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Abstract

The present research derives simplified formulae for computing the standard
error of the frequency estimation method for equating score distributions that are
continuized using a uniform or Gaussian kernel function (Holland, King & Thayer,
1989; Holland & Thayer, 1987). The simplified formulae are applicable to equating
both the observed- and smoothed-score distributions (Rosenbaum & Thayer, 1987).
Results from two empirical studies indicate that the simplified formulae work rea-
sonably well for samples with moderate sizes, say one thousand examinees.
Key words: equipercentile equating, frequency estimation method, kernel equating,
log-linear models, standard errors.



Introduction

Equipercentile equating defines that score x on FormX and score e(x) on

FormY are equivalent via the function:

(1) e(x) = G-1[F(x)],

where F and G denote the distribution functions of the respective scores on Forms

X and Y in the reference population. Because observed scores are discrete in-

tegers, the equipercentile equating function is not well-defined unless F and G are

continuized. Let i and k denote integer scores on Forms X and Y, respectively.

Conventionally, all repetitions of integer scores i and k are assumed to be uni-

formly distributed in well-defined ranges, for instances, i 0.5 < x < i + 0.5 and

k 0.5 < y < k +0.5, where x and y denote continuous scores. Based on this notion,

an equipercentile equivalent can be defined as:

(2) eu(x) = GiTl[Fu(x)]

Fu(x) G(k 1)
a--_- k 0.5 +

G(k) G(k 1)

(Lord, 1965), where k is an integer score such that G(k 1) < Fu(x) < G(k); Fu

and Gu are the continuized F and G respectively based on the uniform assumption.

Holland and Thayer (1989) introduced a kernel method of continuizing

observed-score distributions which includes the uniform assumption as a special case

[i.e., (2) can be obtained by using a uniform kernel]. Holland and Thayer (1989)

also suggested using a Gaussian kernel in the continuization phase. Specifically, the
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Gaussian kernel scheme is defined to be

(3) Fc(x) = Ef(i)(1)(wz.)

(1 il,c)/21,
1 ABz21"

where Fc(x) denotes the continuized F evaluated at x; f(i), the discrete density of

the integer score i ; (I)(wiz), the standard normal cdf evaluated at wiz which is a

linear function of i and x with parameter Az = [cr,V(ol + 13!)]1 . In (3), /ix and

0-.2 are population mean and variance, respectively; the constant Bz is a so-called

bandwidth for the Gaussian kernel function. Likewise, G can also be continuized

using the Gaussian kernel. By analogy to (2), the equating function based on the

Gaussian kernel function is defined to be:

(4) ec(x) = G;4[Fc(x)],

where Gc denotes the continuized G. For simplicity, equipercentile equating based

on (2) and (4) will be refered to as the uniform and Gaussian kernel methods,

respectively.

In equating practice, unknown F and G in (1) must be empirically esti-

mated from the samples before the continuization phase is performed. For security

or disclosure considerations, Forms X and Y are normally administered to two

naturally occurring groups along with a set of common items. The F and G es-

timates are then adjusted for sample-selection bias using score information on the

common-items. The frequency estimation (FE) method (Angoff, 1984) is a device

for estimating F and G under the common-item design and its use has been rec-

ommended in many equating studies (e.g., Braun & Holland, 1982; Holland, King
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& Thayer, 1989). The standard error of the FE method has been derived by Jar-

joura and Kolen (1985) and Holland, King and Thayer (1989) for the uniform and

Gaussian kernel equating functions, respectively. Both formulae were derived on

the basis of the first-order Taylor approximations to eu(x) and ec(x), respectively.

For small sample equating, the bivariate distributions of scores on the main test

form and common-items may be smoothed using log-linear models (Rosenbaum &

Thayer, 1987) to reduce sampling errors in equating results. However, the error of

the FE method for equating smoothed distributions becomes computationally te-

dious for practitioners. In this study, we propose simplified formulae for estimating

the standard errors of kernel equating methods; in the formulae, those complicated

derivatives resulting from the first-order Taylor approximations are bypassed via

their large sample approximations. The simplified formulae are applicable to equat-

ing observed- and smoothed-score distributions. In the next section, a brief review

will be devoted to the common-item equipercentile equating methods. The standard

error formulae for equating observed- and smoothed-score distributions will then be

derived for the uniform and Gaussian kernel methods separately. Finally, the accu-

racy of these proposed formulae will be evaluated through two empirical studies.

