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SEM Fit Indices and Estimates 2

ABSTRACT

The present Monte Carlo study was conducted to assess the effects

of some potential confounding factors on SEM fit indices and

parameter estimates for (a) both true and misspecified models.

The factors investigated were (b) data nonnormality, (c) SEM

estimation method, and (d) sample size. Based on the fully

crossed and balanced 3x3x4x2 experimental design with 200

replications within each cell condition, a total of 14,400 samples

were generated and fitted to SEM models with different degrees of

model misspecification. The major findings of the study were: (a)

mild to moderate data nonnormality has little effect on SEM fit

indices and parameter estimates; (b) estimation method has

considerable influence on some SEM fit indices when the model was

misspecified, primarily on those comparative model fit indices;

and (c) some fit indices are susceptible to the influence of

sample size, and showed moderate downward bias under smaller

sample size conditions. Previous studies in this area have

overwhelmingly simulated a correctly-specified true model, and fit

indices were found to behave consistently under different

estimation methods. That finding may need to be revisited because

considerable discrepancy of some fit indices between the two

estimation methods was observed for misspecified models, even when

the degree of misspecification was quite slight. Since SEM

researchers rarely are certain whether they have correctly

specified their models, it is critical that simulation studies are

conducted in the presence of model misspecification.
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SEM Fit Indices and Estimates 3

Structural equation modeling (SEM) has increasingly been seen

as a useful quantitative technique for specifying, estimating, and

testing hypothesized models describing relationships among a set

of substantively meaningful variables. Much of SEM's

attractiveness is due to the method's applicability in a wide

variety of research situations, a versatility that has been amply

demonstrated (e.g., Baldwin, 1989; Bollen & Long, 1993; Byrne,

1994; Joreskog & Sorbom, 1989; Loehlin, 1992; Pedhazur &

Schmelkin, 1991; SAS Institute, 1990).

Furthermore, many widely used statistical techniques may also

be considered as special cases of SEM, including regression

analysis, canonical correlation analysis, confirmatory factor

analysis, and path analysis (Bagozzi, Fornell & Larcker, 1981;

Bentler, 1992; Fan, 1996; Joreskog & Sorbom, 1989). Because of

such generality, SEM has been heralded as a unified model which

joins methods from econometrics, psychometrics, sociometrics, and

multivariate statistics (Bentler, 1994a). In short, for

researchers in the social and behavioral sciences, SEM has become

an important tool for testing theories with both experimental and

non-experimental data (Bentler & Dudgeon, 1996).

Despite SEM's popularity in social and behavioral research,

some thorny issues still haunt SEM applications, such as the

robustness of model fit assessment and parameter estimation

techniques under nonnormal data conditions, the role sample size

plays in SEM model fit assessment, and the effect of different

estimation methods on SEM results. In SEM application in

substantive research, there are two general purposes: the

5



SEM Fit Indices and Estimates 4

assessment of model fit, and the estimation of model parameters.

Assessment of model fit requires the researcher to evaluate

the adequacy of the model in relation to the empirical data drawn

from a sample. If the model is judged to be adequate, then the

model will then be used to explain the substantive issues of

interest. At this point, model parameters estimates often become

the major focus of the research. While an SEM model with adequate

fit informs the researcher about the general pattern of

relationships among the variables, model parameter estimates

inform about the direction and strength of such relationships

among the variables.

Assessment of Model Fit in SEM

x2 Test as a Dichotomous Decision Process

Because SEM is used to test the fit between a theoretical

model and empirical data, there must be mechanisms to inform users

about the adequacy of model fit. Initially, the assessment of

model fit was conceptualized as a dichotomous decision process of

either retaining the null hypothesis that the model fits the data,

or rejecting it. The empirical basis for such a dichotomous

decision traditionally was a x2 test assessing the degree of

discrepancy between two covariance matrices: the original sample

covariance matrix and the reconstructed covariance matrix based on

the specified model; a small discrepancy between the two indicates

reasonable fit, while a large discrepancy indicates misfit.

Although this concept of model testing in SEM may be conceptually

straightforward, in practice considerable uncertainty regarding

model fit often arises.

6
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As is the case with statistical significance testing in

general (Thompson, 1996), the statistical significance testing

approach to model fit assessment is confounded with sample size:

the power of the test increases with an increase of sample size in

the analysis (i.e., x2 tends to increase as sample size

increases). As a result, model fit assessment using this narrow

approach becomes stringent when sample size is large, and lenient

when sample size is small.

The null hypothesis in SEM is that the model fits the data,

so contrary to most hypothesis testing situations, typically the

researcher wants to see that the null hypothesis is not rejected

in SEM applications, since the specified model represents the

theoretical expectations about the data structure. However, under

multivariate normality assumption, SEM usually requires a

relatively large sample size in order for the results of the x2

test to be valid (Bentler, 1992; Boomsma, 1987; Joreskog & SOrbom,

1989). Thus, researchers using SEM methodology are in a dilemma.

On the one hand, we do not want to see the null hypothesis

rejected. On the other hand, SEM requires a large sample size and

that large sample size inflates the power of the x2 test, making

it easy to reject the null hypothesis. When sample size is

sufficiently large, it is not surprising to see that the x2 test

may declare a model as having poor fit with the data, even if the

reconstructed covariance matrix differs trivially from the sample

covariance matrix, and the model makes strong substantive sense.

Descriptive Indices for Assessing Model Fit

Because of the problems related to the x2 test for model fit

7
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assessment in SEM (Thompson & Daniel, 1996), a variety of indices

for assessing model fit have been developed for assessing the fit

between a theoretical model and empirical data. Unlike the X2

test, which can often be used for the inferential purpose of

rejecting or retaining a model, these alternative fit indices are

descriptive in nature in the sense that, typically, no inferential

decision is made based on these indices--these methods are used to

describe the fit, rather than to test fit statistically. The

relative performance characteristics of these different fit

indices and their comparability under different data conditions,

however, are not yet well understood. For many practitioners who

use SEM in their research, it is fair to say that there exists

some confusion as to which indices to use under what various data

conditions.

