
DOCUMENT RESUME

ED 406 211 SE 059 943

AUTHOR Madison, Sandra; Gifford, James
TITLE Parameter Passing: The Conceptions Novices

Construct.
PUB DATE Mar 97
NOTE 30p.; Paper presented at the Annual Meeting of the

American Educational Research Association (Chicago,
IL, March 24-28, 1997).

PUB TYPE Reports Research/Technical (143)
Speeches /Conference Papers (150)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS *Computer Science; *Constructivism (Learning); Higher

Education; *Misconceptions

ABSTRACT
This study explores the parameter-related

misconceptions of two college students enrolled in a Pascal
programming course. Findings indicate that both students appeared to
conceive a direct procedure-to-procedure linkage, with the connection
being made by identically named formal parameters. Both students were
able, by making seemingly innocuous adjustments to formal parameter,
lists, to construct correctly functioning modular programs. They were
also able to correctly answer parameter-related questions as long as
the questions did not provoke a conflict with their fundamental
misconceptions of the parameter process. As a result, the
misconceptions were hidden from the instructor and perhaps from the
students themselves. The results are discussed within a
constructivist framework and implications for instruction are
suggested. Contains 22 references. (Author/JRH)

Reproductions supplied 'by EDRS are the best that can be made
from the original document.

*****************************-A-***

Parameter Passing

The Conceptions Novices Construct

Sandra Madison, University of Wisconsin-Stevens Point

James Gifford, University of Wisconsin-Stevens Point

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL

HAS BEE ,G'.ANTEI BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement
DUCATIONAL RESOURCES INFORMATION

CENTER (ERIC)
This document has been reproduced as

ived from the person or organization
originating it.

1:1 Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

Paper presented at the Annual Meeting of the American Educational Research Association
Chicago, Illinois

March 1997

2 BEF COPY AMIABLE

Parameter Passing

Parameter Passing

The Conceptions Novices Construct

Sandra Madison, University of Wisconsin-Stevens Point
James Gifford, University of Wisconsin-Stevens Point

Abstract

This study explored the parameter-related misconceptions of two college students
enrolled in a Pascal programming course. Both students appeared to conceive a
direct procedure-to-procedure linkage, with the connection being made by
identically named formal parameters. Both students were able, by making
apparently innocuous adjustments to formal parameter lists, to construct correctly
functioning modular programs. They were also able to correctly answer
parameter-related questions as long as the questions did not provoke a conflict
with their fundamental misconception of the parameter process. As a result, the
misconceptions were hidden from the instructor and perhaps from the students
themselves. The paper discusses the results within the constructivist framework
and suggests implications for instruction.

Background

Student interest in the computing sciences and information systems, after reaching a peak

in the early 1980s, has declined dramatically. When coupled with increased industry demand for

computing professionals and higher than average salaries, the decline is especially troublesome.

The literature repeatedly confirms that many students find college-level computer

programming courses demanding, that they are often unsuccessful, and that attrition rates are

high. Various authors offer reasons why students find programming courses difficult. Hence, it

is not surprising that research reports of studies attempting to identify factors of computer

programming success appear frequently. Although some studies have found positive correlations

with computer programming ability, such studies generally are not very helpful to programming

teachers. While background factors may assist advisors counseling students regarding the

selection of programming classes, teachers cannot alter their students' age, gender, verbal ability,

Parameter Passing

high school rank, or other background data. Programming instructors need research that informs

the instructional and curricular decisions over which they have control. As Spohrer and Soloway

(1986) suggested, "The more we know about what students know, the better we can teach them"

(p. 624).

Understanding the programming language constructs is a crucial link in the cognitive chain

of learning to program (Linn, 1985; Putnam, Sleeman, Baxter, & Kuspa, 1986). Thus, it is not

surprising that researchers have investigated various language constructs, attempting to describe

expert and novice conceptions of those constructs (Du Boulay, 1986; Kurland, Pea, Clement, &

Mawby, 1986; Samurcay, 1985; Sleeman, Putnam, Baxter, & Kuspa, 1988). What is surprising

is the virtual absence of attention to the construct of parameter (or argument) passing, the

mechanism by which data are shared among the various program modules in a complex program

(Fleury, 1991; Madison, 1995). The topic is pivotal since it is precisely the feature that gives

modern programming languages their power (McIntyre, 1991). Pedagogical understanding of

the topic is made even more important by the fact that many instructors and students attest to the

fact that parameter passing is the most challenging concept covered in the introductory

programming course (Cigas, 1995; Madison, 1995).

Purpose

This study was part of a larger study with the general purpose of describing novice

programmers' understanding of the construct of simple parameter passing and the ultimate goal

of improving the way in which the parameter concept is taught. The current study specifically

addressed the following question: What misconceptions do novices possess regarding the

concept of Pascal parameters? It provides part of the answer by pursuing an in-depth analysis of

two students' naive conceptions.

3

4

Parameter Passing

Theoretical Perspective

The study assumes a constructivist perspective. It presumes that people construct knowledge

through a "process of building intellectual structures that change and interact and combine"

(Papert, 1988, p. 3) rather than being empty vessels to whom knowledge can be transmitted.

Specifically, the theoretical framework for this study builds on the Linn and Songer (1991)

model for conceptual change that was originally posed for students learning science. The three

stages of the model include action knowledge, intuitive conceptions, and scientific principles.

