruner called for the study of the

interrelation between the two.

I view this new endeavor as different from the "math anxiety® movement of
some years ago however. That movement seemed to spawn many clinics whose
purpose was to "treat® the math anxious person. The view seemed to be
that anxiety is something to be "cured® by working with the "anxious®
individual. 1 would argue for a different view of anxiety and fear of
mathematics. I would argue that it is the SOCIAL SITUATIONS in which
individuals find themselves that evoke the fear and anxiety of
mathematics. UWe need to study those situations ---~ and all the
socio-cultural dimensions to them —---- to gain the most insight into

"fear of mathematics®.

In doing such studies, I would argue against the assumption that fear
resides within an individual. That is, fear cannot be considered one of
a person’s attributes in the way that eye color or hair color is. I4 an

individual shows or feaels fear of mathematics, it is because the emotion
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is evoked by some soclal situation. For example, many of my students at
Keene State College feel fear of mathematics. And this fear seems to be
first evoked when they register for a math class. It is not that this
emotion exists in them. It is in the recollection of their past
experiences in mathematics classes that the same emotional reaction is
now evoked. Perhaps they were called "stupid® by a previous teacher (or
students) or failed enough mathematics tests C(or courses) to feel
inadequate. Their past experiences with the subject has given them
memor ies of feelings of fallure so that an anticipated experience evokes
the same feelings. Thus registering for a math class in college is a
social situation that can evoke all the unploncnn\ feelings associated

with previous mathematics classes.

What seens especially important to me are the cognitive blocks to
learning that occur due to th; evokation of such fear. 1 had one student
for whom a test would evoke such fear that her hands would shake and that
problems I Knew she could do would be totally muddied. On one quiz, !
Qave the students a "story® problem that involved area and perimeter. It
was a problem which could be solved intuitively, without the usual
‘mathematical formulas®. This one student did not do the problem
because, as she later told me, she "did not trust her intuition, her oun
way of doing the problem®, On reftection, it occurred to me that there
was no reason for her to trust her own thinking in mathematics. S8he had

had at least 14 years of failure in mathematics classes === ¢giling
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qQrades and being told, or inferring, she was “dumb®. Why would her own
strategy of solving this area and perimeter problem suddenly be
worthwhile? After all her years of “failure®, why should she trust her

own thinking?

This year I hope to study some of my mathematics students who are
studying to be elementary teachers. I am interested in their experiences
with mathematics but also in the situations which evoke or tessen their
fears. An important quntion'nms to be: how can a social situation be
created that will enhance students’ self-worth and trust in their own

mathematical thinking abilities?

Also important to me are the elementary teachers who are currently in the
classroom. My interest in the interrelationship between emotion and
cognition stems from my dissertation study (Brandau, 1985) of one
elementary teacher and her struggle to encourage thinKing in her
mathematics classes. An important result of this study was my insight
into her fears and how they affected her teaching.

This teacher wanted to encourage more than a “memorize-what-to-do® leve!
of learning in her students. My analysis of the teaching and learning
that occurred in her classroom showed the following. To have promoted
the Kind of thinking she wanted, the teacher needed to place herself and

the children in situations for which more *risks® could be taken ---
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"risks® that involved more trial and error and more problem solving which
was open-ended. But this teacher felt inadequate about her own
mathematical knowledge and abilities., For example, when she tried to
write some lessons involving probability Ideas, she was told by her
husband that her problems for the students were much more mathematically
complex than she realized. Another time she came to me to ask about the
*long division algorithm® and why we do the steps in the way we do them.
A student had asked her about this idea and she felt so uncomfortable

with her knowledge that she could not provide an answer.

In terms of the relation between emotion and cognition, this teacher‘s
feelings of inadequacy and fear of the students making mistakes had an
effect on the way she thought about teaching, and hence on the way she
taught. Decause she felt uncomfortable about her ability to handle what
she saw as student mistakes, she rarely put them or hersel$ In situations
for which *mistakes® could be made. That is, In trial=-and=error problem
solving and/or open-ended problem solving, students can devise many
unusual strategies of their own === gtrategles which the teacher may
never have seen before. This situation alone would provoke anxiety and
fear in a teacher concerned with students solving problems In a
successful manner. If a “new® strategy is invented by a child, how can
one be sure that it will be successful? And if one is uncomfortable with
one‘s math knowledge, then how can there be comfortableness with teaching

mathematics?
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Since this teacher felt responsible for the children’s learning, the

consequences of them getting mathematically "lost® were high. What if
she could not discern inappropriate or misleading strategies, ones that
would lead the children into mathematical misconceptions? Thus it was
safer for her to keep the children and herself in sitvations for which
she felt cognitively comfortable --- gjtuations for which she felt she

could provide appropriate strategies and/or answers.

This teacher, in a sense, was in a similar situation as my students
studring to be teachers. Any situation involving mathematics evoked fear
and created cognitive blocks which in turn affected learning or teaching
mathematics. In terms of research involving teachers in the classroom,
it seems important to investigate those situations which create a
comfortableness with mathematics so that the teachers’ methods involve

some risk taking.

In summary, research involving the interrelationship between emotion and
cognition can yield some important insights into the learning and
teaching of mathematics. UWhat needs to be investigated are all
dimensions of the social situations which: (a) evoke fear of mathematics
and how learning and/or teaching is affected and ¢(b) enhance the
learner’s or teacher’s self-confidence And'com{ortablonosl wi th

mathematics.,
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THE IMPORTANCE OF MEANING AND MILIEU IN UNDERSTANDING
MATHEMATICS TEACHING

Catherine A. Brown
Virginia Polytechnic Institute and State University
Thomas J. Cooney

University of Georgia

It is argued that both the contexts in which mathematics
teaching occurs and the perspectives brought to the mathematics
classroom by teachers and students are important considerations
for understanding mathematics teaching. Research on the
perspectives of teachers, students, and others involved in the
classroom is reviewed and implications for research and teacher
education are discussed.

Qur research interests center on mathematics teachers'
conceptions of both mathematics and mathematics teaching. We
are concerned with the meanings teachers ascribe to classroom
events and how the milieu of the classroom influences those
meanings. We believe there is ample evidence (e.g., Thompson,
1984) to suggest that teachers' conceptions are related to their
instructional practice, and, as Delamont (1983) has argued,
"classroom processes can only be understood if their context is
understood" (p. 45). However, although research on teaching has
provided numerous descriptions of classroom activities, little
information is available on mathematics teachers' conceptions of
mathematics and mathematics teaching and classroom actions as

they are related to the milieu of the classroom.
Though teachers play a fundamental role in establishing the

milieu of the classroom, they are by no means the sole

determiners of the environment. Our work has convinced us of
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the importance of considering not only the roles that teachers
play, but also the roles that students and other individuals
such as parents, principals, and teachers' colleagues play in
the development of the classroom milieu. We will consider the
perspectives of teachers, students, and significant others
(parents, principals, and teachers' colleagues) and the ways in
which these perspectives influence meanings and milieu in

mathematics classrooms.
THE PERSPECTIVES OF TEACHERS

There is evidence that beliefs concerning subject matter
influence the ways in which teachers define the classroom
situation. For example, Schmidt and Buchman (1983) found that
elementary teachers' beliefs about subject matter influenced the
amount of time they sllocated for the various subjects.

Thompson (1984) found that teachers' conceptions about
mathematics and mathematics teaching were a significant, albeit
subtle, factor in forming their classroom actions. Though she
found some inconsistencies between expressed beliefs and
instructional practices, in general, teachers' conceptions were

reflected in their classroom actions.

There are curricula differences which may also affect the way a
teacher conceptuaslizes teaching and performs in the classroom.
Most secondary mathematicse teachers, for example, find it easier
to think about, to plan for, and to teach mathematically
advanced classes than general mathematics classes (Lanier,
1981). 1In a case study we conducted of a beginning secondary
mathematics teacher, we found that the teacher's classroom
actions and how he thought about them were different for
different courses and that this influenced his conception of
mathematics teaching.
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THE PERSPECTIVES OF STUDENTS

There is a growing body of research that supports the contention
that students' perspectives are also an important influencing
factor in the classroom. Students bring their own individual
and collective biographies to the classroom. Students may not
appear to have much power, but there are many subtle ways in
which they exert control. Hoyles (1982) reported that secondary
students wanted security and structure when studying
mathematics; they wanted to know when they had gotten it right.
They insisted on being graded and viewed this as a measure of
their mathematical ability. Mathematics was not seen as
something that could be of interest in itself, but only as
something to be mastered, something to be done. Other findings,
such as Metz's (1978) report of low ability students' apparent
dislike for public interaction and classroom lecture and
preference for seatwork, provide additional evidence of the

relatively hidden student factors with which teachers must cope.

The .perspectives of teachers and students are often not
congruent, which often makes consensus in the classroonm
difficult to achieve. Negotiations take place as teachers and
students struggle to create a classroom atmosphere in which
learning can take place. Krummheuer (1983) found that teachers
and students have bodies of mathematical knowledge that are
fundamentally different and involve qualitatively different ways
of thinking about mathematics. These differences seem to
inhibit the teachers' efforts to help students learn mathematics
since teacher and students are often communicating at different
levels and with different meanings. For example, teachers tend

to operate from what Krummheuer calls an algebraic-didactic

frame while students view mathematics from an algorithmic-
mechanical frame. Krummheuer suggests that teachers must learn

to understand the perspectives of their students and help them
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to understand the perspective of the teacher so that both can

work together toward a common goal.

In a case study we conducted with a8 beginning mathematics
teacher, we found that his students had conceptions of both
mathematics and of how it should be taught. In general, the

students believed mathematics consisted of rules and definitions .

to be memorized and used to solve assigned exercises. They also
believed that a mathematics teacher should define terms and
explain procedures carefully, working examples to show students
how the exercises should be solved. Students viewed assignments
as a means of practicing procedures and of indicating what they
had learned. The conceptions held by the students were in
conflict with those held by the teacher, who believed
mathematics was a body of knowledge to be explored and
appreciated. Problem solving was the essence of mathematics for
this teacher and he expressed an intention to share this view
with his students. His attempts to use problems in his teaching
were met with indifference and sometimes resistance from the
students, motivating a change both in his classroom actions and
his thinking about them.

Stephens and Romberg (1985) studied Australian mathematics
teachers who were attempting to use innovative materials called
RIME (Reality in Mathematics Education). A reoccuring theme
throughout their analysis was the difficulty teachers faced when
they were asked to teach atypical content in atypical ways. It
was clear from this study that a real negotiation takes place
between teachers and students regarding what is judged to be
acceptable mathematics and acceptable ways of teaching
mathematics.
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THE PERSPECTIVES OF SIGNIFICANT OTHERS

Life in the classroom is not shaped totally by the perspectives
and actions of only teachers and students. Other individuals
who contribute to the definition of the classroom situation
include parents, principals, teaching colleagues, and in a
collective sense, society at large. The literature indicates
that these individuals also shape or at least provide
constraints on classroom activities. Bishop and Nickson (1983),
for example, hypothesized that because mathematics is a subject
that is easily identifiable and generally valued by parents the
teaching of mathematics is more open to criticism by parents
than most other subjects. Teachers are forced to justify to
parents their teaching of particular content and its relevance

for the pupils' future life.

The literature and our own work has made clear to us that there
are many individuals, each with unique perspectives, that affect
the mathematics classroom in many ways which we do not yet fully
understand. We do not know how the perspectives of various
individuals interact in the complexity of the classroom setting.
We do not understand why mathematics teachers do not practice in
the classroom that which they have been taught in teacher "
education programs. We maintain that research related to
understanding the perspectives of these individuals and the
effects they have on the mathematics classroom can give
mathematics educators additional insight into the teaching of
mathematics and provide a better foundation for preparing

teachers for the compexity of the mathematics classroom.
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MISCONCEPTIONS RESEARCH AND THE CLINICAL INTERVIEW
Jere Confrey and Anita Lipton
Cornell University

This paper discusses the relationship between the
methodology of clinical interviewing and the
conceptualization of misconceptions. [/t suggests that
with the current methods of clinical interviewing, no
differentiation between students with systematic errors
and weak constructive processes and students with
misconceptions can be made with assurance. Plans to
revise the clinical methods in response to the
reconceptualization of misconceptions are reported

INTRODUCTION

The clinical interview has been used with increasing frequency in studies of
students’ mathematical understanding. Its appeal was in its ability to go
beyond the paper and pencil test in providing us evidence of how students are
thinking about mathematical concepts, processes and reasons.

Early studies showed in dramatic ways that students were not learning what
they were taught. As the work developed, researchers became aware that
while the students were not learning what we expected in 1arge measure, they
were learning something; and the focus of research shifted to try to
determine just what that was. While there were many reasons why students
did not perform well, the pervasive and predictable qualities of the errors
and students’ resistance to relinquishing faulty solution strategies lead .
researchers to define them as misconceptions. These traits, (especially the
commitment of students to their way of seeing) lead some researchers to
posit that an internally consistent structure was at work behind these
errors.

The clinical interview continues to be the primary data-gathering tool used in
investigating the developing misconceptions research area. its goal has been
to build a map or mode} of the student’s method of thinking by observing
his/her spontaneous problem solving strategy and asking questions until a
“rational” and predictive mode) could be abstracted from the student's

O
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statements. To achieve these goals a set of misconceptions tasks must be
carefully structured. While the problems have often been original and
thought-provoking, and have required the students to do more than simply
apply memorized rules and methods, they have done littie to clarify the
relationship of misconceptions to the student’s larger conceptualization of
the probiem; they were simply designed to “reveal” misconceptions.

It 1s our position that this state of the theory of misconceptions and
methodology needs attention. We believe that the theory and the methods
must develop dialectically if the empirical results of these studies are to aid
us in improving our theoretical positions.

CONSTRUCT{VIST ASSUMPTIONS

Some of the thorniest methodological questions come from our decision to
conceptualize the interview as a form of communication in which both the
interviewer and the interviewee must construct meaningful interpretations
of the setting. At every level of the analysis, we, as interviewers are using
our interpretation of the inputs and of the output evidence. finputs include
the written problem, the stated goals and the interviewer's questions
(we believe the student's interpretation of these inputs is 1ikely to be
quite different from ours. Evidence of outputs are verbal statements,
written marks, affective signals (again, it is our interpretation of these
things we use to bufld on). As constructivists, it is essential In our
viewpoint to be aware that we are building. models of students’ thought and
that these models are, in turn, derived from interpretations and constructs of
inputs and output evidence. Many studies making use of the clinical
interview take the interpretation of these inputs and outputs as
non-problematic; they assume agreement between the student’'s and
interviewer's interpretation.

DESIGN

The misconceptions test consisted of five problems chosen to represent:
functional and algebraic manipulations, geometric area and identities, and
graph and chart interpretation (see Appendix). The problems were chosen
to represent a variety of concepts, and were designed to allow for multiple
representations (symbol systems, graphs, tables, applications, etc). Within.
each problem, the multiple representations were included to allow us to
explore the extent of an error pattern and its internal consistency. For
example, on the first problem, a table of the exponential function y=4" with
the values x=2 and x=3 was included with the problem: 425.____

I oRY ‘ ',E :
EST COPY AVAILABL 5 O.




E

Confrey/Lipton 40

in line with our concept of the interview as an intervention, we chose two
interview techniques: an introspective, talk-aloud approach and a more
retrospective, review or retelling of work done silently. Fifteen
students, chosen at random from a pre-calculus course solved these
problems individually in audio-taped interviews. These students were
assigned two problems as talk-aloud problems, two as review problems and
were to elect one of the interview styles for the final problem. The order
of the problems was systematically varied.

We tested a larger student population (n= 108) with a written version of the
test to provide another perspective on the interviews. The results of the
written tests were scored, and the strategies students used for each
question (where apparent) noted and tallied. The scores on these tasks
were distressingly low with an average correct performance on the items of
32%. Only 49% could correctly square a trinomiat, for example. (The results
are listed in Appendix.) A comparison revealed that the results from the two
methods were largely suppporting. The interview certainly allowed us more
insight into the strategies and beliefs of the students; whereas the written
test sample reassured us that our interview population was representative of
the group and that the problems seemed appropriate for the level of students .

SYSTEMATIC ERRORS AND WEAK CONSTRUCTIVE PROCESSES

At the time of the design of the problems, we thought of misconceptions as a
system of beliefs which formed a relatively stable and internally consistent
cognitive system. We expected misconceptions to be concept-specific and
to be able to be analyzed into prerequisite skills, definitions,
representations, related concepts and use of language. Furthermore, we
expected to find students highly confident of their answers and committed
to them. Our data showed that students often applied repetitive and
predictable faulty strategies, but these lacked the compelling nature or
internal consistency of misconceptions. This suggested the more elementary

notion of systematic errors.

Systematic errors include the systematic (and inappropriate) application of
familiar fragments of arguments, algorithms and definitions without any
attempt to integrate accross representational systems. They are common
across students and permit accurate prediction of what answers the student
will give to a well-defined set of problems. They are not powerful and they
are not conceptualizations. They are akin to snapshots. incontrast with
those who construct full-blown misconceptions, students who make
systematic errors have difficulty expressing their beliefs, their knowledge
appears !ragmented and isolated, and their commitment to their ideas seems

O
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minimal and hesitant, as evidenced by a drop in their voice or a quick and
superficial 1abelling of the problem. Examples inour interviews are legion:
In Problem 3, 12% of the students squared each term of the trinomial;, 42%
of the students did not differentiate between the square of a sum and the sum
of squares; S6% multiplied indiscriminately the side and the base of 2
parallelogram to obtain its area in Problem 2.

In analyzing our interviews we found little evidence of more highly
structured or compelling errors that would warrant the name misconception.
This has led us to reconsider our definition and to give more importance to a
dimension we have chosen to 1abel the constructive process. It is in this
area the dynamic of student’s engagement with problem solving, where
differences between successful and unsuccessful students was most
prominent.

The more successful students would lead the interview, confidently and
firmly; when encountering a problem they would paraphrase or reformulate
it. In solving it, they would tap multiple strategies, and use language to
explore ideas. Successful students confirmed, with unexpected frequency,
the importance of key counter-exampies as a hedge against both systematic
errors. At certain junctures in problem solving where students were about to
follow the less successful students in making one or another error, these
counter-examples or strategic “don’'ts” came to their aid, either in the form of
semantic principles or syntactical rules of thumb: °..negative exponents are
really positive numbers, but ... it's under a fraction, | over “that value”. In
other words, these are not negative here..” When these students were asked
to review a problem they could describe unsuccessful as well as successful
attempts. During the review phase they would engage problems for the second
time.

In contrast, the unsuccessful problem solver would appeal to rules,
algorithms and techniques. S/He would usually expect these to be produced
full blown from memory. A problem that could not be solved (problem 3b) or
that required exploration (problem 4) would be seen as objectionable, because
in mathematics, one "does” things, and gets answers. When in doubt, the
unsuccessful student tended to reach into his or her grab bag, pulling out
anything which seemed related to the problem. When pressed even
minimally they would drop their voices or express their intense dislike of
being mistaken. They would minimize their risk by stopping at the earliest
possible point when a problem was finished. The review was a routine
reporting of what they did.
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In summary, we are suggesting that with our initial definition of a
misconception and with our current methods, we were unable to distinguish
misconceptions from systematic errors. We believe that this is in part due to
a lack of engagement of students in constructive processes, and this has ted
us to reconsider the relationship among systematic errors, weak constructive
processes and misconceptions.

MISCONCEPTIONS AND METHODS REVISITED

In this 1ast section, we will discuss the issues raised by this study that must
be addressed before proceeding. No final resolution of the issues is offered
at this time.

1. One interpretation might focus on the role of constructive processes in the
learning of mathematics. Perhaps if students could be taught to learn
mathematics the way the successful students did, the poor performance on
these types of problems could be lessened considerably.

2. Another possibility to consider is that weak constructive processes mask
misconceptions. {f so, and if we wish to continue to pursue misconceptions,
we could identify those students with strong constructive processes, and
search for misconceptions in that population.

3. Alternatively, it might be more appropriate to view misconceptions in the
light of Hawkins' critical barriers (1982). Critical barriers are conceptual
obstacles which are critical in that they involve preconceptions, are
incompatible with scientific understanding, are prevalent across individuals
of different ages, educational experiences and achievement levels, are
structured, and are fundamental to understanding a range of phenomena.
Furthermore, Hawkins emphasized the joy and insight experienced as critical
barriers are surmounted.

In integrating Hawkins' definition of critical barriers with our own
observation of student performance on interview tasks, we feel that
misconceptions must have a powerful underlying conceptual and psychological
dimension; they must aid a student in making sense of some phenomena and
must include 2n effective constructive process as part of problem solving
behavior. This process dimension seems essential to us in order to
distinguish between a misconception and a systematic error, and even more
importantly perhaps, between a correct atgorithmic performance and a
powerful conception. Explication of an affective dimension will probably also
be included.
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4. Lastly, we are struggling to reconceptualize the clinical interview in order
to make it sensitive to the re?isions discussed above. We are convinced that
it needs to be seen as an intervention, and that we need to be less timid about
that intervention. If we conceive of a misconception as a powerful
construction, then we believe that the methodology ought to confront the
student with externally apparent contradictions and multiple representations,
and therefore, to explore how resistent misconceptions are, connecting them
more closely with constructive processes.
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1. Fi1l In the chart for the function:y = 4% correct 63%
for x = (-3,-2,-1,0,1,2,3) nearly correct 12%
incarrect 258
What does 425 equal? correct 44%
' Incorpect 22
what does 4'5 equal? correct 33%
Incorract 678
2. A person was given the plot of 1and with the correct S%
dimensions shown below and she wants to know . Identified height
the area. Calculate the area. of or indicated
that area of
was needed 25%
: Incorract 108
3. Perform the indicated operation: a) (n?+ 3p- 25)2 correct 49%
' incorrect SIR
b) \9 + ax2 correct  2B%
incorrect 2%
4. Draw a triangle where a, b, and ¢ are the lengths  correct (supported) 10%
of the three sidesanda+ba=c. unable to classify 21%
incorrect 69%
S. Ihe Drag Race This question required the correct 22%
students to interpret a graph and chart. incomplete 19%
(Carjel, C, RJoss, GMonk, Erom Problems to incorrect 57%
Calculus, Univ. of Washingten, 1975, p. 2.) misunderstoed prob. 2%
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DEVELOPMENT AND VALIDATION OF AN INSTRUMENT TO ASSESS
FIFTH AND SIXTH GRADE CHILDREN'S KNOWLEDGE OF VARIABLE

Claire L. Crook
The Ohio State University

ABSTRACT

The purpose of this study is to develop an instrument
to assess fifth and sixth children's understanding of
variable. The study was conducted in two phases.
During Phase I student's answers to algebra oroblenms
were analyzed and classified into error types.

During Phase II, a twenty-six item multiple choice
test was developed to assess fifth and sixth grade
children's knowledge of variable. Knowledce of the
kinds of errors that were made, and the common
incorrect resnonses that occurred on the tests given
during Phase I, formed the basis for creating
distractors for the multiple choice items. The test
was administered to fifth, sixth, and seventh grade
children. An item analysis, factor analysis, and
multiple regression were used to determine the
validity and reliability of the instrument.

Since the advent of computers in the classroom, many educators
believe that there is a relationship between programming and
learning about variables (Blume & Schoen, 1985; Soloway,
Lochhead, & Clement, 1982; Fey et al. 1984). Traditionally,
students have little experience with variables before ninth
grade algebra. With the availability of computers in most
elementary schools, children may be able to learn about
variables at a much younger age. Currently there is no
instrument available to assess an elementary student's
knowledge of variable. The ourpose of this study is to
develop and validate an instrument to assess fifth and sixth
grade children's knowledge of variable. '
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A twenty-six item multiple choice test was administered to
two £ifth, two sixth, and two seventh grade classes. Test
items were categorized according to Kuchemann's (1981)
different categories of letter usage. Categories were
determined by deciding what would be the lowest level of
understanding needed to correctly answer the problem. Since
the results from Phase I indicated that items became more
difficult as the category number increases, more items from
the first four categories were included and only three from
category five and six. Table 1 shows the number of problems
in each category.

Table 1
Number of Problems in Each Category of Letter Usage

Categories

Letter Letter Letter Letter as Letter as Letter
Evaluated Ignored as Specific Generalized as

Object Unknown  Number Variable
Number
of 6 5 4 6 2 1
Items
RESULTS

The means ans standard deviations for grades £five, six,
seven, and the total are presented in Table 2.

Table 2
Means and Standard Deviations for Grade 5, 6, 7, and Total Score
Grade n Mean Standard Deviation Standard Error
5 46 10.15 3.59 .529
6 46 11.63 3.79 .559
7 46 15.15 5.67 .836
Total 138 12,31 4.89 .417
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A factor analysis showed that two factors accounted for 25.6%
of the variance. Eleven test items loaded significantly on
one factor and six items loaded significantly on the second
factor, with a cut-off point of .375 for both factors.

Results of regression analysis found that grade level was a
significant predictor of total test score, p ( .0001.
Eighteen percent of the variance in grade can be explained by
the total test score.

A stepwise multiple regression verformed on factor 1 and
factor 2 with grade as the dependent variable found that the
combination of factor 1 and factor 2 explained 20% of the
variance in grade. Factor 2 alone accounted for 16% of the
variance. PFactor 2 is significantly related to grade level,
g<:.0001, and factors 1 and 2 combined are also significantly
related to grade, p ¢ .0001.

Table 3 surmarizes the results of item analysis.

Table 3
Summary results of Item Analysis

Average Cronbach's Number
Item difficulty Phi’'coefficient Alpha of items
Total .52 .69 .81 26
Factor 1 .42 .74 .79 11
Factor 2 .71 .71 .63 6
DISCUSSION

All eleven items that loaded on factor one fit into one of
Kuchemann's first three categories of letter usage. All of
the problems could be solved by hints from key words, recalling
a familiar bond, substituting numbers for letters, or using the
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letter as an object. None of the solutions involved manipulating
or operating on an unknown.

All of the items that loaded on factor two fit into category
four, five, or six. The solutions tb the six problems that

loaded on factor two required the ability to do at least one
of the following:

1. to see the relationship between two. unknown specified
values and to find those values.

2., to see the relationships between two unspecified values

3. to manipulate and operate on an unknown

4. to regard the letter as a generalized number.

Evidence from Phase I indicates that there was a greater
difference in difficulty between the first three levels and
the fourth, and evidence from factor analysis in Phase ITI
strongly suggests that there are two distinct levels of letter
usage.

The first level, an elementary use of letters, does not require
manipulation of the unknown factor. The solution can be found
by ignoring the letter, substituting a number for the letter,
or recalling a familiar bond.

The second level of letter usage requires at least an
understanding of the concept of a letter representing an
unknown number and the ability to operate on the letter in
order to find the unknown number.

There appears to be a gap between these two levels of letter
usage. This gap may be due to differences in cognitive levels.
However, since the fifth and sixth grade students had very
little experience with any kind of letter usage, and the
" seventh grade students had some pre-algebra experience, the
gap could be due to learning experiences.
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Further study may show that a variety of experiences of

letter usage at the elementary level may provide the needed
structure to bridge the gap between the two levels of letter
usage. The key element between the two levels of letter usage
appears to be the concept of a letter representing an unknown
number and the ability to operate on the letter in order to
find the unknown.

Statistical analyses tend to substantiate the assumption

that the variable assessment instrument is reliable and valid.
The test items that do not load on either factor need to be
analyzed, and refined or deleted. Additional factor two
items are needed, especially category five and category six
items.

The results of this study suggest that with a few refinements
the variable test is an appropriate instrument to assess fifth
and sixth student's knowledge of variable.
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WRITING NUMBER SENTENCES TO REPRESENT ADDITION
AND SUBTRACTION WORD PROBLEMS

E. De Corte & L. Verschaffel (1)
Center for Instructional Psychology
University of Leuven, Belgium

.Since 1979 we are working on a regearch project in which we try
to contribute to a theory of the development of children's abi-
lity to solve elementary arithmetic word problems. In tnis pa-
per we present some results concerning the relationghip between
children's processes for analyaing and solving addition ard sub-
traction word problems on the one hand, and their gkil. in wri-
ting number sentences to represent these problems on the other.
The presentation of the results ig organiszed arcund the follo-
wing three topics : (1) spontaneous use of number sentences, (2)
incorrect elicited number senterces, (3) correct elicited number
sentences.

INTRODUCTION

In the last few years a substantial body of research has been done on the
development of children's problem-solving skills and processes with respect
to elementary addition and subtraction word problems (De Corte & Verschaffel,
1985a), This research has provided a fairly detailed and consistent picture
of the level of difficulty of different types of elementary addition and
subtraction word problems, of the variety of “informal® strategies applied by
young children to solve those problems, and of the kind of errors they
commit. However, the transition from these initial informal problem-solving
processes to the more “formal” addition and subtraction concepts and skills
taught in school is still not very well understood. One important aspect of
this transition is how children gradually turn to these formal concepts and
skills to represent and solve elementary arithmetic word problems. This issue
was addressed in a longitudinal investigation carried out in our Center. Some
findings of this study relating to problem difficulty and to children's
solution strategies and errors were reported elsewhere (De Corte & Verschaf-
fel, 1984, 1985a, 1985b). In this paper we present the main results concer-
ning the relationship between children's processes for analyzing and solving
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elementary addition and subtraction word problems on the one hand, and their
ski11 {n writing number sentences to represent these problems on the other.
Before discussing these findings we give a brief description of the design of
our longitudinal {nvestigation.

DESIGN AND TECHNIQUES

During the school year 1981-1982 we collected empirical data on children's
representation and solution processes with respect to elementary addition and
subtraction word problems. Thirty first graders were individually {nterviewed
three times during the school year : at the very beginning in September, 1in
January and at the end of June. Each time they were administered eight word
problems : four addition and four subtraction problems :

Addition problems (2)

Change 1 Pete had 3 (5) apples; Ann gave Pete 5 (7) more apples; how
many apples does Pete have now ?
Change 6 Pete had some apples; Pete gave 3 (5) apples to Ann; now Pete

has 5 (7) apples; how many apples did Pete have in the
beginning ?

Combine 1- Pete has 3 (5) apples; Ann has 7 (9) apples; how many apples
do Pete and Ann have altogether ?
Compare 3 Pete has 3 (5) apples; Ann has 6 (8) more apples than Pete;

how many apples does Ann have ?

Subtraction problems

Change 2 Pete had 6 (12) aﬁmes; he gave 2 (4) apples to Ann; how many
apples does Pete have now ?
Change 3 Pete had 3 (5) apples; Ann gave Pete some more apples; now
:ete !’ms 10 (14) apples; how many apples did Ann give to
ete
Combine 2 Pete has 3 (5) apples; Ann has alsc some apgﬂes; Pete and Ann
. have 9 (13) apples a1toi§ther; how many apples does Ann have ?
Compare 1 Pete has 3 (5) apples; Ann has some more apples than Pete; Ann

2&5 8?(12) apples; how many apples does Ann have more than
ete

The word problems were read aloud by the interviewer. With respect to each
problem, the children were asked to perform the following tasks : (1) to
retell the problem, (2) to solve it, (3) to explain and justify their solu-
tion strategy, (4) to build a material representation of the story with
puppets and blocks, and (5) to write a matching number sentence. Task § was
administered only during the second and the third interview, when the
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children had already received formal instruction on addition and subtraction.
The individual interviews were videotaped. The data were submitted to a
quantitative and a qualitative analysis.

RESULTS

Spontaneous use of number sentences

One of the most striking results of our study is that - although during the
school year the children were explicitly taught to do so - the typical first
grader did not formulate spontaneously an incomplete numerical sentence (e.g.
9-3=, or 3+.=9) as a step in the solution of a word problem (see also
Carpenter, Hiebert & Moser, 1983; Lindvall & Ibarra, 1978). During the second
and the third interview, no one of the eight problems was solved more than
two and five times respectively using a written number sentence. During both
interviews only one and three children respectively applied this “number
sentence writing"-strategy more or less systematically, j.e. for at least
half of the problems. The explanation for this finding is rather
straigthforward. Beginning elementary school children seem to solve word
prob]éins by constructing some kind of external or internal representation of
the essential elements and relations in the problem text; then they select a
quantitative action to determine the unknown in that problem representation
(De Corte & Verschaffel, 1985b). For these children writing a number sentence
as an intermediate step between the construction of a representation of the
problem situation and the selection of the quantitative action to solve the
task is by no means necessary nor helpful to find the answer more quickly or
more efficiently. On the contrary, due to their unfamiliarity with the formal
symbols and rules of school mathematics, translating their understanding of
the word problem into a numerical sentence can lead to difficulties that
interfere with these children's spontaneous solution processes.

Incorrect elicited number sentences

O
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When a word problem was solved correctly without spontaneously stating a
formal equation, the child was asked to generate a matching number sentence.
An analysis of the reactions on this task shows that for every problem a
considerable number of children failed to formulate an appropriate number
sentence for a word problem they were able to solve. Similar data were
reported by Carpenter, Hiebert & Moser (1983) and by Lindvall & Ibarra

63



53 DeCorte/Verschaffel

(1978). A detailed description of the different erroneous number sentences
for the distinct problem types 1s given elsewhere (Verschaffel, 1984). Here
we only discuss some data with respect to the two problem types that elicited
most incorrect sentences, namely change 6 and compare 1.

During the second and the third interview more than one third of the children
who had solved the change 6 problem correctly, were unable to write an
appropriate number sentence. A closer look at these children's protocols
suggests that for many of them the failure was due to the ambiguity of the
sentence-writing task. Indeed, number sentences can fulfil two different
functions with respect to word problems : they can be used either as a formal
mathematical representation of the semantic relations between the known and
the unknown quantities involved in the problem, or as a mathematical notation
of the operation that should be or has been performed on the two given num-
bers to find the solution of the problem. Sometimes the same number sentence
can fulfil both functions, 11ke in the following example. Suppose a child {s
given the problem “Pete had 6 apples; he gave 2 apples to Ann; how many
apples does Pete have now ?" and solves it by decrementing 6 by 2. In this
case the number sentence 6-2=. represents the semantic structure of the
problem as well as the arithmetic operation performed by the child. In other
cases both aspects have to be expressed by different number sentences. For
example, consider our change 6 problem (“Pete had some apples; he gave 3
apples to Ann; now Pete has 5 apples; how many apples did Pete have in the
beginning ?" being solved by adding the two given numbers. The numerical
sentence .-3=5 represents the semantic structure of this problem, but the
arithmetic operation applied by the child matches either the number sentence
5+3=. or 3+5=. Especially with respect to our change 6 problem, several
children failed on the sentence-writing task, because they tried to combine
both functions into one single equation, which lead them into an unsurmoun-
table conflict : on the one hand they acknowledged that the numerical senten-
ce should contain a minus sign, because the word problem mentioned that Pete
gave away 3 apples; on the other hand they thought that the number sentence
should comprise a plus sign, because they had added the two given quantities
to solve the problem.

Ancther remarkable finding 1s the great number of failures on the compare 1
problem (“"Pete has 3 apples; Ann has some more apples; Ann has 8 apples; how
many apples does Ann have more than Pete ?"). About half of the children
solving that problem correctly, were unable to write an appropriate number
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sentence. The most common incorrect responses were : 3+8=5, 3+8=11, 3-8=5,
3...8=5, and “no answer". This may at least partially be due to the type of
mathematics program used to teach these children arithmetic. First, in the
beginning of that program, the arithmetic operations of addition and subtrac-
tion are introduced using concrete change and combine situations; it provides
almost no experience in comparing the relative size of two sets {compare
situations). Second, once the children have obtained a certain competence in
writing and solving addition and subtraction number sentences, the program
offers almost no opportunity to apply these skills to compare word problems.
Therefore, it 1is not surprising that the children had considerable
difficulties in connecting their intuitive understanding and their informal
solution strategies of compare problems to the formal mathematical symbols
and rules they were taught in school.

Correct elicited number sentences

ERIC 65

We finally discuss some findingé concerning the types of valid number senten-
ces for the addition and subtraction word problems,

Three addition problems elicited only canonical addition sentences (i.e.
atb=. or b+a=.) (3): change 1, combine 1 and compare 3. This is not at all
surprising. Indeed, children who try to formulate a numerical sentence that
corresponds to the semantic structure of these three types of word problems
as well as those seeking to express the nature of the operation performed,
have to apply such a canonical equation. Interestingly, a considerable number
of these canonical sentences started with the larger given quantity in spite
of the fact that in the verbal text of the problem the smaller quantity was
mentioned first; they were all generated by children who had solved the word
problem using a strategy that starts with the larger given number { Verschaf-
fel, 1984). Apparently these children had interpreted the “sentence-writing
task" as a request to formulate the number sentence that expresses the
arithmetic operation performed to find the solution of the word problem.
Although the fourth addition word problem - change 6 - also elicited a great
number of canonical addition sentences, non-canonical equations {.-a=b) were
generated by a significant minority. As explained before, the number sentence
expressing the semantic structure of a change 6 problem and that correspon-
ding to the operation commonly performed to solve the problem can be quite
different.
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With respect to the subtraction word problems, only the change 2 problem
elicited a substantial number of canonical subtraction sentences (a-b=.); for
the . three other problems - change 3, combine 2 and compare 1 - almost no
subtraction sentences were generated. This 1s also not surprising, taking
into account the structure of these word problems on the one hand, and the
kind of strategies the children used to solve them on the other. Contrary to
the change 2 problem, the structure of these subtraction word problems {s
expressed most appropriately by a non-canonical addition sentence (a+.=b),
Moreover, while the change 2 problem was solved mostly with direct subtracti-
ve strategies (1.e, strategies in which the answer 1s found by subtracting
the smaller given number from the larger one), the other subtraction problems
elicited almost exclusively indirect additive strategies (1.e. strategies in
which the child determines what quantity the smallest given number must be
added with to obtain the larger one) (Verschaffel, 1984),

NOTES

(1) L. Verschaffel 1s a Senior Research Assistant of the National Fund for
" Scientific Research, Belgium.

(2) The numbers in brackets were used during the third interview.

(3) The symbols a and b represent the first and the second given number in
the word problem.
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AN ATTITUDE SURVEY OF MATHEMATICS TEACHERS IN ELEMENTARY GRADES

Linda J. DeGuire
University of North Carolina at :reensboro

A 40-1iten attitude survey was given to 259 elementary

teachers as part of a lager survey about variables related

to the teaching of mathematics. Factor ana-vsis of the

results indicated 5 factors among the attit.de items:

Enjoyment of Teaching Mathematics, Ease in _earning Mathematics,

What Mathematics is, Students as Learners of Mathematics, and

How to Teach Mathematics.
The quality of mathematics learning depends on a variety of variables,
including affective variables within the student and within the teacher.
Reyes (1984) reviewed the effects on learning of affective variables within
the student. Such research leads to the questicn of the effects on learning
of affective variables within the teacher. The present paper reports on
part of a study of such variables among teachers in the elementary grades

and their effects on student achievement.

The study 1s based on data collected from all teachers of mathematics (K-12)
in one school district (see DeGuire, 1985), with 259 of the respondents on
the elementary level. The teachers were surveyed about the following areas:
1) their mathematics backgrounds,
2) their mathematics education backgrounds,
3) the amount of class time they give to mathematics,
4) how they use the instructional time in —athematics,
5) their confidence in teaching various tcoics 1n mathematics, '
6) their attitudes and beliefs about themselves as learners of
mathematics, about themselves as teachers of mathematics, about
students as mathematics learners, and about what mathematics {s.
Also, the results on the mathematics portions of the California Achievement
Tests (CAT) for grades 1, 2, 3, and 6 were obtained. These results are
composite for each grade in each building
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The present paper examines the structure of the 40-item attitude section
of the survey for the elementary teachers. Further analyses will examine
relationships among the at*itude variables, the confidence variables, the
use-of-instructional-time variables, and the student achievemert variables.

Method
The Subjects
The respondents to the survey were all the teachers who teach mathematics
in the elemetnary grades (<-5/6) in a single district. Within the district,
some 6th-grade classes are in middle schools (grades 6 to 8); other 6th-grade
classes are in elementary schools (grades K to 6). Only 6th-grade teachers
in elementary schools were included in the analysis reported here. The
district contains 24 schoois (6 high schools, 5 middle schools and junior
high schools, and 13 elementary schools) and covers approximately 800 square
miles. Its student population is from mid-to-lower middle class, mostly
rural families. It serves approximately 17,000 students. Its teacher
population is drawn mainly from nearby small cities and towns.

The Attitude Section of the Survey
The attitude section of the survey contained 40 statements about the teacher's
attitudes towards mathematics and mathematics education. The teacher used

one of five categoires (from Strongly Agree to Strongly Disagree) to respond
to each statement. The statements were hypothesized to represent four
randomly-merged subscales of 10 items each-- attitude toward self as learner
of mathematics, attitude toward self as teacher of mathematics, attitude
toward students as learners of mathematics, beliefs about what mathematics is.

The Procedure

The survey was sent to all teachers of mathematics, grades K-5/6, even those
who taught only one class of mathematics, through a designated teacher in
each building. The response sheets contained no identifying information
other than that requested in the items and were returned to the designated
teacher in each building, who then returned them to the Elementary Supervisor.
The anonymity of the respcnder and the non-involvement of principals were

O
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intended to provide maximum opportunity for openness in responses. There
were 259 respondents to the survey, representing a return rate of more than
95%.

The responses to the attitude section of the survey were subjected to factor
analysis to determine the construct validity of the hypothesized subscales.
If the hypothesized structure could not be substantiated, the factors would
be used to define subscales appropriate to the structure of the items. A
significant loading of a variable on a factor was defined to be |. 30l or
greater. Numerical values of responses to certain items were reversed so
that all "favorable" responses would have the same value.

Results

The factor analysis was performed using the factor procedure in SAS (1979)
with iterated principal factor analysis, followed by Varimax (orthogonal) or
Promax (oblique) rotation. The Kaiser-Guttman criterion (1.e., minimum
eigenvalue of 1.0) indicated 13 factors. However, an examination of the 13-
factor solution showed many singleton and doubleton factors. The solution
was rejected, Cattell's scree test (1978) indicated 5 or 6 factors. The
hypothesized structure indicated 4 factors. The 4-, 5-, and 6-factor solutions
were examined. The orthogonal and oblique solutions for a given number of
factors differed only slightly. Both 6-factor solutions contained a double-
ton factor and were rejected. The only difference between the 4- and 5-
factor solutions was the split of the first factor in the 4-factor solution
into two factors in the 5-factor solution. The 5-factor oblique (Promax)
solution was accepted.

The 5-factor solution of the attitude items of the survey did not correspond
exactly to the hypothesized subscales. Space does not permit the repro-
duction of the entire table of factor loadings. The items loading highest
on each factor are given in Table 1 in descending order of their loadings.
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Table 1
Items Loading on Each factor

factor 1: Enjoyment of Teaching Mathematics

111 Math is one of my favorite subjects to teach.

118 I look forward to teaching math every day,

In 3 I would rather teach reading than math.

119 1 find many math problems very interesting.

In15 Math ismoredifficult to teach than reading.

In 7 Math is so hard to understand that I do not like it
as well as other subjects.

1 34 1 think math is beautiful.

In16 There is so much hard work in math that it takes the
fun out of it.

factor 2: Ease in Learning mathematics

In2 1 find many math problems too difficult to be enjoyable.

In22 Many sutdents get very nervous before math tests
because such tests are very difficult.

In 4 Nomatter how hard I try, I find math difficult to
understand.

1 12 1 have usually found math courses easy.

1 30 Students would like math better if it were not so
hard to understand.

In 5 Even the thought of taking a math course scares me.

In13 Math courses have usually been one of my weak spots.

1 29 Math is more of a game than it is hard work.

117 1 understand math concepts easily

In32 Most students must work very hard to do well in math.

1 26 Most people can learn the math taught in elementary
and secondary schools.

Factor 3: What Mathematics Is

1 39 Math should be enjoyed for its own sake.

1 35 Most of my students can understand the math I
teach.

1 23  Problem solving is an integral part of math.

1 28 Math is a good subject for mental discipline.

In36 Math class is not a place for a student to show
creativity.

121 Arithmetic computation is only a small part of math.

In31 Students would like math better if it were not so
hard to understand.

Factor 4: Students as Learners of Mathematics
In37 Boys are usually better at math than girls.
1 8 I believe it is just as important for students to
understand math as to be able to do computation.
In38 Most math is too concerned with ideas to be
really useful.
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In33 Many girls have math phobia

In27 To do well in math class, you have to be smarter than
you have to be to do well 1in other subjects.

In24  Math can only be understood by a few.

Factor 5: How to Teach Mathematics

In14. I believe that math classes should be mostly practice
work,

In 6 I feel that manipulatives are only appropriate in
math classes in the early grades.

In25 Math is basically a collection of rules about
numbers,

In20 I believe teachers should not try to prove math
statements to children until at least high school,

In 9 When my daily class schedule is disrupted, I sk1p
math class rather than other classes.

Items not 1oading significantly on any of the factors:
In 1 Problem solving cannot be taught until children
have learned the basic arithmetic skills.
In10 I do not understand how scme people can say that
math makes a 1ot of sense to them,
I 40 Most students find math interesting.

Items for which the numerical values of the responses were reversed are in-
dicated with an "In" preceding the number; other items have only an "I" pre-
ceding the number. Items Inl, In10, and 140 did not load significantly on
any of the factors.

Discussion
The factors of the attitude section on the survey are quite independent.
They have been named as follows: Enjoyment of Teaching Math, Ease in Learn-
ing Mathematics, What Mathematics Is, Students as Learners of Mathematics,
and How to Teach Mathematics. For further analyses, the items which 1oad
highest on each factor will be used to define a subscale of the attitude
section of the survey. An arithmetic function of the responses to each
attitude subscale will be defined to serve as measurements of the variables
represented.

It 1s important to note that the correlation of factors 1 and 2 indicates that
a teacher's perception of the ease or difficulty of learning mathematics
and the teacher's enjoyment of teaching mathematics are related. Also, the
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items about the teacher's difficulty in learning mathematics, as well as the
items about a teacher's perception of the student's difficulty in learning
mathematics, load on the same factor. If either of the attitude subscales
defined by these factors is significantly related to student achievement,
that relationship would have consequences for the education and selection of
mathematics teachers for elementary students.
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JOHN 'S ARITHMETICAL ADDING AND SUBTRACTING SCHEMES

Benjamin A. Eshun
University of Kentucky

The adding and subtracting schemes of John, a second grader
were characterized as anithmetical in a teachlng experiment

dwolving edght chilbdnen in Spring of 1983. The arithmetical
schemes wene ddentifded as one of four developmental Levels
:idchtzdaen'a adding and su dchemes.  John's schemes

not 4nvolve caunxlng, nather, he operated directly on
numbens and necalled number facts o sofve all types of addition
and subtraction taAkA&O_ZfA dchemes lgglud:zcad o ,
recalling sums us ubles, adding to a e, and recalling
sums usdng place value. He understood part-whole relation-
:m dubtraction as the inversdon of addition. His

n and subtraction concepts were operative.

This paper characterizes the aritimetfcal adding and subtracting schemes of
John, a second grader. Children create countable {tems, in order of sophis-
tication, by counting with perceptual, figural, motor, verbal or abstract
unft items (Steffe, von Glasersfeld, Richards & Cobb, 1983). John did

not use counting at all to solve tasks even when he was hinted to do so,

but he had constructed numbers so he was classified as a counter of

abstract unit {tems together with four other children (Eshun, 1985a). The

other four children found counting crucial in solving add{ition and sub-
traction tasks.

DEVELDPMENTAL LEVELS IN CHILDREN'S SCHEMES

Plaget (1952) classified children in his third stage of development as hav-

ing arfthmetical understanding of addition and subtractfon. While the behav-
{or of the four other counters of abstract unit {tems revealed some of the
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characteristics of Piaget's (1952) third stage (cf. Eshun, 1985a). John's
behavior was far more advanced in several other ways than the other children.
For example, John had fully internalized his operations of addition and
subtraction, and could partition independently composite units (addends) and
recombine them with other addends. Also, he could decompose independently

a composite unit into units of tens and units of ones. He used his under-
standing of part-whole relationship to solve several tasks including
missing-addend, comparison, and equalizing tasks.

Figure 1 shows the revised developmental levels of Eshun's (1982) proposed
experimental model of children's addition concepts. The four developmental
levels, in order of sophistication, are sensorimotor, preoperational, oper-
ational and arithmetical schemes. Each child’s schemes and concepts in
the revised model were limited to only one developmental level. John was
classified as using arithmetical adding and subtracting schemes whilst

the four other children were classified as using operational schemes, one
level below John's (cf. Eshun, 1985a, 1985b).

The revised model was based on the interpretation of the behavior of

eight first and second graders involved in a teaching experiment in Spring
of 1983. Individual teaching episodes were held with the eight children
selected from among 25 others in a school in Clarke County, Georgia.

Each child was taught from four to six times, and each episode was

video recorded and lasted from 20 to 30 minutes. Addition and subtraction
tasks were presented using a function machine and numerals on cards,
ranging from "2" to "61".

JOHN'S ARITHMETICAL SCHEMES

John's ability to partition numbers spontaneously was the underpinning
strategy for most of his schemes, Also, John showed flexibility in re-
calling number facts. He combined his partitioning strategy and the re-
calling of addition and subtraction facts to construct specific thinking
strategies for solving tasks. John's schemes were synonymous with
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ADDING OR . -
SUBTRACTING
SCHEMES

Arith'megical } o ’ -——=>

Operational r —_

Preoperational

v

Sensorimotor R Y

Perceptual Motor Verbal Abstract

COUNTING SCHEME PERIOD

Legend: --» Level for more advanced counters during
this part of the period
—> Level for all counters during this part
of the period.

Figure 1: Revised Developmental Levels of Children's Adding and
Subtracting Schemes and Counting Scheme Periods.

Carpenter and Moser's (1984) derived facts and Houlihan and Ginsburg's
(1981) indirect method. His concepts of addition and subtraction were,

therefore, operative (Piaget, 1970) or numerical.

Recalling Sums Using Doubles Scheme

In this scheme John recalled an addition fact that was the double of one of
the given addends. He then increased or decreased the partial sum to obtain
the required sum. Consider the explanation to his solution to the missing-
addend task "N(15) + N(_) --» N(31)."

78
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J: If 15 plus 15 is 30, you need one more to make 16 and it
should be 31.

Adding to a Decade Scheme

In this scheme John interpreted an addition task as adding a number to the
larger addend to yield the next decade. He then increased the new decade

" to get thesmaller addend. The following illustrates how John used the

O
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scheme to explain his solution to the task "N(8) + N(7)."

J: You have eight and take two from seven and you get 10,
and that leaves five left. And you take five and add
it to the 10 and is 15.

This is a more general scheme than a relating to ten scheme, because John
used the scheme to solve tasks involving larger decades, for example,

"N(34) - N(_) --> N(20)."

Recalling Sums Using Place Value Scheme

This scheme involved recalling the sum for the numbers in the tens and ones
places separately and coordinating the two sums to form the appropriate
number (result). For example, to solve the task "N(13) + N(15)," John
answered, "Twenty eight" (immediately) and explained, "You've 13 and 15 and
you take the five and three and add them up and put eight down. And you
take the two ones you have left and add, and that gives you two." This
scheme is consistent with the algorithmic procedure children are taught in
school. But the scheme might be a construction by John, because it was not
used by Jeff from the same second-grade classroom.

Inversion Strategy

John understood subtraction as the inversion of addition. This was evi-
denced by his inverting subtraction tasks into additive tasks before solv-
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ing them. For example, John used the inversion strategy and the adding to a
decade scheme to explain his solution to the missing-subtrahend task
“N(34) - N(__) --» N(20)."

J: Because you need 10 to make 30 and four more is 14, and
that makes 34,

John's coordination of 10 and four to obtain 14, and 20 and 14 to get 34
also indicated his understanding of part-whole relationship.

DISCUSSION

John was the only one of the eight children to be classified as using
arithmetical schemes. His behavior clearly showed arithmetical understand-
ing of addition and subtraction (Piaget, 1952), and meaningful habituation
of number combinations (Brownell, 1928). Steffe et al. (1983) identified
Christopher, who used a recalling sums using doubles scheme to solve

“7+5 0= _" (p. 106), but he did not consistently use recalled number
facts and thinking strategies 1ike John.

There was a clear distinction between John's arithmetical schemes and the
operational schemes of the other four counters of abstract unit items,
because the latter found counting crucial and hardly used thinking
strategles. But Carpenter and Moser (1984) identified 40 percent of the
children in their three-year longitudinal study as using five or more
derived facts and 80 percent of the children as using derived facts at some
time. Thus, the question of what proportion of a child's schemes should
involve recalled number facts in order to be characterized as using arith-
metical schemes as John 1s significant and requires further research.
However, the significant aspect of John's behavior was the flexibility in
the use of his schemes.

‘Note: This paper is based on the author's doctoral dissertation at the
University of Georgia under the direction of Leslie P. Steffe.
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A FUNNY THING HAPPENED ON THE WAY FROM THE
PRESENTATION OF AN EVERYDAY PROBLEM TO ITS SOLUTION

Ruhama Even
Weizmann Institute of Science

A mathematical problem, phrased as an everyday situation, may
cause difficulties in the solving process, even for good students.
A solution of such a problem may have only one stage - a direct
one, or may have two stages: the first 18 to find a mathematical
model of the problem, and the second 18 to solve the mathematical
problem.

Analyzing responses of good students may show us the most
essential difficulties in the solution of this kind of problem.
In this study we have analyzed the answers of good ninth grade
students for two problems phrased as an everyday situation. The
main results are: Constructing a mathematical model seems to be
a necessary stage for a solution, and the most common errors
for this kind of problem are caused by basing the solution on
arguments that appear correct, but are not suitable to the data
and the situation described.

INTRODUCTION

"Indeed this 1s probably the most crucial and largely unsolved difficulty of
mathematics teaching in schools - to enable pupils to identify the mathematical
task - however simple - required in an everyday situation". (Eggleston, 1983).

The difficulty depends.-of course, on the given problem. Analyzing students'

answers in this subject may lead us to a better “attack” on the weak points
and on the typical errors.
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The student population we are dealing with are pupils in grade 9 who have
participated in a mathematics correspondence course.given by the Youth Activ-
ities Section at the Weizmann Institute of Science in Rehovot (Even & Kreimer,
1983). This course is meant for students who are motivated to occupy them-
selves with mathematics in their free time, so we can assume that they are
above average ability in mathematics. The analysis of the responses is
obviously important in the case of average children and for low achievers, but
is also important for above average students. Although these students indeed
make relatively fewer errors, and less effort is required to bring them to a
correct solution, the analysis of their responses can teach us much about
their mental processes. The errors of good students can teach us the most
essential difficulties in any kind of problem, and their analysis can help us
to choose and word the problems according to our aims, - in preparing text-
books, worksheets and enrichment sheets, or in asking questions in classroom
lessons.

In this paper we shall present two different problems phrased as everyday
situations, and we shall analyze them according to similarities and differences.
We shall try to classify the students' answers according to the typical errors
in the method of reaching a solution, and attempt to identify their causes
according to the level of the student and the kind of problems given.

PROBLEM - MATHEMATICAL MODEL - SOLUTION

The two problems are:

The problem of the bakeries -

A baker who owns 2 bakeries decided to build a flour storeroom to be used for
both. Where should the storeroom be built so that transporting the sacks of
flour from the storeroom daily will be cheapest? (Suppose that the daily

requirement of flour for each bakery is constant).

The problem of the greeting cards -
In honor of Israel's Independence Day, each city sent a greeting card to its

nearest neighboring city. Supposing that the distances between cities are




71 Even

different, prove that each city got no more than 5 such greeting cards for

Independence Day.

Both problems are phrased as problems in everyday reality, where the main
difficulty in solving them is the stage of rewording them as mathematics pro-
blems:

The problem of the bakeries -

Let 8 be the distance from bakery A to bakery B.

x = the digtance from the storeroom to bakery A.

¢ = the cogt of transporting a unit of flour a unit of distance

p = the daily consumption of flour at bakery A.

g = the daily consumption of flour at bakery B.

y ~ the daily cost of transportation.

Now a suitable mathematical model for the original problem can be constructed:
What is the minimal value of the function y e pxc + q(s - x)c, when 8, ¢, p,

q are consgtantsg?

The problem of the greeting cards -
Glven a finite number of points in the plane at different distances from each
other. Prove that there 18 no polygon (whose vertices are the above pointa)

whose number of sides ia greater than 5 and fulfils the condition: the distance

from a point Inside the polygon to any of its vertices, is smaller than the
length of each of the two sides that meet in that vertix.

After overcoming the first stage of constructing a mathematical model we reach
the second stage - the solution.

The problem of the bakeries -
a) If p = q the function is
Yy = pxc + p(8 = x)c
= pxc + pa8c = pxc
= psc

That 18, when the daily consumption of the two bakeriea 18 egual, the function

i8 constant. Therefore, the storercom may be located anywhere on the line
joining the two bakeries.