The main reason for this situation is that different types of

fit indices were developed with different theoretical rationales,

and there does not seem to exist one fit index which meets all our

expectations for an ideal fit index (assuming there even exists a

consensus of expectations for such an ideal fit index). Although

different opinions have been expressed as to what characteristics

an ideal fit index should possess (Cudeck & Henly, 1991; Tanaka,

1993), it is generally accepted that an ideal fit index should

possess three characteristics. The index should: (a) have a range

between 0 and 1, with 0 indicating complete lack of fit, and 1

indicating perfect fit; (b) be independent of sample size; and (c)

have known distributional properties to assist in interpretation

(Gerbing & Anderson, 1993). Although quite a few fit indices are
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designed to possess the first characteristic, it is not yet fully

clear which fit indices possess the second characteristic. Up to

now, none of the fit indices available possess the third

characteristic.

Since SEM fit indices were developed with different

rationales and with different motivations (Gerbing & Anderson,

1993), they may differ on one or several dimensions. Tanaka

(1993) proposed a six-dimension typology for SEM fit indices, and

attempted to categorize some popular fit indices along these six

dimensions. This multifaceted nature of fit indices not only

makes the comparison among fit indices difficult, but also makes

it very difficult to select the "best" index from all those

available based on the theoretical rationales upon which they were

developed.

Statistically, most popular fit indices fall into one of

several types. Indices of the first type--covariance matrix

reproduction indices--attempt to assess the degree to which the

reproduced covariance matrix based on the specified model has

accounted for the original sample covariance matrix. This type of

fit index can be conceptualized as the multivariate counterpart of

the coefficient of determination (R2), as in regression or ANOVA

analysis (Tanaka & Huba, 1989). Examples of this type of fit

indices are the Goodness-of-Fit Index (GFI) and the Adjusted

Goodness-of-Fit Index (AGFI) (Joreskog & Sorbom, 1989).

Indices of the second type--comparative model fit

indices--assess model fit by evaluating the comparative fit of a

given model with that of a more restricted null model. In

9
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practice, the null model is usually a model which assumes no

relationship among the measured variables in the model, although

reservations have been expressed about the appropriateness of

using such null models as comparative baselines (Sobel &

Bohrnstedt, 1985). Bentler and Bonnet's normed and non-normed fit

indices (NFI and NNFI), Bollen's incremental fit index (DELTA2)

and one or two other indices belong to this family.

Indices of the third type--parsimony weighted

indices--specifically take model parsimony into consideration by

imposing penalties for specifying more elaborate models. More

particularly, these fit indices consider both model fit and the

degrees of freedom used for specifying the model. If good model

fit is obtained at the expense of freeing more parameters, a

penalty will be imposed. The reasoning underlying this type of

model assessment is embedded in the long tradition of science

going back to William of Occam's razor: between two models that

fit data equally, the simpler model is more likely to be true, and

therefore is also more likely to be replicated. Besides,

statistically, better fit is always obtained when more parameters

in the model are freed. The parsimony indices proposed by James,

Mulaik and Brett (1982) and by Mulaik, James, Van Alstine,

Bennett, Lind, and Stillwell (1989) represent this type. This

type of fit indices is most useful for assessing competing

theoretical models, and they are less informative in situations

where only one model is being tested.

A recent development in model fit assessment makes use of the

noncentrality statistic from the noncentral X2 distribution to

10
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construct fit indices. Based on the sample noncentrality

statistic, McDonald (1989) proposed an index of noncentrality.

Bentler (1990) proposed the Comparative Fit Index (CFI) which also

uses the sample noncentrality statistic. As with other fit

indices proposed by Bentler, CFI assesses model fit relative to a

baseline null model.

Factors Affecting SEM Analysis Results

Although early studies focused on the behavior of the x2

statistic under different data conditions (e.g., Boomsma, 1982),

soon it became apparent that x2 statistic's dependency on sample

size may confound the interpretation of results. Consequently,

some later studies put more emphasis on descriptive model fit

indices. Ideally, the extent to which a model is correctly

specified or misspecified should be the primary, if not the sole,

determinant for model fit assessment. In reality, there exist a

few confounding factors which have potential impacts on SEM

analyses. Three major confounding factors have attracted the

attention of many researchers: data nonnormality, estimation

methods used in SEM analysis, and sample size.

Model Specification

Because fit indices are designed to assess the fit, or lack

thereof, between the theoretical model and the empirical data, it

is obvious that fit indices should be sensitive to model

misspecification conditions. Ideally, model misspecification

should be the most important factor affecting SEM fit indices.

The sensitivity of some fit indices to model misspecification has

been examined in a few studies (Bentler, 1990; Fan, Wang, &

11
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Thompson, 1996; La Du & Tanaka, 1989; Marsh, Balla, & McDonald,

1988). The study by Marsh et al. (1988) examined a variety of fit

indices, but the extremely small number of replications in each

cell condition (n=10) might have considerably limited the

generalizability of conclusions from the study. One finding from

the study was that the comparative model fit indices, such as NFI,

tended to be non-comparable across different studies or different

data sets, since their values not only depended on model

specification, but also, or more importantly, depended on how bad

was the null model itself.

Some other studies (Bentler, 1990; La Du & Tanaka, 1989)

involved fewer indices, making performance comparison among fit

indices difficult. The study by Fan et al. (1996) examined most

available fit indices which are reasonably comparable. The

results of the study indicate that (a) for misspecified models,

the estimation method may considerably influence some fit indices,

contrary to some conclusions based only on correctly-specified

models (e.g., Wang, Fan, & Willson, 1996); (b) some fit indices

appear to be more sensitive to model misspecification than others.

Fan et al. (1996) further pointed out that research is

conspicuously lacking for misspecified models, because most

previous studies focused on correctly- specified models only. As a

result, the behaviors of SEM fit indices under misspecified model

conditions, and the sensitivity of the fit indices to model

misspecification conditions, are largely unknown. Yet, in practice

most SEM researchers do not know for a certainty that the models

they are investigating have been specified correctly.

12
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Data Normality

Multivariate normality is an important consideration in

multivariate methods in general, and SEM in particular. Maximum

likelihood (ML) and generalized least squares (GLS) are widely

used normal-theory estimation procedures in SEM. For these

estimation methods, deviation from multivariate normality may

yield misleading results. In the real world, however, SEM has

often been applied to data not characterized by normal

distributions (Bentler, 1994b; Bentler & Dudgeon, 1996; Micceri,

1989) .

