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Abstract

Three purposes drive this paper: 1) to delineate the similarities
that exist between reading and mathematics; 2) to extend the use of
story grammar (Guthrie, 1985) beyond the reading of graphemic text as it
relates to short stories and into the expanses of mathematical story
problems and ideographic script; and 3) to introduce a conceptual model
of single-operand equations that roots itself in the loam of literary
analysis rather than in the sands of the mathematical strands. To
achieve the first purpose, an overview of the similarities between
mathematics and reading is provided that examines the influences of
syntax, semantics, readability, and story grammar on comprehension of
and facility with reading and mathematics. It was found the familiarity
with syntax and semantics facilitates comprehension and problem solving.
Also, instruction in story grammar generally provides positive effects
on the comprehension of stories. Only one study regarding story grammar
and mathematics could be found; its results were inconclusive.

The second and third purposes are severed by providing a
description of Arithmetic Story Grammar, a conception of literary
devises useful in analyzing arithmetic stories, and illustrations of how
it is applied. A taxonomy of mathematical-story genres based upon the
analyses of addition subtraction, multiplication, and division single-
operand stories and equations is presented. To culminate the paper,
implications are investigated and suggestions for further research are

made.
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Most often, mathematics and reading are viewed, more or less, as
independent fields requiring unique skills. Mathematics is frequently
associated with spatial and quantitative abilities while reading is
viewed as one aspect of verbal abilities (Gage and Berliner, 1988;
Harris & Sipay, 1990). Seldom do researchers of mathematics intrude
into the verbal domain of the scribes, and, likewise, those who question
reading tread infrequently upon the ground dominated by the number
masters. Most often researchers align themselves with both only when
boundaries overlap naturally, in fields where words and numbers occur
together, such as in the valleys where story problems thrive. The
implicit pact existing between the two camps of researchers to make but
few incursions into the others' kingdom could be easily understood if,
indeed, mathematics and reading were truly independent of one another.
This, however, is not the case.

Most psychologists support the construct of general intelligence.
If an individual demonstrates a high propensity to accomplish in one
field, there exists the tendency to show similar abilities in other
areas, also. Mathematical and reading abilities are just so related;
both are viewed as aspects of general intelligence, (Gage & Berliner,
1988), and both are associated with symbol systems and syntactic
structures from which meaning must be derived.

The purposes of this paper are to establish similarities between
reading and mathematics; to extend the use of story grammar (Guthrie,

1985) beyond the reading of graphemic text as it relates to short



stories and tall tales and into the expanses of mathematical story
problems and ideographic script; and to introduce a conceptual model of
single-operand equations that roots itself in the loam of literary
analysis rather than in the sands of the mathematical strands. To
achieve these purposes, it is first necessary to provide an overview of
the similarities between mathematics and reading and to review previous
observations regarding fluency and prior knowledge. This will be
followed by a description of Arithmetic Story Grammar. To culminate the
paper, implications will be investigated and suggestions for research
will be made.

AN OVERVIEW OF RELEVANT RESEARCH AND THEORY

To convey meaning, symbols must be read. To impart messages,
symbols must be interpreted. No one questions the necessity of teaching
students to read messages constructed of letters. Such instruction goes
unchallenged, unquestioned; it happens as a matter of course. However,
the proposition that students must be taught to read mathematical
symbols, receives little consideration.

Mathematicians and practitioners pen mathematical symbols to
freeze and convey meaning. However, for the symbols to convey meaning,
a reader must consider and interpret them. In equational form,
arithmetic symbols express stories filled with meaning particular to
circumstance. Research provides much insight into the reading of the
graphemic text of literature but reveals little regarding the

comprehension of the ideographic text of mathematics.



The review of literature that follows investigates research
related to the comprehension of text and attempts to establish a
rationale for teaching students to read mathematics and understand
Arithmetic Story Grammar. Further, through implication, it is hoped
that Arithmetic Story Grammar may be deemed worthy of consideration when
designing curriculum and planning instruction. Arithmetic Story Grammar
offers a new paradigm for interpreting operational equations depicting
mathematical situations. In contrast to the single-premised, action-
based models currently in use, this new paradigm has its basis in four
basic story elements: setting, theme, plot, and resolution (Carpenter &
Moser, 1983; Greer, 1989; Guthrie, 1985; Hinsley, Hayes, & Simon,1977;
Mayer, 1985).

Similarities between Mathematics and Reading
The Act of Reading
Abstract, Meaningful Symbol Systems

Mathematics and reading are both highly associated with abstract
symbol systems that convey meaning (Brodie, 1989; Gallistel & Gillman,
1990; Harris & Sipay, 1990; Hegarty, Carpenter, & Just, 1991; Kane,
1970) . To secure meaning from the symbols, they must first be decoded
and then comprehended (Dee-Lucas & Larkin, 1991; Harris & Sipay, 1990).
Decoding alone, though, provides no understanding of the text. The
decoder must ascribe meaning to the symbols (Dee-Lucas & Larkin, 1991).
Comprehension of the text occurs only when the reader reconciles the

meanings of associated symbols with




the syntactic structures in which they are found. Once this is
accomplished, comprehension of text is achieved (Harris & Sipay, 1990;
Romberg, 1990; Wearne, & Hiebert, 1988).

S . ‘0 Readi ] Mat} .

In both mathematics and reading, the term semantics refers to
meaning. The semantics of symbols and their various combinations in
both mathematics and reading are constructed through individual
reflection on interactions with others and the environment. The greater
the familiarity with the meanings inherent in the symbols encountered,
the greater the comprehension one achieves (Clements & Battista, 1990;
Kamii & Lewis, 1990; Mtetwa & Garafalo, 1989; Mumme & Shepherd, 1990;
Trafton & Bloom, 1990; Vygotsky, 1978). Semantic mastery of both the
symbols and the language they represent is crucial to success in both
mathematics and reading (Brodie, 1989; Gallistel & Gelman, 1990; Kane,
1970; Harris & Sipay, 1990; Hegarty, Carpenter, & Just, 1991).