The Common-Item Equipercentile Equating

Let j be a score on the common items with distribution function H and density

h. For ease of discussion, it is assumed that common-item scores do not count

toward total test scores. According to the conditional homogeneity assumption, the
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conditional distribution of i on X given j (likewise, the conditional distribution of

k on Y given j ) is the same for Forms X and Y groups in the population. The

discrete densities of marginal i and k in the reference population can be estimated

from the samples by:

(5) f(i) = E jx(iii)11(..7), and
1

§(k) =(6)

where the subscripts x and y denote the sample estimates based on data from Forms

X and Y groups, respectively; h(j) = 7hx(j)+(1--y)liy(j) with 7 = Nx/(Nx+Ny),

where hx and by are the respective sample frequencies of the common-item score j;

Nx and Ny are the sample sizes.

In the uniform kernel method, the marginal distributions of x and y are

estimated by:

(7)

(8)

fu(x) E j(i) + j(i.)(x io + 0.5), and

Ou(Y) = E §(k) + §(ko)(y ko + 0.5),
k<ko

where i, io, k, and ko are integer scores; x and y are continuous scores in the ranges

it) 0.5 < x < io + 0.5 and ko 0.5 < y < ko + 0.5, respectively. In the

Gaussian kernel method, on the other hand, the marginal distributions of x and y

are estimated by:

(9) Pc(x) E f(i)c.(t-bix), where

x Axi " aand fix [ x and
^ 2

AxBx cr,2,
]+

(10) ac(y) = Ex/04)( %4y), where
k
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y Ayk (1
, and A = [ ]5 .

1

WIcy = (5-2 _4_ B2BY Y Y Y

Note that Ax,o-2 and "6-y2 are sample means and variances of Forms X and Y

scores in their respective groups. After score distributions are continuized using

(7) through (10), the equipercentile equivalents can be found using the equating

functions (2) and (4), respectively.

The observed distributions of discrete scores are often sparse when sample

sizes are small, and equipercentile equating using sparse distribution functions tends

to be unstable and inaccurate. Therefore, the presmoothing of the sample bivari-

ate (i, j) and (k, j) tables using the log-linear models have been recommended for

improving the accuracy of equipercentile equating (Holland & Thayer, 1987; Rosen-

baum & Thayer, 1987). Let f(i, j) denote the joint density of i and j scores on

FormX and common items, respectively. The log-linear model assumes that:

2q

(11) log f (i,j) = flo + E Ot(it) E Ot(it-q) #2q+1(i3),
t=1 t=q+1

where 13o is a normalizing constant selected to make the sum of f(i, j) equal one

(Rosenbaum & Thayer, 1987). The maximum likelihood estimates (MLE's) of the

P's in (11) have the property that the first q fitted univariate moments and the fitted

correlation equal their corresponding moments and correlation observed in the (i, j)

sample (Holland & Thayer, 1987). By analogy, the (k, j) table for FormY and

common items can also be smoothed using a model similar to (11). We denote

gx and gy as the vectors of parameter estimates for smoothing the (i, j) and (k, j)

tables, respectively. The FE method using the smoothed densities can be expressed

5
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as:

(12) j(i) = and
3

(13) g(k) = E9y(147)11(.7),

where Mi Li) and §y(kij) are smoothed conditional densities of i and k given j, and

h(j) = 77-tx(j) + (1 -y)izy(j) where iix(j) and izy(j) are the smoothed marginal

densities on j in the (i, j), and (k, j) tables, respectively. After the smoothed den-

sities are obtained via (12) and (13), the uniform or Gaussian kernel function can

then be used to continuize the discrete distributions and solve for the equipercentile

equivalent in (1).

In summary, this study considers four methods of equipercentile equating, which

involve the combinations of two types of score distributions (observed vs. smoothed),

and two types of continuization procedures (uniform vs. Gaussian kernel methods).

In the next two sections, the standard errors of these four equating methods will be

derived using a technique based on the Bahadur theorem which was first introduced

by Liou and Cheng (1995a).