Action knowledge is the understanding learners bring to a learning situation, understanding that

is based on personal experience. Intuitive conceptions are the conjectures learners make to

explain events they observe as they attempt to make sense of the world they perceive. Intuitive

conceptions, since they solely derived from unexamined experience are often incorrect, and

might well be called "misconceptions." During the last stage of the model, learners acquire

scientific principles, organizing their intuitive conceptions into principles consistent with those

held by experts. Characteristic of the intuitive conception stage of the model, researchers

studying novice programmers have found that, rather than resulting from slips in mechanics of

program construction, most faulty answers arise from systematic application of knowledge the

student already has. The answers make sense when interpreted in terms of the student's current

understanding (Pea, Soloway, & Spohrer, 1987). Viewed in terms of the Linn and Songer model

for conceptual change within a constructivist framework, teachers should not be surprised that

students construct their own meanings and that they frequently harbor misconceptions in spite of

instruction to the contrary.

4 5

Parameter Passing

Method

The current study was a theory-driven study drawing upon several methodologies

traditionally employed in qualitative educational research. Consonant with recent research in

education, this study focused on "detailed analyses of individual subjects rather than on

aggregate behavior" (Eylon & Linn, 1988, p. 285). Data sources included observation of the

classroom instruction, semi-structured interviews, protocol analysis, and document examination.

This paper focuses on two of the students (with self-selected pseudonyms Jason and Steve) who

participated in a larger exploratory study of novices learning the Pascal parameter process.The

bulk of the data for the larger study was collected from interviews with students enrolled in one

section of the introductory programming course at a regional midwestern university during a fall

semester.

Technical note: The study included no tasks that involved nested procedures, nested

procedure calls, or structured parameters. The interview tasks included no loops, selections or

other program constructs that could be construed as confounding the data. Moreover, the scope

rules were further simplified because the instructor availed himself of Turbo Pascal's facility to

make the main module variables local rather than global.

Subjects

After a priori exclusion of students who had been previously exposed to the Pascal

parameter process, participants were selected for the full study based on their score on the last six

subtests of the Inventory of Piaget's Developmental Tasks (IPDT) (Furth, 1970). The IPDT has

been shown to be a valid (by comparing scores on the written group test with scores obtained

from classic Piaget interviews) and reliable (using the test-retest and split-half measures)

indicator of the Piagetian view of cognitive development (Milakofsky & Patterson, 1979;

Parameter Passing

Cafolla, 1987-88). For purposes of this study, 24 was a perfect score, presumably suggesting a

formal thinker.

In the several years preceding this study, more than 300 programming students at the

university in question had completed the IPDT. Theory and classroom experience had already

provided persuasive evidence that students with low scores struggle to acquire the same

understandings of the abstract programming concepts that seem to come almost naturally for

some students with high scores. Thus, it was reasonable to assume that students from the two

groups might have differing conceptions of the parameter construct. While there did appear to be

a relationship between IPDT scores and problem-solving styles, there seemed to be no indication

that students with either a high or low IPDT score would be more prone to develop fundamental

misconceptions. Jason's score of 22 was one of the highest; Steve's score of 17 one of the

lowest. Steve had had some prior Pascal experience; Jason had not.

Results and Discussion

Jason and Steve both exhibited problem-solving behaviors that could be attributed to a

fundamental misconception of the parameter process. Errors they made supported an

interpretation suggesting a systematic application of a parameter process that involved a direct

procedure-to-procedure communication link, with the connection being made through identical

formal parameter names. Consistent with the literature on misconceptions, some oral and written

responses that initially appeared capricious--and even bizarre--proved to be logical and

appropriate choices when interpreted in terms of the learners' hypothesized misconceptions.

Importantly, both students were able--despite their fundamental misconceptions--to repeat the

textbook's and instructor's language, to correctly answer test questions, and to construct modular

programs that produced the correct answer by making seemingly innocuous adjustments to

6

7

Parameter Passing

parameter lists. Thus, the students' lack of understanding was concealed from the instructor and

possibly from the students themselves.

Jason
In contrast to many novice programmers who experience difficulty with parameters,

Jason had no difficulty with his value-variable parameter choices. He consistently chose

correctly. However, the reason he gave--that variable parameters can be sent to other

procedures--suggests that he did not make his choices for the right reason. As the following

protocol suggests, he knew when variable parameters were needed; he just did not know where

they went.

During a hand-construction task (see Appendix A for the task and Appendix B for Jason's

completed program) in which the parameter name choice was constrained, Jason failed to choose

appropriate parameter names. Jason approached the task by briefly examining the main module;

then turned to the first procedure on the page. In his hand-written construction (which follows)

PROCEDURE CalculateVolume (Len : Real;
Wid : Real;
Dep : Real;

VAR Volume: Real);

of the procedure heading line for CalculateVolume, Jason correctly named Len, Wid, and Dep

"because of their use in the assignment statement Volume := Len * Wid * Dep;". He made

them value parameters because, in his words, "they are only going to be used in this procedure."

Volume he made a variable parameter, citing as his reason, "it has to be sent, available for the

DisplayOutput procedure to use." Those familiar with Pascal will recognize that the code above

would not compile. In all likelihood, Jason would have written a procedure call to match his

7

Parameter Passing

procedure had that been an option. Next, Jason worked on Display Output, the second procedure

on the page. He constructed the following procedure heading line:

PROCEDURE Display Output (Volume : Real) ; , giving the procedure a value

parameter because "it didn't need to be sent anywhere." However, he named the parameter

Volume rather than Answer, the only identifier used in the procedure's only executable statement

WriteLn ('The volume of the solid is ', Answer:8:2); because

it has to come from the above procedure [CalculateVolume]. Volume was used as
a variable parameter up there [Volume in CalculateVolume], so it has to be sent
down to this procedure DisplayOutput.