\‘1
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b) If p # q then the function is
y

pxc + ql(s -~ x)¢

= pxc + gsc - gxc

xc(p - q) + gsc

i) If p > g then one gets the minimum of the function when x is minimum,
that is x = 0.

ii) If ¢ > p one gets the minimum when x is maximum, that is x = s.

In both cases we found that if the daily consumptions of the two bakeries
are not the same, the storeroom should be placed in the bakery whose daily

consumption is biggest.

The problem of the greeting cards -
Suppose there is a polygon with more than five sides, and a point A in it.
Let us draw lines from A to each vertix. Since there are at least six vertices

there will be at least six angles having A as their vertix.

The sum of the angles is 3600, so at least one of the angles will be smaller

than or equal to 60°. Suppose it is the angle BAC.

If ¢ BAC < 60o then BC < AC or BC < AB. If that is so, a polygon of more than
five sides cannot satisfy the desired condition: the distance from the point
inside the polygon to each vertix of the polygon is less than the length of

each of the two sides of each vertix.
STUDENTS' RESPONSES

We can divide the student-solvers into three main groups:

a) those who do not try to go over to a mathematical model.

b) those who manage to get to a partial mathematical model.

¢) those who succeed in getting to a completely mathematical model.

ERIC 83
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An examination of the students' responses shows that almost all of them tried
to find a mathematical rephrasing of the problems; that is to say, they felt
the need to convert the problem to' a mathematical one.

The problem of the bakeries, because of 1ts lack of data and because 1ts wording
1s open and invites original suggestions and does not compel the student to
prove any given statement, encouraged the students to provide practical solu-
tions. Here are two examples for such suggestions:

"The baker must locate the storeroom at one of the bakeries, otherwise he has
to buy more 1and".

“1¢ there 1s a difference in height between the bakeries, he has to build the
storeroom at the highest bakery in order to save gasoline." Such errors were
typical of students that did not make any attempt to go over to a completely
mathematical model.

But even a student who solved the problem correctly with the help of a minimum
of function; ended his solution as follows:

“Therefore the storeroom must be built in Bakery A (or as close as possible to
1t) so that the transportation will bé cheapest".

Some of those students who attempted to solve the problem by way of a solution
from everyday 11fe, without going over to a mathematical phrasing, ignored the
problem of the site of the storeroom and offered alternative methods of
decreasing expenditures; such as payfng less to the drivers, building a cheaper
storeroom; etc.

Such phenomena did not appear in the solutions to the problem of the greeting
cards. Evidently this was so, because from {1ts wording 1t was clear that a
mathematical proof was required. .
The typicdl errois made by those who tried to solve the above problems were
caused by their basing themselves on arguments that perhaps appeared correct,
but were not suitable to the data given in the problem and the situation
described:. Here 1s an example for such a “solution" of the problem of the
bakeries:

"If the consumiption of flour by the two bakeries 1s the same, then the store-
room must be located in the middle between them. But {1f the consumption is not

O
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the same we have to take it into consideration. For example, suppose the daily
consumption of bakery A i5 10 tons, and the daily consumption of bakery B is

5 tons. The relation between them is 10:5 that means 2:1. Therefore, the
storeroom should be built %-of the distance between the bakeries, closer to

the one that uses the most flour." The pupil based it on an argument that
seems correct: the relation between the distances from the bakeries to the
storeroom has to be opposite to the relation between the consumptions. But
this argument is unsuitable for the given situation.

This phenomenon originated in the fact that there was no transfer to a complete-
1y mathematical model.

In conclusion, we would like to point out that the construction of a mathemati-
cal model that suits the problem phrased as an everyday situation was a necess-
ary condition for solving the problem. Not one of the students succeeded in
reaching a correct solution without first rephrasing the problem in mathemati-
cal terms, (partly or wholly). Therefore it is necessary to work on this
stage with the pupils and to make them conscious of it.

The most common mistake in solving problems of the above kind was made by
students basing themselves on mathematical arguments that did not suit the
situation described. This happened because there was no transfer to a complete
mathematical model. Another common mistake was the inclination to a practical
solution with, or even without, a connection to what the problem demanded.

Such a mistake was typical of pupils who made no attempt to rephrase the
problem in mathematical terms.
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An examination of the students’ responses shows that almost all of them tried
to find a mathematical rephrasing of the problems; that is to say, they felt
the need to convert the problem to a mathematical one.

The problem of the bakeries, because of its lack of data and because its wording
is open and invites original suggestions and does not compel the student to
prove any given statement, encouraged the students to provide practical solu-
tions. Here are two examples for such suggestions:

"The baker must locate the storeroom at one of the bakeries, otherwise he has
to buy more land".

"1f there is a difference in height between the bakeries, he has to build the
storeroom at the highest bakery in order to save gasoline." Such errors were
typical of students that did not make any attempt to go over to a completely
mathematical model.

But even a student who solved the problem correctly with the help of a minimum
of function, ended his solution as follows:

"Therefore the storeroom must be built in Bakery A {or as close as possible to
it) so that the transportation will be cheapest®.

Some of those students who attempted to solve the problem by way of a solution
from everyday 1ife, without going over to a mathematical phrasing, ignored the
problem of the site of the storeroom and offered alternative methods of
decreasing expenditures, such as paying less to the drivers, building a cheaper
storeroom, etc.

Such phenomena did not appear in the solutions to the problem of the greeting
cards. Evidently this was so, because from its wording 1t was clear that a
mathematical proof was required.

The typical errors made by those who tried to solve the above problems were
caused by their basing themselves on arguments that perhaps appeared correct,
but were not suitable to the data given in the problem and the situation
described. Here is an example for such a "solution” of the problem of the
bakeries:

"1f the consumption of flour by the two bakeries is the same, then the store-
room must be located in the middle between them. But 1f the consumption is not

LRIC copy AVAILABLE 86



IE

O

Even 74

the same we have to take it into consideration. For example, suppose the daily
consumption of bakery A i3 10 tons, and the daily consumption of bakery B is

5 tons. The relation between them is 10:5 that means 2:1. Therefore, the
storeroom should be built %-of the distance between the bakeries, closer to

the one that uses the most flour."” The pupil based it on an argument that
seems correct: the relation between the distances from the bakeries to the
storeroom has to be opposite to the relation between the consumptions. But
this argument is unsuitable for the-given situation.

This phenomenon originated in the fact that there was no transfer to a complete-
1y mathematical model.

In conclusion, we would Tike to point out that the construction of a mathemati-
cal model that suits the problem phrased as an everyday situation was a necess-
ary condition for solving the problem. Not one of the students succeeded in
reaching a correct solution without first rephrasing the problem in mathemati-
cal terms, (partly or wholly). Therefore it is necessary to work on this

stage with the pupils and to make them conscious of it.

The most common mistake in solving problems of the above kind was made by
students basing themselves on mathematical arguments that did not suit the
situation described. This happened because there was no transfer to a complete
mathematical model. Another common mistake was the inclination to a practical
solution with, or even without, a connection to what the problem demanded.

Such a mistake was typical of pupils who made no attempt to rephrase the
problem in mathematical terms.
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OPERATING THE UNKNOWN AND MODELS OF TEACHING
(A Clinical Study Among Children 12-13 with High Proficiency in Pre-Algabra)

Eugenio Filloy and Teresa Rojano
Centro de Investigacién y de Estudios A dos del IPN, Méxi

ABSTRACT.: Oparating the unknown Is one of tho first properly algebraic actions. As re-
ported In a tormer papar [ 2 ) extending arithmetical operations to new objects (e.g., the un-
known) Is not a spontanaous process (n children, and requiras speclal attention In the fleid of
teaching. In this paper, we are reporting the most relevant results from the research work
"Operating the Unknown'' which refers to tha constant, as well as to tha varlable aspects
that were observed when using various models for operating the unknown In the resolution
of linear equations having the form Ax : B = Cx t D, wherg, A, B, C and D are glven posl-
tive Integers and O 3 0. Observations were parformed through cilnical Interviews to chll-
dren 12-13 who had had no previous Instruction In algebra, but had showed a high proficien-
cy In pre-sigebra. By way of conclusion, our study shows that all teaching strategles should
contemplate a dislecticel process botween the most concrete meanings and the operational
syntax, because both sspects are aiways present (due to the students’ anticipatory mechan-
isms), even [f they have not bean takon Into account et the time of devising the didactic situ-
stions (as It occurs in the usual toaching strategles).

INTRODUCTION.,- It has always been thought that more concrete models possess the virtue
of providing more stable meanings to new concepts, whereas more syntactic models have a tend-
ency to introduce a certain sensalessness to everything new that is taught. It Is also commonly
belleved that the latter aspact is the one that contributes most strongly to the lack of interest on
the part of children towards the study of mathematics (at the affective level), and to the tend-
ency to commit the typical and spontaneous errors (cognoscitive level) when operative abilities
roquired by algebra come Into play. The results of this paper, however, show that even models
where meanings are taken from a more concrete language, will pose, when used as teaching strate-
gles in the resolution of linear equations, the same problems; naturally, these problems will have
particular manifestations depending on the mode! under consideration.

GENERAL FRAMEWORK AND SPECIFIC OBJECTIVES OF THIS WORK.- ‘‘Operating
the Unknown'' Is a part of the rasearch program. ‘‘The Acquisition of Aigebraic Language”,
which has been developed since 1980 at the Seccion Matemética Educativa and the Centro Esco-
lar Hermanos Revueitas, in Mexico City.  Probing into the difficulties involved both in the syn-
tactic handliing of algebra, and the utilization of algebra to solve problems, in relation with didac-
tic phenomena that appear during the chiid's transit from arithmetical to algebraic thought, are
among objectives of the wider research. This study, ''Operating the Unknown'', has the following
specific aims: 1) to observe the spontaneous responses of children that are faced, for the first
time with ‘“non-arithmetical’ equations (i.e., those where resolution demands operating the
unknown, as, for Instance, in some linear equation with more than one occurrence of the un-
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known) and 2) to observe how children develop by themselves the use of some “concrete’” model
for operating the unknown in the solving process for these new equations. Results referring to
objective 1) have been reported in a previous article [ 2 } : in the present paper, we describe
results concerning objective 2), where two different ""concrete’’ models are being tested in order
to teach how to operate the unknown.

METHODOLOGY - Detection and observation of transition phenomena were performed
through clinical interviews to three successive classes of children 12-13, within a controlled teach
ing system and at the time when children already know how to solve “arithmetical® equations
(i.e.,those whose solutions does not require operating the unknown) and related problems, and
are faced for the first time with the resolutionof “non-arithmetical’’ equations. During the inter-
view, and after observing their spontaneous approaches to the new equations, children with
medium and high pre-algebraic proficiency levels are given instruction elements for the operation
of the unknown, by making use of two '‘concrete’’ models in the resolution of such equations
(results presented here refer only to observations made among children with high pre-algebraic
proficiency).

A SYNOPTIC DESCRIPTION OF THE TWO MODELS USED.

I. The geometric model.- Proposed equation: Ax +B =Cx , where A, B and C are given
positive integers, and C > A, in this case.

1. Reproducing the model (translating ,'_ ;_]
the equation into the model). L

B 0

2. Comparing areas.

3. Preparing the simplified equation: (C — A)x=B.
4. Solving the simplified equation.
5. Verifying the answer.

I, The balance model.- Proposed equation: Ax + B = Cx, where A, B, and C are given
positive integers, and C > A, in this case.

1. Reproducing the model (transtating the equation into the model).

/ A situation of equilibrum \

non...po AR B 000 ... 0O

A ber A of object: A n ber B of objects A number C of objects having each a
having equal (unknown) having equal (known} weight equai to the unknown weights
weights. weights, of the objects on the left pan.
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2. iteratively reducing the number of objects with a known weight, although maintain-
ing a balance, untli all such objects have been removed from one of the pans.

B objects . C — A objects
.es [«]-EX2N ~]

3. Preparing the simplified equation (C ~— A)x=B.
4. Solving the simplified equation.

5. Verlifying the answer.

In both models, children with a high pre-algebra proficiency level are given only the first
alemants of the model (translation phase 1), and are left to develop subsequent stages by thems-
soives or with the least possible help from thelr interviewer. Once they have mastered the use of
a model for one mode of equation (Ax + B = Cx), more and more complex modes ( Ax+ B=Cx + D;
Ax — B = Cx - D; etc.) are proposed to them, in order to observe how they transfer the use of
the model to these modes, as well as the abstraction processes of repetitive operations on the
model.

RESULTS.. a) Spontaneous development of the use of the model to operate the unknown
does not show a uniform pattern, not even among children having the same level of pre-aigebra
proficiency; such a development Is strongly linked to tendencles of a general nature in the subject
and which range from the syntactic or operational perspective on one end of the spectrum, to the
semantic perspective on the other. In fact, extreme cases were detected, presenting remarkably
dissimilar develpment paths in the use of the same model; in one first case, this development was
carried out with a permanence In the model context, even In modes of equations presenting a
highly complex model structure.  In the other contrasting case, that is, when dealing with an
operational tendency, there is a constant search for the syntactic elements present in the model's
actions, that are repeated for each equation and for each equation made; this search provokes a
quick aloofness from the model's semantics, in order to inscribe these actions within a more ab-
stract language, by creating personal graphs (signs or symbols) that belong neither to the model
nor to aigebra, but to an intermediate level preceding the algebraic operational level.

b) There are obstructors to abstraction of the model's operations towards a syntactic-aige-
braic level, that depend nelther on the particular model being used, nor on subjects’ tendencies
such as those mentioned under a) above; they depend on the emphasis ptaced In the component
of the model structure that permits relying on previous knowledge, and operations aiready mas-
tered by the subject, in order to introduce the new objects, concepts and operations; this process
of reducing the situation to what Is already known, carries with it the risk of hiding such difficuit-
les as arise when trying to operate with new objects and making new concepts to intervene. Thus,
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in the processes of abbreviating and automating the actions in the two models used here, a tend-
ency is seen towards hiding the actual operation of the unknown. In the geometric model.
abbreviation leads to a blurring of areas involving the unknown; in fact, the linear dimension lost
is the one that represents the unknown, and operations are performed only between the equa-
tion's “‘data": the unknown stops playing a role. Inthe balance. due to the discrete represertation of
. x's coefficients, as well as of constant terms, the same type of operations can be performed with
both, i.e., operations between numbers of objects with known weight and numbers of objects
with unknown weight. Such an automation (in both models) will fater on lead to the typical
mistakes in algebraic syntax, such as effectively adding (or substracting} terms possessing differ-
ent degrees; even subjects with a great operative tendency commit this kind of mistakes, due to
their use of personal graphs, which are also generated in a process of automating the actions.

The following are some of the aspects that vary from one model to the other:

c) There are specific ways (depending on the model) of translating the equation’s elements
into the model, that represent an obstruction to the use of the latter; in the geometric model,
such an obstructor consists in breaking up the rectangular area represented by the constant term
(B, in Ax + B= Cx) into linear dimensions; this leads to the application of the *‘coupling of linear
dimensions’’ method for resolution purposes (i.e., to find b and h, such that b x h= B and
b = C— Aorh= C— A), which is not applicable if B cannot be divided by C —A. In the bal-
ance, trying to assign weight to the objects in the pan can cause a confusion in the development
of the model’s initial “‘natural” strategy, to wit, the iterated cancelling of weights.

d) Some transfers in the use of the modet, from one mode of equation to the other, are
more “natural’’ in one model than in the other. Passing from the Ax + B = Cx mode to the
Ax + B = Cx + D modeis more naturai in the balance, since the action of iterative cancella-
tion is essentially the same in both modes; besides, in this model the simplified equation stands
stated in the model! itself and can be solved without having to translate it into the graphs of alge-
bra. In the geometric model, on the other hand, it is necessary to realize that in order to state
the simplified equation it should suffice to superimpose corresponding areas to terms of degree
one, without effecting any action on those corresponding to constant terms, i.e., transference in
this case is not trivial. However, passing to modes such as Ax—B = Cx or Ax—B= Cx+ D,
requires interpreting in the mode! the ‘‘negative’’ constant terms, which have no *concrete’ rep-
resentation in the balance (unless one resorts to representations of mental actions, as, for instance
reestablishing an equilibrium), whereas in the context of areas, such terms can be interpreted as
“‘concrete” actions consisting in the removal of areas equivalent to the absolute values of the
terms in question, without thus making violence to the model’s semantics.

CONCLUSIONS.- With respect to the constants observed in these two models (results a)
and b)) the conclusion can be reached (and this applies also the observations) that only when it is
possible both to attribute meanings to the new objects, situations, and operations, as well as to
provide these with new senses within the over-all perspective of the solving process, will teaching
strategies based on these models permit to reach the desired levels of abstraction in the opera-
tions. In order to confer these new senses to objects and operations, the following are required:
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i} a contrasting process of the varlous concrete situations that arise from the use of the model;

1) a certaln level of awareness that such differences exist; and lil} a good syntactic level that
avolds anchoring at a more "concrete’ language level, at the time of momentary loss of previous
abilities or when losing the capacity to operate with more "'concrete’ objacts, once this capacity
had already been developed. (See [3] Filloy, E./Rojano, T., 1985).

As to varlations from one model to the other (results c) and d)}, some of these seem to Indi-
cate that one of the models, for cartaln modes of equations, favors more than the other the trans-
for to a syntactic approach {due to the difficulties Invoived in the evocation of a model in some
modes of equations, for Instance), whereas the other favors progress — because of Its iterative
application -~ In the resolution of several modes of equations; these varlations, however, as al-
ready mentloned In a) above, are modulated by the type of tendency shown by the subject. On
the other hand, both models share [Imitations, such as the fact that thay have no way of repres-
enting, within thelr respective contexts, equations with a negative solution; for the treatment of
such equatlons using the modal-structure as a starting polnt, it is necessary to have previously
undergone a process of operational abstraction, that such oparations have been extracted from a
syntactic level, and that they are applied, at this level, to the solution of equations; in other
words, new operations must have been given meaning through processes 1), i}, and lii) mentioned
above. The only paradigmatic modal into which it seems to be feasibleto transiate avery mode of
linear equation is algebra itself, with or without the usual graphs and codes.
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A FRAMEWORK FOR PROBLEM SOLVING

Martha L. Frank
Purdue University

Four junior high school students were interviewed to investigate the
role of mathematical beliefs in problem solving. Mathematical
beliefs were found to influence what these students did when they
solved problems. Problem solving was conceptualized as being part
of a larger context or framework with many camponents.

The purpose of this study was to investigate the role of students' mathema-
tical beliefs in explaining their mathematical problem solving processes.
The subjects were four junior high school students participating in Purdue
University's STAR program, a two-week intensive summer program for the mathe-
matically and verbally talented. These subjects were enrolled in the begin-
ning section of a Math Problem Solving with Computers class. These four
students, Sara, Dan, Cindy, and Mark were individually interviewed throughout
the program. The interview sessions were audiotaped. In the interviews the
students were questioned about their classroom experiences in mathematics
and were encouraged to discuss their beliefs about mathematics. However,
most of the interview time was spent with the student using the "think-alcud"
technique to solve problems. .

The premise on which this study was conceived, designed, and implemented was
that problem solving does not depend only on cognitive factors. Other ele—
ments, such as mathematical beliefs, are necessary to explain what an indi-
vidual does when he solves a problem. This is not a completely new idea in
mathematics education problem-solving research (see, for example, Silver,
1982; Schoenfeld, 1983; Confrey, 1984).
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MATHEMATICAL BELIEFS

At the time that this study was designed and carried out, the focus was en-~
tirely on the role of mathematical beliefs in explaining problem-solving
processes, After a preliminary analysis of the interview data, five general
categories of mathematical beliefs were distinguished. All of these beliefs
were found to influence problem-solving bshavior..

Beliefs about one's ability to do mathematics. All of the interview students
confidently tackled problems which appeared rautine to them. Clearly they be-

lieved they would be able to solve such problems. This may account for their
avoidance on some problems of what could be called the understanding/exploring
mode of problem solving. They may have been so confident of their ability
that they did not feel a need to explore, but would instead immediately select
a plan and carry it out.

Beliefs about mathematics as a discipline. RBxamples of beliefs about mathe—
matics as a discipline are Sara's statement that "math has a definite answer"

or Cindy's claim that "math is figuring." FPor the interview students, math
was what they all called "the basics” (addition, subtraction, multiplication,
and division) plus a oollection of routine problems with "definite answers"
which could be obtained relatively quickly and without too much effort through
the application of known arithmetic or algebraic algorithms. The interview
students' beliefs about mathematice as a discipline were related to their
problem-solving behavior. They had a tendency to quickly bail out on problems
which did not appear routine. This may have been because they all, like
Sara, perceived such problems as "extra-credit" problems--not really mathe-
matics.

Beliefs about where mathematical knowledge comes form. For most of the stu-
dents in the beginning section of the Math Problem Solving with Computers
class, mathematical knowledge, at least in the case of programming, came
from The Teacher. (All of these students agreed with a pretest questiomnaire
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statement "computer programming is a kind of mathematics.") Their purpose
for doing this type of mathematics was to get right answers. The teacher,
at least at the beginning of the STAR program, was the only one who could
tell you if your answer was right. Later, a few of the students were willing
to ask other students if thdir programs were right, or even to test the
"rightness" by running the programs on a computer.

Beliefs about solving mathematics problems. Further analysis of the interview
data revealed at least five types of beliefs that these students held about
solving math problems: beliefs about what counts as a math problem, beliefs
about what strategies are appropriate, beliefs about when a problem is solved
and what constitutes an acceptable answer, beliefs about how long it should
take to solve a problem, and beliefs about what to do when one gets stuck
while trying to solve a problem. Space does not permit discussion of each
of these types of mathematical beliefs. The interview students did seem to
share the belief of Schoenfeld's (1985) college students that "mathematics
problems are always solved in less than 10 mimutes if they are solved at
all.” This belief has what Schoenfeld calls a corollary: “give up after
10 minutes." This corollary also held in the case of the STAR interview stu-
dents.

Beliefs about how mathematics should be taught and learned. Again, a more de-
tailed analysis of the data suggested that there were several components of
this type of mathematical belief. Some of these components included beliefs
about the role‘ot the mathematics teacher and the mathematics student. These
beliefs were so stereotyped that they seemed to be part of a set of mathe-
matics myths, rather like the civic myths (such as the myth of the good citi-
zen) discussed by some political scientists (Wilker & Milbrath, 1972). After
reviewing some of the political science and math amtiety literature on myths
and some studles of teachers' and students' beliefs about mathematics, I
developed several categories of math myths which also seemed useful in ex-
plaining the interview data. These include the Myth of the Good Math Student
and the Myth of the Good Math Teacher. The Good Math Teacher transfers infor-
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mation to the student through explanaticns and demonstrates procedures and
methods. The Good Math Student follows directions, listens to the teacher,
does all his homework, and gets good scores on tests.

DEVELOPMENT CF THE FRAMEWORK FOR PROBLEM SOLVING

After a preliminary analysis of the interview data it became apparent that
beliefs alone could not adequately explain what these students did when they
solved problems. Mathematical problem solving, for these students at least,
was conceptualized as being part of a larger fremework. Components of this
framework include the individual's prior experiences in mathematics, his
mathematical knowledge, and his mathematical beliefs, needs, and motivaticms.
Mathamatics myths (popular public beliefs) are also part of the fremework,
since they influence the individual's view of mathematics. Scme of these
framework companants are discussed briefly below.

lends, motivations, mythe, and change. Maslow's (1970) taxoncmy of basic
neads was used to classify the "mathematical needs" of the four interview

students as inferred from the interview data, Many of their mathematical
nesds appeared to fall into the category of safety needs, which are described
by Maslow as involving the needs for the familiar, for sescurity, stability,
protection, structure, crder, and freedom from anxiety and chace. Safety
nesds are cne of the lowest orders of needs in Maslow's hierarchy. Some of
the interview students' mathematical needs shich fell into this category
included: the need to know if a problem is “possible" (has an answer), the
need to Jnow that your answer is right, the need to have the teacher tell
you exactly what to do, and the need to know and remember all mathematical
facts presented in class. According to Maslow, safety needs are particularly
strong in children in our society because they tend to grow up in a threaten-
ing, non-loving family envircrment.

Given the mathematical needs of the interview s.tudmts, it is quite reasonable
that their motivation in mathematics tended to be what Nicholls (1983) calls
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extrinsic motivation and ego involvement as opposed to task involvement. The
extrinsically-motivated or the ego-involved child views learning as a means
to an end—for example, an ego-involved child wants to avoid locking stupid.
The task-involved child, on the other hand, values learning and understanding
for their own sake, and what he can get cognitively out of working on a task.
The task—-involved child seems to be operating at a higher level of need than
the extrinsically-motivated or ego~involved child. If Maslow's theories are
applicable here, it is completely unreascnable to expect children—gifted or
not—to exhibit many higher order needs (such as the need for self-actualiza-
t_icn or the cognitive or aesthetic needs) until their lower order needs have
been satisfied. It is also easy to see why the math myths described earlier
are so tenaciocus. The main function of myths is to make the world seem like
a safer place. Since the child is supposed to have powerful safety needs,
is it reasonable to expect that J\m.‘lor‘high school students, being children,
are capable of experiencing many higher order needs? Is it reasonable to
expect soclety's math myths to disappear and students' beliefs about mathe-
matics to change overnight? Maslow puts the blame for children's overwhelming
needs for safety on the family. Holt (1982) would put the blame not just on
the family but on the schools.

Where do we go fram here? Children's mathematical beliefs do seem to in-
fluence what they do when they solve problems. It seems unlikely that stu-
dents can learn to become better problem solvers unless they learn to change
their mathematical beliefs. But beliefs appear to be only part of a larger
framework for problems solving and thus probably cannot change without changes
in the rest of the framework.

One issue that needs to be addressed in future research is the applicability
of the framework to the problem-solving behavior of other age and ability-
level students. Informal observation of five sections of a college mathe-
matics class for preservice elementary teachers suggests that the framework
also fits what these students did when they solved problems.

BEST COPY AVAILABLE

ERIC

Aruitoxt provided by Eic:

97



85 Frank

Confrey, J. (1984). An examinaticn of the conceptions of mathematics of young

women in high school. Paper presented at the anmual meeting of the
American Educational Research Association, New Orleans.

Holt, J. (1982). How children fail (Rev. ed.). New York: Delta/Seymour Law-
rence.

Maslow, A. H. (1970). Motivation and personality. New York: Harper and Row.

Nicholls, J. G. (1983). Conceptions of ability and achievement motivation:
A theory and its implications for education. In S. G. Paris, G. M.

Olson, & H. W. Stevenson (Eds.), Learning and motivation in the classroom
(pp. 361-379). Hillsdale, NJ: Lewrence Erlbaum Associates.

Schoenfeld, A. H. (1983). Beyond the purely cognitive: Belief systems,
social cognitions, and metacognitions as driving forces in intellectual
performance. Cogitive Science, 7, 329-363.

Schoenfeld, A. H. (1988). Matacogn.ltive and epistemological issues in mathe-
matical understanding. In E. A. Silver (BE4.),

Teaching and learning
mathematical problem solving: Multiple research perspectives (pp. 361-

379). Hillsdale, NJ: Lesrence Erlbaum Assoclates.

Silver, B. A. (1982). Knowledge organization and mathematical problem solv-
ing. InF. K. Lester & J. Garofalo (Eds.), Mathematical problem solving:
Issues in ressarch (pp. 158-28). Philadelphia: Franklin Institute Press.

Wilker, H. R., & Milbrath, L. W. (1972). Political belief systems and politi-

cal beshavior. In D. Nimmo & C. Bonjean (Eds.), Political attitudes and
public opinion (pp. 41-87). New York: David McKay.

BEST COPY AVAILABLE
ERIC 38

Aruitoxt provided by Eic: B



86

THE GROWTH OF SIMILARITY CONCEPTS OVER

THE MIDDLE GRADES (6, 7, 8)

Alex Friedlander, Glenda Lappan, William M. Fitzgerald

Michigan State University

Understanding similanity is essential in the development of child-
nen's geometrnical understanding and of thein ability to reason
proportionally. The purpose of this study 4s to determine the
extent to which sixth, seventh, and eighth graders exhibit an
understanding of concepts of similarity. Six classes were taught
an instuetional unit on similanity, and §L§ty average-ability
students wene selected for pre and post interviews.

Student strategies on four rectangle similarnity tasks presented in
the interview showed Little consdistency within subfect on within
task. Fon each of the four tasks, the fLevel of performance was
strongly influenced by the numbers involved. As a result of
{inatwction, 90 percent of the interviewed students employed same
ct higher Revel strategies as compared to theirn §irnst interview:

a consdiderable decrease in the number of students that operated on
a visual fLevel on employed an additive strategy cculd be observed.

INTRODUCTION

In the Proceedings of the Sixth Annual Meeting of PME-NA, October, 1984, the
authors reported on a pilot study entitled “The Growth of Similarity Concepts
at the Sixth Grade Level." The present study grew out of that pilot study.

Understanding similarity is an essential stage in the development of children's
geometrical understanding of their environment. A firm grasp of the concept of
similarity may also enhance children's development of porportional reasoning.
Inhelder and Piaget (1958), consider proportional reasoning as one of the six
abilities that characterize the formal-operational thinker. Even though the
ability to use proportional reasoning is widely required in everyday life,
there is a great deal of evidence that children have difficulty using such
reasoning effectively (Karplus & Karplus, 1972; Pagni, 1983).
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The prosont study has three major concerns—-finding growth patterns in children's
dovolopmont of the concept of similarity over grades six, seven and eight;
dascribing the effects of a specific instructional intervention over these three
grade lovolo; and determining whether instruction in similarity has any effect

on children's more general ability to reason proportionally.

METHODOLOGY

Tho ingtructional intervontion was the Similarity Unit developed by the Michigan
Stato University Middle Grades Mathomatics Project. The unit consists of nine
activitios dosigned to help students explore, in a concrete way, the concept of
similarity and its applications. The unit was taught in six classes and took
from ton to fiftoen days of instruction.

Two classos ot cach grade level; six, seven and eight, comprise the sample for
tho study. Tho seventh and eighth grade classes had the same instructor. The
sixth grado classes had different instructors. All three teachers had taught
tho instructional unit previously and were confident with the material. The
students in all gix classes were given two paper and pencil tests pre~ and
post-instruction. Theso teots were the Middle Grades Mathematics Project (MGMP)
Similarity Test and a Ratio and Proportions Test which included the

Mr. Tall/Mr. Short problem from a study by Karplus and Kazplus (1972), and
ooloctod itoms from the Concepts in Secondary Mathematics and Science (CSMS)
Ratio and Porportion Test (Hart, 1982). 1In order to avoid a large student
variability, oight to twelve students were selected from the middle

rangooftost acoros in cach class. The fifty selected students were interviewed
pro=poot-instruction. These interviews took from 30 to 60 minutes each. The
tacks to bo porformed wore presented in a uniform way to each student. The
ostudonto woro asked aftor each response to explain their reagsoning in detail,
Tho studonts wore pregsented with four different kinds of tasks related to
dotormining oimilarity of rectangles. Each of these tasks was varied along a
numorical ocale designed to test the student's facility with handling
proportions of increasing numsrical difficulty. Table 1l shows the four tasks
and tho four waye in which the numbers in the proportions were varied.
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Table 1. Interview Questions

1 2 3
NUMERICAL TYPE abyb alb|Jafb|al|lb|a
cbyd
alcjalcy)alc c
TASK

1. Decidg vyhether two drawn rectangles 3 by 612 by 3(3 by 9/6 by 8

are similar or not. and and and and
— ] 9 by18[8 byl12{4 byl12 (9 by12
2. Decide \yhether two cut-out rectangles |2 by 4|2 by 3{2 by 6|4 byl0

are similar or not. and and and and
— l I 6 byl2 |6 by 9|3 by 96 by15

!
3. Given the lengths of three sides of 2 by 612 by 514 byl2,6 byl0
two similar rectangles, find the !

: d and and and
fourth side. an |
a C!:I 6 by 7|6 by 2|7 by 7|9 by?
4. Cut a strip to make a rectangle 2 by 4({2 by 3|2 by 6!4 by 6
s.1‘m1lar to a given one. and and and and

— [ — 6 by 2|8 by 7|5 by ?

6 by ?

MAIN RESULTS

Student performance on the comparison of pairs of drawn rectangles (Task 1) and
on the completion of a strip to a rectangle similar to a given one (Task 4) will
be analyzed in more detail. Task 1 was chosen because it has a lower potential
to attract visual answers as compared to the comparison of cut-out rectangles.
The latter was given first in the interview (serving accordingly as a "warm-up"
activity) and also allowed for manipulations (i.e., nesting the two rectangles
to a common corner and visually considering the diagonals or the part

"left over" in the larger rectangle).

Task 4 is mathematically equivalent to finding the missing measure in a pair of
similar rectangles (Task 3). Task 3, however, is a frequently used activity

and has the potential of attracting mechanical answers (i.e., an algebraic

O
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solution of the proportions). Task 4 was not used during instruction and
requiras a better understanding of the proportionality principle involved.

Level of success. Figure | presents the percent of students that answered
corractly on Tasks ! and 4 at each grade level, before and after instruction.
The graphs clearly indicate the positive influence of the instruction. A

(8) 4o

1 2 3 4 Sumerical
Grade 7 Grade 8 Tree

‘:SL

® | _\ R
& }
50 : N
40
30
20 .
10 N ~.
-~ =
l!JAlZJAlZJAan:rt:u
Grade 6 Grade 7 Grade 8 Tyee

Figure 1. Level of success for Task 1(a), and for Task 4(b).

strong influence of the numerical type may also be observed: for all tasks and
grade levels, there is a considerable gap (20-45 percent) between level of
parformanco with numbers that are divisible across rectangles (Types 1 and 2)
and batweon cases in which such comparisons do not render whole numbers

(Typos 3 and 4). Figure 1 also indicates that after inetruction, an average
mastery lavel of above 80 percent has been aghieved for the first two numerical

types but not for the others.
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The average levels of performance on each of the four tasks did not allow a

hierarchical ordering of tasks by degree of difficulty.

Analysis of Strategies. As stated in an earlier report Friedlander et al. (1984)

student strategies in similarity tasks followed roughly the classification of
responses for proportionality tasks indicated in Karplus and Karplus (1972).
The following categories of responses were found in this study:

1. Visualization - using intuition without considering the lengths
of the sides. ’

2. Addition - considering the difference rather than the ratio of
the numbers.

3. Multiplication and Adjustments - multiplying to enlarge, and
"adjusting" by subtraction or addition (e.g., in the proportion
2:6::5:x, x = 13 because 5 = 2-2 + 1, and thus 2:6 + 1 = 13).

4. Whole Multiplication - "fitting in" the sides of the small figure
a whole (but not necessarily the same) number of times into the
sides of the bigger figure. This kind of reasoning leads
characteristically to the conclusion that 1if the scale factor 1is
not an integer, the figures are not similar.

5. Proportional Reasoning - setting up two ratios and a correct or
incorrect consideration of their equivalence, or more frequently,
considering the scale factor by which the small rectangle is
enlarged.

Student responses on Task 4 (Completion of Rectangle) for Numerical Tvpes 3

and 4 were chosen for a more detailed analysis. As stated before, Task 4
requires a higher degree of transfer. Moreover, numerical Types 3 and 4 in this
task were found to clearly distinguish between 'whole multipliers" (i.e.,
children who give the right answer just by considering number divisibility) and
"real" proportional reasoners: The "whole multipliers" would cut the strip at
any multiple of the length measure of the given rectangle, without measuring or
disregarding the measures of the given widths, whereas the proportional reasoners

considered in most cases the fractional ratio of the two given widths.

Table 2 presents the distribution of strategles employed at different grade
levels for this task. A comparison of pre- and post-instructional performance
indicates a remarkable decrease in the number of students that operated at a
visual level. It should also be noticed that before instruction, most sixth
and seventh graders used the visual and the whole multiplicative strategies,
whereas the eighth graders relied less on visualization and tended to employ

the "more advanced" additive strategy. .
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Table 2. Distribution of strategies (in percent) employed in Task &
for Numerical Types 3 and 4.

Strategy Grade 6 Grade 7 Grade 8
No, Pre Post Pre Post Pre Post

1 40 7 41 6 3 -

2 13 13 12 12 26 16

3 - 10 3 3 3 3

4 44 50 34 19 18 10

5 3 20 9 59 50 n

A Hierarchy of Strategies. Following the suggestions in Karplus and Karplus
(18972), the strategies employed in the rectangle similarity tasks may also be

hierarchically ordered. The list of strategies presented above is already
arranged according to a developmental approach: the lowest strategy would be

the intuitive visuglization (1), followed by the additive scheme (2), a
combination of addition and multiplication (3), and then an incorrect, or a
correct scaling scheme (4 and 5 respectively). Karplus and Karplus tie their
clasgification to Piaget by considering visualization, addition, and scaling

as indicators of a subject's being respectively at an intuitive, preoperational,

or operational level.

Table 3 presents a summary of the distribution of strategies employed in Tasks 1
and 4 for Numerical Types 3 and 4 by the whole sample before, and after

instruction. In the two matrices, the numbers located on the main diagonal
indicate no change of strategy between the two interviews. The upper, and
the lower halves with respect to the diagonal mark students that employed
more advanced, or respectively. lower strategies in the post interview as
compared to the strategy employed in the same task in the first interview.
The results for both Tasks 1 and 4 indicate that about 90 percent of the

students were either stable or advanced (with an almost equal division of

O
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Table 3. Pre/post student progress on Task 1(a) and on Task 4(b)
for Numerical Types 3 and 4.

ST . POST
e\ | 1 2 3 4 5 PR 1 2 3 4 5 |
: f 1
Y ’ no| 12 O IR T R B
2 b ; 4 2 5 1 2 |
x .
1 -
3 ; 1 3 :
N !
| N N i
41 3 4 27 | 14 4 6 e ]
! .
i ] i
511 1 2 {15 5 2 1] oz
(a) (b)

of 45 percent for each of the two categories) and only about 10 percent

euployed in the post-interview lower level strategies than thev did before.
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The influence of Context Familiarity on Solving Word
Problems in Mathematics -at the High 3chool Level

Claude Gaulin and Abdeslam El Boudali
Laval University

Abstract

Since a famous study by Brownell & Stretch (1931), relatively few
investigations have been conducted about the influence of context
familiarity on solving word problems with a context external to
mathematics. Resulte of a study conducted on that theme in
Morocco, during 1933-84, will be presented here.

In order to study the influence of context familiarity, the first
author prepared 16 word problems, that is 4 initial probleas (on
elementary number theory or algebra) each one couched in four
analogous versions differing by a more or less familiar context.
He used those sixteen problems to administer a test to 256 high
school students from Morocco, and to further conduct individual
interviews with 32 of them. Resulte obtained show that the
degree of familiarity of the context -- familiarity being defined
here in terms of the studeii.a =-=- has an unquestionable,
appreciable influence on both the performance and the
comprehension in solving mathematical word problems.
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STUDYING CHILDREN'S USE OF HEURISTIC PROCESSES
FOR MATHEMATICAL PROBLEM SOLVING
THROUGH STRUCTURED CLINICAL INTERVIEWS

Gerald A. Goldin, Rutgers University

This paper describes the creation of a script for
conducting structured clinical interviews with
academically talented children in grades 4-6, in
order to study their use of the heuristic process
"think of a simpler problem" (TSP). The children are
gutided through a complex plan to solve the problem,
"What ie the remainder when two to the 50th power is
divided by three?" and their competencies in various
subprocesses of TSP are observed. The prototype script
is also intended as a model for the study of other
heuristic processes.

BACKGROUND

In earlier work, Goldin and Germain (1983) and Goldin (1984,
1985) proposed that heuristic processes could be analyzed into
subprocesses with respect to four main categories: (1) advance
planning reasons the solver may have for using the process, (2)
ways of applying the process, (3) domains to which the process
may be applied, and (4) prescriptive criteria suggesting that

the process should be applied. To be able to study the
psychological structure of heuristic processes as they develop,
it is important to give operational meaning to such an analysis--
i.e., to measure children's competencies in the use of particular
subprocesses in as much detail and with as much reliability as
possible. The present paper describes the creation of a script
for the use of clinicians during structured interviews, designed
to observe academically talented children's use of various
subprocesses of the complex heuristic process “"think of a

simpler problem" (TSP) discussed in the above-cited papers. The
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prototype scrizt is also intended to serve as a model for the
study of other heuristic processes that have been similarly
analyzed, such as "special cases" and "trial and error.”

DESIGN OF THE SCRIPT

Clinical tape-recorded interviews were conducted during 1984-
85 with.children in grades 4-6, enrolled in a Saturday morning
mathematics program for the academically talented at Montclair
State College. The interviewers were graduate students in
mathematics education at Rutgers University; most were also
elementary and secondary school teachers. The purpose of the
script was to prescribe (to the extent possible, verbatim) the
clinician's role in such an individual interview. The clinician
guides the child through a complex plan, applying TSP to solve
the problem:

"What is the remainder when two to the 50th power

is divided by three?"
The major steps in the plan are the following: (a) understanding
the original problem, and recognizing that it does not yield
to direct computation; (b) deciding to construct and solve one
or more simpler, related problems; (c) generating and solving
a sequence of simpler related problems, in which the exponent
in the original problem is changed successively from 50 to 2,
3, 4, etc. (the special case in which the exponent is 1 is
omitted as a difficult instance of the concept of "power"); (d4)
detecting the pattern which occurs; (e) making a table of the
remainders, if necessary, and conjecturing a value for the
remainder in the original problem based on the pattern; and (f)
when feasible, finding a "reason" for the pattern. The script
based on this plan is presently 19 pages long, and typically
requires about 30 to 45 minutes per interview to administer.
It is still undergoing refinement and revision. An outline of
its major sections is presented in Table 1.
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Outline of the Script for "Think of a Simpler
Problem" (TSP) .

Explanation of prerequisites for understanding the problem

a.

the meaning of 3 to the 4th power, and similar problems;

the remainder when 17 is divided by 4, and similar
problems;

the remainder when 2 to the 2nd power is divided by 5,
and similar problems.

Presentation of the main problem

a.

b.

posing the problem of finding the remainder when 2 to
the 50th power is divided by 3:

determining if the child is willing to tackle the
preblem;

observing the heuristic process or processes the child
spontaneously uses;

observing whether the child spontaneously decides to
think of a simpler problem, and if so, observing in
detail how far the child takes the process (see below);

observing other noteworthy occurrences, including
exoressions of affect; :

noting whether the child states a coherent reason Zor
what he or she did.

Guided use of the heuristic process TSP (if the child has
made no prior use of this process, we continue here without
"correcting” any prior conceptions or misconceotions)

a.

b.

C.

obeerving whether the child seeks to think of a simpler
related problem when prompted to do so; if so,
observing whether the child successfully generates one;

if not, observing whether the child does so when
suggestions of how to obtain a simpler problem are made;

observing other noteworthy processes.

Presentation of simpler problems (if simpler problems have
already been obtained, we enter this section at the
appropriate place)

a.

suggesting the child try, "What is the remainder when
2 to the 2nd power is divided by 3?" and guiding the
child to its solution:

109
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b. suggesting the child try the main problem again;
observing if the child now spontaneously generates
additional simpler problems; cycling back through
III.b, increasing the exponent in IV.a by 1l each time;

c. observing the point where the child spontaneously
generates simpler problems, and/or detects a pattern in
the remainders;

d. observing other noteworthy processes and expressions of
affect.

V. Guided detection of the pattern in the remainders (if not
previously found)

a. observing whether the child detects a pattern when
prompted to look for one;

b, if so, noting whether the child spontaneously infers or
conjectures a solution to the main problem;

c. if not, guiding the child to detection of the pattern
and observing whether a solution to the main problem is
inferred;

d. observing other noteworthy processes.

VI. Guided conjectured solution to the main problem using the
pattern in the remainders

a, observing whether the solution is conjectured by the
chiid when prompted;

b. if not, guiding the child through construction of a
table and observing whether solution is conjectured;

c. if necessary, guiding the child to conjecture a correct
solution to the original problem;
4. observing whether the child recognizes spontaneously

that the solution is only a conjecture, and/or looks for
a "reason" why the pattern occurs;

e. observing transfer to related problems.
VII. Looking back

a. noting the child's feelings abkout the problem;

b. noting the child's recognition of previously-encountered
similar problems;

c. asking for a coherent retrospective account, asking for
alternate methods or shortcuts;

d. correcting conceptual misunderstandings which may have
occurred during the problem-sclving interview.
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The following is a guiding principle applied throughout the
script which, in my opinion, is crucial to its validity in
permitting us to make inferences akout children's cognitions:

Whenever a guestion is asked or a suggestion made, the child

is permitted to work freely until he or she arrives at a

conclusion or an impasse. At the outset (Sec. I), the concept

of "gower" is reviewed or introduced, and the child is asked

to explain it. If necessary, the clinician illustrates its
meaning, assisting the child until examples are solved correctly.
When the main problem is introduced (Sec. II), if it seems that
it is being totally misinterpreted, the clinician asks, "Could
you explain what two to the 50th power means?" and corrects the
child's understanding of the meaning of the problem if necessary.
However, the clinician does not at this time correct conceptual
misunderstandings or misapplications of arithmetical rules, such
as the assumption that two to the 50th power is the same as 59
to the second power. The child does not receive feedback
correcting conceptual misunderstandings until the very end of
the interview--even when the child's conclusions at a particular
point reflects such a misconception, the clinician simply
proceads with the next suggestion in the script. Thus the child
has the opportunity either to generate a more- adequate
conceptualization (through the application of the heuristic
process), or to bypass the original misconception and solve the
problem in a different way. The child is led to self-correct
computational errors only after observation to see that this
does not take place spontaneously, and only when necessary to
implement a required step in the overall plan.

PROTOCOL ANALYSIS AND SCORING

The script provides for various response alternatives--for
example, if the child spontaneously conjectures a correct answer

to the original problem, based on the pattern in the sequence
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of remainders, he or she is not led to construct a table. Thus
not every subprocess associated with TSP is encountered in every
interview. But for each subprocess encountered, transcripts

of the tape-recorded interviews, together with the child's
worksheets, permit an assessment of competence: (1) Does the
child use or attempt to use the process spontaneously? (2) Does
the child use or attempt to use the process when prompted to

do so? (3) Is the child's (spontaneous or prompted) application
of the subprocess successful? Thus it is possible to measure,
for instance, a child's ability to generate spontaneously a
sequence of simpler related problems (a) when presented with

the main problem (Sec. II), (b) when prompted to think of a
simpler related problem (Sec. III), (c) when a specific simpler
related problem is presented (Sec. IV), and so forth. More
details of the script and its proposed scoring are provided in
an accompanying paper (Goldin and Landis, 1985).
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A PROBLEM SOLVING INTERVIEW WITH STAN (AGE 11)

Gerald A. Goldin and Judith H. Landis
Rutgers University

The interview script developed by Goldin, based on

the heuristic process "think of a simpler problem,"

i8 described in an accompanying paper. This seript
was used in a pilot study with children in grades 4-6,
enrolled in a Saturday morning mathematics program for
the academically talented at Montelair State College.
We analysze some of the problem-solving processes of
"Stan,"” an eleven-year-old boy, as they were recorded
in the interview, illustrating how a child's
competencies in various subprocesses of the heuristic
process can be observed and scored.

BACKGROUND

In an accompanying paper, Goldin (1985) reports on the creation
of a guided discovery script for conducting individual clinical
interviews with academically talented children, in order to study
their competencies in subprocesses of a complex heuristic
process, "think of a simpler problem” (TSP). In the Fall of
1984, versions of this script were administered in a pilot study
to children in grades 4-6, enrolled in a Saturday morning
mathematics program for the academically talented at Montclair
State College. One boy, “Stan"” (not his real name), who was

11 years old at the time of the interview, displayed some
interesting and remarkable insights as he solved the problem
that was posed. This paper describes some of the problem-solving
processes that he employed. It is intended to illustrate how

a child's competencies in various subprocesses can be observed
and scored in the context of an extended and complex problem-
solving activity.
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PROCEDURE

Graduate students in mathematics education at Rutgers University,
many of whom were also K-~12 teachers, were trained to act as
clinicians in administering the script. Early drafts of the
script were read and criticized, and revisions were made based
on the students’' suggestions. The students then rehearsed the
script in pairs, interviewing each other and taking turns playing
the child's role. Further revisions of the script took place

as rough spots were uncovered during these sessions. Finally
each student, now familiar with the script, administered it to

a child; the tape of this interview was replayed, and the
clinician's adherence to the script discussed. After such
practice and discussion, the pilot study at Montclair State
College began in November 1984. The process of revision of the
script continued for several weeks during the ensuing interviews.

In each interview, the child was provided with pencils and paper
for use during the problem solving. One graduate student
functioned as the clinician, sitting beside the child, posing
the problem in accordance with the script, and making notes on

a copy of the script. A second graduate student functioned as
an unobtrusive observer, tape recording the interview and
following along, making notes on a copy of the script. The
observer was permitted to ask questions only at the very end

of the interview. After the interview, the tapes were duplicated
and transcribed. A file for each child thus consisted of the
tape of the interview, a verbatim transcript of the tape, the
child's actual worksheets, and scripts with notes made during
the interview by the clinician and by the observer. J. Landis
was the clinician for the interview with Stan, who was then in
the 6th grade.
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HIGHLIGHTS OF STAN'S PROTOCOL (ABRIDGED)

Stan had previously learned about exponents in school, and had
no difficulty with the prerequisites (Sec. I of the script).
When asked to find the remainder when 2 to the 50th power was
divided by 3 (Sec. II), he did not write out an expression using
2 as a factor 50 times, nor did he begin to calculate products.

(Stan:) Okay. First I have to figure out 2 to the 50th power,
and I don't remember a short way of doing it. Okay. Should

I do the whole problem? (Clinician:) Try and think out loud,
tell me what you're thinking as you're doing it, okay? (S:)
I'm trying to find a shorter way to doing 2 used as a factor
50 times, and I'm thinking that 50 might be able to be done to
the 2nd power; just reverse it, and that would be 50 times 50,
that would be 2,500 divided by 3, that would give me ... the
remainder would be one. (C:) Okay, can you tell me why you did
what you did? (S:) Because I think that 2 to the 50th power,
which is 2 used as a factor 50 times, you would just reverse
the numbers, that would be 50 used as a factor 2 times.

Note that Stan did not spontaneously monitor for the correctness
of his generalization, for example by trying a special case.

He had arrived at an answer to the problem, and was satisfied
with his conclusion. Therefore, without correcting his

"overgeneralization" of the commutative property, the clinician
next prompted him (Sec. III):

(C:) ... Can you think of a simpler problem that might help you
to solve this one? (S:) Umm ..., 2 to the 25th or 2 to the 12th,
maybe. (C:) Okay. Which one would you like to use? (S:) Umm

I'll do tothe 6th, which is half of that. ... And I got the
answer is 64, and 64 ... I got the remainder would be one, again.
(C:) ... will that help you solve the original problem? (S:)
Umm. I don't really think so, because 6 does not go into 50.

I could try S, because that goes into 50. ... That would
be 32, and 32 divided by 3 is ... the remainder would be 2.
Actually, ... that would be 10 remainder 2. (C:) ... Now would
that help you if you were trying to find the remainder of 2 to
the 50th divided by 3? (S:) Yes. I think so, because I would
take my answer and try and work it into 50. ... Like, okay. Two
to the S5th is, um, 32, so if I wanted to get to the 50th, I could
multiply it by 10, which would give me, 5 times 10 is 50. That
would be 2 to the 50th, and that would be 32 times ten, 320,
divided by 3, is one ... (computes) ... the remainder would be 2.
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We see that Stan successfully generated simpler problems when
prompted to do so, and formulated a plan for using them. This
time he "overgeneralized" the property of associativity and,

as with the commutative property, he did not monitor for the
correctness of his generalization. Prompted now to think of
another simpler problem that could help him (cycling back through
Sec. III), Stan suggested 2 to the 25th ("which would be even
closer to 50"), but changed his subgoal spontaneously:

(S:) Okay. Two to the 6th equals 64 ..., I want to get to the
25th ... 2 to the 10th is 1,024 and I could use 10 to get into
50, ... Now I have to ... I could ... hmm .. I could maybe divide

that by 3 and multiply the answer by 40, I mean, by 5, that would
give me 50 after I divided, and then I wouldn't have to divide
at the end and that would be ... the remainder would be one.

Here Stan conjectured in effect that 2so * 3=

(210 x 5) + 3 = (210 +3) x 5. Though he seemed slightly
dubious about his procedure, he still did not test for its
correctness, or note the contradictions among his answers to
this point. His mention of multiplying by 40 may merely reflect
momentary confusion of division with subtraction, or it may
reflect a fleeting intuition of the law of exponents. Since
Stan generated many simpler problems when prompted, but did not
spontaneously look for a pattern in the remainders he found,

the clinician continued with Sec. IV of the script:

(C:) Okay, let's suppose we tried 2 to the 2nd power divided

by 3. What would that remainder be? (S:) Umm, one. (C:) Do
you have any new ideas now for solving the problem of the
remainder when 2 to the 50th power is divided by 3?2 (S:) Umm,
yes, I could try and find a pattern. (C:) What do you mean?
(8:) Like I would try 2 to the 3rd, and 2 to the 4th, and 2 to
the 5th, and if the remainder was the same in each one, I think
it would be safe to assume that it would be all the way up to
50 ... but, it doesn't work. Well, actually the remainder would
be 2 in that ... the remainder would be one ... 2 ... okay, I
found a pattern. (C:) You did. What did you find? (S:) In

2 to the 2nd the remainder is one, 2 to the 3rd it's 2, 2 to
the 4th it's one, 2 to the 5th it's 2, 2 to the 6th it's one
and it keeps on going. And all the exponents are even when the
remainder is one, therefore, the remainder would be one in 50,
because 50 is an even number.
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Stan spontaneously articulated his plan to look for a pattern
in the answers to a sequence of problems. Though he did not
find the pattern he anticipated, he found one that enabled him,
without further prompting, to infer a solution to the main
problem. Thus Secs. V and most of Sec. VI, guiding the child
through these steps, do not appear in scoring Stan's
competencies. Asked if this problem reminded him of any others
he had solved before (Sec. VII.b), Stan described in detail a
problem from his class at Montclair State College, where each
of 1000 students in turn opens, closes, or leaves unchanged 1000
lockers-~-student 1 opens all the lockers, student 2 closes the
even-nunbered ones, student 3 reverses every 3rd locker, etc.
(8:} ... And the problem was which lockers would remain open.
And you had to figure it out. I did all the way up to 20, and
I noticed that the numbers that were opened in the 20 were 1,
4, 9 and 16. When I looked at those numbers, I realized that
those numbers were perfect squares, and 1 would be one times
one, 4 would be 2 time 2, 9 would be 3 times 3, and I also
noticed another pattern. Uh, the difference between 1 and 4

is 3, the difference between 4 and 9 is 5, the difference between
9 and 16 is 7, and it keeps going up by 2, all the way to 961,
and that was the highest number, and it turned out that there
were 31 lockers that would be open. And I listed all of them.
The resemblance Stan recognized between the two problems was
based not on any surface similarity in syntax or context, or
structural similarity in required arithmetic operation; rather
it was based on the similar applicability of a process of
constructing a sequence and detecting a pattern in it. Stan
then gave a coherent retrospective account (Sec. VII.c) of his
discovery of a pattern in the remainders, and at that point
sought (successfully) to articulate a reason for the pattern.

SCORING OF COMPETENCIES
For each subprocess of TSP, at each stage of the problem-solving

interview, we seek to determine whether the child uses the
subprocesses: (1) spontaneously, (2) when prompted to do so,

O
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(3) successfully. Table 1 reports the scoring of some of the
subprocesses evidenced in the interview with Stan.

Tsble 1. Psrtial Scoring of Stan's Competencies(s)

(s) Roman numerals refer to the script outline suc=- spon~ when not
presented in the sccompanying paper cess- taneous- promp- at
(Goldin, 1985). fully ly ted sll

II. Presentation of the main problem
Decides to seek a simpler method no x
Monitors for correctness of generalization x
Conjectures solution to original problem no x
Recognizes solution as merely conjecture x
Decides to think of simpler problem x
III. Guided use of the heuristic process TSP
Decides to think of simpler problem x x
Solves simpler problem % %
Generates sequence of relsted problems x x
Looks for a psttern in the sequence x
Conjectures solution to original problem no x
IV. Presentation of simpler problems
Generates sequence of relsted problems x x
Looks for a psttern in the sequence of x x
simpler relsted problems
Conjectures solution to original problem x x
based on pattern in sequence
Recognizes conjectured solution as merely x
conjecture, seeks reason behind pattern
VI. e. Observing trsnsfer to related problems
Applies the pattern to 2““ 3 x x
Applies the pattern to 275 3
Describes application of TSP to 350 -
VII. Looking back
Recognizes previously solved problem . x x
related by heuristic process
Provides coherent retrospective account x x

Reference: Goldin, G.A. (1985) Studying Children's Use of
Heuristic Processes for Mathematical Problem Solving
Through Structured Clinical Interviews. To be
published in Procs. of the 7th Annual Mtg. of PME-NA.
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METACOGNITION RESEARCH: TECHNIQUES OF PROTOCOL ANALYSIS
Lynn C. Hart
University of New Orleans
Karen Schultz
Georgia State University

ABSTRACT

Some mathematics educators have taken the positiom that
metacognition (knowledge and beliefs about cognitive activity
as well as awareness and control of that knowledge) is critical
to mathematical performance and that research in mathematical
problem solving would berefit from exzploration of this
phenomanon . The goal of the current work was to explore the
use of Schoenfeld's (1983) framework to recognize, record and
analyse observable metacognitive activity during mathematical
problem-solving sessions. The protocol of three preservice
middle school teachers solving an applied mathematical problem
was studied. Several factors were found to influence our
analytical process. These included number of members in the
group, expertness of the problem solver, and type of problem.