Standard Error of The Uniform Kernel Method

Let eu eu(x) = Gu 1 [Fu(x)] and denote its sample estimate by eu. Liou and

Cheng (1995a) used the Bahadur Theorem (1966) to derive a general expression for

the standard error of en as follows:

(14) [Var(eu)] 1 War[Pu(x)] + Var[Ou(eu)]

6
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2Cov[Pu(x), au(6u)}11/g(6u),

where Fu and au are defined in (7) and (8), respectively, and g(ei,) = aGu(t)I at

evaluated at t = eu. The expression in (14) holds when the first derivatives of

Fu and Gu exist almost everywhere. We shall employ the definitions of Liou and

Cheng (1995a) that aFu(x)/ax = f(x) = F(i) F(i 1) for i 0.5 < x < i + 0.5,

and aGu(y)/ay = g(k) = G(k) G(k 1) for k 0.5 < y < k + 0.5. The

general expression (14) is simpler than the formula derived via the delta method

used by Jarjoura and Kolen (1985). However, the variance and covariance estimates

of Jarjoura and Kolen (1985) can be substituted into the right-hand side of (14) to

find Var(eu). The standard error formula for the uniform kernel method when score

distributions are smoothed using the log-linear models can also be expressed as:

(15) [Var((u)li 'Ld War[fru(x)] Var[au(6u)]

2Cov[fru(x), au (G )] }2 /g(6u),

where fru and au denote the smoothed estimates of population parameters. Liou

and Cheng (1995a) derived the variance and covariance estimates for (15) in slightly

complicated forms. In this section, simplified variance and covariance estimates will

be derived and substituted into (14) and (15) to estimate Var(u) and Var(4u).

Observed Score Distributions

By substituting (5) and (6) into the respective (7) and (8), the following

expressions retain:

(16) Pu(x) = E[ + fx(joii)(x io 0.5)111(i)

El-'x(xiDizu), and

7
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(17) Ou(y) = 9y(kli)+y(koli)(Y ko + 0.5)111(i)
k<ko

E ay(ywki),

where Px(x1j) and ay(yjj) denote the conditional distributions of x and y given

j that have been continuized using the uniform kernel in the Forms X and Y

groups, respectively. The reduced forms in (16) and (17) will simplify the estimates

of variances and covariance for Fu(x) and Gu(y). The variance of (16) can be written

as:

(18) V ar[Pii(x)] = EE cov[frx(xwizu),P.(xinkni.

Because Px(x1j) and ii(j) have zero covariance, the covariances in (18) can be ex-

pressed as:

Cot) [fr.(xii)ki),P.(xinhca

=E[P.(x1.01".(x1f)11(i)14.7')] E[P.(xli)ii(i)]E[-k(xlniz(i1)]

=E[P.(x1.01".(xln]E[h(i)11(f)] E[11.(x1.0]E[P.(xlii)]-E[11(i)]at(j1)1,

which can be estimated by

(19) Cov[P.(x ii)1/(j), Px(x

Cov[Px(xlj),.Ex(xingt(j)ii(j') +

C ov[ii(j),1-1(f)]fr.(xlj)Ex(xlj') +

C ov[Ex(x1j), Px(xjj')JC ovrii(j),h(j')],

where E[P,c(xlj)] and E[ii(j)] are estimated by their empirical estimates. When

j # j', the covariance between Ex(x1j) and Px(xin vanishes, and Cov[h(j),

11(j)11(j')/(Nx + Ni). When j = j', Var[Px(xii)] r=d- Px(xii)[1 ilx(xii)]/[(Nx

8
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1)4(j) 1] (Jarjoura & Kolen, 1985, p. 158), and Var[h(j)] kjill ii(j)]/(N. +

Ny). Therefore, (18) reduces to:

(20) Var[Pu(x)]

Jarjoura and Kolen (1985, p. 147) [also Liou and Cheng (1995a)] used the equality

Pi(x) = -y.tx(x)+ (1 7) Ei Px(x1j)iiy(j) when deriving Var[Pu(x)]. Their formula

involves the variances and covariance of Px(x) and Ei Px(xlj)ity(j) and is slightly

more complicated than (20).

The variance of Ou(6u) can also be obtained by replacing Px(x1j) with

Oy(G) i) in (20). Because Px(x1j) and Oy( ulf) have zero covariance for all j and

j', the covariance between (16.) and (17) becomes:

(21) Cov[Pu(x), au(G)] = Coy[E E ayvuinhcoi

h(j)}Px(xli)ay(uli)Nx + Ny

EE tj)+14NnEx(xiDay(eui.7')
jOji

Equation (21) is also simpler than the covariance formula of Jarjoura and Kolen

(1985, p. 147). By combining (20), (21) and Var[au(G)], a simpler formula than

that given by Liou and Cheng (1995a) for estimating Var(u) is obtained. In prac-

tice, both formulae will give similar estimates of Varau) if the common-item score