A review of relevant literature (Wang et al., 1996) indicates

that the concern over the possible consequences of data

nonnormality has led to research in two directions. The first

research direction involves developing estimation procedures or

test statistics that are less sensitive to or correct for data

nonnormality, e.g., the asymptotically distribution free (ADF)

estimation method (Browne, 1984), scaled test statistics (Chou,

Bentler, & Satorra, 1991), elliptical estimators (Bentler 1983;

Browne, 1984), and the heterogeneous kurtosis method (Kano,

Berkane, & Bentler, 1990). Although the progress in this

direction is encouraging, these alternative estimation procedures

or new test statistics are more complicated and more difficult to

use.

The second direction of research focuses on the robustness of

normal theory methods to data normality violations. The research

in this direction provides important insights about the potential

consequences when data in analyses are not normal. Typically,

13
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Monte Carlo studies were conducted to assess the consequences of

data nonnormality (Bollen & Stine, 1992; Boomsma, 1982; Chou,

Bentler, & Satorra, 1991; Ichikawa & Konishi, 1995; Mooijaart,

1985). As pointed out by Bentler (1994b), "asymptotic robustness

theory promises to extend the range of applicability of the

computationally simpler ML and GLS estimators to situations where

the more difficult distribution-free methods might seem to be

needed" (p. 240).

Overwhelmingly, the studies in this area focused on the

performance of the X2 test statistic, and "very few studies are

available to evaluate the performance of other fit indices when

models are fitted to nonnormal data" (Wang et al., 1996, p. 231).

The present study follows the second research direction in dealing

with data nonnormality, i.e., to examine the robustness

characteristics of SEM fit indices in nonnormal data conditions.

In addition to the X2 test, the study examines the behavior of

other SEM fit indices as well.

Estimation Methods

Relatively little is known about the influence of normal

theory estimation methods on fit indices. In a few studies which

examined the issue (La Du & Tanaka, 1989; Maiti & Mukherjee, 1991;

Wang et al., 1996), maximum likelihood (ML) and generalized least

squares (GLS) estimation procedures were used. Estimation

procedures were shown to influence the value of the fit indices.

But in these studies, typically very few fit indices were

examined, and the performance of many other indices were unknown.

The study by Fan et al. (1996) covered more fit indices, and

1
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the results indicated that, for misspecified models, estimation

methods seem to have considerable influence on most fit indices.

This, again, contradicts some tentative conclusions from studies

which only examined correctly-specified model condition (e.g.,

Wang et al., 1996). The discrepant results between correctly-

specified and misspecified models highlight the point that model

specification should be one important variation considered in

simulation studies in the future.

Sample Size

It is not clear how large a sample should be in SEM

applications. The research findings on this issue are

inconclusive (MacCallum, Roznowski, & Necowitz, 1992; Tanaka,

1987). It has been reported that small sample size led not only

to untrustworthy fit indices and estimation results, but also to

high rates of improper solutions occurring in simulations

(Ichikawa & Konishi, 1995). A sample size of 200 in SEM

applications has been considered as being relatively small by some

(Boomsma, 1982; Camstra & Boomsma, 1992; Ichikawa & Konishi, 1995;

MacCallum et al., 1992; Rhee, 1993). Some researchers even

consider sample sizes in the thousands to be required (e.g., Hu,

Bentler, & Kano, 1992; Marsh et al., 1988).

Realistically, however, such large sample sizes are often

beyond the reach of researchers. It has also been noted that

using a single value to delineate small from large samples is

unreasonable, because models and the number of freed parameters

vary from application to application. As a result, consideration

of sample size should be related to model complexity and the

15
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number of free parameters (MacCallum et al., 1992; Tanaka, 1987).

Invariably, simulation studies have investigated the

behaviors of model fit indices under different sample size

conditions (Anderson & Gerbing, 1984; Bearden, Sharma, & Teel,

1982; Bentler, 1990; Bollen, 1986, 1989; Fan et al., 1996; La Du &

Tanaka, 1989; Marsh et al., 1988; Wang et al., 1996), because this

has been considered a major weakness of the x2 test in SEM, and

consequently, a major concern regarding the newer alternative

model fit indices. The majority of fit indices investigated,

including the normed-fit-index (NFI), the goodness-of-fit index

(GFI), and the adjusted goodness-of-fit index (AGFI), were shown

to be influenced by sample size to different degrees.

But since different indices were involved in different

studies, a performance comparison of the indices across different

simulation designs becomes difficult. Also, most studies looked

at the earlier fit indices, such as GFI, AGFI, NFI, and some newer

indices, such as McDonald centrality, Bollen's Delta2, have only

rarely been investigated. Although previous studies have added to

our understanding about the impact of data nonnormality and other

factors in SEM applications, much still remains to be learned

about the asymptotic robustness theory (Bentler, 1994b).

First, typically the x2 statistic has received the most

attention. Given the sensitivity of x2 test to sample size, and

the variety of other fit indices proposed for assessing SEM model

fit, it is important to understand how these SEM fit indices will

perform under nonnormal data conditions and some other factors.

Few studies along this line are available.

16
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Second, simulation studies in this area typically fitted true

SEM models to nonnormal data, but have rarely used misspecified

models. Under true model, many sample fit indices have a ceiling

effect of about 1.00, and such ceiling effects may have masked

some potential differences between estimation methods (ML versus

GLS), and performance differences among different fit indices.

Some research related to misspecified SEM models indicate that

this concern has some empirical support (Fan et al., 1996). To

increase our understanding of SEM fit indices, the present study

had the following research objectives:

1. to assess the impact of data nonnormality on SEM fit indices

and SEM parameter estimates;

2. to assess the sensitivity of different SEM fit indices to

model misspecification conditions;

3. to assess how normal theory estimation methods (ML and GLS)

affect SEM fit indices under both correctly-specified and

misspecified models; and

4. to assess how sample size influences SEM fit indices and

parameter estimates.

Method

SEM Fit Indices Studied

As with most studies in this area, the behaviors of x2

statistic (P-CHI) and the adjusted x2 statistic (P-ACHI) (i.e., X2

test corrected for elliptical distribution, a symmetrical

distribution with uniform kurtosis; see Wang et al., 1996, and

Browne, 1982 for more details) were examined in the present study.

Although a variety of other SEM fit indices are available, some of
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them are not readily comparable with each other. For example,

Akaike's information criterion (AIC) has such a different metric

from many other fit indices, and it is used in such a different

fashion, that a meaningful comparison between AIC and GFI is

difficult.

