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Application of a Polynomial Loglinear Model to Assessing
Differential Item Functioning for Common Items in the
Common-Item Equating Design

Bradley A. Hanson
Zachary S. Feinstein



Abstract

Loglinear and logit models that have been suggested for studying differential item functioning
(DIF) are reviewed, and loglinear formulations of the logit models are given. A polynomial loglinear
model for assessing DIF is introduced which incorporates scores on the matching variable and item
responses. The polynomial loglinear model contains far fewer parameters than loglinear models
which treat the matching variable and item response as nominal. Compared to logit models that have.
been presented for investigating DIF, the polynomial loglinear model is easier to generalize to the
case of more than two groups and more the two response categories, and can model more complex
forms of DIF. The use of DIF methodology to investigating whether common items in the common-
item equating design are functioning differently across test forms is discussed. Examples are given
of using the polynomial loglinear model to investigate DIF for a test containing dichotomous and
polytomous items, and for investigating DIF for common items in a common-item nonequivalent

groups equating design.

Acknowledgement. The authors thank Mary Pommerich and Ron Cope for helpful comments on
an earlier version of this paper, and thank Judy Spray for providing the data used in one of the

examples.

i

(1




Application of a Polynomial Loglinear Model to Assessing Differential Item Functioning

for Common Items in the Common-Item Equating Design

There are many procedures aresearcher may use to examine the validity of atest, soasto prevent
bias from inadvertently affecting a sub-group of examinees the test is intended for. Procedures of this
type are part of the process of construct validation. One aspect of investigating the validity of a test
for various groups of examinees is the investigation of the test items for differential item functioning.
Differential item functioning (DIF) is said to exist when an item is functioning differently for two
or more groups of examinees, within the population the test is intended for. DIF manifests itself
by differential response to an item based on the group an examinee belongs to, when conditioned
on the latent variable being measured by the test the item is a part of. Differential item functioning
is defined conditioned on the latent variable measured by the test. This is in contrast to differences
in responding to an item among groups when averaged across levels of the latent variable. These
marginal differences in item performance may reflect legitimate differences between the groups on
the latent variable measured by the test (denoted impact), and do not necessarily represent DIF.

The first part of this paper presents a definition of DIF and reviews loglinear and logit models
used for assessing DIF. Loglinear formulations of logit models that have been suggested for studying
DIF are presented.

The second part of this paper presents a polynomial loglinear model for assessing DIF which
incorporates numerical scores for the item response variable and conditioning variable. Anexample
using the polynomial loglinear model for investigating DIF on a test with both dichotomous and
polytomous items is given.

The third part of this paper discusses applying DIF methodology to investigating whether
common items in a common-item equating design are functioning differently across test forms. In
the common-item equating design the forms of a test to be equated are administered to different
groupé along with a common set of items. For common-item equating to provide valid results it
is important that the common items function the same on all test forms. DIF techniques can be
used to investigate whether common items are fuﬁctioning differently on different forms of a test.
An example is presented applying the polynomial loglinear model discussed in the second part of

the paper to investigate DIF for common items in a common-item nonequivalent groups equating




design.

Definition of DIF

The data used to investigate DIF for a particular item consists of three variables: 1) an item
response variable (Y), 2) a group variable (V), and 3) a matching variable (Z). It is assumed in this
paper that the matching variable and item response variable are categorical rather than continuous
(the group variable is also categorical). The data used to investigate DIF for a particular item are
then contained in an I x J x K table, where there are I categories for the item response, J groups,
and K categories for the matching variable.

There is no DIF for the item in question if Y and V are conditionally independent given Z.

Conditional independence of Y and V given Z can be expressed as
Pr(Y =y, V=v|Z=2)=Pr(Y =y |Z=2)P(V=v|Z=2), (D
for all y, z, and v. Another way to express the conditional independence of Y and V given Z is
Pr(Y =y|Z=2z,V=v)=P(Y=y|Z=2) (2)

for all y, z, and v. The equivalence of Equations 1 and 2 is called the Fundamental Lemma of
Measurement Invariance by Meredith and Millsap (1992).

In this paper Z is considered to be an observable variable, in which case the condition repre-
sented by Equation 2 is referred to as observed conditional invariance (Millsap and Everson,_ 1993).
DIF defined using an observed matching variable may not correspond to DIF defined using the
latent variable measured by the items as the matching variable (the true matching variable). The re-
lationship between DIF defined using the true matching variable and an observed matching variable
is discussed by Holland and Thayer (1988), Zwick (1990), and Meredith and Millsap (1992).

Let m;j; be the expected count for item response category i, group j, and matching variable
category k. Conditional independence of ¥ and V given Z is equivalent to the conditional odds

ratios
MijkMiq,j+1,k

Oijr = I<i<I,1<j</J 3

Mmi41,j,kMij+1,k
being equal to 1 for all k. If any of the conditional odds ratios 6; differs from 1 then DIF is said to

exist. Uniform DIF is said to exist when some 6;; differ from 1 and for each i and j, 6;x = 6;jk

for all k # k’. DIF that is not uniform is called nonuniform DIF.
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As an example of how to interpret an odds ratio consider the case of two groups and two item
response categories. Item response category 1 represents a correct response and item response
category 2 represents an incorrect response. Let p;jix = mijx/ Ny, where Ny is the number of
examinees with a matching variable score in category k, so p;jj is the probability of observing
an examinee in group j with an item response in category i conditioned on the matching variable
score being in category k. The odds of having a correct response versus an incorrect response for
examinees in group 1 with a matching variable score in category k is the conditional probability of
a correct response for examinees in group 1 having a matching variable score in category k divided
by the conditional probability of an incorrect response for examinees in group 1 having a matching

variable score in category k. This odds ratio is given by

pu/(Pug + paw) _ puk _ muk/Ne _ myy
Paw/(Pug + Paw)  Paw  ma/Ne  may

@
Similarly, odds of having a correct response versus an incorrect response for examinees in group 2

with a matching variable score in category k is

Puw/(Prk + p2w) _ Pk mik/Ne  miy
pow/(Prk + p2ik) Pk mau/Ne  may

(S
The value of 6y in Equation 3 is the ratio of the odds of having a correct versus incorrect response

in groups 1 and 2 for matching variable category k (Equation 4 divided by Equation 5):

M/ Mok MieMa
Mk /Mg MM

(6)

Orik =

In the case of two groups and two item response categories only the one conditional odds
ratio given in Equation 6 is needed to describe the relationship between group and item response
at each level of the matching variable. If 6;; = O then group and item response are independent
for matching variable category k. If 6;;; > 1 then the odds of getting a correct versus incorrect
response is greater for group 1 than group 2 for matching variable category k, and if 6;; < 1
then the odds of getting a correct versus incorrect response is greater for group 2 than group 1 for
matching variable category k. With more than two groups or more than two categories of item
response more than one odds ratio is needed to describe the relationship between group and item

response (Equation 3).
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It is sometimes more convenient to use the log of the odds ratios in Equation 3 given by:

log(6ijx) = log(m;jx) +log(mii1,j+1,k) — log(miy1,jx) — log(mij+1,6) ¢))

forl <i <1, 1< j < J. The values in Equation 7 are called the log-odds ratios. The log-odds
ratios are symmetric around zero, S0 a positive and negative log-odds ratio of the same magnitude
indicate the same degree of association in opposite directions. No DIF exists if all the log-odds

ratios in Equation 7 are equal to zero.

Loglinear and Logit Models for Studying DIF

A similar procedure is used to test for DIF in each of the loglinear and logit models to
be discussed. In each case there are three models fit to the data: 1) a model corresponding to
nonuniform DIF, 2) a model corresponding to uniform DIF, and 3) a model corresponding to no
DIF. The no DIF model is nested within the uniform DIF model, and the uniform DIF model is
nested with the nonuniform DIF model.

The likelihood ratio chi-squared statistics for the nonuniform and uniform DIF models are
used to test for nonuniform DIF. Under the null hypothesis that the uniform DIF model holds, the
difference in the likelihood ratio chi-squared statistics between the uniform and nonuniform DIF
models is asymptotically distributed as a chi-square random variable with degrees of freedom equal
to the difference in the number of parameters between the two models (call this difference df,). For
alevel of significance p, the null hypothesis that the uniform DIF model holds versus the alternative
hypothesis that the nonuniform DIF model holds is rejected if the difference in the likelihood ratio
chi-square statistics between the uniform and nonuniform DIF models is greater then the upper p
percentage point for the chi-square distribution with df, degrees of freedom.