To develop a high level of semantic understanding in either
mathematics or reading, the student must engage in a variety of
experiential activities (Brady, 1991; Clements & Battista, 1990;
Crosswhite, 1990; Kamii & Lewis, 1990; Romberg, 1990; Wearne & Hiebert,
1988) . Such experiences provide the student with familiar referents,
enabling the bridging of gaps between concrete materials and the
abstractions devised to represent them (Trafton & Zawojewski, 1990).
Individuals that develop concrete, semi-concrete, or semi-abstract

referents through experiences with such materials often outperform those



who have not (DeCorte & Verschaffel, 1987; Pearson & Ferguson, 1989).
Verification of initial understandings occurs through social
interactions (Clark & Stahle, 1991; Lampert, 1988; Research Advisory
Committee, 1988; Vygotsky, 1978; Yackel, Cobb, Wood, & Merkel, 1990).
When semantic structures are in place, children make fewer mistakes and
often invent their own methods for finding solutions (Quintero, 1985;
Trafton and Bloome, 1990).
Fluency and Prior Knowledge

Vocabulary, Syntax., and Conventions

Further, in both mathematics and reading, comprehension is
mediated and facilitated by prior knowledge (DeCorte & Verschaffel,
1987; Engelhardt & Usnick, 1991; Harris & Sipay, 1990; Kintsch & Greeno,
1985; Lave, 1985). If an individual possesses little, imperfect, or no
prior knowledge of a given matter, accurate interpretation of the
symbols and, perhaps, the syntax is doubtful. Imparting such knowledge
is the job of the teacher, but, regarding mathematics, few teachers
possess the requisite skills (Brown, Cooney, & Jones, 1990).

Instruction provided in vocabulary, syntax, and conventions such as
punctuation and directional flow facilitates fluency (Aiken, 1972;
Harris & Sipay, 1990; Nibbelink, 1990; Singer & Donlan, 1980; Stockdale,
1991). A hoped for result in both mathematics and reading is the
attainment of automaticity with the most common symbols and
combinations. Some claim that automaticity with a skill demonstrates

mastery of the underlying concepts. However, others insist that mastery
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is achieved only when it is accompanied by comprehension (Harris &
Sipay, 1990; Usnick, 1991; Wearne & Hieberg, 1988).

When it comes to mathematical word problems, much study has been
done and many factors have been considered. Chief among these are
problem length, readability, key words, clarity of discourse, and
vocabulary. Problem length was found to have no effect on student
success (Paul, Nibbelink, & Hoover, 1986). Further, the formal concept
of readability used to evaluate narrative discourse was shown to be
inapplicable for classifying mathematical text due to the use of
ideographic symbols and specialized terms (Kane, 1970; Paul, Nibbelink,
& Hoover, 1986). Utilizing clearer text and common language does
improve problem-solving by making problems easier for students to
understand and model (Aiken, 1972; Carpenter, 1985; Davis-Dorsey, Ross,
& Morrison, 1991; DeCorte, & Verschaffel, 1987); however, neither factor
is associated with the semantic structure of the problem. The use of
clearer text and common language merely facilitate access to a problem's
structure.

Other research focusing on language has shown that instruction
focusing on vocabulary development also increases problem solving
(Siegel, Borasi, & Smith, 1989). However, keyword strategies, often
taught by teachers and employed by students, are nearly worthless in
helping to find appropriate solutions. Encouragements to use keywords
to solve problems unwarily lead to strategies that focus on surface-

level meanings. As of result of this, deep meanings are ignored
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(Adetula 1989; Stockdale, 1991). However, as reading ability and
comprehension of the text increase, so does an individual's ability to
solve word problems (Moyer, Moyer, Sowder, & Threadgill-Sowder, 1984).
Story Grammar

Theorists of both mathematics and reading envision users of the
two systems developing and using schematic structures. In mathematics,
no term has yet been firmly ascribed to differentiate one type of
structure from another. In reading, however, schematic structure is
known as story grammar, macrostructure, or story schema (Pearson &
Camperell, 1985). Story grammar may also refer to the set of rules used
to describe a story's structure or schema (Guthrie, 1985). The terms
story grammar and story schema apply to most short stories equally well.
Most short stories, fables, and tall tales possess the four basic
elements of story grammar: 1) setting; 2) plot; 3} theme; and 4)
resolution. The setting consists of several subunits, e.g., characters,
location, and time. The sequence of actions associated with the main
characters depicted within the story comprise the plot, whereas the
theme entails the unifying idea or archetypical experience expressed
within the literary work. The resolution embodies the result of the
actions taken within the story that resolve the conflict implied by the
theme. These four elements follow a fairly standard set of recursive
rules that, when understood, facilitate increased comprehension

{(Guthrie, 1985; Pearson & Camperell, 1985; Singer, 1985; Singer &

Donlan, 1985).



An understanding of story grammar or schemata develops through
repeated exposure to a particular genre. The typical structure of a
genre is learned and related to the individual's life experiences, thus
facilitating comprehension. This familiarity provides a mental
framework from which to hang salient portions of the text. From the
textual, schematic, and personal information deemed to be relevant,
meaning is construed and acted upon (van Dijk & Kintsch, 1985). In
reading, the story schema enables the reader to anticipate action and
make sense of the plot (Harris & Sipay, 1990).

By age six, most children begin to internalize story grammar and
.use this knowledge to comprehend the major elements of the story. As
children grow older, their knowledge of story grammar becomes more
acute, fostering expectations that are more differentiated and precise
(Guthrie, 1985). The further removed the schema of a story stands from
standard story grammar, though, the less the reader tends to remember.
The more obtuse the theme becomes, the fewer the details the reader
recalls; the same holds true for other story grammar elements, as well
(Pearson & Camperell, 1985).

Providing students with direct instruction regarding the elements
of story grammar has proven beneficial. Gordon (1980) found that fifth-
graders could be taught to assess basal stories using a simplified story
schema and that the skill was transferable to previously unread stories.
Students who received instruction recalled significantly more details

than students in a control group who received no instruction. This held

13



especially true regarding certain categories of high-level information.
Singer and Donlan (1982, 1985), through direct instruction, taught
_students to use a problem-specific schema and ask self-generated, story-
specific questions that improved their comprehension of the compelling
meanings within a given story.

More recently, Rekrut (1992) found that the interaction of
requiring fifteen-year-old students to tutor twelve-year-old students in
the elements of story structure, after they themselves had received
instruction, fostered greater comprehension and learning for the tutors.
Here, however, neither of the main effects provided for significant
differences. Yet, Leaman (1993) found that providing direct instruction
in the elements of story grammar to the learning disabled facilitated
greater success in both comprehending and generating stories.
Additionally, Davis (1994) provided instruction to third and fifth-grade
students in story grammar during a prereading mapping of a story and
followed this with a challenge to find the accuracy of their
predictions. Davis found that this resulted in a 14 percent positive
difference for third-graders over students having received a directed
reading activity treatment. The results revealed no differences for the
fifth-grade students in her sample. Davis (1994) attributes this to
either differences due to individual development or to the stories with

which the two levels of students worked.
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To date, only one study has yet linked mathematics and story
grammar. In a 2X2X2 repeated-measures investigation of the effects of
an experimental problem format, Arithmetic Story Grammar, and quick
writing on students' arithmetic abilities, attitudes, and levels of
anxiety, Gilbert (1995) provided sixth-grade students with direct
instruction in story grammar as it related to single-operand arithmetic
equations. After providing fifteen-minute periods of instruction in
story grammar for 27 days, only the quick writing proved significant,
but only in affecting attitudes and levels of anxiety. Gilbert
attributed the lack of positive cognitive results to the newness and
complexity of the material presented and the limited time available for
instruction. In contrast, however, much research has been conducted
related to the story formats and solution strategies of word problems.