BACKGROUND

In the last few years much attention has been given to metacognition in
research on cognitive development, memory, and reading. Mathematical
problem-solving researchers, however, have just begun to question the
impact metacognitive activity may have on problem-solving success and to
offer a clear definition (Lester & Garafalo, 1985) of what is meant by the
term. Some mathematics educators (e.g., Lesh, 1982; Lester & Garafa]o,.
1985; Schoenfeld, 1983; Schultz & Hart, 1985; Silver, 1984) have taken the
position that knowledge and beliefs about cognitive activity as well as
awareness and control of that knowledge is critical to mathematical
performance and that research in mathematical problem solving would
benefit from exploration of this phenomenon.
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GOALS OF THE STUDY

The short-term goal of the current work was to develop methods and
approaches to recognize, record, and analyze observable metacognitive
activity during mathematical problem solving. Using a framework developed
by Schoenfeld (1983), 1t was our intention to describe the process of
recognizing, recording, ana analyzing this phenomenon as 1t actually
developed, with an eye for sharing our data-gathering and interpretive
procedures with others. Our long-term goal is to ascertain a correlation
between problem-solving success and metacognitive activity.

THE STUDY

Data Source

Data for this study were videotapes and transcripts from pilot studies
(Lesh & Schultz, 1983), where the problems solved were applied problems
taken from Lesh's (1982) applied Mathematical Problem Solving Project.
One protocol of a group of three preservice middle school teachers was
selected for analysis.

Procedure

The process for the transcript began by parsing the protocol into episodes
of six different types: reading, analysis, exploration, planning,
implementation, and verification. A brief synopsis of Schoenfeld's (1983)
description of each episode type follows.

Reading. A reading episode of a problem-solving protocol starts when
a subject reads the problem aloud and continues on through preliminary
ingestion of the problem conditions and any silence immediately
following--implying nonverbal rereading. It may include assessment
of the current state of the problem-solver's knowledge related to the
problem-solving task.

Analysis. An analysis episode occurs when there is no obvious
solution path after a reading episode. In this kind of episode the

O
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subject makes an attempt to understand a problem fully, to select an
appropriate perspective and reformulate the problem in those terms.
Analysis sticks rather closely to the conditions and goals of the
problem.

Exploration. An exploration episode is less structured than an
analysis episode and is further removed from the original problem.
It frequently includes a variety of problem-solving heuristics.
Schoenfeld describes it as “"a broad tour through the problem space"
(p. 358).

Planning-Implementation. Planning and implementation are self-
explanatory. Planning, however, is not always evident in a problem

solution. If a problem solver moves directly into “doing" the
problem, the episode is identified simply as implementation. Where
planning is evident as a separate activity it is classified as a
planning episode. When both planning and implementation seem to be
occurring simultaneously an episode is identified as planning-
implementation.

Verification. Verification involves assessing, reviewing, and
testing a solution and evaluating the solution process.

After parsing, a problem-solving protocol is mapped in a flowchart-type of
diagram from episode type to episode type with notations at transitions
between episodes. The introduction of new information and local assessment
of progress within an episode as well as transitions between episodes are
critical points. It is at these three points that metacognitive activity
may be observed.

The protocol was analyzed by two doctoral students and ourselves. After
lengthy discussion on interpretations of episcae types, we developed fairly
high consistency in parsing.
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Discussion
As with any model in its formative stages, Schoenfeld's model presented
some problems for us--given our long-term research goal of ascertaining a
correlation between problem-solving success and metacognitive activity.
The most obvious problem was number of persons in the problem-solving
session. While two- and three-person groups may be quite useful in some
research settings (e.g., Nodding [1983] and Hart [1984] found that average
and below-average subjects learned problem-solving skills while working in
a group), for this type of analysis it produced.certain difficulties. The
most obvious one was when members of the group were actually operating in
different episode types. Consider an excerpt from the videotape of Caran,
Magda, and Chuck solving Lesh's (1982) Carpentry ProBlem. The problem 1is
presented in parts. The first part asks the solver to determine how much
baseboard is needea for a 21-foot by 28-foot room if baseboard comes in
16- and 10-foot sections. The group answered this question by'multiplying
length times width to obtain 588, dividing it by the length of the longer
board which was 16, and concluding that they needed 37 16-foot boards.
The second part of the problem asks the problem solver to calculate the
baseboard needed to have the fewest seams. In attempting to answer the
problem with this new stipulation, Caran aiscovers that they have made an
error in the earlier solution for part one. She and Magda begin
implementation of a new plan. Chuck, however, has already worked out a
solution (which finds the least waste, not the fewest seams) and he
continually tries to offer it to the group. It is unclear from the video
or the transcripts at what point Chuck planned and implemented his
solution and what metacognitive activity may have monitored his work.
This excerpt is presented below.

Caran: So what's 28 divided by--oh, you know what, you guys?

Magda: Huh, what? What?

Cafan: We figured it out, this is--this 588 is area, not

' perimeter. That's what nervousness will do'for you.

Magda: Okay, so--

Caran: Cause when I started figuring out this I was going how

come we only need 1.75 boards and we've got 36 we're
buying?

o 1 2 ,
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Magda: Well, let's start over then.

Caran: That's great.

Magda: We'll just have to slow down.

Caran: Right [calculating]--42.

Magda: Okay.

Caran: Oh, God.

Chuck: I'11 tell you what we need. I wrote it down.

Magda: Let's see--no, we need--
Chuck: 98 feet of board is what we need.

In analysis of the protocol the group was said to be in an implementation
episode at the end, but Chuck had already developed a plan, implemented
his plan, and had a solution to offer to the group. Using group protocols
we were not able to isolate individual metacognitive activity.

Qur intention for future work is to modify the format so we can more
closely monitor individual metacognition. We propose to do this by
videotaping teachers solving totally unfamiliar problems before a group of
students. By being in the teaching setting subjects will be forced to
think aloud in order to model problem-solving behavior. In this way we
will obtain the thought processes of an individual problem solver. These
sessions will be videotaped and analyzed for metacognitive activity, using
the Schoenfeld model.

Another problem is one suggestea by Schoenfeld (1983) in his description
of his technique.

There are both objective and subjective components to the
framework for analyzing protocols. The objective part
consists of identifying in the protocols the loci of potential.
managerial decisions. The subjective part consists of
characterizing the nature of the decision points and describing
the impact of those decisions (or their absence) on the overall
problem-solving process. (p. 354)
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We found the objective analysis quite challenging. An {ssue such as
interpretation of episode typing 1s initially critical in developing
consistent parsing. Other factors that influence both the objective and
subjective components of the analysis must be considered. Some of these
are novice/expert problem solvers, number of members of the group, and
problem type. Careful examination and documentation of all these factors
must be considered in 1ight of the research questions being rafsed.

The subjective analysis is still not resolved in our minds. We were too
quick to try to quantify the presence of metacognitive activity with a
score at critical points. Expert problem solvers may show little
metacognitive activity and come to a quick and elegant solution of the
problem, whereas novice problem solvers might show extensive metacognitive
activity and never arrive at a solutfon. The amount of metacognitive
activity therefore 1is not necessarily a predictor of problem-solving
success. A score is a function of the expertness of the problem solver as
well as the problem type, as well as other factors. Our inclination at
this time 1is to observe the ratio of productive critical points to total
critical points for a single problem solver and to work toward identifying
types or levels of metacognitive activity into which problem solvers may
be placed. One control for the expert/novice factor is to be certain the
problem we give 1is really a problem for the individual--certainly not an
easy goal.

SUMMARY

We have no definitive conclusions about the analysis procedures at this
point. It is expected that our interpretations and characterizations will
be cyclic in their development. An i{nitfal conceptualization must be
filtered, organized, and interpreted through several phases of refinement
before it becomes a more usable model. We feel confident in our progress
and encourage reaction and input to our work.
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ABSTRACT

This study investigated how different rate types (buying, speed,
consumption) and problem settings (familiar and unfamiliar) affected 254
seventh graders' performance on qualitative and numerical proportional
reasoning problems. Six forms of a proportional reasoning test were
designed reflecting the three rate types and two settings. Each form
consisted of 17 questions in a single context and included missing value
and numerical comparison word problems, 1 non proportional reasoning word
problem and 10 qualitative reasoning problems. Each student was given one
of the 6 forms and a 20 item rational number test. Rate type and rational
number ability affected student achievement on both numerical and
qualitative subscales of the proportional reasoning tests. As expected
the less familiar rate (consumption) was more difficult for both
subscales. Correlations between different parts of both tests were
moderate to low suggesting that students dc not perceive that rational
number concepts and proportional reascning skills are in fact related to
one another.

We are indebted to Nadine Bezuk, Kathleen Cramer and Andrew Ahlgren who
assisted in this research. The research was supported in part by the National
Soience Foundation under Grant No. DPE-847077. Any opinions, findings, and
conclusions expressed are those of the authors and do not necessarily reflect
the views of the National Science Foundation.
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The purpose of this study was to investigate how different rate types and
problem settings affect student performance on qualitative and numerical -
proportional reasoning prcblems. In addition, relationships between
qualitative directional reascning about rates and numerical proportional
reasoning, and relationship between rational number skills and numerical
proportional reasoning were explored. The following questions were posed:

1. Does the type of rate differentially affect student performance cn
qualitative and numerical proportional reasoning problems?

2. For a given rate type, do differences in problem settings affect
student performance on qualitative and numerical proportional
reasoning problems?

3. To what extent is qualitative directional reasoning about rates
related to numerical proportional reasoning?

4. To what extent are rational number skills related to student
per formance on proportional reasoning problems?

Numerous studies have shown that early adolescents and many adults have a
great deal of difficulty solving proportional reasoning problems (Hart, 1978,
1981; Karplus, 1981; Karplus et al., 1979; Rupley, 1981; Suarez, 1977;
Vergnaud, 1980, 1983).

Why is proportional reasoning so difficult? What factors affect problem
solving success? Several studies have shown that factors such as problem
format, the numerical characteristics of the problems, the problem ccntext,
and even the immediately preceding problem affect student performance on
proportional reasoning problems (Jesunathadas and Saunders, 1985; Karplus et
al., 1984; Lybeck, 1978; Rupley, 1981; Vergnaud, 1980). In this study we
investigate the effect of two aspects of problem context on the level of
student performance on qualitative and numerical proportional reasoning
problems. The intent eventually is to explore the practicality of using a
graded series of exercises to lead students from proportions that are fairly
reasy to understand to those more difficult proportions essential to the
sciences (e.g., density, acceleration, concentration, definite proportions,
genetics, etc.) and to more advanced mathematical applications, i.e., algebra.

Several studies have shown that student performance on preportional

" reasoning problems is affected greatly by the problem context (Karplus et al.,
1983; Lybeck, 1978; Vergnaud, 1980). Jesunathadas and Saunders (1985) found
that familiarity with the content of proportional reasoning tasks affected
ninth-grade students' performance on these tasks. Students had significantly
greater success solving problems with familiar content than solving problems
that were the same numerically but with unfamiliar science content. Familiar
content was defined as those words, processes, and concepts which most
students encounter quite frequently in their daily lives. Unfamiliar science
content was defined as those words, processes, and concepts which are found in
high school science textbooks.

O
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There may be two aspects of "context" that can be usefully distinguished
in proportional reasoning problems. The first has three sub-considerations:
(a) the objects in the problem, (b) the variables used to describe the two
properties of the objects of interest in the problem (e.g., length, area,
weight, time, etc.), and (c) the units of measurement used to specify these
veriables (e.g., for length-—-inches, feet, centimeters, kilometers, miles,
etc.). We will cell this set of context aspects the "problem setting." For
example, in speed problems students may be more familiar with people running
foot reces and measures of distance run in laps and running time in minutes
than they are with driving cars and measures of distance traveled in miles and
driving time in hours.

A second aspect of context is the type of ratio or rate involved in the
problem. A survey indicated eight types of rates that can be found in
standard textbook proportionel reasoning problems. They are: Distribution
(cookies per person), Packing (books per foot on shelf), Exchange (dollars per
hour), Mixture (orange juice concentrate and water), Speed (nails hammered per
minute), Consume or Produce (miles traveled per gallon), Soale (inches per
mile) and Conversion (points per kilogram). Most can be interpreted with
direot or continuous variables. Each type of rate can be used in familier or
unfamiliar problem settings. Even with familiar problem settings, however,
students may be more or less familiar with the rate types themselves. For
example, junior high school students typically have more experience buying or
mixing than they have scaling or converting units of measurement.

Familiarity with what is called the problem context may consist of
familiarity with both the rate type and the problem setting. Knowledge cf the
hierarchy of difficulty for uninstructed students on proportional reasoning
problems with different rate types and problem settings may contribute to a
better understanding of how proportional reasoning skills develop in
adolescents and to the design of better proportionsl reasoning instruction for
students.

Another factor which could affect student performance on proportional
reasoning problems is qualitative reasoning skills, which seems to be a
significant variable in mathematics and physies problem solving per formance
(Chi, Feltovich end Glaser, 1981; Larkin and Reif, 1979; Larkin et al., 1980).
Some proportional reasoning studies indicate that meny early adolescents use
faulty qualitative reasoning or use additive comparisons where multiplicative
comparisons are required (Karplus and Peterson, 1970; Karplus et al., 1983;
Noelting, 1980 a & b). The frequency of these incorrect strategies seems to
depend on the problem context (Jesunathadas and Saunders, 1985; Karplus et
al., 1983). However, no systematic research has been conducted to explore
students' ability to reason qualitatively about rates, to determine the effect
of different contexts on their qualitative reasoning sbout rates, or to
determine how qualitative reasoning about rates contributes to proportional
reasoning skills.

In this study we introduce a new type of qualitative question about rates
that may be important in understanding the development of proportional
reasoning skills in adolescents. These questions ask in what direction a rate
will change (decrease, stay the same, or increase in value) when the numerator
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and/or the denominator decreases, stays the same, or increases. Such
qualitative directional reasoning about rates may be important prerequisite
skill for successful performance on numerical proportional reasoning problems.

The presence of integral ratios or rates in proportional reasoning
problems and small numerical values less than abcut 30 make problems
considerably easier than those without integral ratios or larger numbers
(Karplus et al., 1983; Noelting, 1980 a,b; Rupley, 1981). It would seem,
then, that rational number skills could be an important prerequisite skill for
successful performance on proportional reasoning prcblems.

In this study, we limited our investigation of numerical proportional
reasoring to problems with easy, integral ratics or rates. Since we were
interested in the effect of rate type and prcblem setting on problem solving
performance, we did not want to add a numerical difficulty interaction effect.
We did, however, examine the relationship between rational number skills ard
per formance on numerically easy proportional reascring problems.

Three types of rates were examined in this study: exchange rates
(buying), speed, and consumption rates. The two prcblem settings selected for
each rate type were (a) Buying - gum ard records, (b) Speed - running laps ard
driving cars, (c) Consumption - gas mileage of trucks and oil burning in
furnaces. These rate types were chosen because we expected them to have
different difficulties and because they have been studied previously (Karplus
et al., 1983; Vergnaud, 1983). We expected speed problems to be slightly more
difficult than buying problems, and consumpticn problems to be the most
difficult of the three rate types.

Numerical Proportional Reasoning Problems

Two formats of numerical problems, missing-value and numerical
comparison problems, were used in this study, as illustrated by
the problems below:

Missing-Value:

Steve and Mark were running equally fast around a track. It took
Steve 20 minutes to run 4 laps. How long did it take Mark to run
12 laps? Please show all your work carefully.

Numer ical-Comparison:

Tom and Bob ran around a track after school.
Tom ran 8 laps in 32 minutes.
Bob ran 2 laps in 10 minutes.
Who was the faster runner?
Tom Bob - they ran equally not enough information
fast T to tell

Missing-value and numerical-comparison problems have been used
extensively in instruction and research. The inclusion of both types of
problems in this study complements previous studies with the same rate types

ERIC
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by Karplus et al. (1983) and Vergnaud (1980). The numerical values chosen for
each type of prcblem are contained in Table 1 below.

Table 1
Data Used in Numerical Problems
Person 1 Person 2
Missing-value 1 ul 202 1§ "2
Missingevalue 2 8 24 ?° 6
Missing-value 3 3 12 ? 36
Compari son 1 8 32 2 10
Comparison 2 3 15 9 45
Comparison 3 6 24 2 6

® V1 and V2 are the two variables in the problem setting (for example, number
of pieces of gun and price in cents).

Qualitative Propcrtional Reasoning Problems

Two formats of qualitative directional questions about rates were
invented for this study, as illustrated by the questions below:

Qualitative Rate Change:

If Nick ran less laps in more time than he did yesterday, his running
speed would be

a) faster

b) slower

o) exactly the same

d) there is not enough information to tell

Qualitative Comparison:

Bill ran the same number of laps as Greg. Bill ran for more
time than Greg. Who was the faster runner?

a) Bill

b) Greg .

o) they ran at exactly the same speed

d) there is not enough information to tell

Since both the numerator and the denominator of a rate can decrease,
inorease, or remain the same, there are nine qualitative rate change and nine
qualitative comparison questions that could be asked. Two cases are
ambiguous. Ambiguity occurs when the numerator and denominator both increase,
or both decrease. The correct answer to these
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questinns i{s that there is not erough information to tell what happens to the
value of the rate (qualitative rate change) or which object has the larger
value of the rate (qualitative comparison), because the numerator and
denominator can decrease (or increase) proportionally or non-proportinorally.
These are the only qualitative questions that require a truly numerical
understanding of proportionality for a correct answer.

METHODS

Subjects

Our subjects were 25U seventh graders in a middle-class urban schocl in
St. Paul, Minnesota. They included all seventh-grade students in atterdance
on the day the tests were admiristered. About half of each group were girls
and about half were boys. The teachers reported that the students had rct
received instruction on proportional reasoning problems in their seventh-grade
mathematics classes.

The Instruments

Six forms of the proportioral reasoning test were designed, each
comprising 17 questions ir a single context, three rate types--two settings
within each. The first section of the proportional reasoning test consisted
of three missing-value and three numerical-comparison problems. The numerical
values in the six problems, shown in Table 1, allow students to solve the
problems correctly using integer ratios or rates. The second section of the
test cortained qualitative questions similiar to those already described. One
item did not involve proportional reasoning.

The second instrument used in the study was a 20-item ratioral number
test. This test consisted of problems on order and equivalence, finding
equivalent fractions, qualitative changes in the value of a fraction,
operations with fractions, estimating rational number computations, a
quantitative notion of a fraction, and the concept of a unit. The test was
constructed so as to correspond numerically to the numbers used in the
proportional reasoning test.

Procedure

The tests were administered according to a set of instructions which was
read and explained to the students. The six different forms of the
proportional reasoning test were randomly distributed to the students in each
class. After each student completed the proportional reasoning test, he or
she was given the rational number test.

ANALYSIS

Table 2 contains means and standard deviations for the three rate types, and
two settings within each for the numerical (missing value plus numerical
comparison) and for the qualitative problems.
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TABLE 2
Means and Standard Deviations
Numerical ‘ Qualitative
(possIble Score = 6) (possible 3Score = 8)
Type of Familiar (Less Familiar Familiar Less Familiar
Rate Setting Setting Setting Setting
Buying R 4.23 (1.70) 4,37 (1.64) 6.85 (1.48) 6.53 (2.21)
gum records gum records
Speeds 3.95 (1.78) 3.40 (1.80) 6.28 (1.75) 5.35 (2.26)
laps cars laps cars
Consumption 3.53 (1.89) 2.97 (1.u4) 6.00 (2.18) 4.00 (1.96)
car/gas furnace/oil car/gas furnace/oil

#Means (Stantard Deviations) - i.e., Mean = 4.23; Standard Deviation = 1.70.

Students were divided into 3 roughly equivalent groups on the basis of
their scores on the rational number test. Separate 3-way ANOVAS [rational
number ability (3 levels), rate type (3 levels), and setting (2 levels)] were
conducted for students’ numerical and quantitative scores. Significant main
effects for rational number ability and rate type were significant (p < .001)
for both types of scores. Setting was significant only for the qualitative
score. No significant two- or three-way interactions were observed. Figure 1
depicts the plot of the mean scores for each rate type and setting within each
rate type.

MEAN TOTAL SCORE ON NUMERICAL PROBLEMS MEAN TQTAL SCORE ON QUALITATIVE PROBLEMS
6p ’ 8
54 7 ————— BUY
X — BUY 6 SPEED
34+ —= CONSUME 4 CONSUME
2= 3
2
1T 1
+ + + -
SETTING T SETTING
?um records gum records
aps cars laps cars
mileage furnace mileage furnace
\) Ficure !}
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As expected, the less familiar rate (consumption) was more difficult for
both the numerical and qualitative scales.

Correlations between the numerical (missing value plus numerical
comparisons) and qualitative subscales scores on the propcrtioral reasoning
test and achievement on the rational number test were r = M9 and r = .35
respectively. Although these were significant at the .00001 level, the small
percertages of variance accounted for, .24 and .12 respectively suggests that,
in the latter case, students do rot perceive that rational number concepts and
the proportioral reasoning skills measured by these tests are in fact highly
related to one another.

There were very substantial achievement differences on varicus test
items. The range was 5 to 92 percent correct. The two most difficult were
those qualitative items requiring a determination of the qualitative effect cn
the cverall rates (increase, decrease, stay the same, or impossible to tell)
when both the numerator and the denominator increased or decreased. In these
two cases the resultirg direction of change is indeterminate. The correct
interpretation is, of course, dependent on the rate of change of the numerator
and the rate of change of the denominator in relation to cne ancther.
Requiring relativistic thinking, these items may in the future provide
valuable insight into students’ ability to process informaticn in proporticral
reasorning situations. It should be noted that these two items were not
included in the statistical analyses reported here because they did rot load
or the mair factor in afactcr analysis which was conducted. Achievement
levels on the more/more, less/less items were by far the iowest of all items
cr both tests.

Postscript:

The actual study (of which this was the pilct) was completed by The
Rational Number Project in the spring/summer of 1985, with over 900 7th and
8th grade students utilizing four different rate types (mixture, speed,
scaling, and density), 2 settings for each rate type, and a test ¢f rational
rumber concepts which closely paralleled the proportioral reasoning tests.
Similiar data for 100 preservice elementary teachers at the University of
Minresota were also included as part of this effort. Results are currently
beirg incorporated into a series of papers.
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CONFLICTING FRAMES OF REFERENCE IN THE LEARNING OF ALGEBRA

Nicolas Herscovics & Louise Chalouh

Concordia University

In constructing meaning for algebraic expressions, the learner
experiences obstacles due to his existing arithmetic frame of
reference which interferes with his construction of an algebraic
framework. In experimenting a teaching outline aimed at over-
coming this initial cognitive problem, we uncovered evidence

of different types of conflict between the arithmetic and alge-
braic frames of reference: one month after instruction in algebra,
students reverted back to their arithmetic framework. However,
when jolted back to algebra, their answers changed significantly.

In dealing with the cognitive difficulties involved in the learning of algebra,
Davis (1975) has identified two major obstacles encountered by the learner,
that of a lack of a numerical referent ("How can you multiply by x when you
don't know what number it is!") and that of a "name-process" dilemma by which
an expression such as x + 3 represents both the process of adding 3 to x ,
as well as naming the result. Another cognitive obstacle has been identified
by Collis (1974), the beginning student's inability to accept the "lack of
closure" of such expressions. However, it was Marilyn Matz (1979) who per-
ceived that the student's arithmetic background might, to some extent, inter-
fere with his learning of algebra. She pointed out that since in arithmetic,
concatenation (the juxtaposition of symbols) denotes implicit addition, both
for place-value (23 = 20 + 3) and in mixed fractions (43 = &4 + 3), this addi-
tive connotation might bring the novice to conclude when given that x= 6,

that 4x must be 46 or , when given x= -3 and y= -5 , that xy must be -8 .

Research funded by the Quebec Ministry of Education (FCAR grants EQ-1741,2923)

O
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In a previous paper (Chalouh & Herscoviecs, 1983) we communicated results which
supported Matz' observation. We gathered our data by interviewing 6 students
who had not been exposed to any formal instruction in algebra. Asked to res-
pond to the question "Can you tell me what 3a means to you?" , five of the
six students interpreted 3a in terms of a subdivision label (e.g. third
problem, first part), three students provided a place-value interpretation

(e.g. 3a 1is 30 or 3a 1is 31 because a 1s the first letter of the alpha-
bet), two students showed evidence of a first letter abbreviation (e.g. 3 ants).
Of our six subjects, three of them supplied us with more than one interpret-
ation. Asked what they would get by replacing.:he letter a with the number 2 ,

one student responded "I would put 3 times or plus 2...", four students res-

ponded with "32", while the sixth student wrote "3 - 2 , 3 x 2 , 3+2, 32" .

These results show the very natural tendency by the students of interpreting
an algebralc expression new to them in terms of the only numerical frame of
reference they possess at this point, that of arithmetic. But this does not
constitute cognitive conflict. Different frames of reference can come into
conflict in various circumstances. They can be considered as conflicting when
the existence of one interferes with the learner's construction of a new one.
This is very well illustrated by the student who does not feel he can multiply
a letter and a number.’ To him, the letter does not as yet represent a number
and his arithmetic framework forces him to instantiate, that is, to substitute
a numerical yalue for the literal symbol. But confliect between different
frames of reference is not restricted to epistemological obstacles encountered
in initial learning situations. Indeed, after the consecutive acquisition of
two different frames of reference, the first one may prove to be predominant
and interfere with the use of the second one. Yet another conflict occurs when

a8 lack of delineation between two frames of reference existing in the learner's

- mind prevents him from identifying which one is relevant in a given situation.

O

This paper will report how in a teaching experiment dealing with the first kind
of cognitive problem, that of constructing meaning for algebraic expressions,
we found evidence of the latter two types of conflict between the students'

algebraic frame of reference and their arithmetic one.
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THE TEACHING EXPERIMENT

In order to 1ntroduce Algebraic expreésions in a ﬁay which might be meaningful
to beginning algebra students we developed a new approach, one which aocught

to identify these expressions as "answers to problems'. Since we wanted the
students to focus on the algebraic expression, we selected problems of a highly
pictorial nature, easy to visualize, which would not by themselves create
cognitive obstacles. The types of problems we chose involved the quantifica-
tion of a rectangular array of dots, the length of a line segment divided into
parts, and the area of a rectangle.

The purpose of our teaching experiment was to uncover the possible new cogni-
tive obstacles inherent in our teaching outline, and to assess whether or not
diffeorences in ability and grade level were relevant variables. Since we were
interested in following the students’' thinking, we opted for a case study
approach. With each one of the six students mentioned earlier, we conducted

a teaching experiment consisting of five semi-standardized interviews - a
pre~test, three lessons, a post-test. Teachers selected three of them from
grade 6 and from grade 7 of low, average and high mathematical ability as de-
termined by their school performance. The reason for a semi-standardized
format was to allow for inter-subject comparison.

Our first lesson started out very cautiously with our three types of problems,
but each one involving a quantity hidden by a cardboard cover. In a prior
papaer (Herscovics & Chalouh, 1984) we reported how initially the students were
introduced to the usebf the placeholder box to represent the hidden quantity
in completing statements such as "number of dotsa 7 x (], length=m 4 x D ,
area m 6 xE]‘H The removal of the cover exposed the hidden quantity which
was then inserted in the placeholder box. Students had no difficulty in fol-
lowing this up by the use of letters instead of the placeholder box within the
context of hidden quantities. As reported last year in a companion paper
(Chalouh & Herscovics, 1984), our success with lesson 1 led us to believe that
the transition to their use for the representation of unknown quantities

(as in writing the area of 3 |) would proceed without difficulty.
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In fact, all six subjects indicated that they were experiencing some cognitive

discontinuity in this transition. This led us to re-assess our impression that
they were developing an acceptance for the lack of closure of algebraic expres-
sions. Although this cognitive discontinuity was easily overcome, nevertheless

it brought out the complexity and relevance of the name-process dilemma.

While the first part of lesson 2 dealt with the use of letters as specific
unknowns, the second part of this lesson was devoted to concatenation.Students
were introduced to the notation 3a as representing 3 xa or ax 3. We
pointed out that this notation was unambiguous in algebra but could not be used
in arithmetic since 3 x 5 # 35 . It is in our third lesson that we started
finding evidence of the algebraic frame of reference conflicting with the arith-
metic one. When we asked students to write the area of the rectangle

3r_j: 52 for the small rectangle on the right-hand side, two of our subjects
said "three times two" but wrote ""32", one of them explaining that she meant

"three two in algebra". However, it was the post-test that revealed the extent
of this conflict,

THE POST-TEST

The post-test was administered one month after the third lesson was completed
with all six subjects. It consisted initially of two parts: the first part
repeated the questions raised in the pre-test in order to determine the change
in our students'interpretation of algebraic symbolism; the second part con-
tained questions intended to ascertain how much the subjects had learned from
the three lessons. The first subject to be interviewed, Wendy, our average
grade 6 student, surprised us by answering the questions in Part 1 almost
identically as in the Pre-test, where she had used an arithmetic frame of
reference. At the beginning of the second part of the post-test, -when she was
asked the meaning of the expression 5b , she questioned whether we wanted her
to respond "in algebra". This chance remark by her led us to modify the post-
test to include a third component assigned to review some of the questions in

Part I, but specifically asking the students to answer in "algebra".
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Here are some of the questions asked in both the pre-~test and the post-test:
- When I show you this, l—ia_l » can you tell me what it means to you ?
~ If you replace the letter a by the number 2, can you tell me what you get ?

= When I show you » can you tell me what it means to you ?

- Look at this workcard: fsimplify 2a + Sai Can you tell me what it means?
Can you do it ?

= Can you simplify: [33‘* 4a + 5] , [2c + 3d + 451 Why do you think different
letters are used ?

-~ Can you add 4 onto n+ 5 ? Can you add 4 onto 3n ?

Comparing the initial Post-test results with those of the pre-test, we found
that our aubjec:a' responses were almost identical, that is, our subjects were
atill esaentially reaponding within an arithmetic frame of reference. We had
expected that after the work done in the three leasons, the responses gathered
in the poat-test would have been significantly different snd reflect an alge-

braic context.

The queationa dealing with the concatenated expreasion 3a showed that four of
the atudents anawered as in the pre-teat: Wendy our average grade 6 subject,
thought of place-value and alphabetical rank (a=l, b=2) and wrote "3a = 31" ;
Frankie, our weak grade 6 atudent tought algebraically, "3a 1s 3 times a" ;
Gail, our strong 7th grader, aaid "three apples, three ants" and referred to
place value ; Filippo, our average 7th grader, referred to place-value and to
subdiviaion label. Two atudents demonatrated some evolution. Yvette, our weak
grade 7 atudent, indicated that she had expanded her initial subdiviaion label
and place-value interpretation of 3a by drawing a rectangle whoae area waa Ja.
Antoinetta, our atrong 6th grader, was the only student ahowing a complete change
from her initial arithmetic interpretationa (aubdiviaion label and place-value)
to a purely algebraic one ("3a is 3 timea a"). All atudents, except Frankie

and Antoinetta, anawered 32" {natead of "6" when aaked to subatitute 2

for a in 3a , thus confirming that moat of them remained in their initial

arithmetic frame of reference.
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The questions dealing with the meaning of the letter within the context of
addition ( 4 + b ), yielded some changes between the pre-test and the post
test. For Frankie and Gail, the change was significant: in the pre-test they
had transformed the expression into an equation, that is, they interpreted the
letter as a "specific unknown". In the post-test, they indicated that the
letter could take on more than one value " &4 4 2, & + 3" (generalized number).
A minor change was obgserved in the case of Wendy who in the pre-test had used
an alphabetical interpretation ( 4+ b = 4 4+ 2 ) and who now wrote "4 +b = 6
and 4 4n =12", Antoinetta and Filippo showed no change from the pre-test.

Antoinetta maintained her interpretation of the literal symbol as a generalized

aumber ( 4 +b 48 4 4+ 3 or 4 + 6 ) and Filippo still used a specific
unknown interpretation for the letter by writing "4 + b = 8" . Yvette's re-

sponse was too vague to draw any conclusion.

For the simplification question involving only like terms (2a + 5a), five of
the six subjects maintained their original place-value interpretation such as
2a + 5a o 22 + 53 . Antoinetta was the only exception: she read the expression
correctly ("2 times a plus 5 times a") but then she wrote "2a + 5a = 10"
explaining "You don't know what the a 1s so I just times the 2 and the 5".

For the simplificaiion question involving unlike terms (3a + 4a + 5), Wendy,
Filippo and Yvette maintained the place-value interpretation they had ex-

pressed in the pre-test. The other students indicated some change. Antoinetta
solved the problem by simply adding the numerals (12a). Frankie first drew
a rectangle whose area was to correspond to the given expression and also said

that it could mean "3 x 2 + 4 x 2 + 5", Gail drew a correct line problem

aaaaaaa 3 but still could not simplify and wrote "3 + &4 + 5"

N L
[ Se—— T

For the questions requesting the addition of &4 to given expressions, the
responses of all subjects , excepting Antoinetta, were similar to those of the
pre-test: Wendy continued to ignore the letter ("4 plus n + 5 is 9") and used
her alphabetical place-value interpretation ( "4 plus 3n is 4 plus 314");
Frankie and Gail still ignored the letter or used a place-value interpretation
(4 +5, 4+ 32); Filippo continued to form equations and used a place-value
interpretation (4 + N + 15 = 26, 4 plus 3n is 4 plus thirty something);
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Yvette still added 4 to the expression ( 4 + n - 5 ) stating that it was in-
complete and she also used a place~value interpretation (" 4 + 3n is 4 + 30")
Antoinetta did indicate some change in that she no longer evaluated the letter
nor used a place-value interpretation., Nonetheless, she was unable to find a

correct answer to the additive problems.

From these results, one can conclude that Wendy, and to some extent Filippo,
operated in the post~test, in a purely arithmetical frame of reference. Frankie,
- Gail and Yvette used both arithmetic and algebraic frames of reference.
Antoinetta was the only student who did not revert back to her arithmetic
framework and exhibited a significant evolution, since most of her responses
were within an algebraic context. The fact that five of the six students did
revert back to a framework which was essentially an arithmetic one, indicates

how difficult it is to replace it by an algebraic one for the learner.
RETURN TO AN ALGEBRAIC FRAME OF REFERENCE

Ag pointed out earlier, the second part of the post-test was to ascertain how
much our gtudents had learned from the three lessons. However, to achieve this
it was necessary to bring them back to the algebraic frame of reference esta~
blished in the teaching experiment. This was done by raising the question:
"IN ALGEBRA, WHAT DOES 5b MEAN ? "
Upon the request to respond in algebra, Wendy, Gail, Filippo and Yvette, who
had initially given an arithmetic interpretation for the concatenated expres=
gion, changed their response to an algebraic one and said "5 times b" , Not
only did these four subjects respond differently as to the meaning of the
expression 5b , but alao, in subatituting a numerical value for b, they no
longer uaed a place-value interpretation, but used the intended algebraic
meaning, that of multiplication: in subatituting 2 for b, they did not aay
"fifty-two" aa before, but now read it aa "5 times 2". This change in reaponae
ia interesting since it ahows that all these subjects knew the meaning of 5b
within the context of algebra, but unleaa specifically requested to respond

within that context, they remained in an arithmetic one.
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Once our students were induced to work in an algebraic frame of reference,
they continued to answer accordingly for the remainder of Part II of the
pést-test. However, some of them needed continued reassurance that they were
to respond within that confext. Filippo, and often Yvette, constantly asked
"in algebra?". Antoinetta and Frankie have not been mentioned here since they

had both initially stated that 5b meant 5 times b without being prodded.

Since at the end of the second part of the post-test, our subjects were clearly
in an algebraic frame of reference, we returned to some of the questions asked
in both the pre-test and at the beginning of the post-test, expecting that

some changes in their responses would occur. A change did occur, but it was
not always a clearcut cne. Five out of the six subjects indicated the pre-
sence of both an algebraic and an arithmetic frame of reference. EEEQX had
previously ignored the letter in the question "add 4 onto 3n'", but now she
wrote "3n + 4". However, when replacing a by the number 2 in 3a she claimed
3a could be "thirty-two or 3 times a". Frankie had previously used a place-
value interpretation ( 4 + 32 ) but now claimed that 3n was "3 times a
number', but he was unable to accept the lack of closure of the expression as
evidenced by his replacement of the letter n by the number 4, thereby reverting
to an arithmetic framework. Further indication that Frankie had abandonned

his place-value interpretation can be found in his rewriting '"2a + 5a" as

"2 x a + 5 x a" whereas before, he had written "22 + 53", Gail now provided
only algebraic answers. For "add 4 onto 3n" she now wrote " 4 + 3n " ; in
simplifying "3a + 4a + 5" she wrote "3 xa+b4xa-=5" However, in commen-
ting her initial answers, she claimed that "2a + 5a" could be "twenty something
plus fifty something in ...adding or subtracting". Thus she hinted at the pos-
sibility of an alternate answer in arithmetic. Filippo answered only within
the context of algebra. For example, he wrote "4 x 3 x N" for "Add 4 onto 3n".
However, before answering any question he preceded his answer by "in algebra?”
Yvette responded "3n + 4" to the question "add 4 onto 3n", but the remainder

of her answers were very erratic indicating a conflict between the two frames
of reference. Our sixth subject, Antoinetta, was not listed above since she

was the only student who had spontaneously answered the questions in Part i

of the post-test within an algebraic frame of reference.

O
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CONCLUSION

The research reported here presents stroﬂg evidenﬁe regarding the cogniéive
conflict created by the existence of both an arithmetic and sn algebraic frame
of reference in the mind of the novice algebra student. OQur six subjects were
taught individually, and after three lessons could generate non-trivial
algebraic expressions as answers to given dot array, line segment length or
rectangle area problems, and conversely, they could generate such problems

for given algebraic expressions. Yet, a month later, five of our six subjects
reverted back to a framework which was primarily an arithmetic one. The expli-
cit instruction to answer in algebra led to a remarkable shift in their res-
ponses. This ia most evident in the answera to the problem "add 4 onto 3n".
Whereaa their 1p1tial reaponse in the post-test was essentially arithmetic

(4 + 32, 4 + 314), when jolted into an algebraic frame of reference, they all
answered "4 + 3n'". These results imply that in early algebra, the teacher and
the researcher cannot take the student's responaes at face value. We muat
firat reassure ourselvea that he ia well aware of the frame of reference

relevant to our inquiry.
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THE EFFECTS OF COMPUTER USE ON THE ACQUISITION OF MULTIFLICATION FACTS BY A
LEARNING DISABLED STUDENT

Richard Howell, The Ohio State University

Betsy Sidorenko, The Columbus Public Schools
James Jurica, The Ohic State University

ZNTRODUCTION

Although there are a number of articles concerning the use of microcomputers
with special populations, there is little research being done on the
effectiveness or impact of the use of microcomputers with these populations
(Hoffmeister, 1982; Blaschke, 1985). This is especially true as it concerns
students who are diagnosed as having learning disabilities (Hasselbring and
Crossland, 1981; Shiffman, Tobin and Buchanan, 1982). It may be that the use of
computers and educational software will facilitate the remediation of specific
learning problams associated with various types of learning disabled students,
and for the learning that takes place to reamain stable over time. This study
will attempt to investigate the effects of the use of computer and two types of
pathematical software on the acquisition of multiplication facts by a learning

disabled student in a special educational setting.

The demand for integrating computers into special education programs for the
nildly handicapped is presently oriented primarily to the use of comput er
assisted instructional (CAI) software intervention. The primary models, aor
vehicles, for the delivery of instruction have been drill and practioce programs,
which still consititute approximately 608 of the high priority instructional
courseware needs acoording to special education administrators. The other 40%
of the courseware reflects an expressed need for more tutorial, or

tutorial-based programs (Blaschke, 1985).
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Research on the usefulness of drill and practice that is speaifically focused on
the use of mathematioal conoepts with learning disabled atude;xta has shown that
drul and praotioe programs do not af feat atudanta' perfomanoe :I.f they are ,
uaing a reoonatruotive strategy for determining a solution to a addition problem
(Hasselbring, 1985). However, thia study alsoc found that: 1) almost all of the
students inoreased their rate of oorrect responding as a result of exposure to
the drill and practice program; and 2) few students moved fram the use of
reconstructive processes (a more primitive strategy) to the use of more
sophistiocated reproductive processes far aolving mathematiocal oomputing

problams.

In view of thia information, we are undertaking a series of investigations which
seek to discover the ralevant dimensions of the use of both software and teacher
intervention strategies with mildly handicapped L.D. students within the area of
mathematics. In this partioular presentation, two studles are presented, a
pllot study (Study #1) involving t;he use of drill and practice software, and a
continuation study (Study #2) involving the use of tutorial-based software under
varying conditiona of teacher iaterveation. Study ¢1 used a single subject,
multiple baseline ABAB design, while Study ¢2 used the same single subjeot with
a multiple baseline withdrawal deaign (Tawney and Gaat, 1984) in order to
determine 1if:

1. The uae of drill and practioe software as an effective intervention

strategy for a specific mathematios disability involving the multiplication

tabl es.

2. The use of specialized tutorial=based software employing a "gradual

recall® method (Skinner, 1974) under varying oconditiona of teacher

intervention as an effeotive intervention for the aoquisition of

multiplication facts by a leaning disabled student.
?

3. The long-term effecta of computer-based learning when it 1s directed at
information meant to be committed to memory, in this case, the
oultiplication tables, 7 = 9.

O
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ROCEDURES

SUBJECT: The student selected for this study was a male, 16-year old high

school student with a specific learning disability in the area of mathematics.
The student exhibited no innappropriate behaviors and was highly motivated to
learn the multiplication tables, but had experienced years of failure in their

acquiaition.

METHOD: The multiple interventions for this study were sequenced as follows:

STUDY #1: A drill and practioce program providing instruction in a variety
of multiplication problems, without teacher intervention, followed by a
return-to-baseline condition, and the final intervention phase.

STUDY #2: A tutorial-based program that provided practice using a "gradual
recall™ technique, without teacher intervention, followed by a
return-to-baseline period., A shift was then instituted using the same
tutorial-based program with specific teacher intervention in teaching a
problem-solving strategy faor computing multiplication problems. Finally, a
series of probes will be conducted over the following three months to check
on the stability of the learning over time.

The student was exposed to each of the conditions successaively and, upon
stabllization (a minimum of three trials of criterion responding (Tawney
and Gast, 1984)), were returned to a baseline condition for at least three
sessions., The return-to-baseline conditions consisted of no computer
intervention and evaluation of daily perfarmance using a standard set of 24
multiplication problems involving the 7, 8, and 9 times series.

RESULTS

STUDY #1 : Figure 1 displays the number of errors across the sessions. In the
first baseline condition, errors increased from 0 during session 1 -- to 4

errors during session 3. During the first intervention the drill and practioce
software was introduced to the student. The subject used the software for about

20 minutes a session and errors decreased to 1 by session 6. After the baseline
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condition was reintroduced, the error rate olimbed baok up to 2 by season 9. The
seoond intervention pericd Btert.ed off with an inorease in errors. The subjeot
decreased errors fram 3 during sesaion 10 to 0 during seaion 11. The error rate
then began to alimb fram 1 during sesaion 12 to an average of 2 during the final
seasion.

FIGURE 1
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Plgure 2 illustrates the average amount of time that the subjeot required to
ansWwer each of the 10 problams. The atudent's time went from a low of 14.6
seconds to a high of 26.9 seconds during the first baseline period. The first
intervention period started on sesaion 4 and the student's times for the
intervention were 10,1, 6.6, and 6.1, The average time in the second baseline
went fram a low of 7.2 during session 7, to a high of 17 during session 9. The
subjeot decreased his response time during the first 2 seasions of the second
baseline period. The subjeoct's time then bogan to increase during sesaion to
8.3 seoonds and to 10.3 seconds during the last session.

FIGURE 2
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STUDY #2 : Figure 3 illustrates the results-to-date of the second study, which
involve an initial baseline period, followed by the use of the tutorial package.
After the baseline responding stabilized (4 days) on the timed tests, the
student was exposed to the tutorial software with the number of errors slowly
decreasing to an average of 1 error per 20 problems by the 10th day of
intervention. The study is presently at this point and once the responding has
stabilized at 1 error per 20 problems for three days, a return-to-baseline
condition will be in effect during which probes will be oonducted to test for
the stability of the learning. If the error rate increases over time, then the
teacher intervention phase of the study will be instituted and carried out unil
error rates are nce again at a stable rate, at which time another baseline

condition will be instituted.

# OF ERRORS

Flgure 4 illustrates the student's responding under untimed testing conditions,
where the student had as much time as he wanted for responding. Basline
responding was generally more erractic, with a median response error rate of
approximately 6 errors per 20 problems. However, the first intervention phase
(tutorial software) shows a similiar pattern of responses as with the timed
conditions. At the present time, error rate has begun to stabilize at 1 error
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per 20 quostiona, the pre-experimental ariterion level of "acceptable” errors,
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These findings indicate that drill and practioe software may make an initial,
but transitory effeoct upon the number of errars and the amount of time required
to succesafully complete multiplication problams., It appealrs that wibhout a
spooifio intervention treatment which seeks to change the strategy by which the
studant approaches the problens, any gains made during to the computer
interacotion will not hold over time. One of the primary limitations of the
pilot study was that none of the baseline or intervention poricds were long
onough during the first study which may have introduoed more variation in
response patterns if 5-10 days were given to each pericd. In addition, it was
found that the measure of rate of problams solved was not as sonsitive a measure
of behavioral change as having both timed and untimed tests of problem solution.
This mode of testing is more realistio in that it allows the student the
opportunity to respond under low-stress and high-stress situations that more

olosely resemble normal testing situations.

The direotions for additional research indiocated a need to use CAI software that
Q -
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introduced a strategy for solving multiplication problems within a
tutorial-based framework, and to possibly manipulate the type of teacher
intervention. It was with these considerations in mind that the second study was
designed so that the student was first exposed to a tutorial software progran
that was designed to remediate memory~deficit problems. Provisions were also
made to intervens with a specific teacher intervention in the form of a new
reproductive strategy if the gains made with the tutorial software did no hold

over time.
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EXTENSIVE AND INTENSIVE QUANTITIES IN MULTIPLICATION
AND DIVISION WORD PROBLEMS: A PRELIMINARY REPORT
AND A SOFTWARE RESPONSE

Jsmes J. Kaput, Southeastern Massschusetts University and the
Educationsl Technology Center, Harvard Graduate School of
Education

Judsh L. Schwartz, the Educational Technology Center and the
Mssgachusetts Institute of Technology

Joel S. Poholsky, the Educational Technology Center

Two gstudies examined, respectively, the kinds of one step
multiplication snd division problems genersted by students
in grsdes 4-13, and then the kinds of problems such students
found difficult. Resulta confirm snd complement recent

work by others regarding the shortcomings of student
cognitive modele of multiplicstion, division, snd intensive
quentities (generalized rstes). Reaults also show s tight
fit between problem types not generated by students snd the
problems they find difficult. We describe a coordinsted
multiple representation software environment under development
intended to help build and coordinate the student cognitive
models now lacking.

Recent work by Fischbein, Greer, Bell, and others has made plain
the psucity and inflexibility of student models for
multiplicstion, division snd rate - or "intensive" - quantities,
(Ekenstsm, 1983; Greer & Mansgan, 1984; Bell, Fischbein, & Greer,
1984; Fischbein, 1985), They manipulated the numbers in word
problems to violste the numerical assumptions of student
primitive cognitive models. The resulting decline in performance
highlights the shortcomings of the students' primitive models,
and also confirms specific characteristics of those models. In
particular, the primsry student model of multiplication is
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repeated addition. Others, most notably Usiskin and M. Bell
(1983) and Freudenthal (1983), have analyzed the various meanings
of multiplication and division and have likewise concluded that
students now receive little instruction that would build richer
and more flexible cognitive models. Our approach is based on (1)
the distinction between extensive, E, and intensive, I,
quantities (Freudenthal, 1973; Schwartz, 1976, 1984), and (2)
attention to the semantic relationships among the referents of

the quantities in a given problem (Quintero, 1981, 1983).

There is a direct relationship between the two types of division
and the role of intensive quantities (generalized rates) in
division problems. (Given a set of size p to be subdivided, the
partitive interpretation of p/q answers the question of what is
the size each of q parts, while the quotative interpretation
answers the question of how many parts of size q.) First note
that the quotient of two extensive quantities with different
units, E/E, yields an intensive quantity; I. Now, using Bell's
example (1984), we can illustrate the relationship between the
two types of division and quantity-types concretely.

Partitive: distance (E) / time (E) = speed (I)
Quotative: distance (E) / speed (I) = time (E)

While Bell (1984) found better performance on the partitive (E/E)
problem, he showed performance to be sensitive to the interaction
between the contextual and numerical features of the problem. He
found that multiplication problems amenable to a repeated
addition interpretation were easier than those involving the
product of an extensive and an intensive quantity (ExI or IxE in
our terms and a "rate" problem in theirs), and these were easier
in turn than size-change problems. These results are consistent

with the other work cited above.
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We now describe a pair of experiments that support the general
theme of the paucity and inflexibility of student cognitive
models for these oparations. Finally, we shall describe the
outlines of a software environment under development-&esigned to
help build the appropriate cognitive models and to link students'
primitive models to more powerful mathematical ones.

TwO STUDIES

Study. A requested 290 public school students approximately
uniformly distributed across grades 4-13, abilities, and sex to
write single step multiplication or division word problems. 847%
of the multiplication responses were true single step
multiplication word problems, and 90% of the division responses
were single step division word problems. Of the multiplication
problems generated, 84% were of the IxE (rate) type, and 16% of
the ExE iype (all of which were area problems). Of the division
problems generated, 81% were of the E/E (partitive) type, 17%
were of the E/I (quotative) type, and 2% were of the 1/I type.

Study B requestéd 255 students from grades 4-12 to write (but not
exacute) the arithmetic computation they would use to solve each
of 11 single step word problems. Overall, the three most
difficult problems at all grade levels were the I/I, the I/E, and
tha ExE - combinatoric. Apparently, direct use of a partitive
analysis with an "I" dividend was difficuit for most students,
although an independent request of high ability 12th graders to
pictura their approach revealed a uniform use of partitive
pictures, even when the quantities were not amenable to direct
depiction (Kaput, 1985). Subsequent clinicel work has also
indicated that the combinatoric ExE case is learnable at the
earlier grade levels via 8 tree diagram approach, but, as with
the other meanings for multiplication and division, it is not in
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the typical student's repertoire simply because the student has

not been offered significant experience with it.

The congenial numbers used throughout the two studies complement
the work cited earlier in that (1) the earlier studies used less
congenial numbers within the categories that our students found
reasonably easy, hence exposed subtleties within those categories
that our studies would not have found; and (2) we included
problem types in Study B that were not represented in Study A or
in the cited work, hence confirming the boundaries of existing
student models. Note further that the unrepresented problems of
Study A as well as the most difficult problems of Study B were
those that were least amenable to simple partitive, quotative or
repeated addition interpretation, likewise defining the limits of
operant student models. As might be predicted, students were
most able to solve those problem types for which they had ready
cognitive models (as evidenced in Study A) - although the cited
work shows that the cognitive models the students vere employing
were decidedly limited in their flexibility. Full data on these
studies and a discussion of some of the semantic features of

quantity referents can be found in (Schwartz, 1984).
A SOFTWARE DEVELOPMENT RESPONSE

We are currently involved in a combination of clinical work and
software development intended to create a learning environment
that includes multiple and coordinated visual representation of
intensive quantities and operations on them. This will provide a
traversable ramp from students' primitive models first to
intermediate models and then to more powerful ones. Our strategy
is to display how actions and consequences in one representation
have counterparts in the others, thereby accomplishing two major

objectives beyond the first order objective of introducing new
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and flexible representations. We shall make visually explicit,
hence discussable and internalizable: (1) the coordination of and
translations across representations; and (2) the structural
mathematical commonalities present across representations
(Shavelson & Salomon, 1985).

Our plans utilize four linked representations: (1) a series of
concrete iconic models of intensive quantities (varying as to
differing semantic'features. including discreteness and
continuity of number referents), (2) a table of data that records
the numerical data resulting from actions in the other
representations, (3) a coordinated graphical representation of an
intensive quantity as the slope of a2 line in a labeled coordinate
plane, and (4) a numerical workpad that also provides for
tracking the operations on the units involved in the problem
similar to The Semantic Calculator (Schwartz, 1983). The
variation in the iconic representations provides multiple
linkages to differing student primitive models as well as
different starting points for different problems. The total
environment provides several tools for attacking a problem, and
its different components engage the major portions of & student's
cognitive apparatus - involving concrete perceptual processing in
(1), visual imagistic processing (in 1 & 3), and the
formal/linguistic processing associated with the manipulation of
formal expressions (in 4). The new ingredient of such an
environment is the increasing computational power now becoming
available in school microcomputers that makes possible seriously
interfaced multiple window learning situations that support
activities with no simple analogs in etatic media because the
latter limit the coordination of representations to serial, and
often clumsily executed, actions. Further detail can be found in
(Kaput, 1985).
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USE OF SUBSTITUTION PROCEDURE IN LEARNING ALGEBRAIC EQUATION-SOLVING

Carolyn Kieran
Université du Québec 3 Montréal

Learning algebra 48 assumed to involve shifting grom an
arnithmetic approach toward numbers and operations to an
algebraic approach. 1t is hypothesized that durning a
period of transition, parts cf the old approach are dis-
carded as new methods are found to neplace them. This
hypothesdis was exploned in a study on equation-sofving.
The use of the substitution procedure was found to be
4inadequate by six algebra novices and was gradually
neplaced forn certain equation-types by algebraic methods.

It is assumed that the learning of algebra implies a shifting from a reliance
on knowledge of numbers and arithmetic operations to a reliance on algebraic
operations, rules, and numerical structure. In elementary school, children
learn to add, subtract, multiply, and divide pairs of numbers. The sight of
an addition sign between two numbers means simply to add the two numbers and
give the answer. There is no ambiguity to the task. However, in algebra,

an addition sign does not necessarily imply that one is to add thevgiven num=-
bers. For example, the addition sign in 2x + 5 - x = 27 does not mean that
one should add the 2 and the 5. Here the addition sign means something eise.
This gives rise to the following question. How do children entering secondary
schoeol make the transition from what we might call the arithmetic approach to
numbers and operations to what we might call the algebraic approach? What are
the major factors involved in this transition period?

The main feature of the arithmetic approach, as far as our argument here is
concerned, is the sequential nature of the performance of operations. This
means two things. First, any string of arithmetic operations is carried out
in a left-to-right order (Kieran, 1979). For example, the problem

"3+ 4-1+5%2?" ig calculated in the sequence: 3 ¢+ 4 ylelds 7, 7 -1
ylelds 6, 6 + 5 yields 11. Second, it also means that equations like

4 4+ x -2+ 5210 are attempted by trial-and-error replacement of the unknown
term, each replacement being tried out according to the left-to-right secuence

of operations until a value is found which yields a total of 10 (Kieran, 198l1).
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In equation-solving, this implies that the arithmetic approach does not include
methods involving inverse operations. The given operation signs are used as
they are; they are not signals to use the inverse operations. Finding the
value of the unknown term of an equation by means of the arithmetic approach

involves using the surface operations.

The algebraic approach, on the other hand, makes use of the structure of the
number system. The relationships among the four operations, in particular the
inverse relationship between addition and subtracticn, multiplication and divi-
sion, allow for solving methods which are unavailable to those possessing only
the arithmetic approach. For example, an algebraic approach to sclving the
equation 4 ¢+ x - 2 + 5 = 10 might use the given signs as indicators for
selecting the required inverse operations, e.g., x =10 -5+ 2 - 4. Then

the resulting operations are carried out as in the arithmetic approach. Thus,
the algebraic approach includes the arithmetic approach, ‘That is, it includes
the ability to decide when the addition sign means that one is to add and when
it means something else. But the algebraic approach involves more than the

use of both surface and structural operations. Though it cannot be discussed
fully here; the algebraic approach also includes systematic rules fcr comparing
numerical expressions without having to evaluate them directly and ailows for

operating on literal terms as opposed to operating solely on numbers.