To test for uniform DIF the likelihood ratio chi-squared statistics for the uniform and no
DIF models are used. Under the null hypothesis that the no DIF model holds, the difference in the
likelihood ratio chi-squared statistics between the no DIF and uniform DIF models is asymptotically
distributed as a chi-square random variable with degrees of freedom equal to the difference in the
number of parameters between the two models (df, ). Foralevel of significance p, the null hypothesis
that the no DIF model holds versus the alternative hypothesis that the uniform DIF model holds is

rejected if the difference in the likelihood ratio chi-square statistics between the uniform DIF and

3
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no DIF models is greater then the upper p percentage point for the chi-s'quare distribution with df,

degrees of freedom.

Loglinear Models
The saturated loglinear model for the three-way table of item response category (Y) by group
(V) by matching variable category (Z) is (Mellenbergh, 1982):

log(mij) = p+ A + 2] + A7 + ALV + 257 + 257 + 0052 ®)

Y 4,V
i9)"j9

One constraint is placed on each of the parameters A AZ to identify the model (for example,

AY = A} = AZ = 0). Constraints are also placed on the Afjv (I + J — 1 constraints, for example
MY =AY =0foralli, j), AZ (I + K — 1 constraints, for example A}Z = A}? = 0 for all
i, k), and A};‘Z (J + K — 1 constraints, for example 1};Z = Aj"lz = O for all j, k). There are
1J+1IK+ JK — I —J— K + 1 constraints placed on the A);;Z, for example A} ;7 = AJj}% =
Afj‘l'z = Oforalli, j, k. The total number of free parametersis 1 +1 —1+J —1+K —1+I1J - (I +
J-D+IK—-(I+K-1)+JK-(J+K-1)+I1JK-(IJ+IK+JK-1-J-K+1)=1JK.
The number of free model parameters equals the number of cells in the table (this is a saturated
model). The model in Equation 8 has no residual degrees of freedom (the model fits any data
perfectly). ’

The log-odds ratios in Equation 7 for the model in Equation 8 are

MijeMit,j+1,k YV YV Yv Yv
i i+1,j+1 i+1, i,j+1
Mmiy1,j,kMi j+1,k J ! / /
Yvz Yvz Yvz Yvz
R I P T S €)

The log-odds ratios given in Equation 9 will generally differ from zero and will not be constant
across levels of the matching variable category. Thus, the DIF implied by the model in Equation 8
is nonuniform DIF.

Mellenbergh (1982) identifies two nonsaturated models nested within the model given in
Equation 8 that are of interest in the analysis of DIF — one for uniform DIF and one for no DIF.
The uniform DIF model is obtained by eliminating the AY.Y? terms from the model of Equation 8:

ijk

log(miji) = p+ A + A + A2 + ALY +A[Z + 07, (10)

»
-
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with the same constraints on the parameters as were indicated for the model in Equation 8. The

log-odds ratios in Equation 7 for the model in Equation 10 are

MijkMi+1,j+1,k
log (PEATLELIELL ) _ 380 4 ALY oy =30y =M an
The log-odds in Equation 11 will in general differ from 1 but do not differ across levels of the
matching variable. Thus, the model given by Equation 10 implies uniform DIF.
The no DIF model presented by Mellenbergh (1982) is obtained by eliminating A};” from the
model in Equation 10:

log(miji) = i+ A + A}' + A2+ A+ A};‘Z, (12)

The log-odds ratios in Equation 7 for the model in Equation 12 will all be zero. Thus, the model in
Equation 12 implies no DIF for the item.

To test for nonuniform DIF the procedure described above is used with the model for nonuni-
form DIF given by Equation 8 and the model for uniform DIF given by Equation 10. The degrees of
freedom for testing the null hypothesis of uniform DIF versus the alternative hypothesis of nonuni-
form DIF is (I — 1)(J — 1)(K — 1). To test for uniform DIF the procedure described above is
used with the model for uniform DIF given by Equation 10 and the model for no DIF given by
Equation 12. The degrees of freedom for testing the null hypothesis of no DIF versus the alternative
hypothesis of uniform DIF is (I — 1)(J — 1).

Logit Models

Mellenbergh (1982) notes that for dichotomous items logit models equivalent to the loglinear
models in Equations 8, 10 and 12 for the purposes of studying DIF can be used. The response variable
for the logit models is log(m jx /m2jx), where there are only two categories of item response.

In the case in which there are numeric scores associated with the matching variable categories
and/or item response categories, this information can be used to create more parsimonious logit
(and loglinear) models for studying DIF. Let the scores associated with the item response categories
be r1, ra2, ..., ry, and let the scores associated with matching variable categories be s1, 52, ..., Sk.
It is assumed the categories are arranged such thatr; <rs,...,<rjands; < s,..., < sk.

In the case of a dichotomous item response Swaminathan and Rogers (1990) present logit mod-

els where linear functions of the matching variable score are substituted for the nominal matching

11
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variable effects in the logit models presented by Mellenbergh (1982). This allows for a nonsatu-
rated logit model for nonuniform DIF (Mellenbergh’s logit model for nonuniform DIF is a saturated

model). The model presented by Swaminathan and Rogers (1990) can be written as

mi; ,
log (._ﬂ) =ap+ A}/ + 1S, + a2k, (13)
maji

where there is one constraint put on the A}’ (for example, oY = 0), and one constraint is put on the

a; (for example, a2; = 0). The logit model in Equation 13 is equivalent to the following loglinear

model (Agresti, 1990, pages 152-153)
log(mji) = u+ A + A + A7 + MY + A7 + Bise + vijse - (14)

The same constraints are put on the parameters A, A/, AZ, A7Z, and AY" as were put on the
corresponding parameters for the model in Equation 8. One constraint is placed on the B; (for
example, B; = 0) and (I — 1)(J — 1) constraints are placed on the y;; (for example, y;; = yi1 =0
for all i, j). For the loglinear model in Equation 14, unlike the logit model in Equation 13, it is
possible that the number of item response categories could be greater than 2. The log-odds ratios

in Equation 7 for the model in Equation 14 are given by

MijkMit+1,j+1k
108( . . i+1,f i, j+1

Mist1,jkMi,j+1,k

+(Vij + Vi+r,j+1 — Yier,j — Vi j+1)Sk - (15)

The log-odds ratios in Equation 15 are linear functions of the matching variable score and therefore
represent nonuniform DIF.

Eliminating the y;; terms from the model in Equation 14 gives
log(miji) = + A} + 2] + A2 + ALY + AJ7 + Bise. ‘ (16)

The log-odds ratios in Equation 7 for the model in Equation 16 are

MijkMist1,j+1k Yv Yv Yv Yv
log( L = A5 F ALy i — ALy = A (1D
i i+1,j+1 i+1, i,j4+1"
M1, j,kMi,j+1,k / d d !

Equation 17 may be different from zero but it is constant for all values of the matching variable

score. Consequently, the model in Equation 16 represents uniform DIF. The log-odds ratios in

12
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Equations 17 and 11 have the same form since the only difference between the models in Equations
16 and 10 are the interaction terms involving the item response and matching variable which cancel
out wheﬁ computing the odds ratio. Even though the form of the log-odds in Equations 11 and 17
are the same the estimates of the log-odds in the two equations will differ since they are based on
different models.

Eliminating the Afjv from the model in Equation 16 gives
log(mije) = o+ A + A +AF + 177 + Bisi - (18)

The log-odds ratios in Equation 7 for the model in Equation 18 are all zero. Consequently, the
model in Equation 18 represents no DIF. '
‘The models in Equations 14 and 16 are used to test for nonuniform DIF (the test for nénuniform
DIF has I + J — 1 degrees of freedom). The models in Equations 16 and 18 are used to test for
uniform DIF (the test for uniform DIF has (I — 1)(J — 1) degrees of freedom).
For the case in which there are two groups but more than two item response categories Miller
and Spray (1993) suggest using a logit model with group as the response variable. This logit model

can be written as

log (M) = g + Q15 + aari + a3Sr; . (19)
mzx

The logit model in Equation 19 can be written as the following loglinear model
log(mijx) = p+Af + A + AZ + A2 + Bujsi + Bojri + VisuTi - (20)

The same constraints are put on the parameters Y, A7, AZ, and A}Z as were put on the corresponding
parameters for the model in Equation 8. One constraint is put on each of the parameters B, B2;
and y; (for example, B1; = P21 = y1 = 0). For the model in Equation 20 the log-odds ratios in

Equation 7 are

MijkMi+1,j+1k
log( ijkMi+1,j

) = (Bo.j+1 — P2j)Tiv1 — 1) + (Vi1 — V) Tisr —1ridsk. (21)
M1, kMi j+1,k

The log-odds ratios in Equation 21 will in general be different from zero and are a linear function of
the matching variable score. Consequently, nonuniform DIF is implied by the model in Equation

20.

i3
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Eliminating the terms involving y; from the model in Equation 20 gives
log(mijie) = p+ A +A] + A2 + ALY + Bujsi + Bojri - (22)

The log-odds ratios in Equation 7 for the model in Equation 22 are

log( G LtLe ) = (B2,j+1 = B2j)riy1 —13) . @)
mit1,j kM j+1.k

The log-odds ratios in Equation 23 may differ from zero, but do not vary with the matching variable
score. Consequently, uniform DIF is implied by the model in Equation 22.