Based on the consideration of comparability, eight well-known

SEM fit indices were chosen for investigation in the present

study: goodness-of-fit index (GFI), adjusted goodness-of-fit index

(AGFI), Bentler's comparative fit index (CFI), McDonald's

centrality index (CENTRA), Bentler and Bonnett's non-normed fit

index (N_NFI) and normed fit index (NFI), Bollen's normed fit

index rhol (RHO1), and Bollen's non-normed index delta2 (DELTA2).

The GFI, AGFI, CFI are normed indices ranging from 0 to 1 in

value, while non-normed indices can have values from 0 to slightly

over 1. Of these eight fit indices, five of them belong to the

category of comparative model fit indices (CFI, N_NFI, NFI, RHO1,

and DELTA2) discussed before. Because parsimonious type of fit

indices (James et al., 1982; Mulaik et al., 1989) are useful for

assessing competing models, and they are not on the scale

comparable with the eight indices above, they were not included in

the study.

Design of Monte Carlo Simulation

Four factors were incorporated into the design of the study:

data normality condition (three levels: normal, slightly

nonnormal, and moderately nonnormal data), model specification

(three levels: true, slightly misspecified, and moderately

misspecified models), estimation methods (two levels: ML and GLS),

18
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and sample size (four levels: 100, 200, 500, and 1000). The four

factors were fully crossed with each other, creating 72 (3x3x2x4)

different conditions. Within each condition, 200 replications

were implemented to an acceptably small standard error of

simulation. This balanced experimental design allows for a

systematic assessment of the impact of the four factors on SEM fit

indices and parameter estimates. The design required the

generation of 14,400 random samples (3 x 3 x 2 x 4 x 200).

A widely-known model from substantive research (Wheaton,

Muthen, Alwin, & Summers, 1977) with six observed and three latent

variables was used in the simulation. This model has been

discussed extensively in SEM literature (e.g., Bentler, 1992;

Joreskog & Sorbom, 1989). As suggested by Gerbing and Anderson

(1993), simulating substantively meaningful models in Monte Carlo

studies may increase the external validity of Monte Carlo research

results. The true model with population parameters (presented in

LISREL convention) and the two misspecified models are presented

in Figure 1.

Insert Figure 1 about here

Although the population parameters presented in Figure 1 were

arbitrarily specified, these parameters were specified to be close

to the values in the original substantive research example so as

to increase the external validity of the simulation results of the

present study. Once the population parameters were fully

specified, the population covariance matrix (E) was obtained

19
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through the following formula (Joreskog & Sorbom, 1989, p. 5), and

this population covariance matrix was used to generate the random

samples in the simulation:

E =
As, (I-B)l mile 410 (I-.0-1 lily + O. lt, (I -14)4 11011.

A.4a4 (r-B)-1 Ay 11011x + Oa

Model Misspecification

Although a true model is relatively easy to specify in

simulation research, model misspecification is difficult to handle

for at least two reasons: (a) model misspecification can take such

a variety of forms; and (b) the degree of model misspecification

is not easily quantified. In other words, it is difficult to make

a priori predictions about the severity of misspecification

(Gerbing & Anderson, 1993). In the present study, model

misspecification was achieved by fixing/constraining certain

parameters in the model which should be free. The degree of model

misspecification was empirically determined by fitting

misspecified models to the population covariance matrix, and the

resultant values of fit indices were used as indicators of

severity of model misfit.

As the operational guideline, the "slightly misspecified"

condition was defined as producing fit indices around .98 (for

those approximately on the scale of 0 to 1) when the misspecified

model was fit to the population covariance matrix, and a X2 test

that would reach statistical significance for a sample size around

500. The "moderately misspecified" condition was defined as

producing fit indices between .93 and .95 when the misspecified
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model was fit to the population covariance matrix, and a X2 test

that would reach statistical significance for a sample size around

100.

Obviously, the terms "slightly misspecified" and "moderately

misspecified" are used here exclusively to indicate different

degrees of misspecification, and by no means should these terms be

generalized beyond this particular usage or beyond the present

study. The two misspecified models are also presented in Figure

1.

Data Nonnormality Conditions

Similar to the issue of model misspecification, the degree of

data nonnormality is not easily characterized in research. In

other words, the criteria that can be used to deferentiate slight,

moderate, and severe data nonnormality are not entirely clear. In

the present study, the two data nonnormality conditions were

specified a priori as follows: (a) for the "slightly nonnormal"

condition, two thirds (2/3) of the observed variables have

univariate skewness at about ±1.0, and univariate kurtosis at

about ±1.0; (b) for the "moderately nonnormal" condition, two

thirds (2/3) of the observed variables have univariate skewness at

about ±1.5, and univariate kurtosis between +3 to +4. Again,

such operational definitions should under no means be construed as

representing rigid criteria; instead, the definitions should be

treated simply as vehicles for operationally communicating the

design protocol we employed.

Table 1 presents the population covariance matrix

(correlations plus means and standard deviations) used for data
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generation. Because the means of the variables do not affect SEM

model fitting (unless a means model is tested), all the measured

variables were centered with means being zeros so as to simplify

the data generation process. The two data nonnormality conditions

are also presented in Table 1.

Insert Table 1 about here

Data Generation

Data generation was accomplished using the data generator

under the SAS System. To create each of the 14,400 sample data

sets, the following steps were implemented:

1. six random normal variables with a desired sample size were

generated, using the pseudorandom number generator under SAS;

2. the multivariate normality and nonnormality conditions were

simulated using the matrix decomposition procedure (Kaiser &

Dickman, 1962);

3. multivariate nonnormality conditions were simulated using:

a. the power transformation method (Fleishman, 1978);

b. the intermediate correlation procedure (Vale & Maurelli,

1983); and finally,

c. the matrix decomposition procedure (Kaiser & Dickman,

1962);

4. the six correlated variables were linearly transformed to

have desired means and standard deviations; and

5. The multivariate sample data were fitted to one of the models

(true, slightly misspecified, and moderately misspecified)
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under one of the two estimation procedures (ML and GLS),

using PROC CALIS procedure under SAS. All desired fit

indices and parameter estimates from each sample were

obtained and saved for later analysis.

