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Student Choices: Using a Competing Risks Model of Survival Analysis

There is a nation-wide concern regarding the declining number of students who
remain in school through graduation. For years, educational research has focused on the
issue of student dropout (Pittman, 1995; McMillen, 1994; Fitzpatrick and Yoels, 1992;
Ensminger & Slusarcick, 1992). It is well known that students today face challenges from
various sources, and many are leaving high school before reaching graduation. Using
survival analysis methods, researchers can investigate not only if, but when, students are
most likely to leave school. Morrow (1986), in an attempt to standardize the analysis of
school dropouts, recommended that the condition of “dropout” be defined more
specifically. He identified several modes of exiting school that are typically classified as
“dropout,” including withdrawal to another district, expulsion, and dropouts who return to

school at a later time.

Why Conduct a Competing Risks Survival Analysis?

By using a competing risks model, survival analysis methods can be extended to
predict which of several mutually exclusive outcomes, or modes of leaving school,
students will choose based on predictor variables, thereby ascertaining if the profile of risk
differs across groups. “With competing risks survival analysis methods, any number of
qualitatively different modes of exit can be modeled. By building hazard models of each
of these events, we can better understand the different forces that drive different students
to different ends” (Willett and Singer, 1991, p. 428).

Researchers have used numerous data collection and analysis methods to study, for
example, students who drop out. Three data collection methods have been most
prevalent, but there are specific problems associated with each of these methods.
Retrospective studies gather information on a cohort of students to compute a dropout
rate. Limitations of these studies include (a) pooling disparate groups of people,
(b) excluding subgroups, (c) biased reporting of educational attainment levels, and most
importantly, (d) they ignore the problem of censoring, and (e) they ignore the timing of
when people dropped out (Willett and Singer, 1991).



Two-wave prospective studies are used by many school districts to calculate
annual dropout rates. These dropout rates frequently use enrollment figures that
aggregate students across many grade levels. Again, they provide little insight into who
drops out and when. Willett and Singer (1991) provide a further description of the
problems that arise from data aggregated across grade levels. Dropout rates by grade
provide more information because they can identify when students are at the greatest risk
of dropping out.

Although multiwave studies are more commonly used today, the calculated
dropout rates can be misleading because each year’s rate is based on a different cohort
student group with differing social makeup and demographics. When only “end-product”
statistics are calculated, such as total number of graduates, dropouts, or no-shows, those
who are censored are left out of the model. The most significant limitation is the failure to
identify when students are most likely to make a choice regarding their educational career.
With a competing risks survival analysis model, researchers can simultaneously study all of
the possible choices, reaching appropriate conclusions that answer questions about the risk
of dropping out during specific time periods.

This paper begins with a brief introduction to logistic regression and some of the
basic concepts of survival analysis necessary for an understanding of the competing risks
survival analysis method. Following that is a description of the data set, how the
competing risks survival analysis was conducted, and the results of the analyses for each
competing risk and predictor variables. Finally, results of the six competing risks modeled

by the procedure are interpreted.

Logistic Regréssion
The logistic regression model is formulated for use with interval level data on
independent variables and dichotomous data on the dependent variable. The related logit
model is more appropriate when both dependent and independent variables provide

dichotomous or categorical data.



The Logistic Regression Model »

A standard regression analysis of data with a single dependent variable, X, would
yield a simple regression model Y’ = o + BX. This basic least-squares regression model is
usually not suitable for dichotomously scored dependent variables because probabilities
may fall below 0 and above 1. In logistic regression models, a curvilinear relationship,
rather than a linear one, occurs because of the nature of the dependent variable coding.
Therefore, a logarithmic transformation is necessary to linearize the logistic response
functions, creating probabilities that fall in the range of 0 to 1 (Neter, Wasserman, and
Kutner, 1989). Through this transformation, the logistic regression model can be
expressed directly in terms of probability as:

p=eu+ﬂx/[1 +eu+BX]

The logistic regression coefficient, B, can be interpreted as an effect on the odds.
Taking the antilog of both sides of the logistic regression equation, the following is
obtained:

log[p/1-p] = e ** P* = e%(eP)*
“The right-hand side of the equation has an exponential form that implies that every unit
increase in X produces a multiplicative effect of € on the odds” (Agresti and Finlay, 1988,
p. 485).

Logistic regression models are estimated using maximum likelihood rather than
ordinary least-squares, as in linear regression. Wright (1995) states that “in logistic
regression, the maximum likelihood criterion is generally used for selecting parameter
estimates. The coefficients maximize that probability (likelihood) of obtaining the actual
group memberships for cases in the sample. Thus, the logistic regression coefficients are
known as maximum likelihood parameter estimates” (p. 225). This is done through an
iterative process in which the computer program finds successively better approximations

of the B values that satisfy the maximum likelihood equations.

Assumptions of the Logistic Regression Model
If specific assumptions about the population are met, maximum likelihood

estimates of logit parameters should be unbiased, efficient, and normal with large enough



data samples (Hamilton, 1992; Hildebrand, 1986). First, it is assumed that the random
dichotomous variable takes the value 1 with probability P, and the value 0 with probability
Po =1 - P,. Second, the outcomes must be statistically independent. In other words, a
single case can be represented in the data set only once. 7hird, the model must be
correctly specified so that it contains all relevant predictors and no irrelevant predictors.
This specification assumption, however, is rarely met.

Fourth, the categories or outcomes must be mutually exclusive and collectively
exhaustive. This means that a case cannot be in more than one outcome category at a
time, and every case must be a member of one of the categories under analysis. Fifth,
none of the X variables are linear functions of the others. Perfect multicollinearity makes
estimation impossible, and strong multicollinearity makes estimates imprecise. Finally,
because the standard errors for maximﬁm likelihood coefficients are large sample
estimates, the sample must be large. For most cases, a minimum of 50 cases per predictor
variable is sufficient to test hypotheses involving the logistic regression coefficients

(Hamilton, 1992; Wright, 1995).

Discrete-Time Survival Analysis

Researchers frequently wish to ask questions related to the timing of
developmental or educational events that occur in various populations and the variables
that impact these events. Events such as amount of time children spend in day care
(Singer, Fosburg, Goodson, and Smith, 1978), teacher attrition (Murnane, Singer, and
Willett, 1988, 1989), high school student dropout and graduation (Sween, 1989,
Roderick, 1994), and doctoral program completion (Zwick and Braun, 1988) have been
studied using survival analysis methods to answer, not just whether the event occurs, but
when it is most likely to occur, and under what conditions. Survival analysis is unique in
that it can handle both time-varying and time-invariant predictor variables and uses data
from all observations, censored or uncensored. A case is considered to be censored if the

event in question did not occur before the end of data collection.



The Survivor Function

The analysis begins with an examination of the survival probability function. This
survivor function is a plot of the probability that an individual will remain in the risk pool
as a function of time. The shape of the survivor function is very consistent — a negatively
accelerating, monotonic extinction curve (Singer and Willett, 1991). At the beginning of a
study, when all individuals are present, the survival probability is 1.00. As time passes,
and individuals experience the event in question, the survival probability drops toward 0.0,
though rarely reaching it because every case usually does not experience the event before

data collection ends.