One interpretation of Jason's observations is that he imagined a direct variable-to-value

parameter connection between the two procedures, a connection that was established with

identical parameter names.

Last, Jason examined the Getlnput procedure, the third procedure on the page. The main

module procedure calls--that were provided--and Jason's procedure heading line follow.

Getlnput (Depth);
Getlnput (Width);
Getlnput (Length);

PROCEDURE Getlnput (VAR Len :Real;
VAR Wid : Real;
VAR Dep : Real;)

He incorrectly gave the procedure three formal parameters--Len, Wid, and Dep--which he

correctly identified as variable parameters "so they can be sent to the procedure to perform the

calculation," the CalculateVolume procedure. A general question about the appearance of the

Getlnput parameter list did not provoke further attention to the number of parameters in the list.

One interpretation of Jason's formal parameter name choices in the Getlnput and

DisplayOutput procedures suggests that he was not sensitive to the fact that the scope (the parts

8

9

Parameter Passing

of the program that may use a particular identifier) of a parameter name is limited to the

procedure in which the formal declaration appears. It also suggests that he may not have realized

the formal parameter list provides the declarations for the variables used in the statements of the

procedure. Jason used identical actual and formal parameter names (meaning that every

parameter name matched a main module variable name, effectively making the main module

variable names global) in every task that allowed him to do so. Moreover, he commented that he

always used the same names. Doing so may have camouflaged the fact that Jason did not

understand the scope of the identifiers. If there were no other evidence, this would be a

reasonable and sufficient explanation for Jason's choices.

Conversely, Jason may have understood the scope rules. If he understood the scope rules

but did harbor the hypothesized misconception regarding the direct procedure-to-procedure,

name-connected link, his conception of the parameter process would have clashed with his

knowledge of the scope rules if the various procedures used different formal parameter names

to refer to the same memory location. His consistent use of identical variable and parameter

names throughout a program may have allowed him to reconcile his naive parameter conception

with the scope rules. Moreover, the tactic would have allowed him to construct programs that

compile, execute, and produce the correct answer.

Interpreted from the perspective of Jason's hypothesized name-controlled, direct-

connection link, his parameter choices were appropriate and his reasoning cogent and coherent.

CalculateVolume provided a Volume to DisplayOutput; thus DisplayOutput needed a Volume to

receive it. CalculateVolume needed Len, Wid, and Dep; thus Getlnput needed to supply them. It

is noteworthy that Jason examined the procedures in the order of their physical appearance on the

Parameter Passing

page, rather than the logical order of their execution. Apparently that order determined the name

choices.

Consonant with the hypothesized misconception, Jason appeared to have expunged the

role of the actual parameter list from the parameter process. He expressed confusion about the

parameter that "had to be called at the end in the main program," adding:

It's not so bad knowing the stuff that has to go to other procedures. I get mixed
up on the actual parameters, which ones you have to call on at the end when you
call it up, and I can't remember.

When asked what is provided in the actual parameter list, Jason replied, "That's what I'm not

sure about. I really don't know that." Responding to a question about variable parameters, Jason

said, "Those parameters are able to be passed on to other procedures. They can be moved to

other procedures." The words Jason chose to describe his conception echoed his problem-

solving behavior.

A second task (For the task, see Appendix C) added further evidence. After looking

briefly at the program in the code tracing exercise, Jason summarized his intended approach:

First I'm going to see what the procedure does. Now I'm looking at the main line.
Both A and B are going to be stored as N, which is 3, so WriteLn (N) is going to be
equal to 4. A and B are both going to be equal because they're both stored as the
same value, which is given right here as 3 in the main line. The procedure adds 1 to
N, which is 3.

Jason recognized that the changes to the variable parameters in the procedure Increment would

be reflected in the calling module, the main module. A diagram he drew, illustrates that he knew

there was some connection between the formal variable parameters A and B and the "global

variable N."

10 11

Parameter Passing

A
4, 4,
N N

=4

The "global" variable N provided the value 3 for A and B. After the procedure added 1 to both,

A and B replaced N. Jason was able to reconcile the different names--N versus A and B --

because the main module only had one variable; it was the only choice. Jason continued,

offering that a change to A or B changed N because A and B were variable parameters. Asked if

he had any mental image of how that happened, Jason replied, "I don't know if I have an image.

If I see a VAR, then I know it can be sent to other procedures." Referring to the diagram, Jason

continued, "Basically I see these two numbers; N and N are in this order. That means A and B will

be stored in that order. I just see two little arrows that go right there." To the question: "If they

were value parameters, what would happen to changes made to A and B; that is, if the VAR were

not there, what would N be?" Jason replied, "It would still be 4, I think. The VAR really doesn't . .

. I don't think you need it in this procedure." Asked again: "If this were a value parameter, if A and

B were value parameters, what would N be when this WriteLn (N) is executed?" Jason again

answered, " It would still be 4." The question: "If it would still be 4, how do value and VAR

parameters differ?" evoked the following response:

If you have more than one procedure, say three, four procedures . . . if A and B
would have to be sent from this procedure to a different procedure, then you need
VAR, but this program is not big enough to need a VAR.

Jason's response was congruous with his other statements. Interpreted from the hypothesized

name-controlled, direct procedure-to-procedure link, the parameters in the first procedure to be

executed (the Increment parameters A and B) obtained their values from the "global" main module

Parameter Passing

variable N. As the program had no other procedures to which the value needed to be sent, variable

parameters were unnecessary.