Format research divides into three distinct levels. At the apex
of this research lies a classification system that crosses operational
boundaries and identifies five general schemata that are based on the
semantics of arithmetic story problems. Research with adults
demonstrates that, once learned, individuals use schemata to facilitate
correct solutions for some problem types (Marshall, Pribe, & Smith,
1987) .

The intermediate level, also based on semantics, categorizes
problems by the kinds of actions occurring within the stories.
Carpenter & Moser (1983), devised one set for addition and subtraction;

Greer (1989) developed another for multiplication and division. These
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taxonomies, thus far, have been used mainly to identify the strategies
used by students in finding solutions and to ascertain levels of
individual proficiency.

The bottom layer of investigation, problem categorization, deals
with story schemata of a more superficial nature. Such schema are found
within algebra and geometry problems that center on the situations
described, e.g., river current, work, interest, and triangles. Such
situations could be described as story-problem genres. Though the
recognition of the various genres empowers the reader to perform the
required tasks with little delay and few misunderstandings (Kintsch &
Greeno, 1985; Mayer, 1985), several problems exist. Chief among these
is that teaching problems by kind is the antithesis of problem solving.
This becomes obvious when students are presented with a new format and
complain that they have never seen such a problem before (Sowder, 1985).
Schoenfeld (1985) expressed concern that such strategies may be used
without regard to metacognitive monitoring. Another problem is that
such taxonomies are never complete, making it difficult to identify the
genre most efficacious to teach. In 1877, Hinsley, Hayes, and Simon
identified 18 categories; in 1981, Mayer identified over 100 (Mayer,
1985) .

Restricting models to only a few creates other problems when
teaching students to use algorithms. This restriction hinders the
students in developing correct rules. The rules they develop and

internalize often fit the limited situations well; however, they
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interfere with complete concept attainment at later stages of learning
(Carpenter, Moser, & Bebout, 1988; Thompson, 1991; Wearne & Hiebert,
1988) . A limited understanding of syntax restricts facility with the
symbol system. The syntax must be cognitively connected to semantic
structure for generalization and abstraction to occur {(Wearne & Hiebert,
1988) .

Other research related to solution strategies has confirmed that
even when students appear to have one-step story problems mastered, they
may be dependent on inadequate or inappropriate strategies to compute
answers. Such strategies may have nothing to do with semantics;
instead, students may focus on irrelevant factors such as recent class
activities, the sizes of the numbers involved, or they may use all four
operations to provide a set of answers from which the most reasonable is
chosen (Sowder, 1989). De Corte and Verschaffel (1987) demonstrated
that when students did focus on the semantics, choices of solution
strategies depended on the structure of the individual problems.

Usiskin and Bell (1983), commenting on pedagogical practices, state that
students possess little more than their own intuitions or fixed rules,
such as keyword strategies, when attempting to choose appropriate
operations.

In one attempt to provide students with skills that facilitate
problem solving, first and second-grade students were taught to write
equations in noncanonical forms, mirroring the actions the story

problems presented. As a result, correct solutions increased
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{Carpenter, 1985). Further, Carey (1991) found that children often
write equations that model the actions depicted within story problems.
Other research has shown that as aid increases in modeling story
problems, correct solutions also increase (Ibarra & Lindvall, 1982).

Villasefior and Kepner (1993) used a technique dubbed Cognitively
Guided Instruction (CGI) with urban first-graders and found significant
improvement in solving word problems for the CGI group when compared to
a control group. The CGI technique focused on teaching the subjects to
identify problem types and to apply the strategies that were most often
used to solve them. The technique centered on the Carpenter taxonomy
(Carpenter & Moser, 1983) and subsequent work that investigated the
strategies children employ when working with word problems (Carpenter,
Moser, & Bebout, 1988).

It is unfortunate that the research conducted to date has focused
primarily on only one side of the problem. 2ll but one of the studies
reviewed have dealt solely with the graphemic text of word problems,
focusing upon the story, its structure, the information provided within
it, and how the individual interprets and acts upon the information.

A much neglected aspect of research and teaching is the highly
formalized schematic representation of the numeric equation. Though
voices have called for investigations of ideographs and number sentences
(Siegel, Barosi, & Smith, 1989; O'Mara, 1981), only the one by Gilbert
can be found. Of the models presented to date to categorize schematic

representations, it is the work of Usiskin and Bell (1983} that comes
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closest to the construct of Arithmetic Story Grammar presented here.
These authors proposed a taxonomy for operational class meanings and
uses, i.e., the definitions and uses of the operations. Their
definitions and descriptions approach those provided by Arithmetic Story
Grammar; however, after defining class meanings and uses, the authors
failed to synthesize a construct that would relate their taxonomy to the
reading of ideographic text.

ARITHMETIC STORY GRAMMAR

Individuals who read mathematical story problems tend to focus on
the problem rather than the story. While concentrating on creating an
equation that represents a satisfactory means of achieving a solution,
the problem solver generally ignores the structure of the story and its
constituent elements. To develop an equation, the solver appears to
restructure the story into a problem so rapidly that vital
transformational steps go unrecognized (Gilbert, 1992). As an
illustration of this, consider the following problem taken form
Carpenter and Moser (1983):

"Connie has 13 marbles. Five are red and the rest are blue. How

many blue marbles does Connie have?"

Carpenter and Moser (1983) classify this problem as a Combine
subtraction problem. First, the authors state that the problem is
static, which is reasonable because the set of marbles remains
unchanged. It appears that the problem is classified as a subtraction

problem because subtraction is the expeditious means of arriving at an
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answer to the question. However, if subtraction is defined as the act
of removing or losing, either physically or hypothetically, it is
impossible to combine and subtract in one act. Since nothing in the
story is being taken away or lost, the story should not be classified as
a subtraction story.

Using the tenets of Arithmetic Story Grammar, defined later, the
story is classified as one of addition and action becomes apparent. The
story provides a resolution of 13 marbles in all. It provides a setting
in which five marbles are red and the rest are blue. It provides
action, implied by the question, that when the five red marbles are
hypothetically combined with the remaining marbles, which are blue, all
13 marbles will be accounted for. The agent of the action may be
assumed to be the problem solver. Combining the setting with the plot
results in a theme that most logically translates into addition since
the five red marbles must be combined with the remaining marbles, which
are blue, to yield the entire set of 13. It is possible to restate this
story as follows: Connie's five red marbles when considered with the
remainder of her marbles, which are blue, yield the total of 13 marbles.
Written as an equation, this becomes 5 + O = 13.