9
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distributions do not deviate much from each other in the two groups. The denomi-

nator g(6u) in (14) can be estimated by the sample relative frequency "(6,i) evaluated

at eu =

Smoothed Score Distributions

When score distributions are smoothed using the log-linear models, the

marginal distributions of x and y can be expressed as:

(22) Fu(x) = E[ fx(ioi.i)(x io + 0.5)ih(i)
j i<io

F_-_- EPx(xii)ii(j), and
3

(23) au(y) = E[E §y(kii) .gy(koii)(Y ko 0.5)17/(j)
j k<ko

Eay(Yii)ii(j),

where Px(xlj) and ay(y1j) are the smoothed and continuized distributions of x and

y given j in the Forms X and Y groups, respectively. The random variable

P.(x Ij) is a function of fix; and it(j) is a function of ,6. and fay. Therefore, Px(x1j)

is not independent of h(j). The same analogy applies to ay(y1j) and h(j). Liou

and Cheng (1995a) gave the complete expressions for Var[Pu(x)], Var[au(6u)], and

Cov[Pu(x), Ou(eu)], which involve complicated summations over covariance terms.

For instances, Var[Pu(x)] contains the estimates of Var[Px(x)], Var [Ej Px(xii)ily(i)1,

and Cov[Px(x), Ei Px(x1j)iiy(j)] , each of which can be further decomposed into the

sum of many covariance terms. A similar expression can be applied to Var[au(eu)]

and Cov[Pu(x), au(6u)]. Therefore, the estimation of Var(&) in (15) is computa-

tionally tedious in practice. An interested reader may refer to Liou and Cheng



(1995a) for the details of those formulae.

When the sample sizes are reasonably large, the sample estimates of (22)

and (23) can be closely approximated by

(24) P,:(x) EP.(xlj)h(j), and

(25)
3

where h(j) is the empirical density of score j and converges to h(j) almost surely.

In practice, if the assumed log-linear model holds for the population, then h(j) is

also a consistent estimate of h(j) and the difference lit(j) h(j)1 converges to zero.

In other words, h(j) can be used to replace h(j) in (22) and (23) to obtain good

approximations of Pu and G. In smaller samples, the conditional distributions

of x given v (or y given v) cannot be estimated precisely. Therefore, we need to

smooth the distributions somehow to estimate the conditional distributions in the

FE method. In the literature, researchers used a nonparametric smoothing method

called the rolling weighted average frequencies procedure (e.g., Jarjoura & Kolen,

1987) to estimate the conditional distributions. We may also consider (24) and (25)

the parametric counterparts of the weighted procedure to estimate Fu(s) and Gu(y),

respectively.

Let 4u* denote the equipercentile equivalent computed using (24) and (25). Be-

cause P,c(x I j) and h(j) have zero covariance, the variance of Pu*(x) can be derived

as follows:

(26) var[E:(x)] = EEcov[E,c(xii)h(j),E.(xii*:71)]

EE{cov[:Px(xii),:fix(xingz(i)kii)+
j ji

11
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cov[h(i), +

cov[Ex(x Px(xlnlcoviki), h(f)11,

where

(27) Cov[Px(x1j),Ex(x1f)]

[aF(x1j)/agCov([3x)[OF(xin/a#]T10.-4..

The symbol T in (27) denotes the transposition of a matrix. The derivative of F(x1j)

with respect to # can be expressed as

aF(xli)/aPt

= offE f(i,j) + i)(x io+ 0.5)]/[E f(i,i)] 1/00t
i<io

= [E f (i,i)/ + (x io + 0.5)0f (io, :7)/ aNIEE f (i,
i <io

{[E f(i,i) + f(jo,i)(x io +0.5)]/[Ef(imi2}[Eaf(i,j)l afit],
i<io

for t = 1, - , 2q + 1, where af(i,j)/apt and Cov(#x) can be found in Holland and

Thayer (1987). The variances and covariance of it(j) and h(f) are the same as that

used in (20). By substituting (27), V ar[ii(j)], and Cov[h(j),ii(f)] into (26), the

formula of Var[E:(x)] can be derived. Likewise the variance of k( G) can also be

derived by replacing Px(xii) and S. with the respective ay(Culj) and /(33, in (26).

Because Ex(x1j) and ay( ui.i) are uncorrelated for all j, the covariance between

Pi:(x) and 0u(Cu) can be derived as follows:

(28) Cov[P,:(x), 0:1(eu)] = E 11(i)[1 "(A P.(xli)ay(Culi)Nx+Ny

EE i(j)11(nNPx(xii)ay(Cuiii)
joi Nx

s
y

1.712



The standard error of 6 can be estimated by combining (26), (28) and Var[au*(6)]

The computational cost of Var(6) is approximately half the cost of Var(6-,) given

by Liou and Cheng (1995a). In larger samples, Var((u*) would be computationally

more efficient and closely approximate Var(6u). In the empirical studies, an inves-

tigation will be conducted to compare the difference between Var(6) and Var(eu*).