Jason repeated the words of the text and lecture, he wrote correctly-functioning modular

programs as long as he could choose matching parameter names, and he correctly answered

multiple choice test questions related to the number of parameters in corresponding actual and

formal parameter lists and other facts. As long as the task did not conflict with his

misconception, he succeeded. One might hypothesize that when Jason's conception of the

parameter process clashed with rules he had memorized but whose purpose he did not

understand, his naive conception prevailed.

Steve

Steve could fluently recite the rules for value and variable parameter actions; he several times

repeated that value parameters only send information to the procedure while variable parameters

can also send it back to the main module. Steve, however, acknowledged that he sometimes used

variable parameters "just to be on the safe side," implying that he was not always certain when

value and variable parameters were appropriate. Mentioning several times that it was important

to do so, Steve selected different actual and formal parameter names as he completed the

interview tasks. In contrast, the original programs he wrote for the class used identical actual and

formal parameter names throughout.

Just as the hand construction task in which the parameter names were constrained (See

Appendix A) revealed Jason's misconception, so did it Steve's. Steve first attempted to

construct the formal parameter list for Getlnput. He mused, "I'm pondering whether these are

local variables. I just don't understand. I'm confused by the three separate calls of the same

procedure." He recognized that the input procedure needed a variable parameter "because it has

12

13

Parameter Passing

to send it tO Calculate Volume (Length, Width, Depth, Volume) . There's one thing, I know,"

he continued, "I know it reads them in the same order as they're entered in here because it needs to

go to Calculate Volume." Steve's reference to the appearance of the two procedures' parameter lists

(that the parameters needed to be in the same order) offered a clue that he imagined a direct

procedure-to-procedure link.

As the Get Input procedure seemed to be confusing Steve, the interviewer suggested

looking at the other procedures first. Doing so may have been a mistake. Because Steve was

examining the procedures in the logical order of execution, the outcome of his efforts on the task

may have been different had he continued with that approach.

Steve turned to the parameter list of CalculateVolume, the first procedure listed on the

page. The procedure heading line (which follows)

PROCEDURE CalculateVolume (Numl : Real;
Num2 : Real;
Num3 : Real;

VAR Num4 : Real) ;

he constructed contained the correct number of formal parameters, and the value and variable

choices were correct. However, Steve selected the parameter names Numl, Num2, Num3, and

Num4, none of which matched the names used in the procedure's only executable statement:

Volume := Len * Wid * Dep

Steve offered that he had not chosen the names for any particular reason, that "the actual

parameter list just needs something to match up with." Num4, he offered, needed to be a

variable parameter because "it has to get passed between procedures to DisplayOutput after it's

calculated." His phrase "passed between procedures" again suggested the direct link.

Steve next constructed the DisplayOutput parameter list (which follows).

13

Parameter Passing

PROCEDURE DisplayOutput(Answer: Real)

He correctly named the single value parameter Answer "because the WriteLn calls it up as

Answer." However, he also changed the Num4 parameter in the Calculate Volume procedure to

Answer "because Volume is associated with Answer, but you cannot have the same name in the

main line and in the procedure." The revised procedure heading line follows.

PROCEDURE CalculateVolume Numl : Real;
Num2 : Real;
Num3 : Real;

VAR Answer: Real);

Steve allowed that the program would compile if the actual and formal parameter names were the

same, but said it would confuse the reader of the program.

As Steve had correctly chosen the identifier Answer because of its use in the

DisplayOutput procedure's WriteLn, he apparently knew that variable names must be consistent

within a procedure. However, the instructor had strongly stressed the importance of using

different names for the actual and formal parameters, an admonition that apparently impressed

Steve powerfully. As written, the CalculateVolume procedure demanded that the formal

parameter be named Volume, a requirement that conflicted with the instructor's counsel

regarding parameter names. One could conjecture that when Steve encountered a conflict

between the instructor's caution and the consistency requirement for variable names within a

procedure, the admonition prevailed. However, other than possibly focusing Steve's attention on

choosing formal parameter names that differ from the actual parameter names, and away from

the need for consistency within the procedure, the explanation does not account for his choices of

Numl, Num2, and Num3 in the CalculateVolume procedure. Alternatively, it may be that the

added level of abstraction imposed by the requirement of different actual and formal parameter

names hampered Steve's construction efforts. As his correctly done classwork had used identical

14

15

Parameter Passing

names throughout, the interpretation seems plausible. The combination of evidence, however,

will suggest a more cogent interpretation for Steve's construction.

The other procedure heading lines completed, Steve returned to Getlnput. He once more

alleged that the parameters needed to be VARs because "they have to go to other procedures."

After an extended pause, Steve said:

I don't know why it wouldn't work the same. If it were just regular, as if they were
all in one line [In contrast to the input procedure in this program that was called
several times, most input procedures Steve had seen obtained all the necessary input
for the program during a single call.] But it's a new call each time. This is basically
a part that I am having trouble dealing with.

It appears that Steve began by imagining a correctly constructed Getlnput parameter list (which

follows).

PROCEDURE Getlnput (VAR Dimension: Real);

He admitted that this portion of the task was "kind of confusing," and correctly speculated that

when the procedure Getlnput (Depth) is called, it will "go through and run the procedure and

associate Dimension with Depth. Then he questioned:

But then when you call Getlnput (Width), is it going to know to run the procedure
and instead of putting it in Depth again, will it put it in the next one?

Steve had earlier commented about not understanding how the procedure header and the

procedure call should be written and not understanding the process on the "syntactical level."

