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Abstract

Although the concept of the General Linear Model has existed since the 1960's, other univariate

analyses such as the t-test and OVA methods have remained popular over the years. Certain

univariate analyses require some variables to be in a nominal scale vs. interval scale and provide

limited information about the data as compared to other data analytic tools. This paper explains

how regression subsumes all univariate analyses and how regression can provide the researcher

with a greater understanding of the data. A heuristic data set is used to further clarify this

discussion.
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Regression is a Univariate General Linear Model Subsuming Other Parametric Methods as

Special Cases

Over the years graduate students continue to learn statistics with a relatively limited

conceptual understanding of the foundations of elementary univariate analyses. Maxwell, Camp,

and Arvey (1981) emphasized that "researchers are not well acquainted with the differences

among the various measures (of association) or the assumptions that underlie their use" (p. 525).

Frequently, many researchers and graduate students make assertions such as "I would rather use

Analysis of Variance (ANOVA) than regression in my study because it is simpler and will be able

to provide me with all the information I need." Unfortunately, comments such as these are ill-

informed and can result in the use of less desirable data analytic tools.

All univariate analyses such as the T-test, Pearson correlation, ANOVA, and planned

contrasts are subsumed by correlational analyses. In 1968 Cohen acknowledged that ANOVA is

a special case of regression; he stated that within regression analyses "lie possibilities for more

relevant and therefore more powerful exploitation of research data" (p. 426). Thus, an

understanding of a model which subsumes univariate analyses is not only pertinent to any

researcher, but imperative if a researcher wants to maximize findings of research data.

The general linear model is a model which subsumes many univariate analyses. The

general linear model (GLM) "is a linear equation which expresses a dependent (criterion) variable

as a function of a weighted sum of independent (predictor) variables" (Falzer, 1974, p. 128).

Simply stated, the GLM produces an equation which minimizes the mean differences of

independent variables as they are related to a dependent variable. From a computer printout of a

regression analysis, the researcher can obtain weights which apply to each variable and then

construct this equation. Regression as a general linear model can provide the exact same
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information as a T-test or ANOVA, but this type of analysis also provides other information

which can be useful. In addition, the GLM allows the researcher more flexibility regarding the

type of variables that can be entered (e.g. interval vs. nominally scaled variables).

The purpose of the present paper is to illustrate the foundations of the general linear

model, in terms of regression, and the advantages this analytic tool provides over other commonly

used univariate methods. The present paper conceptually outlines the general linear model;

further computational detail can be found in Tatsuoka (1975). Although Cohen (1968) and Falzer

(1974) acknowledged the importance of the general linear model in the 60's and 70's, the use of

ANOVA methods remained popular because of its computational simplicity over other methods

such as regression. Computational aids such as high powered computers were unavailable to

many researchers until the 1980's; therefore researchers used analytical methods which were

congruent with existing technology.

Today computers can easily compute complex analyses such as regression, however the

shift from OVA methods to the general linear model has been gradual. During the years 1969-

1978, Wilson (1980) found that 41% of journal articles in an educational research journal used

OVA methods as compared with 25% during the years 1978-1987 (Elmore & Woehlke, 1988).

Researchers are beginning to recognize that the general linear model

can be used equally well in experimental or non-experimental research. It can

handle continuous and categorical variables. It can handle two, three, four or

more independent variables.... Finally, as we will abundantly show, multiple

regression analysis can do anything that the analysis of variance doessums of

squares, mean squares, F ratiosand more. (Kerlinger & Pedhazur, 1973, p. 3)
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One of the primary advantages of the general linear model is the ability to use categorical

variables or intervally-scaled variables. OVA analyses require that independent variables are

categorical, therefore independent variables which are do not naturally occur as categorical must

be reconfigured into categories. This process often results in a misrepresentation of what the

variable actual is. Imagine eating freshly baked chocolate chip cookies where each cookie gives a

variety of chocolate chips. Often children become excited by the variation of chocolate chips that

result in each cookie. Next, imagine a world where each batch of chocolate chip cookies resulted

in a cookie either containing one chocolate chip or two chips. In such a world, children and

adults would no longer be as interested in the variety that chocolate chip cookies provided.

Similarly, when a researcher dichotomizes variables, variance is decreased, thus limiting our

understanding of individual differences. While variation in a cookie is not similar to individual

variation, this illustration represents how reducing an interval variable (multichip cookie) into a

dichotomy (one chip or two chip cookie) can change the characteristics of a variable (cookie).

Pedhazur (1982) stated: "categorization of attribute variables is all too frequently resorted to in

the social sciences... It is possible that some of the conflicting evidence in the research literature

of a given area may be attributed to the practice of categorization of continuous variables...

Categorization leads to a loss of information, and consequently a less sensitive analysis" (pp. 452-

453).