The Hazard Function

The hazard function has been called the “cornerstone” of survival analysis for three
reasons: (1) it shows whether and, if so, when events occur, (2) information from both
censored and uncensored cases is included, and (3) the sample hazard function can be
computed for every time period under consideration, then plotted, to reveal variation in
the timing of events (Singer and Willett, 1993). The hazard function mathematically
registers changes in the slope of the survivor function, thereby allowing the researcher to
identify high risk time periods. The higher the hazard, the higher the risk that the event

will occur.

Statistical Models of Hazard

Relationships between entire hazard profiles and one or more predictors are
hypothesized in the hazard models. The entire hazard function is the conceptual outcome,
with other variables added as potential predictors of that outcome. “A population hazard
model formalizes this conceptualization by ascribing the vertical displacement to the
predictors in much the same way as an ordinary linear regression model ascribes
differences in mean levels of any continuous noncensored outcome to predictors” (Willett
and Singer, 1991, p. 416).

Because the variables included are measured at different levels, the hazard profiles
must be transformed logarithmically to put all variables on the same level of measurement.

(See Ferguson and Takane, 1989, for a discussion of acceptable transformations of data.)



Time is measured in discrete, rather than continuous, intervals so that a logistic
transformation is appropriate. If p represents a probability, then logit(p) is the natural
logarithm of p/(1-p); so logit(p) can be interpreted as the conditional log-odds of the event
in question occurring (Allison, 1984).

The Baseline Model. Po(f) is the baseline log hazard profile, and represents the

values of the outcome without other predictor variables. The baseline equation can be
expanded to account for specific measurements of discrete time intervals to
logit.(h); = [ouT) + a2T2 + . . . ouTy]

The alpha parameters are “multiplg intercepts, one per time period” and represent
the “baseline logit-hazard function because it captures the time-period by time-period
conditional log-odds that individuals whose covariate values are all zero will experience
the event in each time period, given that they have not already done so” (Singer and
Willett, 1993, p. 167).

Adding Predictor Variables. As in multiple regression, the equation expands to

include predictor variables that control for observed heterogeneity. The relationship of the
log-transformed hazard profile to the predictor variable, X, is

logite(h); = [ouTy + a2 T2 + . .. o Ti] + BiXi
Interaction terms can also be included in the hazards model. Cross-product terms are
added to the main effect models in the same manner in which interactions are examined in
multiple regression. The [ parameters measure the amount of “vertical shift” in

log-hazard per unit difference in the predictor variables.

Assumptions for the Discrete-Time Hazard Model

Having postulated the discrete-time hazard model using logistic regression, Singer
and Willett (1993) point out three assumptions. The assumptions are (1) linearity, (2) no
unobserved heterogeneity, and (3) proportionality. Linearity is similar to linearity in
regression, with the addition that “vertical displacements in logit hazard are linear per unit

of difference in each predictor” (Singer and Willett, 1993, p. 182).



No unobserved heterogeneity refers to the assumption that the inclusion of
predictors in the model accounts for all of the error. Thus, it becomes very important to
choose the correct predictors and not omit relevant predictors.

As described in Cox’s model (Cox, 1972), proportionality refers to the assumption
that logit hazard profiles of various predictors maintain the approximate shape of the
baseline profile, but shift it up or down, depending upon the sign of the B value. If data
are not checked for nonproportionality, results may be biased. Other event history
analysis models make no allowance for the violation of this proportionality assumption,
although nonproportionality does occur frequently.

In discrete-time survival analysis, it is relatively easy to ascertain whether the
proportionality assumption has been violated. Singer and Willett (1991) have developed a
SAS program creates new dummy variables that reflect the effects of the predictors over
time. (See Appendix A.) These new variables are cross-products between the time
indicators (a,;T), a,T>, etc.) and the predictors. This procedure allows the data to be
checked both graphically and statistically. A visual examination of graphs of the hazard
functions for Y=1 and Y=0 will indicate whether there is a near-proportional distance
between the two lines. Significant differences between the profiles can be checked
statistically by consulting a Bonferroni table to evaluate critical F values (Denson and
Schumacker, 1994).

Method

The procedure for conducting a competing risks survival analysis is similar to that
of conducting a survival analysis with only one outcome. Data are prepared and coded in
a like manner and survival and hazard functions are interpreted by the same guidelines.
However, in a competing risks survival analysis, the hazard probabilities for each
competing outcome are recombined to create a complete profile of each risk for each time
period in question. The use of a competing risks model that focuses on the combination
of events, rather than the analysis of each event separately, gives a more realistic picture of

the pattern of choices.



The Data Set

Data were obtained from the database of the Dallas Public Schools on a cohort of
students who began the ninth grade for the first time in the 1990-91 school year. These
students were followed over the next four school years. Six competing risks were
identified and coded on the database: (a) withdrawal from school for reasons identified as
legal by the State, (b) dropping out of school, (c) graduation, (d) still enrolled in school
after four years, (e) no-show status, and (f) unknown outcome. (For a list of specific
reasons for leaving school and their coding as either withdrawal or drop out, see
Appendix B.) Cases were eliminated from the data set if any of the following occurred:

1) Multiple drops or withdrawals during the four years,

2) Incomplete data from the database, such as no withdrawal date or reason, or

3) Withdrawal coding did not match a known outcome.

After removing the above noted cases, a total of 7, 748 students with no more than
one of the competing risks remained. As can be seen in Table 1, almost half (47.8%) of
the students had graduated by the end of the 1994 school year, 20% had dropped out,
15% had withdrawn, 7% either had been identified as having no known outcome or were
still enrolled at the beginning of the 1994-95 school year, and 2% had been identified as
no-shows.

Students were also coded respective to their status on the following variables,
previously identified in the literature as predictors of dropout status: (a) gender
(Lakebrink, 1989), (b) ethnicity (Rumberger, 1995; Miller, 1989), (c) special education
enrollment (Kortering and Blackerby, 1992), (d) identification as limited English proficient
(LEP) (Watt and Roessingh, 1994), (e) retention at some time during grades 1-8 (Nason,
1991; Roderick, 1994), and (f) overage relative to their class members (Orr, 1987).
Numbers and percentages of students in each of the predictor categories are also included

- in Table 1.