Further, it appears that most individuals lack the conceptual
resources that allow for the classification of mathematical stories
beyond the fundamental categories of addition , subtraction,
multiplication, and division. This appears to be the result of

curricular content and instructional practices, both past and present,
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that fail to articulate the structural nuances of mathematical stories
Gilbert, 1992).

As mentioned earlier, Singer and Donlan (1982)demonstrated that
after students were taught to identify story elements, story
comprehension improved. It has also been demonstrated that when an
individual understands the structure of an object or a set of ideas and
possesses the ability to classify according to that structure,
comprehension improves (Gage & Berliner, 1988). Guthrie (1985)
describes a structure for classifying story elements that others have
found effective in fostering comprehension of short stories (Davis,
1994; Leaman 1993). However, no such structure existed for mathematics
until now.

In an effort to provide mathematical stories such a structure, the
elements of story grammar have been applied. The resulting analysis
yielded several interesting results: 1) A realization that all single-
operand equations are not only sentences, they are stories, as well; 2)
Mathematical stories readily divide into a rather limited set of
categories, subcategories, genres, and scenarios; and 3) An articulated
structure for describing these categories, subcategories, genres, and
scenarios did not exist. The structure that resulted from this work has
been dubbed Arithmetic Story Grammar and is described below.

The Basic Structure
Arithmetic Story Grammar maintains that any equation containing a

single operand tells, in and of itself, a complete story consisting of
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four basic elements: setting, plot, theme, and resolution. This
premise holds regardless of whether or not the single-operand equation
stands alone or represents one small part of an intricate mathematical
process. Complex equations merely express a series of mini-stories
that, when combined, reveal complex tales filled with blunt acts and
subtle nuances. Multiple-operand equations differ from their single-
operand siblings only in the number of actions undertaken and, perhaps,
by the number of themes maintained.

Arithmetic Story Grammar begins by assuming four basic categories:
addition, subtraction, multiplication, and division. When analyzed
under the light of setting, plot, theme, and resolution, these
categories reveal eight subcategories and 18 basic story types, each
forming a distinct genre. Further analysis reveals that three of the
genres, all specific to division, present two different scenarios each.
Two of the 18 genres, one addition, the other subtraction, differentiate
no lower than their subcategories, making these, their genres, and their
scenarios identical. The remaining 13 genres maintain only one scenario
each. As a result, each of these 13 genres and their individual
scenarios mirror each other. In all, the 18 genres manifest 21 distinct
scenarios. The remainder of this paper endeavors to provide
descriptions of the four basic categories, the four elements of
Arithmetic Story Grammar, and the 18 genres as well as any associated
scenarios. Table 1 displays the discussion above which resulted from

the interplay of following descriptions.
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Table 1

A Story-Grammar Based Taxonomy of Single-Operand Story Problems and

Their Equations

I. Addition
A. Joining
1. Expository addition
2. Comparisons with one

II. Subtraction
A. Removing
1. Expository subtraction

2. Comparisons with one

replication replication
3. Comparisons with two 3. Comparisons with two
replications replications
B. Increases due to secondary B. Decreases due to secondary
agents agents
III. Multiplication IV. Division
A. Multiplying Sets by A. Divisions Involving
Magnitude Magnitude
1. Sets of Sets 1. Sets of Sets
2. Comparisons a. For magnitude (to
3. Probabilities find the number sets)
B. Multiplying Components by b. By magnitude (to find

Components
1. Composites
2. Combinations

the number of units
per set)
2. Comparisons

a. For magnitude (to
determine the ratio)
b. By magnitude (to

find size of second
set)
3. Probabilities
a. For magnitude (to
find the statistical
rate per attempt)
By magnitude (to
find statistical
average of necessary
attempts)
B. Divisions not Involving
Magnitude
1. Composites
2. Combinations
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The Four Elements of Story Grammar

All single-operand equations possess four fundamental elements:
setting, plot, theme, and resolution. Sometimes these elements are
manifestly clear. Occasionally, they lay hidden and are only implied by
the contents of the stories and the equations that depict them.

Setting

The setting may include characters, time, place, and quantities.
The characters may consist of elements that act or those that are acted
upon. The equation, depicting the story in a highly abbreviated and
cryptic form, seldom reveals any nonnumeric descriptive information
about the quantities involved. Unless labels are ascribed, the
undisclosed information about the type of units remains the mental
property of the equation's author or it becomes known only by cross-
referencing the equation with the actual story.

Plot

For each equation containing an operand, there exists a coinciding
arithmetic plot. Each plot shares two qualities with all others: 1)
Each possesses an operational condition depicting action; and 2) Each
makes a statement regarding either yields or equivalencies. In
subtraction, the operational condition may convey the action conducted
upon the initial quantity. In addition, a single operand may reflect
action taken upon two separate quantities. In multiplication, the
operand might relate the relationship existing between two factors,

whereas, in division, it may represent an act upon a quantity by one of
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its constituent factors. Statements of yield display operational
outcomes and may reveal units fundamentally different from those of the
setting. Statements of equivalency compare the quantities on one side
of an equation with those found on the other side.

The simplest plots of single-operand equations possess only two
actions, one specified by the operand, the other illustrated by the
equal sign. Other arithmetic plots of single-operand equations brim
with activity that remains all but hidden due to the terse nature of
mathematical script. These tacit actions only become apparent when
considered in tandem with the associated circumstances.

Theme

The intent behind the equation indicates the theme. Themes become
apparent when the setting and plot are considered together. Personal
perspectives allow many situations to be interpreted in two or more
ways. For example, a balloon's growth due to an increase in temperature
may be interpreted as either addition or multiplication. Themes include
the following: 1) combining or separating like units; 2) increasing or
decreasing; 3)comparing like units; 4) finding sets of sets or reversing
the process; 5) combining similar or dissimilar units to form new units
or reversing the process to reveal the components of melded units; 6)
matching the individual units of one set with those of another, one at a
time, to reveal the number of combinations or vice versa; and 7) finding
the most likely outcome or the chance of an occurrence for a specific

number of trials. Refer to Table 1 to see where a theme can be applied.
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Resolution

In Arithmetic Story Grammar, the resolution is the end of the
story, the consequence of the plot upon the elements of the setting.
This definition is a bit looser than the one applied to literary
stories. In nonarithmetic short stories, often a conflict exists that
must be resolved. In arithmetic stories, however, seldom does a
conflict appear; usually the situation merely requires a conclusion. As
a result, the resolution may best be looked at as the yield or a
statement of equivalence. In addition, yield may be exemplified as the
sum resulting from the joining of two separate sets, whereas,
equivalence may be demonstrated with an equation that represents a
comparison of two sets on one side of the equal sign with a third set on
the opposite side. Depending on individual perspective, a set that
appears to be the resolution to one person may be interpreted as a part
of the setting by another. Regardless of how a story is interpreted,
the resolution is that quantity that results from the actions within the
story. It is not the final quantity derived by a problem solver.