Conclusively, eliminating variance from intervally scaled predictor variables can lead to

misleading results. Cliff (1987) stated:

such divisions are not infallible; think of the persons near the borders. Some who

should be highs are actually classified as lows, and vice versa. In addition, the

"barely highs" are classified the same as the "very highs," even though they are
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different. Therefore, reducing a reliable variable to a dichotomy makes the variable

more unreliable, not less. (p. 130)

Furthermore, Thompson (1986) has established that ANOVA methods tend to overestimate

smaller effect sizes: "OVA methods tend to reduce power against type II errors by reducing

reliability levels of variables that were originally higher than nominally scaled. Statistical

significant effects are theoretically possible only when variables are reliably measured" (p. 919).

Conversely, regression analyses in general "did tend to provide more accurate estimates of

explained variance than did the OVA analyses. The pattern was most noticeable when sample size

was small" (Thompson, p. 924).

To examine specifically how regression and correlation subsume univariate analyses, a

heuristic data set is provided in Table 1 for illustration. The fictitious data set for this example

was taken from Daniel (1989). The two experimental conditions are represented by the variable

group (1=control, 2=experimental). Other independent variables are sex (1=male, 2=female).

The sample (n=16) consisted of eight girls and eight boys. A reading posttest with an interval

scale from 1-100, where one represents a low score and 100 a high score, was used as the

dependent variable. These data are used to determine how these variables can help determine

which of two classrooms is most appropriate for students.

INSERT TABLE 1 ABOUT HERE.

Analysis of the Data Set

The data were analyzed using SPSS for WINDOWS 1995. The following analyses were

implemented: a 1' -test, One-way ANOVA, Two-way ANOVA, Pearson correlation, planned
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contrast, and regression analysis. Appendix A present the computer program used to analyze the

data.

T-Test

Since a T-test is restricted to the comparison of two means, the two means of the

independent variable group were examined in relation to the dependent variable posttest. The

results are shown in Table 2. In this example, the researcher is attempting to understand possible

differences on the posttest score between those subjects in the control group and those subjects in

the experimental group.

INSERT TABLE 2 ABOUT HERE.

A t value of .67 is the statistic commonly referred to in research journals when using this type of

statistical analysis. Tatsuoka (1975) illustrated how the t value is simply a function of the

correlation coefficient in the following formula:

t r4N-2/ 4142

T- test Done Using Regression

Step by step statistics from the regression output will be used to illustrate a proof of this

formula for the heuristic data set. Table 3 illustrates the statistics that are a result of the

regression analysis for this heuristic data set. Initially many researchers, especially graduate

students, can become overwhelmed by this information, but this paper will attempt to highlight a

few important areas of these given results.
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INSERT TABLE 3 ABOUT HERE.

First refer to the area titled correlation, notice the correlation coefficient between group

and posttest is equal to -.177. If the correlation coefficient is inserted into the previously

described formula, the following result is found:

t H-.17741-2/ 41-.031 =.662/.9843 =.672.

This t value is identical to the t value reported in Table 2, thereby supporting the premise that a t-

test is a function of correlational analysis. One can refer to the common formula for regression

for a proof that regression analysis is also a function of the correlation coefficient (Thompson,

1992).

In addition, Table 3 reports an R2 value of .0341, which can be interpreted as "the

proportion of Y that we can explain with the predictors [independent variables]" (Thompson,

1992, p. 10). Furthermore, an adjusted R2 of -.0377 is reported. This adjustment is an attempt

to account for various biases (see Snyder & Lawson, 1993). However, conceptually a squared

value should not be negative, thus this negative value may lead the researcher to infer that this

predictor variable (group) is a poor predictor for this sample.

Lastly, the regression output gives the researcher information about the sum of squares

and weights for the regression equation. These figures aid our understanding in how and which

variables are account for the variance explained. In addition, the sum of square values can be

used to calculate an effect size which is "the degree to which the phenomenon is present in the

population" (Cohen, 1988, p. 12). Dividing the sum of squares of a given variable by the total
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sum of squares will yield an effect size for each variable. Further specifics of the regression

equation and beta weights will be discussed later.

One-Way ANOVA Analysis

A one-way ANOVA using group as the independent variable and "ptest" as the dependent

variable was executed with the results reported in Table 4. Since a one-way ANOVA is

conceptually identical to a t-test, an extensive discussion of how regression subsumes a one-way

ANOVA will not be presented. However, a proof can demonstrate how an ANOVA analysis,

specifically the F statistic, is a function of correlational analysis in the following formula:

F = t2 = r-4N-2/ 1571:2)2

In other words, F=.454 = t2=(.674)2.

INSERT TABLE 4 ABOUT HERE.