Eliminating the B, from Equation 22 gives
log(mije) = p+ A + 1Y + AZ + ALY + Bujse. (24)

The log-odds ratios in Equation 7 for the model in Equation 24 will all be zero. Consequently, no
DIF is implied by Equation 24.

The models in Equations 20 and 22 are used to test for nonuniform DIF (the test for nonuniform
DIF has J — 1 degrees of freedom). The models in Equations 22 and 24 are used to test for uniform
DIF (the test for uniform DIF has J — 1 degrees of freedom). Using the models in Equations 20,
22 and 24 to study DIF is called Logistic Discriminant Function Analysis (LDFA) by Miller and
Spray (1993).

An advantage of using the logit form of the models (Equations 13 and 19) as opposed to the
loglinear form of these models (Equations 14 and 20) is that there are far fewer parameters to
estimate in the logit formulation. A possible advantage of using the loglinear formulation of the
models as opposed to the logit formulation is that the loglinear models can be generalized to deal
with more than 2 item response categories (I > 2) and more than 2 groups (J > 2) without the
complications of having to deal with a polytomous dependent variable. The model in Equation 13
can only be used when there are two item response categories, and the model in Equation 19 can
only be used when there are two groups.

The next section presents a loglinear model in which the scores on the item responses and
matching variable are used in a way that results in far fewer model parameters than there are in the
loglinear forms of the logit models in Equations 14 and 20, or the loglinear models presented in
Equations 8, 10 and 12.

i4
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A Polynomial Loglinear Model for Studying DIF

Loglinear models with polynomial terms involving test and item scores (polynomial loglinear
models) have been used in several measurement applications. Examples include smoothing of test
score distributions (Holland and Thayer, 1987; Kolen, 1991), equating (Rosenbaum and Thayer,
1987; Hanson, 1991; Livingston, 1993; Little and Rubin, 1994), and testing for differences in score
distributions among groups (Hanson, 1996). This section presents a model for the three-way table
of item response, group, and matching variable that can be used to investigate DIF. The model is
analogous to polynomial loglinear models that have been used in other measurement applications.

In the loglinear models in Equations 8, 10, and 12 the item response variable and matching
variable are treated as nominal. When there are scores associated with the item response categories

and the matching variable categories the following loglinear model can be used

dy dy 4 dy
log(miji) = p+ A} + Zﬂlgjsf + Z Banrl + Z Z YehiST? » (25)
g=1 h=1 g=1 h=1

where d; < K, dy < I. As in Equation 8 a constraint is put on the A}'. There are no constraints
placed on the B parameters. A subset of the y,,; are assumed to be nonzero, and the rest are assumed
to be zero. If it is assumed yg+4-j» # O for particular values g*, 2* and j* then it is also assumed
that ygp-j» # O for all j* # j*. Consequently, the number of y,n; # 0 is Jd3 for some positive
integer d3. The value of dj is equal to the number of the d; x d possible yg;; in each group that
are specified to be nonzero. The value of d; is not directly related to the values of d; and d;. For
example, d3 is not the sum of d; and d,. Note that the models in Equations 14 and 20 are not special
cases of the model in Equation 25.

The log-odds ratios in Equation 7 for the model in Equation 25 are

miigMit1,j+1,k
lOg ( ] ! ]+

mii1,j, ki j+1,k

dy
) = Z(ﬂz,h,i—&-l = Bow) fyy = 1)
h=1

d d

+ ) Yanjer — Vew) oy =P SE . (26)

g=1 h=1

Equation 26 represents nonuniform DIF. The DIF given in Equation 26 is constrained relative to the
DIF given by the saturated loglinear model (Equation 9). The model in Equation 25 is a nonsaturated

loglinear model that allows for nonuniform DIF. Comparing Equation 26 to Equations 15 and 21 it

-
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is seen that the loglinear model in Equation 25 allows for more complicated forms of DIF than the
models in Equations 14 and 20.

The constrained version of the model given in Equation 25 which implies uniform DIF is

d d

log(mijx) = u+ A} + Z Bigist + Z Bujrt + Z Vensirk. 1))

g=1 h=

The model in Equation 27 differs from the model in Equation 25 by not having the y,; parameters
differ for the different groups. The difference in the number of parameters between the models in
Equations 27 and 25 is d3(J — 1). The log-odds ratios in Equation 7 for the model in Equation 27

aré

da
mi. mi , - s
log ( LI ) =Y Bonjr1 — Bouj) (hy =1l . (28)
h=1

Mit1,j,kMi j+1,k
The log-odds ratios in Equation 28 do not vary with the matching variable score which implies
uniform DIF.

The constrained version of the model given in Equation 27 which implies no DIF is

d 4

log(mije) = u + A + Z BigisE + Z Barlf + Z Versirh. (29)

g=1 h=

The model in Equation 29 differs from the model in Equation 27 by not having the 8,; parameters
differ for the different groups. The difference in the number of parameters for the models given in
Equations 29 and 27 is d2(J — 1). The log-odds ratios in Equation 7 for the model in Equation 29
are all zero implying no DIF. ‘

The models in Equations 25 and 27 can be used to test for nonuniform DIF (the test for uniform
DIF has d3(J — 1) degrees of freedom). The models in Equations 27 and 29 can be used to test for
uniform DIF (the test for uniform DIF has d,(J — 1) degrees of freedoni).

Note that the log-odds in Equations 21 and 23 for the LDFA model are of the same form as the
corresponding log-odds in Equations 26 and 28 for the polynomial loglinear model when d; = 1
and d; = 1 with the only nonzero y,; being y1; (in this case the value of d; does not affect the
log-odds). While the form of these log-odds ratios are the same in this case, the models are different
(and not nested), and the estimated cell counts for the two models will not be the same. Even when

the log-odds in Equations 26 and 28 have the same parametric form as the log-odds in Equations

16
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21 and 23, the parameter estimates will differ since the models are different. Consequently, the

log-odds functions, while both linear, will differ for the polynomial loglinear and the LDFA models.

Choosing a Model

Using the models in Equations 25, 27 and 29 involves choosing values for d; and 42, and
choosing which of the ¥,; to make nonzero. The values of dy, da, and which y,,; to make nonzero
are chosen based on the model in Equation 25, and are used for the models in Equations 27 and 29
in testing for uniform and nonuniform DIF.

A model selection procedure presented by Haberman (1974) can be used for choosing a model
in the form of Equation 25 from a set of possible models (different values of dy, @;, and nonzero y4;).
To apply Haberman’s (1974) procedure it is assumed that a set of g models have been identified
(Ml,‘Mz, ..., M,) where model M;_, is nested within model M;,i =2, ..., q (M, is the simplest
model, and M, is the mostcomplex model). If G? isthe likelihood ratio chi-square statistic for model
M; then fori = 2, ...,q, G>_, — G? is the likelihood ratio statistic for testing the null hypothesis
H;_; versus the alternative hypothesis H;, where H; is the hypothesis that model M; holds. If the
hypothesis H;. is true then the statistics G7_, — G} fori =g, —1,...,i* + 1 are asymptotically
independent and have chi-square distributions with w; degrees of freedom, where w; is equal to the
difference in the number of parameters of models M; and M;_,. For a level of significance p, with
p* = 1—(1—p)/4~D  the probability that G? | —~G?,i = ¢,q—1,...,i*+1exceeds C, the upper
p* percentage point for the chi-square distribution with w; degrees of freedom is asymptotically no
greater than p. A simultaneous test of the null hypotheses H;,i =g—1,9—2, ..., 1,istoreject all '
hypotheses H; suchthati < i’, where i’ is the largest i such that G> | —G? > C (if G?_| -G} < C
foralli leti’ = 1). With a specified value of p, this hypothesis testing procedure would allow one to
eliminate from consideration models M;, i < i’. It gives no guidance for choosing from among the
models M;, i > i’, although typically model M;: (the simplest model) is chosen. Smaller values of
p make it harder to reject the null hypothesis of the simpler model and therefore favor the selection
of simpler models.

