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Abstract

A Monte Carlo simulation study was conducted to investigate the

effects of sample size, estimation method, and model specification

on SEM fit indices. Based on a balanced 3x2x5 design, a total of

6,000 samples were generated from a prespecified population

covariance matrix, and eight popular SEM fit indices were studied.

Two primary conclusions were suggested. First, for misspecified

models, some fit indices appear to be non-comparable in terms of

the information they provide about model fit; some fit indices also

seem to be more sensitive to model misspecification. Second,

estimation method strongly influenced almost all the fit indices

examined, especially for misspecified models. These two issues do

not appear to have been previously well documented in the

literature. Perhaps the focus of most previous simulation studies

on correctly specified models may have failed to detect these

dynamics. It is further suggested that future research should not

only study different models viz a viz model complexity, but also

study a wider range of model specification conditions, including

correctly specified models as well as models specified incorrectly

to varying degrees.
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Covariance structure analysis, or structural equation modeling

(SEM) , has been heralded as a unified model that joins methods from

econometrics, psychometrics, sociometrics, and multivariate

statistics (Bentler, 1994). The generality and wide applicability

of structural equation modeling have been amply demonstrated

(Bentler, 1992; Joreskog & Sorbom, 1989). In recent years, SEM has

become an increasingly popular statistical tool for researchers in

psychology, education, and in the social and behavioral sciences in

general. For researchers in these areas, SEM has become an

important tool for testing theories with both experimental and non-

experimental data (Bentler & Dudgeon, 1996). But despite its

popularity in a variety of research situations, some thorny issues

still haunt SEM applications. One such prominent issue is the

assessment of model fit.

The assessment of model fit in SEM was initially framed within

the dichotomous decision process of hypothesis testing: the model

was either accepted as providing good fit to the data, or the model

was rejected as fitting the empirical data poorly. The decision to

accept or reject the hypothesis of fit was based on the probability

level associated with the x2 value, which assesses the discrepancy

between the original sample covariance matrix and the covariance

matrix reproduced based on model specifications.

As is the case with statistical significance testing in

general (Thompson, 1996), such an assessment of model fit is

confounded with sample size: the power of the test increases with

increases in the sample size used in the analysis. As a result,
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model fit assessment becomes very stringent when sample size is

large, and a minimal discrepancy between the original sample

covariance matrix and the reproduced covariance matrix will be

declared statistically significant, and consequently, rejected as

having poor fit with the empirical data. But when sample size is

small, the statistical test is lenient, and the test may fail to

detect meaningful differences between the sample covariance matrix

and the covariance matrix reproduced from the specified model.

Indices for Assessing Model Fit

Due to the generally recognized unsatisfactory nature of X2

statistic for model fit assessment (Thompson & Daniel, 1996), a

variety of alternative indices for assessing model fit have been

developed. Although some indices have been based on different

theoretical rationales (Maiti & Mukherjee, 1991; Tanaka, 1993),

many of them are superficially similar from a practical point of

view. To get a sense about the number and variety of these

indices, we only need to have a quick look at the output of current

computer programs for SEM analysis. The SEM procedure under SAS

(SAS Institute, 1990), PROC CALIS, outputs close to two dozen fit

indices. Following the same trend, the new version of LISREL

program (LISREL Mainframe Version 8.12) has substantially increased

the number and type of fit indices in its output. Clear guidelines

are currently lacking as regards the comparability and relative

performance of these indices under different conditions. This

somewhat chaotic state of affairs leaves many researchers confused

about which indices to consult or present in their research work.
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The main reason for this situation is that different types of

fit indices were developed under different theoretical rationales,

and there does not seem to exist one fit index which meets all our

expectations for an ideal fit index, even if we had a complete

consensus regarding our expectations. Although different opinions

have been expressed as to what characteristics an ideal fit index

should possess (Cudeck & Henly, 1991; Tanaka, 1993), an ideal fit

index, as discussed by Gerbing and Anderson (1993), may possess at

least three characteristics: (a) has a range between 0 and 1, with

0 indicating complete lack of fit, and 1 indicating perfect fit;

(b) is independent of sample size; and (c) has known distributional

properties to assist interpretation.

Since SEM fit indices were developed with different

rationales, they may differ across several dimensions. Tanaka

(1993) proposed a six-dimension typology for SEM fit indices, and

attempted to categorize some popular fit indices along these six

dimensions. This multifaceted nature of fit indices not only makes

the comparison among fit indices difficult, but also makes it

nearly impossible to select the "best" index from all those

available.