An issue which arises here is why anyone whose arithmetic approach has worked
well for them in the past would change it for an algebraic approach. A second
issue is how the change occurs. Does the learner attempt to throw out the old
arithmetic methods and start afresh, or is there rather an attempt to graft
some new processes and rules onto the old system? Matz (1979) suggested that
algebra learners fit and stretch their existing knowledge in acquiring new
knowledge. We agree that this probably forms the basis of acquiring the
algebraic approach, that children beginning the study of algebra do not attempt
to discard completely their old arithmetic approach and start afresh., Rather
they attempt to fit the new approach which they are being taught to what they
already know. This suggests that they will be receptive to instruction which
makes some sense in terms of their old approach. They will adopt new methods
for tasks which cannot be handled by old methods. But we take as a working
hypothesis that this is only part of the picture. Just as they will keep

O
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dertain parts' of the old approach which work for them ini certain tasks, they
will disdard thé parts of it which do'not work. Thus, this period will be
charadterized By a seléction of parts of the new' approach and rejection of
parts of thé old approach. In effect, during the early part of this transition,
léarnérs will not bé searching £of Gne singleé method which will work for all
task-types. Rather they will latch onto specific methods for specific tasks.
Thé résult will be a kind of patchwork quilt of various methods, each one
Béing effective for a parfidular type of task. As the structure of the system
gradually becomes cléarer, it is hypothesized that one of the methods of the
patchworK will emerge and reéplace all: the otheiss By thid time, the transi-
tion périéd will bé nearly completed.

The aim of this papér is to réport on a subset of the results from a study
dealing with thé&' éarly part of this transition period. Specifically, we
ifitend €6 166K at one partidular equation-g6iving method which is based on
thé arithfeti¢ appréach' -- thit of substitution. In discissing the evolution
6f thée uSe 6f tHis procedure, wé bring in both of the issues meritioned above,
f:e:; why the névice algebra léafner ¢hahges her arithmetic approach and how
she changes it.

Thé first phasé of the threesphase study involved interviews with ten seventh
graders (12§ to 13} yéars) who had never studied algebra before; this phase
wag designed to uUncover somé of their pre-dlgebraic hotichd, in particilar
thosé oh eqliations and equation-solving: A Subset of this pre-algebra group
(si% ehildréh) was retained fof the seéond phase of the study: a three-month
teachifng experimént on equation-solving. The solving method emphasized was
onie which focused on the equivalence structure of eqiiations and equation-
solving, that of performing the same operation on both sides of the equation.
The teaching experiment with these novices included a pretest interview and
two posttest interviews, one in June and the second one ih Séptember after the
summer break. The third phase involved interviews with nine intermediate
algebra students who had all had at least one year of algebra instruction.

They were from grades 8 to 11 (six from grade 8, one each from grades 9 to 1l1).
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This last phase was included to provide us with 1) a clearer idea of the qua-
lity of the algebraic approach of more experienced studerts and 2) a barometer
against which to compare the novices' equation-solving methods and views of

equivalence structure.

The data for this paper are drawn from the following equation-solving
situations. The novices were presented with several sets of equations which
they were asked to solve throughout Phase 2: in the pretest, at each session
of the teaching experiment, in the two posttests. Each of the equation-sets
of the teaching experiment contained 12 equations of the following types (only
the numbers were changed in each set): 6b = 24, 2x - 6 = 4, y + 596 = 1282,
16x - 215 = 265, n + 6 = 18, 13x + 196 = 391, 4c + 3 = 11, 32a = 928,
4+x-2+5=11+3-5,3a+5+4ac*= 19, 2 x c+5=21xc+8,

4x + 9 = 7x. The pretest and posttests included equations of the same types,
plus some extra ones (pretest: 37 - b =18, 30 = x + 7; sosttests:

x/4 + 22 = 182, 25y + 13y + 76 = 380, 12 + 1532 - 7 + 6a  4a + 107). The
intermediate subjects were asked to solve one set of eguations during their
Phase 3 interview. This was the same set as was presented to the novices in

their Phase 2 pretest.

RESULTS

The substitution procedure consists in replacing the unkrown term(s) of an
equation by various numerical values until the correct one is found. For
example, one uses the substitution procedure if in attemcting to solve

4c + 3 = 11, one tries, let us say, 3 as a value for ¢ (4 times 3 is 12, plus
3 is 15), and then perhaps 2 (4 times 2 is 8, plus 3 is 11). 1In this case,

the solution has been found after two trial values.

In the Phase 2 pretest, four of the six subjects used the substitution proce-
dure 26 times while attempting to solve 72 equations in all. The remaining
two subjects began to use substitution only after the first instructional
session. In that session, the instruction had focused cn the construction

of equations from arithmetic identities and on the exprlicit left & right
equivalence structure of equations. However, over the course of the three-

month teaching experiment, all subjects except one clearly decreased their use
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of the substitution procedure. They tended to retain it only for the last
four equations of each equation-set (see Table 1). By the time of the June
posttest, the frequency of usage of the substitution procedure had dropped
to 14 out of 72, This is in comparison with the group of intermediate

subjects one of whom used the substitution procedure only once on the same

set of equations.

Table 1. Frequency of Use of Substitution in Each Equation~Type per Set

Equation=-
Set

1* 2 3 4 5 6 7 8 9.,.J0 8P

Sample
Equations

6b® 24
2% - 654 2 33 1 1 2 2 2
¢ ¢ 596 8 1282

16x - 215 = 265 2
né6a18 1
13% + 196 = 291 3
4c + 3811

32a a 928
4+x=-2¢521)1¢3-5
38 ¢ 5+ 4a 219
2xce581xc+8

4x ¢+ 9 8 7%

O S YY)
L I S T R P )
a o v N
“w ou s N
v s b oW
a\a\l\hh
o b b+
N w s
ST SRS S
S S R
S N R )

Note. *Two of the 8six novices did not use Substitution at all in Set 1 (the
Praetest). JP # June Posttest. SP a September Posttest.

An analysis of the equation~-solving errors committed throughout the study led
to some interesting findings regarding the use of the substitution procedure.
Of all the errors in the study, giving-up before finding the correct trial
value when using the substitution procedure was the most frequently committed
error. It accounted for 208 of the novices' errors. Subjects gave up more
quickly with the more complex equations. The average number of trials for the
equations which "looked easy"” exceeded the average number of trials for the
equations which "looked difficult”. Thus, because of their persistence with
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the less complex equations, there was a greater probability that they would

find the correct solution with these equations.

Individual sessions of the teaching experiment.,were preceded by and also often
followed by a set of equations to be solved. We had hypothesized that since
subjects would be more tired at the end of a session than at the beginning,
they would be less persistent and less efficient in their use of substitution
as a solving procedure. But this was only half correct. They became more
efficient with the equations which "looked easy"” but in general less persistent
with the equations which "looked difficult". Nevertheless, despite their
success with substitution as a means of solving the less complex equations,

they eventually abandoned substitution in favor of other procedures.

DISCUSSION

wWhy did the novices attempt to decrease the use of substitution, an arithmetic
approach with which they were fairly successful, at least with the simpler
equation-types? Substitution is very time-consuminc. It also places a heavy
burden on working memory. If the subject has not written down her trial value
(and none did), she must keep track of it while performing the computations.

If the left side is found to balance with the right, she must then remember

what value proved successful in order to state the solution. If the equation
has two occurrences of the same unknown term, she must remember when she reaches
the second occurrence what it was that she used in the first occurrence and also
remember the running-total up to that point. Furthermore, for the trials that
are not successful, she must try to remember not to use those numbers again as

trial values.

As seen earlier, the majority of the novices did not seem to use the. substitu-
tion procedure with very much confidence in equations with two occurrences of
the unknown. If success did not come within some predetermined range of num-
ber values that seemed inversely proportional to the difficulty of the equation,

then the chances were that it would be left incomplete.

RIC 163

Aruitoxt provided by Eic:



151 Kieran

Thus, they attempted gradually to let go of substitution if they could f£ind
another procedure with which to replace it for specific equation-types. For
the one- and two-operation equations, the novices began to rely more on the
use of inversing -- a procedure not emphasized in the teaching experiment.
For example, they began to solve 4¢ +4 3 = ll by subtracting 3 from 11l and
then dividing 8 by 4. For the last four equations of each set, half of them
were slowly moving towards either inversing or the procedure being taught -=
that of performing the same operation on both sides of the equation. The
choice of one over the other was found to be dependent on their initial pref-
erence at the outset of the teaching experiment for either asymmetric or
symmetric solving procedures (Kieran, 1983), and was related to their view of
the structure of an equation.

Therefore, a partial answer to the qQuestion, "How is the algebraic approach
acquired?", can be found in the way that these novices stopped using substitu-
tion, an arithmetic approach, for certain equation~types as soon as they were
comfortable with some replacement procedure., The replacement procedures,
inversing or performing the same operation on both sides, are both algebraic.
They rely on the relationships of inverse operations as their basis. But the
latter procedure seemed to appeal more to those novices who had a strong view
of an equation as an equilibrium structure, that is, left and right sides had
always to be in balance. However, half of the novices were still using sub-
stitution for the more complex equations by the end of the study. Thus, the
early part of this transition period can be said to be characterized by the
use of both arithmetic and algebraic approaches, depending on the equation=-
type. Furthexmore, it appears that the algebraic approaches which fit best
with the learner's view of equations and equation-solving are the ones which

are chosen to gradually replace the old arithmetic approaches.
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A LINGUISTIC MODEL OF ALGEBRAIC SYMBOL SKILL

David Kirshner, University of British Columbia

The fact that algebraic manipulations use a specified
symbols system permits their interpretation as a language
in the sense of Chomsky (1957). Methods of generative
transformational [inguistics have been adapted to 1 he
study of this language.

INTRODUCTION
Methods of generative transformational linguistics have been
adapted to the study of algebraic symbol skill. 1In this paper, 1
shall:
1. -Describe the linguistic methods used;
2, Sketch the linguistic model derived from those methods;
3. Discuss the psychological evaluation of a linguistic model;
4. Compare linguistic methods of psychological investigation
with the dominant cognitive science approaches; and, time
permitting,
5, Illustrate the formulation of psychological hypotheses from

the linguistic model.
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Table 1
Sample Sentences

28 - 7x* 74 - x?) _ 702 - x){(2 + x)} _ 7(2 + x)
8. T -5x + x2 ~ & - 5x + x2 (3 - x)(2 - x}] "3 - x
b. 3x - 5 = -7x
10x = 5
X = 4
-2
11X + 1 - 4 _¥yx + 1 -4 g VX + 1 - 3 X + 13 - yx + 1}
Cr X T T+ 3 Vx+T+3°yx~+1-3° X - 8
d 3x + 2y = 8

~
[
'
[(N]]
»
+

-3

THE LINGUISTIC ENTERPRISE

Generative transformational linguistics is a formal enterprise.

A language is idealized as "a set (finite or infinite) of
sentences, éach finite in length and constructed out of a finite
set of elements" (Chomsky, 1957, p. 2). For natural languages,
the elements are phonemes, however, as Chomsky acknowledges, "the
set of 'sentences' of some formalized system of mathematics can

be considered a language" (p. 2).

In symbolic elementary algebra, the sentences are taken to be the
usual simplifications of expressions, solutions of equations,
etc., as are ordinarily produced by competent manipulators of

algebraic symbols. See Table 1. 1In the present grammar,
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however, only expression simplification sentences (such as a and
¢ in Table 1) are considered. The basic elements of the grammar
are the symbols =, -, 4, v~ , —, ., 0, 1, 2,3, 4,5, 6, 7, 8,

9,a, b, ¢, ... x, v, 2, (, ), [, 1), {, }, as well as the spatial
markers of horizontal juxtaposition, vertical juxtapesition, and

diagonal juxtaposition.

For languages, not all of the possible sequences of symbols are
well formed (grammatical) sentences. In the simplest terms, the
formal objective of the linguistic analysis is the specification
of a set of rules, called a grammar, which generates all of the
sentences of the language but none of the non-sentence

combinations of elements.

THE LINGUISTIC MODEL OF SYMBOLIC ALGEBRA

Each expression simplification sentence can be considered as a
sequence of algebraic expressions. Consequently, the grammar is
concerned first with generating individual expressions, and then
with generating expressions compatible with a given expession.
Each expression is presumed to have a deep form (DF) which
explicitly represents the parse and the operations which may only
be implicitly represented in surface form (SF). For example, the
surface form 3x? has a deep form 3M[xE2), where the capital
letters are abbreviations for operations, and the parentheses

indicate parsing in the usual way.
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PHRASE STRUCTURE GRAMMAR

The first component of the grammar is a phrase structure
grammar which generates the deep form for every possible
algebraic expression. A phrase structure grammar is a series of
rewrite rules which takes an initial symbol "2" and specifies
replacements for symbols until only a special class of terminal

symbols remain.

The rewrite rules of the grammar are

z2 --> [202])
O -->A, S, M, D, E, R
2 --> [NZ)
V-->a, b,c, ... x, 9, 2
2 ==>V
Q --> or i, 2, 3, 4, 5, 6, 7, Br 9! oy ™
Z-->0Q

The symbol "O" represents "operation” and its replacements
reresent the six usual operations on real numbers. "N" is
interpreted as the unary operation "negation.” "Q" and "V"
represent "quantity™ and "variable" respectively. "Q" can be
replaced by any rational number constructed from the symbols 0,
1, 2, 3, 4, 5,6, 7, 8, 9, ., — according to a presumed
"grammar” of arithmetic. The arithmetic grammar is not
elaborated in the present theory. A derivation is completed when

all of occurences of 2, O, V and Q are eliminated.

As an illustration, the deep form of the expréssion V-16x7 is

generated from the phrase structure grammar by the following

O
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application of the rewrite rules:

z --> [202) --> [2R2Z) --> [QRZ]) --> [2RZ] --> [2R[NZ]] -->
[2rR[N[202)])]) --> [2R[N[2MZ]]] --> [2R[N[QMZ]]] --> [2R[N[16MZ]]]
--> [2R[N[16M[202])])])] --> [2R[N[16M[2ZEZ]]])] --> [2R[N[16M[VEZ]]])]
-=> [2R[N[16M[xEZ]]]]) --> [2R[N[16M[xEQ])])] --> [2R[N[16M[xE3]]]]

The claim for this phrase structure component is that every
possible derivation employing these productions and ending with
only terminal symbols results in a valid deep form for an
algebraic expression. Furthermore, the deep form for every
possible algebraic expression is so derivable.!
TRANSLATIONS

Once equipped with the DF for every possible algebraic
expression, the next component of the grammar concerns the
translation of DF to SF. There are four distinct stages of
translation postulated in the present theory, each of which must
be completed before the next commeﬁces. The first stage involves
the deletion of parentheses made redundant by a conventional
heriarchy of operations. For example, in Stage i, the DF,

[2R[N[16M[xE3])])])) is reduced to 2R[N16MxE3]

The next stage involves the translation of operations to surface

form. For example, in this Stage 2R[N16MXE3] becomes 2y[-16x°].

'Actually, this claim is exaggerated. Obligatory transformations
are needed to block certain DF's (e.g. xD0, 2R[N4], etc.), and to
carry out stylistic adjustments (e.g. xM3 --> 3Mx, etc.).
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Stage 3 effects the removal of parentheses made redundan: by
physical artifacts of the representation of operations: */'T-16x°]
becomes 2Y-16x°. Finally, Stage 4 performs certain fina:l
adjustments to SF such as the deletion of "2" in square root
signs. In similar fashior, the transiation component derives the
SF of any expression, from its DF.
TRANSFORMATIONS

Having dealt with the generation of DF's by the phrase
structure grammar, and the translation of DF to SF, the nex:
component of the grammar generates the deep form of one
expression from the deep form of another. For example, a
transformation [aMB)A[aMy] ---> aM[Bay] would allow the
derivation of [3Mx)M[[yE2]Az) from [[3MxIM[yE2]]A[[3Mx]Mz}. The
transformations of the grammar correspond to selected properties

of real numbrs.

Figure 1 displays the linguistic model of expression
simplification sentences of algebra. As an example, the sentence
(2x)? 4x? . .
—x = Tx = 4x is generated by the grammar as follows: The
phrase structure grammar generates the DF, [[[2Mx])E2])Dx].

Translations carry this DF to the SF, . Successive

(2x)?
X
transformations are applied to deep forms carrying [[2Mx])E2])Dx

--~> [[2E2]M[xE2]))Dx ~--> [4M[xE2]))Dx -~-> [4M[xMx]])Dx --->
[[4Mx)Mx])Dx ---> [4Mx]M[xDx]) --> [4Mx]M1 --> 4Mx. The dotted

lines between DF's indicate that only some of the intermediate

O
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Figure !
The Linguistic Model

SF, S?; SF, e SFn
F‘SG*‘(O'I‘)-->D!"'1-->D!=‘1'2--...-->D!=‘2'1--...-->D£’-‘3,1--...--->D!“n,1

"SF" represents surface form.

"DF" represents deep form.

"PSG" stands for phrase structure grammar.
"OT" stands for obligatory transformations.

DF's are translated to SF,
SEMANTIC COMPONENT

2 2
Besides- sentences such as iﬁ%l_ = i%—

= 4x, the grammar can
(2x)? _ (2x + y - y)?
3 X'

also generate sentences such as

(2x + 1y = y)* ; Lyt ;
—le'-ry— which are syntactically correct, but seem to lack

some quality of direction or meaning. A semantic component of
_the grammar is needed to formalize such notions as "simplify,”
"reduce,” "rationalize," "factor," etc., in order to constrain
the generation of such sentences. What is proposed is the
delineation of canonical forms for these procedures, however, the

semantic component of the grammar has not yet been undertaken.
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PSYCHOLOGICAL EVALUATION

The grammar generates the sentences of algebra by means cf a
phrase structure component which produces the deep forms for
expressions; transformations which map DF to DF; and translations
which permit DF's to be manifest in standard algebraic notation.
What kind of psycﬂological claims can be advanced for such a

model?

Clearly, a grammar is not a process model. An actﬁal instance of
algebraic simplification would presumably start off with an
expression already given.? It would not be generated through the
internal processes of the algebraist, by a phrase structure
grammar or any other device. Nevertheless, in its overall shape,
the grammar does characterize certain structures (deep and
surface forms) which may be hypothesized to underlie mental
representations. As well, it details .translations and
transformations which mediate between these structures. Thus,
while not itself a psychological theory, a grammar, provides for
many of the operations which could be included in a process
model. Informally, a process model might correspond to Figure 2,
which is closely related to the linguistic model. Presumably an
expression given in surface form would be translated into deep

form and subseqguently transformed into a series of further deep
2This might be derived from translation of a "real world"
situation; represent an application of a scientific formula; have
arisen in a calculus computation; or simply been presented in an
algebra text.

O
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Figure 2
Informal Process Model
SF, SF, SF, e SF
DF"‘-->DF"2'-...-->DF2'1--...-->DF3"--...--->DFn"

"SF" represents surface form.
"DF" represents deep form.

forms with occasional translation for transcriptive purposes into
surface form. The double arrows between DF and SF indicate that
in the process model it is necessary to account for the decoding
as well as the encoding of SF's. (In the present grammar, the
translation component has been devised so that it functions

bidirectionally.)

The overall veracity of the model may be assessed by ordinary
psychological research techniques involving conjectures related
to processing. Psycholinguistics, however, offers a variety of
techniques for selection of one grammar from amongst competing
alternatives (competative argumentation in the terminology of
VanLehn, Brown and Greeno (1984)) when more than a single grammar
is proposed. These forms of evaluation prove to be fruitful when

educationally related alternatives are proposed.
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LINGUISTIC VERSUS COGNITIVE SCIENCE MODELLING

As a means of exploring psychological phenomena, a
linguistic approach differs markedly from the dominant cogritive
science paradigm. First of all, a formal linugistic approach can
only be adopted for the study of a "language," i.e. a set of
sentences comprised of specified symbols. Thus the linguis:ic
paradigm does not obtain for the study of word problems,
translation from natural language to mathematical language, and a
host of other phenomena of special interest to mathematics
educators.? In contrast, cognitive science methods have been
applied to a wide range of psychological domains, and indeed, to
reasoning and problem solving functions per se. Nevertheless,
within the restricted domain of algebraic symbol skill, a

linguistic approach offers certain significant advantages.

A grammar is a formal entity. It can be evaluated logically as
to its fulfilment of formal objectives (namely the generating of
all and only the sentences of the language). Thus, before

psychological issues are raised, a grammar has stood the test of

logical consistency within its entire dcmain of application.

' Cognitive scientists frequently use methods of artificial

O

intelligence or computer Simulation to guarantee the logical

1f an algebraic language is identified which lists phonemes or
words amongst its basic elements, then the grammar of the
language must, in effect, subsume an entire natural language
theory.
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consistency of a theory. 1In practise, however, the
implementation of the theory in a program is often of little
assistence in psychological evaluation. As Davis and McKnight,
1979 observe, "the general tendency of simulation-writing is to
be pushed toward dealing with minute details - and frequently
details that are more characteristic of computers than they are
of human thought" (p. 31). Thus cognitive science rarely

achieves a truly formal character in psychological investigation.

Most importantly, however, a linguistic model describes cognitive
functioning at a level which may be more immediately useful for
educational application. Cognitive science is concerned directly
with the architecture of the mind. The basic elements of
computational theory are taken to be metaphors for psychological
processes (Davis & McKnight, 1979). 1In contrast, Chomsky (1965)
observes: -
A generative grammar is not a model for a speaker or a
hearer. It attempts to characterize in the most neutral
possible terms the knowledge of the language that
provides the basis for actual use of language by a
speaker-hearer. (p.
It is the knowledge underlying algebraic skill rather than the
mental processes whereby that knowledge is manipulated which
would seem to have the most chance of informing educational

practice.
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Defining Maatery Orientation/Learned Helplessneas in Mathematics

from Students' Attributions for Success and Failure

Peter Kloosterman, Indiana University

The connection between attributions and achievement {n mathematics
48 dependent upon how mastery orientation/Learned helplessness
(MO/LH) 4is defined from students' attributions. In this study of
124 alegebra students it was found that using a theoretically based
fonmulation of MO/LH ([SA+SE+FE]-[FA+ST+S01) nesulted in
statistically significant comelations between MO/LH and
achievement for females. A simplified formula (MO/LH = [SA-ST])
gave stronger correlations fon females while a fornmula based only
on help from othens (MO/LH = -[SO+FO]) gave statistically
sdignificant comelations between MO/LH and achievement for males.

In recent years, a number of studies have investigated what students perceive
to be the reasons for their successes and failures in mathematics (Dweck,
1975; Parsons, Meeca, Adler & Kaczala, 1982; Pedro, Wolleat, Fennema & Becker,
1981). These reasons, usually referred to as attributions for success or
failure, are believed to be associated with achievement in mathematics
(Kloosterman, 1984; Reyea, 1984). The key to the association between
attributions and achievement is knowing how attributions effect motivation
which in turn effecta achievement. In discussions of attributions and
achievement, the terms "learmed helplesanesa" and "mastery orientation” have
of ten been used to classify individuals based on the type of attributions they
make (Dweck & Goetz, 1978). Learned helpless students blame their failures on
lack of ability and believe that effort has little to do with success or
failure in school. In contrast, mastery orientated students are confident of
their ability and believe that effort will improve performance and thus be
rewarded in school. However, few students are totally mastery orientad or
totally learned helpless and thus I prefer to think of mastery orientation and
loarned helplessness as endpoints of a mastery orientation/learned
halplessnaas (MO/LH) continuum. As the connection between a student's
attributions for success and failura and his or her achievement in mathematics
is dependent upon how MO/LH is defined from attributions, it will be the
purpose of this paper to explore both theoretical and empirical methods of
defining MO/LH in mathematics from student scores on attribution scales.

THEORETICAL FORMULATIONS OF MO/LH
While there are a number of ways of classifying attributions for success and
failure, classification of attributions in academic settings has most of ten

been based on Weiner's (1974) categories of ability, effort, task difficulty,
and luck. Some authors have focused on the ability dimension as the one of
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primary importance (Blumenfeld, Pinmtrich, Meece & Wessels, 1982) while others
have focused more on the effort dimension (Covington & Omelich, 1979).
Fennema and Peterson (1984) defined an MO/LH formula as follows:
MO/LH=[SA+SE+FE] - [ FA+ST+50]
(SA = success due to ability, SE = success due to effort, FE = failure due to
lack of effort, FA = fallure due to lack of ability, ST = success due to ease
of the task, and SO = success due to unusual help from others or luck.) In
brief, the Fennema and Peterson (1984) formula implies, as suggested above,
that students who feel they have ability and that effort makes a difference
will be more mastery oriented (and thus less learned helpless) than students
who feel they lack ability and that their successes are the result of an easy
task or unexpected help from others. Table 1 summarizes the attributions
mastery oriented and learned helpleas students are expected to make along with
an explanation of how those attributions lead to steady or imcreased effort
for mastery oriented students but decreased effort for learned helpless
students.

Table 1

Attributions, Expectation of Success, and Effort for Mastery Oriented and
Learned Helpless Students

MASTERY ORIENTED STUDENTS

Attribution Expectation of Success Effort on Similar Task
SUCCESS attributed to:
1. Sufficient Ability Expectation of success Continued effort
on similar tasks
2. Sufficient Effort Expectation of success Continued effort

on similar tasks
FAILURE attributed to:
1. Lack of Effort Expectation that Increased effort
increased effort will
lead to success

LEARNED HELPLESS STUDENTS

SUCCESS attributed to:

1. Ease of Task No teason to expect No reason to put
success on tasks of forth effort
reasonable difficulty

2. Help from Others No reason to expect No reason to put
help and thus no reason forth effort

to expect success
FAILURE attributed to:
1. Lack of Ability No reason to expect No reason to put
success on similar task forth effort
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EMPIRICAL FORMULATIONS OF MO/LH

Design and Instrumentation. To test the relationship between attributions,
HO?LH, and schievement in mathematice, 124 ninth grade algebra students were
given an schievement measure and an attribution measure. The achievement
measure was the Mathematics Basic Concepts subtest (Level I, Form X) of the
STEP Basic Ascsessment Tests (1979). Students answer using a multiple choice
formet, receiving sn overall score between 0 and 50. Scores were also broken
down by cognitive level. Of the 30 items, 30 were classified as low level
(knowledge or skills); 18 were classified as high level (understanding or
application); and 2 items were not classified. Split-half reliability of the
scale was reported as .91 for ninth grade students (STEP Basic Assessment,
1979).

Students' attributions were measured by the ALB Mathematics Attribution Scale
(Fennema & Peterson, 1984). This attribution scale consists of 8§ subscales
with five Likert-type iteme per subscale. The success subscales measure
success perceived to be the result of: (1) ability, (2) effort, (3) ease of
task, and (4) help from others. The failure subscales measure failure
perceived to be the result of (1) lack of ability, (2) lack of effort, (3)
difficulty of the task, snd (4) lack of help from others. For example, the
firet success due to ability item was "When you figure out how to do a thought
problem, is it because you are smart?"., All items contained the phrsse
"thought problem" which was explained to subjects as one which required the
development of a strategy before it could be answered. K~R 20 reliabilities
for each of the subscales were calculated as part of this study (SA=.86;
SE=.81; §T=.76; S50=.78; FA=.82; PE=.89; FI=.73; FO=.82).

Table 2 shows correlations between achievement and attributions for each of
the subscales of the ALB Mathematics Attribution Scale. Because there is
evidence that males and females attribute their successes and failures in
mathematice differently (Pedro et al., 1981) sll analyses were done separately
for females and males. While only a few of the correlations were
statistically significant, those that were significant were in the direction
expected. For females, there was a significant positive correlation between
success perceived to be due to ability and overall achievement (r=.29) and a
significent negative correlation between success due to ease of the task and
overall achievement (r=-.23). For males, there were significant negative
corralations between overall achievement and success (r=-.21) or failure
(r=-.22) due to help from others.

Table 2 also containe three definitions of MO/LH and their correlations with
achiovement., Using the Fennema-Peterson (1984) definition of MO/LH
([8A+SE+PE] - [FA+ST+50]), significant correlations between MO/LH and
achievement were found for females regardless of whether high level
achievement (r=.21), low level schievement (r=.31), or overall achlievement
(r=.29) was considered. When the second definition of MO/LH ([SA-ST]) was
used, higher correlations with achievement for females were found (r=.30 for
high level; r=.39 for low level and overall achievement) than had been the
case with the first definition. Using the third definition of MO/LH
(~[SO+PO]) gave significant correlations with high level achievement (r=.22)
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and overall achievement (r=.25) for males. Factor analysis was used to see if
additional combinations of the attribution subscales could be found which
resulted in MO/LH formulations which had stronger relationships with
achievement. No additional MO/LH formulations were found.

Table 2

Correlations Between Attribution Subscale Scores, MO/LH, and Achievement

Femalesa Halesb

STEP Mathematics Achievement

Attribution High Low High Low
Variables Overall Level Level Overall Level Level
Success Ability .27 .19 29% .12 .13 .10
Success Effort .03 .04 .01 -.10 -.11 -.06
Success Task -.23* -.20* -.21 .02 .01 .04
Success Others -.14 -.17 -.11 -.21*  -.19 -.14
Failure Ability -.17 -.12 -.19 -.05 .01 -.04
Failure Effort -.08 -.15 .00 -.07 -.13 -.02
Failure Task .15 .20 .08 -.06 -.07 -.01
Failure Others .03 .01 .03 -.22*  -.18 -.18
MO/LH(l) =
[SA+SE+FE] -[ FA-ST-S0] .29% 21% .31 .06 .02 .05
MO/LH(2) = [SA-ST] 39+ .30% .39+ .07 .08 .05
MO/LH (3) = -[SO+F0] .06 .08 .04 .25% .22 .18
*p<.05 %hm6l  Pn=63

DISCUSSION

MO/LH(l). The significant correlations between MO/LH(l) and achievement for
females support the definition of MO/LH from the psychological literature as
outlined in Table 1. The fact that the definition appears unrelated to
achievement for males is rather surprising. While there is literature to
support the possibility that MO/LH may have more effect on achievement for
females than for males (Dweck, Davidson, Nelson & Enna, 1978; Parsons et al.,
1982), there is nothing in the literature to suggest that MO/LH is not a
useful construct for males.

MO/LH(2). The second definition of MO/LH gave stromnger correlations with
achievement for females than the first. While MO/LH(l) follows closely from
the psychological literature, the strong correlations for MO/LH(2) indicate
that success effort, success others, failure effort, and failure ability
attributions are not as important as expected. One possible explanation to

O
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account for the lack of importance of effort is that in algebra more 80 than
in other subject areas, effort may be perceived to be important by all
studenta. Thus effort would not differentiate mastery oriented and learned
helplees students in algebra as well as it would in computational mathematics.

MO/LH(3). The third definition of MO/LH was formulated to try to explain
something about how attributions mediate achievement for males. The fact that
this definition includes only the effect of others on achievement indicatea
that those malss who do not see help or lack of help from others as factors in
their successes and failures are the ones who have higher achievement.

High vs. Low Cognitive Level Mathematice. Given the current massive push for
teaching problem solving in mathematics, an attempt was made to identify the

extent to which attributions and thus MO/LH affected high as opposed to low
cognitive level mathematice. As can be seen from Table 2, the correlations
between attributions and achievement were generally strongest in the case of
low cognitive level mathematics. This is somewhat surprising given that the
ALB attribution instrument spoke specifically of “thought" (high cognitive
level) problems. One possible explanation for this is that students were so
used to computational mathematics that even the presence of the term thought
problem in the attribution items was not enough to make them reflect on high
as opposed to low level mathematice when filling out the attribution
inetrument. Another possibility for the smaller correlations with high level
achievement is that there was more variation and thus less consistency in the
high level problems on the standardized achievement test than among the low
level items. This would lead to greater measurement error which would effect
the size of the correlations found, The fact that there were fewer high level
than low level items (30 low level and 18 high level) may also have affected
the accuracy of the high level scores. In short, factors other than cognitive
level of mathematics could have accounted for the differences in correlations
between high and low level mathematice achievement and MO/LK. Thus,
concluaions about differences in the MO/LH and achievement relationship based
on cognitive level must be taken cautiously.

CONCLUSION

While the three definitions of MO/LH proposed from this study are somewhat
diverse, all do agree with some aspect of the literature. Definition 1
follows closely from the psychological literature as outlined in Table 1.
Definition 2 reduces the importance of effort in comparison to ability and
task as factors influencing achievement. This is possible given that
attributions for ability have, at times, been offered as the key to
achievement (Blumenfeld et al., 1982)., Definition 3 shows that perceptions of
the importance of help from others is more of a factor in achievement for
males that for females. This agrees with sex-related difference literature
(Fennema & Peterson, in press) which indicates that boys may be more
independent learners of mathematics than girls.
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THE CONSTRUCTION OF A MULTI-FACTOR TEST FOR
TEACHING STRATEGIES RESEARCH IN MATHEMATICS

John R. Kolb
North Carolina State University
William Truman

Pembroke State University

In teaching strategies research, it is hypothesized that
different instructional treatments of a content topic re-
sult 4in different patterns of learned performances. To
investizate this hypothesis, tests are needed that identify
and measure a variety of student ocutcomes. Several itera-
tions of item construction and try-out procedures resulted
in the production of a thirty-six item test that assesses
up to nine facets of the topic of slope and equations of a
line.

Tre purpose of this research was to develop a prototype test to be used to
compare teaching strategies based upon the kind of learned performance they
produce.

The work of Anderson, J.R. (1976), Gagne and White (1978), Paivio (1971),
Ponte (1982), and Tulving (1983) indicates that learners encode information
and represent it to themselves in four types of memory structures: procedural
memory, propositional memory, visual memory, and episodic memory. Procedural
memory stores "know how"; the application of rules and the carrying out of
routines in a habitual, often unthinking way. Capabilities in propositional
memory give rise to "knowledge stating" behavior and the preservation of

the meanings of verbal statements and symbol systems. Visual memory stores
images that are analogical representations of concrete things and configura-
tions that are encountered. Episodic memory retains personal experiences
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O

and events in relation to time sequences and is autobiogrephical in
nature.

When teaching strategies differ in their treatment of the learner's inter-
action with mathematical content, different patterns of learned performances
should result. As the learner engages in learning task, the kinds of en-
coding utilized and the forms of memory representations shculd be in-
fluenced by the instructional strategy. The knowledge that gets stored

and where it is stored determines the pattern ¢f acquirea capabilities

the learner comes to possess. To compare strategies on this basis, a

test is needed that is sensitive enough to measure differsnt performance
outcomes resulting from the various structures.

The test to be developed had to a) contain factors that cculd be related
to the performances associated with the various memory structures, b)
have questions within the factors that had high internal consistency but
low correlations with all other questions in other factors, and c) estab-
lish that the factors are distinct by showing that the pair-wise correla-
tions between factors are small. A test plan was developed that identified
¢haracteristic performances associated with propositional, procedural , and
visual memory structures. Within each of thesse representations, three
levels of questions were defined: knowledge, technique and manipulation,
and comprehension. This test plan resulted in nine categories and these
became the nine factors that were hypothesized.

Test questions were generated over the topic of a slope of a line. After
several iterations in pilot studies, a final version of a test was con-
structed containing 36 items, four for each factor. A panel of five
mathematics educators evaluated each question and chose the type of memory
and the level of understanding the item represented. The panel agreed 82%
on the memory type, 77% on the taxonomic level, and 64% on both level and
type.
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The final administration of the test was to 395 high school and college
students in twelve classes enrolled in Algebra II or equivalent. Gene-
rally,correlations of questions with the factors to which they are hypo-
thesized to belong are high. The difference between a question's
correlation with its factor and the next highest correiation with another
factor is approximately .35. Correlations among the nine factors are
generally low with 28 of the 36 correlations between factors being less
than .30. Correlations between dimensions that represent different memory
structures ranged from .50 to .55 while correlations between questions
that represent different taxonomic levels ranged from .44 to .54.

The low interfactor correlations suggest that the test measures distinct
dimensions of the mathematical topic of slope. The test appears to be a
good first approximation to a testing instrument that can measure sensi-
tive differences in learning outcomes and establish effects that can be
attributed to a particular instructional treatment of a mathematical
topic.
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YOUNG CHILOREN'S ERROR PATTERNS ON ADDITION,
SUBTRACTION, MULTIPLICATION AND DIVISION WORD PROBLEMS

Vicky L. Kouba
State University of New York at Albany

Abstract

The present amlyeis is part of an investigation of first-
through third-grade ckildren's acquisition of multiplication
and division concepts and processaes. As pari of this gtudy
errors were coded on six addition and subtraction word problems
ard gix multiplication and divieion word problems. Using tre
wrong operation and stating, as an answer, a mmber given in
the problem were the most common errors. Imdividual error
patterns indicated groups of childvren who responded aystemati-
eally with Given Numbers, children who added on all problenms,
children who geemed to add when in doubt, and children who
used only addition and subtvaction but who 3id not geem to
systematically apply those oparations to multiplication and
division in ways expectied.

Research on additienand subtraction word problems has resulted in systematic
classification structures for problems, detailed descriptions of solution
strategies and their relationship to the semantic structure of the problems
and classification systems and models for the development of the solution
strategies (Carpenter & Moser, 1983; Nesher, 1982; Nesher, Greeno & Riley,
1982; Riley, Greeno & Heller, 1983; Briars & Larkin, 1982). A subsequent

and increasingly important concern is that of generating the parallel results
for multiplication and division word problems and investigating the common-
alities of the character and development of strategies across content domains.
As part of such a larger study, error strategies across addition, subtraction,
multiplication and division were investigated.
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METHOD

Subjects. The subjects were 43 first-grade, 35 second-grade and 50 third-
grade children 1n one school 1n a predominantly white Midwest community of
15,000 people. The sample included two classrooms at each grade level.

Procedure. In an individual interview, each subject was read and asked to
solve twelve one-step word problems: 2 addition, 4 subtraction, 2 multipli-
cation and 4 division problems. Three types of physical materials were
available for use in solving -- bowls, counters, and sticks. Children's
responses were coded and tape-recorded. Data collected included physical
materials used, correctness of response, strategy or explanation used, and
type of error if answer was incorrect.

RESULTS AND DISCUSSION

The types of errors noted were: a) Miscount-- the child used an appropriate
strategy, but miscounted in some way; b) Forgets -- the child used an appro-
priate strategy but forgot a number and substituted a different one; ¢)

61ven Number -- the child responded that the answer was one of the numbers
given 1n the problem; d) Wrong Operation -- the child used an incorrect
operation; e) Guess -~ the child incorrectly guessed at answer or used an
incorrect number fact; f) Other -- the child made some other identifiable
error such as giving "one" as an answer, making unequal groups for a division
problem and forgetting to make the groups equal, or using the number of sets
as the number of elements 1n a set; and g) unknown or uncodable.

The percentages of addition, subtraction, multiplication and division problems
on which the error strategies were used are given in Table 1, along with the
respective percentage out of the total errors on that type of problem. On
addition and subtraction problems, the most frequent errors for first- and
third-grade children were Given Number and Wrong Operation. For second-grade
children, Given Number was sti1] the most frequent, but Miscount occurred
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Table 1
Percentaae of Error Strateqy Use on Each Problem Type

Problem Type

- Addition Subtraction Multiplication Division
Error @
Strategy ] = . = .
@ @ [:F} w
] &« &« & “ & o
© S o S o S (=) S (=)
é R R 2 = 2 ¥R R kX3
1 31 55 17 35 20 22 31 38
Given Number 2 20 64 12 37 17 32 24 37
3 9 35 5 26 5 12 1M 25
1 8 14 16 32 40 44 33 39
Wrong Operation 2 1 4 6 17 24 45 15 23
3 14 54 7 4 26 63 19 44
1 3 6 4 8 7 8 5 6
Guess 2 3 14 6 17 1 3 3 4
3 1 4 4 2 5 3 6
10 18 9 19 13 14 4 5
Miscount 2 14 8 24 6 10
3 8 2 9 7 2 5
1 3 6 0 5 5 0
Forgets 2 0 o0 1 4 0 0
3 0 0 0 0 1 2 1
1 0 0 0 0 2 3 3 4
Other 2 0 0 0 0 0 0 4 "6
3 0 0 0 0 0 0 3 7
1 0 0 3 6 3 4 6 7
Unknown or 2 1 4 0 0 7 13 9 14
Uncodable 3 0 0 1 3 4 10 5 1
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more often than Wrong Operation. The two error strategies most used by all
three grades on multiplication and division word problems were Given Number
and Wrong Operation.

With Given Number errors children fell into several distinct groups. First,
there were children who, when asked why they responded with a given number,
sald, "because you said 1t in the story." These children seemed not to
understand the mathematical context of the story. A second group of chiid-
ren, who responeded with a Given Number on the Compare forms of the addition
and subtraction problems (problems fnvolving a statement or question of one
person having more than another), interpreted the problem in a mathematical
way -- as a comparison. These children could explain that there was a com-
parison, but they interpreted a "how many more" question as "which number {is
more" or, as one child explafned, ". . . you asked how many {s the more."
Thus, as Hudson (1980) found, the wording of the problem did not make clear
the mathematical structure of the problem.

For multiplication and division problems, a group of children who responded
with & Given Number explained their answer in terms of a one-to-one corres-
pondence. If the problem involved placing 6 marshmallows in each of § cups,
the child answered "You need 5 marshmallows in all because there are 5 Cups~-
so one marshmallow for each cup." This seemed even more prevalent on divi-
sfon problems. Finally, there was a group of children who, for division
problems, would model the problem reversing the roles of the numbers. With
24 carrots to be put equally with 3 apples, they would group by 3's, but
would correctly remember that the question was how many carrots with one
apple. Thus, they gave "3" as answer. This error is similar to one children
make with fractions, which {s interpreting "thirds" as "group by 3's."
(Hunting, 1985)

The Wrong Operation strategy was the most used strategy, appropriate or 1nap-
propriate, for solving multiplication and division problems, and also
accounted for about 9% of the answers on addition and subtraction problems.

ERIC 150

Aruitoxt provided by Eic:



IE

O

Douba 178

The majority of Wrong Operation error.were in incorrectly chosing addition.
The distribution of Wrong Operation errors is shown in Table 2.

Table 2
Distribution of Wrong Operation Errors

Grade Level

Wrong Operation 1 2 3.
Addition 374 132 20%
Subtraction 104 34 1=
Multiplication 09 14 4
Division 0% 0z 1%

First- and second-grade children made more wrong operation errors, propor-
tionally, on subtraction than on addition, whereas, third-grade children did
the reverse. Children at all grade levels made more Wrong Operation errors,
proportionally, on multiplication problems than on division problems. For
individual error patterns, there was a group of children, mostly first grade,
who viewed the story problems as a world of all addition problems. A second
group appeared to think, "when in doubt, add." These results have implica-
tions for previous studies. If many children have a general, addition-
dominant approach to solving word problems, their correct performance on
addition word problems cannot be solely attributed to understanding the word
problems. How much of the correct performance on previous studies is a
result of fortuitous general strategies rather than specific understanding of
the concepts in the word problems? Then, too, what underlies the formation
of the general strategies, and does this have implications for instruction?
Are the general strategies low-level responses born of confusion or are they
high-level attempts by children to build structure where none has been pro-
vided? Implications for future studies include a heightened emphasis on
determining why a child choses a strategy. Current interview techniques and
problems are not sufficient for detecting the "whys," especially with less
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verbally inclined or less critically objective children.

For the second-grade children and, more so, the third-grade children, there
1s a group who use a mixture of addition and subtraction strategies. How-
ever, their {nappropriate use of addition and subtraction on multiplication
and division problems is not what may be expected. On multiplication prob-
lems, of the seventy-seven Wrong 0perét1on errors 90% were addition and 10%
were subtraction. One might expect, then, a large majority of the division
errors to be subtraction. However, of the 114 Wrong Operation responses,
60% were addition, 32% were subtraction, and 8% were multiplication. This
distrubution, as well as the large number of Wrong Operation errors brings
into question the assumption that repeated addition and repeated subtraction
are the "natural" interpretations of multiplication and division.
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AUTHORING LANGUAGES, A CASE STUDY

by Richard Lesh, Northwestern Univ.
& WICAT Math/Science Division Director

This paper will briefly describe a variety of different kinds of authoring
languages that have been wused at WICAT to deveiop whole courses in
mathematics and science. Comparisons will be made to courseware
develop;ent vithout the use of authoring languages. Pros and Cons wiil be
discussed, and research possibilities will be sited that are particularly
relevant to psychological investigations of mathematics learning and
instruction. Particular attention will bé given to a project, currently
pidvay in development, called STATISTICS BY EXAMPLE: BUILDING YOUR OWN
COMPUTATIONAL PROCEDURES.

Because the instructional development utilities discussed have been |inked
to several types of programming lenguages le.g., LISP, Forth, C, Prolog,
Pascal), several programeming related issues will be considered.

Computer utilities being developed for the STATISTICS course include &
"spread sheet" style data base, overlaid graphing and coeputational
capabi lities which students can use to construct, modify, refine end acapt
their own statistical "number crunching®™ programs.

In th1s statistics course, computational routines are treated as "models,”
or useful oversimplifications of reality. Non-answer-giving phases of
problem sOlving are emphasized, inciuding problem formulation, trial
solution evaluation, the quantification of qualitative information, the
examination of underiying essumptions and sources of error, &nd the
organization, filtering, and representation of inforsation - i.e., phases
of problem solving that are the most important to people in business, law,
or other professions where intelligent decision making frequently involves

statistics, but seldom requires computational proficiency.

O
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Stugents ere trested 8s future users of stetistics, not es future doers of
statistics (i.e., those few individuals, lergely residing at computer
centers, who actually cerry out complex statisticel computations).
However, students ere actively engaged in the "model building”™ process:
they buiid their own computatonel procedures, and examine how changes in
the "model" influence the result produced. The goal is to develop "first
hand" experience about how complex procedures are assembled from
understandable sinpler pieces, and to become comfortable at criticising,
modifying, and adapting models to suit concrete needs.

Rether than beginning topics ufth "pre-fabricated® principles or
procedures, followed by a few (usually ertficial) "epplicetions” designed
to minimize computetionel difficulties, students begip wunits by
considering realistic problem solving situstion with realistic data.
Then, they build, refine, wmodify, ond edept their own computational
procedures in @ menner similer to the wey children build geometry
procecures using LOGO progremming techniques, i.e. by trying to accomplish
concrete goals in mathematically ricﬂ example situstions.

With computer-driven 'concep{ual emplifiers” tlike the "symbol-manipulator
function-plotter” utility thet will be cescribed in this paper, or even
famiirar  tools 1like VisiCalc!), problem solving in the presence of such
amplifiers 1s becoming as important in science and mathematics as that in
their absence. The probles solver no longer can be assumed to be @ person
working alone with only e pencil end paper for tools. ansequently.
assumptions based on such an "amplified problem solving orgenism® may heve
to be considerably different from those common in past cognitive science
studies. Distinctions between instruction and assessment aIsoAuilI becone
blurred as detaiied instructional paths can be documented, and as profiles

of both learning and forgetting can be produced.
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TEACHER-CLINICIANS ' EXPERIINCE IN MATHEMATICAL PROBLEM-SOLVING SESSIONS WITH
TNDIVIDUAL CHIIDREN: IMPLICATIONS FOR THE DEVELOPMENT OF TEACHERS

Carolyn A. Maher
Rutgers University

ABSTRACT

An earlier model for the development of teachers based on the
teacher as learner, as observer, and as philosopher is extended
here to the teacher as clinician with datz developed ir a vear-
long project studving the heuristics emploved by academically
talented children of grades 4-6 in problem solving. The obser-
vations of clinicians' interview behavior form the basis for the
expanded model. The implications from clinicians' preparation
and actual clinical conduct will be discussed as will the deve-
lopment of teachers generallv in the expectation that thev will
encourage children’s construction of solutions to prcblems lead-
ing to understanding of mathematical concepts and processes.

BACKGROUND

A model for the preparation of teachers of mathematics at the elermentary level
was developed and a portion of it tested with a group oOf teachers in the sum—
mer of 1984. The results of the pilot study were reported at the American
Educational Research Association Conference by Maher and Alston (1985). In
summer 1985, the further study was conducted and the results are now being
reviewed. The present paper is intended as an extension of the earlier e
and its elaboration is based upon the preliminary observations of teachers
who were preparing to conduct structured clinical interviews with children
for a study involving children's use of the heuristic process, "think of a
simcler problem (TSP)}" as they were engaged in solving the problem, "what is
the remainder when two to the fiftieth power is divided by 3?" A description
of the script for the structured clinical interview is contained in a paper
by Goldin (1985).

PURPOSE

An extensiaon of a model for the development of mathematics teachers is
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suggested. Observations of four teacher-clinicians conducting interviews
with acaderically talented children from grades four through six provide
the preliminary data for this report. ’

- PROCEDURES

Approaximately twelve clinicians, working in pairs, participated in the prob-
lem solving study. Because of the diversity of experience among them, teams
were organized so that a more experienced clinician could be paired with a
novice. Alternately, one team member was respansible for the conduct of the
interview and the other served as cbserver and recorder. On average, the
interviews lasted fifty-minutes with none longer than an hour.

Data for this report came from the cbservations of interviews conducted by
four clinicians, two male and two female. Their teaching experience varied
fram less than cne-year to fifteen-years and ranged fram elementary to high
school mathematics teaching. Transcripts of audio~tapes and records of the
specific responses to questions of the protocol were used.

The Interview

Por purposes of this report the interview will be divided into five sections
each representing a different aspect of the problem. Section 1 involves assess-
ing a child's knowledge of the prerequisite skills with exponents and remain-
ders and prevides for reviewing and/or introducing the concects. Section 2
presents the problem "What is the remainder when two to the fiftieth power

is divided by three?" Here the clinician is instructed to encourage the child
to talk aloud and allow the child to work freely without intervention wntil
he/she gives up, guesses, disoontinues justifying guesses, is satisfied with
the response, or works for 10 minutes without apparent progress. No conceptual
misunderstandings or misapplications of arithmetic rules were to be corrected
at this time. Section 3 directs the clinician to offer a graduated series of
hints that lead to the heuristic process TSP, if the child had not already

done so. Section 4 provides specific simpler problems for guiding the child
through the heuristic TSP. The clinician was instructed to provide guidance
only if the child, encouraged to work freely, did not detect a pattem. Sec-
tion 5 provides two equivalent problems with different exponents and a third
problem, "What is the remainder when three to the fiftieth power is divided

‘by four?" 1In the latter case, the child should be asked to describe how to

go about sclving the problem and specifically instructed not to work it out.
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RESULTS

Results will be given according to the five sections outlined below.

Section 1, Prequisite Skills

Sare deviatiomns in language from the script occurred in this section. For ex-
ample, Clinician D (C/D) asked: "Can you do a more difficult ane?" Also, in
presenting the problem "What is the remainder when 17 is divided by 5?", C/A
began with "Now I have an easy question for you." C/J amitted the introduct-
ory definition of exponent and moved irmediately to the language of "factor”.

Section 2, Prablem Presentation

Clinicians experienced difficulty restraining the impulse to interrut or
lead the. child in this section, contrary to the instructions in the scrigt.

C/D stated: "Ané now we camre to the height of the interview." Thé problem was
then presented and after 20 seconds, C/D ocontinued: "Can you tell me what you're
thinking now?" The child respaonded: "Trying to figure out what two to the
fiftieth power is.” After 30 seconds, C/D interrupted: "Do you think it micht
be possible that there might be a way to do the prablem without multiplying

2 to the fiftieth power? Can you try answering 2° divided by 32"

In another interview, C/D stated: "Now I have a problem for you." The problem
was presented and the child began to speak and was interrupted by C/D: "Maybe
you should think about it and after you've thought about it, then talk." The
child irmediately responded: "Two to the fiftieth power is 100; 3 into 100 is
90; 100 minus 90 is 10 and that's the remainder.” C/D replied: "Can you try
to think of a problem that's similar to this? One that's easier to solve but
locks..." Child: "Like this?" C/D: '"Close to that one.” The clinician
waited 30 seconds and interrupted: "How about by trying a power that's less
than 50? Two to a smaller power..."

In an interview by C/J, he asked: "What did you do for two to the fiftieth
power?..." Child: '"Instead of taking a whole page of writing all twos, I
used 50. I sort of like changed it. Sort of like cpposite and I could work
it, but faster than would be working it out; faster than to have to write 2,
2, 2 keep going." C/J: "All right. Do you remember what 3 to the fourth
power was?" Child: "Yes." <C/J: "And what was that?" Child: "Three to the

O
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fourth power is when you have to use 3 four times. That's 3 times 3 times 3
times 3." C/J: "So what do you think 2 to the 50th power would be?" Child:
"Using either 2, 50 times or you can use 50 writing like that 2 times." C/J:
"Do you think that would be the same?"

In C/A's interview, she stated: "Now I have a problem for you, sort of a longer
‘problem.” The clinician presented the problem and the child responded that the
remainder was 1 because 2 to the fiftieth power was 100 and divided by 3 was 1.
The clinician continued: "What was 2 to the third power?" Child: "Six." C/A:
"Can you tell me again what it means?" Child: "OK, eight; because it's 2 times
three." C/A: "So it makes it sort of a different problem. So does that mean
the remainder might not be that anymore? You've written down 2 times 2 equals
4." Child: "And next is 8, 16, ... It's going to take me forever to do it this
way." Immediately C/A responded: "Do you think there might be sameway without
doing it?"

In C/P's interview, providing less than cne minute for the child to work out
the problem cn her own, she offered: "Can you think of a problem like this only
easier to solve?" The child suggested 1 to the 50th power. C/P directed the
child to change the base to two and then suggested a problem "with a little
nurber smaller than 50..."

Section 3, TSP Suggested and Section:- 4, TSP Guided

For C/D, section 4 followed without opportunity for the child to think of a
simpler problem. After presenting the simpler problem 2 to the second power
divided by 3, he readily offered the next. C/D: "Can you try a different prab-
lem, let's say, 2 to the 3rd divided by 3?" Similarly for his other interview.

For C/A; "Can you think of a problem in temms of finding the remainder for a
simpler problem? What about 2 to the second divided by 37"

In C/3's interview, there is some deviation fram the script in permitting the
child to think of a simpler prablem. C/J: "Can you think of a simpler prablem
that would give you that answer? It's like this one, only simpler.” 1In his
second interview he moves to the second level question directing the child

to a "simpler problem like this me" rather than a "simpler problem".

In C/P's interview, specific simpler problems were presented to the child.
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Section 5, Assessment of Understanding

Once the child was guided by the clinician to detect the pattern through the
generation of a series of simpler problems, a correct response was given for
the two equivalent problems with base 2 and divisor 3, but different exponents.
However, when the problem "3 to the fiftieth power divided by 4" was presented,
either the children began by raising 3 to the fiftieth power or made an
incorrect generalization fram their werk with the preceding problem. For
example, Clinician D presented the problem of 350 divided by 4 and was inter-
rupted by the cbserver who emphasized: "This is another problem. Think about
it. How would you go about solving it ?" C/D added: "You don't have to do it;
just what would you have to do to solve it?" The cbserver, interjected: "What
would you have to do if you had to go about solving that cne?” The child re-
sponded: "So first I would figure out what 3 to the fiftieth power would be."
C/D interrupted: "Would you? Is that what you did for two to the fiftieth?"
Cchild: "Yah, I tried." C/D: "B:ut what did you do to eventually sclve it? How
did you care up with the answer? Child: "I was doing these weird things in ry
head." Laughter followed, and the child respmded with: '"Well, it would be
remainder one but.” C/D interrupted: "vhy do you think -that?" Child: "Because

50 is an even number and even nmbers have remainder cne.."
CONCLUSIONS

Clinicians fared well in sections of the protocol that reguired guiding and
presenting informaticn but had considerable difficulty in allowing the chilé

to construct a solution to the problem presented in section 2. Sare prema-
turely jumped to section 4; others offered the simpler problems directly to
the student, precluding the possibility of a spontaneous response from the
child. 1In sections 3 and 4, some clinicians did not give the child sufficient
time to think of a simpler problem but instead offered it. Hints, given too
soon, did not produce learming as meas.red by the child's succeess in géneraliz-
ing the heuristic to a oroblem of similar structure.

Despite same errors and occassiocnal risuse of the script, teacher/clinicians
were beginning to recognize that learring had indeed not occurred when the child
was unable to construct the knowiedge in thé cowrse of the interview and was
unable to generalize to another similar problem. Clinicians' reflections ancd
discussions on their own behavior with respect to the child appeared to lead
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to a deeper recognition of the constructive process by which children learn.
Preliminary examination of these data suggests that changes in clinicians
were beginning to occur. What requires further study is how teachers them-
selves conceptualize leaming and how they become aware of their own and
their students' leaming processes.