The selection procedure of Haberman (1974) requires that the models being considered form
a nested sequence. Especially in the case of non-dichotomous items it is possible that the set of
models under consideration do not form a nested sequence. In that case the Haberman model

selection procedure is not directly applicable. A series of model comparisons could be performed,
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but the tests would no longer be independent and the error rate given by the Haberman procedure
will no longer be accurate. The example presented later uses a modification of the Haberman
procedure to select a model.

In applied settings it may not be realistic to use a model selection procedure for each item. A
more realistic procedure may be to select a common model for all items with a specific number of

score categories, perhaps based on past experience.

Matching Variable

A typical matching variable is a test score consisting of the sum of the item scores. The issue
discussed in this section is whether to use as the matching variable the sum of the item scores
including the studied item, or the sum of the item scores excluding the studied item.

Several authors have used theoretical justifications to conclude that a matching variable that
is the sum of item scores should include the studied item (Holland and Thayer, 1988; Zwick, 1990;
Meredith and Millsap, 1992). If there is a latent variable under which local independence holds
for the item scores, then a test score that excludes the studied item score will be conditionally
independent of the studied item score given the latent variable. Under this condition Meredith and
Millsap (1992) show that DIF will exist when the test score excluding the studied item score is
used as a matching variable even if there is no DIF in either the studied item score or the test score
when the latent variable is used as the matching variable. Under these conditions, even though
there is no DIF when using the latent variable as the matching variable, DIF will exist when the test
score excluding the studied item score is used as the matching variable. Only under very special
conditions will including the studied item in the test score alleviate this problem (e.g., the Rasch
model holds for the item responses, Holland and Thayer, 1988). Consequently, theoretical analysis
suggests the problem of DIF existing when using an observed matching variable when no DIF
exists using the ideal latent matching variable will occur in many practical situations whether or not
the test score used for the observed matching variable includes or excludes the studied item score.
However, simulation studies conducted by Donoghue, Holland, and Thayer (1993) and Zwick,
Donoghue, and Grima (1993) have indicated that for the Mantel-Haenszel procedure this effect is
smaller when the studied item is included (in these studies item responses were simulated using the
3-parameter logistic item response model and the partial credit model).»

When the item category scores are equally spaced these scores can be takentobe O, 1, ..., I—1
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where there are I item response categories. Let m;j; be the expected count corresponding to item
response category i, group j, and matching variable category k, where the matching variable is
the total test score excluding the score for the studied item. Let m};, be the expected counts in the
three-way table where the matching variable is the total test score including the score for the studied
item. If there are I item response categories, J groups, and K score categories for the test score
excluding the studied item, then the table containing the expected counts m;j; has I x J x K cells
and the table containing the expected counts mj;, has I x J x (K +1—-1) cells. The expected
counts m;, can be written in terms of the expected counts m;;y as

* mijk—i+1 i <k<K+i-1
Miix =

0 k<i,k>K+i—-1. (30)

For example, consider group 1 and item response category 2. Assuming item response categories
are ordered by the category scores, then item response category 2 corresponds to an item score of 1
(ma, j « is the expected number of examinees who obtain a score of 1 on the item, are in group j, and
receive a total test score of k — 1). From Equation 30, m3,, = my 1,1 for2 <k < K+ 1 This
is because any examinee who obtained a score of 1 on the item would have a test score including
the item that was one greater than his or her test score excluding the item. For k = 1, Equation 30
gives m3%;, = O since if an examinee obtained a score of 1 on the item, the test score including this
item could not be zero. Similarly, m},, = mi for1 <k < K. Fork > K, mj;;, =0 because if
an examinee obtains a score of 0 on the item, he or she cannot obtain a test score larger than the
maximum score possible on the other items.

Equation 30 shows that the expected counts in the table corresponding to the test score including
the studied item can be written in terms of the expected counts in the table corresponding to test score
excluding the studied item. Even though there are 1 J (I — 1) more cells in the table corresponding
to the test score including the studied item, that table will have I J (I — 1) cells with structural zeros
(by definition the cell count must be zero). Including the studied item score in the test score creates
a table with more cells but no more information. A loglinear model fit to the table corresponding
to the test score excluding the studied item would give the same results as a loglinear model fit to
the table corresponding to the test score including the studied item as long as the structural zeros
in the table were constrained to be zero by the model. Different results would be obtained if the

model fit to the table corresponding to the test score including the studied item allowed all the cells
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in the table to have non-zero expected counts (which would result in non-zero fitted counts for cells
in which the fitted count by definition should be zero).

Consequently, in the present setting, the estimated counts and model fits would be the same
whether the studied item is included in the test score or not (as long as structural zeros are preserved
when including the item score in the test score). Given these considerations and the lack of
evidence regarding the relative performance of loglinear models (as opposed to the Mantel-Haenszel
procedure) in investigating DIF when the item score is included versus excluded from the test score,

the matching variable used in the examples in this paper is the test score excluding the item score.

Example

An example of using the polynomial loglinear model to study DIF is given using the same data
used for the example in Miller and Spray (1993). The data consists of responses of 1976 examinees
to a 27-item experimental mathematics test. The test consisted of 12 multiple-choice items (items
1 through 12), 9 gridded-response items (items 13 through 21), and 6 open-ended items (items 22
through 27). The multiple-choice and gridded-response items were scored dichotomously (one for
a correct response, and zero for an incorrect response). The scores on the open-ended items were
0,1,2,...,k, wherek = 3, 3, 4, 4, 5, 6 foritems 22 through 27, respectively. DIF was investigated
for males versus females. There were 1005 male and 971 female examinees in the data set. One
male examinee included in the data analyzed by Miller and Spray (1993) was dropped from the
analyses reported here because all of his responses to the polytomous items were missing. The
matching variable used for each item is the sum of the item scores on the remaining items (the test
score excluding the studied item).

The first step in fitting the loglinear models given in Equations 25, 27, and 29 is determining
the number of parameters to use in the models (the values of d;, d3, and d3). A modified version
of the Haberman procedure described above is used to select values of dj, d; and d3. Models are
considered with values of d; ranging from 1 to 6, values of d; ranging from 1 to the maximum
score on the item (I — 1), and d3 ranging from 1 to 5 for polytomous items and from 1 to 6 for
dichotomous items. For dichotomous items the only possible value of d is 1. The five interaction
parameters considered for polytomous items were y11, ¥12, ¥21, Y13, and y31. A model withdz =1
would include only the first / of these interaction parameters. For example, if d3 = 1 then the only

interaction parameter in the model would be y1;. If d; = 3, then the three interaction parameters in
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the model would be ¥11, Y12, and y2;. The six interaction parameters considered for dichotomous
items were y11, Y21, ¥31 Y41, ¥s1, and y1.

For the dichotomously scored items (items 1 through 21) choosing a model involves choosing
values of d; and d3 (the only possible value of @; is 1). Instead of applying the Haberman procedure
to one sequence of nested models, the Haberman procedure was applied twice — once for d; and
once for d;. An error rate of .005 was chosen for each of the two separate Haberman procedures
resulting in in an overall error rate of at most .01 (by the Bonferroni inequality) for the two procedures
taken as a whole. When selecting d3, d; was set equal to the maximum value (6). The Haberman
procedure was applied to a sequence of models given by d3 = 1,2, ..., 6. The overall level of
significance chosen was .005, so the value of p* used for each individual test of the nested models
was 1 — (1 —.005)!/° = .001.

When selecting d;, d3 was set equal to the value determined in the first step. The Haberman
procedure was applied for the sequence of models corresponding to dy = d3,d3 + 1,...,6. The
overall level of significance was chosen to be .05, so the value of p* used for each individual test
of the nested models was 1 — (1 — .005)!/> = .001 (there are a maximum of 6 models).

For the polytomous items (items 22 through 27) values must be chosen for d, d; and ds.
The Haberman model selection procedure was applied three times — once for d3, once for d;,and
once for d;. An error rate of .003 was chosen for each of the three separate Haberman procedures
resulting in in an overall error rate of at most .009 (by the Bonferroni inequality) for the three
procedures taken as a whole. When selecting ds, d; and d; were set equal to their maximum values
(6 for dy, and I — 1 for d;). The Haberman procedure was applied to a sequence of models given
byds; =1,2,...,5. The overall level of significance chosen was .003, so the value of p* used for
each individual test of the nested models was 1 — (1 — .003)/4 = .00075.