Table 1

Demographic Information for Data Set

Censors/Predictors N %
Outcomes
Withdrawal 1,139 15.3
Dropout 1,512 20.3
Graduation 3,556 478
Still Enrolled 568 7.6
No-Show 127 1.7
No Known Qutcome 530 7.1
Gender
Male 3,682 495
Female 3,751 50.5
Ethnicity
Anglo 1,312 17.6
African American 3,596 48.4
Hispanic 2,355 31.7
Asian 169 23
Other Predictors
Limited English Proficient 637 8.6
In Special Education 506 6.8
Retained in Grades 1 - 8 1,110 14.9
Overage 2,775 373
Total Population 7,432 100.0

Preparing the Data Set
Preparing the data set for discrete-time survival analysis using logistic regression
involved coding the predictor variables dichotomously as [0,1], “0” indicating the absence

(‘1”

of and indicating the presence of the variable value. Because the entire data set was
used for the separate analysis of each outcome, dummy variables were created indicating
which of the six outcomes the student was coded. This modification of the definition of
censoring allowed for the analysis of the competing risks. In this particular analysis, there
were no time-varying variables, although discrete-time survival analysis handles the

inclusion of both time-varying and time-invariant variables quite easily.
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Before using logistic regression to conduct a discrete-time survival analysis, the
data structure was transformed from the standard one-person, one-record data set (the
person-data set) into a one-person, multiple period data set (the person-period data set)
(Singer and Willett, 1991). Singer and Willett’s (1991) SAS program was used to array
the data in such a fashion. (See Appendix C for an example of the transformation.) For
this analysis, there were eight time periods, corresponding to the naturally occurring eight
semesters in the four school years (1990-91, 1991-92, 1992-93, and 1993-94). The
records in the reconstructed person-period data set indicated what happened to each
student during each discrete-time period when the outcomes of interest could have
occurred, until one did occur, or until data collection ended (whichever came first).

The reconstructed data set yielded one record per semester per person. Each
person-period record contained period-specific values of 19 different types of predictors,
as well as several other variables used for identification (ID), specification of the last
period the student was enrolled (LASTPDS), and the student’s mode of exiting school
(CENSOR). Table 2 contains the name, the dummy variable name that was created (if
necessary), and the meaning of each variable. An annotated version of Willett and
Singer’s SAS program, modified to conduct a discrete-time competing risks survival
analysis, can be found in Appendix A. This program also fits the model and reconstructs

fitted hazard and survival plots from parameters estimates.
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Table 2

Variables Included in the Discrete-Time Competing Risks Survival Analysis

Dummy
Variable
Variable Name Name Meaning of Variable
Input Variables
ID - Student identification number assigned by District
SEX - Gender
ETHNIC - Ethnicity
LEP - ‘Limited English Proficiency status
SPED - Special Education status
RETAIN - Retention status
OVERAGE - Overage status
LASTPDS8 - Refers to the last semester the student was enrolled
CENSOR - Indicates student’s mode of exiting school
Dummy Censor Variables

WD - Indicates student withdrew
DROP - Indicates student dropped out
GRAD - Indicates student graduated
STILLIN - Indicates student was still enrolled
NOSHOW - Indicates student was a no-show
NOKNOW - Indicates database had no known outcome

Dummy Ethnicity Variables
ANGLO - Indicates student is Anglo
BLACK - Indicates student is African American
HISP - Indicates student is Hispanic
ASIAN - Indicates student is Asian

Dummy Variables

OCCASION El - E8 Specifies discrete-time interval to which record refers
SEXTIME SX1 - SX8 Reflects the effect of gender over time
ETHTIME ETHI - ETH8 Reflects the effect of ethnicity over time
LEPTIME L1-L8 Reflects the effect of LEP status over time
SPETIME SP1 - SP8 Reflects the effect of special education over time
RETTIME R1-R8 - Reflects the effect of retention over time
OVRTIME O1-08 Reflects the effect of being overage over time
ANGTIME AN1 - AN8 Reflects the effect of being Anglo over time
BTIME Bl - B8 Reflects the effect of being African American over time
HISTIME H1 - H8 Reflects the effect of being Hispanic over time
ASTIME AS1 - AS8 Reflects the effect of being Asian over time

n 13



Procedure for Conducting a Competing Risks Survival Analysis

Six separate survival analyses were conducted using the entire data set, one for
each outcome that was analyzed. Through dummy coding, students who did not
experience the outcome in question were treated as censored. (See dummy censor
variables in Table 2.) A total of 114 hazard profiles were created by calculating hazard
models for the baseline (1 analysis), each of the predictor variables (9 analyses), and the
cross-products of each predictor with time (9 analyses) for each outcome.

After identifying the predictors of hazard for each outcome separately, the risk
profiles for each outcome were recombined to create an overall risk for all events taken
together. Hazards for each competing outcome were also combined for each predictor
variable to compile a complete risk profile for each of the predictor variables and for the
effect of each predictor variable across time. Although not discussed in this paper, the last

set of hazard profiles could be used to check the proportionality assumption.

Results and Discussion

Baseline Models

The baseline models represent the values of the outcome without other predictor
variables. Maximum likelihood estimators were not calculated for every time period for
the outcomes of graduation and still enrolled because those events models could not occur
in every time period. To make time periods more meaningful, they will henceforth be
indicated by the grade and semester they represent. In other words, time period 1 will be
labeled 9(1), indicating first semester of the 9th grade; time period 2 will be labeled 9(2),
meaning second semester of the 9th grade, and so forth.

Attempting to determine estimators for time periods where no event occurs causes
a quasicomplete separation in the data points. Menard (1995) cites several causes of
quasicomplete separation: (a) collinearity in the independent variables, (b) zero cell count,
which occurs frequently when using categorical variables, and (c) near perfect or perfect
prediction of the dependent variable with a set of predictors. As graduation could only
occur during the last three periods (second semester of the 11th grade and both semesters

of the 12th grade) and still being enrolled could only occur after the last time period

12
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(second semester of the 12th grade), attempting to compute maximum likelihood
estimates with zero cell counts causes quasicomplete separations. Likewise, there were no
unknown outcomes or no-shows coded for time periods one and two (both semesters of
the 9th grade). These time periods were, therefore, excluded from the analyses to
eliminate the zero cell count and allow the determination of maximum likelihood estimates
for those outcomes (Menard, 1995). The hazards for each baseline model are listed in

Table 3.

Table 3

Baseline Hazards for Each Competing Risk Model

Time Periods

Model 9(1) 92) 10(1) 102) 11(1) 11(2) 12(1) 12(2)
Withdrawal 0062 .0072 0475 .0200 .0414 0176 .0321 .0277
Dropout .0424 0658 .0129 0255 .0148 .0242 .0392 .0194
Graduate - - - - - 0069 0048 .8069
Still Enrolled - - - - - - - .1309
No-Show - - .0005 0015 .0026 .0041 .0147 .0012
Unknown Outcome - - .0084 0131 0120 .0150 .0376 .0141
Note. “-” Indicates that no maximum likelihood estimates were calculated for these

analyses due to zero cell counts.

Hazards can be directly interpreted as probabilities that the event will occur in that
time period. For example, there is a 0.7% chance that any student who is still in the risk
pool by the second semester of the 11th grade will graduate, a 0.5% chance that any
student who is still in the risk pool will graduate after the first semester of the 12th grade,
and an 81% chance that any student who remains in school through the end of second
semester of the 12th grade will graduate. An éxamination of the hazards for each
competing risk across time periods reveals that students are always at the greatest risk of
either withdrawing or dropping out until the end of the senior year, when graduation is

most likely.



Main Effect Models

For each competing outcome, the addition of predictor variables usually enhances
the ability to predict the outcome. This is assessed through the use of the likelihood ratio
chi-square test, a procedure very similar to testing for the significance of increments of R?
when additional variables are added to a multiple regression equation. In logistic
regression, the log-likelihood is the criterion for selecting parameters, and when multiplied
by -2 has approximately a chi-square distribution. Larger values indicate a worse
prediction of the dependent variable (Menard, 1995). To compare the fit of the two
models, the -2LL (twice the positive difference between their log-likelihoods) is calculated
and compared. In most cases the associated degrees of freedom will be the difference
between the number of variables in the two models.