Statistically, most popular fit indices fall into one of

several types, and they were developed with different motivations

(Gerbing & Anderson, 1993). The first type of fit index- -

covariance matrix reproduction indices--attempts to assess the

degree to which the reproduced covariance matrix based on the

specified model has accounted for the original sample covariance
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matrix. This type of fit index can be conceptualized as the

multivariate counterpart of the coefficient of determination (R2)

as in regression or ANOVA analysis (Tanaka & Huba, 1989). Examples

of this type of fit indices are the Goodness-of-Fit Index (GFI) and

the Adjusted Goodness-of-Fit Index (AGFI) (Joreskog & Sorbom,

1989).

The second type of fit index--comparative model fit

indices--assess model fit by evaluating the comparative fit of a

given model with that of a more restricted null model. In

practice, the null model is usually a model which assumes no

relationship among the indicators of the model. Reservations have

been expressed about the appropriateness of using such null models

as comparative baselines (Sobel & Bohrnstedt, 1985). Bentler and

Bonnet's normed and non-normed fit indices (NFI and N_NFI) and

Bollen's incremental fit index (DELTA2) both belong to this family.

The third type of fit index--parsimony weighted indices- -

specifically takes model parsimony into consideration by imposing

penalties for specifying more elaborate models. More specifically,

these fit indices consider both model fit and the degrees of

freedom used for specifying the model. If good model fit is

obtained at the expense of freeing more parameters, a penalty will

be imposed. The reasoning in this type of model assessment is

embedded in the long tradition of science going back to William of

Occam's razor: between two models that fit data equally, the

simpler model is more likely to be true, and therefore is also more

likely to be replicated. Besides, statistically, better fit is
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always obtained when more parameters in the model are freed. The

parsimony indices proposed by James, Mulaik and Brett (1982) and by

Mulaik et al. (1989) represent this type.

A recent development in model fit assessment makes use the

noncentrality statistic from the noncentral x2 distribution for

constructing fit indices. Based on sample noncentrality statistic,

McDonald (1989) proposed an index of noncentrality. Bentler (1990)

proposed the Comparative Fit Index (CFI) which also uses the sample

noncentrality statistic. As with other fit indices proposed by

Bentler, CFI assesses model fit relative to a baseline null model.

Some Considerations for Assessing Fit Indices

As discussed before, one major problem caused by the variety

of SEM fit indices is that they create confusion in research

practice. Not only are the rationales for different indices

unclear to many researchers, but clear guidelines are also lacking

as regards choosing among these indices. Furthermore, most fit

indices have unknown distributional properties, thus making

interpretation of sample fit indices very difficult.

The obvious reason for the lack of clear guidelines for

choosing among different indices is that we simply do not fully

understand the performance characteristics of these indices under

different conditions. Due to the multifaceted nature of fit

indices, and to different rationales for developing these indices,

there does not seem to be a straightforward criterion against which

the performance of all fit indices can be judged. Although it is

not realistic to expect one straightforward criterion for judging

8
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the performance of fit indices, several related criteria can be

considered for this purpose.

First, despite the arguments in support of the role sample

size plays in statistical decisions (Cudeck & Henly, 1991), the

fact that the development of many fit indices was motivated to

overcome the shortcomings of X2 statistic, especially its

sensitivity to sample size, cannot be ignored. For this reason,

ideally, fit indices should be insensitive to or independent of

sample size (Bollen, 1986). This means that an index's variation

contributed by sample size conditions should be as small as

possible.

Second, under the assumption of multivariate normality, model

fitting and estimating can be accomplished through different

statistical procedures, such as maximum likelihood (ML) or

generalized least squares (GLS). Ideally, fit indices should be

invariant over this condition, i.e., different statistical theories

should not result in excessively variable indices for the same

data. This reasoning leads to the expectation that, ideally,

estimation procedures should contribute relatively little to an

index's variation.

Third, fit indices are designed to provide information about

the degree to which a model is correctly or incorrectly specified

for the given data. Obviously, model misspecification should

directly affect fit indices. Put differently, the degree of model

misspecification should be the major contributor to the variation

of a sample fit index.

9
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Finally, as in any other statistical estimation, two criteria

apply in assessing the relative performance of competing

estimators: unbiasedness and variation. Between two estimators,

the one less biased is most often preferred; between two equally

unbiased estimators, the one with less random variation is most

often preferred. This consideration leads to two additional

expectations: (a) a good fit index should have as little systematic

bias (upward or downward) as possible; and (b) an ideal fit index

should have as little random variation as possible.

Given the five criteria, relative performance of fit indices

can be assessed through Monte Carlo experiments. Monte Carlo

simulation becomes necessary mainly due to lack of theory with

which to specify the distributions for the indices. As pointed by

Bentler (1990), "Essentially nothing is known about the theoretical

sampling distribution of the various estimators" (p. 245).

Previous Studies

Researchers have carried out simulation studies for most SEM

model fit indices. Although some early studies focused on x2

behaviors under different sample size conditions (Boomsma, 1982),

soon it became apparent that x2 test was too dependent on sample

size to be useful in many situations. As a result, many

alternative model fit indices were developed, and the majority of

later simulation studies put more emphasis on these alternative

model fit indices, especially those ranging from 0 to 1.