The Four Mathematical Categories

Addition, subtraction, multiplication, and division comprise the
four mathematic categories. Below, the nature and uses of each is
described. Three premises constrained the descriptions: 1) Base the
descriptions on the tenets of story analysis; 2) Keep the descriptions

simple; and 3) Make the descriptions as universal as possible.
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By examining equations under the lens of story analysis, the focus
changes from an emphasis of achieving equational balance and finding
solutions to understanding plots and resolutions. Keeping definitions
simple proves vital for providing efficient instruction and developing
accessible curriculum. The same interests make universal descriptions
essential, as well. The definitions that follow appear complete enough
' to accommodate all conditions involving magnitudes of both real and
imaginary numbers. In some cases, vectors are also accommodated, but
only when the operation affects magnitudes along a single axis. Such
conditions create apparitions, providing illusions that only magnitude
exists. All single-operand equations involving vectors are in actuality
abbreviated expressions of a series of operations. Due to an spoken
desire to maintain simplicity, often when the manipulation of vectors
does not effect direction, only the magnitude is quantified.

Addition

Addition is the act of considering and joining sets of like units
with similar or dissimilar quantities two at a time, or it is the act of
increasing a set via a secondary agent. The often implicit condition
that units possess identical monikers is germane to Arithmetic Story
Grammar regarding settings and resolutions. If two or more uncommon
units are to be added, a commonality must first be found. If one is not
found, the units are not suited for the intended action. In practice,
however, changing the classifications of unlike units to like units is

achieved tacitly. For example, adding two cats to three dogs, yields
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five animals. Specifying a commonality, even one as nebulous as thing,

whether before or after summing the addends, remains essential.
Addition divides into 2 subcategories: Joining and Increases Due

to Secondary Agents. Examples A.l1, A.2, and A.3 in Figure 1 illustrate

joining, whereas, the fourth demonstrates increasing.

Figure 1
Additi
A. Joining
1. Expository Addition
Example: John had two apples. He picked three more. How
' many apples does he have now? (2 + 3 = 0O);
2, Additions Requiring One Replication
Example: John had two apples more the Gail. Gail picked
three. How many apples does John have? (2 + 3 =
o) ;
3. Additions Requiring Two Replications
Example: John had two apples. Gail had three apples.
Together they had as many apples as Lisa. How
many apples does Lisa have? (2 + 3 = 0O);
B. Increases Due to Secondary Agents:
Example: A balloon occupied three cubic feet. After being
heated, the balloon's volume increased one cubic foot.
What is the volume of the balloon now? (3 + 1 = 0O).
Joining

Joining combines the elements of one set with the elements of
another and manifests three distinct genres: Expository Addition,
Additions Requiring One Replication, and Additions Requiring Two
Replications. The equations for the three genres look identical; the
differences appear in the stories behind them. Though the three

equations look the same, each represents very different conditions.
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Equations may be homographic, appearing the same but expressing
different conditions. Such equations may be read tersely to specify
only number, operation, and outcome, or in expanded form to fill in
details of comparison and kind. The goal should not be to foster
expanded readings of equations. Rather, it should be to develop schema

that allow consideration of the possibilities an equation may represent.

xposi Repr ions. Expository Representations tender
story information in a forthright manner. In addition, two of the
three sets indicated by the equation are clearly stated. The theme

underlying expository equations is the unification of complete sets.
Two of the equation's three sets are joined to yield the combined set.
Consider example A.l in Figure 1:

John had two apples. He picked three more. How many apples does

he have now? (2 + 3 = 0O)

Though not required by the genre, this example gives two addends.
A story may specify only one addend, providing the resolution is also
clearly stated. Situations, regardless of the operation specified,
failing to enumerate both elements of the setting yield noncanonical
equations. Here, two addends comprise the setting, and the sum is the
resolution. To realize Combining these addends produces the resolution.

Additions Requiring One Replication. Additions Requiring One
Replication provide a complete set and, through comparison, one of two

constituent subsets of another set. Consider Example A.2 of Figure 1:
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Example: John had two apples more the Gail. Gail picked three.
How many apples does John have? (2 + 3 = 0O);

This example states Gail's set clearly and provides a model for
John's. Replication of Gail's set produces the first addend, the number
of apples John held in common with Gail. The comparison of John's set
to Gail's gives the second addend. If Gail's set is not replicated,
Gail's set is joined to John's, yielding an inaccurate model, containing
only one set instead of two as specified in the story.

Additions Requiring Two Replicationg. Additions Requiring Two
Replications also make comparisons, but resolution is achieved only
after replicating both of the given sets. Consider Example A.3 of
Figure 1:

John had two apples. Gail had three apples. Together they had as

many apples as Lisa. How many apples does Lisa have? (2 + 3 = 0O)

A model consistent with the story must contain three sets, John's,
Gail's, and Lisa's. Construction of this model requires that Gail's and
John's sets be replicated. Joining John's and Gail's sets produces a
model of Lisa's set but fails to depict the story accurately. The
second subcategory of addition is Increases Due to Secondary Agents.
Increagses Due to Secondary Agents

Increases Due to Secondary Agents do not combine sets; rather, as

the name implies, such additions occur due to the effects of a secondary

agent. It may be argued that such conditions do not represent addition,
but are instead manifestations of multiplication. In practice, however,
25
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such increases are expressed both ways. Consider Example B of Figure 1:
A balloon occupied three cubic feet. After being heated, the
balloon's volume increased one cubic foot. What is the volume of
the balloon now? (3 + 1 = 0O).

Though the balloon's volume increased, no cubic feet were directly
added. The increase in volume occurred due to addition energy effecting
the balloon. Such additions are difficult to model. 1If this situation
were described in terms of multiplication, it would be characterized as
a multiplication by magnitude which will be addressed later.

Subtraction |

Subtraction is the act of removing units from a set or decreasing
a set by a given amount due to a secondary agent. Subtraction, like
addition, also divides into two subcategories: Removing and Decreases
Due to Secondary Agents. Examples A.1, A.2, A.3, and A.4 of Figure 2

show Removing; Example B illustrates Decreases Due to Secondary Agents.
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Figure 2

Subtraction
A. Removing
1. Expository Subtractions
Example: John had five apples. He ate three. Now he has
two apples (5 - 3 = 0O);
Example: Gail had three dollars in her checking account.
After the bank removed an errant five-dollar
service charge, how much did Gail have in her
account? (3 - -5 = 0O); \
2. Subtractions Requiring One Replication
Example: John had five apples, three less than Gail. How
many apples did John have? (5 - 3 = 0O)
3. Subtractions Requiring Two Replications
Example: John had five apples. Gail had three apples.
Lisa had as many apples as the difference between
John's and Gail's apples. How many apples did
Lisa have? (5 - 3 = 0O)
B. Decreases Due to Secondary Agents
Example: A balloon occupied three cubic feet. After being
cooled, the balloon's volume decreased one cubic foot.
How large is the balloon now? (3 - 1 = 0O).
Removing

Removing is the antithesis of Joining. For each Joining genre, a
similar but opposite genre occurs in Removing. Conditions on the
identity of set elements identity hold for subtraction, also. Removing
consist of three subcategories: Expository Subtractions, Subtractions
Requiring One Replication, and Subtractions Requiring Two Replications.