When selecting d,, d; was setequal to 6 and d3 was set equal to the value determined in the first
step. The Haberman procedure was applied to a sequence of models givenbyd; =1,2,...,I —1.
For an overall level of significance of .003, the value of p* used for each of the individual tests of
the nested models was 1 — (1 — .003)/0=2),

When selecting dj, the values of d; and d3 were set equal to the values chosen in the previous
steps. The Haberman procedure was applied to a sequence of models given byd, =1,2,...,6.

For an overall level of significance of .003, the value of p* used for each of the individual tests of
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the nested models was 1 — (1 — .003)!/5 = .0006.

Examples of applying the model selection procedure to items 7 and 23 are presented in Table
1. The top part of Table 1 gives results for item 7 (a dichotomous item). A nested sequence of
six models were compared for d; and d;. The first six lines gives results for ds, and the next six
lines gives the results for d;. Chi-square statistics for the models and their degrees of freedom and
p-values are presented in the three columns under the heading “Model.” Chi-square statistics for
comparing adjacent models and their degrees of freedom and p-values are presented in the three
columns under the heading “Comparison of Model to Previous Model.” For dj5 the first two models
to be compared are those given in the first two rows. For both these models dy = 6 and d; = 1.
The model in the first row has d3 = 6 and the model in the second row has d3 = 5. The chi-square
statistic for testing the null hypothesis that the model with d; = 5 holds against the alternative
hypothesis that the model with d3 = 6 holds is given as 1.1890. The value of p* chosen for each
of the tests of consecutive models is .001. Consequently, for the first test (d; = 5 versus d; = 6)
the null hypothesis of the simpler model is not rejected. None of the tests is significant at the .001
level, so a value of d3 = 1 is chosen (this is indicated in the table by the value of p* being next
to the model with d3 = 1). The next six models correspond to values of d; from 1 to 6 (with
d, = d3 = 1). The first test that is significant at the .001 level is the test for d; = 2 versus d; = 3.
Consequently, the model selectedis dy = 3,d, = d; = 1.

For item 23 separate selection procedures were used for d3, d,, and d;. For item 23 the first five
lines in Table 1 correspond to models with five different values of ds;. For these models d; and d,
were fixed at their maximum values of 6 and 3, respectively. The level of significance used for the
tests of consecutive models was .00075. The first model comparisdn was ford; = 4 versus d3 = 5.
The chi-square statistic for this test is 21.3489 with 2 degrees of freedom, which is significant at
the .00075 level. Consequently, the simpler model with d3 = 4 is rejected, and the value of d3 = 5
is chosen. Next, three models corresponding to three values of d;, are compared (with d; = 6 and
ds = 5). In this case a value of d, = 3 is selected. Finally, there are six models corresponding to
dy=6,5,...,1 (withdy; = 3 and ds = 5). A value of d; = 4 is chosen. Thus, for item 23 the
model with d; = 4,d, = 3, and d3 = 5 is used to test for uniform and nonuniform DIF.

For the dichotomous items, d3 was selected to be equal to 1, and d; was selected to be equal

to 4 for all items except items 7 and 13, where d; was selected to be equal to 3. The models chosen
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for the polytomous items are given in Table 2. For all the polytomous items, d; = 4andd; = I —1
(the maximum score on the item). Varying numbers of interactions terms were chosen for the
polytomous items. For example, for polytomous item 24 only one interaction parameter between
item response and score level was chosen. For polytomous item 27, four interaction parameters
were chosen.

The values of d;, d;, and d3 chosen were used in fitting the models in Equations 25, 27, and
29 for each item. Likelihood ratio chi-square statistics for testing for uniform and nonuniform DIF
were computed. When reporting results, three levels of significance are used — 0.05, 0.01 and 0.05
/ 27 = 0.00185 (a Bonferroni adjustment).

Significance levels for tests of uniform and nonuniform DIF are shown in Table 3 for all items.
For uniform DIF, thirteen items reached the .05 level of significance, ten items reached the .01 level
of significance, and eight items reached the .00185 level of significance. For nonuniform DIF, two
items showed significant nonuniform DIF at the .05 level, and one of these items (item 15) did
not show significant uniform DIF. For Item 15 nonuniform DIF was indicated, but the bias was
balanced to cancel out the effects against each group and this item exhibited no unifprm DIF.

The logistic discriminant function analysis (LDFA) results using the models in Equations 20,
22 and 24 are presented in Table 4. The results in Table 4 differ slightly from the resuits in Table
3 of Miller and Spray (1993) because the analysis reported here used a matching variable that did
not include the studied item, whereas Miller and Spray (1993) used a matching variable that did
include the studied item. In addition, the analysis reported here used one fewer observation. Still,
the chi-square values in Table 4 and the chi-square values in Table 3 of Miller and Spray (1993) are
quite similar and there is no pattern in the direction of the differences (in some cases the chi-séuare
in Table 4 is higher and in some cases the chi-square given in Table 3 of Miller and Spray is higher).
For these data the effect of including versus excluding the studied item in the matching variable
does not seem to be large for the LDFA model.
~ Thereis little difference between the LDFA and polynomial loglinear models in terms of the
tests for uniform DIF. The polynomial loglinear model test for nonuniform DIF was significant at
the .05 level for only items 15 and 26. The LDFA model test for nonuniform DIF was significant
for ten items at the .05 level, for five items at the .01 level, and for two items at the .00185 level. For

these data the LDFA model indicated more nonuniform DIF than the polynomial loglinear model.

23




19

For some of the dichotomous items the log of the odds ratios in Equation 6 were graphed as
a function of test score (excluding the studied item) to explore the DIF trends across score levels.
Log-odds for the observed counts and fitted counts for the polynomial loglinear and LDFA models
for nonuniform DIF were compared. In the graphs of the log of the odds ratios in Equation 6 group
1 is females, group 2 is males, item response category 1 is a correct response, and item response
category 2 is an incorrect response. Log-odds ratios above zero indicate that the odds of a correct
response was greater for females than for males, and log-odds ratios below zero indicate the odds
of a correct response was greater for males than females. Figures 1 through 6 contain odds-ratios
graphs for dichotomous items in which significant nonuniform DIF was indicated for the LDFA
model but not for the polynomial loglinear model (items 16, 4, 5, 6, 8, 20).

The log-odds in Figures 1 through 6 will be linear functions of the test score for both the LDFA
model and the polynomial loglinear model. The log-odd function for the LDFA and polynomial
loglinear models for the case of nonuniform DIF are given in Equations 21 and 26, respectively.
It can be seen from Equation 21 that the log-odds for the LDFA model are a linear function of the
matching variable score. The value of d; was set to one for the polynomial loglinear models used
for all the dichotomous items (y11; were the only nonzero y,;). In this case Equation 26 is a linear
function of the matching variable score.

The graph of the log-odds ratio as a function of test score (excluding the studied item) is
presented in Figure 1 for item 16. In Figure 1, the observed log-odds lie primarily above the line
indicating no DIF, which is the horizontal line at 0.0. If an item had no DIF, the observed data
would approximate this line. The fitted log-odds ratios for the LDFA model have a larger slope
than the fitted log-odds ratios for the polynomial loglinear model. The slope of the fitted log-odds
for the polynomial loglinear model is small, consistent with the fact that significant nonuniform
DIF was not indicated for this model.

Log-odds plots for items 4, 5, 6, 8, and 20 are presented in Figures 2 through 6, respectively.
Like item 16, significant nonuniform DIF was indicated by the LDFA model for these items, but
not by the polynomial loglinear model. For all these items the slope of the fitted log-odds is larger
for the LDFA model than for the polynomial loglinear model.

There was only one item, item 15, for which the test for nonuniform DIF was significant for

the polynomial loglinéar model but not for the LDFA model. For one other item, item 7, the test
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for nonuniform DIF was very near to being significant for the loglinear polynomial model but not
for the LDFA model. Graphs of the log-odds ratios for items 15 and 7 are given in Figures 7 and
8. For these items the slope of the fitted log-odds is larger for the polynomial loglinear model than
for the LDFA model.

The test for nonuniform DIF was significant for the last 4 polytomous items (items 24 through
27) using the LDFA model, whereas only for item 26 was the test for nonuniform DIF significant
using the polynomial loglinear model. For the polytomous items there would be multiple log-odds
ratio plots for each item (one plot for each pair of adjacent item response categories) analogous to
the single plots for the dichotomous items given in Figures 1 through 8. Because of the sparseness
of the data it is not practical to plot the the multiple observed log-odds as a function of matchiﬂg
variable score level for the polytomous items.