Simulation programming was implemented through a combination

of the SAS Macro language, the SAS PROC IML matrix language, and

the SAS PROC CALIS procedure for SEM model fitting under the SAS

environment. All simulation was implemented on an IBM PC Pentium

100 MHZ computer with SAS Windows Version 6.11.

Results and Discussion

Convergence Failures and Improper Solutions

In simulation work involving SEM, it is normal to encounter

two problems: the problem of nonconvergence, and that of improper

solutions. The problem of nonconvergence occurs when SEM

estimation fails to converge on a solution for a sample. The

problem of improper solution occurs when some statistically

impossible values, such as negative residual variances ("Heywood

cases") are obtained from the estimation.

The problem of convergence failure in SEM depends to a great

extent on the optimization procedure used and the number of

iterations allowed for such optimization. Without information on

the optimization procedure used and the number of iterations

allowed, any discussion about convergence failure problems would

be incomplete. In the present study, the Levenberg-Marquardt

optimization technique was used, which is believed to work well

for poor initial values. For discussion about this technique and

additional references, readers are referred to SAS Institute
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(1990, Chapter 14, pp. 245-366). Table 2 presents the percentage

of non-convergent samples under different numbers of iterations,

different sample size conditions, different estimation procedures

(ML and GLS), under each of the three models (true, slightly

misspecified, and moderately misspecified models), and under three

data normality conditions.

Insert Table 2 about here

The results in Table 2 suggest five conclusions. First, as

expected, convergence failures occurred mainly when the maximum

number of iterations allowed was small. When the number of

permitted iterations was increased to 40 and 50, convergence

failure was rarely a problem. Second, also as expected,

convergence failure was mainly a problem with small sample sizes.

For example, under the sample size condition of 100 and the

maximum number of iterations of 20, approximately 3.1% of the

samples failed to converge. For the sample size of 200 with the

same maximum number of iterations, only 0.53% of the samples

failed to converge. When sample size reached 500, no convergence

failures occurred.

Third, convergence failures appeared to occur more often

under ML than under GLS estimation, with the ratio being

approximately 2 to 1. Fourth, when the maximum numbers of

iterations were relatively small, convergence failure appeared to

occur substantially more often for moderately misspecified model

than for the other two models. This makes intuitive sense in that
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misspecified models may require larger number of iterations to

reach optimal solutions. When the number of iterations allowed

was increased, however, convergence failure became a negligible

problem for all the three models. Fifth, data normality condition

did not seem to influence estimation convergence in any systematic

fashion, i.e., the occurrence of convergence failure did not

depend on whether data were normal or nonnormal.

Table 3 presents the percentages of improper solutions under

four factors: sample size, estimation methods, model

specification, and data normality conditions. Again, it can be

seen that improper solution is mainly a problem for smaller sample

sizes. For example, for the sample size of 100, as many as 12.5%

of the samples yielded improper solution of some kind. For the

sample size of 200, the percentage dropped to 2.5%. When the

sample size reached 500, this problem was practically eliminated.

The two SEM estimation methods appeared to have a roughly equal

percentage of improper solutions. Nonnormal data did not cause

any more improper solutions than normal data.

Insert Table 3 about here

The findings that small sample size may often lead to

convergence failure and/or improper solution in SEM were

consistent with the findings of some previous studies (Anderson &

Gerbing, 1984; Boomsma, 1985; Gerbing & Anderson, 1985), although

the previous studies in this area mainly examined confirmatory

factor analysis models rather than full structural equation
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models. In addition to the findings related to sample size, the

present study also extends exploration into new territories in

examining several other factors potentially related to convergence

failure and improper solutions in SEM, such as estimation methods,

data nonnormality, and model misspecification. We are not aware

that any previous studies have examined these issues.

Although both convergence failure and improper solution

problems have long been identified in SEM simulation work, it is

unclear how these two problems can best be handled in practice: to

ignore them, to exclude them from subsequent analysis, or to

replace them by generating new samples. In our study, we used 50

as the maximum number of iterations for each sample, which

practically eliminated the problem of convergence failures, as

shown in Table 2. For samples with improper solutions, we simply

excluded these samples from subsequent analysis. As a result, the

number of usable samples for analysis was reduced to 13,850 from

the original 14,400, and the design of the experiment became

slightly unbalanced.

The Robustness of x2 and Adjusted x2 Tests

In SEM applications, a major concern for the x2 test is its

validity when data are nonnormal. Previous studies in this area

indicated that the x2 test could be reasonably robust to nonnormal

data conditions (e.g., Chou et al., 1991; Hu et al., 1992). The

concern with nonnormal data also lead to the adjusted x2 test,

which is the X2 test corrected for elliptical distribution, a

symmetrical distribution with uniform kurtosis. Mathematically,

the adjusted x2 statistic is obtained by dividing the x2 statistic
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with the multivariate relative kurtosis coefficient (Browne, 1982,

cited in SAS Institute, 1990, p. 305).

Table 4 presents the empirical rejection rates for the true

model at the conventional a=.05 level. Under the normal data

condition, the x2 and the adjusted x2 tests yielded almost

identical rejection rates, and very close to the nominal

probability level (a=.05). As the data became moderately

nonnormal, the regular x2 test still yielded rejection rates very

close to the nominal probability level even for the largest sample

size of 1,000, while the adjusted x2 test yielded rejection rates

considerably lower than the nominal a level. Furthermore, both ML

and GLS estimation yielded very comparable rejection rates under

all data normality and sample size conditions.

Insert Table 4 about here

The results in Table 4 indicate that, if we are concerned

about the rejection or retention of the true model, the x2 test is

quite robust to moderate data nonnormality (as defined in this

study) even for sample sizes of 500 and 1000. The adjusted x2

test may be unnecessary for these data nonnormality conditions,

because its correction seems to cause consistently lower empirical

rejection rates than the nominal significance level. These

results are generally consistent with findings in this area (e.g.,

Chou et al, 1991; Hu et al. 1992). But to what degree such

robustness of the x2 test will hold under more severe nonnormality

conditions is a question that needs to be addressed empirically.
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Descriptive SEM Fit Indices

Because descriptive fit indices are designed to provide

information about how well a model fits empirical data, and are

not designed to provide information about sample size, data

nonnormality, or the estimation techniques used for model fitting,

it is almost self-evident that, ideally, a fit index (a) should be

affected by the degree to which a model is incorrectly specified;

(b) should not be unduly affected by data normality condition; (c)

should not be unduly affected by the estimation method for model

fitting; and (d) should not be unduly affected by sample size. In

other words, the major factor contributing to the variation of an

ideal fit index should be the model specification, and all the

other three factors (data normality condition, estimation method,

and sample size) should contribute minimally to variations in fit.