IMPLICATIONS

The teacher/clinician, able to focus an individual leaming, can became a
better cbserver of children's leaming. For teachers to Geal adequately
with the camplexity of the classroam and leam effectively to allow children
to construct their mathematical ideas and procedures, it is suggested that
participation in a variety of integrated experiences as leamers, clinician/
cbservers, and philosophers be studied. As leamers, they could experience
leaming environments parallel to those recamended for the construction of
knowledge by children. As clinician/cbservers, they could participate in the’
construction of leaming envircnments for individual and small groups of
children. As philosophers, they could reflect continously on what it is they
are trying to accamplish, why, how, and for wham. Then, perhaps, the tran-
sition from "direct instruction-lecture teachers" to "oconstructors of effect-
ive leaming environments for children” might be possible.
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CHILDREN'S HEURISTIC PROCESSES IN MATHEMATICAL PROBLEM SOLVING
DURING SMALL GROUP SESSIONS

BY

Carolyn A. Maher and Alice Alston
Rutgers University

ABSTRACT

The paper describes individual and group problem
solving behavior of seventeen sixth grade
children engaged in small group problem solving
gessjons to determine (1) whether and in what
ways the heuristic "think of a simpler problem"
is employed spontaneously, after prompting, and
with guided suggestions and (2) whether the
individual learner profits from the small group
activity. Analysis of student responses showed
that individual learning is pursued in a small
group organization and that the cooperation of
small groups supported the directions of
individual learners.

BACKGROUND

The use of structured clinical interviews for studying
children's problem solving has begun to provide useful
information regarding competent problem-solving performance.
Work by Goldin and Germain (1983) and Goldin (in press)
regarding children's use of the heuristic process "think of a
simpler problem® has provided the basis for considering the
problem-solving behavior of children working in small groups and
their use of the heuristic. Silver (1985) and Noddings (1985)
have suggested the study of the processes of cooperative small
groups for such activities as planning, monitoring, evaluating
and the constructing of representations of mathematical ideas.
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An early study by Alston and Maher (1984) in which small groups
of mathematically able middle-school children were provided an
opportunity to construct the properties of an Abelian group
uaing concrete, symbolic, and abstract embodiments in a
non-numerical context and relate the activity to work with
numbera showed promiae for creating effective claasroom
environments for children's learning.

PURPOSE

The study examines the effectiveness of organizing instruction
in such a way as to allow children working in groups the
opportunity to construct solutions to a problem employing the
heuristic "think of a simpler problem® without direct teacher
interference but with a structured group problem protocol.

DESIGN

The Problem Task

A asingle-person script based on the problem "What is the
remainder when 2 to the 58th power is divided by 3?" (Goldin, in
press) was modified for small group use in order to observe
whether and in what ways the heuristic “"think of a simpler
problem (TSP)" might be employed. The problem task, divided into
five parts, each to be administered after the former is
completed, was designed to provide the children with
opportunities to solve the problem (a) spontanecusly, (b) with
the heuristic suggested and (c) with specific examples using the
heuristic given. The prerequisite skills for the TSP task,
Presented in Part 1, are raising a number to a power, finding
the remainder when dividing a whole number by a one digit
divisor and finding a remainder when dividing a number expressed
in exponential form by a one digit divisor. In Part 2
presentation of the problem, “What is the remainder when 2 to
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the S@th power is divided by 32", is presented without other
comment. Provision for noting all the ideas emerging from the
group as they seek a solution is made. In Part 3 the use of the
heuristic TSP is suggested. The children are asked to generate
problems that are simpler than the original problem and to solve
each simpler problem, considering whether the solutions might be
helpful in solving the original problem. In Part 4 the heuristic
“TSP" is specifically presented by asking the children to solve
a series of simpler problems structurally equivalent to the
original, to organize these golutions into a chart, to look for
the pattern of remainders and to give the solution to the
original problem. An assessment of the depth of understanding is
made by asking for the remainder when 2 to the 44th power is
divided by 3 and when 2 to the 75th power is divided by 3.
Finally the children are asked how they would approach the
problem of finding the remainder when 3 to the 50th power is
divided by 4. In Part 5 the children are asked to review what
they have done.

Subjects

Seventeen eleven and twelve year old sixth grade children, five
girls and twelve boys, from an independent school participated

in the study. Six groups were formed, five with three children

and another with two.

PROCEDURES

The 9¢ minute sessions, held in the school library, were audio
taped with three also video taped. An observer for each group
administered the problem, took notes and monitored the audio
equipment, having been instructed to answer only procedural
questions. Each group of children was instructed to select a
recorder responsible for keeping a record of the responses to
each question based on agreement of the group. Each child was
given a protocol, blank sheets of paper and pencils.

O

ERIC 203

Aruitoxt provided by Eic:



191 Maher/Alston

Approximately 45 minutes to one hour was needed to complete the
task. Analysis is based on the children's completed protocols,
the work they did on other paper, observers' written notes and

the audio and video tapes.

RESULTS

The data were organized according to the problem outline to
describe (a) the six groups' problem solving behavior' and (b)
problem solving activity of the aeventeen individual students.
Part 1

Results of Part 1 indicated that all of the children had the
mathematical skills necessary to solve the problem. Mistakes, in
one case conceptual giving 3 to the 2nd power as 6 and in a
second computational responding with 3 as the remainder when 17
is divided by 5, were recognized by others in the group and
corrected apparently. with understanding by the individual.

Part 2

For Part 2, four of the groups attempted to compute 2 to the
59th power by multiplying the factors of 2 even though one or
more individuals in each group suggested that there should be a
simpler way. None of these groups reached a correct solution.
In Group S, J worked individually but in dialogue with the
others to generate several attempts at simpler means of
solution. Each solution was discarded, however, when the group
together saw that the structure was inappropriate. The ’
activities of individuals within the group indicated that two of
the groups solved the problem in Part 2 by using a simpler
Jproblem. In Group 2, C reasoned that 2 to the 5dth power is
proportionsl to both 2 to the 10th power and 2 to the 2nd power
and 8o must have the same remainder when divided by 3, requiring
the remainder to be 1, a correct answer that was inconcluaive as
to understanding. In Group 5, J, leading G and L, reasoned
that since 2 to the 4th power is the same as 4 to the 2nd power,
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2 to the S@th power must be equal to 1@ to the 10th power, which
the children computed and divided by 3 for a remainder of 1. The
children expressed pleasure at having constructed this "simpler
problem" and indicated a preference to this method over the
pattern later suggested.

Part 3

All of the groups generated simpler problems in Part 3 although
only three of the groups came up with problems of similar
structure to the original and Group 1 was alone in generating a
series and recognizing the pattern of even and odd exponents
corresponding to 1 and 2 as remainders without guidance.

Part 4

Each of the other groups recognized the pattern in Part 4 and
all six predicted that 1 would be the remainder for 2 to the
44th power and 2 for 2 to the 75th power when each was divided
by 3. Three of the groups responded to the question "what is the
remainder when 3 to the Sofh power is divided by 4?" by
immediately generating simpler problems of the same structure
with both even and odd exponents and finding the pattern of 1
and 3 as remainders. Group 2 and Group 5 each returned to the
strategy used to solve the original problem. Group 3, the only
group with an incorrect answer to the original problem even
after successfully generating the pattern, seemed confused and
predicted that the pattern of remainders for 3 to the 50th power
would be 2,2,1,1,1,1,.....

IMPLICATIONS

During mathematics class on the next day, the children discussed
the problem, compared strategies and results, and were guided by
the teacher to consider proposed solutions so that -
misconceptions might be addressed. These results suggest that
the group context can be one in which children might construct
understanding of mathematical ideas. The heuristic "TSP" was
proposed and considered by the children and discarded when they

ERfc 205



193 Maher/Alston

were not ready to use it. For some, the arithmetical
representation of the problem was applied. For others, "TSP" was
used spontaneously or in response to guiding questions. The
group organization permitted each child freedom to pursue
various paths to solution but also guidance by peers to examine
those paths and to consider alternatives. Research and analysis
should follow in which other problem tasks are developed and
tested, presenting problems that call for various heuristic
strategies to similar groups of children. Methods need to be
developed to compare group problem solving activity with that of
children working individually and in whole class activities in
order to make intelligent inferences for classroom instruction.
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A CHRONOMETRIC ANALYSIS OF ADDITION AND SUBTRACTION
PROCESSES USING POSITIVE AND NEGATIVE NUMBERS *

Jose Mestre, William Gerace and Arnold Well
University of Massachusetts

Reaction times (RT) of college students majoning 4in technical
§ields wene measuned 4n simple addition and subtraction tasks.
Subjects detenmined the tuth value of mathematical siatements of
the type (-2)+(+6]=(-4). Results reveal RT patterns similar to
those obtained in experiments outside the domain of mathematics.
Findings also neveal that Anglos wene significantly faster than
Hispanics. A clustering of RTs according to statement types
suggests efficient processing strategies, such as combining the
fwo -'s into an overall + in statements such as (+6)-(-2)=+8.

In recent years, a considerable number of research studies have focused on
understanding mental processes involved in the addition and subtraction of
simple numbers. These studies fall into three major types. One type of study
uses the interview approach. The subject “thinks aloud" while he/she is
engaged in some addition or subtraction task, and the resulting record of the
interview, called the "protocol," is analyzed to identify the processes that
the subject used. Studies of this type have been successful in identifying
counting procedures of varying degrees of sophistication as well as stages by
which children make the transition from less, to more sophisticated procedures
(Carpenter & Moser, 1984; Fuson, 1984).

A second type of study attempts to test models by implementing them on
computers. The success of these models is measured by the extent to which
they are capable of predicting the types and frequency of use of both
successful and erroneous strategies. Some of these models are not only quite
elaborate, but are capable of “solving" a wide range of addition and
subtraction problems (Briars & Larkin, 1984; Riley, Greeno & Heller, 1983).
However, some researchers (Carpenter & Moser, 1984) argue that these precise
models do not capture the variability of children's performance.

* Work supported by National Institute of Education Grant #G-83-0072. The
contents herein do not necessarily reflect the position or policy of NIE.
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In the third type of study, the insights come from analyzing the “"reaction
time" (RT) it takes subjects to perform an addition or subtraction task.
Generally the tasks in RT studies with young children consist of pressing a key
to designate the answer to a problem (e.g. pressing the ugn key in an array of
labeled keys when given the problem “3¢5*). With older children and adults,
the tasks generally consist of verifying an equation (e.g. pressing a “true“ or
“false" key in response to a stimulus such as "3+528"). The advantage of the
RT approach 1s that it can potentially provide 1nsights into mental processes
involved in tasks that are generally performed correctly by adults (1imiting
the usefulness of analyzing error patterns) and tasks that are highly automated
(making 1t very difficult to elicit subjective, introspective reports). The
difficulty in a RT analysis comes in deciding which processes should take a
constant amount of time regardless of variations among the task (e.g.
representing numbers, such as “3*, in memory), and which process(es) varies in
time as a function of variations among the tasks. The time-varying process is
designated by a “structure variable" which is then fit to the RT data. In a
seminal RT study, Groen and Parkman (1972) determined that the best structure
variable in predicting RT in problems such as m+n=s was min(m,n) which implies
the use of a “count on from larger® strategy. Reaction time studies have been
quite successful at identifying important structure variables in both addition
and subtraction (Ashcraft, 1982; Woods, Groen & Resnick, 1975).

One area which has not been investigated in RT studies 1s the effect of
manipulating mathematical operations upon performance. For example, if we
allow both negative and positive integers within the context of addition and
subtraction, we can usually construct several three-digit mathematical
statements which are equivalent to each other. The following cases 1llustrate
three different manipulations on the digits 3 and 4 that maintain the overall
result equal to negative one: “(+3)+(-4)=(-1)", *(+3)-(+4)=(-1)*, and
“(-4)+(+3)=(-1)". It may be, however, that among these equivalent equations,
certain ones may be considerably easier to process than others. One question
that can be answered by comparing the RTs requived to verify equations in the
example above 1s whether adding a positive and a negative number is easier or
harder to carry out than subtracting the corresponding two positive numbers.

Another important question that we can investigate with such manipulations 1is
whether there are differences between the RT patterns of Anglos and Hispanics
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in verifying mathematical statements containing two negations, such as
“(+3)-(-4)=(+7)". The significance of this question comes from the fact that
in the Spanish language, certain double-negative constructions retain an
overall negative meaning, rather than reverting to a positive meaning as is the
case in grammatically correct English. We have investigated this question
within verbal comprehension tasks using different number and types of negations
(Mestre, 1984; 1in press) and found that the overall performance of Anglos was
better and significantly faster than that of Hispanics. However, because of
generally poor performance by both groups, there was no clear evidence that
Hispanics were particularly worse than Anglos on the double-negative tasks. We
thus think it would be interesting to look for Hispanic-Anglo d1fferences in
double-negative performance within a mathematical context.

Finally, are we not aware of any manipulations of the affirmation-denial dimen-
sfon within a RT math study; this would mean investigating the differences in
RT patterns between “=" statements (affirmations) and "#® statements (denials).
There have been affirmation-denial studies outside the domain of mathematics.
In a sentence verification task, Carpenter and Just (1975) measured RTs of sub-
Jects as they determined the truth value 1n a situation where a simple sentence
was followed by a picture. They found that RT increased in the following
order: True affirmatives (e.g. “The dots are red" followed by a picture of red
dots), false affirmatives, false denials, and true denials (e.g. “The dots
aren’t red" followed by a picture of black dots). It would therefore prove
interesting to see if this same pattern emerges within a mathematical context.

In this paper we report a preliminary analysis of a RT study investigating the
effect of manipulating equality as well as addition/subtraction operations
among Anglo and Hispanic college students.

Procedure

Subjects: A total of 58 subjects participated in the experiment. A1l subjects
were majoring in technical fields such as engineering, math and chemistry. Of
the 58 subjects, 27 were Anglo monolingual speakers of English and 31 were
bilingual Hispanics. ‘Subjects were paid for their participation in the study.

Tasks: Reaction times were measured as subjects determined the truth value of
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mathematical statements of the following forms:
(6)(t2)=t} . (terEAAt] L gatees=td ,  (tare) /1t 8

A total of 128 such statements can be constructed, 64 with "=* and 64 with
“#". Of the 64 statements with "s*, 16 are true and 48 are false, while of
the 64 statements with “#*, 16 are false and 48 are true. To balance the
number of true and false cases from the "=" statements, an additional 32 true
cases were included in the pool of statements; similarly, 32 additional false

" cases were included in the pool of “/* statements. Each subject therefore
received a total of 192 statements.

Method: Subjects answered “true* or “false” by pressing one of two keys with
the index fingers of both hands; the “true® key was assigned to the dominant
hand. Statements were randomly selected and presented on the screen of an
Apple 1I1-E microcomputer and a Mountain Clock recorded the RTs with
millisecond accuracy. Only correct responses were kept for the analysis.
Errors were recycled into the pool of statements so that every subject
eventually answered all 192 statements correctly. Subjects were instructed to
move as quickly as possible without sacrificing accuracy. Statements were
presented in blocks of 24, with feedback about speed and accuracy given after
each block. Two practice blocks preceded the actual experiment.

Results

The error rates for Anglos and Hispanics were 6.7% and 8.2%, respectively. To

a first approximation, the patterns of RTs were quite similar for Anglos and
Hispanics, although Hispanics in our sample averaged about 600 msec longer per
response. Averaging over trials, we find the same order of increasing RT for
both Hispanics and Anglos as in the sentence verification study of Carpenter
and Just, although there were significant differences in overall speed between
Anglos and Hispanics (see table below). A Group (Hispanic vs. Anglo) x Equality
(= vs. #) x Truth Value (T vs. F) x Statement Type analysis of variance was
conducted on the RT data. B8y Statement Type we mean the 8 possible orderings
of the three signs on the left hand side of the statement, namely (+++), (++-),
(+=+)s (-++), (#=-), (-+=), (~-+), and {---). A1l main effects were significant
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True False (p<.001). This means that 1) Anglos per-
= Anglo 2.29 2.65 formed significantly faster than Hispanics,
Hispanic 2.77 3.24 2) The # statements took significantly longer
to process than the = statements, 3) False
# Anglo 2.97 2.84 statements took significantly longer to proc-
Hispanic 3.61 3.46 ess than True statements, and 4) There were

significant differences in processing times
among the 8 Statement Types. There were two
significant interactions (both p< .001): 1) Equality x Truth Value (see table
above) indicating that the difference between true and false RTs was much dif-
ferent for = and ¥ statements, and 2) Equality x Truth Value x Statement Type
indicating that the pattern of RTs for the 8 Statement Types varied across the
four possible combinations of Equality x Truth Value. There was no evidence
that the pattern of RTs for statements involving one and two -'s were different
for Anglos and Hispanics. However, the difference in RT between Hispanics and
Anglos was significantly smaller (p <.05) for the (+++) statements than for the
average of the 7 Statement Types containing at least one -.

Statement Type RTs broke down into four clusters that were nearly the same
across all four Equality x Truth Value cases for both Anglos and Hispanics.
The table below shows this clustering where we have averaged over Equality and
Truth Value. With only one exception each for Hispanics and Anglos, Statement
Types (+++) were processed significantly faster (p <.05) than the cluster of
Statement Types (++-), (+--) and (-+-), which in turn were processed
significantly faster than the cluster (+-+), (-++) and (--+), which in turn
were processed significantly faster than the Statement Type (---); the two
exceptions were that (-+-) was not significantly different from (+-+) for
Anglos, and (--+) was not significantly different than (---) for Hispanics.

{+++) (=) (-t-) (++-) (#-+) (-44) (--%) {---)

Hispanics 2.32 3.24 3.26 3.29 3.49 3.47 3.4 3.64
Anglos 1.93 2.63 2.64 2.64 2.77 2.84 2.92 3.11
Difference .39. .61 .62 .65 72 .63 .55 .53

Finally, including the order in which the digits "2" and "6" appeared on the
left hand side of the statements in the ANOVA resulted in a significant main
effect (p< .01) predominantly due to the faster RTs in the subtraction
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Statement Types (+-+) and (++-) when the “6“ preceded the “2".

Discussion

The presence of various statistically significant main effects as well as sig-
nificant interactions in our analysis indicates that measures of RT are a good
means for unravelling the mental operations and processes used by adults in
performing simple arithmetic manipulations. Although we have not as yet
explored the predictive ability of various models for our observed RT
patterns, it might prove interesting to speculate on the mental processes
which might account for some of our findings. The processing time for the
tasks of this study can be subdfvided into four stages: 1) Encoding, 2) Com-
puting, 3) Verifying, and 4) Responding. Since Encoding and Responding are
Tikely to take the same amount of time for each trial, the variation among RTs
comes from the Computation and Verifying stages. By averaging over all
Statement Types, the processing time can be collapsed into the Verifying stage
for the four Truth Value x Equality cases (i.e. T=, Tf, F=, and F£). The fact
that our observed RT pattern for these four cases 1s the same as that in the
Carpenter and Just (1975) study, despite a lack of parallelism between our
Equality dimension and their affirmation-denial dimension, suggests that
subjects used a similar verification process in both studies.

A successful model for the Computing stage would have to explain the cluster-
ing among the Statement Types observed in the table above. For example, the
data indicate that latency is not simply determined by the number of -'s 1in
the statement, but rather by the efficiency with which the various operations
can be combined to yield an answer. As evidence, consider the relatively fast
RTs on (+--) which suggest that the double negative is encoded as an overall
positive. The data also suggest that processing is relatively fast for
“adding 11ke numbers, as in the cases (++) and (-+-). Another general trend
is that cases in which the - is at the end of the statement are processed
faster than cases in which the - appears in the middle or at the beginning of
the statement (i.e. (++-) is processed faster than (+-+) and (-++)). Finally,
the faster latencies when the "6 preceded the "2* in the (++-) and (+-+)
Statement Types {ndfcates that subtracting a “2* from a “6" is more
“ecologically natural® than subtracting a “6* from a “2°.

O
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The fact that the RT pattern for Hispanics did not differ appreciably from that
of Anglos on Statement Types containing two negatives indicates that the lack
of parallelism between Spanish and English in the meaning of double-negations
does not interfere with arithmetic performance. It was surprising that on the
simple tasks administered Hispanics took approximately 600 msec longer than
Anglos, especially since all subjects were technical majors; the cause of this
large difference in speed remains a mystery. We will only remark that for
Hispanics, SAT scores were negatively correlated with RT (p <.05) implying
higher SAT scores for those Hispanics with faster RTs; this suggests that SAT
scores may be a poor predictor of academic performance because Hispanics pro-
ceed at a slower pace and therefore complete fewer items. Further support of
this conjecture comes from the fact that, despite Anglos scoring approximately
200 points above Hispanics on both Verbal and Math SATs, their GPAs did not
reflect this large difference (GPAy=2.46, GPAp=2.94 out of a possible 4.0).
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PREDICTING MATHEMATICS ACHIEVEMENT FOR FEMALES ANO MALES
FROM CAUSAL ATTR{BUTIONS

Margaret R. Meyer
Ohio State University

~ Elizabeth Fennema
University of Wisconsin-Madison

The study reported here investigated the relationship
between causal attributions as measured by the Mathematics
Attribution Scale in grade 8 and achievemert in grade 11.
Correlations and linear regressions were done separately
For females and malee in order to see if the relationships
differed by sex. Success Ability and Failure Ability were
eorrelated with achievement for both females and males.
Grade 8 attributions were more important for ‘emales in
predicting grade 11 achievement. A score for mastery
orientation / learned helplesenese based upon attributions
wag correlated with achievement for males.

Causal attributions, or the reasons students give for their successes or
failures, have been the subject of study in recent years as they relate to
achievement in mathematics (Wolleat, Pedro, Becker, & Fennema, 1980; Eccles,

" Meece, Adler, & Kaczala, 1982), Much of the appeal of these variables lies )

in the intuitive connections that can be made between various attributions
and subsequent achievement related behaviors. Causal attributions are also
of interest in attempts to explain sex-related differences in mathematics
achievement. There is some evidence that females and males attribute
causation differently and that these differences are related to achievement
differences (Wolleat et al, 1980; Eccles, 1983).

Two of the problems associated with causal attribution research are those
of measurement and interpretation. Typically, attribution instruments are
designed to reflect the Weiner (1974) model with subscales written to
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measure student perceptions of the importance of ability, effort, luck and
task difficulty for their success or failure. It has proven difficult to
sort out relationships when 8 subscales are involved. Some research has
attempted to identify which of the subscales might be more important
relative to achievement. Combining subscale scores is another way that has
been used to simplify using causal attributions. Fennema and Peterson (1984)
derived a formula based on constructs of learned helplessness and mastery
orientation. The formula was defined as follows:

MO/LH = (SA + SE + FE) - (FA + ST + S0)
The theory based formula suggests that mastery orientated students perceive
that their successes are a result of their ability (SA) and effort (SE)
and that their failures are due to a lack of sufficient effort (FE). In
contrast, learned helpless students perceive their successes as being the
result of either task ease (ST) or help from others (S0) and their failures
as resulting from their lack of ability (FA). Kloosterman (1984) used this
formula in a study of Algebra I students. (See paper by Kloosterman in this
proceedings.) Another limitation of studies involving causal attributions
related to sex differences in mathematics achievement is that the data are
usually collected at a single point in time. As result, the ability to
predict future achievement based upon attributions is limited.

The study reported here attempted to address some of the issues just
discussed. Specifically, the objective was to see if causal attributions
measured in grade 8 could predict mathematics achievement four years later.
Females and males were considered separately in order to look for sex
differences in the predictions. The MO/LH score formula discussed above
was also used to test if its relationship to achievement was stronger than
those of the individual subscales.

DATA SOURCES AND PROCEDURES
Causal attributions and mathematics achievement data were collected on

151 students in grade 8 in a Midwestern city. The sample included 84 females
and 67 males. The instruments used to measure achievement were the Basic
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Concepts (Level I) and Computation tests of the STEP Basic Assessment Tests.
Causal attributions were measured by the Mathematics Attribution Scale
(MAS) (Fermema, Wolleat, & Pedro, 1979). The MAS contains eight subscales:
Success Ability (SA), Success Effort (SE), Success Others (SO), Success
Task (ST), Failure Ability (FA), Failure Effort (FE), Failure Others (FO),
and Failure Task (FT). The "Others" category is an expansion of Weiner's
"Luck" category and it includes other unstable, external factors like help
from others. Each subscale score can range from 4 to 20. At the end of
grade 11, achievement was again measured using the STEP Computation and
Concepts (Level J) tests. The cognitive level of the items was used to
derive three scores from the STEP Concepts test: a low level score (0-24);
a high level score (0-24) and ; a total score (0-48).

RESULTS

Table 1 contains correlations and descriptive statistics for females and
males for grade 8 achievement and attribution scores. In grade 8, the mean
score for the males was significantly higher than that of the females on
both STEP Computation and STEP Concepts. In terms of attributions, the only
significant differences by sex were on the subscales Success Task (ST) and
Failure Task (FT). Mean scores on these subscales indicated that females
were more likely than were males to focus on the task as a reason for both
success and failure. Considering the grade 11 achievement measures, the
mean scores for the males were significantly higher than those for the

- females on STEP Concepts High and STEP Concepts Total.

Success Ability (SA) and Failure Ability (FA) were the two attributions in
grade 8 that were most consistently correlated with achievement in grade 11,
for both females and males. Success Effort (SE) and Failure Effort (FE) were
also significantly negatively correlated with STEP Concepts Total and STEP
Concepts High, but only for the females. For the males, achievement on STEP
Concepts Total and STEP Concepts High were significantly correlated with

the attribution of Failure to Others (FO). Somewhat surprisingly, MO/IH was
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Table 1

Descriptive Statistics and Correlations for Grade 8 Achievement and Causal
Attributions and grade 11 Achievement.

COMP12 CONC12 CONCL12  CONCH12 MEANS
COMPS F .49 %k 49 3o 47 %k 46 %ok <43.38>8(10.24)
M .67 w62 Wit 53 #k 59wk <46.58> (6.17)
CONC8 F .58 %t 51 #k 56 %%k 43 % <37.80> (9.28)
M .70 %% 61 ek 47 ok 61 Wer <42.10> (4.72)
SA8 F 24 * .27 o .20 * .28 ** 13.69 (3.12)
M 27 % 41 w27 % LG4 Fek 14,25 (3.15)
SE8 F -.17 -.21 * -.13 <-.24 12.64 (3.92)
M -.02 11 11 <.11 > 12.73 (3.70)
S08 F .12 .04 .03 .04 14.33 (3.04)
M -.09 -.04 -.10 .02 13.64 (2.71)
ST8 F -.13 -.06 -.05 -.05 <14.70> (2.47)
M -.18 -.20 -.20 -.16 <13.88> (2.63)
FA8 F -.23 % -.28 %  -.18 -.30 % 10.67 (2.85)
M -.25% - 37 % =32 % - 3 vk 10.64 (3.13)
‘FE8 F  -.29 % -27 % -17 -.30 #* 11.99 (3.51)
M -.02 -.03 .00 -.04 11.76 (3.05)
FO8 F -.07 -.11 -.07 -.12 12,26 (2.99)
M -.05 -.25 * -.15 -.28 * 12,00 (2.97)
FT8 F -.05 -.12 -.06 -.15 <14.12> (2.67)
M -.06 -.15 -.09 -.17 <12.84> (2.76)
MO/LH8 F <.00 > <.02 > <.03 > <.01 > =31 (2.43)
M .31 %k > (45 Wik 5 (4] ik y ¢ 4] ek .39 (2.46)
F 49.52 <38.94> 21.03 <17.90>

MEANS (4.90) (6.96) (2.88) (4.56)
(s.d.) M 50.03 <41.74> 21.85 <19.87>
(5.03) (5.24) (2.31) (3.46)

* p<.05, % p<.01, ok p<.001 ;2 brackets indicate significant diff. p<.05.
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significantly correlated with grade 11 achievement only for the males. None
of the correlations for the females were significantly different from zero.

To investigate the predictive ability of the attribution varjables, each of
the four grade 11 achievement variables was regressed on the 8 attribution
scores from grade 8. The two grade 8 achievement scores were also used as
predictor variables in order to see the contribution of the attribution
scores independent of prior achievement. For.the males, attribution scores
contributed to the accounted for variance only in the equation for STEP
Concepts High. Failure Others (FO) added .08 to the accounted for variance
and Success Ability added .03. For the Femalés, attributions entered each
of the four equations for grade 11 achievement. Failure Ability (FA) added
.09, .04, and .03 to the variance accounted for in the equations for STEP
Concepts Total , Concepts Low and Concepts High respectively. Failure Effort

~ (FE) added .10 and .13 to the variance accounted for in the equations for

Computation and STEP Concepts High. In separate analyses, MO/LH added .07
to the variance accounted for in a regression equation for Concepts High
when it was regressed on grade 8 achievement and MO/LH for females. MO/LH
did not enter any of the regression equations for males.

CONCLUSIONS AND DISCUSSION

Based upon the results presented above, several tentative conclusions can
be drawn. First of all it was clear that the attribution subscales were not
all related to achievement equally well. Success Ability and Failure Ability
were the two most strongly correlated with achievement for both females and
males. The MO/LH score was significantly correlated with achievement only
for the males, but it still might be important in predicting achievement
for females as evidenced by its contribution to a regression equation
predicting Concepts High for females. The results of the regression analyses
suggest that for the males causal attributions might not be important as
predictors of future achievement independent of pridr achievement. However
for the females, attributions do have predictive ability independent of
prior achievement and for this reason further research is indicated. The
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differing results for both females and males based upon cognitive level
suggest that this classification is important and that cognitive level
should be a factor in future research. In sumary, although it is far from
clear what role causal attributions play in determining achievement for
females and males, it is clear that they do play a role and that perhaps
this role is more important for females.
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o PRESERVICE ELEMENTARY TEACHERS -
THEIR ATTITUDES TOWARDS MATHEMATICS AND THE ANKIETIES THEY SUFFER
Diane Miller, University of Missouri--Columbia

An Lnstrument designed to measure math anxiety was administered
2o a group of preservice elementary teachens. The nesults
Aindicated that thein math anxiety was no greater than the
"average” adult's. However, the nesulbis of two Less gonmal
assessments indicated that some popular beliefs may need

closern scutinizing.

INTRODUCTION

Since September, 1976, when MsS Magazine puﬁlished an art{cle by Shelia Tobias
entitled "Math Anxiety," the term “math anxiety" has become a popular expression
in socfal and écademic circles. Fear of mathemétics. avoidance of mathematics,
even poor attitude toward mathematics are often associated with the popular
term. Many people point an accusing finger at our nation's elementary school
teachers as the source of mathematics anxiety developed in children.at an early
age. Thg'purpose.of this study‘was‘twofold: (1) to ascertain.to what extent

a se]éct grdup of preservice elementary teachers suffer with math anxiety; and,
(2) to assess the{r feelings and attitudes towards mathematics.

THE INVESTIGATION
During.theA1984-BS school year,, sgvénty students from a mid-western university
and a private gollege participated in the study. The students were enrolled
in a math methods class for elementary teachers. A1l seventy students were
administered the Mathematics Anxiety Rating Scale (MARS) constructed by Frank
Richardson and Richard Suinn (available through the Rocky Mountain Behavioral
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Sciences Institute, Fort Collins, Colorado); and, a 25-item True/False
attitude assessment instrument designed by Jim Daniels at the University of
Texas. Fifty-eight of these seventy students also completed a 10-item
sentence completion exercise designed to assess a person's beliefs about
mathematics.

MATHEMATICS ANXIETY

Math anxiety involves "feelings of tension and anxiety that interfere with the
manipulation of numbers and the solving of mathematical problems in a wide
variety of ordinary 1ife and academic situations." (Richardson and Suinn, 1972)
The norm mean score for the adult form of the MARS is 215 with a standard
deviation of 65. The mean score for the 70 participants in this study was 221
with a standard deviation of 61. Using the Cochran and Cox method to test the
significant difference between two means resulted in no significant difference
between the mean MARS score of the participants in this study and the norm mean
score. (Ferguson, 1976) The conclusion drawn at this point was that this

. group of preservice elementary teachers did not have a significant greater
degree of math anxiety than the "average" adult. On the surface, this is a
pleasing conclusion. However, the partibipants' responses to some of the items
on the True/False instrument and the sentence completion exercise warrant
further consideration.

A review of the literature revealed that people with math anxiety range in

age from nine to sixty-five. In one study, nine to eleven year-old children,
who were underachieving in mathematics, demonstrated that anxiety was the

most significant contributor. (Sepie and Keeling, 1979) To prevent maximum
damage to a student's self-concept, math anxiety must be conquered in the early
years of intellectual development. A teacher's attitude is a potent force in
the classroom. One conclusion drawn from a survey. of 124 dissertations
written from 1969-75 was that teachers' attitudes and their enthusiasm toward

a subject have greater impact on students' attitudes than instructional
variables do. (Burton, 1979)

. l{llC 221
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The general attitude exhibited by the participants in this study seemed to
be negative. The two statements of the sentence completion exercise which
received the greatest percentage of negative responses were: '"When it comes
to math, I . . . " and "Doing math makes me feel . . . " Sixty percent of
the responses to the first statement were of a negative nature and seventy
percent of the responses to the second statement were negative.

Doyle and Graesser (1978) conducted a study using math anxious and math
comfortable college students in which they were trying to degermine if the
math anxious students exhibited characteristics distinguishable from the math
comfortable students. One trait deemed characteristic of highly math anxious
students is that they express the belief that the problem they are f}ying to
solve has a simple solution, but that they are too dumb to see it.

The responses to two statements on the True/False assessment instrument combined
with one item from the sentence completion exercise support Doyle's and
Graesser's hypothesis. Statement: Good math solutions are usually complicated.
Thirteen answered true, 57 answered false. Statement: Some math problems are
Just plain easy. Sixty-three answered true, 7 answered false. Complete: Doing
math makes me feel . . . Seventy percent of the responses were negative. If a
person generally feels that solutions are not complicated and problems are easy,
then of course they are going to feel dumb if they cannot fget it."

A review of the literature revealed that the development of attitudes toward
math is a summatory phenomenon with each conditioning experience building

upon the one that precedes it. The initial attitudes seem to be affected

by all the teachers of mathematics with whom the student is associated.

Pupils who have done poorly or failed math have deflated egos and therefore, .
tend to develop attitudes of dislike and hostility toward math. Indicative
of findings reported throughout the literature, a poor attitude seems to

breed math anxiety.
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WHAT CAN BE DONE TO PREVENT AND/OR CURE MATH ANXIETY?

There are two positive facets about math anxiety; it is curable at any

stage; and, its hold is never irreversible. Research conducted in the

math anxiety program at the University of Minnesota supports the hypothesis

of past experiences being a contributing factor to math anxiety. (Mathison, 1977)
These past experiences are generally associated with the effect of teacher
influence. Math teachers have a reputation of being hard. One item on the
sentence completion exercise supports this attitude. Complete: Math teachers
are . . . Responses: "insensitive," "strict and not very understanding,"
“intimidating to me," "to smart to teach it," "hard for me to communicate with,"
etc. (Thirty-three percent of the responses were of this negative nature.)

Faculty in teacher education colleges can help to dispel this image of math
teachers.  They can also do much to resolve the dilema for preservice
elementary teachers who are adversely effected by mathematics anxiety. They
can provide a mechanism to diagnose math anxiety and then provide support
groups, math classes, and tutorial sessions to help dispel whatever is
causing the anxiety. Within college classrooms, teachers can build an
atmosphere in which students are not afraid to ask “dumb questions" and then
encourage them to do the same when they become teachers. Math content should
be taught using methods with which students can identify. Preservice
elementary teachers should be given a strong foundation in how to use
manipulatives and concrete examples in their future classrooms. They should
be encouraged to talk about personal math difficulties and allowed to work
together on challenging problems.

SUMMARY

Math anxiety is a threat to our society's intellectual advancement. Teachers
are a very important educational influence on students' learning mathematics.
Therefore, educators should start early, in the formative years, to conquer

math anxiety. College and university personnel should become more attuned to

o - .
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the anxieties and attitudes of preservice elementary teachers. They must
address their students’' needs in being prepared to prevent and/or fight the
anxieties of their future students and to instill an improved attitude
toward mathematics in general.
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COMPUTER PROGRAMMING AND MATHEMATICAL THINKING
Janeal Mika Oprea

Cleveland State University

The effects of computer programming instruction on mathematical
thinking skills and development of fundamental concepts were in-
vestigated. After six weeks of programming instruction, two
randomly selected sixth grade treatment groupe were compared to
a control group on posttests measuring programming ability,
generalization, and understanding of variables. For each depen-
dent variable, it was determined that the average of the mean
scores of the groups receiving programming instruction wag
significantly greater than the mean score of the control group.

If the present trend continues: there will be two million computers in the
U.S. public schools by 1988. The proliferation of computers in schools is
partially due to the implicit belief that computers are powerful educational
tools. However, although computer programming advocates have argued its
efficacy in terms of both academic and attitudinal benefits, to date there
is a disturbing lack of empirical evidence substantiating these arguments.

The potential positive effects computer programming could have on mathe—
matics learning are numerous and varied, ranging from the enrichment of
mathematical concept learning to the enhancement of deductive and inductive
reasoning. Proponents of computers often cite apparent relationships
between certain mathematical cognitive processes, such as generalization,
and the processes involved in computer programming (e.g. Hatfield, 1984;
Papert, 1980). Hatfield, for instance, described the process of programming
as "successive approximation" since a programmer often solves a problem for
a restricted set of data first and then extends and modifies the program for
a larger universe. Hatfield asserts that this refinement and extension of
already successful programs will foster thinking strategies such as

O
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generalizing and conjecturing.

Unfortunately, most claims of a relationship between mathematical thinking
and cognitive processes used during computer programming have been based on
rational argument, individual observation, and the experience of "expert
witnesses" — such as practitioners and educators — and not supported by
systematic empirical research. The few mathematics education studies of the
cognitive consequences of learning to program had only marginally positive
results (Milojkovic, 1983; Foster, 1972). Several psychological studies
comparing expert and novice programmers seem to indicate a relationship
between programming ability and mathematical generalization (e.g. Pea and
Kurland, 1984; Jefferies, 1982).

In light of the limited but positive empirical results, the intent of my
research was to investigate the effects of computer programming instruction
on one specific mathematical thinking process; namely, generalization. Since
computer programming and expression of mathematical generalizations rely ex-
tensively on the use of variables, a second facet of my study was an inves-
tigation of elementary students' understanding of variables and the relation-
ship of this understanding to the students' mathematical generalization
process and computer programming ability.

While generalization is only one of the mental processes that correlates
positively with mathematical aptitude, many mathematicians feel it is an
extremely important attribute of mathematical maturity (e.g. Mason, 1982;
Krutetskii, 1976). Mason refers to generalization as "the life-blood of
mathematics (p. 9)" while Krutetskii states that “abstractions and generali-
zations constitute the essence of mathematics and mathematical thinking

(p. 86)." '

PROCEDURE

As previously mentioned, my investigation focussed on the effects of computer
programming instruction on sixth grade students' mathematical generalization
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ability and understanding of variables. Sixth grade classes of two elemen-
tary schools were the treatment groups. The classes of one school acted as
a control (Group C) while the students of the other were randomly assigned
to experimental group W or experimental group E. For 6 weeks, both groups
W and E studied BASIC computer programming during 60-90 minute sessions 2 or
3 times a week. Overall, these students participated in approximately 20
hours of programming instruction. Pre- and posttests assessing programming
ability (PROG), mathematical generalization (GEN), and understanding of
variables (VAR) were administered. Table 1 is a summary of the three treat-
ment groups and includes means and standard deviations of the pre- and

posttests.
Table 1
Summary of Treatment Groups
Group

W E C
Subjects (N) 26 29 29
Sex (M/F) 12/14 14/15 15/14
Ability 54.5 52.6 52.2
GEN Pre 13.4 (5.3) 14.4 (6.5) 11.6 (5.9)
(29) Post 15.0 (6.5) 14.6 (6.2) 11.9 (6.5)
PROG Pre 2.6(4.1) 2.3 (2.1) 2.8 (2.2)
(29) Post 9.5 (5.0) 8.8 (5.0) 3.1 (4.6)
VAR Pre 2.2 (1.4) 2.4 (1.6) 2.9 (2.7)
(14) Post 2.8 (2.3) 3.8 (2.2) 1.8 (1.5)

Integration of computer programming into the elementary mathematics
curriculum is still in its infancy. Thus the purpose of two separate experi-
mental groups was to study the effects of two different instructional methods.
The Wholistic approach (Treatment W) began instruction at the whole program
level. The focus was on mathematically relevant problems with commands
introduced only as needed to solve the problem. On the other hand, the
Elemental approach (Treatment E) focussed on the individual BASIC commands
and proceeded stepwise until the students were capable of programming complex
problems. Further explanations of these two treatments can be found in

Oprea (1984).
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In accordance with Dienes (1961) operational definition of generalization, I
developed a paper and pencil instrument (with items similar to Krutetskii's
interview questions) to measure generalization ability. This generalization
instrument, with a reliability of .80 (Cronbach's a, N=78), consisted of
four subtests, each of which involved one of the following mathematical con~
cepts: combinations, exponents, number patterns, and geometrical shapes.

The items of each subtest were ordered and weighted so that hypothetically
the number of items successfully completed indicated the student's level of
generalization. Instruments measuring programming ability (reliability = .82)
and understanding of variables (reliability = .67) were also developed.

RESULTS

Multivariate statistical methods were used to measure the effects of the
treatment on the three groups. Using Mathematical Ability (as measured by
- the Mathematical Application subtest of the CTBS).as a concomitant variable,
multivariate analysis of covariance was calculated and found to be statis~
tically significant (Wilk's lambda = .667, approximate F = 4.81, p < .0002).
Follow-up analysis included individual ANOVAs using approximated mean squares
for the three dependent variables and Dunn's multiple comparison test. For
each dependent variable, it was determined that the average posttest mean of
the groups receiving programming instruction was significantly greater than
the posttest mean of the control group. The alpha levels were as follows:
Generalization (p < .1), Programming (p < .005), and Understanding of
Variables (p < .05). Based on these statistical results, the following con-
clusions can be drawn:
1. 8ixth grade students can learn to program.
2. Learning computer programming enhances sixth grade
students' understanding of variables.
3. There is preliminary evidence that programming
instruction enhances sixth grade students' mathe-
matical generalization.
4. The researcher was unable to substantiate the claim
that different instructional methods would influence
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the student's mathematical generalization: pro-
gramming ability, and understanding of variables.

CONCLUSIONS

From the considerable number of students that are being taught computer pro-
gramming, one might conclude that programming aptitude and skills can be
developed in any student at any grade level. Yet there is little mathematics
education research to support this assumption. Thus my study served to
verify this contention for sixth grade students. This result also has prag-
matic implications since among educators or nractitioners, there is no
accepted level of programming competency. Inasmuch as the programming
instrument proved reliable and valid, these results can serve as a measuring
stick in future research and curricular development.

My research addressed the issue of whether computer programming promotes the
development of thinking skills. Inasmuch as the statistical results were
marginally significant, my research can be considered preliminary support of
this hypothesis. Since the research theories about learning and teaching
computer programming in elementary schools are still evolving, it is
probably premature to draw definitive conclusions regarding the effects of
computer programming instruction on mathematical generalizatidn. Yet, the
positive —— although marginal — results and relative importance of this
issue justifies further investigation.
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DECIMAL CONCEPTS AND OPERATIONS: WHAT DO STUDENTS THINK?

Douglas T. Owens
University of British Columbia

Ninety-six students in grades six, seven, and
eight took a test of 33 free response items on
various aspects of decimal concepts, computations,
and problems, but emphasizing multiplication in
particular. Following the written test 15
students were interviewed to identify rationales
and probe students' understanding of decimals as
numbers. Performance was generally acceptable on
computation. Students rely on rules they have
been taught, rather than reasoning, for example in
an estimation task. Other conceptual tasks of
translating from words to numerals and supplying a
number  between two decimal numbers were
troublesome.

For at least 50 years mathematics educators have been
concerned about the quality of students' understanding of
mathematics as well as being able to cipher. The CSMS group
in England (Hart, 1981) concluded that work with decimals is
not as simple as recalling place names and rules for
computation. Rather a whole series of relationships is
involved in the integration of decimals as numbers into the
system. In their investigations Hiebert and Wearne (1983)
concluded that students have generally created few 1links
between form and understanding. From a series of tasks
focusing on the meaning of decimals in various contexts, they
concluded that students are more influenced by form than
understanding in making decisions.

The purpose of this paper is to investigate the relationship
between performance on computation, especially multiplication
of decimals, and the more conceptual notions of estimation of
product, translation from words to symbols, and naming a
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number between two decimal numbers. It is hypothesized that
students' performance on computational procedures will
outstrip their understanding of decimals as numbers.

METHODS

The study involved 24 grade six, 26 grade seven, and 46 grade
eight students at two schools in the Greater Vancouver area.
In British Columbia elementary schools go through grade seven.
The two classes of grade eights were in a junior secondary
school.

A test of 33 free response items was constructed. The
Addition, sSubtraction and Multiplication computation items
were presented in horizontal format. The numbers were chosen
to minimize the difficulty with facts and whole number
algorithms. The Number Line items asked students to name a
marked point between two designated points. The Order items
required ordering three given numbers. The Problems were one-
step applications such as average speed, cost of gasoline,
fuel consumption and enlargement. The remaining tests will be
described and examined in detail in the Results section.

On the basis of the written test and teacher recommendation,
students with a range of competency were selected for
interviews. Originally six from each grade were selected, but
five from each grade had usable transcripts of the interviews.
The informal interviews, conducted by a graduate assistant,
varied in length from 40 minutes to an hour. The interview
format was adjusted to the subject's written test performance
and was designed to ascertain computational strategies and
probe understanding of decimals as numbers.
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RESULTS AND CONCLUSIONS

Descriptive data for the written tests are displayed in Table
1. While particularly difficult computations were avoided,

TABLE 1
MEANS OF THREE GRADES ON EIGHT WRITTEN SUBTESTS

No. of Grade 6 Grade 7 Grade 8

Items N=24 N=26 N=46
ADD AND SUBTRACT 5 3.70 3.58 4.54
MULTIPLY . 10 7.38 7.23 9.20
PLACE DECIMAL 3 1.04 1.77 1.46
TRANSLATE & MULTIPLY 2 1.00 .73 .76
NUMBER LINE 2 1.33 1.54 1.39
ORDER 2 1.25 1.69 1.52
PROBLEMS 6 4.29 4.12 4.22
BETWEEN 3 .92 1.00 1.13

the results confirm that generally these students had a good
grasp of setting up and placing the decimal point in the
computed result. Decimal numbers were not a particular
obstacle to solving the application problems in multiplication
settings. In retrospect the quality of the Problems test
would be improved by at least one divide item and at least one
less obvious multiplication such as a reduction situation.
Ragged decimals in the Number Line and Order subtests would
have been more difficult and more revealing of understanding.

One item from each of the remaining subtests has been chosen

to detail from the interview data. Item 17 was stated:
Estimate the answer, and place the decimal point in the given
"answer": 3.25 x 6.25 = 2119. Item 16 was similar. While
O
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Item 18 reguired placing the decimal point in one of the
factors, a "count the decimal places" strategy was sufficient.

As a result Item 18 was easiest.
Item 17 are summarized in Table 2.
viewed only one was successful on the Item 17

TABLE 2

Results of the interviews on
Of the 15 students inter-

of the written

INTERVIEW SUMMARY FOR "PLACE THE DECIMAL POINT"

ITEM NUMBER 17

GRADE BIX GRADE SEVEN GRADE EIGHT

Tony 14,0,0" Max 9,1,0 Rhoda 15,1,0
7x1=7: ,3671 When you can't 7x1: Alternated
Agreed estimation may line up decimals between 3.761 and
help. He couldn't you count: .3671 36.71. "I can't
explain. remember."

carl 16,1,0 Glena 12,2,1 sue 18,1,0

"S times 7 is 35,...
and the decimal will
be lined up here:
36.71

Jay 23,1,0

8x1l=8: 36.71

The product must be
larger than either
factor.

Lulu 30,1,0
7x8=35 : .3761
"Four decimal places"

Jed 31,3,1 -
7.000x1.0=7.000 3.500
“About half of 7:"
3.671

5x7.000 = 35,000:
36.71. Changed to
3.671 because 3

places in 35.000

Josh 18,2,0
7.0x1.0. Two
places: 36.71

Jo 20,0,0
7x1=7 ¥I don't
remember."

Eva 28,2,0

7x1=s7 "Closer to
3 than to 36."
Less than 7
because .5 < 1.

367.1 . 7x1 .
"I'm not sure."

Bert 21,1,0
"Four places."
Provoked to
estimate. "7
times 1/2 is
3-1/2:" 3.671.

will 2s8,1,0
"About 7. Four
places:" .3671

Wanda 31,1,0
"About half of
seven."

"S8tudent Pseudonym, Total Score (max=33), Place the Decimal
Point Score (max=3), Score on Item 17 on written test.

test and only four during the interview.

All interviewees

except one went through some form of estimating, but most were

unable to make use of it.
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force is the: rule to count decimal places. The responses of
Glena and Josh, of allowing the number of places in the
estimate (2zeroes at that) drive the "count rule" is the
epitome of form without understanding.

TABLE 3

SELECTED INTERVIEW DATA FOR TRANSLATION
ITEM NUMBER 20

GRADE SIX GRADE SEVEN GRADE EIGHT
Tony 14,0,0" Max 9,0,0 Rhoda 15,0,0
.31 103 103
2.07 %207 %702
comp.correct

Ccarl 16,0,0 Glena 12,0,0 sue 18,0,0

| |
| |
| |
| |
| |
| ]
| |
| |
x27 13 and 27." | 2000 decimals"| 270
| |
| |
| |
| |
| |
| |
! |
] |
| |
| |

13 "This would be 1302 "No 130
___many zeroes
9114000
Jed 31,2,1 Josh 18,1,0 Bert 21,1,0
0.31 Written: 1.3 .13
2.07 x2.7 =72
217 comp.correct comp.correct
0000 "I can't remember "Four after the
6200 how." decimal."
0.6417

“Student Pseudonym, Total Score (max=33), Translation Score
(max=2), Score Item 20 on the written test.

Table 3 briefly summarizes the results of the interview
regarding Item 20: Multiply the number 1 hundredth, 3 tenths,
by the number 2 ones, 7 hundredths. In most cases in the
interview, the student was not asked to complete the
computation, but just to "set it up", thus translating. It is
striking that four of the five grade sixes were able to
translate correctly. Jo's response, 130 x 702, characterizes
the substituting‘of Yhundred® for "hundredth" and "ten" for
"tenth". Wanda, who missed the written Item 17 but corrected
it in the interview, put it this way: I always get confused
on the endings...I can't remember if it's the decimal or the
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other one because they are so similar.” This situation is not
helped by the common practice of referring to 3.26 for
exanmple, as "three point two, six" rather than "three and
twenty=-six hundredths".

The most difficult subtest was the last. The general
direction is: "Write a number which would be between the two
numbers. Item 32 (3.7 and 3.71) is judged to be the best of
the three for judging understanding. Of those writing the
test, 31 were successful on Item 32 including 5 of the
interviewees. An additional two were successful during the
interview. Surprisingly in the interviews four responded
3.70. Jo explained: "Zero is lower than 3.71 and higher than
that (3.7)." Three grade eights expressed on the written test
or orally, "I don't know." Jed indicated any one of 3.701,
3.702, 3.703.... "I would get nine correct answers." Will
used the strategy of finding the average on Item 33.

In conclusion, students can perform computational procedures
for multiplication of decimals. Rows of partial products as
Jed's response in Table 3 show inflexibility. There is a
dependence on algorithmic rules such as "count the decimal
places", even in the face of conflicting information from
estimation of the product. Concepts of decimal numbers are
not well understood, even by grade eight students.
Recommendations include 1long term teaching experiments to
study the processes by which students get an early grasp of
the concepts before proceeding to algorithms.
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EFECTS OF A SECONDARY MATHEMATICS METHODS COURSE ON PRESERVICE
TEACHERS' VIEWS OF TEACHING MATHEMATICS

John Owens, University of Georgia

Elizabeth Henderson, University of Georgia

Two levels of effect are found and discussed. The first is a
practical level which provides training and experience in
developing lesson plans and presenting material in a classroom
situation. This level fulfills the students' expectations for
the course, with the exception of coping with disciplinary
problems. The second level focuses on the preservice teachers'
conceptions of mathematics teaching and looks for growth during
the course. Both the range of conceptions with which the
students enter the course and the changes during the course vary
widely. Perry's (1970) scheme is found to be a useful tool in
attempting to understand these changes.

THE STUDY

During the winter of 1985 a study was begun to investigate how
students in a secondary mathematics methods course viewed
themselves as mathematics teachers and what effect the course had
on their views. The course consisted of six weeks of on-campus
instruction, followed by a four week practicum in a ninth grade
advanced geometry class at a local high school. The first part
of the course emphasized different ways of teaching concepts,
generalizations, and problem solving. Each intern made three
observations of the high school class during this period. There
were 14 methods students (interns) grouped in seven pairs.

Assigned to each group was a doctoral student who helped them
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prepare mathematically for teaching geometry, observed the
geometry class with the interns, helped prepare teaching
assignments, and provided feedback after each lesson taught.
Each intern taught a minimum of two class periods to half the
geometry class and was assigned two students from the class to
monitor (including grading of homework and classwork) for the
four week period. About one-half of the lessons taught were
videotaped for subsequent analysis by the intern and doctoral
student. Each intern was also required to keep a diary on each
day's activities. The emphasis on each entry was to reflect and
critique the various teacher education activities from the
perspective of what the material meant to them as emerging
professionals. Twenty to forty-five minute interviews were
conducted during the final week of the course with each methods
student. The interviews were designed to elicit student
assessment of the course activities and to generate self-
assessment of the student as a teacher. Follow-up interviews
were conducted during the summer, subsequent to student teaching,
to provide evidence of how student teaching affected their

perspectives on teaching and on the methods course.
STUDENT EXPECTATIONS

The initial diary entries reflected the goals the students
imparted to the course and their perception of their individual

» strengths and weaknesses as mathematics teachers. There was 8
general tone of excitement at the prospect of student teaching,
mixed with a marked fear that centered on two areas: lack of
knowledge of mathematical content, and not knowing the
"mechanics" of teaching, particularly the preparation of lesson
plans. Instruction in these mechanics is seen by the interns as
the main purpose of the methods course. A typical comment was:

This is the class where my questions on lesson plans,

material on tests, and other classroom ideas are

ERSC 238
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supposed to be answered.
The most common strength mentioned was an ability to "get along
with kids." Several students documented this assertion with
stories of substitute teaching, working in day care operations or
coaching various sports. The fear of lack of content knowledge
arose in different forms which provided some insight into the
students "levels" of thinking. While some of the students seemed
concerned about their ability to "do" geometry - i.e., to make an
"A" on homework and tests - others questioned their
understanding of geometry at a level that will help them in the
classroom. This difference in perspective, between viewing the
course and its contents as merely subject matter (as one student
put it: "guessing what the instructor wants") and beginning to
see oneself as a teacher, was evident in both the mathematical

content and the pedagogical content of the methods course.
TEACHING

The students found their first teaching experience to be
generally traumatic - both in anticipation and in practice. One
student stated:

At times I felt like I was teaching to a two-

dimensional picture. I really was not aware of

anything or anyone other than myself.
Most interns tended to focus on the experience from an ego-
centric viewpoint, stressing "performance" in a mechanistic
sense (How many times did I do that?). The students' ability to
be analytical about their own teaching was rare although two of
the students did demonstrate some ability to reflect on their own
teaching. While added experience tended to lessen the initial
nervousness and facilitate their concentration on student
performance, their classrooms were far from student-centered.
The diaries emphasized the desirability (from the interns'

perspective) of a teacher-centered classroom.
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Bush (1982) found that enculturation, i.e., learning from prior
experience as a8 student, was a primary source of pre-service
teachers' knowledge of teaching techniques. Similarly, we found

. that the students held strong beliefs as to how they will teach,
formed in part from .favorable past experiences or in reaction to
unfavorable ones. These views were social or mechanical in
nature. They viewed their role as 8 teacher in terms of, for
example, being a friend to the students, giving homework
regularly, or giving extra credit, in a8 content-free context.
Few had given consideration to the student's learning of
mathematics or are aware of alternative methods of presenting
mathematics. The methods course material, instruction on different
types of lessons, different "moves" used in developing concepts,
was generally regarded as only tangentially relevant to the real
classroom. Several students reported that they saw some benefit
in such knowledge, but were precluded from using that knowledge
in student teaching because of perceived stringent curriculum
requirements.

One characteristic exhibited by some interns was a tendency to
map their own learning styles onto the student. For example one
intern who credited all of her success in mathematics to "hard
work and practice"” was suprised at her ninth graders' proficiency
with fractions and she commented "they must really have done a
lot of thoge." These students, an advanced group, had actually
spent less time practicing such skills than average students.

INDIVIDUAL CONCEPTIONS AND GROWTH
In addition to an overall look at the class, several more
detailed case studies were prepared. Below are brief capsules of

four of these,

JIM. The students were, in general, reserved in their comments.

O
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Few strongly declarative statements were made. This student,
however, had no compunctions about stating his mind. He was
quick to suggest improvements in nearly every phase of the high
school and college curricula. His comments concerning his peers
were often caustic, to the point of being insulting. Every
problem seemed to have an answer - his. For Jim, whose worldview
was dualistic, the course seemed to serve only to reinforce his

previous beliefs.