Invariably, all simulation studies investigated behaviors of

model fit indices under different sample size conditions (Anderson

10
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& Gerbing, 1984; Bearden, Sharma, & Teel, 1982; Bentler, 1990;

Bollen, 1989; La Du & Tanaka, 1989; Marsh, Balla, & McDonald,

1988), since this has been considered a major weakness of the

original X2 approach, and consequently, a major concern regarding

alternative model fit indices. The majority of fit indices

investigated, including the normed-fit-index (NFI), the goodness-

of-fit index (GFI), and the adjusted goodness-of-fit index (AGFI),

were shown to be influenced by sample size to different degrees.

But since different indices were involved in different

studies, a performance comparison of the indices across different

simulation designs tends to be difficult. Also, for obvious

reasons, most studies looked at early fit indices, such as GFI,

AGFI, NFI, etc., and some newer indices, such as McDonald

centrality, Bollen's Delta2, etc., have rarely been investigated.

The sensitivity of some fit indices to model misspecification

was examined in a few studies (Bentler, 1990; La Du & Tanaka, 1989;

Marsh et al., 1988). The study by Marsh et al. (1988) was

comprehensive in terms of the variety of fit indices studied, but

the small number of replications in each cell condition (n=10)

might have limited the generalizability of some conclusions. One

finding from the study was that the relative fit indices, such as

NFI, tended to be non-comparable across different studies or

different data sets, since their values not only depended on model

specification, but also, or more importantly, on how bad the null

model itself was. Other studies (Bentler, 1990; La Du & Tanaka,

1989) involved fewer indices, making performance comparison among

11
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fit indices difficult.

Very little is known about the influence of estimation methods

on fit indices. In a few studies which examined the issue (La Du

& Tanaka, 1989; Maiti & Mukherjee, 1991), maximum likelihood (ML)

and generalized least squares (GLS) estimation procedures were

used. Estimation procedures were shown to influence the value of

the fit indices studied. But in these studies, only very few fit

indices were examined, and the performance of other popular indices

were unknown.

The purpose of the present study was to compare empirically

the relative performance of SEM model fit indices. Three prominent

factors which might affect SEM indices were considered: sample

size, estimation procedure, and model misspecification. A three-

factor experimental design was used to compare results across the

Monte Carlo simulations. The variation of each fit index was

partitioned to assess the influence of the three factors, and an

index's behavior pattern was empirically examined.

METHOD

SEM Fit Indices Studied

Although a variety of fit indices exist, some of them are not

readily comparable with each other. For example, Akaike's

information criterion (AIC) both has such a different metric from

many other fit indices and is used in such a different fashion that

a meaningful comparison between AIC and GFI is difficult. Based on

the consideration of comparability, eight popular indices were

chosen for the study: goodness-of-fit index (GFI), adjusted

12
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goodness-of-fit index (AGFI), Bentler's comparative fit index

(CFI), McDonald's centrality index (Centrality), non-normed fit

index (N_NFI), normed fit index (NFI), Bollen's normed fit index

rhol (RHO1), and Bollen's non-normed index delta2 (DELTA2). All

these fit indices have an approximate range from zero to one, with

higher values indicating better fit, and lower values indicating

poorer fit. The comparable scale of these indices makes the

comparison among them more straightforward.

Design of Monte Carlo Simulations

A three-factor balanced experimental design was used. The

design is graphically represented in Figure 1. Five levels of the

sample size condition (50, 100, 200, 500, 1000), three levels of

model specification (true model, slightly misspecified model,

moderately misspecified model) , and two estimation methods (maximum

likelihood, generalized least squares) were incorporated in the

5x3x2 design. Under this design, a total of 6,000 (5x3x2 x 200)

replications of SEM model fitting were conducted, with 200

replications in each cell condition. Such a design allowed a

systematic assessment of the impact of the three factors on fit

indices: sample size, degree of model misspecification, estimation

procedure. Also, 200 replications within each of the conditions

provided estimates precisely enough to allow systematic comparisons

among the fit indices on characteristics such as unbiasedness and

degree of random variation.

Insert Figure 1 about here

13
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Model and Model Specification

An SEM model of moderate complexity was simulated in the

present study, as presented in Figure 2. This model was derived

from a substantive research example described in the LISREL

(Version 7) manual (Joreskog & Sorbom, 1989, p. 178). As suggested

elsewhere (Gerbing & Anderson, 1993), simulating substantively

meaningful models in Monte Carlo simulation may increase the

external validity of Monte Carlo research results.