Table 5 presents the results of partitioning the variance of the

fit indices into different sources. Such variance partitioning

allows systematic examination of the influences of the four

factors discussed above.

Insert Table 5 about here

Under the initial balanced design of the study, variances

contributed by different sources could have been partitioned

orthogonally. In other words, variances due to different sources

and their interactions would have been additive, which would have

made interpreting the variance partitioning results very

straightforward. However, due to the exclusion of the samples
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with improper solutions, the design became slightly unbalanced.

But this slight imbalance left the additive nature of the

partitioned variances still reasonably intact.

Model specification. Although model specification indeed

contributed most to the variation of all the fit indices examined

in Table 5, the amount of variation accounted for by the model

specification varied substantially among the fit indices, ranging

from the high of 73% to the low of 35%. GFI and CENTRA had the

highest proportion of variation accounted for by model

specification (>70%), and RHO1 and N-NFI had the lowest amount of

variation accounted for by this factor (35% and 45%). Viewed from

the perspective that model specification should be the major

contributor to the variation of an ideal fit index, it appears

that GFI and CENTRA were the best two among the eight fit indices.

Data nonnormality. The factor of data normality condition

turned out to be a nonevent, with no effect on any of the fit

indices examined here. This is shown by the near zero proportions

of variation that was accounted for by this factor for all the

indices. Also, data normality as a factor was not involved in any

meaningful interaction terms in the analysis either. These

results indicate that all these fit indices were reasonably robust

to the data nonnormality conditions as implemented in the present

study.

We consider the degree of data nonnormality implemented in

the study to have been somewhat mild, and it is not known from the

present results whether this robustness to data nonnormality will

hold under more severe nonnormality conditions. Quite a few fit
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indices examined here are related to the x2 statistic in some

fashion, it is possible that data nonnormality conditions not

severe enough to cause misbehavior in the x2 statistic would not

cause any misbehavior in these fit indices either. It will be

interesting to see how these fit indices will behave under data

nonnormality conditions severe enough to cause problems for the x2

statistic.

Estimation methods. The susceptibility of the eight indices

to the influence of estimation methods varied considerably. The

indices CFI, NNFI, NFI, RHO1, and DELTA2 were strongly influenced

by the estimation method used for model fitting (ML and GLS in

this study), with 10% to 26% of variation accounted for by the

estimation factor. It is interesting to note that all these five

indices are comparative model fit indices. Based on the criterion

that estimation method should not unduly influence an ideal fit

index, it appears that the category of comparative model fit

indices fared less well than the other three fit indices (GFI,

AGFI, and CENTRA).

In Table 6, only one two-way interaction term (MS * EM: Model

Specification * Estimation Method) is listed, because this is the

only interaction term which accounted for noteworthy variations in

some fit indices (CFI: 12%; N-NFI: 10%; NFI: 11%; RHO1: 8%; and

DELTA2: 12%). All other two-, three-, and four-way interaction

terms were not listed in the table because each of them accounted

for a negligible portion of variation (< 1%) for any of the fit

indices.

The strong interaction term between model specification and
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estimation method for some fit indices indicates that the

influence of estimation method on these fit indices is not uniform

under the three fitted models (true, slightly misspecified, and

moderately misspecified models). To fully understand these

dynamics, a separate ANOVA was conducted to partition the

variation of the fit indices under each of the three models, and

the results are presented in Table 6.

Insert Table 6 about here

As discussed before, ideally, factors other than model

specification should minimally contribute to the variation of a

fit index. Under the same model, we would expect random variation

to be the dominant source of variation for the indices, rather

than any other factor or factors. The data presented in Table 6

show that under the true model, most fit indices performed well in

this regard, and estimation method accounted for very small

proportions of the variation for the indices, except for the CFI

(2.91%) and NFI (14.25%) indices.

But as model misspecification became more severe, all those

indices classified as comparative model fit indices were

increasingly influenced by estimation method. For example, under

the moderately misspecified model, estimation method was the

dominant source of variation for these indices, accounting for up

to 70% of the variation for some indices. On the other hand, the

GFI and AGFI indices still remained immune to the influence of

estimation method, and CENTRA was only slightly influenced by
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estimation method.

Some previous studies (e.g., Wang et al., 1996) have

concluded that these fit indices performed consistently and

comparably under both ML and GLS estimation method. But the

analysis presented here indicates that this and similar

conclusions concerning estimation method may need to be revisited.

It is shown here that, although the comparative model fit indices

may indeed be comparable under either ML or GLS estimation method

for the true model, such may not be the case for misspecified

models, even when the degree of model misspecification is not

severe, as was the case in the present study.

Sample size. In previous Table 5, sample size accounted for

a considerable portion of variation of a few indices, including

the GFI (7%), AGFI (14%), RHO' (8%), and NFI (4%). This indicates

that these indices are susceptible to the influence of the sample

sizes used in SEM analysis. The practical implications of this

influence will be further explored momentarily. Sample size had

little influence on the CFI, CENTRA, N-NFI, and DELTA2 indices,

which therefore performed well under the criterion that a fit

index should not be unduly influenced by sample size.

To further understand the practical impact of estimation

method and sample size on some of these fit indices, the

descriptive statistics for these indices under two estimation

methods and under different sample size conditions are presented

in Table 7. For the sake of simplicity, we presented only basic

descriptive information here (i.e., means and standard

deviations).
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Insert Table 7 about here

A close look at Table 7 reveals several phenomena. First,

for all the three models, some fit indices (GFI, AGFI, RHO1, and

NFI) exhibited a slight downward bias for smaller sample size

conditions such as 100 and 200. Not surprisingly, these are

indices for which sample size accounted for a considerable portion

of their variation, as reported in Table 5 and as noted

previously. In some cases, the magnitude of the downward bias may

have practical implications for assessing model fit.

For example, for the true model (Model 1 in Table 7), the

population parameters of AGFI was 1.00. For sample size of 100,

the average AGFI was only .94. Similar downward bias was seen for

RHO1, and to a lesser degree, for GFI and NFI. Practically, the

existence of such downward bias indicates that when sample size is

relatively small, researchers can hardly expects a value close to

1.00 for these indices, even if a perfect model has unknowingly

been specified. The problem, of course, is that the applied

researchers will not know whether the attenuated fit index is due

to the bias caused by small sample size, or model

misspecification, or both causes.