Another way to graphically display the results for the polytomous items (that can also be used
for the dichotomoﬁs items) is to plot the means of the conditional distributions of item response
given matching variable score. Figure 9 gives a plot of the observed conditional item score means
and fitted conditional item score means from the polynomial loglinear model of uniform DIF as a
function of test score (excluding the studied item) for item 23. The scores on item 23 range from
0 to 3. The lines in Figure 9 give the mean item score as a function of test score. The conditional
means are presented separately for males and females. If there were no DIF the conditional means
for males and females would be identical. Figure 10 gives the observed and fitted conditional means
using the polynomial loglinear model of nonuniform DIF for item 23. The observed conditional
means for females are generally below those for males in the middle of the matching score range.
The model for uniform DIF (Figure 9) appears to fit the data well. This is consistent with the results
in Table 3 which indicated significant uniform DIF, but not significant nonuniform DIF for item 23.

Observed and fitted conditional means using the polynomial loglinear model for uniform DIF
are presented in Figure 11 for item 26. The plot of observed and fitted conditional means using the
polynomial loglinear model for nonuniform DIF is presented in Figure 12. For matching variable
scores above around 19 the means for males are higher than the means for females in Figure 12,
whereas for matching variable scores below 19 the opposite is the case. The difference in means

between males and females is larger for scores above 19.
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Examining Common Items for DIF

In the common-item equating design each of the forms of a test used in equating contains a set
of items common to all forms. The items common to all forms are called common items, and the
items on each form that are unique to that form are called non-common items. The common items
may be included with the non-common items in the score reported to the examinee (an internal set
of common items) or not included in the score reported to the examinee (an external set of common
items). The forms are administered to different groups of examinees, at possibly different times (for
example, forms administered in different years). The groups receiving the various test forms can be
randomly equivalent (the common-item random groups equating design) or chosen in such a way
that they are not randomly equivalent (the common-item nonequivalent groups equating design).
The result of an equating is a conversion from the scores on the new form to the scores on the old
form. If there is more than one new or old form, multiple equatings of pairs of forms are performed.
For more information on the common-item equating design see Kolen and Brennan (1995).

For common-item equating to provide valid results it is important that the common items
function the same in both the new and old test forms. A common item could function differently on
two forms due to the different contexts in which it was embedded (different non-common items),
or the different times it was administered (the topic of the item might be more salient at one time
versus another). One definition of the items functioning the same for both forms is that there is
no association between item response and the form on which the item was administered when
conditioned on the score for all common items. DIF analysis can be used to assess whether this
association exists or not. Instead of the focal and reference groups being majority and minority, or
male and female, as is typical in DIF studies, the groups are those who took, on separate test dates,
one of the two forms in which the common item set is embedded.

While both common and non-common items are used in equating, the non-common items are
not used in performing a DIF analysis of the common items. Typically, the sum of the common-item
scores would be used as the matching variable in a DIF analysis of the common items.

When the groups taking the two forms are not randomly equivalent an item may exhibit DIF
solely due to the differences between the two groups (the item exhibits traditional DIF for the two
groups). Instead of the item functioning differently due to the different administrations (embedded

in different forms and given on different dates), the item is functioning differently due to differences

26



22

among the groups. If a common item exhibits DIF there is no way of knowing to what extent the
DIF is due to the different groups or the different administrations. Groups taking different forms
will typically not be greatly disparate, and will likely be less disparate than groups examined in
traditional DIF analysis, so it may be reasonable to attribute DIF observed for a common item to
a difference in how the item is functioning on the two adminiétrations, rather than a difference in

how the item is functioning in the groups taking the two forms.

Example

An example will be presented of applying the polynomial loglinear model to investigate DIF
for common items in a common-item nonequivalent groups equating design. The data used were
from a 150 item multiple choice test (all items were dichotomous). The focus was on the 1993
form (administered in 1993). The 1993 form had a link to the 1992 form (administered in 1992
with 37 internal common items also present in the 1993 form) and the 1991 form (administered in
1991 with 38 internal common items also present in the 1993 form). There were 1521 examinees
who took the 1991 form, 1450 examinees who took the 1992 form, and 1375 examinees who took
the 1993 form. |

For the 1993/1991 data, d; was set equal to four for each studied item after roughly examining
how many parameters would be needed to model each item. For each item the likelihood ratio
chi-square statistic for testing the null hypothesis that the nonuniform DIF model with d; = 4 holds
versus the alternative hypothesis that the saturated model holds (which is a goodness of fit test of
the nonuniform DIF model) was not significant at the .05 level of significance. This indicates that
using d, = 4 provides an adequate fit to the data. |

Three different significance levels were used for the analysis — 0.05, 0.01, and 0.05 / 38 =
0.0013 (a Bonferroni adjustment). The results for all items are presented in Table 5. For uniform
DIF, a total of thirteen items were found to be significant at the .05 level and beyond, ten were
significant at the .01 level and beyond, and five were significant at the 0.0013 level of significance.
For nonuniform DIF, only two items were significant at the 0.01 level. Both items that exhibited
nonuniform DIF also exhibited uniform DIF at the 0.0013 level of significance.

All items that showed significant DIF at the 0.01 level of significance were examined by
looking at the actual content of the items (the item stems) and their responses (alternatives). Two

of the items for which uniform DIF was indicated at the 0.0013 level of significance had syntactic
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differences between the two forms. For one of the items, “... NOT...” (all capital letters) was used
in the stem while for that item on the other form “...not...” (underlined lower case) was used. For
the other item, the word “vs.” in the stem was written with a period at the end of the abbreviation
on one form, and on the other form it was just written as “vs” without a period at the end. No
other noticeable syntactic differences were found for the other items which had significance levels
less than 0.01. There should be no syntactic differences in an item between forms (every common
item should be absolutely identical between forms). These differences were not caught by test

development staff who checked for the items being identical on the two forms.

Items that are functioning differently on the two test forms may have an adverse effect on the
equating. To study the effect of the inclusion of the two items with syntactic differences on equating
the equating analysis was re-done excluding those two common items. Before proceeding, it was
necessary to determine if these two syntactically incorrect items need to stay in the common item
pool for the sake of content specifications. The common item pool should be a mini-version of the
test, and the balance in the range of content of the common items should be as similar as possible
to the entire set of items used to compute the score reported to examinees. In this particular test all
items fell into one of four content areas. Two of the content areas had large numbers of items; the
other two content areas had small numbers of items. The items that exhibited the large amount of
uniform DIF, and had syntactic problems, came from content areas with larger numbers of items.
Consequently, the items could be removed and no harm would be done to the balance of content in

the set of common items.

The equating was re-done excluding these two items as common items. In the recomputed
equating the two items are considered non-common items. Tucker and Levine Observed Score
equating functions were computed (Kolen and Brennan, 1987; Kolen and Brennan, 1995). As an
indication of the difference in the equatings the number of examinees whose scale scores would
change if the two items were not used as common items was calculated (the scale scores range from
0 to 150). For the Tucker equating, 23 out of the 1375 examinees who took the new form would
have a score change of 1 point (either increase or decrease). For the Levine equating, scores for
310 examinees would have changed by one point. Given that the maximum score change is one
point on a 151 point scale and the number of examinees with a one point change is not large, it is

concluded that not including these two items as common items does not have an important effect
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on the equating resulits.

For the 1993/1992 data, d, was also set equal to four for each studied item. For each item
the likelihood ratio chi-square statistic for testing the null hypothesis that the nonuniform DIF
model with d; = 4 holds versus the alternative hypothesis that the saturated model holds (which
is a goodness of fit test for the nonuniform DIF model) was not significant at the .05 level of
significance. This indicates that using d; = 4 provides an adequate fit to the data.

Again, three different significance levels were used for the analysis — 0.05,0.01,and 0.05/37
= 0.0014 (a Bonferroni adjustment). The results for the 1993/1992 equating are presented in Table
6. For uniform DIF, a total of eight items were found to be significant at the 0.05 level and beyond,
four were significant at the 0.01 level and beyond, and none were significant at the 0.0014 level
of significance. For nonuniform DIF, only two items were significant at the 0.05 level. Neither of
these items exhibited significant uniform DIF.

As in the 1993/1991 equating study, all items that showed significant DIF at the .01 level of
significance (and beyond) were examined by looking at the actual content of the items (the item
stems) and their responses (alternatives). None of the items manifested any apparent reasons why
they should perform differently in the two different forms.

The results indicated more DIF for the 1993/1991 equating items than for the 1993/1992
equating items. A plausible ad-hoc explanation is that since some of the items had somewhat political
and time related content, there could be less bias when the time interval between administrations is

smaller as any effect of time related content would be reduced.

Discussion

The focus of the investigation of DIF is the conditional association between item response and
group given a matching variable. This association can be modeled by loglinear models, or logit
models using either the item response or group as the dependent variable.