JANICE. This student exhibited, from the beginning, a degree of
insight well above the average student. She seemed to have the
ability at every stage to view what was transpiring from a
"téacher" perspective. She was generally acknowledged by her
peers to be the best teacher during the field experience. She
was the only one to discuss the effect a teacher might have on
students' conceptions of mathematics. Janice had recently
graduated with a degree in management science, and readily found
applications from this field during student teaching. For the
other interns, any discussion of the relevance of mathematics to
other fields was typically relegated to the area of developing

motivational examples to begin lessons.

TOM. Along with Janice, Tom was the only student that could
be considered to be in a relativistic position. He was

acknowledged by his peers as having the most,

'style" among the
members of the class; he had a dominating personality. At the
beginning of the course he viewed teaching as a performance -
showing little concern for his students'learning. He
demonstrated, more than anyone else, a marked degree of
development from student to teacher during the course. This
seemed to result from his ability to perceive weaknesses in
himself and to try to address those weaknesses. He accepted
criticism in a constructive manner, and was able to observe

characteristics in others that "he viewed as possessing himself,
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BARRY. This intern, early in the methods course, made the
statement:

I didn't know it took so much to prepare & lesson.

Teaching isn't easy like I thought it was in high

gschool. I thought the teacher only went by the book.
In the post-student-teaching interview he described his teaching
‘style as "going by the book." Barry's worldview was generally
regarded as multiplistic, but his reaction to student teaching
was basically dualistic.

CONCLUSIONS

The role a methods course plays in a teacher's development is far
from uniform. In one sense each student participated in the same
course and received the practical preparation for student
teaching they anticipated. But for some this was a time of
significant growth in their conceptions of their role as a
mathematics teacher. Others seemed to gain only mechanical
teaching techniques from the course. Perry's scheme proved
useful in attempting to understand this variation. Those deemed.
to have a8 more relativistic worldview seemed to profit most from
the course. Few students exhibited levels of development above

the multiplistic stage.
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ABSTRACT

Mathematical jteration is a process which is used in the
execution of a variety of algorithms for a variety of purposes.
It results in the production of a sequence in which each non-
initial term is determined +rom its predecessors in the same way.
Mathematical iteration is not a common topic in school
mathematics, despite recommendations that it be included in the
mathematics curriculum. A knowledge of iteration may give
students a framework for understanding mathematical concepts,
such as real numbers and the derivative, for exploring problems,
and for carrying out procedures. As an instructional topic,
mathematical iteration also provides a context within which
students may develop and extend their knowledge of mathematical
concepts and procedures.

The development of students’ knowledge of iteration was
investigated as four ninth and tenth grade students were engaged
in BASIC computer programming tasks. The students developed
their knowledge of iteration as they.were involved in the
construction, execution, revision, and refinement of computer
programs. The emphasis was on the students conceptualizing and
developing their own algorithms which employed iteration and then
operationalizing their algorithms in computer programs.

Four students, two girls and two boys, were selected to
participate in the study. Cne of the boys was enrolled in a
second-year algebra coursei the other students were all taking
high school geometry. The students had very little experience
with computing and had not previously written their own programs.

The treatment extended over 10 weeks and consisted of 13
group teaching smeamsions and 3 individual interviews for each
student, The first five teaching sessions and the +irst set o+f
interviews dealt with problems related to the generation of
numerical sequences. The remaining sessions dealt with iterative
methods for solving quadratic equations.

The sources of data included video-tapes and audio-tapes o+f
the interviews and teaching sessions, written student productions
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such as printed copies of their programs and their notes on
problem solutions, and my own notes taken during the sessions and
during reviews of the tapes. The process of analyzing the tapes
was ongoing throughout the study. After each session, 1 reviewed
the tapes and filled out indexing sheets to identify emerging
patterns of behavior and indicators of their knowledge of
iteration. The students’ errors and difficulties as they
developed computers programs were alsc noted.

Three components of a t:nowledge cf iteration were
identified: (a) specifying one or more initial values, (b)
repeatedly executing a procedure to produce subsequent terms of
the sequence, and (c) applvying an appropriate rule for stopping
execution of the procedure. These components can be identified
as parts of computer programs that were studied and developed by
the students during the investigation.

The students used various strategies as they operationalized
their algorithms and modified and refined their programs. For
example, during the sessions related to the generation of
sequences, the students developed a chart first and then
attempted to "teach®” the computer to produce an identical chart.
The atudents either identified a pattern in the chart and used
that pattern to express the changes in the variables, or they
attempted to "teach” the computer the steps that they followed
when they set up the chart. These steps may or may not have
involved a pattern which was identified.

Difficulties that the students had as they developed the
programa were also identified. All of the programs involved the
use of two or more variables whose values changed throughout the
execution ot the program. The use of a FOR/NEXT loop seemed to
be conceptually more difficult for the students because it
required them to reorder the steps in “heir own algorithms used
to construct their tables.

During the proposed session, samples of the students’ work
will be presented. Indicators of the three components of their
knowledge of iteration will be discussed as they were evidenced
in the programming activities. Programming difficulties related
to the three components will also be discussed.
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METACOGNITIVE AND PERFORMANCE ASPECTS OF INCLUSIVE SOLUTIONS
Stephen K. Reed

Florida Atlantic University

One solution is more inclusive than the other if it contains all
the information in the other solution plus some additional
information. Students in college algebra classes were given

word problems of different inclusiveness and rated their complexity,
their typicality, and their potential usefulness for solving a
similar problem. Students' selection of potentially useful
solutions failed to support the hypothesis that they would prefer
more inclusive solutions, but they did show significant preferences
for the more simple and the more typical solutions. A less-
inclusive solution was not effective in helping students solve any
of 6 test problems but a more-inclusive solution helped students
solve 3 of the 6 test problems. The linitation of metacognition

is revealed by the finding that the 3 effective solutions were

the ones least often selected as being potentially useful.

Imagine that you are given two problems to solve and don't know how to
solve either one. You have the opportunity to see the solution to one of
the problems and have to chose the solution that will help you solve both

problems. Which solution would you choose?

Although there may not be an obvious correct choice for many pairs of
problems, a correct choice should exist if one problem is a special case of
the other. For these kinds of choices, the solution that is more inclusive
should provide the most complete information for solving both problems.

One solution is more inclusive than the other, according to the definition

used here, if it contains all the information needed to solve the less
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v
inclusive problem plus some additional information. Table 1 shows the
problems used in the experiment, which are ordered from the least to the

most inclusive in each category.

The purpose of this study was to determine how the inclusiveness of a
solution influences students' choices of solutions and their ability to
solve problems of different inclusiveness. These issues were studied by
giving a questionnaire to students in a college algebra class. In the
first part of the questionnaire students selected, for different pairs of
problems, the solution they would prefer to use in order to solve both
problems. They also rated the complexity and typicality of the problems,
In the second part of the questionnaire they received a solution of one
member of a pair and were asked to use it to solve the other member of the

pair.

The results did not support the hypothesis that studeats would select the
most inclusive solution when it was paired with a less inclusive solution.
Although solution inclusiveness did not significantly iafluence students'
selections, the complexity and typicality of solutions did have a
significant effect. Students showed significant preferences for avoiding

the most complex solutions, and for selecting the most typical solutions.

The hypothesis that students would select solutions of greater
inclusiveness was based on the normative principle that inclusive solutions
are more informative. The second part of the experiment determined whether
inclusive golutions were, in fact, more useful than less inclusive
solutions. Por each of the six problem categories, some of the students
had to solve a problem that was more inclusive than the solution. The
other students solved a problem that was less inclusive than the solution.
Table 2 shows the percentage of students who were able to formulate a
correct equation to represent the problem. They had 3 minutes to construct
the equation (Attempt 1), 2 minutes to study a detailed solution to the
related problem, and an additional 3 minutes to use the solution to

construct the equation (Attempt 2). The z-score measures whether the

) .
'El{lC 246
BEST COPY AVAILABLE



Reed

Category

Area

Cost

Distance
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Table 1
Problems Used in Experiment 1

Problem
1. A lot is 4 times as long as it is wide. What is the width
of the lot if its area is 7500 square yards?

4w x w = 7500

2. A side walk, 1 yard wide, surrounds a lot that is 3 times
as long as it is wide. What is the width of the lot if the
total area (including the side walk) is 8000 square yards?

(3w + 2) x (w+ 2) = 8000

3. A side walk, 2 yards wide, surrounds a lot that is 2 times
as long as it is wide. What is the width of the lot if the
area of the walkway is 450 square yards?

(2w + 4) x (w + 4) - (2w x w) = 450

1. A group of people paid $238 to purchase tickets to a play.
How many people were in the group if the tickets cost $14
each.

$14 = $238/n

2. A group of people paid $306 to purchase theater tickets.
When 7 more people joined the group, the total cost was $425.
How many people were in the original group if all tickets had
the same price?

$306/0 = $425/(n + )

3. A group of people paid $70 to watch a basketball game.
When 8 more people joined the group the total cost was $120.
How many people were in the original group if the larger group
received a 20% discount?

.8 x ($70/n) = $120/(n + 8)

1. A pilot flew 1575 miles in 7 hours. What was his rate of
travel?

1575 = r x 7

2. A pilot flew from City A to City B in 7 hours but returned
in only 6 hours by flying 50 mph faster. What was his rate of
travel to City B?

rx7=(r+ 50) x6

3. A pilot flew his plane from Milton to Brownsville in 5
hours with a 25 mph tailwind. The return trip, against the
same wind, took 1 hour longer. What was the rate of travel
without any wind?

(r +25) x5 = (r-25 x6
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Table 1 (continued)

Problem

Category

Fulcrum 1. Laurie weighs 60 kg and is sitting 165 cm from the fulcrum
of a seesaw. Bill weighs 55 kg. How far from the fulcrum must
Bill sit to balance the seesaw?

60 x 165 = 55 x d

2. Tina and Wilt are sitting 4 meters apart on a seesaw. Tina
weighs 65 kg, and Wilt weighs 80 kg. How far from the fulcrum
must Tina sit to balance the seesaw?

65 xd=80x (4 -d)
3. Dan and Susie are sitting 3 meters apart on a seesaw. Mary
is sitting 1 meter behind Susie. Dan weighs 70 kg, Susie
weighs 25 kg and Mary weighs 20 kg. How far from the fulcrum
must Susie sit to balance the seesaw?

20x (d+ 1) +25xd=170x (3 -4d)

Mixture 1. An alloy of copper contains 23% pure copper. How much of
it must be melted to obtain 5.3 pounds of copper.

.23 xp=35.3

2. One alloy of copper is 21% pure copper and another is 31%
pure copper. How much of the 31% alloy must be melted together
with 9 pounds of 21% alloy to obtain 6.7 pounds of copper?

21 x 9 + 31l x p= 6.7
3. One alloy of copper is 20% pure copper and another is 12%
pure copper. How much of each must be melted together to
obtain 60 pounds of alloy containing 10.4 pounds of copper?

20 x p + .12 x (60 - p) = 10.4

Work 1. Tom can mow his lawn in 1.5 hours, How long will it take
him to finish mowing his lawn if his son mowed 1/4 of it?

.67 x h= .75

2. Bill can paint a room in 3 hours and Fred can paint it in §
hours. How long will it take them if they both work together?

33xh+ . 20x h=1
3. An expert can complete a technical task in 2 hours but a
novice requires 4 hours to do the same task. When they work
together, the novice works 1 hour more than the expert., How
long does each work?

SOxh+ 25x(h+ 1) =1
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Table 2

Effect of Solution Inclusiveness on the Successful Use of Solutions

Category Solution Inclusiveness Percent Correct Z - Score

Attempt 1 Attempt 2

Area Intermediate 0 0 0
High 0 11 1.73
Cost Intermediate 0 4 1.00
High . 7 47 3.20*
Distance Intermediate 3 20 2.24
High 13 43 3.00*
Fulcrum Intermediate 0 10 1.73
High 10 57 3.74%
Mixture Intermediate 0 0 0
High 20 20 0
Work Intermediate 0 3 1.00
High 0 11 1.73

* Significant at the p < .01 level
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second attempt (when students had a solution) was significantly better than
the first attempt. A p < .0l level of significance is used because of

multiple comparisons.

The results indicate that the solution of a less inclusive problem (at the
intermediate level of inclusiveness) did not help students solve a more
inclusive problem. The improvement on the second attempt was
nonsignificant for all six categories. In contrast, the solution of a more
inclusive problem (high level of inclusiveness) did result in a significant

improvement for three of the six categories.

A closer look at the three effective solutions (the most inclusive cost,
distance, and fulcrum problems) is revealing. Each of these problems was
considered by students to be high in complexity and low in typicality. The
consequence was that students avoided selecting these solutions in order to
solve both Problems 2 and 3. Only 16 of 42 students selected the more
inclusive solution for the Cost problem, only 17 of 47 students selected
the more inclusive solution for the Distance problem and only 18 of 48
students selected the more inclusive solution for the Fulcrum problem.

Thus students show a consistent preference for an ineffective solution

(Problem 2) over an effective solution (Problem 3).
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ON CONCEPTUALIZING RESEARCH METHODOLOGIES
FOR COMPUTER~BASED INSTRUCTION

David Reinking
Rutgers University

Current research methodologies may be inadequate to significantly
enhance our understanding of computer-based instruction (CBI), In-
consistent findings and methodological shortcomings in media
research, including CBI, raise this possibility. This paper suggests
that considering fundamental issues in educational research may help
researchers conceptualize more productive research methodologies for
CBI. An examination of these issues should lead to specific
recommendations for conceptualizing and conducting experiments
involving the computer in instruction. Specific recommendations are
discussed in the following categories: moving towards theory building,
expanding research methodologies, and setting priorities for applied
research,
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On Conceptualizing Research Methodologies
for Computer-Based Instruction

The pitfalls of educational research are legion. The risks
of succumbing to these pitfalls may be amplified when research
involves innovative technologies like the computer. The
exciting potential of the computer for enhancing instruction
generates spontaneous enthusiasm and a concomitant need to
justify this enthusiasm. Consequently, there may be a
temptation to short-circuit the research procass by asking
superficiai questions, by sacrificing sound methodology and by
over-generalizing ~ findings. The history of research
investigating a wvariety of instructional media also suggests
caution for those interested in researching topics in
computer-based instruction (CBI). Several writers have
chronicled the failure of researchers to create a useful
research bése for guiding the selection and use of instructional
media (Clark and Bovy, 1983; DiVesta, 1975; Jamison, Suppes, and
Wells, 1974; Leifer, 1976; Oettinger and Zapol, 1971; Saettler,
1968) .

Existing CBI research appears to fare no better. Evidence
that methodology, for example, is a serious concern can be found
in Kulik's (1983) meta-analysis of CBI studies in which a
majority of the available studies were eliminated due to
methodological shortcomings. Before we accept the possibility
that strong empirical evidence is not possib}e or alternatively

continue to muddy the .empirical waters, we should compare the
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gocdness of fit between research methodology and the types of
questions for which we seek answers. The purpose of this paper
is to highiight a set of conceptual and methodological

considerations which may be relevant to such a comparison.

Fundamental Conceptual and Methodological Concerns

Research methodology- is presumably a function of the types
of questions the researcher chooses to address. A
conceptualization of a researcﬁ study begins, therefore, with a
question 'in the mind of the researcher. The old saw about
getting a good answer only if . there is a good question is
important at this stage but the process is more complex when put
into the context of educational research. The researcher must
also consider potential answers to the question, how those
answers might be explained, and use these notions to formulate a
methodology for research. The challenge of research is not
simply generating good gquestions, but evolving strategies for
generating a limited set of answers.

Put another way, the fundamental issue is whether or not
research .methodology will permit what Platt (1968) has termed
strong inferences as opposed to weak generalizations. Strong
inferences are, of course, preferred but are similarly more
difficult to ferret out. They demand careful control of
variables which sometimes means a 6ovement towards "laboratory"
as opposed to "real world" conditions. Achieving strong
inferences -is also facilitated by the presence of a guiding

theory. A theory aids in the generation of testable hypotheses,
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expedites methodological decisions, and aiso serves as a bench
mark for interpieting the data gathered. A theory enables
experimental results to be interpretted as "a case in point" as
opposed to an isolated phenomenoh with many alternative
explanations. Wi thout a theoretical perspective isolating a set
of significant variables for study becomes difficult.

As an example consider the following gquestion which is
typical of those motivating existing CBI research: Can a
computer help students learn concepts in biology? Wi thout
theoretical guidancé or a concern for the level at which
findings might .be generalized a-conceptually simple experiment
may emerge from this question. A biological concept is selected
and taught _via a computer to an appropriate population after
which some achievement measure is employed to compare these
subjects to others taught the same concept _via alternative
media. The best a researcher can do using this methodology is
to report results and speculate broadly as to what may have
caused them. At worst, a misguided or over-enthusiastic
researcher will on occasion Juse the resulting data to maké
geﬁeral statements concerning the wusefulness of computers to
teach biological concepts.

Raw empiricism 1is the dominant characteristic of this type
of study and many of the benefits of expe;imental research are
lost or risk being perverted. Very little is contributed to an
overall wunderstanding of the computer in instruction or for that
matter its wutility in teaching biological concepts beyond the

specific conditions of the experiment. Methodology in this case
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has been conceived as only a louical extension of the question
without considering the realm <f possible answers. Current
conceptualizations of CBI resgarch methodology may suffer from

this fundamental weakness.

Specific Conceptual and Methcdological Recommendations

Even a casual’ review of CBI research indicates a tendency
to duplicate the methodologies of other media research with
little reason to believe that results will be any more
enlightening. One way to address this concern is to re-examine
the conceptual and methodological foundations of research
involving instructional media. To be valuable, however, this
exercise must result in specific recommendations which can guide
the researcher. Below is an attempt to move in this direction.
Recommendations have been grouped into three broad categories:
moving towards theory building, exbanding research

methodologies, and setting priorities for applied research.

Moving Towards Theory Building

Lachenmeyer (1970¢) has argued that the predominant view of
experimentation in the social sciences has been inefficient in
that it does not facilitate the formulation of general theories.
The typical research study in psychology and education
investigates isolated hypotheses which are generéted primarily
from a review of previous research as opposed to observable
phenomena. Presumably, the cumulative effect of mény
experiments will be the. development of a general theory which

consolidates findings into a unified whole. This has rarely, if
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ever, occurred, howaver, in educational research.

HMost successful thecry building, on the other hand, occurs
when aeneral principles are inducted from directly observable,
naturally occurring phenomena. The initial goal of the
zeseazéhez is to develop adequate measurement instruments and
methodologies for studying a readily observable phenomenon.
Later, after Eac£ finding pilot studies, a theoretical statement
may emerge to explain facts ;elated to the phencmena studied. At

lthis point, the theoretical statement can be used deductively to
generate hypotheses for experimental verification.

The need for developing a theoretical orientation to media
research has been articulated by a number of writers. Salomon
(1979) and Salomon and Clark (1977), for example, have
attributed cthe lack of consistent findings in media research to
the absence of a theoretical orientation. They feel that most

of the existing research is a result, in their wecrds, of

investigations with media to determine instructional
effectiveness. Instead, they propose that a theoretical

oreintation leads to research _ on media to determine
psychological effects. This puts the investigation of
instructional media 1like the computer within the realm of
psychological and educational theory instead of existing in a
theoretical vacuum. Similarly, Clark and Bovy (1983) have
cautioned against the confounding of technology and
instructional method 1in fozmulating‘ and conducting research
involving instructional media. Ellis (1976) presaged these

positions when he argued that understanding the use of computers
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in education really begins with an understanding of education.

A move towards a theory building orientation in CBI

research would have . significant impact on research
methodologies. More studies would be conceived, carried out,
and interpretted as pilot or exploratory studies. The

importance of studies which focus on sharpening measurement
instruments and developing workable methodologies would be
recognizeg. In addition, the likelihood that findings would be
over-generalized .would be reduced. In short, even the most
spplied research would be judged in terms of its contribution to
a broader understanding of the computer's role as a medium of
instruction.

At the same time focusing on theory building would provide
a rationale for basic research "in CBI.' Basic research, for
example, is possible when the computer is integrated into a more
general ' theory of instructiqnal media. Theoretical positions
like those developed by Salomon (1979) and 6lson (1976) could be
used to guide the conceptualization of Sasic researcﬁ hypotheses
and the development of suitable methodologies. By carrying out
basic research founded on accepted theoretical positions
researchers would bev forced to confront and tease out the
significant attributes of the computer as a medium of
instruction. We would see fewer studies which make
recommendations as to whether the computer is a viable medium
for instruction and perhaps more that would give us insight into
when, where, and with whom the computer might best be suited for

particular categories of instructional content,
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Expanding Research Methodologies

Building theory implies a search for those variables which
may account for or predict the occurrence of a range of
phenomena. When dealing with human behavior and learning, the
researcher is assured that the number of variables and their
interactions will be enormously complex. While a theory will
reduce the number of variables to consider relevant for study,
coﬁsiderable complexity remains. When investigating
instructional uses of the computer, identifying relevant
vazjables becomes even more difficult. Computer technology
makes the options for delivering instruction so open ended that
even the set of _possible variables may not be intuitively
obrious (Reinking, 1984).

What does this imply specifically for research involving
computers in instruction? In general this means expanding
methodology to recognize a wider range of vaziabies and to
permit those which are significant to surface. Methodologies
which recognize and pursue only technological differences may be
too simplistic. Few useful inferences can be made about the
computer's relationship to inst;uction when so many potentially
significant variables are ignored.

A desire to contend with more variables may dictate the
need for more complex methodologies in experimental research. A
wider range of statistical techniques may be necessary;
multivariate and regression analyses may need to supplement
univariate ANOVAs. Even simple designs and straightforward

statistical analyses, however, can be made more powerful by
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including multiple dependent measures and attempting to
replicate results. The latter option will, of course, require
the cooperation of journal editors. The experimental b{as of
educational and psychological research may also need to be
tempered in order to encourage non-experimental methods
employing correlational analyses or even case studies. Caution
may also be necessary in foreclosing areas of inquiry on the
basis of accepting a single null hypothesis.

Examples of how creative research methodologies could
proceed from theoretical underpinnings and a concern for
relevant variables can be found in Salomon and Clark's (1977)
examination of research methodologies for hedia resea;ch. Théy
have offered several viable research designs and statistical
techniques which would be directly applicable to CBI research.

More productive methodologies may also be a result of
collaborative research which brings together colleagues of
varying expertise. The interacting variables which operate
simultaneously when using the computer in instruction can rarely
be seen clearly by one individual. 1Ideally expertise would be
sought out to insure knowledge 'of media, the instructional
content and its pedagogy, and cognitive psychology. Even these
areas do not exhaust all of the sources of significant variation

(eg. social and environmental factors).

Setting Priorities for Applied Research

A perhaps healthy tension has always existed between basic
and applied research. Under ideal circumstances these research

emphases complement each other so that both theory and practice
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are mutually lenriched. Under leés than ideal circumstances the
distinction between the two is unclear and research proceeds
haphazardly with little clear.direction. One of the theses of
this paper 1is that the latter condition i§ more characteristic
of media research in general and CBI research in particular,

A common misconception, however, is that basic research is
uniformly more essential to. the theory building process.
Lachenmeyer (1970) has cited several examples from the history
of science which suggests that the opposite is more likely the
case. Theory building is at first more often a result of
observing events in the real world which is the domain of the
applied researcher. The .applied researcher, however, must
recognize the wunique contribution applied research can make to
theory building and conceptualize methodologies accordingly.

‘ This means more than suggesting theoretical explanations
for findings; it also means seeking out real instructional
problems that may contribute to a broader theoretical
understanding of CBI. Wilkinson §1984) has suggested priorities
for selecting research topics to explore computer applications
in the ‘teaching of a’'content area. First, the computer should
be wused to manipulate congent in a fashion which is not readily
duplicated by other instructional media. Secondly, the use of
the computer should be guided by accepted pedagogical principles
for teaching the content selected. Finally, a high priority
should be given to research which addresses areas of instruction
which have proven to be problematic.

Researchers who subscribe to these priorities will increase
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the likelihood that their research will he more relevant to the
practitioner as well as contributing to the theory building

process.
Conclusion

In summary, current research methodologies may be
inadequate to significantly enhance our understanding of CBI.
Inconsistent findings in media research, including CBI, raise
this possibility. COnsidering.fundameﬂtal issues in educational
research suggests a broader range of research methodologies may
be appropriate. The goal of bBI research should probably be
.identifying significant variables in an effort to build
theoretical perspectives. Finally, the topics of applied
resesrch may need to be evaluated closely to insure their

usefulness for both practice and theory development.
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SOME AREAS OF NEUROPSYCHOLOGICAL RESEARCH WITH POSSIBLE IMPLICATIONS
FOR MATHEMATICS EDUCATION

Linda Jensen Sheffield

Northern Kentucky University

Understanding the functioning of the brain has tremendous irplica-
tions for both teaching and learning, yet it has only been recently
that brain research has begun to give us some insights into the
workings of this very complex part of our anatomy. Although the
neurosciences are still in their infancy, the jcllowing areas show
possible promise for research by math educators in collaboration
with neuropsychologists and neuroscientists. These areas irclude:
differences in hemisphericity, processing and lecarning styles:
learning style preferences vs. learning style sirengths or weak-
nesses; maturational differences including growth spurts ard
mylenation; effects of etimulation and enriched environments; the
hierarchy of the triune brain; effects of emotions; control of
attention; sex differences; and other relcted ‘actors.

INTRODUCTION

The brain has been called education's next frontier, and research into this area
has tremendous implications for all of education (Loviglio, 1980). Within the
brain lie answers to such questions as "How do people learn? Can we increase the
learning of all people from infancy to old age? Why do some people seem to learn
differently than others? What makes a teaching method or material effective?

Can children overcome learning disabilities?" These questions are only a few of
the myriad possibilities in the area of brain functioning research. Research in
this area is relatively new and definite implications cannot yet be drawn for
education, but some promising areas for further exploration are being mentioned.
This paper will note a few of those areas and some of the research which has
already been done. Certainly much remains to be done and we must beware of
"jumping on bandwagons”.

DIFFERENCES IN HEMISPHERICITY, PROCESSING AND LEARNING STYLES

This is probably the most publicized area of brain functioning research and
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many educators have begun to talk about teaching right and left brain children.
Since Roger Sperry won the Nobel prize for his "split brain" research, educators
have been trying to apply his results to the classroom. A caution must be
noted here because the work of Sperry and others was performed on patients who
had had the corpus collosum severed. In normal children, impulses pass rapidly
from one side of the brain to the other through the corpus collosum and actions
cannot be thought of as being performed on solely the right or left side of the
brain. Current research by educators and neuropsychologists does seem to
indicate, however, that different children do have different learning styles.
Davidson (1983) has identified two distinct learning styles among students
learning mathematics which correspond to the different processing styles of the
two sides of the brain. One style is a more holistic style corresponding to
the right brain functioning and the other style is more sequential, corres-
ponding to the left brain. While the evidence strongly disputes the notion
that we learn with only one side of the brain, the two hemispheres of the

brain do perform in different ways (Levy, 1983). Wheatley (1977) described

the right hemisphere as "thinking" in images and the left hemisphere as
“thinking” in words. This may be a simple way of looking at the differences

in functioning of the two hemispheres. We must be careful not to simplify

this functioning too much, however. It cannot be said that math and reading
are left brain subjects and art and music are right brain subjects. Both
hemispheres of the brain are important to the full understanding of any
subject. Research is needed to determine better ways of fully utilizing the
whole brain for all children. -

LEARNING STYLE PREFERENCES VS. LEARNING STYLE STRENGTHS OR WEAKNESSES

Many researchers are using péper and pencil tests to determine the learning
style preference of students. Several of these tests ask students such
questions as whether they would rather give a speech or sing a song, read a
book or listen to music, etc. Results from these instruments are supposed to
determine if students are right brained or left brained. Davidson (1983)
warns that even if a student does indicate a preference for one style that
style may not be the student's strongest one. It is possible that the student
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may even have brain damage impairing the functioning of a preferred style.
Recent developments in brain imaging technologies such as electrophysiological
recording, magnetoencephalographic recording and nuclear resonance may give us
more information about a child's strengths and weaknesses in processing
information.

MATURATIONAL DIFFERENCES

Epstein (1979) has found evidence of growth spurts in the brain which roughly
correspond to the four periods of cognitive development described by Piaget.
Neuron development and mylenation of the brain also progresses in stages which
match those of Piaget and may account for the growth spurts (Johnson, 1982).
This has implications for education in terms of the optimal time and mode of
presentation of topics. Johnson (1982, p.49) has stated, "If we present a
child with learning tasks prior to the mylenation of the areas needed to handle
these tasks, we may be forcing the child . . . to use less appropriate neural
networks. By asking the learner to perform before the appropriate area is
developed, we may be causing the failure and frustration seen in many children
today." She also hypothesizes that many adults may never reach the stage of
formal operations because they lacked the concrete development of concepts as
children. Math is an ideal subject for the development of concepts through
physical manipulation of objects, but this manipulation is often neglected in
favor of paper and pencil exercises. Formal operations may be possible only
if the concrete operational brain growth of the previous period has been
properly developed through concrete stimulation and experiences. It thus
appears that their are optimal times for the development of certain skills and
children of different ages will perform differently at least in part due to
the different physiological makeup of the brain. MaclLean (1978, p.39) has
stated, "There is now abundant anatomical and behavioral evidence that if
neural circuits of the brain are not brought into play at certain critical
times of development, they may never be capable of functioning."” Much
research is necessary to determine the relationship of learning tasks and the
timing of their presentation to the growth of cognitive abilities.
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EFFECTS OF STIMULATION AND ENRICHED ENVIRONMENT

Stryker and Sherk found that cats raised in an environment of only vertical
lines did not later respond normally to horizontal lines. Apparently they
had not developed the brain structures to see horizontal lines (Esler, 1982).
Greenough found that animals raised under environmentally impoverished
conditions had fewer neural connections than animals in enriched conditions
(Esler, 1982). Some researchers hypothesize that the Japanese have trouble
pronouncing the Letter L because of lack of experience with the sound during
infancy. This tends to indicate that the physical makeup of the brain is not
totally determined at birth but develops according to experience. It is
important for educators to determine what experiences can promote optimal
growth in children. Indeed, recent experiments with rats indicate that the
brain can continue to grow even into old age when give the proper stimulation.

THE HIERARCHY OF THE TRIUNE BRAIN

MacLean (1978) argues that the mind is made up of a hierarchy of three brains
which reflect evolutionary stages. The reptilian, or R-complex, located in the
midbrain, seems to be responsible for certain "instinctive" behaviors in humans,
such as impulses and routine habits. The second formation, the 1imbic system,
representing the old mammalian brain seems to have a role in emotions. It is
the third formation, the neocortex, or the new mammalian brain, which is

divided into left and right hemispheres and performs tasks involving reason,
language, and other cognitive thought. Behaviors are a result of a complex
interaction between all parts of the brain and cannot be understood by looking
at only one part.

EFFECTS OF EMOTION

Emotions controlled by the midbrain with no apparent external cause, or emotions
controlled by the forebrain such as anxiety or worry can have a great effect on
the learning of mathematics. The right brain seems to play a special role in
emotions. Research has shown that when the right brain is positively engaged
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emotionally, z:th sides of the brain will participate regardless of subject
matter and lea~ning will increase (Levy, 1983).

CONTROL OF ATTENTION

The reticular “ormation, the limbic system, and the thalamus actively select
the stimuli tc which a person will respond. The human brain responds to
novelty. Wher asked to repeat the same task numerous times the brain
"habituates” and does not consciously think about the task. Therefore, much
of the drill and repetition in teaching mathematical operations may actually
be counterproductive to learning.

SEX DIFFERENCES

Many researchers state that there are clear differences in the male and female
brain (Grow ard Johnson, 1983; Loviglio, 1980; Weintraub, 1981). There are no
clear indications whether these differences are due to sex hormones, differences
in the rate of maturation, differences in experiences or other factors, but the
differences are most likely due to a combination of these causes. Researchers
are agreed, hcwever, that sex alone does not determine the makeup of the brain.
Differences within each sex are greater than the differences between sexes. It
would not be advisable to set up separate math classes for boys and girls,

simply because there are sex differences. It is important to look at each child
as an individual.

OTHER RELATED FACTORS
Other factors have been found which are related to brain functioning and may

also have implications for teaching. Space does not permit discussing all
of these fully. These include such factors as hand preference, allergies,

- use of biofeedback and levels of cognitive awareness, and the tendancy of the

brain to seek patterns. Readers and researchers will note others.
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We are on the precipice of exciting new discoveries about that universe which
lies within the brain of each one of us. Emerging technologies are giving us
the means to begin our explorations. We cannot wait until someone gives us all
the answers about how this brain functions, because those answers may not come
in the foreseeable future, but we must actively seek to understand how one
learns and how we might best use this knowledge to teach.
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The importance of spatial abilities in the development of geometric understanding has
been studied by many scholars (Davis and Silver, 1982; Fey, 1982).
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GEOMETRY, SPATIAL DEVELOPMENT AND COMPUTERS:
YOUNG CHILDREN AND TRIANGLE CONCEPT DEVELOPMENT

Marilyn Shelton
The Ohio State University

ABSTRACT: A research study was conducted to see if a computer program
could help young children expand their pre-conceived conception of
"triangles” as a figure which is equilateral and painting straight up. The
random triangle program from the geometry section of the TABS
(Technalogy and Basic Skills) software was used. The random triangle
program generates three randomly placed dots on the monitor, then the
dots are connected to form a triangle. Twenty five preschoal children were
pretested on their conception of triangle. Twelve children had the
conviction that the shapes were triangles only when they were equilateral
and painting straight up. After the children interacted with the random
triangle program several of the children immediately generalized their
conception of triangles to include all shapes and orientations, including a
child who had just turmed two-years-ald. Some of the children also made
connections between the trlangle outlines on the screen and triangles cut
out of paper.

CONNECTION BETWEEN SPATIAL ABILITY AND GEOMETRY

their way to understanding the concept of triangles.
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Some of the
ented connections between spatial abilities and geometry are: to recognize a
(Fuys, 1984), to see a rotated shape (Rosser, Horan, Mattson and Mazzeo, 1984),
to predict what a shape will look like when rotated or flipped (Pellerey, 1984), to
recognize patterns, to see symmetry, and to form a concept image (Vinner and
Hershkowitz, 1980). The first two of these connections can be broken down into a
somewhat flexible sequence that the author has observed young children go through on
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MALLEABLE SEQUENCE OF TRIANGLE CONCEPT LEARNING

1. Not able to matech any shapes; circle, triangle, square, ete.

2. Able to match shapes; circle, (equilateral - horizontal base) triangle, square.

3. Mateh shapes; oval, diamonds, rectangles.

4. Associate name of shape with those listed in # 2 and # 3.

5. Recognize that a rotated equilateral triangle would be a triangle if it were put
"Right side Up", and the child will physically turn the triangle "right side up".

6. The child calls a disorientated triangle a "Funny Triangle".

7. The child recognizes disorientated triangles as triangles, no qusalifiers needed.

8. Right triangle with a horizontal base recognized as another kind of triangle.

9. The child recognizes disorientated right triangles.

10. The child recognizes "other triangles" with horizontal bases.

11. The child recognizes "other triangles" when disorientated.

12. The scalene triangle with a base at a 45 degree angle is the last to be recognized.

The sequence has been called malleable because it seems to be dependent on the
child's experience with shapes and shape names. The above list is flexible in that a
child may have not completely learned one thing before starting to work on another.
Many children seem to get stuck between steps 5 and 7. It is the author's observation
that the children who get stuck have been presented with equilateral triangles (and
maybe right triangles) with a horizontal bases, at the same time they were presented
with "eircles” and "squares". The significance of this is that circles can only vary in
size and color, not in outline. The same is true of squares! Have you ever heard anyone
tell a very young child that, "Triangles are strange because they do not always have
the same shape."? Herbert Klausmeier's (1976) model for attainment of concepts would
help identify the problem as the child failing to generalize that two or more forms of
triangles are examples of the same concept. Evidence has been documented that one
contributing factor is the lack of good examples and of non-examples (Dienes, 1961;
Shummway and White, 1980).

Triangles are one of the shapes which are usually taught to young children. The
example of triangles which is most often presented to young children is that of a solid
figure. with three straight sides and a horizontal base. The mathematicians who deal
with the concept of teaching shapes to young children stress that the shape is the
outside, not the body (Richardson, Goodman, Hartman & LePique, 1980). The idea that
the real shape of the triangle is the outline isn't usually taught; and the points of the
triangle are not focused on. Very little of this mathematical understanding has
transecended into early childhood classrooms. Mast of the teaching materials, hands on
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materials and examples in books, only include the equilateral triangles and usually with
a horizontal base. Once in a while an isosceles triangle will be included, and very
rarely will a right triangle or a scalene triangle be presented to young children.

One of the reasons for this discrepancy between research and practice in early
childhood centers could lie in the fact that teaching points and lines between points is
harder to do, and teachers have a hard time of generating enough samples for children
to interact with and grasp the concept. One solution for this problem may be the
computer. The technology of computers makes it possible to generate an infinite
variety of triangles in a short time, and as Dreyfus (1984) pointed out - the Eomputer
is an appropriate tool to use for teaching mathematical concepts.

The TABS (Technology And Basic Skills) Exploring Triangles disk was conceptualized
and developed to help 4th and 5th graders to intuitively understand that triangles do in
fact come in different shapes and orientations. A draft version of the TABS Exploring
Triangle disk had two interactive programs which could generate many different
examples of triangles. The first program was "Random Triangles", and it is the program
that was used in the reported study. In this activity the child pushes any key and three
dots randomly appear on the screen. The child can look at the dots for as long as he or
she wants, and can guess whether or not there will be a triangle when the dots are
connected, and can then push any key and the connecting lines will be drawn.

STUDY

The purpose of this study was to check out the hypothesis that the "Random Triangle"
program could help young children grasp a concept that usually is beyond their
understanding because it is presented in abstract ways with few examples. Children
often develop misconceptions of triangles which they keep for many years. It was
reasoned that young children have no trouble learning complex concepts like dog, so
why do some children at all ages have trouble with the concept of triangles?
Mitchelmore (1984) reported that even though young children are aware of the shapes
in their environment, most of them are not presented with the concepts in a way they
can understand.
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PROCEDURE

1. Sample: Twenty five children were pre tested for knowing the concept of triangles,
and triangles other than an equilateral triangle pointing straight up. The children were
from middle class families and attended a day care center. The children ranged in age
from 21 months to 5 years, 7 months.

2. Pretest: The twenty five children were shown various shapes and asked if they were
triangles or not. The shapes were cut from red construction paper. The set included 7
assorted triangles, and 5 non-triangles which were rectangles or other shapes with
straight sides. Seven children recognized all of the triangles in all orientations on the
pretest. Three of the children (all less than 2 1/2 years old) did not recognize any
shapes. Twelve of the children tested were at the stage where they recognized
triangles only if they were equilateral and pointing up, or said that it would be a
triangle if it were turned "right side up". The eighteen children who did not recognize
all of the triangles in all orientations became the treatment group.

Some of the children who only recognized the equilateral triangles with a horizontal
base had names for some of the other triangles. The right triangle from the unit blocks
was often called a "ramp", and was usually deseribed with accompanying arm
movements of driving a car up a ramp, and often with sound effects. One girl
identified a tall isosceles triangle as "on the church”, a boy called the same triangle a
"tent".

3. Treatment: Participation by the children was voluntary on their part, during their
free play time at the center. The children interacted with the program from 2 to 4
times each. The children could stay with the "game" as long as they wished. The
children used the TABS Random Triangle program on an Apple lle clone. The author sat
by the computer and assisted the children when they needed help. The author helped
the children make a "game" out of guessing whether or not there would be a triangle
when the dots were connected. This "game" was played by the child pushing any key on
the keyboard to get three random dots on the screen. The dots were counted, the child
guessed whether or not it would be a triangle when the dots were connected, and then
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the child pushed a key on the computer key board to find out. If the child guessed
wrong, the "computer tricked him/her." Some of the children were asked to describe
what the triangle would look like; tall, short, fat, big, little, etec.

The children were encouraged to make up their own games. They often counted the
dots, including a two-year-old who did not have one-to-one correspondence yet (but got
the intuitive concept image of triangles from this program). This two year old led the
way for a several of the older children. He would occasionally stop with a triangle on’
the screen, and then hunt through the red paper shapes from the pretest and pick out
the one that matched the triangle on the screen. He would then put the paper triangle
on the screen and rotate it until the screen triangle was covered up. Sometimes he
would say things like "all gone now", other times he just smiled.

4. Post test: Several days after last interacting with the computer and the adult, the
children were given the same set of cut shapes that were used on the pretest, and
asked to tell if they were triangles or not. The shapes were presented in a variety of
orientations to test for level of concept.

5. Results: The children averaged the same length of time to play with the "Random
Triangle" program as they did with software which was designed for preschoolers. That
average time was 9 minutes per game. The actual times ranged from 45 seconds to 1
hour and 25 minutes!

Eight of the children could identify all of the triangles (in any orientation) and all of
the non-triangles on the post test. Three children made progress by moving from one
stage to another, but not reaching the stage of recognizing all triangles in all
orientations.

CONCLUSIONS

Young children can intuitively understand the broad coneept of triangles. The computer
can help the young child acquire the concept of triangle by producing an infinite
variety of examples. The interaction and use of the TABS Random Triangle program
was fun for the young children and helped many of them form a broader concept of
triangles.
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Concept learning research is needed on comparing computers to the other materials
that are usually available in early childhood classrooms. Materials with which large
~“numbers of examples and non-examples can be generated are things like; geoboards,
tinker toys, clay, and the sand box. Research is needed which would help the preschool

and kindergarten teacher know how and when to teach concepts and with standard
materials and/or with the computer.
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MATHEMATICS LEARNING AND AUDITORY PERCEPTION
George B. Shirk, Department of Elementary and Early Childhood Education
Carleton 0. DeFosse, Department of Communication
The University of Toledo

A three-phase assessment procedure was implemerited to idemiify
possible areas of dysfunction in auditory-visuzl perception and
processing by mathematics-impaired subjects. Thig assessment
included testirg of reripheral acuizy, central auditory process-
ing, and cortical integration. Assessment results irdicate
apecific difficulties with memory for eequevce, sourd mimicry,
and the ability to recognize symbols presented orally.

INTRODUCTION

The difficulties that a child has learning mathematics have commonly been laid
to such 'causes' as lack of motivation and inattentiveness, with the inference
made that a child is a slow learner or is 'learning disabled’. Experience
with children enrolled in The University of Toledo's Mathematics Clinic has
led us to question the appropriateness of those labels. Although each of

the children had experienced difficulty learning mathematics, many demon-
strated instances of deep mathematical insight.

The purpose of this investigation was to determine if there were any auditory
reception, auditory conduction, or auditory processing difficulties among the
children studied that may account for any of the mathematics learning diffi-
culties. Cathcart (1974) identified listening ab1lity'as being the most
significant non-mathematical variable but did not define what he meant by the
term 'listening ability'; although he did suggest that future researchers
investigate general attentiveness as an independent variable with respect to
mathematical achievement. Sawada and Jarman (1978) examined the relationship
between mathematics achievement and specific cross modality functions. They
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determined that a relationship does exist and that it varies with the IQ of
the student.

MATHEMATICS TEACHING

Fuson and Hall (1983) demonstrate that most children bring a wealth of informa-
tion to school. In the first grade, this background is reinforced with the
focus placed upon learning to count, basic addition, and basic subtraction.

In the early primary grades the mode of instruction is to a large extent
iconic and somewhat tactile; however, by the end of second grade the dominant
mode becomes verbal/graphemic. The child is able to rely upon pictoral rep-
resentations, counting, drawing directly from visual representations to
develop the abstractions necessary for understanding mathematics. By the

end of second grade, algorithms such as addition and subtraction with regroup-
ing are first taught. Hiebert (1984) terms this "site 2" and defines it as
the stage where "form and understanding are 1inked when children connect a
procedure or algorithm with the underlying concept or rationale that motivates
the procedure".

Because mathematical algorithms are commonly presented as series of oral/
visual instructions to be memorized, an adult or child with below normal
auditory/visual perceptual abilities may have difficulty understanding these
instructions. That person may view the instructions as a series of meaningless
words or phrases and thus be unable to transcode the verbally received instruc-
tions into graphemic representation. The child may also have trouble moving
from the graphemically presented stimulus, e.g., blackboard demonstration, to
an oral response.

It is possible for a child or an adult with an auditory/visual perception
impairment such as those described in this presentation to acquire a good
understanding of mathematics taught in the primary grades, e.g., basic
addition, ‘subtraction, etc., yet experience difficulty learning mathematics
in the middle school classroom. This can occur because the nature of the
content to be learned in the early grades requires an understanding of a
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Timited number of graphemic symbols which can be acquired visually or
tactually by the student without resortirg to complex auditory processing.
However, understanding mathematics in the upper grades requires that the
student be effective perceptual processor in both the visual and acoustic
symbol systems. If the transcoding process is inefficient and requires addi-
tional processing time, the student places heavy demands upon his auditory
memory system with the result being a loss of information prior to completion
of problem solving tasks.

METHOD

A three-phase assessment procedure was established and implemented to identify
possible areas of auditory dysfunction and to identify contrasting normal

and abnormal performance patterns. Phase I of the study determined the status
of the peripheral auditory system. This was accomplished by obtaining a
pure-tone air conduction and bone conduction audiogram. In addition, Speech
Reception Thresholds (SRT) were obtained for both ears using the Central
Institute of the Deaf (CID) spondaic word 1ists. Speech Discrimination
Percentages (SDP) were obtained at the 34dB sensation level. All speech
stimuli were presented from tape to the child.

In Phase II, a battery of tests shows functional ability of the auditory

system from the inner ear to the primary auditory reception area in the
temporal lobe of the brain. Speech signals were distorted in ways that made
speech more difficult to decode. The methods included filtering the speech,
providing competing signals, and providing alternating signals, thereby placing
gradually increasing burdens upon the central auditory pathways. Individuals
with normally functioning central auditory pathways are capable of correctly
decoding the messages. Those individuals who have impairments in the con-
ductive system will show decreased accuracy in decoding the test messages.

Phase IIT consisted of administering the Goldman-Fristoe-Woodcock battery of

auditory skills (GFW) (1970) for the purpose of identifying possible dysfunction
in the auditory/visual perception system. The series consists of twelve
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subtests which are divided into two screening subtests, three auditory subtests,
and seven sound-symbol processing subtests. These tests and their tasks are

as follows: 1.) Selection attention; 2.) Recognition memory; 3.) Memory for
content; 4.) Memory for sequence; 5.) Sound mimicry; 6.) Sound recognition;

7.) Sound analysis; 8.) Sound blending; 9.) Sound-symbol association; 10.) Read-
ing of symbols; 11.) Spelling of sounds.

Nine subjects, aged 9 to 15, (6 males, 3 females) enrolled in the University
of Toledo's Educational Improvement Center were examined. Each child had
experienced difficulty learning mathematics but none qualified for Special
Education. None had been diagnosed as having ‘hard' signs of neurological
impairment.

Table 1
GFW Percentile Scores, Key-Math Grade Equivalencies

Students SB JD © RG SL RM AM BN ED KW

Sel Attention 6 8 18 1 25 1 15 1 1
Diag Discrimination 95 1 95" 95 45 12 64 65 75
Recog Memory 9 26 62 30 78 18 5 35 5
Mem Content 1 1 38 12 95 58 25 35 62
Mem Sequence ' 1 16 24 8 62 12 18 25 35
Sound Mimicry 1 22 22 95 30 5 12 10 12
Sound Recognition 60 62 58 18 65 25 75 29 18
Sound Analysis 12 80 32 16 48 65 22 5 1
Sound Blending 25 68 26 26 25 28 48 18 18
Sound-Sym. Assoc 12 80 99 55 1 1 1 5 35
Reading Symbols 32 42 80 24 55 80 60 35 20
Spelling Sounds 32 70 28 5 .18 38 32 1 1
Key Math Level 4.3 3.7 5.0 3.3 6.2 2.5 3.8 3.4 5.6
Grade Level 6.6 6.0 8.7 59 8.0 3.1 8.0 4.0 8.0
Age 14 10 15 13 13 9 10 10 13
O
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The results of our study are as follows:

Pnase 1 assessment revealed that all subjects had normal reripheral hearing
acuity. Phase Il assessment revealed that all subjects performed in the
normal range. Table 1 presents percentile results of Phase IIl testing. The
results indicate that all subjects were classified as having abnormal auditory
perception performance.

Because of age-related ceiling effects, the results for the categories of
Selective Attention, Diagnostic Discrimination, Recognition Memory, and Sound
Recognition need further examination. With one exception, all students scored
below the 50th percentile in their ability to recall sequences. Of particular
importance is Sound-Symbol Association, the ability to jdentify named symbols.
Six of the students scored well below the 50th percentile level in that
category.

REVIEW AND RECOMMENDATIONS

Some of these math-impaired students are better able to process visual

symbols than auditory symbols, while others reverse the process. We should

be prepared to design our instruction to emphasize the area of most efficient
processing. Additional testing is needed to determine if there is a set of
standard auditory perceptual profiles that can be related to specific types

of math breakdown. Our preliminary work with individuals who have been
enrolled in the Auditory Perception Clinic and the Mathematics Clinic indicates
that utilization of test results in designing mathematics remediation has been
fruitful,

Rehabilitation attempts must take into account each individual's strength and
weaknesses when designing a program for that student. If it can be demonstrated
that a child has difficulty understanding a series of spoken instructions, and
has difficulty attending to simple listening tasks, it should be readily
apparent why the child has difficulty understanding instruction which is
primarily oral.
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DIAGRAM DRAWING: EFFECT ON THE CONCEPTUAL FOCUS
OF NOVICE PROBLEM SOLVERS
Martin A. Simon, University of Massachusetts and Mount Holyoke College

Nouice problem solvens seem to focus mone on choosing proceduses
and Less on the concepts involved than do expert pnoZlem solvess,
A siudy was undentaken to detewmine whethen novice problem sclvers
would focus more on concepts i{f they were encouraged to s0fve
problems using diagrams. The study examined pencil and paper
wonk of ten subjects on a problem involuing fractions, The weneil
and paper werk was followed by a clinical interview with each
subject. Dunding the interview each subject was asked to explain
her wnitten solutions and then was asked to solve the problem
using a diagram. Although the problem nequited a fwo step
solution, subjects chose one arithmetic operation. Diagram wenrk
nesulted in greatern success, mone conceptual invclvement, and mone
congddence 4n the solutions.

Landau (1984) hypothesized that imaging can offer the student the opportunity
for a conceptual approach rather than a procedural approach to mathematical
problems. She defined conceptual as "how should I think about this problem?"
and procedural as "what should I do next?". She also cited data from the
App]iéd Problem Solving Project (Lesh 1983) that indicated that a conceptual
approach was more often assocfated with a successful solution than a
procedural approach.

The National Assessment of Educational Progress (NAEP 1979) demonstrated

that American students score much higher on routine problems that require a
single step than they do on multistep problems. A possible explanation for
this phenomenon 1s that the single step problems are often solvable using a
procedural approach (i.e., “should I add, subtract, multiply, or divide?"),
while such an approach is inadequate for the solution of multistep problems.

In the Fall of 1984, the exploratory phase of a study on diagram drawing for
mathematics problem solving was begun. The subject population was novice
problem solvers from the remedfal course Math 010 of the University of
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Massachusetts. Part of the data from this study was analyzed to see whether
novice problem solvers would focus more on concepts and less on procedures
if they were encouraged to solve problems using diagrammatic representations.

METHOD

Volunteers from the remedial math class were paid to attend two research
sessions on problem solving. In the first session students were given a set
of problems to work and asked to show all of their work. Students returned
one week later for a videotaped clinical interview in which they were asked
to explain their work from the week before and to attempt diagram solutions
for problems where no diagram solution had been attempted. For this study,
the subjects' work on Problem #2 was analyzed.

Problem #2: Chan has 3/4 of a gallon of ice cream. He gives
2/3 of what he has to Barry. How much ice cream does he have
left?

The work of ten subjects was involved in the study.
RESULTS

0f the ten students who participated in this study, only three successfully
solved Problem #2 on the pencil and paper test (first session). Of these
three, two spontaneously used diagrams to solve the problem. Only one of the
ten students successfully solved the problem using a straight arithmetic
(symbol manipulative) approéch. She (Eileen) solved the problem: 2/3 of

3/4 = 1/2, 3/4 - 1/2 = 1/4 gal. Of the seven incorrect written solutions,
all attempted to do the problem in one step. Four chose multiplication, two
chose subtraction, and one chose division. The work of three of the subjects
is briefly described below. Their responses to both the written work and to
the clinical interview characterize the full range of responses received in
the study.
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MARK solved the problem originally, 3/4 + 2/3 = 1/12. When asked why he
divided he responded, "Maybe it's subtraction...No, definitely division."

His explanation suggested that he was choosing division because the ice cream
was being “divided up". When asked to solve the problem using a diagram,

he quickly solved the problem correctly, accurately indicating the areas of
the rectangle which corresponded to the different amounts. He made no refe-
rence to any of the four arithmetic operations.

He was then asked if he could now solve the problem without the diagram. He
responded, "It's subtraction not division, because division's wrong." He
was taking for granted that his diagram solution was correct. He explained,
"1 can see it out."

MARILYN solved the original problem, 3/4 x 2/3 = 6/12. She explained her
work, "I know that you are supposed to multiply and that will give you the
answer.” When asked to draw a diagram, she drew.an appropriate rectangular
area representation. indicated the appropriate regions, but was unable to
name the fraction that Chan had left. ‘She could not decide whether it was
1/4 of a gallon or 1/4 of 3/4 of a gallon. In the latter case she was using
'of' to mean "out of"; the 1/4 was out.of the original 3/4.

Marilyn made no reference to arithmetic operations while working on her
diagram solution. She seemed to be figuring out how the ice cream had been
parcelled out.

MELISSA also originally solved the problem, 3/4 x 2/3 = 1/2. She explained
that "'of' means to multiply."” When asked to attempt a diagram solution of
the problem, she first wanted to draw 2/3 and 3/4 separately but realized that
she had no idea how to show that they are multiplied together. She settled
on drawing a rectangle with 3/4 shaded. She realized that she needed to find
2/3 of that amount, but did not know how. She was stuck at that point until
asked to represent 1/2 of 3/4. She thought about it, and then announced that
she knew how to draw 2/3 of 3/4, which she did. Like Marilyn, Melissa was
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unable to name the fraction that Chan had left. She failed to divide up the
unshaded 1/4 and confused the notions of a part of a whole and a part of a
part,

OBSERVATIONS AND DISCUSSION

Several trends were observed in the pencil and paper (non-diagram) solutions.
Students chose one step, arithmetic algorithms to solve the problems., They
explained their work with statements 1ike "It's a take-away problem" or “of
means times." When questioned about their confidence in the solution, they
gave the impression that it ought to be right because they could not think
of another operation that seemed more likely; a process of elimination expla-
nation. A1l of these trends suggest that the students were taking a procedu-
ral approach, trying to recognize or remember the appropriate algorithm.

Such an approach is consistent with instruction that focuses on key words and
textbooks which feature predominantly one step, routine word problems.

Students approached the diagram solutions differently. They seemed to think
about what was happening in the problem and how to represent it. They often
did not know what they were going to do after the step that they were working
on (an exploratory approach). They used what they knew and understood, rather
than what they had been shown. Those who solved the problem felt confident

in their answers, "You can just see it!" and rejected algorithmic solutions
which yielded different answers.

Mark used understandings of fractions in his diagram solution that were
unavailable to him when he was searching for an algorithm. Melissa and
Marilyn also used understandings of fractions, but got stuck at the point
where their conceptual understanding broke down. It seems desirable that
their conceptual difficulties were highlighted by their work. In the algo-
rithmic solutions, these students were not even aware of difficulties.

O
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CONCLUSIONS

The work described here is very preliminary. The two cases (the written
solutions and the diagram solutions) were not completely parallel since the
first session's work was done with no questioning by the researcher, while
the diagram work was done in an interview. The subjects were, however, asked
to explain their original work and they generally stuck to their original
solutions.

This study does however point out the procedural focus of novice problem
solvers. It also suggests that involving these novice problem solvers in
diagram solutions may be a valuable way to get students to work conceptually.
It offers them a medium in which they can build on what they know and "can
see." The increased understanding may result in a greater sense that they
can determine the correctness of their own solutions. Lessons would be
necessary to create bridges from the understandings gained from the diagram
work to the symbol manipulative approach. This would insure that the latter
approach also would be based on conceptual understanding.
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AN ETHNOGRAPHIC STUDY OF MATHEMATICS ANXIETY
AMONG PRE-SERVICE ELEMENTARY TEACHERS

Robert G. Underhill
Virginia Polytechnic Institute and State University

Joanne Rossi Becker
San Jose State University

This exploratory study investigated the mathematical instructional
milieu o rrospective ieachers with high and low mathematics
anxiety to determine if trere are behavior differences. Two nizh
and two iow acnxious students were audio- cnd videoiaped in their
matherzies instruction with small groups of children. The domains
of teacher Gestalt, respcnses to learmers' needs, verbal feedback,
peer inserzction, mathematical language, and personalization o
instruction are discussed. Subjects' comfort in the teacher rcle
seems to “ave more impact on teaching behaviors than does level of
anxiety.