Expository Subtraction. Expository Subtraction stories specify
the contents of two of the equation's three elements: the minuend, the

subtrahend, or the difference. When the difference is specified, the
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equation appears in a noncanonical form. Consider the first example in
A.1 of Figure 2:

John had five apples. He ate three. How many apples remained?

In this example, the minuend, John's five apples, and the
subtrahend, the three apples that John ate, are given. The minuend and
the subtrahend are parts of the setting. The difference needs to be
calculated, which, in this case, results in the resolution, the final
point in the story. Again, the story is straight forward, providing
full story components. The second example in A.1l does the same; the
story elements are stated directly. See below:

Gail had three dollars in her checking account. After the bank

removed an errant five-dollar service charge, how much did Gail

have in her account? (3 - -5 = 0O)

This example is provided only to show that the application of
Arithmetic Story Grammar is not dependent on the form of numbers that
are used and that terms and conditions remain constant. Though
expediency may dictate the use of addition to arrive at the correct
difference, the method of achieving the difference does not alter the
conditions that make this an example of subtraction. Further, by
imagining a limitless reservoir of paired positive-negative dollars, the
process of removiﬁg the negatives to reveal the positives, can be easily

demonstrated. This, however, goes beyond the focus of this paper.
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Subtractions Requiring One Replication. Subtractions Requiring

One Replication allude to the minuend or the subtrahend through a
process of comparison. Consider the Example A.2 in Figure 2:

John had five apples, three less than Gail. How many apples did

John have? (5 - 3 = 0O)

In this case, the minuend is alluded to through a comparison of
Gail's apples to John's apples. John's set must be replicated so that
an independent model of Gail's set may be developed. If this is not
done, John's set will no longer exist as a complete set. To remain true
to the story, John's set must be maintained because in the story his set
of apples never changes. Subtractions Requiring two Replications are
similar.

Subtractions Requiring Two Replications. Subtractions Requiring
Two Replications necessitate that two parts of the story be replicated.
Consider the following example:

John had five apples. Gail had three apples. Lisa had as many

apples as the difference between John's and Gail's apples. How

many apples did Lisa have? (5 - 3 = 0O)

To arrive at an independent set of Lisa's apples, it is necessary
to replicated both John's and Gail's apples. By matching the apples
that these two sets have in common, via a one-to-one correspondence, and
removing the matched pairs, a model of Lisa's set is achieved. Further,
this leaves John's and Gail's sets intact. Decreases Due to Secondary

Agents are fundamentally different from Joinings.
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Decreagses Due to Secondary Agents

Decreases Due to Secondary Agents involve subtraction stories were
the removal of units from the minuend is not considered. Instead, the
minuend is effected by a secondary agent. Similar to addition, such
conditions may be described using multiplication; however, in practice,
such decreases are expressed both ways. Consider Example B of Figure 2:

A balloon occupied three cubic feet. After being cooled, the

balloon's volume decreased one cubic foot. How large is the

balloon now? (3 - 1 = 0O)

In this example, one cubic foot of volume is not removed from the
original three cubic feet. Rather, the one cubic foot disappears, a
result of losing energy due to environmental conditions. Again, as is
similar to Increases Due to Secondary Agents, the decrease of one cubic
foot may be demonstrated, but the use of subtraction, when defined as
the act of removing, cannot be shown.

Multipli .

Multiplication is the act of calculating number by using
magnitude, the act of creating new units by melding effects of two
disparate sets, or the act of pairing all of the units of one set with
all of the units of another set. Magnitude can be defined as a rate or
a scalar. Examples include units per set, such as miles per hour or
chances per attempt, and ratios, such as ¥ (to 1) or 3 (to 1). The
five stories in Figure 3 the two subcategories of multiplication: 1)

Multiplying by Magnitude; and 2) Multiplying Components by Components.
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Figure 3

A. Multiplying by Magnitude:
1. Sets of Sets
Example: John had five bags, each containing three apples.
How many apples did John have in all?
(5 x 3 = 0O);
2. Comparisons
Example: Juan stood three times taller than his baby
sister, who stood two feet tall. How tall was
Juan? (3 x 2 = O);
3. Probabilities
Example: Gail threw a die three times, attempting to roll a
six. Her chance of getting a six stood at 1/6 for
each roll she made. What chance did she have of
hitting a six? (3 x 1/6 = 0O);
B. Multiplying Components by Components
1. Composites
Example: A weight of three pounds pulled down on a lever
four feet from the fulcrum. What was the force
created? (3 x 4 = 0O);
2. Combinations
Example: Maria owns two blouses and four pairs of pants.
How many blouse-and-pants combinations could Maria
make?

(2 x 4 = 0O).

i i by M
The subcategory of multiplication referred to as Multiplying by
Magnitude uses magnitude to calculate the total number of units within a
set. Two necessary conditions of all involved sets is that the sets
under consideration equal one another in size and that all units possess
identical qualifying characteristics. Implicit within the concept is

the idea that all sets are regarded together. Though analogies may be
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drawn between this form of multiplication and addition, especially when
the range of the factor representing the magnitude is restricted to
positive integers, the analogy falls short, particularly when fractions
are multiplied by fractions. In the interest of clarity, multiplication
by magnitude, or in any other form, is never referred to as repeated
addition. The factor representing the magnitude exists as a rate or a
scalar. The remaining factor is the number of units within a set. The
product indicates either the total number of units contained in the
specified sets or it reveals the likelihood of an outcome. In each of
the following three examples, the number of specified sets is multiplied
by the magnitude produce different kinds of yields.

Sets of Sets. The category Sets of Sets consists of
multiplications involving a specified number of sets by the number of
units contained within an individual set. The number of sets involved
is referred to here as the magnitude. Two tacit conditions governing
the composition of the sets involved is that they all contain the same
kind of units and that the sets all be of equal size. Example A.1l of
Figure 3, an illustration of the genre Sets of Sets:

John had five bags, each containing three apples. How many apples

did John have in all? (5 x 3 = O)

This example displays magnitude as rate: three apples per bag.