Loglinear and logit models for studying DIF were presented and loglinear formulations of the
logit models were given. A polynomial loglinear model was introduced which incorporated scores
for the matching variable and item response categories. This model contains far fewer parameters
than loglinear models that treat the matching variable and item response as nominal. Unlike the logit
models, the polynomial loglinear model accommodates the case of more than two item responses

and more than two groups. An advantage of the polynomial loglinear model is that it provides a

9
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non-saturated model of nonuniform DIF that is able to detect more complex forms of DIF than logit
models that have been suggested (Equation 26 versus Equations 15 and 21), although it is possible
that the logit models could be expanded to model more complex forms of DIF.

An example of using the polynomial loglinear model to study DIF was given using data from
Miller and Spray (1993). The results of the polynomial loglinear model were compared to the LDFA
method given by Miller and Spray (1993). The methods were fairly consistent in their identification
of uniform DIF. The LDFA model indicated more nonuniform DIF in the items than the polynomial
loglinear model.

The results presented for the polynomial loglinear and LDFA models cannot be used toconclude
which model is best for the data used, or even if either model is providing accurate results, since
the amount of DIF in the items is unknown. The purpose here was to provide an example of the

application of the polynomial loglinear model and a comparison of the results to those obtained
| from the LDFA model. The absolute and relative performance of the methods could be studied
using simulated data.

The use of DIF techniques for studying whether common items in the common-item equating
design function differently on different test forms was discussed. In this application of DIF tech-
niques items are studied for differential functioning across different forms in which they are embed-
ded and different test dates on which those forms are administered. It is important in common-item
equating that the common items function the same in the forms being equated, and DIF techniques
offer a useful set of tools for studying this question. An example was given using the polynomial
loglinear model to study DIF in common equating items. In the example presented, two items for
which the test for uniform DIF was significant were found to have syntactic differences between
the forms. |

It would be useful to develop confidence bands as in Miller and Spray (1993) for use in
graphical displays such as those displayed in the figures in this paper. The usefulness of confidence
bands is demonstrated in Miller and Spray (1993) where they are used to identify regions of the
matching variable for which DIF is present. Confidence bands and significance tests both have the
property that smaller amounts of DIF can be detected as significant with larger samples sizes. This

can be a problem when the DIF detected as statistically significant is not practically important.

30




26

References

Agresti, A. (1990). Categorical Data Analysis. New York: John Wiley & Sons.

Donoghue, J. R., Holland, P. W., & Thayer, D. T. (1993). A Monte Carlo study of factors that
affect the Mantel-Haenszel and standardization measures of differential item functioning. In
P. W. Holland & H. Wainer (Eds.), Differential item functioning (pp. 137-166). Hillsdale, NJ:
Erlbaum.

Haberman, S. J. (1974). Log-linear models for frequency tables with ordered classifications. Bio-
metrics, 30, 589-600.

Hanson, B. A. (1991). A comparison of bivariate smoothing methods in common-item equiper-
centile equating. Applied Psychological Measurement, 15, 391-408.

Hanson, B. A. (1996). Testing for differences in test score distributions using loglinear models.
Applied Measurement in Education, 9, 305-321.

Holland, P. W., & Thayer, D. T. (1987). Notes on the use of log-linear models for fitting discrete
probability distributions (Research Rep. No. 87-31). Princeton NJ: Educational Testing
Service.

Holland, P. W., & Thayer, D. T. (1988). Differential item performance and the Mantel-Haenszel
procedure. in H. Wainer & H. 1. Braun (Eds.), Test validity (pp. 129-145). Hillsdale, NJ:
Lawrence Erlbaum.

Kolen, M. J. (1991). Smoothing methods for estimating test score distributions. Journal of Educa-
tional Measurement, 28, 257-282.

Kolen, M. J., & Brennan, R.L. (1987). Linear equating models for the common-item nonequivalent-
populations design. Applied Psychological Measurement, 11, 263-2717.

Kolen, M. J. & Brennan R. L. (1995). Test equating methods and practices. New York: Springer-
Verlag.

Little, R. J. A., & Rubin, D. B. (1994). Test equating from biased samples, with application to the
armed services vocational aptitude battery. Journal of Educational and Behavioral Statistics,
19, 309-335.

Livingston, S. A. (1993). Small-sample equating with log-linear smoothing. Journal of Educational
Measurement, 30, 23-39.

Mellenbergh, G. J. (1982). Contingency table models for assessing item bias. Journal of Educa-
tional Statistics, 7, 105-118.

Meredith, W., & Millsap, R. E. (1992). On the misuse of manifest variables in the detection of
measurement bias. Psychometrika, 57, 289-311.

Miller, T. R., & Spray, J. A. (1993). Logistic discriminant function analysis for DIF identification
of polytomously scored items. Journal of Educational Measurement, 30, 107-122.

Millsap, R. E., & Everson, H. T. (1993). Methodology Review: Statistical approaches for assessing
measurement bias. Applied Psychological Measurement, 17, 297-334.

31



27

Rosenbaum, P. R., & Thayer, D. T. (1987). Smoothing the joint and marginal distributions of scored
two-way contingency tables in test equating. British Journal of Mathematical and Statistical
Psychology, 40, 43-49.

Swaminathan, H., & Rogers, H.J. (1990). Detecting differential item functioning using logistic
regression procedures. Journal of Educational Measurement, 27, 361-370.

Zwick, R. (1990). When do item response function and Mantel-Haenszel definitions of differential
item functioning coincide?, Journal of Educational Statistics, 15, 185-197.

Zwick, R., Donoghue, J. R., & Grima, A. (1993). Assessment of differential item functioning for
performance tasks. Journal of Educational Measurement, 30, 233.251.

32




28

Table 1.

Haberman Procedure for Items 7 and 23.

Comparison of model to

Model previous model p-value for

dl d2 d3 chi-square d.f. p-value chi-square d.f. p-value choosing a model
IItem7 |

6 1 6 1387686 156 0.8354

6 1 5 1399576 158 0.8458 11890 2 0.5519

6 1 4 1401484 160 0.8690 0.1908 2 0.9090

6 1 3 1426550 162 0.8607 25066 2 0.2856

6 1 2 1470201 164 0.8251 43651 2 01128

6 1 1 1501766 166 0.8053 31566 2 02063 P =1-(1-.005)1/5= 001

6 1 1 1501766 166 0.8053

5 1 1 1507209 168 08265 - 05443 2 0.7618

4 1 1 1517422 170 0.8393 10213 2 0.6001

3 1 1 1624350 172 0.6877 106929 2 0.0048 p* =1-(1-.005)1/5= 001

2 1 1 1893293 174 0.2021 268943 2 <0.0001

1 1 1 20858584 176 <0.0001 18965291 2 <0.0001
Item 23

6 3 5 2991114 322 0.8154 p =1-(1-.003)1/4 = 00075

6 3 4 3204603 324 0.5451 213489 2 <0.0001

6 3 3 3365308 326 0.3321 160705 2 0.0003

6 3 2 3380063 328 0.3399 14754 2 04782

6 3 1 3448563 330 0.2757 6.8500 2 0.0325

6 3 5 2991114 322 0.8154 pF=1-@1-.003)12= 0015

6 2 5 12810891 324 <0.0001 9819777 2 <0.0001

6 1 5 16353832 326 <0.0001 3542941 2 <0.0001

6 3 5 2991114 322 08154

5 3 5 2994243 324 0.8326 03129 2 0.8552

4 3 5  299.8021 326 0.8482 03778 2 08279 p =1-(1-.003) /5 = 0006

3 3 5 339181 328 03235 393860 2 0.0000

2 3 5 3617141 330 0.1107 225260 2 <0.0001

1 3 5 19268813 332 <0.0001 1565.1672 2 <0.0001

33




29

Table 2.

Polynomial Loglinear Models Used for Open-Ended ltems.

Number of Parameters
Item d1 d2 d3
22 4 3 4
23 4 3 5
24 4 4 1
25 4 4 2
26 4 4 1
27 4 6 4

Note: dj=4, and d; = d3 = 1 were used for all dichotomous items (items 1-21),
except for items 7 and 13 where dj = 3.
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Table 3.

Polynomial Loglinear Model Results for Miller & Spray Data.