INTRODUCTION

Articles decrying the mathematics anxiety of elementary school teachers are
common. For example, Bulmahn and Young (1982) discuss the mathematics anxiety
of elementary school teachers as a communicable disease. The effect is thought
to operate in two ways. First, it is presumed that positive teacher attitudes
influence the development of positive attitudes in children {(Johnson, 1981;
Larson, 1983), and the development of positive student attitudes is one goal of
teaching mathematics (Donady & Tobias, 1977; NCTM, 1980; Reyes, 1980). Second,
many presume that negative teacher attitudes effect students through poor
mathematics teaching., which may result in reduced student achievement (Early,
1970; Pearson, 1980; Phillips, 1973).

These two points of view have little empirical foundation. Few data are
available which document the level of anxiety of elementary teachers (NCTM, 1982;
Widmer & Chavez, 1982). In fact, data available concerning teachers' overall
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attitudes show that they have attitudes which are neutral at worst (Becker,

in press; Begle, 1979; Hosticka & Traugh, 1981). In addition, evidence is

mixed as to whether teacher attitudes are related to student attitudes or
achievement. Although Phillips (1973) and Banks (1964) found that teacher
attitudes are related to children's attitudes and achievement, Begle (1979)
points out that most researbh studies report low correlations. Causal relation-
ships remain undocumented.

Few researchers have fnvestigated the instructional effectiveness of HI and LO
mathematics anxious teachers. Teague and Austin-Martin (1981) found pre-service
teachers' teaching performances positively correlated with their overall attitudes
about mathematics, but they found no significant correlation between teaching
performance and mathematics anxiety.

This study investigated the instructional behavior patterns of prospective
teachers with HI and LO mathematics anxiety. They were in their sophomore spring
quarter afde experience. It was their first professional education course.

METHOD

Subjects

A1l students enrolled in the course were administered the Anxiety subscale of

the Fennema-Sherman Mathematfics Attitudes Scales (Fennema & Sherman, 1976) as

part of a test battery. Two HI anxious and two LO anxious were selected for
observation during their field experience; all four were female.

Procedure )

"Each subject worked twice a week for eight weeks with two to four second or third
graders, Each subject participated in two audiotaping and four videotaping
sessions covering mathematical and non-mathematical content so that the mathe-
matics focus of the research was not apparent. The taping sessions were as
follows: (1) audio - nonmath, (2) video - nonmath, (3) audio - math, (4) video -
nonmath, (5) video - math, (6) video - math. This schedule was designed to allow
children and subjects to get accustomed to taping gradually. By the time the math
videotapes were made, the equipment was a minor distraction, if any. The following
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content was taught by the subjects: (1) long division, (2) telling time and
multiplication concept, (3) multiplication facts, and (4) subtraction with
regrouping and division.

Notes were made by a GA concerning the context of the taped lessons; any unusual
circumstances which might have affected the lessons were recorded. The classroom
teachers gave instructions to the subjects immediately preceding each lesson as
to the content of the session of which the subjects were in charge and sometimes
gave them an activity with 1ittle or no instruction about how to use it. The
activities and the content were both straightforward. Each subject worked with
the same children throughout the series of lessons.

After all videotapes were made, the subjects were interviewed twice, first by

‘a graduate student supervisor, then by one of the researchers. The audiotaped
interviews focused on the subjects' thoughts and feelings concerning the taped
lessons. The interviewers did not know which subjects were HI .and LO anxious.
Analysis

The analysis was conducted using the steps outlined by Spradley {(1980) including
participant observation, preparing ethnographic records, interviews, domain
specification, using tapes for focused observations, and conducting taxonomic
analyses. Through a cyclical process of reflection, literature review, and
interview tape analyses, several domains appeared to hold prospects for differences
including feedback, type of instruction, use of time, affect, and use of mathe-
matical language. Blind review of videotaped lessons (no researcher knowledge
of HI and LO anxious students) yielded observable differences in several domains.

RESULTS
Teacher Gestalt
As the data were analyzed, mosaics of attributes emerged which partitioned the
subjects into pairs. This partition was consistent across three dimensions of

behavior; we labeled them flexibility, comfort, and empathy.

Flexibility describes an observed propensity of some students to adjust their
work with children to meet changing needs. The flexible subjects handled
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disruptions smoothly; did more than one thing at a time; varied activities;
seemed spontaneous; and showed some creativity in activities. The less flexible
subjects had an authoritative manner; had difficulty keeping children on task;
could not easily manage children working on different tasks; did not vary acti-
vities; expressed the need for tight control; and lacked spontaneity.

Comfort describes how at ease the subjects were in their teaching. The more
comfortable pair of subjects displayed body language indicative of an open,
accepting, casual manner; showed few signs of nervousness; expressed relative
confidence in their abilities as teachers; and interacted frequently with the
children. The less comfortable subjects seemed nervous; maintained a

psychological distance from the children; expressed ineffectiveness and insecurity;
and were more affected by taping.

Empathy was exemplified by sensitivity to children's needs. The more empathic
subjects were accepting of children's responses; asked helping and sustaining
questions; were supportive; monitored individuals; and maintained a friendly, non-
threatening atmosphere. The less empathic subjects lacked awareness of when they
should change approach; were brusque, condescending, or maintained a distance

from the children; and talked "at" rather than "with" the children.

These descriptions of the three dimensions might seem intuitively like possible
characterizations of the teaching of HI and LO math anxious teachers. However,
this was NOT the case. There was one HI and one LO anxious subject in each of
the pairs. Thus, one HI and one LO anxfous teacher displayed Positive teaching
Gestalts (PG) characterized by flexibility, comfort, and empathy, and one HI and
LO anxious teacher displayed Negative teaching Gestalts (NG) characterized by
inflexibility, uncomfortableness, and detachment. These attributes were
consistent in both mathematics and non-mathematics lessons.

These three dimensions seemed important not only because they describe patterns

of behavior, but also because differences in other behaviors seemed related to these
three in combination.

Response to Learners' Needs

When researchers 6bserved opportunities for instruction arising from students’
questions or difficulties, the subject responses were coded as product (give an
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answer, no instruction), Socratic, didactic, or a combination of Socratic and
didactic. No appreciable differences were found in usé of Socratic or didactic
instruction between the HI (24%) and LO (33%) anxious students. However, it was
found that PG used Socratic in 46% of instructiona1 instances, and NG in only
13%. In fact, there was an increased use of Socratic from NG (12 and 14%) to
HI/PG (38%) to LO/PG {52%). Neither NG subject used any purely Socratic
instruction.

Verbal Feedback

Two tapes were coded on subject responses to learner correct and incorrect
answers. Responses'were coded as affectively positive, negative, or neutral.
NGs tend to use more positive feedback for correct responses (57% and 35%)

than PGs (33% and 9%). PGs are more likely to give neutral responses than
positive responses (77% vs. 23%); NGs, 55% and 44%. HIs tend to use more
negative feedback for incorrect responses (17% and 18% versus 14% and 4%). HIs
tend to use more positive and negative feedback on incorrect responses (18%,
18%) than LOs (11%, 10%). When all responses are combined, HIs tend to use more
negative feedback (6%, 6% versus 3%, 1%).

Personalization of Instruction

Three components were examined: communications, social distance, and touching
during instruction. One lesson for each subject was coded for communications
data; LO/PG spoke to individuals 96% of the time, compared with 76% for LO/NG,
62% for HI/PG, and 78% for HI/NG; frequencies ranged from 190 to 240 for number
of interactions with learners. The number of times the social distance decreased
during a lesson by "leaning towards" was 13, LO/PG; 9, LO/NG; 35, HI/PG; and 10,
HI/NG; there is a tendency for PGs to use more of this form of nonverbal communi-
cation. Since the subjects sat in various configurations and sometimes stood to
work with students, a coding was made which combined touching students and their
materials; touching was coded in three categories: management, positive affect
for instruction or feedback, and negative affect for instruction or feedback.
LO/PG tends to use touching most for positive reasons (67%) and less for manage-
ment (21%). HI and NG tend to use quite a bit of touching for management (52%,
46%, 54%) and less for positive (46%, 46%, 36%).

Summary 1 -- HI and LO Anxiety

Using a criterion difference of 10%, the following statements can be made about
LOs. They (1) give more neutral feedback to incorrect student responses, (2)
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use a greater number of precise mathematical terms (Ns = 6 and 22), and (3)
have more student-student interactions (Ns = 0 and 20). Further, using a .
criterion of more than 5% but less than 10%, LOs (4) use more purely Socratic
instruction, (5) use less touching of students and materials for management,
and (6) communicate with single students more without using their names.

Summary 2 -- Positive and Negative Gestalts

Using a difference of more than 10%: (1) Positives use more Socratic instruction,
isolated or in combination with didactic. Further, using a difference of 5% to
10%, Positives (2) use less purely didactic instruction, and (3) use a decrease

of social distance more frequently as a form of non-verbal communication.

Summary 3 -- LO/Positive and HI/Negative

Gestalt and anxiety appear to combine effects as noted in this list, all of which

represent differences of at least 10%.

1. LO/Positive uses less positive feedback to correct and incorrect
responses.

2. LO/Positive uses more neutral feedback to correct and incorrect
responses.

LO/Positive uses more Socratic instruction.

LO/Positive touches less for management.

LO/Positive touches more for positive reinforcement.

LO/Positive uses more correct mathematical terminology (Ns = 2 and 15).

~N OV W

. LO/Positive uses a greater volume of correct mathematical terminology
(fs - 18 and 110).
8. LO/Positive refers less to a single child by his/her name.

9. LO/Positive refers more to a single child without a name.

10. LO/Positive talks more to one learmer than 1:2 or more.

11. LO/Positive has more student-student interaction (Ns = 13 and 0).
DISCUSSION

Again these early preservice teachers, there appear to be two significant constructs
related to their instructional behaviors, (1) math anxiety, and (2) teacher Gestalt.
When viewed separately, each has some impact as noted in Summaries 1 & 2. However,
when viewed together, they seem to interact to produce great differences as noted

in Summary 3. In the LO/Negative and HI/Positive subjects, strength in one seems

to compensate for weakness in the other.
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This helps account for the big differences between Summaries 1 and 2, and
Summary 3.

Possibly our results were influenced by two factors which need exploration:

(1) grade level and content, and {2) novice rather than expert. It is possible
that because of the grade level and content (math in grades 2 and 3) that anxiety
was not readily produced during the aiding sessions. It is also possible that
these novices were so concerned about themselves as teachers that they were
operating with concerns that took precedence over their own feelings of math
anxiety. Further research with higher grades, more advanced content, and more
experienced subjects is needed to clarify the roles played by these choices in
the present research. In our judgement, the negative Gestalt observed in this
study is of more concern in fostering poor attitudes about schooling in general
than are the specific differences we found related to anxiety, especially since
we observed the characterizations in non-math as well as math sessions. The
anxiety-related problems noted in Summary 1 seem to lend themselves more readily
to remediation than do the attributes of inflexibilty, lack of empathy, and
uncomfortableness associated with the negative teaching Gestalt.
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CLASS ARITHMETIC BONKS

Jan van den Baink

Abstract
“Class arithmetic books"is part of a larger research project which focuses on

the concept of "addition and subtraction" as given during the first grade in
a nealistic ané a mechanistic form of instruction (respectively at the Drees-
school (D) and at the Nieuwlandschool (N)).
The Dreesschool has long served as a testing ground for the IOWO {(Wiskobas) .
The Nieuwlandschool has worked for years with the typically mechanistic arith-
metic method "Niveaucursus Rekenen" .
In this case-study the instruction given at the above-mentioned schools is
compared, as well as their influence on studeat achievement and the educat-
ional ideas of both first grade instructors.
By this means, an indication is given of why the realistic arithmetic instruct-
ion js "better" than the purely mechanistic instruction.
The children from both first-grades (D and N) were divided into two evenly
balanced groups: the “T-students" (test-students) and the other, non-T-stud-
ents,
-During the year I had regular (once or twice a week) {£est-£afhs with the T-
students (DT and NT). With the non-T-students these talks occurred about
once every two months. The idea behind this division (T and non-T) was to

judge the influence of these discussions on the students.
The test talks with the students involved all sorts of first-grade arith-

metic topics. Four of these were regarded in depth:
- equaiions at the D as well as the N

- avew fanguage only at the D

- class arithmetic books; at the D as well as the N.

- arithmetic stills; at the D as well as the N.

O
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Research section: the class arithmetic book

Purpose

In march it was decided that the children would make an arithmetic book for
the children entering first grade the next year.

One class arithmetic book at the 1 and one at the N, respectively the Drees-
school arithmetic book (Dr) and the Nieuwlandschool arithmetic book (N).

The class arithmetic books could be used as an instrument o recognize the
various ways of instruction at the D and the N through the students'designs
for the books. The children put the ideas they had gained from one year of
arithmetic instruction into the class arithmetic books.

The basic question in this section of the research is: can the specific qual-
ities of the D-instruction be found in the D-students'arithmetic book? And is
-this also the case for the N-instruction? And do both class arithmetic books
give an indication as to research questions on:

a. introduction

b. repetition and consolidation

C. practice rows of sums

d. equations (such as 3+e=10)
The plan of the class arithmetic books
There were six assignments for the class arithmetic books which the children

carried out according to various data.

Introduction and page | of the class aritimetic beok (Maxch 21, 1§83

"1 want to make an arithmetic book of sums thought up by children. Make one
page for that book. It can consist of all sorts of sums and drawings. May be
we can use the book next year in the first grade when you are all in the se-
cond grade."

This assignment (page 1) was the introduction of the idea to the students. It
was striking that all the children were cirectly motivated to make an arithme-
tic book for others: it gave the assignment Ssense. ’

The assignment was more or less §1eC: the sums cidn't have to be connected to
a given period in the schoolyear.

Pege 2 (Apail 25)

Page 2 was made a month later. The assignment was more limited than the first
one. It went as follows:

"A while ago we made a page for an arithmetic book. Now we'll go further. Soon

the kindergarteners will be entering Ist grade. Make all sorts of sums for
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This assignment was primarily intended for the young children at the begiunding

of 1st grade.

Page 3 (¥May 30 at the D, June 6 at the N)

One month later again I asked the children to make a page for their arithme-
tic book with sums that the new 1st graders would do atwund Chaisimas.

At that time the students at the D are involved in doing arrow-sums, so it

was decided to make as many kinds of arrow-sums as posible.

At the N, the students began to do "real" arithmetic (+, -, =) around Christmas,
so it was decided to make as many kinds of sums as possible, often illustrated

with graphic pictures.

Page 4 [May 30 at the D, June 6 at the N)

On the same day I asked the children to think up and to draw all sorts of ai-
{thmetic games for their book, which the new children could play. They could
think up the games themselves but they had to have something to do with ar-

ithmetic.

Page 5 (June 1 at the D, June 6 at the N}

Finally, 1 asked the children to think up a page of sums for the last sheet in
the arithmetic book.

At the D, this assignment was written on the reverse side of a worksheet:. At
the N, the sums were performed on graph paper because at that time the students

were learning this "neat” form of .notation.

Remanks

During the same week in June I also gave a érawing assignment:

"Draw yourself and a friend. You see three rabbits and your friend only sees
one."

As this assignment was not given in the framework of the class arithmetic books

we will not take it into consideration here.

Page & (June 27)

Which onden?

Finally, I submitted to each child his/her three pages from may and June:

page 3 (the Christmas sums)

page 4 {(the games) and

page 5 (the final sums).

I put to them the following editional problem:

"I have to wake an arithmetic book: but I no longer know what order to put it
in. I don't know which should go first and which after. Help me."

The children were then asked to state their arguments behind the choice of or-

'\) " the three pages.
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Analysis of the class arithmetic book
Both class arithmetic books were investigated for a large number of variables.
1. The category kind:
Kinds of sums as to notation (arrow-language, "="-language) or as to con-
text (graphic; substantial contexts; people, animal or object contexts;

bare) ;
Kinds of ganes'(inside or outside the school: with or without chance;

dramatization, eté.).
2. The category stfiategdic sums
zero sums (3 + 0 =3; 5 -5 = 0)
counting sums (5 + 1 = ...; S =1= _,.)
doubling (3 + 3 = 6; 5 + 5 = 10) ..
multiples of ten (20 +« 10 = 30)
positional sums (100 + 6 = 106)
equations (10 + e = 15)
3. The category culid{cidm, such as:
- the onde: the children chosen for the arithmetic topics and their argu-
ments for this order.’
- a compiled crlticidm censisting of:
e the total number of sums made
© correct, incorrect or cpen sums
e division of the signs +, - and >
e the largest number used
These numbe:s.we:e deternined ané the work was classified per student.
For each of the four categories 1, 2 or 3 points was given.
The more variety or the larger the number or amount, the higher the score.
With 8 points or more, one belonged to the category "variecd". Less than

8, to the category “uniform".

The report will be coatinued in the conference.
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Presentation by: Ronald H. Wenger, University of Delaware
Address: Mathematical Sciences Teaching and Learning Center,
032 Purnell Hall, University of Delaware, Newark, DE 19711.

ABSTRACT

ALGEBRAIC EXPRESSIONS AND PLANNING STRATEGIES: USES OF SYMBOLIC
ALGEBRA COMPUTER ENVIRONMENTS TO STUDY AND TEACH THEM

Information necessary for carrying out many high level tasks
in the existing curriculum in algebra and elementary functions is

contained in the structure(s) of algebraic expressions. Examples
are: changes of representation of functions FORMAL ALGEBRAIC
Z--> GRAPHIC; or strategies for comparing expressions (as in

solving equations or inequalities).

The ways learners perceive the algebraic expressions appear
to strongly influence their inclination to exhibit common
symptoms of misunderstanding such as: their inclination to make
many common algebraic errors {e.g., variations of linearity
errors f(EXPR1 + EXPR2) --> f(EXPR1l) + f(EXPR2)): or inability to
use heuristics present in the structure of expressions to build
strategies for solving equations with quadratic structure even
when they demonstrate ability to use the relevant subskills such
as the quadratic formula ’‘e.g., inability to solve 2x:y-y{l+x} =
1-x for x;. :

Protocols with high school and college students in algebra
and precalculus courses were conducted. Many of these students
were selected because they had made many common algebraic errors
on the state-wide Junior Test in Delaware administered the the
Mathematics Teaching and Learning Center. These students were
given similar tasks a year later. They were also given algebraic
tasks to carry out using a symbolic algebra environment developed
in the Math Center. This environment was designed both for
research and instructional purposes. This work was partially
supported by the Greater Wilmington Development Council. Results
will be reported. If time permits, the computing environment
will also be demonstrated.
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TEACHING REPRESENTATIONAL SCHEMES FOR THE MORE DIFFICULT ADDITION
AND SUBTRACTION VERBAL PROBLEMS
Gordon B. Willis and Karen C. Fuson
Northwestern University

A teaching experiment was implemented to study second-graders'
solutions of verbal problems containing three-digit numbers.
Pictorial representations were used as intermediates in
problem solution. Children were effectively taught to distin-
guish problem semantic type. and they improved in solution
ability on several subtypes of problems.

Seme types of verbal addition and subtraction problems are particularly
difficult for young school-aged children (e.g., Carpenter and Moser, 1983).
The present study was initiated to study such children's performance when
large (three-digit) numbers were used as the givens in these problems. This
was possible because these children had learned to perform single-digit
computations by using finger patterns to keep track when counting on for
addition and counting up for subtraction (Fuson, in press), and had then
learned the algorithms for solution of multi-digit addition and subtraction in
the second grade (Fuson, 1985). A ’second focus of the study was the
impliementation of a program intended to teach the abstract representation of
these problems. The teaching made use of pictorial representations drawn by
children as intermediates between the given problem and an arithmetic solution
strategy. These representations modelled the action or state represented by
the semantic content of the story, and thus distinguished problems by semantic
type. Three-digit problems were a focus of the study because they are more
representative of general mathematical problem solving than are single-digit
problems: they require the explicit choice and execution of an arithmetic
procedure rather than only a solution that is a direct model of the action in
the story.

METHOD

Subjects were children from two second-grade public school classes, one (Class
A) categorized by the school as containing high and the other (Class B) of
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average math-ability children. One pictorial representation, or picture, was
developed for each of the major problem types taught. These are illustrated
in Figure 1. Any of the three labelled elements of a problem may be missing,
giving 12 possible problem subtypes. When given a problem, the child first
identifies the major type of problem and then applies the appropriate verbal
labels to the information in the problem. The child then draws the picture
and fills in the known elements. He or she then uses the relationships in the
picture to identify the needed arithmetic operation and writes down and
carries out this operation. Addition and subtraction are therefore involved
both as solution strategies, and as descriptors of the overall semantic nature
of the given problem (Put-Together and Change-Get-More may be seen as additive
and Change-Get-Less and Compare as subtractive in this sense). The more
difficult variants of the defined problem types were selected for inclusion in
a 10-item test given to children prior to and subsequent to teaching. Numbers
used in problems were all three digits, and one trade (& carry or borrow) was
required to obtain the sum or difference.

e__»
PUT-TOGETHER (COMBINE): missing PART 3%24
. (an) (Part)
John and Bill have 814 toys altogether. John has 342 toys. 31y
How many toys does Bill have?

(Part)

A
CHANGE-GET-MORE: missing START @
(Start) (Change) —>1314
Now

John had some toys. Then Bill gave him 342 more toys.
John has 814 toys. How many toys did John have to start with?

(End)
( ) CHANGE-GE(T-LESS: missing CHANGE E‘D
Start Change
John had 814 toys. Then he gave some toys to Bill. 84 > (342
Now John has 342 toys. How many toys did John give to Bill?
(End)
L.
COMPARE: missing BIG i
(Sma11) (Difference) 342472,
John has 342 toys. Bill has 472 more toys than John has.
How many toys does Bill have?
(Big) B8

Figure 1: Examples of verbal problems and associated pictorial
representational schemes with verbal labels.

A1l teaching was done by one of the investigators. The early teaching units
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each focused upon the three possible subtypes within one of the major types of
problems. The order of teaching was Put-Together, Change, Compare, followed
by mixed (al) 12) problem subtypes. Teaching consisted of one math period in
which the classification and labelling for verbal problems of a major type
were described, and the complete solutions for different variants of the
problem were illustrated. Then the children spent between two and four days
completing practice worksheets. Little systematic individualized feedback was
able to be given on the worksheets, as these were all kept for purposes of
analysis. Unfortunately, teaching and testing conditions proved to be
inadequate in both classes. Due to other pressures the teaching time was
scattered, and insufficient time was available for practicing the mixed
problem types (this was particularly true for Class B). Teaching was for each
unit restricted to the current major problem type; when a new semantic type
was introduced the differences between it and previous types were emphasized.

RESULTS

The variables of posttest correct picture selection and correct placement of
numbers into the picture were first analyzed. For the picture-selection
measure, Class A children were found to select correctly 88% of the time. The
only problem type for which performance was below 85% was Put-Together, for
which a Compare structure was often selected. This is not a serious error,
because the pictures for Put-Together and Compare are very similar. For the
measure of correct placement of the numbers into the picture, the average was
81% correct, with the lowest performance obtained on Compare type problems.
The results for Class B paralleled those of Class A, but were overall about
15% lower. An analysis of the mixed-problem practice worksheets (on which all
12 possible subtypes were given) contrasted performance on the major problem
types for Class A (Class B did not finish three worksheets). No differences
were observed across problem type in ability to select the proper picture, but
the ability to fill in the picture with the given numbers correctly did vary,
with Compare problems significantly more difficult than the rest (81%, 83%,
83%, and 63% for the Put-Together, Change-Get-More, Change-Get-Less, and
Compare types, respectively, F(3, 72) = 4.78, p<.01).

Mean correct strategy (adding or subtracting) and correct answer scores on the
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10-problem pretest and posttest for both classes are provided ir Table 1. For
Class A, the mean strategy score rose significantly from 79% to 89% (p<.05).
Thus, a fairly high initial level of performance improved to near ceiling.

The mean correct answer scores improved somewhat more, from 56% to 72%. There
was a fairly large disparity between the levels of correct strategy and
correct answer in this class, mostly because many of the children often failed
to write down the numbers to be added or subtracted, and as a result made
computational errors. When analyzed at the level of individual problem
subtype, large variations in c¢ifficulty were observed (see Table 1).
Significant improvement was found cn strategy scores for two problem subtypes
and on answer scores for three.

Table 1
Percent Correct Performance for Correct Strategy and Answer Measures

STRATEGY ANSWER
Class A Class 8 Class A Class 8
pre post pre post pre post pre post

PUT-TOGETHER Missing first part 86 95 67 83 43 86* 33 67*
Missing second part 95 95 58 100* 71 67 58 92+

CHANGE-GET-MORE Missing start 81 90 67 83 48 8l1* 58 83
Missing change 57 100* 58 83+ 33 86 42 83+
CHANGE-GET-LESS Missing start 52 62 58 42 52 §7 42 42
Missing change 95 100 67 83 76 81 67 83
Missing end 86 86 67 83 62 71 58 67
COMPARE Missing difference 100 100 75 75 67 67 67 58
Missing smatl 86 86 67 92+ 62 67 58 75
Missing big 52 76% 50 42 43 57 42 42

Notes. * improvement significant at the .05 level.
imprcvement significant at the .10 level.

+

For Class 8, correct strategy use increased for all subtypes except those that
involved addition as the correct strategy (Change-Get-Less-missing- start and
Compare-missing-big). Much cf this across-subtype increase (535 of all
improvement) was found to be due to the fact that several of the children
subtracted for all problems cn the posttest. However, the significant
improvement in strategy usage found for the starred items in Table 1 were not
due just to these children. Thus across both classes the teaching seemed to
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have affected the solutions of additive problem types (Put-Together and
Change-Get-More) more than those of the subtractive problem types (Change-
Get-Less and Compare).

Class A worksheet data were also analyzed for these variables. For the
measure of correct solution strategy, a large effect of major problem type was
observed, such that the ordering of difficulty from easiest to hardest was
Put-Together, Change-Get-More, Change-Get-Less, and Compare, F(3,” 72) = 5.05,
p<.01. This parallels what is generally found for small (l-digit) problems.
No significant differences were found, however, in the correct answer data,
though the trends were in the same direction as the strategy data. The
children from Class B who had subtracted on all problems on the posttest did
not do so on worksheets. Thus these children did not simply learn always to
subtract for word problems.

An important question that relates to the central focus of the study concerns
the nature of the children's use of the pictorial representations in solving
the problems. Children could, on the whole reliably select the correct
representations, but this does not indicate that they actually used the
representations as a solution aid. Although this is a difficult issue to
address in the absence of detailed interview data, further analyses of
posttest and worksheet data did reveal that there is a strong relationship
between quality of the representation and correctness of sclution strategy.
Few correct strategies were observed in the absence of correct pictures, and
few correct pictures without correct strategies. Further, except for Compare
problems, few pictures were recorded that seem "trivial” (*he two given
numbers in the story simply filled into the first two available boxes,
independent of story structure).

DISCUSSION

The data indicate that children did improve in their abilities to represent
correctly and to solve certain addition and subtraction verbal problems.
Children learned to use a subtractive solution strategy fcr the relevant
problems with an additive semantic structure but did not succeed at those

O
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problem subtypes having a subtractive structure but requiring addition as the

“solution strategy. Some of the children manifested "subtract-only” behavior
on the posttest, but they did not so behave on the worksheets. It seems
possible that, under test conditions, the context of many other problems that
required subtraction operations prompted the operation of the subtraction
algorithm even though the current problem was understood as one requiring‘an
answer greater than either of the two givens. In the present study, both
demonstration and worksheet problems favored subtraction by a factor of two to
one, simply because there exist twice as many kinds of problems requiring
subtraction than requiring addition as the solution strategy. This ratio may
bias responding toward subtraction.

Finally, although the gains obtained in problem-solving performance were not
large, some impressive amounts of learning seem to have occurred. Especially
in the high-quality class, children were by the posttest extremely proficient
at identifying the class of word problem represented. At the beginning of
instruction, when asked "What kind of problem is this?", children had
classified problems simply as addition or subtraction problems. This
classification permits confusion between the semantic structure ¢f a problem
as additive or subtractive and the required arithmetic solution procedure
(addition or subtraction). The picture representations allow distinctions to
be made between these aspects and provide an organization of the problem
elements which may facilitate the decision concerning the arithmetic solution
procedure. Thus the pictorial representations may provide a more general and
flexible basis for the learning of the relationships between concrete
situations and the arithmetic operations which describe those situations.

Carpenter, T. P., & Moser, J. M. (1983). The acquisition of addition and
subtraction concepts. In R. Lesh and M. Landau (Eds.), Acquisition of mathe-
matical concepts and processes (pp. 7-44). New York: Academic Press.

Fuson, K. C. (1985). Teaching multi-digit addition and subtraction. In
Proceedings of the Ninth Annua) Meeting of the International Grou% for
he Psychology of Mathematics Education. oordwijkerhout, The NetherTands.
Fuson, K. C. (in press). Teaching subtraction as counting up. Journal for
Research in Mathematics Education.

This research was funded by a grant from the Amoco Foundation.
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3YMPOSIUM: Hesearcn framework for Concep:
and Principle Learning - Revisitead

Organizer: Jonn Kolb, North Carotina State University
Presenters: Jonn XKolb, North Carolina State University
Larry Sowder, dorthern Iliinois University
Patricia wilson, Ohio 3tate University
Lee Stiff, North Carolina State Universiiy

Within the past few years the number of research studies and
research studies and researchers dealing specifically with
concept and principle learning in mathematics appears to have
diminished. This symposium is designed to renew the focus upon
concept learning and principle learning research. 3ome new
perspectives and approaches to this important research area will
be offered. The goal of the symposium is the development of a
framework in which future research efforts can be centered and
the establishment of personal communications among researchers
interested in the area.

This symposium will be a two hour session is which those
attending will be given an opportunity to become actively
involved in the discussion of ideas. Each presenter will serve
as a catalyst for tne exchanging of observations and ideas
between the symposium leaders and participants. An informai
follow-up session to tne symposium will be scheduled for those
participants who wish to continue the interchange.

O
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DISTINGUISHING CONCEPTS AND PRINCIPLES IN
MATHEMATICAL TEXT

John R. Kolb

North Carolina State University

Concepts, principles and identities are definec as
types of mathematical content and their properties
are discussed in the context of mathematics text.

Concepts and principles form the bulk of cognitive knowledge and
the component$ of further learning. All relationships in mathe-
matics are based in principles and principles in turn are formed
from concepts. Mathematical symbols and words are signs with

no meaning of themselves. They stand for something called their
referents. The referents are the "real world" objects, events,
actions, or constructions and these are represented with mathe-
matical symbols and labeled with words in the natural language.

A concept is a set containing all referents which possess a com-
bination of attributes commonly shared. Thus a concept is a
class of things that can be responded to as one entity when the
focus is on the characteristics that are common to all the
members. To refer to the concept it is usual to associate with
it one or more word labels or other symbols. When a referent or
its representation from the set comprising a concept is displayed
it is called an example of the concept. Any referent that does
not belong to the set is called a non-example of the concept.
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When a propositional statement is pfovided that identifies all
the relevant attributes that are common to the set of referents
then that verbal statement is called a definition of the concept.
In summary, a concept is a class of referents, it has an associ-
ated label to designate it, any member of the set is an example,
and a statement that identifies all the salient characteristics
for membership in the set is a definition.

In Figure 1 at the end of this paper is a two page layout of a
textbook page of mathematics with annotations in the dotted
boxes. Three concepts are introduced in this material. The
presence of concepts in text is signaled by their labels: central
angle, intercepted arc, and inscribed angle. One example of
each concept is provided and two nonexamples of inscribed angle
is shown. Definitions are provided for two of the concepts.

A principle is some relationship between classes of referents
and thus a relationship betwéen coﬁcepts. In Figure 1, an ex-
ample of a principle is "The measure of an inscribed angle is
one-half the measure of the arc it intercepts." The concept of
inscribed angle is related to the concept of intercepted arc.
The concepts are connected to the tranformation of halving their
measures. This suggests a more formal definition of a principle:
A principle is an ordered relation consisting of a domain set

of concepts, an operation or rule, and a range set of concepts.
(Merrill and Wood, 1974, p.22).

A principle may be presented in mathematical text in either of
two modes. A propositional statement can be given that names
the domain concepts by their 1abels, and states the rule that
relates them. In Figure 1, three principles are expressed as

PR



Kolb

ERIC

Aruitoxt provided by Eic:

300

propositions (generalizations). In the second mode, a .specific
case of the principle can be shown by displaying a referent or
representation from each of the concept classes in the domain
and the range as well as the specific application of the rela-
tional rule. A specific case of a principle is called an

instance of the principle. In Figure 1, an instance is given of

the principle whose propositional form is "A central angle and
its intercepted arc have the same measure in degrees." Some-
times principles will have name labels associated with them just
1ike concepts. They have labels such as the Fundamental Theorem
of Arithmetic or Divisibility Rule for Nine. In summary, a
principle is like a function on the set of concepts. It may have
an associated label, a specific case utilizing particular members
of the domain and range concepts is called an instance of the
principle, and a verbal statement that generalizes the rule in
terms of the labels of the domain and range concepts is a pro-
positional statement or rule generality. (Merrill and Wood,
1974, p.37)

A third type of content is a verbal association (Gagne, 1985, p.5)
or identity (Merrill and Wood, 1974, p.19}. An identity is a
pair of entities that are associated one-to-one. The entities
can be pairs like symbol to symbol, label to object, event to
symbol, etc. Some identities in Figure 1 are the connection of
the label "arc AB" and the symbol "AB" and the association of

the letter "0" with the word phrase "center of the circle." To
learn an identity is to be able to recall one member of the

pair when presented with the other member as stimulus.

Concepts and principles may a) be formed by examples (instances)

and non-examples (non-instances) that are encountered or b) be
acquired by detecting the meaning conveyed by the concept's
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definition or the principle's propositional statement. These
two methods of presentation appear to engage the learner in two
different types of learning processes. The first mode which
Sowder (1980, p.253) calls attainment requires the student to
identify the salient attributes and use these to generate a
classification rule for concepts or the transformation rule for
principles. This is a kind of generative learning in which the
student must devise an abstraction from a set of specifics. The
second mode which Sowder (1980, p.254) terms assimilation re-
quires the student to read meaning into verbal statements in an
effort to make an abstraction more concrete and specific. It is
an interpretative type of learning.

Gagne, R. M. (1985). The conditions of learning (3rd. ed.).
New York: Holt, Rinehart and Winston, Inc.

Merrill, M. D. & Wood, N. D. (1974). Instructional strategies:
A preliminary taxonomy. Columbus, Uhio: ERIC/SMEAC.

Sowder, L. L. (1980). Concept and principle learning. In
Shumway, R. J. (Ed.), Research in Mathematics Education
pp.224-285). Reston Va.: National Council of Teachers of
Mathematics.
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IDENTIFYING TYPES OF CONTENT IN INSTRUCTIONAL MATERIAL

Angles in a circle.

A circle has many special angles associated with it. One important kind of
angle is a central angle., A central angle in a circle is one that has its

vertex at the center/0f a circie. In the circle below, /AOB is a central

angle.

Recall that we always denote the center of a circle by 0. Thus, the symbol
for a central angle must always contain an 0 for its vertex.

ach side of a central angle cuts the circle in a point, and these points
form two arcs, one smaller than the other. (Remember that when we write
Kﬁ for arc AB, we mean the smaller of the two arcs formed by A and B.)

arcs of a circle.
IDENTITY: Arc AB same as AB ‘
{IDENTITY: A% means_smaller arc formed by A_and B

?RINCIPLE: A statement that gives a relationship between central angles and
1
1
1

The intercepted arc of an angle is the smaller of the two arcs it forms. In

thefcircle below, & is the intercepted arc of the angle /COD.
5 J
<
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An important fact to remember is:
A central angle and its intercepted arc

have the same measure in degrees.
In the circle m/AOB = 90° and mAB = 90°, so m/AOB = méB.

EThere is an implied technique or prescription (some may call it a skill)

[}
13
! H
ythat is not stated. Stated in a to do language, it is: To find mAB E
! Lo do
} (where it is smaller than a semi-circle) construct its central angle, mea- E
)

isure it with a protractor, and that will be the mAB. )
]

/ABC in the circle at the left below is called an inscribed angle. In the
circle at the right, /XYZ and JKJL are not inscribed angles.
X

CONCEPT:

An important relationship is:
The measure of an inscribed angle is one-half
the measure of the arc it intercepts.

Figure 1. Analyzing the types of content in a textbook-like presentation
of a mathematical topic.
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PRINCIPLE LEARNING - REVISITED

Larry Sowder
Northern I1linois University

Principle learning unfortunately has not received much attention.
Some arecs that invite exploration are given here, organized
around the initial, basic learming of the principle, its incor-
ation into a memory network, and the improvement of its accessi-
bility and retention in the netuork.

Interview studies to ascertain how students are thinking quite often have re-
sulted in the dismaying realization that many students have at best a super-
ficial grasp of their school mathematics. Indeed, Davis (1984) refers to such
studies as "disaster" studies. Principles (relationships among concepts) are
the bases for understanding algorithms and play central roles in solving many
problems. It is clear that instruction in concepts and principles, the under-
pinnings for non-rote behavior, is falling far short of success.

Compared to concepts, principles have received much less research attention
(cf. Shurway, 1980), and there does not seem to have been much research on
principle learning as such in recent years. Hence, the following is a pot-
pourri from my outlook, rather than a review of research in the area.

THE BASIC LEARNING OF A PRINCIPLE

Kolb's model for concept learning (Shumway, 1980, pp. 269-274) almost begs that
a similar analysis be done for principle learning. No one seems to have
carried out such an analysis, perhaps because there are more types of moves

for principles (stating, Justifying, instantiating, applying, for example -

see Cooney, Davis, and Henderson, 1975) and it is arguable what criterion is
most appropriate for principle learning.

O
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The learning of concepts through examples and counterexamples has its counter-
part with principles. Indeed, "discovery learning" is perhaps more appropriate
for principles than for concepts in that verification of results in discover-
ing a concept depends on someone other than the learner, whereas learners can
(at least in theory) check their hypotheses about a principle. From examples
alone, students could never be certain that their notion of the concept
"trapezoid" is the conventional one. On the other hand, generation and
checking of other cases can lead to a great confidence in, for example, the
principle about equality of measures of alternate interior angles with par-
allel lines. Hence, it is disappointing that discovery learning, with princi-
ple learning as the object, is no longer fashionable.

Discovery learning can be viewed as a subset of problem solving. What can be
easily lost under that view is attention to the claim that discovery learning
results in-greater retention. Do discovered principles fit into one's per-
sonal mental framework better than "told" principles do, and thus give greater
accessibility during memory searches? Such a question is unlikely to be asked
if problem solving, rather than principle learning, is the focus.

Is there a counterpart, for principles, to the notion of a rational set of
examples and counterexamples for concepts? That is, can one design a set of
instances and noninstances for a given principle which should equip the learner
to apply the principle to, and only to, appropriate places?

FITTING A PRINCIPLE INTO A MEMORY NETWORK

Most of us would hope that, eventually, a principle could be related to other
information and to new applications and problems. Most mental models recognize
that many pieces of information can be linked in one's mind, and are linked by
better-performing learners. Whether one calls such a network a semantic net-
work, a schema, a frame, a template, or a script, the disaster studies make
obvious that we need greater curricular and research attention to these net-
works. Either these networks do not exist for many learners, or the learners
are not calling on them.
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Are there "linking" moves teachers can use? What teacher actions, for example,
might lead a student to relate the principle to a areat number of other con-
cepts, principles, applications, and problems?

Two aspects of the use of language seem worth examining further. (a) HWould
greater use of small groups give richer networks in learners? Rather than the
learners relying only on the teachers' language, would the give-and-take pos-
sible in a small group (and at the learner's level of language), result in a
less rote-driven grasp of principles? (b) Is it helpful to have a label for

a principle, perhaps mnemonic in nature? School concepts have verbal labels,
of course, as do some principles, such as the Pythagorean aﬁd binomial theorems,
the "laws" from trigonometry, or properties like commutativity of miultiplica-
tion. Occasionally one sees this idea used more extensively, as in Coxford
and Usiskin's BAIT label (for "Base angles of an isosceles triangle are con-
gruent") or their "side-splitting" label for a theorem about a line parallel
to one side of a triangle (1971). Do such labels help, for example, in
searching a network for a key to some problem, perhaps by giving a more "com-
pact" representation of the principle? This question overlaps into the next
section.

REMEMBERING A PRINCIPLE, AND MAKING IT ACCESSIBLE

Accessing concepts and principles already learned is often a key to solving
problems. (Perhaps it was extensive practice at accessing such information
that lay behind whatever success can be claimed for our pre-heuristics
approach to the teaching of problem solving: Do lots of problems.) Thus the
question of whether giving labels to principles would improve their accessi-
bility is of great interest. Are there other methods that might enhance the
accessibility of learned principles? Instruction at the time of the principle
learning might_be planned with later retrieval in mind. For example, a
teacher might merely state, "Whenever you've got a problem with a triangle and
angles in it, you should remember that the angles of the triangle add up to
180."
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" Periodic review is usually accepted as necessary for remembering information
over the long term. Saxon's unfortunate advertising campaign may have obscur-
ed some promising information about the frequency of review that many be nec-
essary to maximize retention (see, e.g., Klingele and Peed, 1984, but con-
trast Swafford, 1984).

Finally (and applying to all aspects of principle learning) is the establish-
ment of a learner's intent to use, to remember, and to relate the principle.
The finding that the purpose of a lesson for some young learners is simply to
"get it done" is, lamentably, no doubt applicable to many older learners as
well ("Do students learn from seatwork?" 1982). With so much instruction in
mathematics centered on mastery of algorithms and generation of answers, it
is no wonder that many learners expect to rel¥ on, and to need only, their
memories of "the way to do this kind" for all work in mathematics. Learner
expectations must be re-formed throuah a redirection of the curriculum to
higher-level thinking, perhaps through a genuine commitment to a problem-
solving emphasis.
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CONCEPT AND PRINCIPLE LEARNING

IN MATHEMATICS - REVISITED

Lee V., Stiff

North Carolina State University

Researchers seek supericr instructionai strategies for Zeaching
mathematizal cc:zevis avdi principles. 4 brief discussion of
teaciing stratezies research with emphasis on the Xol:t model of
eoncert learnivg is preserted here.

Henderson (1967) presented a taxonomy of teaching behaviors for
teaching math concepts based upon classroom observations.
Instructional dialogue between teacher and students were analyzed
into identifiable segments called "moves". Teaching behaviors
such as giving examples, providing definitions and comparing
characteristics are instances of moves. There are E moves
{(giving examples or nonexamples) and C moves (stating analogies

or definitions).

Henderson's taxonomy provides a means for analyzing and defining
constituent moves of instructional dialogues. A sequence of
moves used to teach a concept is a teaching strategy. The type,
sequence and number of moves in a strategy characterizes the

strategy. A sequence made up entirely of E moves is an E

O
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strategy. A sequence of E moves followed by C moves followed by
E moves 1is an ECE strategy. Persumably, some strategies are

better than others.

Researchers have tried to identify teaching strategies
(Henderson, 1970) that are superior for teaching given

mathematical concepts. However, no such instructional strategies

"have been identified (Cohen & Carpenter, 1980; Dossey, 1976,

1980; bunn, 1983; Rlausmeier & Feldman, 1975). Several
possibilities might explain why no superior strategies have been
found. Among these are (a) no real differences exist among
strategies, (b) the right combination of moves has yet to be
produced and (c) previous investigations have not been sensitive
to actual differences among strategies. In any case, the need
for a systematic approach to the problem of selecting teaching

strategies existed (Rolb, 1977; Tennyson, Chao & Youngers, 1981).

One such approach was the Kolb model (1977) of concept learning.
The model described the effects of strategies consisting of
either all E moves or C moves and the relationship between these
strategies while considering the 1learner's prior relevant
knowledge of the concept being taught and the number of moves
that made up the strategy. It was hypothesized that C moves
would be used more effectively by learners with high relevant

knowledge and that E moves would be more useful to learners with
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low relevant knowledge. In addition, it was reasoned that
increasing the number of moves in an E strategy would increase
the 1likelihood of 1learning the concept for learners - with low
relevant knowledge more than for learners with high relevant
knowledge. In contrast, increasing the number of moves in a C
strategy would not significantly affect concept attainment for

learners at low or high relevant knowledge.

Gagne's (1970) type 6 and type 7 learning were used to .define
concept attainment. Type 6 learning is characterized by a
learner's ability to sort instances of the concept, to produce
new examples of the concept_and to generate an informal working
definition of the concept. Type 7 learning is characterized by a
learner's ability to comprehend an idea or message conveyed by a
verbal statement. Based upon the Kolb model it was hypothesized
that an E strategy induces type 6 learning and a C strategy

induces type 7 learning.

Several studies (Stiff, 1978; Weiger, 1978; sSikes, 1979) have
examined the Kolb model of concept learning. In general, these
studies support the hypotheses of the model subject to concerns
about the methodology used in each study. Relevant knowledge was
defined operationally in the studies in two ways: by exposure of
contrived concepts subordinate to the contrived concept to be

learned or by achievement on relevant knowledge tests

O
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administered to determine groupings of low, medium and high by
which learners could be identified. Using either method to
define relevant knowledge overlooks the learner's ability to
process written information, to memorize detail not to mention
the learner's I.Q. Number of moves as a factor in the studies is
not well-defined 1in that it has not been demonstrated that all
moves are equally effective in producing concept attainment.
For instance, a strategy of two example moves and one non-example
move may be more powerful than a strategy of two analogies and
one single characteristic move even though each strategy consists

of three moves.

Research in principle learning has received less attention than
research in concept learning (see Shumway , 1980).
Classifications of "moves® for principle iearning (Cooney, Davis
& Henderson, 1975) may be useful to future research efforts,
particularly if the Kolb model of concept learning is significant
in explaining how students learn math concepts. There may be a
Kolbian model for principle learning that explains how students
learn the relationships among concepts that form mathematical

principles.
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RESEARCH METHODOLOGIES FOR CONCEPT AND PRINCIPLE LEARMING
Patricia S. Wilson
The Ohio State University

Rationalistic and naturalistic methods of inquiry are compared
and common criteria for rigor are discussed. Improving concept
learning research through triangulation 1s suggested.

Concept learning and principle learning are extremely compiex, Researchers
in these areas have the task of finding, adapting or creating methodologies
that will probe the learner's mind and extend the present knowledge about
how concepts and principles are learned.

diSessa defines science as refined intuition. He explains that since science
is integrated, it is not as context dependent as common sense. There is a
depth and richness of intuitive knowledge that can be developed into scien-
tific thinking. We need "... to convey the sense of incredible complexity,
interrelation and depth of scientific knowledge as compared to commonsense
reasoning" (diSessa, 1985, p. 17). Although diSessa was addressing the
responsibilities of teaching science, his comments are relevent to research.
We need to construct better methodologies that will explore concept and
principle learning. The research techniques will necessarily be complex,
interrelated and probe deeply; research should not be as context dependent
as common sense. .

RATIONALISTIC AND NATURALISTIC INQUIRY

Rationalistic inquiry is often conducted using quantitative methodology and
naturalistic inquiry is linked to qualitative methods. The separation does
not seem necessary since both methods can and should contribute to both
rationalistic and naturalistic inquiry.

Guba (1981) claims that rationalistic and naturalistic inquiry do differ
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in the following areas.

Philosophy )

The rationalistic paradigm assumes there is one reality and that inquiry

can converge, For example, it is appropriate to single out one variable

for study and to combine information in order to approach truth. The
naturalistic researcher assumes multiple realities and that inquiry will
diverge as more is learned. Believing that all variables are related,

the study of one variable is senseless.

Quality Criterion

The rationalistic approach demands rigor and assures it by controlling or
randomizing variables. The naturalistic approach seeks relevance and looks
for external validity.

Source of Theory

Hypotheses and questions are generated and tested by researchers using a
rationalistic paradigm. Theory emerges from the data collected in a
naturalistic paradigm.

Knowledge Explored

Restricted by instruments and hypothesis testing, rationalistic researchers
operate at the level of propositional knowledge. Naturalistic researchers
are able to explore tacit knowledge such as intuitions, apprehensions, or
feelings that can not be expressed in language.

Instruments

In order to obtain objectivity, rationalistic inquiry uses instrumentation
that protects the subject from the influence of the researcher. Naturalistic
‘researchers use themselves as instruments in order to gain flexibility and
insight.

At first glance, these differences seem to make the two paradigms completely
incompatible. Closer inspection offers some possibilities for collaboration.
For example, naturalistic inquiry generates theories and rationalistic inquiry
tests hypotheses. The fit seems natural, but we should not stop with this
1imited effort to combine two powerful ways of investigating learning.
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CRITERIA OF RIGOR
In order to draw knowledge from different paradigms, there must be a system
of measuring accountability and a vocabulary that accomodates both systems
of inquiry. Guba and Lincoln (1981) suggest that the follawing tests of
rigor are appropriate for both rationalistic and naturalistic inquiry.
Truth Value
How do you establish confidence in the "truth" of the findings in the given
context? Rationalistic inquiry uses measures of internal validity and
naturalistic inquiry uses measures of credibility.
Applicability
How do you determine how well the findings anply in another context or with
other subjects? Rationalistic inquiry seeks external validity and general-
izability, and naturalistic inquiry focusses on transferability.
Consistency
How do you determine if the findings would be consistent if the inquiry were
replicated? Realiability is an important criterion for rationalistic
researchers, Naturalistic researchers believe that instability is natural
making the task of measuring consistency difficult. They measure depend-
ability which includes both stability and trackability of explainable changes.
Neutrality
How do you determine to what degree the findings are related to the subjects
and context and to what degree the researcher influenced the inquiry? The
rationalistic researcher strives for objectivity. The naturalistic researcher

Yooks for confirmability which shifts the focus from the investigator to the
data.

TRIANGULATION

Triangulation is the combination of methods in order to study the same
phenomenon. The term came from the navigation practice of using geometry and
multiple viewpoints to improve the accuracy of a course. By employing differ-
ent paradigms and different methods, we can improve the accuracy of research
in concept and principle learning. “Triangulation may be used not only to

to examine the same phenomenon from multiple perspectives but also to enrich
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our understanding by allowing for new or deeper dimensions to emerge" (Jick,
1983, p. 138)

In the theory, triangulation offers the possibility of interfacing much of
the current rationalistic research in concept acquisition with the more
naturalistic research in how knowledge is constructed by various individuals.
There are problems to overcome. The theory assumes that the weaknesses of

a particular method will be compensated for by another method. We must be
certain that combining methods increases the assets rather than compounding
the liabilities. We must also guard against artifically using one paradigm
as an add-on to strengthen weak findings from a poorly conceived study.

Pragmatically, we must consider how to implement triangulation. At the
present time there is limited information on how to proceed. Most researchers
have been trained in one method and are fairly naive about other options.
Journals tend to specialize in one methodology and discouraqe mixed-breed
research. Since vocabulary differs between ﬁaradigms. even informal
communication is difficult,

Jick (1983) offers some reasons for pursuing the possibilities of triangula-
tion. If the different methods of research present convergent findings, the
researcher has greater confidence in the truth value of the research, If
the combined research presents divergence results, the researcher is
challenged to alternative and more complex explanations. Diverse theories
may spawn innovative methods of inquiry. By integrating multiple methods,
researchers become more sensitive to all the issues of a study.

IMPLICATIONS

In concept and principle learning research, we can begin to address the
pragmatic needs of using multiple methods by explicitly defining terms we
use as well as methods of investigation. Research programs can be networked
so that a variety of research teams approach the same problem with different
methodologies. Individual research projects should include qualitative and
quantitative phases., Research reports need to discuss fully the limitations
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of studies. As we create new methods of inquiry and data analysis, we must
maintain high standards of rigor that are mutually respected.
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SYMPOSIUM: THE MULTIFACETED COGNITIVE DOMAIN OF
ADOLESCENTS AND ADULTS: IMPLICATIONS FOR TEACHING MATHEMATICS

Organizer: Dorothy Buerk, Ithaca College

Presenters: Dorothy Buerk, Ithaca College
Roberta Dees, Purdue University Calumet
Margaret Farrell, State University of New York at Albany
Janet McDonald, State University of New York at Albany

Discussant: Joan Mundy, University of New Hampshire

The symposium will focus on the cognitive domain of adults and adolescents
and on the issues that are unique to this age range and that are raised by
our diverse work. Once people develop the abilities to think abstractly
.and come in contact with the complexities of the world of mathematical
ideas, the research questions and research issues change dramatically from
those posed for younger learners. We will look at particular reasoning
abilities of adolescents and young adults, students' views of mathematics
as a field of knowledge, the way students apparently structure their know-
ledge, and the impact of cooperation on learning. We are concerned with
what students bring to the learning situation in each of these areas and
have both quantitative and qualitative data to present. We have chosen
diverse theoretical frameworks to look at different facets of the cognitive
domain. We are particularly concerned with the implications for teaching
and learning and for curriculum modification that could result from this

research.
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ADULT CONCEPTIONS OF MATHEMATICAL KNOWLEDGE®
Dorothy Buerk, Ithaca College

My research with adult women and college students of both genders, most

of whom would prefer not to be in mathematics classes, has shown that for
many of these people mathematics is a collection of right answers with
correct methods and exact symbols. While this may be secure for those who
can correctly use the symbols, it is devastatiné for those who cannot. For
them the struggle is to memorize symbols and processes that have no meaning.
As the symbol systems and processes become more complex, they become more
difficult to memorize. For these people, mathematics becomes sheer magic,

a magic of which they are in awe, but a magic which they cannot perform.

A woman colleague, not in mathematics, expresses this view of mathematics

in a creative and delightful way:

On the eighth day, God created mathematics. He took stain-
less steel, and he rolled it out thin, and he made it into

a fence, forty cubits high, and infinite cubits long. And

on this fence, in fair capitals, he did print rules, theorems,
axioms and pointed reminders. '"Invert and multiply." "The
square on the hypotenuse is three decibles louder than one
hand clapping." "Always do what's in the parentheses first."
And when he was finished, he said "On one side of this fence
will reside those who are good at math. And on the other
will remain those who are bad at math, and woe unto them,

for they shall weep and gnash their teeth."

Math does make me think of a stainless steel wall--hard,
cold, smooth, offering no handhold, all it does is glint
back at me. Edge up to it, put your nose against it, it
doesn't take your shape, it doesn't have any smell,
*
This work was supported by the Mina Shaughnessy Scholars Fund of the Fund

for the Improvement of Postsecondary Education.
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all it does is make yourc-nose cold. I like the shine of
it-~it does look smart, in an icy wsy. But I resent its
cold impenetrability, its supercilious glare. (In Buerk,
1982)

Her words serve as powerful metsphor for me and indicate clearly two very
distinct issues which are problematic for many as they experience math-
ematics. One issue is the view that mathematical knowledge is absolute
and all known. The second concerns the desire to find a way to make a

connection with the material in some personal way--to gain a "handhold."
MATHEMATICS AS ABSOLUTE KNOWLEDGE

Many people I meet, in and out of my classroom, believe that mathematics

is made up only of rules, formulas, and proofs to be memorized; skills to

be practiced; and methods to be followed precisely. They believe that math-
ematics is a discipline where certainty is secure; where all questions have
answers which are known to authority (mathematician, professor, TA, text-
book); where memorization, hard work, and some mystical quality called a

mathematical mind are required.

This conception of knowledge is called "dualistic" by psychologist William
G. Perry, Jr. (1970, 1981). His theory of intellectual growth suggests a
sequence of ways Ehat college students and adults view knowledge. His
theory gives us a frame of reference to use in interpreting this conception

of mathematics as a field of knowledge. He defines dualism as:

Division of meaning into two realms--Good versus Bsd, Right
versus Wrong, We versus They, All that is not Success is

‘ Failure, and the like. Right Answers exist somewhere for
every problem, and the authorities know them. Right Answers
are to be memorized by hard work. Knowledge is quantitative.
Agency is experienced as "out there" in Authority, test scores,
the Right Job. (1981, p. 79)
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This dualistic view of mathematical knowledge was made very clear to me
recently. In a class discussion on exponents, an eighteen-year-old fresh-
man told me that exponents were added when multiplying factors with the
same base. I asked him way. He said, "That's the rule." I asked him why
the rule said that. "It just does," he replied, "it's the rule I was
taught." But "why?" I asked again. He looked at me very seriously and

asked, "You mean there's a reason?"

A woman whom I have interviewed indicates that her dualistic view was

reinforced by her teachers.