Insert Figure 2 about here

The degree of SEM model complexity is a characteristic which

is difficult to define, since complexity depends not only on the

number of observed variables, but also on the number of latent

variables, as well as on the unique relationship pattern among both

given observed and latent variables. Most substantive studies

using SEM involved from two to six latent variables, with about two

to six indicators for each latent variable (Gerbing & Anderson,

1993). If this observation is correct, the model simulated in the

present study, with four latent variables (two exogenous and two

endogenous latent variables), each of which has three or four

indicators, could be characterized as having moderate complexity,

though of course such characterization is inherently subjective.

The population parameters for the true model in Figure 1 were

artificially specified, as presented in Table 1 using LISREL

representation. The population covariance matrix for the true

model was obtained by using the prespecified parameters in Table

14
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1 to reproduce the population covariance matrix, using the formula

(Joreskog & Sorbom, 1989, p. 5):

E = A), (I-B)-' (r41 +4V) (I -B')-1 Ay + 0 /i), (I-B)- 1 NA'

nAri (I-Y)' Ay Ax(tikx + 06

Insert Table 1 about here

Table 2 presents the population covariance matrix reproduced

using SEM population parameters in Table 1 and the formula above.

Mathematically it is guaranteed that, other than rounding errors,

perfect fit would be obtained if the model in Figure 2 was fit to

this population covariance matrix. Since variable means do not

affect SEM model fitting, to simplify the data generation process,

all variables were centered with means being zeros. All sample

data sets were generated based on the population covariance matrix

in Table 2.

Insert Table 2 about here

Although a true model is relatively easy to specify in

simulation research, model misspecification is difficult to handle

for at least two reasons: (a) model misspecification can take such

a variety of forms; and (b) the degree of model misspecification is

not easily quantified, so it is difficult to make a priori

prediction about the severity of misspecification (Gerbing &

Anderson, 1993). We do not yet have solutions to these issues. In

15
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the present study, model misspecification was achieved by fixing

some parameters in the measurement model which should be set free,

i.e., by setting some parameter values to be zero when, in fact,

they were not, as indicated in Figure 2.

The degree of model misspecification was empirically

determined by fitting two misspecified models to the population

covariance matrix data, and the resultant values of fit indices

were used as indicators of severity of model misfit. The terms

"slightly misspecified" and "moderately misspecified" are used in

the present paper simply to indicate different degrees of

misspecification in this study; by no means should these terms be

generalized beyond the present study, unless the degrees of

misspecification are operationalized in the same manner.

Data Source

The present study only considered sample data generated from

multivariate normal distributions. As a result, any issues related

to data non-normality were not investigated. Data generation was

accomplished using the data generator under the Statistical

Analysis System (SAS PC Window Version 6.08). For each of the

6,000 sample data sets generated, the following steps were

implemented:

(1) random normal variables with a desired sample size were

generated, using the pseudorandom number generator under

SAS;

(2) the random normal variables were linearly transformed to

have desired means and standard deviations;

1:6
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(3) the uncorrelated variables were then transformed to

multivariate sample data with pre-specified population

inter-variable correlations, using the matrix

decomposition procedure (Kaiser & Dickman, 1962; Vale &

Maurelli, 1983).

(4) The multivariate sample data was fit to one of the three

models under one of the two estimation procedures, using

PROC CALIS procedure under SAS. All desired fit indices

from the sample were obtained and saved for later

analysis.

Simulation programming was implemented through a combination

of SAS Macro language, SAS PROC IML matrix language, and the SAS

PROC CALIS procedure which implements structural equation modeling

under the SAS environment. All simulation was carried out on an

IBM PC Pentium 100 Mhz computer with SAS Windows Version 6.08.

Analysis

The major analytic strategy was to partition variation of

sample fit indices into different components to assess the

influence of different factors considered in the design. Since the

design was a balanced experimental design, the variations due to

different sources were orthogonal, which made the analysis and

interpretation more straightforward. Factorial analysis of

variance (ANOVA) was used as the analysis technique. This analysis

allows us to partition the variation of a particular fit index into

four major independent sources: sample size, estimation procedures,

model misspecification, and random variation, plus some interaction
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terms. Using the four criteria discussed previously, the behaviors

of the eight fit indices were systematically examined, and their

relative performance judged.

Besides partitioning sampling variance of the fit indices to

assess the influences of different factors, values of fit indices

were examined to assess characteristics such as the existence, or

lack thereof, of systematic bias, and the extent of random

variations for different indices.

RESULTS AND DISCUSSION

As discussed previously, five criteria were suggested for

judging the relative performance of the eight fit indices examined

in the present study: (a) sensitivity to sample size, (b)

sensitivity to estimation methods, (c) sensitivity to model

specification, and (d) degree of unbiasedness and (d) degree of

random variation. Since there does not seem to be any consensus in

the literature regarding the relative importance of these five

features, the order of discussion of these issues should not be

interpreted as reflecting implied relative importance of the

criteria.