Two-Way ANOVA Analysis

Next, a two-way ANOVA was conducted. The two ways were sex (male/female) and

group (experimental/condition). The dependent variable was the reading posttest score. Recall

that ANOVA requires both independent variables to be in a nominal scale form, thus sex and

group are appropriate variables. Table 5 lists the SPSS output for the two-way ANOVA for the

heuristic data.

INSERT TABLE 5 ABOUT HERE.

The two-way ANOVA gives us the same information as in a one-way, but we also main

effects and interaction effects between the variables sex and group. Sum of squares for each
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variable are reported as well as an F statistic. Notice how the sum of squares for group has not

changed from the One-way ANOVA to the Two-way ANOVA Analysis. An effect size could also

be calculated with this sum of squares information. For this data the effect size for the two-way

interaction would be 175.56/11,191.94 = .0156. This interaction variable provides the researcher

with further information on how the independent variables interact with each other in relation to

the dependent variable.

Two-Way ANOVA Using Planned-Contrast Regression

In order to recreate the interaction in regression, a new variable must be created. See

Appendix A for the appropriate SPSS commands. The new variable "Al Bl", represents the

group-by-sex interaction. "Al" will now represent group membership and sex will be represented

by "B 1 ". Moreover, a planned contrast is used to create orthogonal comparisons. These results

are reported in Table 6.

INSERT TABLE 6 ABOUT HERE.

The first half of the output furnishes basic descriptive statistics and correlations between

the contrasts. Notice how the Al, group, correlation with "ptest" is equal to -.177, this is the

same result as reported earlier in Table 3. Although SPSS prints out a new summary for each

variable (e.g., group, sex, group by sex), only the last summary which includes all the variables

entered is used in Table 6. Refer to the column with the T values. If you square these values they

will equal the F statistic reported in the ANOVA, therefore demonstrating that multiple regression

can compute the same statistics as an ANOVA without requiring the predictor variables to be in a

nominal scale.



Regression i 1.

As stated earlier, a t-test may provide a researcher with the information that two means

are different, but regression can inform the researcher more distinctly how two variables are

different from one another in relation to the dependent variable. In regression the researcher can

determine what parts of the dependent variable (y) are explained (y') or unexplained (error) by the

independent variables. A Venn diagram in Figure 1 illustrates this concept in terms of the

example presented earlier. The Y' area is a synthetic variable which describes the total area

explained by the 3 variables ("Al", "Bl", "AlB1").

INSERT FIGURE 1 ABOUT HERE.

As you may notice, the correlation of each variable with Y equals beta2. This result

occurs only when effects are uncorrelated such as in orthogonal contrasts. The Y' area can also

be referred to as R2. An R2 of .07069 is reported in the regression output, indicating that 7% of

the variance can be explained by the predictors. The Venn diagram can help a researcher visualize

more clearly this percentage of variance explained by the predictors.

Ultimately regression provides the researcher with an equation which gives the best

possible prediction of Y' for the sample data. The basic linear equation for regression is:

Y' = a + b1(A1) + b2(B1) + b3(A1B1)

In standardized form, the regression equation would be:

Y' = 131(ZA1) +132(ZB1) +133(ZAisi).

See Thompson (1988) for a further discussion of beta coefficients and structure coefficients in

terms of interpreting results of a regression equation. Since the variables group and sex are not in

z score form, the appropriate equation would be the unstandardized regression equation:
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Y'= 70.56 - 4.68(A1) + 4.06(B1) + 3.31(A1B1).

The beta values are given in Table 6. For this sample data, this equation can help a researcher

determine the best possible prediction of Y', reading posttest scores, given the group condition

(experimental/control) and sex (male/female). Hence, the researcher is able to make more

informed decisions about the contribution of variables in relation to the dependent variable. While

weights could be constructed from the statistics in an ANOVA analysis, regression provides this

information without any further computations and does not require the researcher to dichotomize

variables.

Summary

To conclude, there are many similarities across all univariate analyses. Correlation is the

link that ties these analyses together because regression represents the model that acts as an

umbrella to all univariate analyses. That is, all analyses are correlational, although some designs

may not be.
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Table 1

Heuristic Data

GROUP PTEST SEX IQ OVAIQ

1 18 1 93 1

1 84 2 88 1

2 64 1 85 1

2 81 2 95 1

1 98 1 93 1

1 55 2 95 1

2 49 1 85 1

2 14 2 87 1

1 99 1 130 2
1 84 2 117 2

2 47 1 118 2

2 99 2 106 2

1 83 1 118 2
1 81 2 112 2

2 74 1 103 2

2 99 2 104 2

Table 2

T-test SPSS Printout

Variable N Mean SD SE of Mean

GROUP 1
GROUP 2

8

8

75.2500
65.8750

26.768
28.847

9.464
10.199

Mean Difference = 9.3750

Levene's Test for Equality of Variances: F= .132 P= .722

t-test for Equality of Means

Variances t-value df 2-Tail Sig SE of Diff 95% CI for Diff

Equal
Unequal

.67

.67
14

13.92
.511
.511

13.913
13.913
Table 3

(-20.466, 39.216)
(-20.482, 39.232)
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Table 3