Comparisong. Comparisons involve multiplications that compare the
units of one set to those of another, rather than simply determining the

total number of units involved, as in Sets of Sets multiplications.
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Comparisons yield resolutions that differ from those of Sets of Sets
multiplications. The resolutions of Sets of Sets merely provide total
the number that exists; those of Comparisons produce the quantity of a
second set through the manipulation of the initial set. In comparative
multiplications, the magnitude is defined as a scalar, a unitless number
based upon a ratio, rather than as a rate. Example A.2 of Figure 3,
provides a representation of the genre Comparisons:

Juan stood three times taller than his baby sister, who stood two

feet tall. How tall was Juan? (3 x 2 = 0O)

This illustration shows magnitude as a unitless scalar, the number 3.
The factor 2 depicts the size of Juan's sister, the set under
consideration.

Pxr ilitd . Probabilities use rate as do multiplications of
the genre Sets of Sets. Probabilities also involve magnitudes as do
Sets of Sets and Comparison multiplications. However, the resolutions
of multiplications involving probabilities differ those of Sets of Sets
and from those of Comparisons. In Sets of Sets and Comparisons, the
resolutions represent hard and fast quantities, whereas the resolutions
of probabilities represent the statistical likelihood of an occurrence.
Probabilities further differ from those of Comparisons. As with Sets of
Sets, Probabilities use rates, whereas Comparisons use scalars.

Consider example A.3:
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Gail threw a die three times, attempting to roll a six. Her
chance of getting a six stood at 1/6 for each roll she made. What
chance did she have of hitting a six? (3 x 1/6 = O)

In this example, the 3 represents the number of sets involved, and
the 1/6 stands for the statistical rate. The product yields the most
likely outcome that may or may not be realized.

Comparigons. Comparisons also use magnitude, but the magnitude is
a ratio rather than a rate. Consider Example A.2 of Figure 3:

Juan stood three times taller than his baby sister, who stood two

feet tall. How tall was Juan? (3 x 2 = 0O);

In this example, Juan's baby sister is compared to him at a ratio
of three sisters to one Juan. It is this comparison and the use of
ratio that make this genre unique. The ratio is the magnitude, whereas,
the size of Juan's sister is the set. Both of these elements are parts
of the setting. Multiplying them together resolves the resolution of
the story implied by the question.

The question begs the solver to continue the action the was begun
when the comparison was initiated. The story will not be concluded
until Juan's height is determined. This story when resolved might read
as follows: A comparison was made that established that Juan stood
three times taller than his baby sister, who stood two feet tall. You
used this information to calculate that Juan stood six feet tall.
Probabilities differ form Comparisons.

Probabilities are similar to Sets of Sets. They differ only
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because the elements of the setting and the resolution are not absolute
representations of the actual events that may transpire and the
resolution that may be had. They represent probabilities. Consider
Example A.3 of Figure 3:

Gail threw a die three times, attempting to roll a six. Her

chance of getting a six stood at 1/6 for each roll she made. What

chance did she have to hit a six? (3 x 1/6 = 0O)

In this example, the 1/6 represents the most likely rate, not a
definite rate. The resolution of 3/6 represents the most likely
outcome. Neither are absolute. What Gail actually rolls could be quite
different from that which is expected. Multiplications of components by
components do not use magnitudes.

Multiplying Components by Components
The subcategory referred to Multiplying Components by Components

consists of two genres: Composites and Combinations. This subcategory

differs from Multiplying by Magnitude because of the number of
magnitudes involved in the multiplication process. When multiplying by
magnitude, only one of the two factors represents a magnitude. If
magnitude is defined as the number of sets being multiplied, as it is
here, magnitude plays no part in multiplications of components by
components. However, if magnitude is defined as the number of elements
in a specific set, defined here as rate, two magnitudes enter into the

process.
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Compogites. Composites form when the elements of one set meld
with the units of another set to form a new unit possessing properties
distinctly different form those of either of the individual factors
melded. As indicated, such products are referred to here as composites.
Examples of composites include foot-pounds, square feet, and man-hours.
Example B.1l of figure 3 provides an illustration of this by crossing
pounds, a measure of weight, with feet, a measure of distance, to
produce foot-pounds, a measure of force:

A weight of three pounds pulled down on a léver four feet from the

fulcrum. What was the force created? (3 x 4 = 0O)

The force resembles neither the pounds nor the feet it originated
from. It possesses completely different attributes than either of the
units it was created from. This, however, is not always so pronounced
as it is in this example. Some Composites do bare some semblance to the
units that bore them, such as the feet of square feet; however, even
here considerable differences exist. Feet represent a single dimension;
square feet represent two.

Combinations. Combinations differ from Composites in one distinct
way. Combinations pair all of the elements of one set with all of the
elements of a second set to reveal the number of possible combinations
that can be produced. The properties of the elements of the factors
remain unchanged; they are simply paired with another unit to form a

paired unit were each element of pair retains its distinct qualities.
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Further, Composite multiplications produce tangible products. Consider
example B.2 of Figure 3:

Maria owns two blouses and four pairs of pants. How many blouse-

and-pants combinations could Maria make? (2 x 4 = 0O).

In this example, Maria may produce 8 differ outfits. However,
only two of these outfits can exist at a given time. The other six
remain only possibilities and may be produced only if the existing two
are dissolved.

Division

Division, the antithesis of multiplication, is the act of
calculating magnitude, rate of units per set, or scale; it is also the
act of breaking composite units into their constituent parts or the act
of separating paired combinations into sets of similar components. The
eight stories in Figure 4 provide examples illustrating Divisions
Involving Magnitude and Divisions not Involving Magnitude, the two

subcategories of division.

37

42



Figure 4

Divisi
A. Divisions Involving Magnitude
1. Set of Sets
a. Dividing by Magnitude
Example: John had 15 apples. He separated the apples
into groups of three. How many groups of
apples resulted (15 + 3 = 0O);
b. Dividing to Find Magnitude
Example: John had 15 apples. He divided his apples
evenly between five bags. How many apples
went into each bag? (15 + 5 = 0O);
2. Comparisons
a. Dividing by Magnitude
Example: Juan stood six feet tall. His baby sister
stood two feet tall. After comparing Juan
to his sister. How much taller was Juan
than his sister? (6 + 2 = 0O);
b. Dividing to Find Magnitude
Example: Juan stood six feet tall, three times taller
than his baby sister. How tall is Juan's
sister? (6 + 3 = O)
3. Probabilities
a. Dividing by Magnitude
Example: In all, Gail had 3/6 of a chance to hit a
six while throwing a die. She also had a
1/6 chance of hitting the six on any one
throw. How many times would Gail throw the
die? (3/6 + 1/6 = O);
b. Dividing to Find Magnitude
Example: In all, Gail had 3/6 of a chance to hit a

six, 1f she threw a die three times. What
was the chance of hitting a six if she threw
the die only once. (3/6 + 3 = 0O);
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Figure 4 continued

B. Divisions not Involving Magnitude
A. Composites
Example: A force of 12 foot-pounds was divided by three
pounds. What is the distance from the fulcrum
(12 = 3 = O);
B. Combinations
Example: Maria can make.eight blouse-and-pants combinations
altogether. How many pairs of pants does Maria
own? (8 + 2 =0 )
Ce o I 1vi M . 3

Divisions Involving Magnitude merely reverse the process of
Multiplication by Magnitude. The nature of each of the genres reflects
its identically-named counterpart in multiplication; however, instead of
containing a theme of multiplication, the stories possess a themes of
division. As with multiplication, analogies may be drawn between this
form of division and subtraction. But, again the analogy falls short,
particularly when fractions are divided by fractions and when negative
numbers are divided by negative numbers. In the interest of clarity,
division is never referred to as repeated subtraction.

