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Abstract

It is proposed to base the assembly of tests for the measurement of multiple

abilities on targets for the (asymptotic) variance functions of the estimators of each

of the abilities. A linear programming model is presented which can be used to

computerize the assembly process. Several cases of test assembly dealing with

multidimensional abilities are distinguished, and versions of the model applicable to

each of these cases are discussed. An empirical example of a test assembly

problem from a two-dimensional mathematics item pool concludes the paper.
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Assembling Tests for the Measurement of Multiple Abilities

A standard procedure for assembling tests from an item pool fitting a

unidimensional IRT model was suggested by Birnbaum (1968). The central

quantity in his suggestion is the test information function which is defined as

Fisher's information about the unknown ability parameter 0 in the responses to

the test taken as a function over the range of possible values of the parameter.

For a one-dimensional IRT model of choice, let L(0) be the likelihood statistic

associated with the responses to the test. The test information function is given by

1(0) = E( a2 InL),

a 02

oe<0<oo. (1)

Birnbaum's suggestion was to first design a target for the information function of

the test and then select items in the test such that the sum of their information

functions matches the target. The procedure capitalizes on the fact that local

independence between item responses guarantees additivity of the item

information functions. If Ii( 0) is the information function of item i (i=1,...,n), defined

analogously to Equation 1 for the likelihood statistic associated with the response

to this item, it holds that

n

1(0) = E li(0),
i=1

where n is the number of items in the test.

If 6 is the maximum-likelihood estimator (MLE) of 0,

(2)

Var(910) 1/1(0) for n --> (3)
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(e.g., Kendall & Stuart, 1976, chap. 18). Because of this reciprocity, setting a

target for the information function is equivalent to setting one for the (asymptotic)

variance function of the ability estimator.

However, in practice, in spite of the additivity of the item information

functions, the problem of picking n items from a pool of a realistic size such that

the sum of the functions matches the target best over the range of possible values

of 0 is not a trivial task. The prohibitively large number of possible combinations

rules out optimal test assembly by hand. In fact, even for a high-speed computer

explicit enumeration of all possible solutions and picking out the best is an

unrealistic job. The problem gets more difficult still if the test has to meet various

constraints on the selection of the items related to the distributions of, for example,

item content, item format, or the values of certain item parameters. To implement

Birnbaum's procedure, efficient algorithms which reduce the set of feasible

solutions to a smaller set of candidate solutions and then select an optimal one are

badly needed.

Apo;;cation of Linear Programming

Formally, the problem of test assembly is an instance of the problem of

constrained combinatorial optimization which, in its mathematical generality, has

been studied in such fields as applied mathematics, decision theory, and

operations research. It should therefore not come as a surprise that attempts to

implement Birnbaum's procedure in a computer algorithm have been based on

techniques of combinatorial optimization, in particular on techniques of (mixed)

integer programming from the field of Linear Programming (LP). Though

suggestions to resort to LP for solving test assembly problems were made earlier

(Feuerman & Weiss, 1973; Votaw, 1952; Yen, 1983), the first LP model for a

7
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variation of Birnbaum's procedure was published in Theunissen (1985). Ever since,

modeling various test assembly problems as an LP problem and finding algorithms

and heuristics to solve the model for an optimal solution has been a fruitful field of

research. Some references to relevant papers are: Adema (1990, 1992); Adema,

Boekkooi-Timminga, and van der Linden (1991); Adema and van der Linden

(1989); Amstrong and Jones (1992); Amstrong, Jones, and Wu (1992); Boekkooi-

Timminga (1987, 1990); Timminga and Adema (1995); van der Linden (1994); van

der Linden and Boekkooi-Timminga (1988, 1989); van der Linden and Luecht (in

press). Important heuristic approaches to the same problems have been presented

in Ackerman (1989), Luecht and Hirsch (1992), and Swanson and Stocking (1993).

Maximin Model

The model taken as a starting point for the problem of multidimensional

test assembly is the maximin model for unidimensional assembly in van der Linden

and Boekkooi-Timminga (1989). It is assumed that a test of n items has to

measure an interval of possible 8 values with uniform accuracy, and that the test

assembler wants to control this behavior at the ability points Ok, Ic= 1,...,K. To

attack the problem, decision variables xi, 1=1,...,1 are defined, one for each item in

the pool, which take the value 1 if the item is included into the test and the value 0

otherwise. The maximin model is as follows:

maximize y (4)

subject to

E II(8k)xi y 0,
i=1

k=1,...K,

8

(5)
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(6)

i=1,...,I, (7)

y 0 . (8)

The model is based on the idea that a common lower bound y to each of the

values of the test information function defined by the inequality in Equation 5

should be maximized, as is done by the objective function in Equation 4. At the

same time, Equation 6 constrains the length of the test to size n. The last two

equations define the ranges of values of the decision variables in the model

The model can be generalized to a target for the test information function

of any shape by providing the variable y in Equation 5 with coefficients rk which

govern the relative heights of the test information function at 01...0K (van der

Linden & Boekkooi-Timminga, 1989). For ease of exposition only the case of a

uniform target will be considered in this paper. Also, a catalogue of additional

"-ea; constraints is available to model test specifications with respect r. sx..h

categories as item content, format, response time available, the values of classical

or IRT item parameters, interdependencies between test items, etc. (van de Linden