I think of math problems or situations as having right and
wrong answers (very black and white), but having a variety

of ways to reach the answer. Unfortunately, my math teachers
never stressed the fact there could be more than one way to
approach a problem. For this reason, and there are other
reasons, I do not see math as a "creative activity." It is
most definitely not linked to language, or music, or the
other humanities. (In Buerk, 1981)

MATHEMATICS AS AN INHUMAN CREATION

The colleague I quoted earlier does not recognize the "person-made" quality
of mathematics, but views the knowledge as handed down as 1f by God, as a
finished product—a view that prevents her from finding a way to relate to
it. She finds, therefore, that mathematics "offers no handhold," "it
doesn't take your shape." Even those of my colleagues and students who do
acknowledge that mathematicians create mathematics believe that the proofs
that verify mathematical statements come out of the heads of mathematicians
full-blown-~1like Athena from the head of Zeus. They believe that the
succinct, formal statements which clarify mathematical ideas represent the

way the minds of mathematicians work. (See Buerk, 1985a.)

O
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STRATEGIES TO ENHANCE MEANING MAKING

In my twenty-five years of teaching in various settings (two-year college,
four-year private college, state university division of continuing educa-
tion, experimental high school, overseas military base, maximum security
correctional facility, and individual tutorials with women) I have developed
strategies to help students to move away from a dualistic view of mathematical
knowledge, to become aware of the person-made quality of mathematics, and to
develop confidence in their own ability to do mathematics. These strategies
include: placing topics in their historical context, acknowledging and en-
couraging alternative methods and approaches, encouraging collaboration in
mathematics learning, making concerted attempts to avoid absolute language,
offering opportunities for students to reflect on paper about their ideas
and feelings about mathematics. (See Buerk 1985b for a complete listing

of these strategies.)

These strategies are the basis for intervention programs I developed to
change the conception of mathematical knowledge in adolescents and adults.
With the change in conception of knowledge come changes in confidence and a
reduction in mathematics avoidance. Individual experiences from a study of
adult women (Buerk 1981, 1982), a writing seminar in mathematics, and a

basic skills course will be presented.
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HOW DOES WORKING CO-OPERATIVELY HELP STUDENTS
IN INCREASING PROBLEM~SOLVING ABILITY?

Roberta L. Dees
Purdue University Calumet

This paper describes a clinical study, or teaching experiment,
conducted during spring semester, 1985, in a pre-algebra de-
velopmental mathematics course to explore how college students
work together to solve word problems. Wwhile co-operative
learning may yield gains in students' higher cognitive thinking,
the attitudes of students may inhibit true co-operation. In
this study we attempted to investigate and address these atti-
tudes and to develop a recordkeeping system to simplify the
management of a co-operative classroom.

There are several definitions of co-operative learning. In one
approach (Slavin, 1980), students work in teams to master mathe-
matics content, sometimes competing with other similar groups.
Within groups, students work individually on their own learning
goals, assisting each other by checking work, drilling each other
and tutoring when possible. In the other major approach (Johnson
and Johnson, 1975), students work together on the same learning
goal and produce one end product or solution. 1In this method,
students perceive that they can attain their goals if and only if
other team members also attain theirs. This method, using co-
operation as a mode of learning, is the intended one in this study.

Some studies seem to indicate that the greatest benefit of the
co-operative method may accrue in complex tasks, such as concept
learning and problem solving (Cohen, 1982; Dees, 1983; Sharan and
Hertz-Lazarowitz, 1980; wWebb, 1978).

In discussing the nature of learning in small groups, Webb (1982)
reviews four studies on student interaction and achievement in
mathematics. Students were in seventh, eighth, ninth and eleventh
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grades. Giving and receiving help were categorized as either
explanations or terminal responses (giving the correct-answer
with no explanation or pointing out an error with no-explanation
of how to correct it). Webb found that giving explanations was
beneficial for achievement but giving terminal responses was not.
Furthermore, receiving explanations tended to be positively re-
lated to achievement but receiving terminal responses and re-
ceiving no response to a request for help were detrimental for
achievement. Webb observes that the composite variables "giving
help” and "receiving help" may not be meaningful, since the posi-
tive and negative components of each may cancel each other.

The questions raised by the studies include the following: How
does working co-operatively help students in increasing their
skill in problem-solving? Does it matter which students work
together? How can an instructor observe and record the way in
which students work together?

In a teaching experiment, the researcher works intensively with
a small number of students. Attempts are made to modify and up-
date the procedures as the experiment yields information.

THE TEACHING EXPERIMENT

Students were 14 adults in an intact developmental mathematics
class at Purdue University Calumet. The course consists of two
8-week segments, Arithmetic Skills and Pre-Algebra Problem-
Solving Skills. Students were given a battery of diagnostic
instruments at the beginning of the semester. The class meets
6 hours per week; about half is lecture-discussion and the rest
is laboratory, in which students are working individually, with
partners, or in small groups, with the help of the instructor
and/or teaching assistant.

O
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Data was kept about how many times students worked together, with
whom, and who had which role (Helper, Helpee or relative equals).
Efforts were made to see that everyone had an opportunity to

work with everyone else in the class and to play different roles,
sometimes helping and sometimes being helped. Shortly after mid-
term, students were interviewed individually concerning their
progress and how they viewed working together, especially in
solving word problems. The interviews typically took a half-
hour or more and were audio-recorded.

RESULTS AND FINDINGS

We developed a chart (Figure 1) which is fairly easy to maintain
and which holds information about who has worked with whom, how
often, etc. The instructor can enter the initials of a student's
partners or group members. We entered a "+" when we thought a
person's role was primarily that of a Helper, "-" when the per-
son seemed to be basically a Helpee, and nothing if we weren't
sure or they seemed to be equal. The "working together" record
should be on a separate sheet from the grade book because of the
space required; we used pages from large bookkeeping ledgers.
After a few weeks we could tell at a glance whether someone had
always been absent when we had co-operative activities or with
whom students had worked. '
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From observations and interviews, formal and informal, we re-

ceived some insights.

I. Most of the students in developmental classes can be placed
in one of the following two categories:

A. Highly motivated, often mature students. They are high
in drive and ambition, but may be low in skills and confidence.

B. Unmotivated, directionless, often just out of high
school or unemployed. Sometimes they are being sent to school
by parents or others.
When students were required to work together, certain generaliza-
tions can be made about their reactions. Group A students were
independent persons, determined to master the material. They did
not mind helping others, once they felt confident that they un-
derstood it themselves and as long as the person to be helped
wanted their help. They usually were not eager to co-operate
with someone that they felt was not serious about the task at
hand. Group B students, though sometimes lazy and apathetic,
usually enjoyed the interaction and attention they received in
the group (or from a partner); they usually responded to being
helped by trying to hold their endsup. They sometimes took a
passive role, merely copying the leader's solutions. They did
not initiate much, but often assumed the role of cheerleader,
encouraging or complimenting other students who made suggestions.

II. The students helped me arrive at models (shown in Figure 2)
to illustrate what they had been doing and what I was asking
them to do. Model I shows working in a co-operative manner,
while Model II shows the results of actually working together,
or us ing co-operation as a learning mode. We observed that in
this class, Model II was used only when I required it. (This
was accomplished by giving teams one answer sheet among them so
that they were forced to collaborate; simply asking them to work

O
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Model 1 Model II
Student P Student Q Student R Student S
~
solution solution |
l One
jJjoint
solution
7 v
Compare the two;
Compromise;
Choose one solution
from the two .
Y

Figure 2

together tended to produce only Model I behavior.) During the
interviews we discuss the reasons for this; students often cited
their previous training to "keep your eyes on your own paper,"
especially in mathematics classes.

III. With regard to questions raised earlier, I make the follow-
ing conjectures:

a. Working co-operatively forces students to actually attend to
the problem at hand. Peer pressure to help is motivational.

b. Discussing what the problem means clarifies it for the speaker

as well as the listener.

c. Women in remedial or developmental matheamtics courses are
often lacking in confidence; working together seems to increase
their confidence. Peers in the class were lavish with praise

O
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when someone did a good job. Also, the women seemed to either
not mind or actually relish the helping role. Thus, in trying to
help others, they were also helping themselves.

d. Students generally do not know how to work together; they
need instruction in this. Also, by sometimes choosing who works
with whom, the instructor can assure that students sometimes
have the role of Helper, sometimes of Helpee.

IV. No harmful effects of the co-operative method were observed:
In addition to the usual affective benefits expected, I believe
that the co-operative method has great potential for helping
students to learn difficult mathematics concepts.
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COGNITIVE DEVELOPMENT AMONG ADOLESCENTS AND YOUNG ADULTS
Margaret A, Parrell
State University of New York Albany

The studies referred to in this paper were completed by doctoral students or
faculty at the State University of New York Albany over the period from 1980
to 1985. Cognitive development of adolescents and young adults was 6ne of
several variables studied by these researchers who were investigating
curricular or instructional issues in mathematics or science education. In
most cases, the kind of reasoning demonstrated by the subjects in response
to particular measures was the central issue for these researchers, rather
than classfication of subjects by stage.

INSTRUMENTATION

Several group classification instruments were used across more than one
study. These merit particular attention here. Mr. Tall and Mr. Short
(Karplus, Lawson, Wollman, Appel, Bernoff, Howe, Rusch & Sullivan, 1977)
measures first-order direct proportional reasoning. A second commonly used
group instrument was Longeot's Test of Formal Reasoning (Longeot, 1962,
1964). FProm a mathematics teacher's point of view, Longeot's three subtests
aseegs one of the following: proportional or probabilistic reasoning,
hypothetico-deductive reasoning, or reasoning about permutations and
combinations, The third commonly used group test was the Test of Logical
Thinking, or the TOLT (Tobin and Capie, 1981), The TOLT consists of ten
items, two each designed to assess one of five reasoning abilities:
proportional reasoning, controlling variables, probabilistic reasoning,
correlational reasoning and combinatorial reasoning.

Three of the fifteen Inhelder and Piaget (1958) tasks were used in more than
one study. These were the Chemical Solutions, the Bending Rods and the
Projection of Shadows tasks. They were designed to measure combinatorial
reasoning, controlling variables and proportional reasoning, respectively,
In Table 1, each of these common measures is listed with the kind of
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reasoning which it appears to assess. Decisions on the reasoning
classifications were reached on the basis of achievement test results
matched with performance on the measures and assessments of construct
validity, when available, rather than on the author's title of the measure.
Por example, Longeot used the label "test of combinations™ for a set of
problems which include permutations and combinations. Further, even the
combination items do not fully test combinatorial reasoning which is more
complex than merely listing, in a pattermed way, all the possible
combinations in some finite set.

Table 1
Kind of Reasoning Assessed by Each Measure

Instrument Reasoning

Tall-Short Puzzle Assesses first order direct proportional reasoning
(metric) and understanding of non-standard unit.

Volume Puzzle Designed to assess effect of submerging different
weight, but same volume, ball in water. May assess
recall of relationship from sclence class.

Mealworm Puzzle Requires understanding of controlling variables and
ability to analyze design.

Longeot-Logic Assesses abllity to reach an appropriate conclusion
glven premises in story form.

Longeot-Proportions Requires ability to choose the more likely of two
situations--each described in terms of two factors.

Longeot-Combinations Assesses abllity to count or list different orders
(permutations) or different collections (combinations)

Chemical Solutions Assesses abllity to recognize all possible combina-
tions and to use the results to decide next steps or
to explain pairs of results.

Shadows Assesses qualitative direct and inverse proportions and
metric joint proportion in four successive subtasks.

Rods Assesses understanding of controlling variables.

TOLT Two items each assess proportional, probabilistic, cor-
relational and combinational reasoning, and controlling
variables.

O
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There will be no attempt in this summary to include detailed information on
the reliability or the validity (construct, predictive,...) of the cited
measures. WNor will detailed information on test administration, interview
training, administration and test scoring be included here. Such

information is available in the original references.
RESULTS FROM STUDIES

A summary of the results of .those studies which used one or more of the
measures listed in Table 1 is included in Table 2. The students in each
sample were classified in the Piagetian vernacular, as concrete‘operatlonal
(CO), transitional (TR) or formal operational (FO). 1In some cases, further
data on student strategies and error patterns were analyzed and may be
found in the original source. For the purposes of this report, the code
(FO) found in Table 2 always indicates success on the type of reasoning
assessed by the measure. The code (CO) always represents, at best,
performance characterized by reliance on trial and error approaches,
inductive reasoning and dependence on concrete experiences or familiar
objects or events. The code (TR), as one would expect, represents behavior
developing from early concrete operational to full or late formal
operational. In some of the paper-pencil tasks, TR may include both late
concrete operational and early formal operational behaviors. On the
Projection of Shadows task, scoring allows for both early and late,
concrete (ECO and LCO) and formal (EFO and LFO) operational.

In addition to the summary in Table 2, all researchers provided other data
on students’ performance on tests of mathematical reasoning and
achievement. In his study of instructional modes at the college level,
Pluta (1980) tested student achievement on unit emphasizing mathematical
structure. Pluta found that for students classified as TR or FO,
mathematical learning was enhanced by instruction which incorporated active
manipulation of physical objects and an inductive approach while CO
students were unable to achieve a satisfactory level of understanding,
regardless of treatment. In a study of the validity of several paper-
pencil measures, Farmer, Parrell, Clark & McDonald (1982) administered
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three original Piagetian tasks, the Chemical Solutions, Projection of

Shadows and Bending Rods (Inhelder & Piaget, 1958).
Shadows is displayed in Table 2.

Only the data for the

Results for all three tasks are given in

Table 3.
Table 2
Percentages of Students Classified on Measures by Study
Tall-
Study Short Volume Mealworm _Longeot TOLT Shadows
Pre-Service (N=48)
El. Teachers
Pluta (1980) C0=40
TR=31
F0=29
9/10th Grade (N=506) (N=506) (N=506) (N=506) (N=69)
MSC Ss
Farmer C0=65 C0=39 C0=87 C0=34 ECO=10
et. al, FO=35 FO=61 FO=13 F0=66 LCO=86
(1982) EFO= 1
LFOa 3
10th Grade (N=150) (N=136)
Geometry
S8 McDonald C0=19 C0a33
(1982) TR= O TR=30
FO=81 FO=37
Nigerian (N=99) (N=99)
Form 3 Ss
Fajemidagba C0=84 C0=84
(1983) FO=16 TR=16
FO= 0
Gifted (N=30) (N=30) (N=30) (N=30)
Hiddle
School Ss €0=13 Co= 0 €0=20 ECO= O
Farmer FO=87 F0=100 FO=80 LCO=74
(1983) EFO= 3
LF0=23
10th, 11th (N=901) (N=128)
12th MSC ss
Farrell and ECO=26 ECO= 4
Farmer LCO=21 LCO=72
(1985) F0=53 EFO= 7
LFO=17
Q i
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Table 3 .
Percentages of Students Classified (N = 69) on Three Inhelder and Piaget
Tasks

Task
Classification Chemicals Shadows Rods Total
Concrete 76.8 95.7 63.8 84.1
Formal 23.2 4.3 36.2 15.9

McDonald (1982) obtained estimates of students's cognitive structure with
respect to the topic of similarity and compared these with the ways experts
and their own teachers structured the similarity material.

Fajemidagba (1983), in a study of achievement on ratio and proportion
problems, found that TR students succeeded on first order direct proportions
when the items included concrete referents and real world examples. In a
study of reasoning displayed by gifted middle school youngsters, éarmer
(1983) gave data for each of the reasoning areas purported to be assessed by
the TOLT (Table 4).

Table 4
Freq y of Su of Gifted Middle School Students (N = 30) by TOLT
Reasoning Sections

Neither

Reasoning Both Items Exactly One Item

Proportional 22 4 4
Controlling vVariables 23 1 6
Probabilistic 20 7 3
Correlational 15 12 3
Combinatorial 12 10 8

In order to follow up questions raised by performance on proportionality in
several of these studies, Parrell and Farmer (1985) designed a study which
focused on older studené.s with more course experience in mathematics and
science and evidence of success in the area of direct proportions.

Students (¥ = 901) enrolled in tenth, eleventh or twelfth grade college-
bound mathematics and/or science classes were asdministered Tall-Short. From
the successful group of 474 students, s random subsample of 128 was
interviewed on the Projection of Shadows task. (Table 2) The responses of
the subsample were analyzed to identify the effects of feed-back and second
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trials and the effect of centering on direct proportions. It is especlally
revealing to note that only 7 of the 22 late formal students succeeded on

the first trial for each subtask. Thus, feedback and the opportunity to try
again were necessary so that these students could demonstrate their optimal

competence.
ISSUES

An examination of the reasoning patterns listed in Table 1 shows that all of

these are of concern to mathematics and science educators. A 4 of

most of the reasoning strategies 1s necessary for meaningful learning of the
typical mathematics curriculum required at the grade levels tested. What is
particularly disturbing is the level of performance of college-bound
"advanced” students. To what extent is the cognitive development of these
students being retarded by the curriculum, instructional approaches or the
usual classroom tests of learning? Are teachers’ erroneous expectations of
students’ competence contributing to the failure of otherwise capable
students to develop higher cognitive skills? These are some of the issues
to be raised in the symposium.
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STABILITY OF COGNITIVE STRUCTURES AND RETENTION
OF GEOMETRIC CONTENT RELATIVE TO COGNITIVE STAGE

Janet L, McDonald
State University of New York at Albany

This study was designed to investigate the stability of cognitive
structure of content by comparing cognitive ®"maps® generated by high
school geometry students with those generated by the same students
one year earlier and to determine the impact of structural differences
on long~term retention of the subject matter. The results of the
analysis indicated that the content structures created by subjects
who were formal operational when they learned the material were
significantly more stable than those who were concrete at the time of
instruction. Those same subjects also retained significantly more
geometry content.

INTRODUCT ION

In a previous study, this researcher investigated the role of cognitive stage
in the development of cognitive structures of geometric content (McDonald,
1982). That research indicated that cognitive "maps" of geometric content
formed by formal operational subjects were significantly more 1ike those of
subject matter experts than the maps formed by concrete operational subjects.
The purpose of the present study was to investigate the stability of those
cognitive structures by analyzing the cognitive maps of the same subjects one
vear later, and to determine the impact of structural differences upon the
long-term retention of subject matter content. If the significant differences
between formal and concrete operators in the previous study were based upon a
reliance of the concrete operators on "rote" memorization, then re-examination
of the same subjects at a later date should yield significant differences in
both the structural stability and subject matter retention as a function of
cognitive stage.
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ME THODOLOGY

Subjects: Subjects consisted of the 40 subjects from the previous study drawn
from a pool of 161 tenth grade "Regents" geometry students from a suburban New
York State school. Twenty had been classified as concrete operational and
twenty had been classified as formal operational.

Instruments: Classification of subjects was accomplished through the use of
Sheehan's (1970) adaptation of the Longeot Test of Formal Operations {1964)
and the Test of Logical Thinking (TOLT; Tobin & Capie, 1981). The instrument
designed to map expert and student structure consisted of a similarity
Judgment task built from 13 terms chosen from the similarity unit in
geometry. The subjects were directed to make pairwise similarity judgments
for each of the 78 combinations of terms by assigning a number representing
the degree of relationship. Patterns of cognitive structure were obtained
through multidimensional scaling analyses of the similarity judgments. An
expert target matrix, formed by consensual agreement among six mathematics
educators, was used as a model of the subject-matter structure and as a basis
of comparison with corresponding student structures of the same content. A1l
subjects were also given a test on geometry content.

Procedure: Students were administered the similarity judgment task one year
and one week after the original administration. Students were requested to
make each‘of their judgments considering the relationship of the terms in the
similarity unit. One week later, students were -administered the content
instrument. They were requested to make an attempt to complete each questfon
even if they felt that they might have forgotten the material from the
previous year. '

DATA ANALYSIS AND RESULTS

Data Analysis: Each student's matrix of proximity judgments was standardized
and distance coefficients were determined for each pair. The resulting
distance matrices were subjected to nonmetric multidimentional scaling
analysis using a four-dimensional MDSCALE solution. The new student maps were
then compared to the original expert and student maps. The rank order
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correlations between each of the students and the target matrices were
determined, converted to z-scores, and tested for significance using a
one-tailed t-statistic.

The content unit test was scored by assigning partial credit to the numerical
problems and to the proofs. Total raw scores and subtest scores were
standardized and correlated with the target correlation scores from the
MDSCALE analysis.

Results: The results of the analysis of the stability of structure indicated
that the structures of the formal operational subjects were significantly more
stable (t(38) = 5.25, p .001) and remained significantly closer in structure
to subject matter experts (t(38) = 6.36, p .001) than those of the concrete
subjects. The formal operational subjects also retained significantly more
content than the concrete operational subjects (t{38) = 2.68, p .01). On
the True/False subtest of the content test, the two groups showed no
significant difference. OQifferences on the numerical problems were
significant at the .025 level (t(38) = 2.56). Differences on the proof where
students only filled in the reasons were significant at the .01 level (t(38) =
2.55) while differences in the proof where students supplied both statements
and reasons were the most significant (t(38) = 3.66, p  .0005).

DISCUSSION

Figure 1 shows a composite of three cognitive maps. The expert map was
derived for the original study and used for this analysis as well. The
vertical dimension represents a range of equality, the positive pole being
most equal quantities and the negative pole being least equal quantities. The
horizontal axfs represents the whole versus part dimension with whole figures
at the positive extreme and their parts at the negative extreme.

In comparison to the expert map, the prototypical concrete map from the
initial study (not shown) was much more confused and compressed on the whole
versus part dimension and indicated a general confusion of several significant
terms. As shown in Figure 1, the prototypical concrete group member during
the follow-up study, departs even more drastically from the expert map. Here

most similarity in dimensionality to the expert map is lost.
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The prototypical formal representations from both studies more closely
approximate the expert target than either of the concrete maps. Although a
certain amount of clustering of terms resulted in a compression of the axes
for these subjects during the follow-up study (Figure 1), the extreme
clustering apparent in the concrete maps is not as prominent.

The lack of significant differences in the True/False items is probably due to
the guessing factor and their relatively simple content. That less
statistically significant differences were found in the numerical problems
than in the proofs is probably a result of their being algebraic in nature.
The general inability of concrete students to be able to successfully complete
the proofs is a factor correlated significantly to the lack .of an integrated
structure representing the interrelationships of the required concepts. The
concrete subject was unable to relate terms outside of the given cluster to
terms within the cluster, and it is these types of interrelationsips that are
the basis of proof.

CONCLUSTONS AND IMPLICATIONS

The combined findings of these two studies would indicate that there are
inherent qualities in the content of high school geometry which make it
extremely difficult for certain students to develop meaningful cognitive
structures of its concepts. As a result, it appears that these students may
be forced to learn the material by rote methods, resulting in unintegrated
cognitive structures and lack of retention. To promote the cognitive
development needed, changes in instructional methods, modes, and strategies to
match the cognitive developmental level of the student would seem mandatory.
The results are also indicative of the importance of consideration of the
reciprocal implications between knowledge representation and general control
strategies as students develop an understanding of any abstract domain.
Efforts to understand the acquisition of knowledge might benefit from
application of a control systems framework or from the use of microcomputer
simulation and graphics.
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SYMPOSIUM: LOGO AND MATHEMATICS LEARNING

Organized by Gerald Brazier, Pan American University

Presenters:

will watkins/Gerald Brazier, Pan American University
Patrick Thompson, Illinois State University

John Olive, Emory University

Pat Wilson, Ohio State University

Susan Blair/Thomas Kieren, University of Alberta

Reactors:

Ronald Wenger, University of Delaware
Tony Stavely, Keene State University

Since its inception, Logo has been touted as more than a
computer language; it has been offered as a learning
environment. Unlike the use of the computer as a support to
instruction, the Logo environment has been presented as one in
which the student is free to create his own world--not only to
solve problems but to pose them as well. The appeal of this
kind of promise for mathematics education is very strong.

Many questions arise when considering Logo and mathematics
learning. Is the promise something that can be fulfilled? Are
there special aspects of the Logo environment that create
opportunities for investigating mathematics learning that other
environments do not provide? This symposium will address a wide
range of questions associated with Logo and will, with the
contributions of otﬂer conference participants, spark
discussions of many others.

O
ERIC
355



345

Logo Geometry: Ego Syntonic?

Susan Blair Ludwig
Thomas E. Kiereh
University of Alberta

This study represents one test of a proposed theory
which specifies levels of Logo use and relates such
levels to the way van Hiele levels of geometric think-
ing. A motion geometry curriculum modelling this
relationship was developed and validated. Two heter-
ogeneous classes of students used the curriculum. A
sample of 10 students were studies for 2 eighty min=
ute periods a week for eleven weeks. An analysis of
videotapes of these students working in pairs revealed
the following: students who were at the Basic level
in geometry were able to do sophisticated things in
Logo mostly in direct mode. Naive procedure writing
in Logo appeared to foster students knowledge of
geometric properties. These students appeared able

to transfer the knowledge to paper/pencil tasks and
satisfactorally met the geometric objectives through
the Logo use,.

1. Background to the Study

It was the purpose of this research and is the purpose of this
report to explore the ego syntonic nature of motion-geometry in a
Logo environment. Ego syntonic geometry is taken here to mean
geometry derived from and matched to the natural idea development
of the learner. Thus, although experiences are provided, the
kind of concept and level of language used is determined by the
learner. So the question is, in what ways and to what extent is
Turtle geometry ego syntonic (Papert, 1980)?

The van Hiele theory (Wirzup, 1976, Hoffer, 1983) presents one
way of looking at geometry stratified in levels which match the
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perception/thinking process of the learner. Briefly stated these
levels are: Basic Level: The objects are seen as wholes and are
recognized by appearance alone. Level I: The objects are seen
as carriers of properties which are not yet related. Level II:
The objects are seen in terms of logical relationships among pro-
perties and among figures. Level III: The objects represent re-
lationships which are deducible from an axiomatic system. This
development occurs through learning, the process of which in-
cludes five phases: information, directed orientation, explan-
ation, free orientation and integration. In these terms, Turtle
geometry is ego syntonic if these levels and processes are evi-
dent in student'Logo geometry activities,

For this to be the case it would seem that there should also be
levels in Logo use. Martin, Paulsen and Prata (1984) have sug-
gested such levels of Logo programming exist and Kieren (1984)
has suggested the instructional structure for Logo used in Fig.
1 below.

Kieren and Olson (1983) saw a link between the van Hiele levels
and levels of Logo use also illustrated in Fig. 1 below.

O
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Figure 1

From this perspective geometry using Logo appears matchable with
van Hiele levels and is thus ego syntonic in that sense.

To date there is some evidence of the levelled nature of Logo in
the work of children. For example, Hillel (1984) observed that
although children (8-9 years old) were encouraged to pre-plan
Logo work after an initial period of introduction to Logo pro-
cedures most functioned at Levels 1 and 2 above, writing proced-
ures mainly as a device to save lists which accomplished tasks.
Even those who appeared to be at Level 3 and pre-planned pro-
cedures reverted to a lower level (screen debugging) when pro-

cedures didn't work as planned.

There have been related findings in research on van Hiele theory.
For example, Burger (1985) notes that even high school students
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do not use properties to define geometric situations even though
they might memorize adult or text given definitions or proofs.

To explore the ego syntonic nature of Logo based geometry and to
test the relationship between Logo use and van Hiele levels theo~

. rized as signalling such nature a teaching study with the follow-

ing purpose was done.

O

(1) Can one develop a set of experiences entailing Logo use
at the Grade 7 level which allow for van Hiele levels
and processes in student behaviour?

(2) In working in such an environment what are the Logo and
geometric behaviours of the students?

(3) Are these behaviours consistent with the level theory in
Figure 1 above?

(4) In what way does this curriculum facilitate movement
from one level of Logo use or geometric thinging to the
next? What are the evidences of such movement?

Research Procedures

2.1 Sample

Two heterogenous grade seven mathematics classes in an
Edmonton junior high school were involved in the project.

The work and progress of ten students, six in one class and
four in the other was closely monitored, although all members
of the classes were involved in the project.

2.2 The Curriculum

'Following the principles for van Hiele geometry described in

Hoffer (1983), a curriculum following the Grade 7 objectives
for motion geometry and involving Logo activities was devised.
The following major topics in motion geometry were covered:
translations, rotations and reflections. For each topic the
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following tasks were devised. An "Inquiry" phase involved
computer demonstration and class discussion. 1In the second
phase, “Turtle Tracking" the students used teacher designed
procedures, created a motion in direct mode or debugged given
procedures to complete the motion. The "Extensions" phase
was intended for students to design and debug procedures re-
lated to the topic. They were assisted in writing procedures
by the lists of commands recorded in the previous phase.
"Turtle Excursions" for students at higher Logo or van Hiele
levels was to extend students procedures to include variables
or explore recursive procedures related to the topic. The
final "Project" phase encouraged students to find their own
solutions given some initial suggestions. The students were
to use their knowledge gained through the previous four phases
to write their own procedures. An intent of this phase was
to integrate their previous knowledge gained. The motion
geometry curriculum was taught for 2 eighty minute periods
over an 1l week time span.

2.3 Observation and Data Analysis

One researcher served as a teacher observer in the experiment.
Daily and at the end of the project videotapes of 10 students
work were analyzed and coded to allow the following analysis:
identifying tehaviours at various van Hiele and Logo levels;
document Loco processes used and difficulties encountered;
identify examples of facilitation of geometric thinking if
they exist; correlate geometric and iogo levels behaviourally.

3. Results

= The curriculum was validated three ways, through interactive
design processes, by successful use in a class whose teacher was
not previously Logo experienced, and in the teaching experiment
itself.

= Subjects in the teaching experiment and cohort class learned
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geometry as assessed on a 35 item paper/pencil test. They also
scored higher than five prior classes in the same school on a
standard geometry test.

- Students were mainly at the Basic level of geometry and were
moving to Level I. That is they were starting to independently
find properties of motions but attempts at definitions were very

imprecise.

- Similarly in Logo students in general moved from Direct mode to
Naive programming through recognition of Direct mode patterns.
They realized the value of writing preplanned procedures, but
usually did not do so. Instead they normally worked on short
lists of commands (debugging in Direct mode). Procedures usually
came as concatenations of such efforts. Only one student indepen-
dently recognized families of procedures and used variables in

his programs.

- Logo procedure work (and even work with given geometric primi-
tives) facilitated growth to Level I geometric thinking by giving
students an opportunity to relate visual patterns in notions to
verbal lists which formed the basis for properties.
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LOGO PROGRAMMING AND RELATIONAL LEARNING IN A
GEOMETRIC MICROWORLD - IMPLICATIONS FOR INSTRUCTION

by

John Olive, Emory University

Ninth grade students in an urban high school were taught Logo
programming through Turtle graphics during an intensive six-week
course. All students' interactions with Logo were captured in
disk files and analyzed in terms of the SOLO/Skemp Synthesis to
determine progressions through SOLO Learning Cycles and the
appropriateness of the instructional sequence for generating
relational learning. The analysis highlighted critical gaps in
the instructional sequence and important pedagogical steps that
need to occurr in order to generate relational learning.

INTRODUCTION

This research project was a pilot study for a larger investigation, now in
progress, into students' understanding of geometric relationships: the
Atlanta - Emory LOGO Project, which is supported by grants from the Apple
Education Foundation and the National Science Foundation. The purpose of the
pilot study was to investigate the potential of the LOGO computer language for

generating relational learning cycles for students, in a geometric microworld,

and to assess the appropriateness of the teaching methodology, sequence and

content for generating relational learning.

A Logo teaching experiment was designed to help ninth grade students progress
through the levels of the SOLO taxonomy (Biggs & Collis, 1980) in order to
achieve a higher level of abstraction in their mathematical thinking. The
mathematical focus of the instruction was on geometric relationships. The van
Hiele model of geometric thought provided the rationale for this focus. The
teaching methodology and curriculum ideas were based on a theory of relational
learning cycles (Olive, 1983) which emerged from a synthesis of the SOLO
taxonomy and Skemp's (1976) model of mathematical understanding within the
context of Skemp's model of intelligence (1979).
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METHODOLOGY

Twenty students were randomly chosen from an intact, ninth grade class of 39
students in an urban high school. Each student worked with a micro-computer
in a lab situation for 18 days (two hours a day, three days per week for six
weeks). The investigator taught the group, introducing the students to the

micro-computer and the LOGO language through a series of "guided discovery"

learning episodes.

Each student's interactions with LOGO were saved on disk files and analyzed in
terms of the SOLO/Skemp synthesis. This analysis provided a picture of each
student's developmental growth in the use of LOGO and helped to determine the
appropriateness of the teaching methodology and curriculum ideas for
generating relational learning‘cycles and helping students achieve a higher
level of mathematical abstraction.

RESULTS

The results of the analysis indicate that for many students, the instructional
sequence was too fast. There was not enough time for them to explore new
programming ideas or to investigate the various geometric relationships before
new ones were introduced. Consequently, their understanding of both the LOGO
language and the geometric concepts was generally instrumental. However, for
those students who were able to keep pace with the instruction, progression
through SOLO learning cycles was evident. These students demonstrated a shift
to a more abstract mode of functioning with the LOGO language and relational

understanding of many of the geometric concepts that were introduced.
IMPLICATIONS FOR INSTRUCTION

The analysis of the data files also enabled the investigator to identify the
gaps in the instructional sequence. These gaps highlighted the critical
importance for introducing ideas at the appropriate SOLO level for individual
students, for sequencing activities according to a SOLO cycle, and for

encouraging reflection by the students on emerging relationships. The

O
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instructional sequence has been modified to better reflect these
characteristics. An example of such a modification is given in the next

section.
A RELATIONAL LEARNING SEQUENCE FOR POLYGONS

Critical gaps were discerned in the pilot curriculum where variable inputs to
procedures were introduced and where a generalized procedure, which required
three inputs, was introduced for the investigation of complex polygons. The
following sequence was designed to fill these gaps and help develop relational
understanding of both the use of variables in LOGO procedures and the
mathematical relationships which emerged out of the investigation of complex
polygons.
NOTE: This sequence begins at a point where students are comfortable with the
definition of fixed procedures for generating individual geometric
shapes, and with the use of REPEAT to generate regular polygons.

A. SHAPES

Step l: Generation of individual shape procedures

Students define procedures for squares, equilateral triangles, pentagons,
hexagons etc., using the REPEAT command.

EXAMPLE: TO HEX
REPEAT 6 [FD 50 RT 60}
END

Step 2: Construction of a Shape Table

Students complete the Shape Table (figure 1.) and construct the
relationship between "angle turned" and "number of repeats” (Rule of 360).

> 0O 0 0.8.0 s

Angle turned

Number of repeats

Product

Figure 1.
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Step 3: Varying the size of shapes with individual procedures

Students define a series of square procedures and triangle procedures
which create different sized shapes. The size of the shape is indicated by
the procedure name: e.g. $Q.20, $Q.30, $SQ.40, SQ. 50

EXAMPLE: TO $Q.20 TO SQ.30
REPEAT 4 {FD 20 RT 90] REPEAT 4 {FD 30 RT 90]
END END

B, SHAPES WITH INPUTS
Step 1: Variable inputs to change the SIZE of shapes

Students compare each procedure in the series above to discover what is
changing in each (the SIZE of the FD move), and what is staying the same
(everything else). By analogy with the requirement that LOGO makes on FD to
have an INPUT, the teacher can elicit from the students the idea that SQ could
have an INPUT to tell it how big a square to draw. It is at this point that
the LOGO syntax, to create variable inputs to procedures, can be meaningfully
introduced, A variable name is used to pass the input from SQ to the FD
command inside SQ:

T0 SQ :SIZE
REPEAT &4 (FD :SIZE RT 90]
END

Students can now generate variable procedures for changing the SIZE of
each of their different shapes.

Step 2: Variable inputs to change the SHAPE of the polygon

After a great deal of exploration and building with the variable
procedures for each shape, a discussion coﬁparing similarities and differences
among the different shape procedures, and the relationship between "angle
turned” and "number of REPEATS" (Rule of 360) inherent in each procedure, can
lead to a more generalized form of each shape procedure, using this
relationship:

EXAMPLE: TO HEX :SIZE
REPEAT 6 (FD :SIZE RT (360 / 6)]
END .

The only difference now between each procedure is the number of REPEATS.

O
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A discussion should elicit the idea of using a variable to stand for the
number of REPEATS. It would be appropriate to generate a shape changing
procedure of a fixed size at this point:

TO FPOLY :N (fixed size polygon)
REPEAT :N [FD 50 RT (360 / :N)]
END

Step 3: Variable inputs to change both SHAPE and SIZE
Students will want to change the SIZE of shapes created with FPOLY. A
discussion should elicit the idea of having TWO INPUTS:

TO RPOLY :N :S (regular polygon)
REPEAT :N [FD :S RT (360 / :N)]
END

C. SHAPES WITHOUT RESTRICTIONS
Step 1: Removing the restriction on the angle relationship

RPOLY always produces a simple, closed, regular polygon because of the
built-in relationship between "angle turned" and "number of REPEATS." A
discussion of what would happen if we lifted that restriction so that we could
input any angle should precede the introduction of the more generalized, three
input procedure:

TO APOLY :N :S :A
REPEAT :N [FD :S RT :A]
END

Step 2: Explorations with APOLY

Students can now explore a wider class of geometric figures, including
open figures and complex polygons. 4An investigation of inputs to APOLY that
produce closed, complex polygons (star shapes) can lead to an understanding of
the highly complex relationship between :N and :4 needed to produce a star
polygon, and the creation of a generalized procedure which embodies this
relationship:

TO MPOLY :N :S :M
REPEAT :N [FD :S RT (:M * 360 / :N)]
END

MPOLY produces an N-pointed star when :M (modulo :N) and :N have no common

factor, and :M is greater than one.
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FINAL COMMENT

The above instructional sequence progresse§ through SOLO levels (Unistructural
through Relating) for a particular type of LOGO object (Fixed Procedure,
Variable Procedure, Generalized Procedure) before introducing the more complex
LOGO object. Each new LOGO object is introduced after students have had the
opportunity to reflect on what they have been doing with existing LOGO objects
and the relationships they have discovered using those objects. These two
sequencing elements emerged as key elements for generating relational learning
cycles for students, and helping them achieve Extended Abstract SOLO
responses, indicative of higher levels of mathematical thinking.

The results also demonstrate the enormous potential for process analysis of
data provided by the "dribble" file technology. The ability to visually
recreate every step a student takes when working on a problem brings us closer

to being able to directly observe an individual's cognitive processes.
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UNDERSTANDING RECURSION: PROCESS = OBJUECT
Patrick W. Thompson
INinois State University

/¢ Is hypothesized that to recognize & compultstion 8s rouiring recursion,
Students must conceolualize 8 recprocal relstimnship between processes
and their resulting objects. An example is given, slang wilh 8 discussion
of the role of recursion withih 8 mathemastics curriculum.

Ask any instructor of Pascal, Logo, LISP, deta structures, or algorithms to name three topics
that students find most difficult. Most probably his or her list will include racwrsian. In this
brief paper | will propese en hypothesis for explaining students’ extreme difficuity with
recursion, and will justify the importance of recursion's place in a mathematics curriculum.

First, let us ensure a common vocsbulary. The term ,recursive process will mesn eny process
that employs itself as 8 subprocess. The term rews/ve atyeet will meen any object which
contains an instence of itself as a component. Rscwrsian will meen the class of recursive
processes and recursive objects.

AN HYPOTHESIS

The distinction | have drawn between recursive processss and recursive objects is essential to
formulste my hypothesis concerning students’ difficulties with recursion. The hypothesis is
this: to be able to recognize a problem solution as one requiring a recursive process, students
must formulate their solution as a recursive object. Conversely, to recognize an object as
having e recursive structurs, they must formulate their description of it so thet it is the result
of e recursive process. Thet is to say, students must approaech a problem with the anticipation
that every object is the result of 8 process end every process results in en cbject. An example
will illustrate this point. !

1 The exemples are written In ExperLogo, which in thess examples is identical to Apple Logo.
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AN EXAMPLE

The figure below is one | regularly give my introductory Logo students with the intention that

they write a procedure to construct a class of figures of which this is but one example.2 Here is

the kind of enalysis that corresponds to this paper's trypothesis:

1. Name the cless of cbjects: (Of those names that have bsen suggested, ASHTRAY is my
favorite).

2. Describe an ASHTRAY: An ASHTRAY of arder »~ end of size s is a square-with-tails with an
ASHTRAY of order /- / and of size /3 st the tip of each tail.

3.  State the minimal case: An ASHTRAY of order @ is e point.

The descr iption of the class ASHTRAY not only describes the class, it suggests a process by which
to construct one. Since, in Logo, grephics is created by moving a turtle we elso need to specify
the relationship between the turtle and the to-be-drewn figure and to specify the relationship
between the turtie’s baginning and ending states when meking en ASHTRAY.

4. The relationship betweoen the turtle's initial state and a to- be-constructed ASHTRAY is that
the turtle is, from its perspective, in the middie of the bottom side pointing
perpendicularly toward the opposite side of the square-with-tails. (Other relationships
are possible; this one merely turns out to be convenient.)

2 )t ectually requires a sequence of pictures to veridically suggest that the class has a recursive
structure. To conserve spacs, | give a sequence of length one.
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S.  Thaeffect upon the turtle of making an ASHTRAY is nil. That is, the turtle’s beginning and
ending stetes are identical. ( This is merely & convenient assumption; any relationship
between beginning and ending state is possible).

Notes 1 through S can be thought of as design specifications for making an ASHTRAY. To write

the corresponding procedure, a student need only implement the description of the class es given

in notes 1 through 3, keeping in mind the reletionships specified by notes 4 end S. However, 10

implement the description of en ASHTRAY ane must anticipsts tha! lhe process one I's dsseriding
producss an abject of the dsscribed class, and lhet lo ablain an abject In the class ane Invokes the
name of the process. To meke an ASHTRAY of order » and of size s, we will invoke the process

nemed ASH. :

TOASH :N :S
IF :N=Q [STOP) AnASHTRAY of araeer O i3 8 point (recell note 3)
SQUARE.WITH.TAILS :N :S SOHUARE-WITH-TAILS will put an ASHTRAY 8t the tip of
sach lor] (recell nole 2).
END
TO SQUARE.WITH.TAILS :N S
REPEAT 4( LT 90 FD :5/2 Q0 lo the end of the Immediately-lert lor] (recall note
RT 135S FD :5/3 4)
ASH N-1 :S/3 Mats an ASHTRAY at the end of the teil (recall note 2)
Turtle ends where 1t now sits (recell note 5)
BK:S/3 LT 4S5
FD:S/2 RT90)3 @ lo e midle of e next s1ok
END

The decision to write ASH :N- 1 :5/3 in line 4 of SQUARE. WITH.TAILS is where it is essential to
relate process and object two sides of & coin. Many students, insteed of writing
ASH :N-1 :5/3, will begin to write LT 90 FD :S/2 RT 135S ... which is the beginning of
enother SQUARE.WITH.TAILS. Thet is, they become trapped in the pracess of constructing an
ASHTRAY, do not recognize that what is required at that point is enother ad/ac! called an
ASHTRAY , and that any ASHTRAY can be creeted by fnvoking ASH.

3 in most versions of Logo, the commands in the REPEATed list must be typed as one logical line
(i.e., without carriage returns).
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The necessity of releting process and cbject applies equally well to problems of writing
recursive functions thet operate upon data. However, students generelly find writing recursive
functions more difficult then writing recursive graphics. Apparently, when writing recursive
grephics it is often sufficient to use an image of the finished product as a stimulent to cue
themselves 8s t0 when to meke recursive cells. When writing recursive functions, it is
generelly insufficient to imegine only the finished product (the function’s cutput). Students
must also refiect the data’s structure in the function's structure. This is what Touretzky
(1983) calls structured recursion. An exsmple of reflecting a datum’s structure within a
function for processing it will be given in the presentation.

THE HYPOTHESIS REFORMULATED

To be sble to write recursive procedures or functions (es distinct from merely reading e

recursive precedure or function written by someone else), students must first describe the

abject to be created by the procedure in a way that reflects its recursive structure. They then

can use that description as a guide for writing the procedure, kesping in mind that whenever

they require an object of a particular class they invoke the name of the procedure that crestes

it, regardiess of whether or not (at the time they invoke the neme) the procedure has bsen

compiletely defined. The cognitive prerequisites for this ability amount to a mindset, or belfef

system:

1. Any process produces an object.4

2. One obtains an object of o particular class by invoking the name of the process that crestes
it.

3. One can name (and hence invoke) a process before the process has been defined (with the
intention thet it will be defined eventually).

RECURSION IN MATHEMATICAL UNDERSTANDING
The kind of object oriented thinking discussed above permeetes theories of mathemeticel

understanding. Skemp ( 1979) discussed a two-level model of mathematical thinking: et the
lower level, one thinks by doing. At the higher level, one thinks ataw? doing. Freudenthal

4 This includes “nonterminating™ processes, which allows the set of natural numbers to be
considered as en object. However, | would imagine thet in practice most intended objects resuit
from terminatiny processes.
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( 1972) discussed mathematical development in terms of progressively higher levels of object
construction. Pieget's constructs of reflection end reflexion (Plaget & Inhelder, 1969)
addressed the distinction between actions and represented ections. in eech case, descriptions of
intellectusl advancement involve hypothesizing that what is process at one level becomes object
at enother level. Here, in students' study of recursion, we have the opportunity to proveke
students’ into making the relationship between process and object explict to themselves. One
must be ceutioned, however, by the empirical question as to whether or not such an ewareness
will actually assist students in their mathematical development.

RECURSION IN THE CURRICULUM

The school curriculum {s rife with opportunitiss for cesting mathematical content recursively.
Ons exemple is given here. |t defines a “grammer" for integers and integer operations (Dreyfus
& Thompson, 1985). Here, the sementics of an integer is:
number Do number steps in your current direction.

~number Turn around, do 2umber, turn back eround.
The grammar for integers is:
1. A whole number is a number.
2. The nagetive of 8 number {s a number.
3. The composition of two numbers is @ number (one composes numbers by doing them

consecutively).

4. The representetion of 8 composition is equivalent to @ number.
S. An operation defined as a composition of numbers is equivalent to 8 number.

The recursive property of the system (grammar and sementics) manifests itself when one
evelustes espressions, es in =[-70 30], which denotes the negotive of the composition of -70
and 30. Our research suggests that for students to employ @ rule of substitution when
evaluating expressions, they must construct the distinction between process and object, as was
hypothesized esrlier in this paper for writing recursive procedures (Dreyfus & Thompson,
1985 ; Thompson & Dreyfus, 1985). Other exemples can be found in topics ranging from whole
number numeration to methematica) analysis.
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CONCLUSION

It should be noted that the facus in this paper was explaining studants’ difficulties in oresfing
recursive precesses and objects. This is quite different from studies thet focus on students’
ebilities to recognize already-written procedures as being recursive (cf., Kurland & Pes, no
date) or their abilities to write iteretive processes under the guise of recursion ( “tail-end”
recursion; cf., Anzsi & Uesato, 1982). The ability to create recursive pracesses end cbjects is
much more difficult to cultivete than abilities to recognize "recursiveness” in slresdy-wrilten
procsdures, but at the same tima once stteined is much more useful:
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THE CHAIN RULE IN THE LOGO ENVIRONMENT

Will Watkins and Gerald Brazier
Pan American University

Abstract

Two university students were introduced to the
list-processing primitives of Logo and were
presented with the task of producing a symbolic
differentiation procedure. Under the non-directive
direction of the two investigators, they were able
to complete the task and refine their own thinking
about composite functions and the chain rule.

INTRODUCTION

Logo has been highly touted as the computing environment par
excellence for mathematics learning. Papert’s (1980) enthusiasm
has been infectious but a body of research investigating Logo
and mathematics learning has been slow to develop.

"An environment in which students can gain control over their
own learning,"” is the way in which Logo is described. Such a
description has particular appeal to mathematics education
reserachers who are directed by a constructivist point of view
of learning (von Glasersfeld, 1983). Opportunities to truly
construct new knowledge in an overt, conscious way are very rare
in school settings. Rarer still are opportunites to study such
learner activity in a scientific way. This investigation
represents the barest beginnings of an effort to use the Logo
environment to study a learner’s construction of knowledge. The
content chosen was symbolic differentiation-~material dominated
by rules and form.

PROCEDURES

The two students who participated in the investigation were
volunteers from two different calculus classes. The first

Q 22'7
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student, vicki, was enrolled in the one semester survey of
calculus for business majors. It was her first experience with
the calculus. The second student, Neal, was enrolled in the
second semester of the calculus sequence for science majors.
Each of the classes was presented with the opportunity to spend
an hour each day "doing some calculus on the computer.” Several
students expressed interest but vicki and Neal were the only
ones who followed through on the complete program. No attempt
was made to gather background information on the two students
other than having them describe their understanding of the
mechanics of the chain rule. Neal was well-acquainted with the
material and vicki had been taught the chain rule (in the
context of the power rule) just before the first session on the
computer.,

The first phase of the investigation consisted of an
introduction to the MIT version of Logo for the Apple with
particular attention to a subset of the list-processing
primitives--namely, FIRST, LAST, BUTFIRST, BUTLAST, FPUT, LPUT,
and LIST. Much of the first session was taken up with
familiarization activities, some graphics, and an introduction
to creating procedures. In the second session the students
began their investigation of the list-processing primitives by
creating their own procedures to solve certain kinds of standard
problems--find the second element in a list, determine whether a
given element is in a list, and so forth. The two investigators
worked with the students individually and as a pair in
developing their understanding of Logo's handling of inputs and
its conditional IF construct. By the end of the second session
the students were writing short procedures employing the
list-processing primitives described above. The third session
was spent solidifying these ideas by presenting the students
with some more challenges along the same line.

The second phase consisted of developing a scheme for
representing functions in the Logo environment. The
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investigators presented these three examples for consideration:
[PW X 2], [P 3 X], [S X 7). These were representations for X ,
3X, and X + 7, respectively. At this point the students were
given exercises in translating standard composite functions into
this new form--expressions like (3X + 8) to be represented as
[PW [S [P 3X) 8) 4). At the end of this session, the task of
writing a procedure to produce the derivative of a function was
proposed to the students. Since both students' work in the
calculus to this point had been dominated by power functions,
they were immediately drawn to the task of differentiating xn.
Each of the students by the end of the next session had created
the following linked procedures {(with minor differences):

TO PWR :F

OP ( LIST "P LAST :F DER :F )
END
TO DER :F

OP LPUT (LAST :F) -1 BL :F
END

At this point the investigators posed the question of how to
incorporate the chain rule into the scheme and then after
discussion proposed the following skeleton master procedure:
TO DX :F
IF :F = "X OP 1
IF NUMBER? :F OP 0
IF FIRST :F = "PW OP DPWR :F
OP LIST "DX :F
END
This skeleton required building the procedure DPWR from what had
been done in PWR as follows:
TO DPWR :F
OP ( LIST "P PWR :F DX FIRST BF :F )
END
The recursive nature of the procedure DX is clear and yet was
not emphasized in any way by the investigators--the students
knew that the chain rule required a product so simply wrote

O
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their implementation of the chain rule that way.

The third and final phase was simply the students' carrying out
the task of filling out the skeleton procedure DX to incorporate
as many different functions (sum, product, etc.) as they could.
It was in this phase that the monitoring of their work become
the major focus of the investigation.

RESULTS

Detailed records of the students' procedures in various stages
of completion are available from the authors. These records
capture some of the flavor of the students' experirence but
there were many other aspects of the investigation that can
only, at present anyway, be observed in a very informal and
imprecise way. There is no question of the rapidity with which
both students were able to produce the subprocedures necessary
to symbolically differentiate sums, products, quotients,
exponentials, and logarithms. 1In observing their work, the
pattern of decomposition of large task to smaller tasks was
evident at every turn. Both students very quickly developed a
"case-study"” approach by which they made the machine mimic their
own thought processes in praticular elaborated examples. They
recognized the necessity for having a sufficiently complicated
prototype to work with as they taught the machine to think like
they thought. Vicki, though less experienced mathematically,
developed an extremely efficient algorithm by which she
developed the procedures--a fascinating bit of meta-cognition.

Each of the students become extremely adept at decomposing
elaborate functions and in creating standard notation for
results created by the infix notation of their procedures. In
fact, Neal spent time at the end of the investigation writing
procedures to simplify expressions like [S X 0] and [P 3 1] to X
and 3, respectively. Both students were successful in their
classroom work within which the ten day investigation took place

O
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but there is no way to attribute that to their Logo experience.
In a formal way, very little can be noted in the way of results,
yet informally it was seen that each of students engaged in
thinking about mathematics in a way they had not before.

CONCLUSION

In the spirit of a bare beginning, the investigation reveals
some of the potential of the Logo environment for creating a
workplace for mathematics learners. With very minimal start up
cost students can be working on significant tasks that allow
them to reflect on their own mathematical knowledge. How they
proceed needs to be monitored more carefully and needs to be
correlated more carefully with what else we can know about their
mathematical knowledge, The potential for using the Logo
environment for a laboratory both for students and for those
studying students seems very great.
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LOGO: A POWERFUL RESEARCH TOOL
Patricia S. Wilson
The Ohio State University

Current research using Logo 1s discussed with a focus on the
special opportunities presented by Logo.

"Do Not Ask What Logo Can Do To People, But What People Can Do With Logo"
was the borrowed challenge that Papert (1985) presented to researchers at
the Logo 85 Conference, Papert's comments were a reaction to the criticism
of Logo resulting from studies finding little or no significant difference
in Logo treatments (Bank Street College, 1983-84; University of Edinburgh,
1970- ; Brookline). He claimed current empirical research asks the wrong
questions. Insisting that a scientific paradigm is not appropriate, Papert
strongly opposed using a treatment study to investigate the value of Logo.
He explained that one should not try to evaluate the effect of Logo, but
should report how it was used and the consequences.

Papert (1980) claims that Logo microworldscan be created that are incubators
for knowledge. This is supported by Leron's explanation that most of the
students he has worked with seem to have gained "some sort of vague, partial
understanding of many powerful ideas” (1985a, p. 32). The idea of a knowl-
edge incubator where partial understandings of powerful ideas are developing
is an exciting laboratory situation for a researcher! The following sections
discuss the research opportunities in a Logo environment.

LOGO PROVIDES A WINDOW

Logo can be used as a research tool that provides a window into a student's
complex world of thinking, In this sense, the researcher is not interested

in studying Logo but is interested in using Logo. The Logo task (structured

or unstructured) provides an opportunity for the researcher to learn more
about what a student is thinking by observing and interacting with the student.
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Papert (1985) offers an example of studying students' styles of working.
Student A knew exactly what he wanted to do and set out to achieve the goal.
The student continually made modifications but continued to work toward the
goal. Student B messed around. He tinkered with one idea, jumped to
another idea and continued to explore ideas as they occurred. Eventually
select ideas were integrated into a project. Logo exploration allowed

the students the freedom to exhibit their preferred style of working.

Using a moderately structured Logo task, Wilson (1984) found upper elementary
school students were able to share their understanding of algebraic ideas

such as variable and iteration. The Logo task provided a source of examples
and vocabulary for the students to use as they expressed their ideas. Given

a task to create a regular polygon with 6 sides, a fourth grader proclaimed
that "The numbers have to fit!". Her vocabulary did not permit her to explain
verbally that the angles in a regular polygon are a function of the number of
sides. She could display an example where the numbers fit (a hexagon) and
where the numbers did not fit (a open figure with 6 equal sides).

LOGO PROVIDES A PROGRAMMING BACKGROUND

Noss (1985) is studying how children with extensive Logo programming experience
construct mathematical meaning, MNoss notes that previous research has
focused on how children learn Logo and what mathematical knowledge has been
learned by using Logo. He is interested in a third question of what mathe-
matics children can learn via Logo. He uses a series of “solve-aloud"
problem interviews which often ask eleven year-old children how they would
explain their ideas to a first grader. The Logo environment permits children
to construct their own notation and to formalize their own rules. He has
found that students often use programming vocabulary. The student is in
control of how the ideas are expressed rather than trying to interpret an
instrument with conventional notation.

Logo provides structured programming with an emphasis on procedures. In a
carefully documented study at Concordia University, Erlwanger and Barfurth
(1985) are using the idea of a Logo procedure to 1ink mathematics and
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programming concepts. The students begin with concrete materials (i.e.,
building blocks, popsicle sticks) in order to investigate ideas associated
with distance, length, direction, angles and shapes. Next they use paper
and pencil to write programs and finally they use the computer to see 1f the
screen image matches their mental image. '

LOGO OFFERS A VARIETY OF DATA FOR ANALYSIS

Olive and Scally (1985) are using dribble files that record all student
interaction with the computer. Several researchers have used videotapes of
children working, screen output, and paper and pencil activities to supple-
ment their observations (Eriwanger & Barfurth, 1985; Noss, 1985; Hillel,
1985),

The opportunities for examining how ideas are developed are exciting, but
words of caution are necessary. Anecdotes are a useful way to explain or
report student activity; however, researchers must be careful not to report’
only favorable or idealized anecdotes. Leron (1985b) adds that the researcher
must not confuse the mathematics that the researcher sees with the mathematics
that a student sees in a Logo situation. Erlwanger and Barfurth (1985)
convincingly argue for careful documentation of the setting, organization

and the procedures in any description of results.,

Logo offers a powerful tool for investigating the development of mathematical
{deas. )
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