Standard Error of The Gaussian Kernel Method

Let 6c --_ ec(x) = Gr[F,(x)] and denote its sample estimate and smoothed

estimate by andand 6,, respectively. Because both F, and G, are twice differentiable

at x and 6,, respectively, the Bahadur theorem (1966) can be applied to obtain the

following large-sample approximations to the standard errors of and 6- ,

(29) [Var(&)]1 War[Pc(x)] Var[Gc(G)]

2Cov[P,(x),Oc(G)111/9(G),

where g(G) = aGc(t)/at evaluated at t = 6,, and

(30) [Var(&)]1 {Var[Pc(x)] Var[ac(6c)]

2Cov[P,(x),Oc(60111/9(G)

(Liou & Cheng, 1995a). In a separate study, Holland, King and Thayer (1989, p. 10)

derived standard error formulae for andand 6, via the delta method. Their formulae

have similar expressions as (29) and (30). However, the variance and covariance

estimates derived via the delta method are somewhat complicated especially for

13



Var(&). For instance, the kernel function (I)(ibiz) in Pc is a function of sample

mean and variance [i.e., a function of /1 and &J, or equivalently, a function of

the discrete density Ai) in (9). Therefore, the estimate of V ar[P(x)] involves the

complicated derivatives of .1)(w,x) with respect to f(i) which is in turn a function

of Ei fx(iIj)h(j) evaluated at fx(i, j) = fx(i, j) in the FE method (Holland, King

& Thayer, 1989). In this section, a simpler large-sample approximations to the

standard error estimates of G and Sc are obtained which bypass the computations

of these complicated derivatives.

Observed Score Distributions

From (9), the marginal distribution of x can be expressed as:

(31) Pc(x) = fel)(zbi)

fi[Cwi.) Op(I\1-2)],

In (31), (1)(tbs) is a function of which is in turn a function of Ax and 6-x. It is

known that sample mean and variance converge to their population values almost

surely. Therefore, 4)(7.1.4) can be expressed as its population value plus a remainder

term. By discarding the negligible Op(N -1) term, the first-order variance of i',(x)

can be expressed as:

(32) Var[Pc(x)] E E .1)(,,,,x)(D(wer)cov[f(i), f(i')].

By substituting (5) for the density f^(i) and noting the zero covariance between

h(iIj) and ii(j), the covariance factor in (32) can be written as:

(33) Cov[f (i), j(i')] = Cov[Efx(ii.i)h(j), E

14

19



E E{cov[fx(iii), +
j ji

cov[itu),knif.(iti)j.(i'ln +

cov[fx(i1j), fx(i' Cov [h(i),

When j j' , the covariance between fx(ili) and fx(i'lf) vanishes for all i and i'.

When j = j' and i =

(34) Cov[fx(i1j),ix(i'lii)] = Var[fx(ili)]

fx(ili)[1 fx(ili)]
(Nx 1)hx(j) 1

When j= j' and i

(35) Cov[fx(i fx(i' fx(i li)fx(i'li)
(Nx + 1)hx(j) 1

The variances and covariance of h(j) and h(j') have been given in (20). By combining

(32) through (35), the formula for Var[P(x)] can be derived. The variance of Oc(G)

can also be obtained by replacing x, wi., fx(ili) and f(i) with the respective &,7bktc,

4,(kli) and g(k) in (32). Because fx(iIj) and "jy(kij) have zero covariance for all i

and k scores, the covariance between Pc(x)and Oc(G) can be expressed as:

(36) cov[Pc(x), dc(G)] -r=d E E CwizA(okOcov[i(i), .(k)]
i k

E E Ctui.)(1)(okt.)1E N ii(j)]fx(iliVy(kli)Nyi k
A A

E E h(i)h(3')fx(iliVy(kli')}
Nx +

NY

The standard error of the Gaussian kernel method can be estimated by substituting

(32), (36), and Var[Oc(G)] into (29). The denominator g(G) in (29) can be esti-

mated by adc(t)lat evaluated at t = which is the corresponding Gaussian kernel

15
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density estimate. In practice, (I)(wi) and (I)(Okcc) in (32) and (36) can be estimated

by 4:1)(thix) and (I)(V;k4c), respectively.