& Boekkooi-Timminga, 1989). For an illustration of the use of some of the

constraints, see the empirical example below. The model has been implemented

as one of the options in the computer program CONTEST (Timminga & van der

Linden, 1995) which contains a large choice of algorithms and heuristics to solve

the model for an optimal combination of values for its decision variables. Quick

heuristics to solve certain test assembly problems have been presented in

Ackerman (1989) and Leucht and Hirsch (1992). If the model has a network flow
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structure, computation of an optimal solution simplifies dramatically (e.g.,

Amstrong, Jones & Wu, 1992).

It is the purpose of this paper to present models for the optimal assembly

of tests measuring more than one ability. However, unlike the case of an IRT

model with a single ability parameter, for a model with multiple ability parameters

Fisher's information measure is no longer a scalar but a (non-diagonal) matrix.

Also, the (asymptotic) variances of the MLEs of the ability parameters are not

given by the reciprocals of the diagonal elements of the information matrix, but by

the diagonal elements of the variance-covariance matrix, which is the inverse of it.

Hence, the motivation to use a target directly for Fisher's information measure fails

for the case addressed in this paper. To solve the problem, the use of targets for

the variance functions in the model will be explored. Then a generalization of the

maximin model and a heuristic for the assembly of tests in the presence of multiple

ability parameters will be proposed. Next, various cases of multidimensional test

assembly will be discussed, and it will be shown how the model applies to each of

these cases. The cases include such examples as the assembly of a test

measuring two intentional abilities, a test insensitive to a nuisance ability, or a test

required to have a simple structure of underlying abilities. The paper concludes

with an empirical example of the use of the model to a test assembly problem.

Multidimensional Test Assembly

The multidimensional IRT model considered in the paper is the logistic model

discussed by McKinley and Reckase (1983), Reckase (1985; in press), and

Samejima (1974). To simplify notation, only the case of two ability parameters,

10
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(01,02), is considered. Let the response variables tiii take the value 1 if the

response of person j=1,...,N to item i=1,...,n is correct and the value 0 otherwise.

The model is defined by the following logistic response function:

P 002) ---= P(U ij la1i,a2i,d 01.02)

exp(a1 i01 + a2102 + di)

1 + exp(a1 i01 + a2i02 + di)

(9)

where (aii,a2i) are the discrimination parameters of item i along the abilities 01

and 02, respectively, and di can be interpreted as a composite parameter

representing the difficulty of the item. In the remainder of this paper, it is assumed

that these item parameters are known and that the model is used to estimate the

abilities (01i,02i) from a realization of the response variables Uiruii for i=1,...,n

and j=1,...,N.

Variance Functions

For the case of two ability parameters Fisher's information matrix is

defined as: -

1(01,02) F-- -E

a
2

InL a2InL
2 aelao2

ae
1

a2 InL a
2

InL

ae1a02 a02_

2

(10)

where L now is the likelihood statistic associated with the data under the model in

Equation 9. Following the derivation in Ackerman (1994, Appendix) and using the

notation PimPi(01,02), the following result is obtained for the model in Equation 9:

11
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n

E a1 ia2iPiQi
1=1

E a
2
.P.Q.

. 21 I I

1=1
4
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Standard techniques for matrix inversion yield the variance-covariance

matrix of the MLE's of (01,02):

where

V(61,62101,02) =

n

a2.2 P.Q. I
. 1 I

1=1

11(01,02)1

n

E alia2iPiQi
1=1

n

E alia2iPpi
i =1

11(01,02)1

n

a2.PQ.
i =1

11 I I

11(01,02)1 11(01,02)1

(12)

n 2 n 2

11(01,02)1 = ( E iPiQi)( E a2iPiQ1) ( E ai ia2iPpi)2
(13)

1=1 1=1 1=1

it trz.- determinant of the matrix in Equation 11, wt,ich is assumed tb r,z;nzero

throughout this paper. The diagonal elements of the matrix in Equation 12 are the

(asymptotic) variances of the MLEs of 01 and 02, respectively:

Var(01101,02) = ( E a22iPpi)[( E
2
iPiQi)( E a22iPiQi)

i=1 i=1 i =1

n
21-1( E jay ) j ,

1=1

2
Var(62101,02) = ( aiiPiQi)[(

2
iPiQi)( E a2iPpi)

1=1 i =1 1=1

n

( E
1=1

12

(14)

(15)
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Observe that Equation 14 gives the (asymptotic) variance of 61 for the true ability

of the examinee being a point in a two-dimensional space. Thus, the variance of

61 not only depends on the true value of 01 but also on the value of 02. The

same holds for the (asymptotic) variance of 62 in Equation 15. Also, observe that
.

the two variances differ only by the factors a22 i and ai2 in the two numerators.