Table 3 presents descriptive data for the eight fit indices

under different conditions: model specification, sample size

conditions, estimation methods. Although more detailed data were

available for the sample fit indices, e.g., confidence intervals,

distribution characteristics (skewness, kurtosis), range, etc.,

here we present the basic information of means and standard

deviations.

18
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Insert Table 3 about here

Estimation Theory

An examination of Table 3 reveals several phenomena. First,

under the true model (Model 1), the population values of the fit

indices were essentially the same based on the two methods: maximum

likelihood (ML) and generalized least squares (GLS). Also, under

the true model, the sample means of the fit indices under different

sample sizes (50, 100, 200, 500, 1000) were roughly comparable,

especially with the increase of sample size. Three indices

(CENTRA, NFI, RHO1) seemed to be exceptions. For these three

indices, the two estimation methods exhibited noteworthy

differences, especially under small sample sizes. For example,

under a sample size 50, the mean for RHO1 under ML was .9006, while

the mean under GLS was .9948. Similar differences occurred for

CENTRA and NFI. With increased sample size, the difference of mean

values between the two estimation methods seems to disappear. So

under the true model, both the population values and the sample

means of the fit indices gave the impression that the two

estimation methods in SEM provide comparable information about

model fit, especially when sample size is reasonably large (e.g.,

over 200).

However, under the two misspecified models (Model 1: slightly

misspecified; Model 2: moderately misspecified), we observed some

discrepancies between the two estimation methods both in terms of

the population values of fit indices, and in terms of their sample



SEM Fit Indices -19-

means under different sample size conditions. Under Model 2, such

discrepancies did not appear to be too large, except for sample

means of some individual fit indices (e.g., CENTRA, NFI, RHO1)

under smaller sample size conditions (50, 100). Wherever such

discrepancies occurred, fit index values based on GLS invariably

exceeded those based on ML.

Under Model 3 (the moderately misspecified model), some

discrepancies between the two estimation methods became alarmingly

large, to the extent that they would give very different

impressions about model fit. For example, for GFI, population

values based on ML and GLS were .7902 and .9473, respectively; the

population values for AGFI based on the two methods were .6791 and

.9195, respectively. By current standards of model fit, the former

values in both pairs would be judged as indicating very poor fit,

while the latter values would be construed as indicating reasonable

fit.

The same pattern occurred to varying degrees for the eight fit

indices, and especially for the GFI, AGFI and CENTRA indices.

Again, wherever discrepancies occurred, fit values based on GLS

exceeded those based on ML, and in some cases, to considerable

degrees. Such large discrepancies between the two estimation

methods was not anticipated. Thus, the two estimation methods seem

to provide somewhat dissimilar information about model fit in the

presence of model misspecification.

Model Specification

Besides the comparison between the two different estimation
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methods under different conditions, several other phenomena also

stand out. One such phenomenon was the discrepancy in index

performance across model specification conditions. Although

different fit indices seemed to provide similar information about

model fit under the true model, such was not the case for the two

misspecified models. For example, for the slightly misspecified

model, McDonald's centrality had a population value of .8714, while

CFI and DELTA2 had values as high as .9798.

This situation became worse under the moderately misspecified

model: GFI, AGFI, and CENTRA had population values of .7902, .6791,

and .6087, respectively, while CFI, NFI, and DELTA2 had values of

.9272, .9269, and .9272, respectively, under the same method (ML).

Using conventional criteria for judging model fit, these two sets

of fit indices would suggest very different conclusions about model

fit, with the former group suggesting poor or very poor fit, and

the latter group suggesting reasonably good fit. The difference

across fit indices occurred in similar degrees for the sample means

of fit indices under different sample size conditions, as well as

under different estimation methods, i.e., under both ML and GLS.

These results suggest that the fit indices were differentially

sensitive to model misspecification. As indicated by data in Table

3, GFI, AGFI, and CENTRA were more sensitive to model

misspecification than the other five indices, all of which are

relative fit indices, i.e., they are constructed by comparing the

fit of the specified model with that of a null model.

Sampling Bias

21
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Another observation based on data in Table 3 is related to

systematic sampling bias of fit indices. It can be seen that most

sample fit indices tended to be systematically biased downward,

though to different degrees. For example, under the true model

(Model 1), under sample sizes of 50, 100 and 200, GFI and AGFI

showed fairly strong downward bias under both estimation methods,

with sample means considerably lower than population values. The

same was also true under the two misspecified models. Other fit

indices exhibited similar downward bias pattern to lesser degrees.

Of the eight fit indices, DELTA2, N_NFI, and CFI showed relatively

slight downward sampling bias.