This procedure was employed to compare the main effect model fit statistics for
each variable for each competing risk. The -2LL for the base model was subtracted from
the -2LL of each predictor model. The -2LL for each model and the change in the -2LL
reflecting the addition of each predictor can be found in Table 4.

From an examination of Table 4, it can be seen that some variables caused a
greater change in the -2LL chi-square statistic than others. For all six competing
outcomes, the inclusion of information regarding retention and overage status produced
the most change in the -2LL. Other predictor variables, such as gender, were more
informative for some outcomes than others. The effect of gender contributed a larger
change for the outcomes of graduation or still enrolled, but little for the outcomes of

withdrawal or dropout.
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Models Including the Interaction with Time

To maintain the assumption of proportionality, logit hazard profiles of various
predictors must retain the approximate shape of the baseline profile. Frequently,
predictors’ hazards do not simply shift the baseline up or down, but actually change the
shape. If the effect of a predictor varies over time, there is an interaction between that
variable and time, and a nonproportional hazard model should be used. Because main
effect models constrain the hazard profiles to be proportional (Singer and Willett, 1993),
the inclusion of the cross-products of the predictors with time in the regression equation
may reveal a truer reality. Singer and Willett (1993) warn that “serious consequences
await those who blindly fit proportional-odds models without examining the tenability of
the assumptions” (p.189). |

In this study, some of the predictor variables appear to interact with time, thus
violating the proportionality assumption. When appropriate, models that include an
interaction with time, rather than main effect models, are interpreted. As with main effect
models, the likelihood ratio chi-square test can be used to assess the fit of the models.
The -2LL for the base model was subtracted from the -2LL of each predictor model for
each competing outcome. This procedure produced the information found in Table 5,

which lists the -2LL and the change in the -2LL for each predictor crossed with time.
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When comparing the information from Table 4 with that of Table 5, it can be seen
that for the outcomes of withdrawal and dropout, the inclusion of the cross-products of
the predictor variable and time in the regression equation caused a greater change in the
-2LL than the inclusion of the predictor variable alone. This reinforces the need to
interpret the interaction models, rather than the main effect models. For the other four
outcomes, the main effect models produced the greater change in the -2LL. In order for
maximum likelihood estimators to be calculated, in other words, to avoid a quasicomplete
separation in the data points due to zero cell counts, the SAS program (Appendix A) was
altered to include only those time periods in which the event could have occurred.- Even
with this modification, the inclusion of the predictor variables LEP and special education
status in the logistic regression equation caused a quasicomplete separation in the data
points, and no maximum likelihood estimates were calculated. Logically, if the event
could not have occurred in any one of the eight time periods, the models that included an

interaction with time would not be appropriate to interpret.

Interpretation of the Six Competing Risks

Withdrawal

As indicated from the changes in -2LL (Table 5), the model including the
interaction with time is the appropriate one to interpret. The hazard probabilities found in
Table 6 are a result of this interaction. Asian students withdrew only between time

periods 10(1) and 12(1). Consequently, there are no estimators for periods 9(1) and 9(2).
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Table 6

Hazard Probabilities of Withdrawing in Each Time Period

by Predictor Variables
Time Periods
Variable 9(1) 92) 10(1) 102) 11(1) 11(2) 12(1) 12(2)
Gender
Male 0.05 0.02 0.07 0.03 0.04 0.04 0.05 0.05
Female 0.01 0.01 0.05 0.02 0.04 0.02 0.04 0.03
Ethnicity
Anglo 0.01 0.02 0.10 0.03 0.09 0.03 0.04 0.03
Afro Am 0.00 0.01 0.03 0.02 0.03 0.01 0.03 0.03
Hispanic 0.00 0.00 0.04 0.02 0.04 0.02 0.03 0.02
Asian® - - 0.06 0.01 0.05 0.02 0.05 0.04
LEP Status _
EP 0.01 0.01 0.05 0.02 0.04 0.02 0.03 0.03
LEP 0.00 0.00 0.03 0.01 0.04 0.01 0.04 0.04
Retention Status
Not Retained 0.01 0.01 0.05 0.02 0.04 0.02 0.03 0.02
Retained 0.01 0.02 0.06 0.01 0.06 0.04 0.06 0.07
Special Education Status
Not in SpEd 0.01 0.01 0.05 0.02 0.04 0.02 0.03 0.03
In SpEd 0.00 0.01 0.05 0.02 0.04 0.02 0.04 0.02
Overage Status
Not Overage 0.00 0.00 0.04 0.01 0.03 0.01 0.03 0.02
Overage 0.01 0.02 0.07 0.04 0.06 0.03 0.04 0.05

Note. A “-” indicates that no maximum likelihood estimates were calculated for these analyses
due to a quasi-complete separation in the data points.

®Analysis for this predictor included only time periods 10(1) through 12(2).

Across all time periods except for 11(1), it can be seen that males are always at a
greater risk of withdrawing than females. The risk is especially high during time period
10(1), which is also the period of highest risk for females. Across each time period, Anglo
students have the highest hazard probabilities, while African American students have the
smallest probabilities for withdrawal. Each ethnic group has higher risks for withdrawal
during the first semesters of each year across all four years. Surprisingly, students who
are English Proficient (EP) are at a higher risk of withdrawing in most time periods than
the LEP students. In all time periods except 10(2), students who have been retained are
more likely to withdraw than those who have not, especially at time periods 10(1), 11(1),
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12(1), and 12(2). There is not much difference in the risks of withdrawing for students
who are or are not in special education programs. Students who are overage respective to
their classmates have a much higher probability than their classmates of withdrawing
across all time periods, particularly at time periods 10(1), 11(1), and 12(2). Perhaps these
time periods, when the new school year starts or when it is almost time to graduate, are

especially sensitive for the overage student.

Dropout

It is also the appropriate to use the model including the interaction with time to
interpret the outcome of dropping out. (See Table 4 and Table 5 for the -2LL values.)
No estimators were produced for Asian students in periods 12(1) and 12(2) because these
students withdrew only in time periods 9(1) through 11(2). The hazard probabilities of

dropping out in each time period for each predictor variable group are shown in Table 7.
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Table 7

Hazard Probabilities of Dropping Out in Each Time Period

by Predictor Variables
Time Periods
Variable 9(1) 92) 10(H) 102 11(1)y 112 12(1) 12(2)
Gender
Male 0.04 0.09 0.03 0.05 0.02 0.04 0.05 0.03
Female 0.04 0.07 0.02 0.03 0.02 0.03 0.04 0.02
Ethnicity
Anglo 0.06 0.09 0.01 0.02 0.01 0.01 0.02 0.01
Afro Am 0.03 0.04 0.01 0.02 0.01 0.02 0.05 0.03
Hispanic 0.05 0.09 0.01 0.03 0.02 0.03 0.04 0.03
Asian® ' 0.04 0.09 0.04 0.02 0.02 0.04 - -
LEP Status
EP 0.04 0.06 0.01 0.02 0.01 0.02 0.04 0.02
LEP 0.05 0.09 0.01 0.04 0.03 0.05 0.05 0.02
Retention Status
Not Retained 0.04 0.06 0.01 0.02 0.01 0.02 0.04 0.02
Retained 0.04 0.10 0.04 0.08 0.05 0.07 0.07 0.05
Special Education Status
Not in SpEd 0.04 0.06 0.01 0.02 0.01 0.02 0.04 0.02
In SpEd 0.05 0.09 0.02 0.05 0.01 0.05 0.04 0.02
Overage Status
Not Overage 0.02 0.03 0.01 0.01 0.01 0.02 0.03 0.02
Overage 0.08 0.14 0.03 0.06 0.03 0.05 0.06 0.03

Note. A “-” indicates that no maximum likelihood estimates were calculated for these analyses
due to a quasi-complete separation in the data points.