Smoothed Score Distributions

When score distributions are smoothed using the log-linear models, the

estimates of f(i) and g(k) via the FE method have been given in (12) and (13)

which can be approximated by replacing h(j) with ii(j):

(37) f-*(i) E mili)ii(j), and

(38) §(k) r=d :0*(k) = E§y(kii)ii(j),

respectively. Let be be the equipercentile equivalent of x derived based on (37)

and (38). Then Var('c*) can be obtained in a similar manner to that for obtaining

Varan. Similar to (32) the variance of P*(x) can be approximated by:

(39) Var[E:(x)] E E 4(wis)(p(wi,z)cov[1*(i),1*(i')].
i ii

Using the expression (37) and applying a similar covariance rule used in (19), an

expression parallel to (33) for the covariance term in (39) can be obtained as :

(40) cov[J*(i), /*(i')] +

cov[ii(i), +

cov[L(i Miiinicov[h(i),14:7')]},

where

(41) Cov[j,c(ilj), f,c(iilf)]

[af(i1j)150dcov(A0[5f(i'lnlaOt]T10.4, and

16

21



a f (ili)lafit =

[of(i,i)/5A]/[Ef(i,j)] {f(i,j)/E

for t = 1, ..., 2q + 1. The variance of h(j) and its covariance with it(f) have been

given in (20). Likewise the variance of 0,*(G) can be derived by replacing x, wi.,

f*(i) and Sx with respective G, 1kkec, §*(k) and Ay in (39).

Because L (i I j) and §), (kW) are uncorrelated for all i, j, j' , and k, the covariance

can be expressed as:

(42) cov[Pc(x), ac(G)] -=12 E E 4)(wi.)0(okocov[i*(i),9 *(k)]
i k

EE 4)(wi.)()(okt.)1E 4(3)[1 h(3)].&(iii)gy(kli)
i k Nx

14:7)1e)EE fx(i1.7)§y(kliiilN
jOii x NY

Consequently, the variance of t` can be derived by combining (39), (42) and Var[O'c'(&)].

The denominator g(G) in (30) can be likewise estimated by aGc(t) /at evaluated at

t = 4c*. In larger samples, Var(4,*) is computationally more efficient relative to

Var(&); its use will be further investigated in the empirical studies.

Empirical Studies

Empirical Study I

The first dataset used in the empirical study was scores on two test forms (X

and Y) of an English test, each of which consisted of 55 multiple-choice items. Both

test forms were administered to 719 examinees. In addition, each examinee also
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answered 25 common items. For each examinee taking the test, three scores were

computed: one for each of the two 55-item forms plus a score on the 25 common

items; these scores were simply the number of correct answers. Let i, k and j denote

scores on Forms X, Y and common items, respectively. The bivariate (i, j) and

(k, j) scores for the 719 examinees were separately smoothed using the log-linear

models in (11). The likelihood ratio statistics (Little & Rubin, 1994) suggested

that the model preserving the first four univariate sample moments and bivariate

correlation yielded a better model-data fit to the observed data as compared with

other log-linear models. Therefore, the two smoothed bivariate distributions using

q = 4 in (11) were assumed to be the population data from which the sample data

were randomly selected. In this study, FormX was structured to be equated to

FormY, that is, a score equivalent on FormY was found for each integer score

on FormX.

The FormX groups of N. = 100, 1, 000 were randomly sampled from the

smoothed (i, j) table, and FormY groups of Ny = 100, 1, 000 were independently

sampled from the smoothed (k, j) table. The bivariate (i, j) and (k, j) distributions

were estimated using sample data. The FE method was performed using bivariate

sample distributions. When a marginal density on j (i.e., it. or ity) equalled zero in

the sample, a rolling weighted average of frequencies procedure described in Jarjoura

and Kolen (1987) was used to obtain nonzero estimates of jx(i1j) and 'jy(kli) in (5)

and (6), respectively. After the marginal densities on i and k were estimated via

the FE method, the uniform and the Gaussian kernel methods were applied to solve

for the equipercentile equivalent on Y for each integer score on X. The bandwidths
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in the Gaussian kernel method were selected to be constant values B. = By = 1,

and 3. Holland and Thayer (1987) discussed a data-adaptive choice of bandwidth

via minimizing the sum of squared differences between continuized and empirical

distributions at all the discrete scores. Livingston (1993b) empirically showed that

the choice of bandwidths had essentially no effect on the bias of equating when the

size of the bandwidth lies below a small value (e.g., B. = By = 1.5). We will return

to the issue of selecting an appropriate bandwidth for the Gaussian kernel method

in the next section.