Sampling downward bias under the true model was expected, due

to ceiling effect of fit indices. But the degree of downward bias

of a few indices under misspecified models somewhat exceeded our

expectations. Also, stronger downward bias seemed to occur for

those indices which showed more sensitivity to model

misspecification. More specifically, GFI, AGFI, and CENTRA showed

more severe downward bias than the other fit indices under ML

estimation. Furthermore, other than GFI and AGFI, downward bias

seems to have only occurred under ML estimation method, but not

under GLS estimation.

This absence of downward bias when using the GLS estimation

method is probably related to the fact that GLS estimation tended

to provide almost maximum fit index values even under Model 3

(moderately misspecified model). As a result, very little sampling

variation occurred. A comparison of standard deviations between ML
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and GLS estimation methods for the five indices (CFI, N_NFI, NFI,

RHO1, and DELTA2) indicates substantially smaller standard

deviations under GLS than those under ML, as reported in Table 3.

Sources of Variation in the Fit Statistics

Table 4 presents an ANOVA partitioning of the sampling

variance of fit indices into different sources. The row labelled

total sum of squares (SOS) provides an indication of the sampling

variations of different indices. As indicated by the total sums of

squares presented, the variation of fit indices differed

substantially under the simulation conditions represented in the

study: while the total SOS across all conditions for CFI was 5.118,

the SOS for CENTRA was 131.9796, a difference of 30 times! Three

indices--GFI, AGFI, and CENTRA--which were shown earlier to be more

sensitive to model misspecification than the other five indices,

seem to have substantially larger variation than the other five.

Insert Table 4 about here

Model Misspecification. The p2's for model specification

reported in Table 4, that is, the proportion of variance associated

with model specification, indicates that CENTRA had the highest

proportion in its variation (50.3%) which was contributed by model

misspecification, while GFI (37.3%), AGFI (34.1%) followed, in that

order. As reasoned before, since an fit index is designed to

provide information about model fit, model specification (including

model misspecification) should be a major contributor to an index's

total variation. Also, large variation due to model specification
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indicates an index's sensitivity to model misspecification. NFI,

RHO1,and DELTA2 seemed to be least sensitive to model

misspecification, as indicated by to small es (15.1%, 16.3%, and

13.8%) for the condition of model specification. Based on this

criterion, CENTRA would be ranked at the top, followed by GFI and

AGFI. NFI, RHO1, and DELTA2 would be ranked at the bottom.

Sample Size. Sample size condition strongly influenced GFI

and AGFI, accounting for 31.5% and 34.3% of total variance,

respectively, for these two indices. CENTRA was the index least

susceptible to sample size condition, with only .06% of variance

accounted for by this condition. CFI and N_NFI also had very small

percentages of total variance accounted for by sample size

condition (.6% and .5% respectively). The other three fit indices

had about 10% of total variance due to sample size. The CENTRA

index was least influenced by sample size, followed by CFI, N_NFI,

while GFI and AGFI seemed to be overly affected by sample size.

Estimation Method. Although the GFI and AGFI indices seemed

to be overly influenced by sample size, GFI and AGFI were least

influenced by estimation method, with about 10% of their total

variation contributed by this factor. CENTRA followed GFI and AGFI

in this regard, with about 20% of total variation accounted for by

estimation method. The other five indices seemed to be overly

affected by estimation method, with the percentage of total

variation contributed by this factor ranging from 32.8% to 46.8%.

Based on the criterion that a fit index should not be overly

affected by estimation method, GFI and AGFI would be ranked best,
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with CENTRA following these two. Again, NFI, RHO1, and DELTA2

would be worst.

Specification-by-Estimation Interaction. As reported in Table

4, the interaction term between model specification (MS) and

estimation method (ES) accounted for a moderately large proportion

of total variances for all the fit indices, ranging from 12.2% to

26.1%. This indicates that model specification may have a stronger

influence on fit indices under one estimation method than under

another.

A close look at Table 3 suggests that this interpretation is

probably correct: model specification had much stronger influences

on the estimated fit indices under ML than under GLS. As a matter

of fact, for five indices (CFI, N_NFI, NFI, RHO1, and DELTA2),

model misspecification seemed to have no impact at all on the

estimated fit indices under GLS, with all these five indices

attaining almost maximum values even under Model 3 (moderately

misspecified model).

In other words, under GLS estimation, these fit indices are

almost totally insensitive to the model misspecification conditions

implemented in the present study; and their values gave the

impression that even the moderately misspecified model was a model

with perfect fit to the data. These findings were unexpected, and

they raise serious questions about the effectiveness of these fit

indices in providing information about SEM model fit, especially

under GLS estimation.

Random Variation
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Table 5 presents data on fit indices' random variation.

Random variation was assessed through coefficients of variation

(CV), which is considered a scale-free measure of variation. Using

CV to represent random variation has the advantage of avoiding the

problem of noncomparability across variables caused by different

measurement metrics. CV is constructed as a ratio of sample

standard deviation (s) to sample mean (X) in percentage terms, with

higher values representing more variation, regardless of

measurement metric.