®Analysis for this predictor included only time periods 9(1) through 11(2).

Similar to the outcome of withdrawal, males are at a greater risk than females,
particularly at time periods 9(2) and 10(2), although females also experience a high risk
(7% chance) at time period 9(2). As with other predictors, all ethnic groups are at the
greatest risk of dropping out in the 9th grade, particularly Hispanic, Asian, and Anglo
students. For the next four time periods, [10(1) - 11(2)], Asian students maintain the
greatest probability for dropping out. During most time periods, LEP students are more
likely to drop out than EP students. Time period 9(2) has the highest risk for these
students, a 9% probability of dropping out.
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Students who have been retained maintain a higher risk than those who have not,
with their highest risk periods in 9(2), 10(2), 11(2), and 12(1). Perhaps as these students
approach the end of a school year, facing the possibility of being retained once again, they
choose to drop out rather than experience the failure. Special education students exhibit a
similar pattern to retainees, having a high risk of dropping out in time periods 9(2), 10(2),
and 11(2). Students who are overage have the highest risks of dropping out than any
other subgroup in this study. Their hazard probabilities are consistently higher than those
who are not overage. The 9th grade seems to be the most difficult time for these students,

with hazards of 8% for time period 9(1) and a whopping 14% for time period 9(2).

Graduation
Graduation could only occur during the last three time periods, consequently,
interpretation of the main effect model is the most appropriate. The hazards for the

probability of graduating during these time periods are in Table 8.
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Table 8

Hazard Probabilities of Graduating in Each Time Period

by Predictor Variables
Time Periods
Variable 9(1) 9(2) 10(1) 10Q2) 11(1) 11Q2) 12(1) 12(2)
Gender
Male - - - - - 0.32 0.25 0.99
Female - - - - - 0.77 0.71 0.99
Ethnicity
Anglo - - - - - 006 004 098
Afro Am - - - - - 0.10 0.07 0.99
Hispanic - - - - - 0.07 0.05 0.99
Asian - - - - - 0.05 0.04 0.97
LEP Status
EP - - - - - 0.01 0.01 0.85
LEP - - - - - 0.05 0.04 0.98
Retention Status
Not Retained - - - - - 0.01 0.01 0.85
Retained - - - - - 0.05 0.04 0.98
Special Education Status
Not in SpEd - - - - - 0.01 0.01 0.84
In SpEd - - - - - 005 004 098
Overage Status
Not Overage - - - - - 0.01 0.01 0.94
Overage - - - - - 0.07 0.05 0.99

Note. Analyses for this outcome included only time periods 11(2) through 12(2).

Females have a much higher probability of early graduation in time periods 11(2)
and 12(1) than males. However, if males remain in the risk pool until time period 12(2),
they have the same chance (99%) of graduating as the female students. A surprising result
for the ethnic predictors is that, for this data set, both African American and Hispanic
students have a higher probability of graduating in each time period than the Anglo
students. African American students have a 10% probability of graduating at the end of
the 11th grade and a 7% chance after first semester of the 12th grade; much higher
probabilities than any other ethnic group. But for all ethnic groups, if students remain
through time period 12(2), they have very high probabilities of graduating. Another
interesting finding is that the LEP students have consistently higher probabilities of

Q 23

ERIC 27




graduating than the EP students. EP students, who make up 91.6% of the data set, have
only an 85% probability of graduating, compared to the 98% chance of the LEP students.

Students who have been retained and students who are enrolled in special
education have equal probabilities of graduating in each time period. Again, their chances
are higher than that of their counterparts’, those who have not been retained and are not in
special education. If these students remain in school through time period 12(2), they have
a 98% probability of graduating. Overage students who have not experienced some other
mode of exit before the 12th grade also have a high probability (99%) of graduating.

Still Enrolled After Four Years of High School
The outcome of being still enrolled after four years of high school has only one
appropriate time period to predict, that of 12(2), therefore, the main effect model is used.

Hazard probabilities for each predictor variable for time period 12(2) are listed in Table 9.
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Table 9

Hazard Probabilities of Being Still Enrolled in Each Time Period

by Predictor Variables
Time Periods
Variable 9(1) 9(2) 10(1) 10(2) 11(1) 11(2) 12(1) 12(2)
Gender
Male - - - - - - - 0.98
Female - - - - - - - 0.99
Ethnicity
Anglo - - - - - - - 0.57
Afro Am - - - - - - - 0.74
Hispanic - - - - - - - 0.62
Asian - - - - - - - 0.53
LEP Status
EP - - - - - - - 0.14
LEP - - - - - - - 0.55
Retention Status
Not Retained - - - - - - - 0.14
Retained - - - - - - - 0.55
Special Education Status
Not in SpEd - - - - - - - 0.04
In SpEd - - - - - - - 0.54
Overage Status
Not Overage - - - - - - - 0.17
Overage - - - - - - - 0.60

Note. Analyses for this outcome included only time period 12(2).

Male and female students are equally likely to be still enrolled. When comparing
ethnic groups, African American and Hispanic students are more likely than Anglo (57%)
or Asian students (53%), to remain longer than four years, presumably because the latter
groups have experienced some other outcome in previous time periods. Those that
continue in school after four years are also equally likely (54%) to be LEP, in special
education, and have been retained in previous years. Students who are overage have a

60% probability of this outcome, the highest of all predictor groups.
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No-Show

There were no students on the database coded as no-shows during the Sth grade
year, probably due to data input error rather than actual nonoccurrence. The main effect
model produced the most change in the -2LL. The hazard probabilities for this outcome

are presented in Table 10.