The random sampling and equating procedures were replicated 100 times. In

each replication, the standard errors of the uniform kernel method were estimated by

substituting the estimates of Var[Pu(x)], Var[Ou(G)], and Cov[Pu(x), au(G)] de-

rived in (20) and (21) into (14) for x = 0, ..., 55; the standard errors of the Gaussian

kernel method were estimated by substituting the estimates of Var [E(x)], Var [Oc(G)],

and Cov[Pc(x), ac(G)] derived in (32) and (36) into (29). The empirical standard er-

ror for a given x was defined as the standard deviation of its equipercentile equivalent

on FormY over the 100 replications. Figure 1 presents empirical standard errors

and the averages of standard error estimates over the 100 replications at different

x scores for the uniform kernel method. Because the simulated data contained few

scores at the lower tail in the score distribution, equipercentile equating at the lower

tail became unstable and inaccurate. For this reason, Figure 1 only contains plots

of standard error estimates for x > 10. The results in the Figure indicate that the

simplified formula in (14) gives reasonable estimates of standard error for the uni-

form kernel method especially for larger samples (i.e., N. = Ny = 1, 000). Figure 1
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also suggests that the standard error estimate using (14) is generally similar to that

estimated by Equation (44) in Liou and Cheng (1995a) (see Page 280, Figure 3).

Figures 2 and 3 contain plots of standard errors for the Gaussian kernel

method with B. = By = 1 and 3, respectively, for x > 10. It is noteworthy that

the sparsity in the tails, especially the lower tail, of sample distributions yielded

numerical inaccuracy in the standard error estimates, particularly when sample size

is small, for both the uniform and Gaussian kernel methods. However, numerical

accuracy of standard error estimates was improved by increasing the size of the

bandwidth to 3 for the Gaussian kernel method. It is also interesting to note that

an increase of the bandwidth resulted in a decrease of the standard error for the

Gaussian kernel method. Therefore, a larger bandwidth is recommended for the

Gaussian kernel method in small sample equating where standard errors become an

overriding consideration.

The bivariate sample distributions on Forms X and Y were also smoothed

using the log-linear model that preserved the first three sample moments and correla-

tion in the bivariate (i, j) and (k, j) tables. This log-linear model was recommended

for sample equating in several empirical studies (Liou & Cheng, 1995b; Livingston,

1993a). The smoothed densities on i and k under the common-item design were

estimated via the FE method. The uniform and Gaussian kernel methods were then

applied to find the equipercentile equivalent on Y for each of the scores on X. In the

continuization phase using the uniform kernel method, bothu and its simplified

version werewere solved for x = 0, - , 55 on FormX. The empirical standard errors

of the two score equivalents over the 100 replications are plotted in Figure 4 for the
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Figure 2: Standard errors for the Gaussian kernel method in study I (Bx = By = 1)
for (a) Nx = Ny = 100, and (b) Nx = Ny = 1,000.
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Figure 3: Standard errors for the Gaussian kernel method in Study I (B = By = 3)
for (a) Nx = Ny = 100, and (b) Nx = Ny = 1,000.

23



two sample sizes (Note:u is refered to as the simplified estimate in the Figure).

In each replication, the theoretical standard error ofu was estimated by combining

(26), (28) and Var[ati*(u)]. The averages of the standard error estimates over the

100 replications are also plotted in Figure 4 for the two sample sizes. The results

in Figure 4 indicate that the empirical standard errors of andand are close to

each other except for a few x scores at the lower tail. The simplified standard error

formula gives reasonable estimates for both andand 4* when the sample size is large.

When the sample size is small, however, the simplifed formula tends to overestimate

the actual standard errors at the lower tail. Note that 4.su* is computed using the em-

pirical density h(v); and 4, using the smoothed density h(v). It is known that h(v)

converges to h(v) faster than does h(v). Figure 4 also suggests that the empirical

standard error ofu is slightly larger than that of 4,,* at the lower tail, and similar

to that of u* elsewhere. Therefore, 4ii* seems to be a better estimate than 4-u.