The results presented in Table 5 support several observations.

First, larger sample size resulted in smaller variation for all

indices. This was expected, since sampling variation should

decrease with the increase of sample size. Second, some indices

tended to have considerably larger random variation than others.

Leading the list of fit indices in this regard was CENTRA, with

consistently higher CVs than other indices under almost all

conditions (models, sample sizes, estimation methods). Third,

among the three models, the severity of model misspecification

resulted in larger random variation of fit indices. Consistently,

fit indices had larger random variation under the moderately

misspecified model than that under slightly misspecified model,

which, in turn, had larger variation than that under the true

model.

Estimation method also seems to have a strong effect on fit

indices' random variation. Invariably, random variation was

substantially larger under ML estimation than under GLS estimation.
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A few indices, e.g., CFI, N_NFI, NFI, DELTA2, had almost no random

variation at all under GLS estimation. Although small random

variation is generally considered as a positive aspect for a

statistic, we suspect that the highly restricted random variation

under GLS, especially for fit indices CFI, N_NFI, NFI, RHO1, and

DELTA2, was caused by a ceiling effect of these fit indices

estimated under GLS. If we look back at Table 3, it can be seen

that these five indices under GLS estimation always attained almost

maximum values, under the various sample size and/or what model

specification conditions.

Conclusions

These results raise two important issues in SEM analysis. In

most SEM applications, the major purpose is theory testing. This

purpose is realized by examining how the predicted relationship

pattern based on a theory can be supported by empirical data. In

other words, the fit between a theoretical model and empirical data

is of paramount importance in SEM analysis. Unfortunately, model

fit as a central question in SEM analysis appears to be difficult

to address, to say the least.

The first major issue raised by the results of the present

study concerns the comparability of fit indices. The majority of

previous Monte Carlo studies focused on correctly specified models,

and much less empirical work has examined misspecified model of

varying degrees. For a correctly specified model, fit indices seem

to be comparable in that they all indicate that model fit is close

to being perfect under reasonable sample size conditions. But for
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misspecified models, the picture is different.

As indicated by the results of the present study, fit indices

may be much less comparable to each other than most researchers

realize. For example, using ML estimation, for our Model 3

(moderately misspecified model), under the sample size condition of

500 (reasonable sample size), a mean value of .7821 for GFI, as

reported in Table 3, would certainly convey very different meaning

about model fit from that based on a mean value of .9200 for NFI,

or .9269 for DELTA2. Such discrepancies among fit indices have not

been previously documented.

It is our belief that too much previous simulation research

has focused on the true model, and not enough empirical work has

been done for misspecified model. As a result, this comparability

issue among fit indices has previously been largely ignored. Based

on the results obtained in the present study, at least for the

model conditions examined in the study, some fit indices appear to

be much more sensitive to model misspecification (e.g., McDonald's

Centrality, GFI, AGFI) than others (e.g., CFI, N_NFI, NFI, RHO1,

DELTA2).

The second major issue involves intra-index comparability

under different estimation methods. Theoretically, under

multivariate normality conditions, ML and GLS estimation are

asymptotically equivalent under large sample conditions (Gerbing &

Anderson, 1993). If this is the case, empirically, we would expect

that the discrepancy between fit indices' values under the two

estimation methods would diminish as sample size increases. This
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expectation, however, did not materialize. For example, for our

Model 3 (moderately misspecified model), even under sample size

condition of 1000, the mean value for GFI were .7850 and .9400,

respectively, under ML and GLS estimation, as reported in Table 3.

In research practice, such different fit index values based on the

same model could lead to very different conclusions about model

fit.

Similar intra-index discrepancy existed for other fit indices

examined in the study. Here again, the discrepancy between

estimation methods does not seem to be that obvious for models with

less severe misspecification. Therefore, it is likely that this

issue has been largely ignored in the literature due to the fact

that previous focus has been on correctly specified models, and not

enough work has been done for misspecified models.

We asked, which fit index has relatively better performance

under different conditions? Although the results of the present

empirical study does not provide the final answer to this question,

some tentative conclusions can be presented.

To the extent that a fit index should be sensitive to model

misspecification, the McDonald centrality index performed best,

followed by GFI, and AGFI, with others trailing behind these three.

If we desire an index which is minimally influenced by sample size,

then the centrality index again came out to be the choice, followed

by CFI, N_NFI, and some others. As regards sensitivity to sample

size, the GFI and AGFI--two very commonly used indices--did not

perform well, since sample size conditions accounted for more than
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30% of their variations.