Table 10
Hazard Probabilities of Being a No-Show in Each Time Period
by Predictor Variables
Time Periods
Variable 9(1) 9(2) 10(1) 10(2) 11(1) 11(2) 12(1) 12(2)
Gender
Male - - 0.10 0.26 0.38 0.50 0.78 0.22
Female - - 0.44 0.72 0.82 0.88 0.96 0.67
Ethnicity
Anglo - - 0.00 0.01 0.02 0.03 0.11 0.00
Afro Am - - 0.01 0.02 0.04 0.06 0.19 0.02
Hispanic - - 0.00 0.02 0.03 0.01 0.13 0.01
Asian - - 0.00 0.01 0.02 0.03 0.10 0.01
LEP Status
EP - - 0.00 0.00 0.00 0.00 0.02 0.00
LEP - - 0.00 0.01 0.02 0.03 0.10 0.01

Retention Status

Not Retained - - 0.00 0.00 0.00 0.00 0.01 0.00
Retained - - 0.00 0.01 0.02 0.03 0.11 0.01
Special Education Status
Not in SpEd - - 0.00 0.00 0.00 0.00 0.02 0.00
In SpEd - - 0.00 0.01 0.02 0.03 0.10 0.01
Overage Status
Not Overage - - 0.00 0.00 0.00 0.01 0.02 0.00
Overage - - 0.01 0.02 0.03 0.04 0.13 0.01

Note. Analyses for this outcome included only time periods 10(1) through 12(2).

In every time period after the Sth grade, females had higher probabilities of being
no-shows than males. Their hazards are alarmingly high, especially in time periods 10(2)
through 12(1), where probabilities ranged from 72% to 96%. Likewise, time period 12(1)

seems to be a critical period for all predictor groups, with highest probabilities occurring
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during this period. If students are likely to be no-shows, this seems to happen most

frequently at the beginning of time period 12(1).

No Known Outcome

There is an increased need for accountability regarding students’ mode of exit from
school. Whether there are errors in data input or it is truly not known what becomes of
certain students, schools must make every possible effort to ascertain and correctly
identify student outcomes. With this knowledge, schools can become aware of which
outcomes are most probable for groups of students, and support efforts to keep students
in school. In this data set, the mode of exit from high school for 7% of the students was
not known. As with the model for no-shows, there were no unknown outcomes for
students during the 9th grade. The main effect model is appropriate, therefore, because
there are no hazards for time periods 9(1) and 9(2). Hazard probabilities for time periods
10(1) through 12(2) are listed in Table 11.
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Table 11

Hazard Probabilities of Having No Known Outcome in Each Time Period

by Predictor Variables
Time Periods
Variable 9(1) 9(2) 10(1) 10(2) 11(1) 11(2) 12(1) 12(2)
Gender
Male - - 038 050 048 054 075  0.53
_Female - - 082 088 087 08 096 089
Ethnicity
Anglo - - 0.07 0.10 0.10 0.12 0.25 0.11
Afro Am - - 0.11 0.17 0.16 0.19 0.39 0.18
Hispanic - - 0.08 0.12 0.11 0.14 0.29 0.13
Asian - - 0.06 0.09 0.08 0.10 0.23 0.10
LEP Status
EP - - 0.01 0.01 0.01 0.02 0.04 0.02
LEP - - 0.06 0.10 0.10 0.11 0.24 0.10
Retention Status
Not Retained - - 0.01 0.02 0.01 0.02 0.04 0.01
Retained - - 0.07 0.10 0.10 0.11 0.24 0.10
Special Education Status
Not in SpEd - - 0.01 0.01 0.01 0.02 0.04 0.01
In SpEd - - 0.06 0.10 0.09 0.11 0.23 0.10
Overage Status
Not Overage - - 0.00 0.02 0.02 0.02 0.05 0.02
Overage - - 0.08 0.12 0.11 0.13 0.28 0.12

Note. Analyses for this outcome included only time periods 10(1) through 12(2).

Female students have very high probabilities of having no known outcome in each
time period, much higher than male students. African American students have
probabilities of having no known outcome that range from 11% in time period 10(1) to
39% in time period 12(1). These hazards are consistently higher than for any of the other
ethnic groups, although hazards for Anglo and Hispanic are higher than for Asian. LEP
students, special education students, and retainees have relatively equal hazards, always
higher than their EP, regular education, non-retainee counterparts. Overage students have
the next highest hazards of having no known outcome after the female and ethnic groups

previously mentioned.
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The last three time periods continue to remain critical for all predictor groups, with
time period 12(1) having the highest hazards. This data set appears to “lose” more
students during the fourth year than at any other time.

Same Results — Different Point of View

Ultimately, a competing risks survival analysis With.this type of data should allow
schools or school districts to ascertain which periods of time present the highest risk for
different modes of exit from school for students with certain characteristics. Therefore, it
is also useful to look at the various competing outcomes from the viewpoint of the
predictor variables. Graphs are an effective way to demonstrate the power of this method.
The hazards for dropping out during each time period for the four ethnic groups are
graphed in Figure 1. A glance at any time period gives one a visual cue as to which ethnic
group is at the greatest risk of dropping out or which time periods are riskiest for one or

all groups.
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Figure 1. Hazard probabilities for dropping out for each time period by ethnic groups.

Combined graphs of each competing risk for a predictor variable can likewise
show which risk is most likely during which time period. In Figure 2, the hazards for each
competing risk are plotted for students who have been retained. The outcome of being
still enrolled after four years occurs only after the last time period, 12(2), and has a “o0”
representing its hazard probability.
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Figure 2. Hazards of each competing risk for students who have been retained.

An examination of this graph allows one to pinpoint the most and least likely
outcomes for a student who has been retained during each time period or which outcomes
are more likely across all time periods. For students who have been retained, the highest
probability across time periods 10(1) through 12(1) is to have no known outcome. This
kind of information should allow schools to see that this particular group of students has a

tendency to “get lost in the crowd” and may require special attention.

Conclusions
Although there are a variety of statistics available to describe individual modes of
exit from high school, only the survival analysis model using logistic regression computes
the probabilities of the occurrence of the event in question. Consider the following
example of three different statistics that can be calculated regarding student dropout:

(a) the percentage of students remaining in school or choosing some other method of exit,
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(b) the percentage of all dropouts who left during each time period, and (c) the hazard
probabilities, or risk, of dropping out in each time period. A comparison of three different
computational approaches is presented in Table 12, using information from the Dallas

Public Schools data set.

Table 12

A Comparison of Three Different Computational Approaches

Percentage Percentage of all Hazard

Time remaining in school  dropouts leaving  probabilities of
Periods (% surviving) each time period dropping out

9(1) 95.8 20.8 42

9(2) 89.5 30.7 6.6
10(1) 88.3 5.6 1.3
10(2) 86.2 10.3 2.6
11(1) 85.1 5.6 1.5
11(2) 83.4 8.5 24
12(1) 80.8 12.9 3.9
12(2) 79.6 5.5 1.9

Note. Adapted from Willett and Singer, 1991, Table 2.

Examination of the second column in Table 12 reveals the percentages of students
from the initial data set that either remained in school or chose some other method of
exiting for each time period. There is a steadily declining number of students that
“survive” dropping out. By reviewing the third column, one could conclude that periods
9(1), 9(2), 10(2), and 12(1) are times when most students are likely to drop out. The
hazard probabilities for dropping out, by time period, are presented in the fourth column.
Examination of the hazard probabilities by time periods leads one to several different
conclusions. Because the hazard probability modifies the risk set — earlier dropouts are
omitted from the analysis because they are no longer eligible to drop out (having already
done so) — it is evident that periods 9(1), 9(2), and 12(1) are critical. However, for
periods 10(1) and 12(2) the orders are reversed, period 10(1) being actually more “risky”
than period 12(2).
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Willett and Singer (1991) discuss the

apparent anomaly that arises from the differences in the definitions of risk

reflected in the two summary statistics. Both sets of summary statistics are

‘correct,” they simply answer different questions. Both identify periods of

high risk, but they refer to different groups of students. Column 3 answers

the question: For a randomly selected high-school dropout, when is

dropout most likely to occur? Column 4 answers the question: For a

randomly selected currently enrolled high school student, when is dropout

most likely to occur? Although examining the proportion of dropouts who

leave in each time period characterizes the population of dropouts, it does

not describe the risk of dropping out over time among students in school

(p. 434).