His statements could mean that he did not understand the connection between an actual

parameter and a formal variable parameter. He knew that a variable parameter changes a value,

but it may be that he was unsure where the change happened. For example, Steve had earlier

said: "A value parameter passes only from the main line to the procedure, and a variable

parameter can be passed between procedures and back and forth between the main line and

Parameter Passing

procedures." Speaking of changes to variable parameters he had also offered, "Then it's changed

completely. If you pass a variable from a procedure to another procedure and that procedure

changes it, then that is the value that's stored in memory." His statements echoed those reported

by Fleury (1991).

Steve constructed the GetInput to match what he was more accustomed to seeing--one call

to a procedure that secured all the inputs the program needed--naming the variable parameters

Numl, Num2, and Num3. The provided procedure calls and the GetInput procedure heading line

that Steve constructed to match the calls follow.

GetInput (Depth);
GetInput (Width);
GetInput (Length);

PROCEDURE GetInput (VAR Numl: Real;
VAR Num2: Real;
VAR Num3: Real;)

As Steve constructed numerous correctly-functioning procedures over the course of the

semester, one must assume he knew that the number of actual and formal parameters must match.

However, the conflict provoked by the seemingly novel input procedure caused Steve to abandon or

distort the procedure-line construction rules--rules whose purpose he perhaps did not understand--to

allow him to build a procedure heading line consistent with his understanding.

Next, recognizing that the Getlnput procedure needed a declaration to match the

ReadLn (Dimension) statement, Steve added Dimension as a local variable. Referring to the

GetInput procedure, he claimed, "That's the only one that is going to use the Dimension in that

form because it's not used anywhere throughout, so it's not going to be put in the VAR parameter.

It's a local variable." It appears Steve was imagining a direct procedure-to-procedure connection

between the parameters, a connection that was established through identical parameter names. As

16

17

Parameter Passing

no other procedure had a parameter named Dimension, Get Input did not need one, either. (See

Appendix D for Steve's completed program.)

Steve next completed a modularization task, converting a simple one module program into

one composed of several cohesive procedures. (See Appendix E.) Although Steve's modularized

version of the program consistently used different actual and formal parameter names, the formal

parameter names were identical in all procedures, just as they were (inappropriately) in the

preceding task. If Steve's hypothesized intuitive conception of variable parameters is accurate, then

he found a way to reconcile his conception (that information is conveyed between procedures via a

procedure-to-procedure connection established by identical formal parameter names) with the

instructor's requirement that actual and formal parameter names differ.

At the conclusion of his interview, Steve once more explained the difference between value

and variable parameters, saying, "A value parameter is passed only from the main line to the

procedure and not back. Variable parameters pass back and forth between procedures and the

main line, depending on how many procedures and whatnot. If it's a variable parameter, it can

send it somewhere else." The phrases "depending on how many procedures and whatnot" and

"send it somewhere else" were consistent with the hypothesized procedure-to-procedure linkage.

Many of Steve's problem-solving decisions and behaviors approximated Jason's. As Steve

constructed numerous correctly functioning procedures over the course of the semester, he

presumably knew the parameter rules. However, when his choices were constrained, he--like

Jason - -did not consistently choose names compatible with the procedure statements or construct

formal parameter lists with the correct number of parameters. He chose instead formal parameter

names that were identical in all procedures that referred to the same data element. Speaking of

changes to variable parameters, Steve said: "If you pass a variable from a procedure to another

17

18

Parameter Passing

procedure and that procedure changes it, then that is the value that's stored in memory" and

"Once it's stored in the computer memory, it can be used throughout." It seemed that Steve was

imagining that changing a VARed parameter made it global (known "throughout"), an accurate

depiction if all procedures employ identical formal parameter names when referring to the same

memory location--as Steve's programs did.

Implications

Steve and Jason exhibited problem-solving behaviors and verbalizations that could be

attributed to a fundamental misconception of the parameter process. Each made errors that could

be interpreted as systematic applications of a parameter process that involved a direct procedure-

to-procedure communication. This finding has several important implications.

First, Jason was a formal thinker and consistently exhibited problem-solving behaviors

that would be described as analytic (scrutinized the abstract analysis tasks without imbedding the

code in a familiar context, did not need to stay in close contact with the details of a problem

situation, discerned the general purpose of a program before examining the details, attended to

the logical representation of programs, showed little evidence of relying on trial-and-error as a

problem-solving approach, and alluded to control when describing human-machine interactions.).

As demonstrated by his score on the IPDT, Steve was a concrete thinker. Moreover, he

consistently employed a problem-solving style that appeared to be concrete (placed the abstract

analysis tasks in context before analyzing them, attempted to remain in contact with a problem's

details, often examined the details of a problem at length before discovering its purpose,

occasionally seemed bound by a program's physical representation, regularly employed trial-and-

error as problem-solving approach, and described interactions with the computer as a

partnership). Thus it is not possible to conclude, as might have been expected, that concrete,

18

Parameter Passing

contextual thinkers are more prone to misconception than formal, analytical thinkers. Tobias

(1990) advised against assuming "too narrow a vision of what kinds of attributes, behaviors, and

lifestyles the 'true' scientist displays" (p. 14). The evidence from this study suggests that her

counsel applies to assumptions about novice programmers as well.

Jason's and Steve's choices made sense when interpreted in terms of the hypothesized

misconception. Thus, the finding suggests that programming teachers refrain from interpreting

program errors as simply carelessness or lack of attention or lack of concern on the student's

part.

It is also important to note that, during the interviews, both participants verbalized their

inability to understand. Although the words varied, the common message was, "I do not

understand." This fact suggests that students can provide helpful information about their

understandings and misunderstandings if they are provided an opportunity. In recent years,

student journals and other classroom assessment techniques have gained great popularity;

incorporating their use in an introductory programming class could provide novices with the

opportunity to say, "I do not understand."