Second, under the true model, the population fit indices are

identical under the two estimation methods (ML and GLS). For

samples, these fit indices are either identical or very close to

each other, except in a few cases where sample size is relatively

small, such as for NFI and RHO1. But under misspecified models,

33



SEM Fit Indices and Estimates 32

discrepancies between the two estimation methods (ML and GLS)

occurred for some fit indices. The discrepancies became more

conspicuous as the model misspecification became worse.

For the moderately misspecified model, which itself may not

be considered as a bad model by most conventional standards, the

discrepancy between ML and GLS fit indices became so large for

some fit indices that they might lead to very different

conclusions regarding model fit. For example, for N_NFL (.91 vs.

.74), NFI (.95 vs. .85), RHO1 (.90 vs. .72), if the interpretation

was based on ML fit indices, the model would most probably be said

to have reasonable, though not great, fit with data. But if the

interpretation was based on GLS fit indices values, it is very

likely that the model would be considered to have very poor fit.

This phenomenon has not been widely discussed in the literature,

although it has been previously noted (Fan et al., 1996).

Third, as discussed in previous sections, those fit indices

which exhibit discrepancy between ML and GLS methods were all

comparative model fit indices (CFI, N_NFI, NFI, RHO1, and DELTA2).

The other fit indices (GFI, AGFI, and CENTRA), which do not rely

on the comparison between a fitted model and a more restricted

null model, showed remarkable consistency between ML and GLS

methods under all three model specification conditions. Although

the reasons for this phenomenon are not entirely clear to us, this

descriptive information confirms the observation from the

variation partitioning analysis presented in Tables 5 and 6, where

estimation method turned out to account for a considerable portion

of variation for only selected indices.
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These results are also very consistent with those from a

similar study (Fan et al., 1996) which involved a different SEM

model. These findings lead us to believe that comparative model

fit indices in general are more susceptible to the influence of

estimation methods, and as a result, the interpretation of such

indices may be more uncertain under the two normal theory

estimation methods.

It is probably safe to say that, in research practice, there

does not exist any true SEM model, because a true model is more a

mathematical abstraction than a reality. As a result, the

question is not whether the fitted model is a true model, but

rather, how well the model approximates the data (Bentler &

Dudgeon, 1996; Cudeck & Henly, 1991). In this sense, it is the

model with some degree of misspecification that researchers have

to make decisions about in their applied research.

The two misspecified models examined in the present study

probably represent the least degrees of misspecification that

applied researchers may encounter in practice. The slightly

misspecified model examined here would probably be judged as

having very good model fit by any current conventional criteria.

Even the moderately misspecified model would be regarded as having

reasonable model fit by most conventional criteria. In this

context, for the misspecified models in the present study, the

discrepancies exhibited by some fit indices under the two

estimation methods must be considered very disturbing.

For example, under the moderately misspecified model, the

five comparative model fit indices (CFI, N-NFI, NFI, RHO1, DELTA2)
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all showed differences of about 0.1 or larger between ML and GLS

estimation methods, with RHO1 having the largest discrepancy

(0.18; ML: 0.90; GLS: 0.72). When used for assessing model fit, a

discrepancy of 0.10 near the upper ceiling of the fit index value

may lead to quite different conclusions about model fit.

Using the criterion that a fit index should be influenced by

model specification, but not unduly influenced by confounding

factors such as data nonnormality, estimation method, or sample

size, it appears that the CENTRA index was the top performer among

the indices investigated here, and followed by GFI. Other indices

were strongly susceptible to the influence of one or more of the

confounding factors we investigated. This finding that CENTRA has

outstanding performance (followed by GFI) is consistent with

findings from a previous study involving a different SEM model

(Fan et al., 1996).

Data Nonnormality and Parameter Estimates

In addition to the SEM fit indices, the potential effect of

data nonnormality on the quality of the SEM parameter estimates

has also been an important concern (e.g., Wang et al., 1996).

Afterall, even when we can correctly identify degree of model fit,

we then want to examine the parameter estimates to evaluate the

substantive meaning of the model.

The major question asked in the context of this second issue

is whether and to what degree the quality of parameter estimates

in SEM will be adversely affected when data normality assumption

in SEM is violated. Table 8 presents the mean estimates for the

17 parameters in the model. Due to space considerations, we were
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not able to present all the data. In Table 8, what are presented

are estimates based on maximum likelihood estimation, for the true

and moderately misspecified models, for normal data and moderately

nonnormal data conditions, and for sample size of 100, 500, and

1000.

The mean estimates presented in Table 8 gave no indication of

any systematic adverse effects that data nonnormality might have

on the quality of these parameter estimates when compared with

those estimates under the normal data condition for both the true

and moderately misspecified models. In other words, the mean

estimates under normal data conditions are not necessarily more

accurate than those under nonnormal data conditions; any

discrepancies appear to be random rather than systematic.

This indicates that for the nonnormal data conditions

implemented in this study, the adverse effect of data

nonnormality, if any, may be so minor that it may not cause much

concern for the quality of mean parameter estimates. However, as

discussed previously, the degree of data nonnormality implemented

in the study was not especially severe. So it is not known if the

robustness of parameter estimates as seen here will hold under

more severe nonnormal data conditions.

To provide a more systematic assessment of any potential

effect of data nonnormality on parameter estimates, variance

partitioning was also applied to the 17 parameter estimates to

check what factors contributed to the variation of each estimate

in repeated sampling. Because population parameters differed

across the three models (true, slightly misspecified, and
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moderately misspecified models), the variance partitioning was

carried out separately under each of the three models for all the

17 parameters.

If the data normality condition had any systematic effect on

the parameter estimates, this would be reflected in this analysis

as a strong data normality factor accounting for a substantial

portion of variation in the parameter estimates, or as a strong

interaction term involving data normality condition as one factor

in the interaction. This variance partitioning analysis required

carrying out 51 analyses of variance (17 parameters under each of

the three models). The results across parameters and across

models invariably showed that data normality condition was a

factor accounting for much less than one percent of the variation

in the each of the parameter estimates. Furthermore, no

interaction term involving data normality condition was observed

to account for any noteworthy portion of variation of the

parameter estimates. Thus, both the mean parameter estimates in

Table 8 and the variance partitioning analyses for the parameter

estimates indicated that data nonnormality condition has no

discernible effect on the quality of SEM parameter estimates.