Extending the above example to the use of the competing risks survival analysis
model, it can now be asked “For a randomly selected currently enrolled high school
student, what outcome is most likely to occur, and during which time period?” The use of
various predictor variables further extends the question to: “For a randomly selected
currently enrolled female high school student, what outcome is most likely to occur, and
during which time period?” or “For a randomly selected currently enrolled African
American high school student, what outcome is most likely to occur, and during which
time period?”

The predictor variables used for the competing risks survival analysis in the present
paper are only a few of the many that could have been used. Other interactions that might
have been incorporated include the cross-products between gender and the ethnic
predictors, overage status, special education status, or retention status and these cross-
products interaction with time. Although Hachen (1988) and Singer and Willett (1993)
warn against including too many variables in the logistic regression equation, cross-
products with gender and other predictors could produce informative prediction
probabilities. Family and school characteristics are other sources of information that

might prove to be significant.
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The competing risks survival analysis method has received little use thus far in the
field of education, but it merits a closer look as schools make an effort to educate a more
diverse group of students who are faced with more choices than gréduation or dropping
out. A more precise prediction of the probability of these various modes of exiting school
can allow decision-makers to initiate various remediation or intervention programs
designed to keep students in school until graduation. Knowledge of the appropriate
timing for these programs is essential in terms of the cost of development and human
resources needed for successful programs. “Survival methods offer educational
researchers much more than just a sophisticated data analytic approach — they offer a
unified framework for appropriately modeling the many paths real students take
throughout real schools” (Willett and Singer, 1993, p. 427).

38

34



References

Agresti, A. & Finlay, B. (1988). Statistical methods for the social sciences.
San Francisco: Dellen Publishing.

Allison, Paul D. (1984). Event history analysis: Regression for longitudinal event data.
Sage University Paper Series on Quantitative Applications in the Social Sciences,
Series No. 07-046. Beverly Hills, CA: Sage Publications.

Cox, David (1972). Regression models and life tables. Journal of the Royal Statistical
Society, Series B, 34, 187-202.

Denson, K. & Schumacker, R.E. (1994, April). A Johnson-Neyman-like approach to
interpreting significant discrete-time periods in survival analysis. Paper
presented at the annual American Educational Research Association meeting,
New Orleans, LA.

Ensminger, M.C. & Slusarcick, A.L. (1992). Paths to high school graduation or dropout:
A longitudinal study of a first grade cohort. Sociology of Education, 85(2),
95-113.

Ferguson, G.A. & Takane, Y. (1989). Statistical analysis in psychology and education.
New York: McGraw-Hill Book Company.

Fitzpatrick, K. M. & Yoels, W.C. (1992). Policy, school structure, and sociodemographic
effects on statewide high school dropout rates. Sociology of Education, 65(1),
76-93. :

Hachen, David (1988). The competing risks model: A method for analyzing processes
with multiple types of events. Sociological Methods and Research, 17(1), 21-54.

Hamilton, Lawrence (1992). Regression with graphics: A second course in applied
statistics. Belmont, CA: Duxbury Press.

Hildebrand, David (1986). Statistical thinking for behavioral scientists. Boston, MA:
PWS Publishers:.

Kortering, L.J. & Blackerby, J. (1992). High school dropout and students identified with
behavioral disorders. Behavioral Disorders, 18(1), 24-32.

Lakebrink, J M. (1989). A gender at risk. InJ. M. Lakebrink (Ed.), Children at risk.
Springfield, IL: Charles C. Thomas, 216-229.

39

35



Miller, A.P. (1989). Student characteristics and the persistence/dropout behavior of
Hispanic students. In J. M. Lakebrink (Ed.), Children at risk. Springfield, IL:
Charles C. Thomas, 119-139.

McMillen, M.M. (1994). Dropout rates in the United States. Washington, DC: National
Center for Education Statistics (ED)

Menard, Scott (1995). Applied logistic regression analysis. Sage University Paper series
on Quantitative Applications in the Social Sciences, series no. 07-106. Thousand
Oaks, CA: Sage.

Morrow, George (1986). Standardizing practice in the analysis of school dropouts.
Teachers College Record, 87(3), 342-355.

Murnane, R.J., Singer, J.D. & Willett, J.B. (1988). The career paths of teachers:
Implications for teacher supply and methodological lessons for research.
Educational Researcher, 17(6), 22-30.

Murnane, R.J., Singer, J.D. & Willett, J.B. (1989). The influences of salaries and
“opportunity costs” on teachers’ career choices: Evidence from North Carolina.
Harvard Educational Review, 59(3), 325-346.

Nason, R.B. (1991). Retaining children: Is it the right decision? Childhood Education,
67(5), 300-304.

Neter, J., Wasserman, W. & Kutner, M.H. (1989). Applied linear regression models.
Homewood, IL.: Irwin Publishing.

Orr, M.T. (1987). Keeping students in school: A guide to effective dropout prevention
programs and services. San Francisco, CA: Jossey-Bass.

Pittman, R.B. (1995). The potential high school dropout, the 21st century, and what’s
ahead for rural teachers. Rural Educator, 16(3), 23-27.

Roderick, Melissa (1994). Grade retention and school dropout: Investigating the
association. American Educational Research Journal, 31(4), 729-759.

Rumberger, R.W. (1995). Dropping out of middle school: A multilevel analysis of
students and schools. American Educational Research Journal, 32(3), 583-625.

Singer, J.D., Fosburg, S., Goodson, B.D., & Smith, J M. (1978). National Day Care

Home Study Research Report. Final Report of the National Day Care Home
Study. DHHS Publication No. 80-30283.

40

36



Singer, J. D. & Willett, J. B. (1991). Modeling the days of our lives: Using survival
analysis when designing and analyzing longitudinal studies of duration and the
timing of events. Psychological Bulletin, 110(2), 268-290.

Singer, J. D. & Willett, J. B. (1993). It’s about time: Using discrete-time survival
analysis to study duration and the timing of events. Journal of Educational
Research, 18(2), 155-195.

Sween, J.A. (1989). The timing of dropping out, the possibility of early intervention, and
the need for intervention before high school. In J. M. Lakebrink (Ed.), Children at
risk. Springfield, IL: Charles C. Thomas, 32-44.

Watt, D. & Roessingh, H. (1994). ESL dropout: The myth of educational equity.
Alberta Journal of Educational Research, 40(3), 283-296.

Willett, J. B. & Singer, J. D. (1991). From whether to when: New methods for studying
student dropout and teacher attrition. Review of Educational Research, 61(4),
407-450.