Teachers might also be alerted to student difficulties by using a face-to-face grading

scheme (Cooper, 1985). Obviously, an instructor teaching multiple classes of 30 to 35 (or more)

programming students cannot engage in face-to-face grading with every student. However,

journals or other classroom assessment techniques could identify students who would profit most

from the interchange. The practice seems to offer many potential benefits. Students who explain

a program's function, and justify design decisions, could obtain the same benefit that interview

participants did: the opportunity to elaborate their conceptions. Moreover, one could hypothesize

that students would be less inclined to submit a program they did not fully understand if they

'20

Parameter Passing

knew they might be required to explain the program's functioning to their instructor. Finally, the

scheme ensures that students receive immediate feedback on their work.

Both Jason and Steve could write original programs that produced the correct answers by

making apparently innocuous adjustments to parameter names and value-variable choices, thus

allowing them to construct programs that produced the correct results despite fundamental

misunderstandings of the parameter construct. If understanding of the programming language

constructs is a legitimate and important goal of programming instruction, the findings suggest

that instructors of introductory programming courses must structure opportunities whereby

learners construct criteria for programming success that are more comprehensive than merely

"finding the right answer." The instructor who relies heavily on original program construction,

particularly computer-assisted program construction, has no assurance that students understand

the fundamental language constructs.

Future Directions

The study was subject to all the limitations inherent in a qualitative study (Merriam,

1988). Moreover, of the instruments and protocols employed, only the IPDT had undergone the

rigor of validity and reliability testing (Milakofsky & Patterson, 1979). With the exception of the

analysis task described in Appendix C that was excerpted from the Advanced Placement Course

Description (College Board, 1993, p. 41), the tasks utilized in the exploratory study were the

invention of the researcher. They reflect one instructor's view of skills and understandings that

might be important to assess when studying novice Pascal programmers learning the parameter

passing construct.

Owing to the exploratory nature of the study, some tasks may not have probed

participants' understanding as deeply as possible. Given, for example, the unexpected

20 21

Parameter Passing

emergence of the direct procedure-to-procedure link misconceptions, tasks that incorporated only

one procedure likely yielded less information regarding the novices' intuitive conceptions than

would tasks with multiple procedures. Moreover, no tasks included variables superfluous to the

parameter process; the likelihood of correct guessing was thereby increased. Additionally, no

task required the programmer to construct actual parameter lists to match existing formal

parameter lists. Attention to these limitations provides guidance for future researchers.

Educational Significance

An introductory programming course is traditionally taught as a skills development

course. Programmers are, after all, ultimately judged by the skill with which they construct

programs. Accordingly, traditonal instruction has been designed to develop skills, perhaps at the

expense of understanding. The course in which the participants were enrolled was no exception.

The results of this study suggest that educators may wish to rethink the goals, assessment, and

methods of instruction of the parameter topic in an introductory computer programming course.

Doing so may enable some students to construct an understanding that moves beyond the stage

of intuitive conception to the stage of principled understanding of the parameter process.

Parameter Passing

References

Cafolla, R. (1987-1988). Piagetian formal operations and other cognitive correlates of
achievement in computer programming. Journal of Educational Technology Systems, 16,
45-55.

Ciga, J. F. (1995). Proper packaging promotes parameter passign proficiency. ACM SIGPLAN
Notices, 30, (4), 80.

College Board. (1993). Advanced placement course description: Computer science. USA:
College Entrance Examination Board.

Cooper, D. (1985). Teaching introductory programming. New York: Norton.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational
Computing Research, 2, 57-73.

Eylon, B. & Linn, M. (1988). Learning and instruction: An examination of four research
perspectives in science education. Review of Educational Research, 58, 251-301.

Fleury, A. (1991). Parameter passing: The rules the students construct. SIGCSE Bulletin, 23 (1),
283-286.

Furth, H. (1970). An inventory of Piaget's developmental tasks. Center for Research in
Thinking and Language, Department of Psychology, Catholic University: Washington, D. C.

Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1986). A study of the development of
programming ability and thinking skills in high school students. Journal of Educational
Computing Research, 2, 429-458.

Linn, M. C. (1985). The cognitive consequences of programming instruction in classrooms.
Educational Researcher, 14 (5), 14-16, 25-29.

Linn, M. C. & Songer, N. B. (1991). Cognitive and conceptual change during adolescence.
American Journal of Education, 99, 379-417.

Madison, S. K. (1996). A Study of College Students' Construct of Parameter Passing:
Implications for Instruction. ERIC ED 390 378.

McIntyre, P. (1991). Teaching structured programming in the secondary schools. Malabar, FL:
Krieger.

Merriam, S. H. (1988). Case study research in education: A qualitative approach. San
Francisco: Jossey-Bass.

22 23

Parameter Passing

Milakofsky, L. & Patterson, H. 0. (1979). Chemical education and Piaget. Journal of Chemical
Education, 56, 87-90.

Papert, S. (1988). The conservation of Piaget: The computer as grist to the constructivist mill.
In G. Forman & P. Pufall (Eds.), Constructivism in the computer age (pp. 3-13). Hillsdale,
NJ: Lawrence Erlbaum.

Pea, R. D., Soloway, E., & Spohrer, J. C. (1987). The buggy path to the development of
programming expertise. Focus on Learning Problems in Mathematics, 9(1), 5-30.