Multiple Regression SPSS Printout

Variable Mean Std Dev

PTEST 70.563 27.315
GROUP 1.500 .516

N= 16

Correlation
Ptest Group

PTEST 1.000 -.177
GROUP -.177 1.000

Multiple R .17723
R Square .03141 R Square Change .03141
Adjusted R Square -.03777 F Change .45403
Standard Error 27.82647 Signif F Change .5114

Analysis of Variance

Source DF Sum of Squares Mean Square
Regression 1 351.56250 351.56250
Residual 14 10840.37500 774.31250

F = .45403 Signif F = .5114

Variable B SE B 95% CI B Beta

GROUP -9.375000 13.913236 -39.215922 20.465922 -.177235
(Constant) 84.625000 21.998757 37.442360 131.807640

is
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Table 4

One-Way ANOVA SPSS Printout

Analysis of Variance

Source D.F.
Sum of
Squares

Mean F F

Squares Ratio Prob.

Between Groups
Within Groups
Total

1

14
15

351.5625
10840.3750
11191.9375

351.5625
774.3125

.4540 .5114

Group N Mean
Standard

Deviation
Standard
Error 95% CI

Grp 1 8 75.2500 26.7675 9.4637 52.8718 TO 97.6282
Grp 2 8 65.8750 28.8466 10.1988 41.7587 TO 89.9913

Total 16 70.5625 27.3154 6.8288 56.0072 TO 85.1178

Table 5

Two-Way ANOVA SPSS Printout

Source of Variation SS DF MS F Sig of F
Main Effects
Sex 264.06 1 264.06 .30 .591

Group 351.56 1 351.56 .41 .536
(combined) 615.63 2 307.81 .35 .708

2-Way Interactions
Sex By Group 175.56 1 175.56 .20 .661

Model 791.19 3 263.73 .30 .822
Residual 10400.8 12 866.729

Total 11191.94 15 746.13
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Table 6

Planned Comparison SPSS Printout

Variable Mean Std Dev Variance
PTEST 70.563 27.315 746.129
Al .000 1.033 1.067
B1 .000 1.033 1.067
AIB1 .000 1.033 1.067

Correlation

PTEST Al B1 AlB1

PTEST 1.000 -.177 .154 .125

Variable(s) Entered on Step Number
3.. AIB1

Multiple R .26588
R Square .07069
Adjusted R Square -.16163
Standard Error 29.44026

Analysis of Variance

DF Sum of Squares Mean Square
Regression 3 791.18750 263.72917
Residual 12 10400.75000 866.72917

F = .30428 Signif F = .8218

Variable B SE B Beta T Sig T

Al -4.687500 7.360066 -.177235 -.637 .5362
B1 4.062500 7.360066 .153603 .552 .5911
AlB1 3.312500 7.360066 .125246 .450 .6607
(Constant) 70.56250 7.360066 9.587 .0000

20
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Appendix A

SPSS Program to Illustrate Regression as a GLM

title `690p.sps'.
set blanks=-9999 undefined warn.
data list

file = 'a:690p.dat' fixed records =l table
/1 group 1 ptest 3-4 sex 6 iQ 8 -10 OVAIQ 12.

missing values group ptest sex iq ovaiq (-9999).
list variables=alUcases=500/format=numbered.
execute.
subtitle 't-test subsumes regression'.
t-test groups=group(1,2)/variables=ptest.
execute.
regression variables=ptest group

/descriptives=mean stddev corr /statistics=all /
dependent=ptest /enter group.

execute.
subtitle 'oneway anova subsumes regression'.
oneway ptest by group (1,2)
/statistics=descriptives.

execute.
subtitle ' two-way anova as a special case of regression'.
anova
ptest By sex(1 2) group(1 2).

execute.
subtitle '5 planned comparison subsumes regression'.
compute A1=-1.
compute B1=-1.
if (group eq 2)A1=1.
if (sex eq 2)B1=1.
compute AlB1= Al * Bl.
regression variables=ptest Al B1 A1Bl/descriptives=a11/
criteria=pin(.95)pout(.999)tolerance(.00001)/
dependent=ptest/enter Al/enter B1 /enter Al Bl.

execute.
subtitle 'y prime can be computed by anova or reg'.
compute yhat = (-.177 * group) + (.153*sex).
compute e= ptest-yhat.
print formats yhat e (F8.5).
list variables = yhat e/ cases=500.

? 1
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