Willett, J. B. & Singer, J. D. (1991). How long did it take . . .?: Using survival analysis in
psychological research. InL. M. Collins & J.L. Horn (Eds.), Best methods for the
analysis of change: Recent advances, unanswered questions, future directions.
Washington, DC: American Psychological Association, 309-326.

Wright, Raymond (1995). Logistic regression. InL.C. Grimm & P.R. Yarnold (Eds.)
Reading and understanding multivariate statistics. Washington, DC: American
Psychological Association, 217-244.

Zwick, R. & Braun, H.1. (1988). Methods for analyzing the attainment of graduate

school milestones: A case study (GRE Board Professional Report No. 86-3P;
ETS Research Report No. 88-30). Princeton, NJ: Educational Testing Service.

41

37



Appendix A

WILLETT AND SINGER’S SAS PROGRAM, MODIFIED TO CONDUCT A
COMPETING RISKS SURVIVAL ANALYSIS

* CREATING THE PERSON-PERIOD DATA SET;

DATA ALL;
SET COMPRISK; (Assumes the previous creation of dataset COMPRISK)
ARRAY OCCASION[8]E1-ES;
* TO CREATE GENDER * TIME;
ARRAY SEXTIME(8]SX1-SX8; (Creates the variable SEXTIME)
* TO CREATE ANGLO * TIME;
ARRAY ANGTIME[8]A1-AS; (Creates the variable ANGTIME)
* TO CREATE LEP * TIME;
ARRAY LEPTIME[8]L1-L8; (Creates the variable LEPTIME)

(Continue until all predictor variables have been crossed with time)

DO PERIOD=1 TO MIN(LASTPDS,8);
IF PERIOD=LASTPD8 AND WD=1 THEN Y=1;
ELSE Y=0,

(Change WD to DROP, GRAD, STILLIN, NOSHOW, NOKNOW for other outcomes)

DO INDEX=1 TO 8;
IF INDEX=PERIOD THEN OCCASION[INDEX]=1;
ELSE OCCASION[INDEX]=0;
SEXTIME[INDEX]=SEX*OCCASION[INDEX];
END;
DO INDEX=1 TO 8,
IF INDEX=PERIOD THEN OCCASION[INDEX]=1;
ELSE OCCASION[INDEX]=0,
ANGTIME[INDEX]=ANGLO*OCCASION[INDEX];
END;
DO INDEX=1 TO 8;
IF INDEX=PERIOD THEN OCCASION[INDEX]=1;
ELSE OCCASION[INDEX]=0;
LEPTIME[INDEX]=LEP*OCCASION[INDEX];
END;

(Continue until all predictor variables have been crossed with OCCASION)
END;

OUTPUT;

END;

*CREATING THE INITIAL MODEL;

PROC LOGISTIC DATA=ALL NOSIMPLE OUT=ESTIMATE DESCENDING;

TITLE2 "INITIAL (NULL) MODEL",
MODEL Y=E1-E8/NOINT MAXITER=20;
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*COMPUTING FITTED HAZARD AND SURVIVAL FUNCTIONS;

DATA NEWEST;

SET ESTIMATE;

ARRAY OCCASIONIS]E1-ES;

SURVIVAL~1;

DO PERIOD=1 TO §;
X=0OCCASION[PERIOD]
HAZARD=1/(1+(EXP(X)));
SURVIVAL=(1-HAZARD)*SURVIVAL,;
OUTPUT;

END;

*PRINT SURVIVAL AND HAZARD RESULTS;

PROC PRINT;
VAR PERIOD SURVIVAL HAZARD;
FORMAT SURVIVAL HAZARD 6.4;
PROC PLOT;
PLOT(SURVIVAL HAZARD)*PERIOD;

*MODEL WITH MAIN EFFECT OF GENDER;

PROC LOGISTIC DATA=ALL NOSIMPLE OUT=ESTIMATE DESCENDING;
TITLE2 "MAIN EFFECT OF GENDER",
MODEL Y=E1-E8 SEX/NOINT MAXITER=20;

*COMPUTING FITTED HAZARD AND SURVIVAL FUNCTIONS;

DATA NEWEST;
SET ESTIMATE;
ARRAY OCCASION[S]E1-ES;
DO SEX=1TO 2;
SURVIVAL=];
DO PERIOD=1 TO 8;
X=OCCASION[PERIOD]+(SEX-1)*SEX;
HAZARD=1/(1 HEXP(X)));
SURVIVAL~=(1-HAZARD)*SURVIVAL;
OUTPUT,
END;
END;



*PRINT SURVIVAL AND HAZARD RESULTS;

PROC SORT;
BY SEX;
PROC PRINT;
BY SEX;
ID PERIOD;
VAR SURVIVAL HAZARD;
FORMAT SURVIVAL HAZARD 6.4,
PROC PLOT;
PLOT(SURVIVAL HAZARD)*PERIOD=SEX;

(Continue until all main effect models have been created)

*MODEL WITH INTERACTION BETWEEN GENDER AND TIME;
*THESE MODELS TEST THE ASSUMPTION OF PROPORTIONALITY;

PROC LOGISTIC DATA=ALL NOSIMPLE OUT=ESTIMATE DESCENDING;,
TITLE2 "INTERACTION BETWEEN GENDER AND TIME”;
MODEL Y=E1-E8 SX1-SX8/NOINT MAXITER=20;

*COMPUTING FITTED HAZARD AND SURVIVAL FUNCTIONS;

DATA NEWEST;
SET ESTIMATE,
ARRAY OCCASION|S]E1-ES;
ARRAY SEXTIME|[8]SX1-SX8;
DO SEX=1TO 2;

SURVIVAL=1;

DO PERIOD=1 TO §;
X=0OCCASION[PERIOD]+(SEX-1)*SEXTIME[PERIOD];
HAZARD=1/(1HEXP(X)));
SURVIVAL=(1-HAZARD)*SURVIVAL;

OUTPUT;

END;

END;

*PRINT SURVIVAL AND HAZARD RESULTS;

PROC SORT;
BY SEX;
PROC PRINT;
BY SEX;
ID PERIOD;
VAR SURVIVAL HAZARD;
FORMAT SURVIVAL HAZARD 6.4;
PROC PLOT;
PLOT(SURVIVAL HAZARD)*PERIOD=SEX;

(Continue until all interaction models have been created)
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Appendix B

Withdrawal and Dropout Reasons

Withdrawal Reasons

Death

Institutionalization

In approved GED program
Job training center

Night school

Transfer to a private school
Transfer to another district

Dropout Reasons

Age

Dislike school

Employment

Expulsion

Low or failing grades

Marriage

Non-approved GED program
Non-permanent resident

Pregnancy

Socio-economic reasons

Transfer to another school with no documentation
Transfer to a non-approved program
30 consecutive absences

41 45




Appendix C

Transformation of Data from the Person-Data to the Person-Period Data Set

The following is an input line of Person-Data for an Anglo female student who withdrew
during the third time period, 10(1).

The SAS program in Appendix A transforms the one line of data to three lines of data, one
for each time period that the student was enrolled.
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