Putnam, R. T., Sleeman, D., Baxter, J. A., & Kuspa, L. K. (1986). A summary of
misconceptions of high school basic programmers. Journal of Educational Computing
Research, 2, 459-472.

Samurcay, R. (1985). Learning programming: An analysis of looping strategies used by
beginning students. For the Learning of Mathematics, 5, 37-43.

Sleeman, D., Putnam, R. T., Baxter, J., & Kuspa, L. (1988). An introductory Pascal class: A
case study of errors. Journal of Educational Computing Research, 4, 5-23.

Spohrer, J. C. & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms correct?
Communications of the ACM 29, 624-632.

Tobias, S. (1990). They're not dumb. They're different. "A new tier of talent" for science.
Change, 11-29.

This paper is based on portions of Sandra Madison's dissertation, completed at the University of
Wisconsin-Milwaukee under the supervision of Henry S. Kepner, Jr.

23

24

Parameter Passing

Appendix A

Complete the missing procedure heading lines so that this program will compile and do the job
implied by its name. Remember that the formula for calculating the volume of a rectangular
solid is: volume = length x width x depth. As you complete each procedure heading line,
explain as completely as you can why you constructed it as you did.

PROGRAM CalculateVolumeOfARectangularSolid;

PROCEDURE

BEGIN
Volume := Len * Wid * Dep

END;

PROCEDURE

BEGIN
WriteLn ('The volume of the solid is ', Answer : 8 : 2)

END;

PROCEDURE

BEGIN
Write ('Please enter a dimension ==> ');
ReadLn (Dimension)

END;
{main}
VAR
Volume : Real;
Length,
Width,
Depth: Real;

BEGIN
Getlnput (Depth);
Getlnput (Width);
Getlnput (Length);
CalculateVolume (Length, Width, Depth, Volume);
DisplayOutput (Volume)

END.

Parameter Passing

Appendix B
Jason's Hand Construction

Complete the missing procedure heading lines so that this program will compile and do the job
implied by its name. Remember that the formula for calculating the volume of a rectangular
solid is: volume = length x width x depth. As you complete each procedure heading line,
explain as completely as you can why you constructed it as you did.

PROGRAM CalculateVolumeOfARectangularSolid;

PROCEDURE CalculateVolume (Len, Wid, Dep: Real; VAR Volume: Real)

BEGIN
Volume := Len * Wid * Dep

END;

PROCEDURE DisplayOutput (Volume: Real)

BEGIN
WriteLn ('The volume of the solid is ', Answer : 8 : 2)

END;

PROCEDURE Getlnput (Var Dep, Wid, Len : Real)

BEGIN
Write ('Please enter a dimension ==> ');
ReadLn (Dimension)

END;

(main)
VAR
Volume : Real;
Length,
Width,
Depth: Real;

BEGIN
Getlnput (Depth);
Getlnput (Width);
Getlnput (Length);
CalculateVolume (Length, Width, Depth, Volume);
DisplayOutput (Volume)

END.

25 26

Appendix C
Program Analysis Task

PROGRAM ABC;

PROCEDURE Increment (VAR A,
B: Integer);

BEGIN
A := A + 1;
B := B + 1

END;

VAR
N: Integer;

BEGIN
N := 3;
Increment (N, N);
WriteLn (N)

END.

26

27

Parameter Passing

Parameter Passing

Appendix D
Steve's Hand Construction

Complete the missing procedure heading lines so that this program will compile and do the job
implied by its name. Remember that the formula for calculating the volume of a rectangular
solid is: volume = length x width x depth. As you complete each procedure heading line,
explain as completely as you can why you constructed it as you did.

PROGRAM CalculateVolumeOfARectangularSolid;

PROCEDURE CalculateVolume

BEGIN
Volume := Len * Wid * Dep

END;

Numl: Real;
Num2: Real;
Num3: Real;

Var Answer: Real);

PROCEDURE DisplayOutput (Answer: Real);

BEGIN
WriteLn ('The volume of the solid is ', Answer : 8 : 2)

END;

PROCEDURE Getlnput (Var Numl: Real;
Var Num2: Real;
Var Num3: Real);

Var
Dimension: Real;

BEGIN
Write ('Please enter a dimension ==> ');
ReadLn (Dimension)

END;
(main)

VAR
Volume : Real;
Length,
Width,
Depth: Real;

BEGIN
Getlnput (Depth);
Getlnput (Width);
Getlnput (Length);
CalculateVolume (Length, Width, Depth, Volume);
DisplayOutput (Volume)

END.

2728

Parameter Passing

Appendix E
Computer-Assisted Modularization Task

Initial Program

PROGRAM PayrollPreparation;
USES Crt;

CONST
InputPrompt2 = 'Please enter hours worked (1/2 hour increments) ==> '

InputPrompt3 = 'Please enter payrate (2 decimal places) ==> ';

{mainline (boss) variables}
VAR

PayRate,
HoursWorked,
GrossPay : Real;

BEGIN
ClrScr;
Writeln ('This program computes the gross pay for one employee');
Writeln ('Overtime is not taken into consideration');
Writeln;
Write (InputPrompt2);
Readln (HoursWorked);
Write (InputPrompt3);
Readln (PayRate);
GrossPay := HoursWorked * PayRate;
Writeln;
Writeln ('Hours Worked ': 12, 'Rate ':10, 'Gross Pay ':10);

Writeln (HoursWorked:12:2, PayRate:10:2, GrossPay:10:2);
END.