Uniform DIF Non-Uniform DIF
d.f. chi-square p< d.f. chi-square p<
Multiple-

Choice ,
1 1 10.769 0.00103 *** 1 0.022 0.88316
2 1 28.181 0.00001 **x* 1 1.777 0.18251
3 1 0.120 0.72931 1 0.268 0.60437
4 1 5917 0.01499 * 1 1.467 0.22588
5 1 31.676 0.00001 *** 1 0.687 0.40735
6 1 0.763 0.38239 1 0.676 0.41106
7 1 11.277 0.00078 *** 1 . 3.839 0.05007
8 1 44.426 0.00001 **:* 1 1.223 0.26879
9 1 26.096 0.00001 *** 1 0.207 0.64883
10 1 1.265 0.26073 1 0.262 0.60852
11 1 0.179 0.67220 1 0.016 0.89998
12 1 17.280 0.00003 *** 1 0.039 0.84399

Gridded
13 1 0.025 0.87368 1 0.001 0.97814
14 1 0.030 0.86241 1 1.212 0.27094
15 1 1.278 0.25820 1 6.260 0.01235 *
16 1 8.061 0.00452 ** 1 0.155 0.69348
17 1 3.824 0.05053 1 1.359 0.24364
18 1 0.018 0.89427 1 2423 0.11958
19 1 3.256 0.07114 1 1.008 0.31529
20 1 ~ 6.558 0.01044 * 1 0.478 0.48936
21 1 0.145 0.70332 1 0.625 0.42913

Open-Ended

22 3 1.772 0.62106 4 7.298 0.12097
23 3 18.229 0.00039 *** 5 6.947 0.22463
24 4 5.555 0.23491 1 2.208 0.13732
25 4 6.208 0.18412 2 0.830 0.66045
26 4 15.057 0.00458 ** 1 6.098 0.01354 ~
27 6 4 7.318 0.12002

13.382 0.03735 *

* <= .05, ** <= .01, *** <= (.05/27)
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Table 4.

Logistic Discriminant Function Analysis Results for Miller & Spray Data.

Uniform DIF Non-Uniform DIF
df. Chi-square p< df. Chi-square p<
Multiple-
Choice

1 1 9.598 0.00195 ** 1 1.389 0.23857

2 1 24.595 0.00001 *** 1 1.155 0.28240

3 1 0.059 0.80843 1 2.562 0.10948

4 1 5.322 0.02106 * 1 8.151 0.00430 **
5 1 31.648 0.00001 *** 1 3.924 0.04760 *
6 1 0.825 . 0.36387 1 4.437 0.03517 *
7 1 13.314 0.00026 *** 1 0.216 0.64189

8 1 43.711 0.00001 *** 1 8.276 0.00402 **
9 1 27.397 0.00001 *** 1 1.289 0.25616

10 1 1.122 0.28955 1 1.246 0.26428

11 1 0.143 0.70578 1 0.112 0.73795

12 1 19.614 0.00001 *** 1 0.256 0.61315

Gridded

13 1 0.094 0.75918 1 3.141 0.07634

14 1 0.009 0.92439 1 1.193 0.27479

15 1 1.202 0.27299 1 0.008 0.92743

16 1 6471 0.01097 * 1 4.694 0.03028 *
17 1 3.809 0.05098 1 0.332 0.56465

18 1 0.012 0.91453 1 0.032 0.85901

19 1 5.216 0.02238 * 1 0.003 0.95462
20 1 3.489 0.06177 1 4.626 0.03150 *
21 1 0.076 0.78290 1 0.126 0.72258

Open-Ended

22 1 1.683 0.19457 1 0.174 0.67647
23 1 17.086 0.00004 *** 1 3.662 0.05566
24 1 3.449 0.06329 1 8.189 0.00421 **
25 1 1.468 0.22572 1 5.956 0.01467 *
26 1 6.813 0.00905 ** 1 14.169 0.00017 ***
27 1 5214 0.02241 * 1 12.318 0.00045 ***

* <= .05, ** <= .01, *** <= (.05/27)
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Table 5.

Polynomial Loglinear Model Results for the 1993/1991 Equating Data.

Uniform DIF Non-Uniform DIF
df.  chi-square p< df. chi-square p<
Item

1 1 0.351 0.55333 1 0.902 0.34212
2 1 2.340 0.12610 1 0.003 0.95570
3 1 3.725 0.05360 1 1.267 0.26031
4 1 1.005 0.31609 1 0.200 0.65494
5 1 7.656 0.00566 ** 1 0.046 0.83047
6 1 15.761 0.00007 *** 1 0.062 0.80312
7 1 5.965 0.01460 * 1 0.000 0.99691
8 1 0.881 0.34798 1 2.239 0.13456
9 1 0.646 0.42140 1 0.927 0.33572
10 1 3.019 0.08228 1 1.454 0.22787
11 1 0.145 0.70345 1 0.231 0.63048
12 1 9.378 0.00220 ** 1 2.930 0.08697
13 1 0.059 0.80771 1 1.005 0.31601
14 1 15918 0.00007 *** 1 0.053 0.81859
15 1 5.355 0.02067 * 1 3.426 0.06417
16 1 3.534 0.06010 1 1.342 0.24663
17 1 1.634 0.20116 1 1.003 0.31648
18 1 5.064 0.02443 * 1 1.126 0.28857
19 1 0.620 043117 1 0.031 0.86057
20 1 0.176 0.67469 1 0.208 0.64831
21 1 0219 0.63999 1 0.114 0.73533
22 1 9.056 0.00262 ** 1 1.060 0.30321
23 1 0.000 0.98877 1 0.380 0.53749
24 1 2.610 0.10616 1 2.513 0.11291
25 1 7.707 0.00550 ** 1 1.465 0.22613
26 1 7.672 0.00561 ** 1 0.292 0.58902
27 1 1.890 0.16918 1 1.196 0.27403
28 1 1.265 0.26070 1 0.007 0.93382
29 1 95.091 0.0000]1 *** 1 8.596 0.00337
30 1 24.799 0.00001 *** 1 7.184 0.00735
31 1 3.255 0.07122 1 0.972 0.32408
32 1 0.291 0.58980 1 0219 0.63959
33 1 15929 0.00007 *** 1 0.549 0.45860
34 1 2.788 0.09497 1 1.178 0.27771
35 1 0.784 0.37600 1 1.695 0.19298
36 1 0.002 0.96228 1 0.013 0.91011
37 1 1.613 0.20402 1 2.020 0.15525
38 1 1.493 0.22175 1 0.200 0.65452

o <=.05, ** <= .01, *** <= (.05/38)
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Table 6.

Polynomial Loglinear Model Results for the 1993/1992 Equating Data.

Uniform DIF Non-Uniform DIF
d.f. Chi-square p< df Chi-square p<
1 5.209 0.02248 * 1 0.664 0.41532
1 7.616 0.00578 ** 1 2.941 0.08634
1 1.198 0.27376 1 0.012 091144
1 1.801 0.17962 1 2.738 0.09798
1 0.280 0.59663 1 0.172 0.67793
1 0.237 0.62672 1 0.007 0.93153
1 0.349 0.55443 1 0.908 0.34053
1 0.828 0.36274 1 0.108 0.74214
1 9.076 0.00259 ** 1 3.238 0.07196
1 0410 0.52216 1 0.565 0.45223
1 2.688 0.10114 1 0.000 0.99542
1 0.181 0.67060 1 0.688 0.40675
1 0.097 0.75553 1 0.578 0.44710
1 3.161 0.07543 1 -1.346 0.24600
1 0452 0.50118 1 3.973 0.04623
1 0.341 0.55918 1 0.635 0.42564
1 6.886 0.00869 ** 1 1.602 0.20563
1 3.904 0.04816 * 1 3.015 0.08251
1 1.476 0.22433 1 0.111 0.73919
1 0.605 0.43657 1 0.807 0.36892
1 1.680 0.19494 1 0.110 0.74022
1 0.738 0.39025 1 1.284 0.25708
1 0.971 0.32445 1 1.460 0.22689
1 0.231 0.63087 1 1.466 0.22594
1 0.954 0.32868 1 0.269 0.60374
1 5.595 0.01801 * 1 0.463 0.49606
1 0.450 0.50239 1 3.515. 0.06081
1 2.687 0.10119 1 4.696 0.03023
1 6.081 0.01367 * 1 0.028 0.86797
1 6.794 0.00915 ** 1 0.250 0.61731
1 0.229 0.63260 1 1.012 0.31444
1 0.017 0.89563 1 0.358 0.54954
1 1.099 0.29447 1 0.013 0.90782
1 1.753 0.18544 1 0.003 0.95455
1 3.164 0.07528 1 0.148 0.70059
1 3.621 0.05705 1 0.211 0.64597
1 0.224 0.63598 1 0.767 0.38105

* <= .05, ** <= .01, ¥** <= (.05/37)
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