In the continuization phase using the Gaussian kernel method, both Sc

ands were solved for x = 0, ..., 55 on FormX. Figures 5 and 6 contain the plots

of the empirical standard error estimates fore and over the 100 replications

for B = By = 1, and 3, respectively. Again, the standard error of Sc is slightly

larger than that of 4c* at the lower tail for smaller samples. However, the empirical

standard errors of and 4c* do not differ significantly in larger samples. In each

replication, the theoretical standard error of was estimated by computing (39),

(42), and Var[ac*(G)]. The averages of these theoretical estimates over the 100

replications are also plotted in Figures 5 and 6. In general, the standard error

estimates give close approximations to the empirical values for larger samples. In
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Figure 4: Standard errors for the smoothed uniform kernel method in study I for
(a) Nx = Ny = 100, and (b) Nx = Ny = 1,000.
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Figure 6, the theoretical estimates with B. = By = 3 slightly underestimate the

empirical standard errors for smaller samples, except at the lower extreme whose

overestimation was indicated.

Empirical Study II

The second dataset used in the empirical study was the 1990 National

Assessment of Educational Progress (NAEP) reading data. The reading assessment

for age 17/grade 12 consisted of 112 multiple-choice items. Item responses to the

assessment items were collected from 9,229 examinees via a balanced incomplete

block spiraling design (Johnson, 1992). Assessment items were calibrated using the

three-parameter logistic models and one item was removed from the analysis due

to a lack of fit to the model. In the empirical study, the assessment items were

constructed into two test forms of 50 items each. The additional 11 items served as

common-items for equating. Sample abilities of sizes 100, and 1,000 were randomly

generated from a normal distribution with mean 1.051 and standard deviation .981

which matched the scale of the original calibrated sample (Donoghue, 1992). The

raw scores on the test forms and common-items were then simulated according to

the three-parameter logistic model using estimated item parameters and random

ability values. The sampling of random abilities and their raw scores on the two

test forms and common-items were repeated 100 times.

The equating and standard error estimation procedures performed in Study

I were all replicated using the simulated NAEP sample data. In general, the empiri-

cal and theoretical standard errors obtained from Study II do not differ significantly

from those in Study I. Figures 7 through 9 contain the plots of empirical and theo-
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retical standard errors for equating smoothed distributions using different methods

for x > 20. For smaller samples, the theoretical estimates for the two methods tend

to overestimate standard errors at the lower tail; the Gaussian kernel method with

larger bandwidth tend to underestimate standard errors at the middle and upper

ranges of the score distributions. For larger samples, however, the theoretical esti-

mates become reasonable.

Final Remarks

The empirical studies show that the standard error formulae given in this

research perform reasonably well when sample sizes are as large as 1,000. In small

sample equating, the standard error of the uniform kernel method is expected to

be about the same size as that of the Gaussian kernel method with B. = By = 1

as have been examplified in Figures 1 and 2, 4 and 5, and 7 and 8, respectively.

However, the standard error of the Gaussian kernel method is decreased to a small

extent via using B. = By = 3. We found that the density estimate of g (c) in the

denominator of (29) is sensitive to the sparsity of data at the lower tails of score

distributions and often results in an extremely inaccurate estimate of Var(&). An

increase of bandwidths significantly improves the numerical accuracy in those stan-

dard error estimates. However, it is noteworthy that the standard error estimates

can be biased with large bandwidth when score distributions have been smoothed

using the log-linear model. A similar empirical finding would be expected if the

bandwidths were selected using the data-adaptive procedure suggested by Holland
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Figure 7: Standard errors for the smoothed uniform kernel method in study II for
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Figure 8: Standard errors for the smoothed Gaussian Kernel method in study II
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Figure 9: Standard errors for the smoothed Gaussian kernel method in Study II
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and Thayer (1989). We also found that a data-adaptive bandwidth via minimizing

the squared difference between empirical and continuized distributions tended to be

unstable in smaller samples. For instance, an extremely small bandwidth could be

selected where a larger bandwidth was expected for equating very sparse distribu-

tions (e.g., B = 0.007, and Nx = 100). With sparse data, it becomes a natural

choice for the Gaussian kernel method to adopt the method of variable bandwidth

that selects larger bandwidth for the lower-density region of score distributions and

vice versa. However, the variable bandwidth is mathematically complicated with

much involved calculations. In practice, a constant bandwidth via minimizing the

weighted sum of squared differences {i.e., Ei j(i)[j(i) jc(i)P1 can be a useful corn-

petitor and remains to be investigated further. Both empirical studies show that

the simplified estimates 4.--u* and contain smaller sampling error as compared with

and tc, respectively, especially at the lower tails of score distributions. Therefore,

we also recommend the use of to and tc* in small sample equating.
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