Again, it remains an empirical question whether this view will

hold under more severe data nonnormality conditions.

Limitations and Future Directions

As with most empirical studies, the present study had its own

share of limitations. The most obvious limitation is that there

was only one model simulated, thus the findings may reflect some

idiosyncracies associated with the model, and the study does not
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provide any mechanisms for verification of these findings except

by comparison with previous studies which also considered model

misspecifucation (Fan et al., 1996). This limitation can be offset

if a series of similar studies can be conducted which involve

additional different SEM models.

Another potential limitation of the study is that we were not

always able to provide theoretical rationales for some phenomena

observed in the study. Although it is desirable to have

theoretical explanations for empirically observed phenomena, this

is not always possible in all aspects of SEM simulation or

analysis.

Regarding future research, as we have emphasized throughout

this paper, we believe that it is important that SEM simulation

must involve not only correctly specified models, but also models

with some degree of misspecification. Otherwise, SEM simulations

will have little ecological validity as regards applied research.

Indeed, model fit indices may behave quite differently under

models with even only minor degrees of misspecification, and these

dynamics may be more important for us to understand than the

behaviors of the same indices under a mathematically perfect

specification representing an unattainable ideal.

For this reason, future research in this area should consider

different aspects of SEM analysis under realistically misspecified

SEM models, instead of focusing solely on the true SEM model. Of

course, future research will benefit from incorporating several

different SEM models with different degrees of model complexity in

one study so that the chances of fluke results can be reduced, and
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more meaningful findings can be realized.

Summary and Conclusions

An experimental design was used in the present empirical

study to investigate the effects of four factors on SEM fit

indices and parameter estimates. Under this experimental design,

a total of 14,400 samples were generated and fitted to three SEM

models with different degrees of model misspecification. The

effects of data nonnormality, estimation method, and sample size

on SEM fit indices and the effect of data nonnormality on

parameter estimates were systematically assessed. The major

findings were:

1. In SEM model fitting, the problems of convergence failure and

improper solutions are associated with smaller sample sizes.

If the number of iteration allowed is not too restricting,

convergence failure appeared to be a negligible problem.

Improper solutions, on the other hand, seems to be a more

serious issue, especially when sample size is small. Other

factors, such as data nonnormality and model specification,

do not seem to be related to these two problems.

2. When the degree of data nonnormality is mild or even slightly

moderate, the X2 test may be quite robust in the sense that

the empirical rejection rate of the true model is very close

to the nominal alpha level, even when the sample size is

moderately large.

3. Data nonnormality does not systematically affect the eight

descriptive SEM fit indices examined in any discernible

fashion. Although under the true model, the eight fit
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indices were quite consistent under the two normal theory

estimation methods, under the two misspecified models the

estimation method exhibited considerable influence on some

fit indices. Specifically, all the fit indices belonging to

the category of comparative model fit indices tended to be

affected to noteworthy degress by the estimation method used

for model fitting. As the degree of model misspecification

increased, these discrepancies become sufficiently large to

lead to quite different interpretations regarding SEM model

fit.

4. Sample size had considerable influence on a few indices, and

these were the indices with an obvious tendency of downward

bias under smaller sample size conditions. This downward

bias could have some very real practical implications in

applied research.

5. Data nonnormality conditions as implemented in the study had

very little adverse effect on the quality of SEM parameter

estimates. Although the data nonnormality conditions

implemented in the study were not extremely severe, these

results gave some indication that the SEM parameter

estimation process is robust to mild to moderate data

nonnormality.

Overall, the effect of data nonnormality appears to be rather

weak, or even nonexistent, for both SEM model fit assessment (the

2 statistic and descriptive fit indices) and SEM parameter

estimation, and SEM analysis appears to be quite robust against

mild or even moderate deviations from normality. Given that the
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data nonnormality conditions implemented in the study were

somewhat mild, we were not expecting strong adverse effects of

data nonnormality. But the almost complete absence of any obvious

adverse effect of data nonnormality was still somewhat surprising

to us. This finding may somewhat alleviate obsessive concerns

about data nonnormality in SEM application; of course, this does

not imply that such issues can be ignored.

Among the descriptive SEM fit indices, the centrality index

performed best, followed by the goodness-of-fit index (GFI). This

result is consistent with the findings from a previous study (Fan

et al., 1996). Although the finding must still be regarded as

somewhat tentative, the remarkable consistency across the two

studies involving different SEM models has appreciably increased

our confidence that the finding is replicable and noteworthy.
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Table 2: Percentage of Non-converging Samples under Four Factors

Maximum Numbers of Iteration Allowed

20 25 30 40 50

Sample Size

100 3.06 1.56 0.83 0.33 0.19

200 0.53 0.17 0.06 0.00 0.00

500 0.00 0.00 0.00 0.00 0.00

1000 0.00 0.00 0.00 0.00 0.00

Estimation Methodsa

ML

GLS

1.15 0.57 0.32 0.10 0.07

0.64 0.29 0.13 0.07 0.03

Modelsb

True 0.38 0.21 0.15 0.13 0.10

Slight Mis. 0.29 0.13 0.08 0.04 0.00

Moderate Mis. 2.02 0.96 0.44 0.08 0.04

Data Normality

Normal 0.71 0.40 0.23 0.13 0.08

Slight Nonnormal 1.10 0.42 0.17 0.02 0.02

Moderate Nonnormal 0.88 0.48 0.27 0.10 0.04

a ML: maximum likelihood; GLS: generalized least squares

b True, slightly misspecified, and moderately misspecified

model respectively.
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Table 3: Percentage Samples with Improper Solutions under Four

Factors (Maximum Number of Iterations = 50)

Sample Size 100 200 500 1000

12.53 2.53 0.14 0.00

Estimation Methodsa ML GLS

3.74 3.86

Modelsb True Slight Moderate

4.63 5.94 0.83

Data Nonnormalityc Normal Slight Moderate

3.58 3.83 3.98

a ML: Maximum likelihood; GLS: generalized least squares

b True, slightly misspecified, and moderately misspecified

models respectively.

c Normal, slightly non-normal, and moderately non-normal data

conditions
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