29
28

Parameter Passing

Appendix E continued
Steve's Completed Modularized Program

PROGRAM PayrollPreparation;
USES Crt;

PROCEDURE WelcomeUser;
BEGIN
WriteLn ('This program computes the gross pay for one employee');
WriteLn ('Overtime is not taken into consideration');
WriteLn;

END; {END WELCOMEUSER}

PROCEDURE Getlnput (VAR Hours : Real;
VAR Pay : Real);

BEGIN
Write ('Please enter hours worked in half hour increments: ');

ReadLn (Hours);
Write ('Please enter payrate (out to 2 decimal places): ');

ReadLn (Pay);
END; {END GETINPUT}

PROCEDURE CalculateWage (VAR Hours : Real;
VAR Pay : Real;
VAR Wage : Real);

BEGIN
Wage := Hours * Pay;
WriteLn;

END; {END CALCULATEWAGE}

PROCEDURE Display (VAR Hours : Real;
VAR Pay : Real;
VAR Wage : Real);

BEGIN
WriteLn ('Hours Worked ': 12,'Rate ':10,'GrossPay ':10);
WriteLn (Hours:l2:2, Pay:10:2, Wage:10:2);

END; {ENDDISPLAY}

{mainline (boss) variables}
VAR

PayRate,
HoursWorked,
GrossPay : Real;

BEGIN
ClrScr;
WelcomeUser;
Get Input (HoursWorked, Payrate);
CalculateWage (HoursWorked, Payrate, GrossPay);
Display (HoursWorked, Payrate, GrossPay);

END.

30
29

AREA 1997

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement (OERI)

Educational Resources information Center (ERIC)

REPRODUCTION RELEASE
(Specific Document)

I. DOCUMENT IDENTIFICATION:

IE IC

Title: pctyla f2, Pass/rid e Coffic vas' /Novi c e3 0 K $749' 41 C41

Auth°". Sandk.a. Atachsofri Giffora
Corporate Source: Publication Date:

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents
announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users
in microfiche, reproduced paper copy, and electronic/optical media, and sold through the ERIC Document Reproduction Service
(EDRS) or other ERIC vendors. Credit is given to the source of each document, and, if reproduction release is granted, one of

the following notices is affixed to the document.

If permission is granted to reproduce.the identified document, please CHECK ONE of the following options and sign the release

below.

0 Sample sticker to be affixed to document Sample sticker to be affixed to document 0 El
Check here
Permitting
microfiche
(4"x 6" film),
paper copy.
electronic.
and optical media
reproduction

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

Level 1

"PERMISSION TO REPRODUCE THIS
MATERIAL IN OTHER THAN PAPER

COPY HAS BEEN GRANTED BY

914e
TO THE EDUCATIONAL RESOURCES

INFORMATION CENTER (ERIC)."

Level 2

or here

Permitting
reproduction
in other than
paper copy.

Sign Here, Please
Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but

neither box is checked, documents will be processed at Level 1.

"I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce this document as
indicated above. Reproduction from the ERIC microfiche or electronic/optical media by persons other than ERIC employees and its
system contractors requires permission from the copyright holder. Exception is made for nonprofit reproduction by libraries and other
service agencies to satisfy information needs of educators in response to discrete inquiries."

Signature: Position:

4550ai.at e, f-ofeSS 0Y
Printed Name:

Sot Afoika, e Ai ad)sori
Organization:

(Aviive.-Ks of-W isconsin- Sle-Oe44_,f 1454te
Address:
,D e. oP illati7,, -*,,C6-,..,-/0"-/iii. i
Ce ti.)-- ..s i-e.,i/efr4.5 PIO/ I

ShAl6pis Point , 1.1)-T 5Yea /

Telephone Number:
(7/s) jyy _ 94 /a.

Date: j/,2 V /9 7

OVER

C UA

THE CATHOLIC UNIVERSITY OF AMERICA
Department of Education, O'Boyle Hall

Washington, DC 20064
202 319-5120

February 21, 1997

Dear AERA Presenter,

Congratulations on being a presenter at AERA'. The ERIC Clearinghouse on Assessment and
Evaluation invites you to contribute to the ERIC database by providing us with a printed copy of
your presentation.

Abstracts of papers accepted by ERIC appear in Resources in Education (RIE) and are announced
to over 5,000 organizations. The inclusion of your work makes it readily available to other
researchers, provides a permanent archive, and enhances the quality of ME. Abstracts of your
contribution will be accessible through the printed and electronic versions of ME. The paper will
be available through the microfiche collections that are housed at libraries around the world and
through the ERIC Document Reproduction Service.

We are gathering all the papers from the AERA Conference. We will route your paper to the
appropriate clearinghouse. You will be notified if your paper meets ERIC's criteria for inclusion
in ME: contribution to education, timeliness, relevance, methodology, effectiveness of
presentation, and reproduction quality. You can track our processing of your paper at
http://ericae2.educ.cua.edu.

Please sign the Reproduction Release Form on the back of this letter and include it with two copies
of your paper. The Release Form gives ERIC permission to make and distribute copies of your
paper. It does not preclude you from publishing your work. You can drop off the copies of your
paper and Reproduction Release Form at the ERIC booth (523) or mail to our attention at the
address below. Please feel free to copy the form for future or additional submissions.

Mail to: AERA 1997/ERIC Acquisitions
The Catholic University of America
O'Boyle Hall, Room 210
Washington, DC 20064

This year ERIC/AE is making a Searchable Conference Program available on the AERA web
page (http://aera.net). Check it out!

aw ence M. Rudner, Ph.D.
Director, ERIC/AE

'If you are an AERA chair or discussant, please save this form for future use.

ERIC Clearinghouse on Assessment and Evaluation