It is interesting to note that, in Tanaka's typology of fit

indices (Tanaka, 1993), GFI, AGFI, and CFI were classified sample

size dependent, while DELTA2 was classified sample size

independent. Though this classification was empirically supported

for GFI and AGFI, empirical results in the present study

contradicted Tanaka's as regards both CFI and DELTA2: for CFI, only

less than one tenth of a percent of variation was attributed to

sample size conditions, while more than ten percent of variation

was attributed to sample size conditions for DELTA2.

If we desire indices which are not overly influenced by

estimation methods (ML or GLS in the present study), the GFI and

AGFI indices seem to be the primary candidates, since their

proportion of total variation which can be attributed to estimation

method was appreciably less than other indices. This result,

however, is based on estimation-appropriate GFI and AGFI indices,

since different weight matrices are used in ML and GLS estimation

to construct GFI and AGFI (SAS Institute, 1990; Tanaka, 1993). The

centrality index trails GFI and AGFI in this regard. Other indices

had considerably larger proportions of their variation associated

with estimation method.

Downward bias occurred for almost all the fit indices

examined, and such downward bias is more severe under smaller

sample size conditions. For example, for our Model 1 (true model),

under sample size 100, the 90% confidence interval (not presented

in tables) for GFI under ML estimation would be (.9056, .9454),
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while the population GFI was 1.0000. Although such downward bias

is expected under the true model due to the ceiling effect of fit

index values, similar downward bias also existed for misspecified

models, as can be seen from Table 3. Other fit indices exhibited

similar downward biases in varying degrees. The existence of such

downward bias suggests that sample fit indices tend to present a

somewhat more pessimistic picture about model fit than what is true

in reality, especially when sample size is small. Among the fit

indices examined here, GFI and AGFI had the most serious downward

bias under smaller sample sizes.

Limitations

Several limitations of the present study should be

acknowledged, since they may limit the generalizability of this

study. The first limitation of the present study was that only one

model was used as the basis for model specification condition,

instead of a range of models varying in characteristics such as

model complexity and different patterns of coefficient values in

the model. Since only one model was used in the simulation, it is

unknown to what extent the results can be replicated for other

models, or for SEM analysis in general. The contributions of the

present research must be augmented by further research.

The second limitation involves the precision of the estimates

in the study. In the present study, after a sample was generated,

the sample was fit to one model under one estimation method only,

and samples in each cell were independent. For example, the 200

samples in the cell of sample size of 100, ML estimation, and True
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Model specification were different from the other 200 samples in

the cell of sample size of 100, ML estimation and slight model

misspecification. The difference between these two cell conditions

might be due to both model specification and sampling error.

Although such confounding of model specification and sampling error

may not be a statistical problem in the long run, it may affect the

precision of study results if the number of samples in each cell is

not large enough. To avoid such potential confounding, one sample

could be generated and fit to all three models, instead of three

independent samples being generated (Gerbing & Anderson, 1993).

SUMMARY

A balanced 3x2x5 (three model specification conditions x two

estimation methods x five sample size conditions) design was used

in a Monte Carlo simulation study to investigate the effects of

these factors on SEM fit indices, with 200 replications within each

cell. A total of 6,000 samples were generated from a prespecified

population covariance matrix, and each of three prespecified models

with known specification error were fit to data. Eight popular SEM

fit indices were studied. The results of the present study suggest

the following:

1. Although fit indices seem to be comparable in providing

information about model fit for correctly specified models,

some fit indices appear to be non-comparable for incorrectly

specified models. Some fit indices seem to be much more

sensitive to model misspecification than others, at least for

the model conditions investigated in our study. This problem
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has not been well documented in the literature, probably

because previous studies focused more on correctly specified

models, and not enough emphasis has previously been put on

misspecified models.

2. Estimation method (maximum likelihood versus generalized least

squares in this study) strongly influence almost all the fit

indices examined. This influence does not seem to be obvious

for correctly specified or slightly misspecified models; for

more severe model misspecification, however, the effect

appears to be strong. Again, this phenomenon has not

previously been well documented in the literature. We suspect

that the focus of previous studies on correctly specified

model, rather than on misspecified model in SEM research, may

have camouflaged this potential difference.

3. To recommend some fit indices at the expense of others is

always difficult, since it is never certain if one particular

study, or even a group of studies, has really captured the

complexity of model fit within SEM analyses. Nevertheless,

with this caveat in mind, based on the somewhat limited

results of the study, we tentatively recommend use of

McDonald's Centrality, followed by GFI and AGFI indices,

mainly for their sensitivity to model misspecification. Other

indices seem to have too little variance under different model

specification conditions.

Obviously, more research is needed to address the important

issues raised in the present study. We suggest that future
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research should not only examine a wider range of models in terms

of model complexity and some other characteristics, but also study

a wider range of model specification conditions, including both

true model and misspecified models of varying degrees.
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Table 1: Population Parameters for the True Model
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