Dividing to find magnitude and dividing by magnitude are similar
to a coin--two aspects complement each other. Dividing to determine
magnitude is analogous to heads, whereas, dividing to find the quantity
that a set will contain is akin to tails. Heads, in the case of
magnitude, harbors two faces. The first takes a set and divides it by

the size of the sets desired. Such a maneuver yields the magnitude, the
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number of sets producible from a set of a given size. The second face
divides one set by another, both sets consisting of identical units.
Such an action delivers a unitless scalar, that manifests the magnitude
to which the two sets correspond in size with 1 indicating equality.
The other side of the coin show magnitude's complement.

Tails represents the use of division to determine the number of
units that goes into each set. The magnitude acts as the divisor and
yields the quantity that goes into each set or the relative size of the
second set.

Each side of the coin may be seen as a separate scenario of the
same story. The story elements remain the same, only the plot changes
to reveal a different aspect of the setting.

Divisions Involving Magnitude and their antitheses,
Multiplications Involving Magnitude, divide into three subcategories.
Since the qualities of these two subcategories and their genres are
quite similar, they are not repeated here. Instead, examples are again
provided. The number of examples has been increased so that two
scenarios, Dividing by Magnitude and Dividing to Find Magnitude,
appearing in each of the three genres involved may be illustrated.

Examples A.l.a, A.2.a, and A.3.a in Figure 4 demonstrate Division
by Magnitude. Each example uses magnitude to determine the number of

units that will go into any one particular set. Examples A.l1l.b, A.2.Db,
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and A.3.b illustrate the Divisions to Find Magnitude. Each of these
examples demonstrate stories that seek the size of the magnitude, that
is, the number of sets or the ratio between sets.

Divigi i M

This form of division is characterized by disjoining composite
units into their constituent parts or by breaking combinations into sets
of components. Such divisions do not involve magnitude.

Composites. Divisions involving composites take units composed of
melded units and break those units into separate sets of similar units.
Such divisions yield units with characteristics fundamentally different
from those of the dividend. To do this, one factor of the composite, a
part of the setting, is isolated and used to determine the other factor.
Example B.1l in Figure 4 depicts dividing by Composites:

A force of 12 foot-pounds was divided by three-pounds. What is

the distance from the fulcrum? (12 + 3 = 0O)

The 12 foot-pounds of the setting is divided by three pounds, one
of the foot-pounds constituent parts. The act of division is part of
the plot of the story. This act isolates the three pounds, that when
used to divide by isolates the second component of the composite, the
four feet. Choosing to use the four feet as the divisor rather than the
three pounds merely isolates a different component. The process remains

the same.
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Combinationg. Combinations provide the second genre within the
subcategory Divisions not Involving Magnitude. Similar to divisions of
composites, one factor, a part of the setting, is isolated and used to
determine the other factor. Example B.2 in Figure 4 illustrates this:

Maria can make eight blouse-and-pants combinations
altogether. How many pairs of pants does Maria own?
(8 + 2 =00 ),

The eight blouse-and-pants combinations are divided by the two
blouses to isolate the four pairs of pants. The characteristic of this
genre of division that differentiates it from divisions by Composites is
the nature of the setting. The dividends of the two genres differ in
nature as the resolutions of multiplying Composites and multiplying
Combinations differ. As with Comparisons, only one scenario exists for
this genre. Reversing the process plays out in the same manner, it
merely isolates a different factor.

Conclusion

Arithmetic Story Grammar offers clear definitions of
addition, subtraction, multiplication, and division that appear to
remain unambiguous across all situations and number types. Further, the
taxonomy of one-operand equations that deal with addition, subtraction,
multiplication, and division stories presented here is believed to be
complete, possessing devises that allow analysis of relatively complete
stories as well as those that are more cryptic along literary lines.

One last example is provided here to demonstrate the power of Arithmetic
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Story Grammar in dissecting and analyzing stories lacking the richness
of detail contained in the stories presented above. Consider the
following statement:

Simon's 3 sisters brought the total to eight.

Using the devises of Arithmetic Story Grammar to identify the
setting, plot, theme, and resolution expose this terse statement to be a
complete story, though not very much detail is given. The setting
consists of Simon's three sisters and another unknown quantity and a
place in time that takes us through the resolution. The plot, though
only implied, consists of a quantity of three sisters being added to an
unknown quantity of an obscure unit to yield a total of eight units.
The theme is joining. The resolution is the realization of eight units.
In its ideographic form, this story takes the following form:

3 + 0= 8.

As with exclamatory sentences, much of what may appear in a
mathematical story is understood by the reader even though it is not
declared. The meaning of a sentence such as "Go to bed." is understood
by the reader, especially when presented in context. Grammarians
instruct that this sentence is complete though the subject is not
directly provided. They teach that the subject, you, is understood
(Warriner, Whitten, & Griffith, 1977). Such is the case with many
arithmetic stories; elements of stories are implied.

Due to the perceived completeness and simplicity of

Arithmetic Story Grammar, additional long-ranged research is recommended
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to answer several questions: 1) Would providing consistent definitions
and models representing the definitions reduce math anxiety and enhance
abilities to understand mathematics and solve problems? 2) Would a
curriculum designed around the principles of Arithmetic Story Grammar
facilitate greater understanding of and comfort with mathematics than a
traditional curriculum or those based on the recommendations of the
National Council of Teachers of Mathematics (NCTM, 1989)7? 3) Would
providing instruction in Arithmetic Story Grammar for a year or longer
enhance abilities to interpret mathematical situations and equations? 4)
Would instruction in Arithmetic Story Grammar transfer to the
interpretation and comprehension of short stories and other genres of
literature? 5) Which of the genres are the most difficult to comprehend?
6) Would instruction be more effective if the plots described by
Arithmetic Story Grammar were used in modeling solution processes; 7)
Might Arithmetic Story Grammar help reduce math anxiety by presenting an
alternative, literary-based model of mathematics; and 8) Might
Arithmetic Story Grammar have different effects on groups of individuals
of differing intellectual ability.

These questions can only be answered if put to the test. The work
of others regarding literature and story grammar offers hope. The
schematic structures are already in place. Students need only learn to

apply them the mathematical stories.
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