If the variances in Equations 14-15 are taken as functions over the

complete two-dimensional ability space, two variance functions are defined, one forei

and the other for 62. Figure 1 shows the plots of three pairs of variance functions

each for a different

[Figure 1 about here]

test. The first test consists of nine items which have larger values for the first than

for the second discrimination parameter: a1 =(2.0, 2.0, 2.6, 1.2, 1.5, 1.7, 1.2, 0.8,

0.9); a2=(0.1, 1.1, 1.7, 2.4, 2.0, 3.0, 1.9, 2.1, 1.8); and di=0.0 for all items. In the

second test, the values for the two discrimination parameters are equal on average

for the six items in the test: a =(1 8 2.6, 1.7, 1.8, 2.2, 2.0), a2=(2 0 1.8, 1.9, 1.7,

1.8, 1.7); and d1=-2.0 for al items. The six items in the third test have values for the

first discrimination parameter exactly twice the ones for the second parameter, the

only exception being Item 6 for which the values slightly deviate from this

proportion: a1=(2.0, 2.0, 2.6, 2.4, 2.0, 3.0); a2=(1.0, 1.0, 1.3, 1.2, 1.0, 1.7); and

d=0.0 for all items. The result of this case of 'weak identifiability' is a variance

function for 61 which is low only locally along a line in the ability plane and a

function for 62 which never takes on any small value. (Note that for readability in

all three figures the surfaces are cut at a height of 100.)

13
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Targets for Variance Functions

It is proposed to define targets for the two variance functions to guide the

multidimensional test assembly process. Graphically, the proposals means that

tests are assembled such that the plots of their variance functions meet previously

defined forms. For example, if ability 01 is considered to be more important than

02, a target for Var(61101,02) uniformly lower than the one for Var(62101,02)

over the ability area of interest makes sense. The proposal implies that the

covariance function in Equation 12 can be ignored. This implication is in

agreement with the fact that test assembler are typically not interested in

covariances between ability estimators.

Computational Complications

Test assembly with simultaneous targets for two distinct functions is an

example of a multi-objective decision problem. Standard approaches to decision

problems with two objectives are, for example, to combine the two objectives into

one objective function or to focus on one as the objective function and represent

tt',e ot`ler by a constraint with an optimally chosen bound. More important,

however, is the fact that the two expressions in Equations 14-15 are nonlinear. A

realistic objective function based on the difference between the two expressions

and their targets will also be nonlinear. Due to this complication, algorithms

allowing for optimal multidimensional test assembly which operate in polynomial

time are not available. Hence, unless the problem is trivially small, the use of a

heuristic which yield good but not necessarily best solutions seems the only

possibility left.

14
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Multidimensional Maximin Model

Further analysis of the variance functions in Equations 14-15 reveals that, though

nonlinear, they consists of sums each of which is additive in the items. The role of

these sums becomes more obvious if decision variables are added to Equation 14,

and this variance function of 61 is written as:

1

Wei 101,02) = L, a1iPiQixi
i=1

(E al ia2iPiQixi)2/( E a2iPiQixi)]- 1
(16)

i=1 i=1

It is now immediately clear that,

Equation 16 decreases in value if

are chosen such that

for a fixed value of (91,92), the function in

the values of the decisions variables xi, i=1 I

increases;

increases;

decreases.

However, note that for a fixed set of item parameter values, the

expression in Equation 19 can not decrease independently of the expressions

Equations 17-18. In fact, a tradeoff exists between these two sets of expressions

because any choice of parameter values which decreases the last expression also

decreases the first two. The optimum value of Equation 16 thus depends on the

relative rates of change of the three expressions. This fact suggests an approach

15
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in which the expression in Equation 19 is minimized for a systematically varying

series of lower bounds on the expressions in Equations 17-18.

Consider the following variant of the maximin model in Equations 4-7 in

which, for a selection of ability points (01/3,02q), p=1,...,P, q=1,...,Q, minimization

of the expression in Equation 19 is taken as the objective function and the

expressions in Equations 18-19 are constrained by lower bounds:

minimize y

subject to

1

al ia2iPi(01 p,02q)Qi(Olp,02q)xi y > 0,
i=1

vI n /A A \n /A Aai ir p 1 VP2q1kalikUl p,U2q)Xi Cr. c1,
1=1

1

2
a2iPi(Olp,02q)Qi(Oip,02q)xi c2,

1=1

1

xi = n,
i=1

x E

y O.

p=1,...,P,

p=1,...,P,

p=1,...,P,

q=1,...,Q,

q=1,...,Q,

q=1,...,Q,

i=1,...,I,

(20)

(21)

(22)

(23)

(24)

(25)

(26)

The basic idea is now to run this model systematically varying the values of c1 and

c2 until optimal variance functions are found.

16
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1

and c
2

First, note that the following inequalities hold:

0 < E a
2
.PQ.x. < .25 E a2

1i1

axi
I I I

=1 m

0< E a 2
.130I x

I
< 25 E a22

i21 I

i=1 max
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(27)

(28)

where the right-hand sums are taken over the n items with the largest values for

al' and a2i in the item pool, respectively. Thus, the right-hand sides can be used

as upper bounds for c1 and c2. Observe, however, that hems with high values for

al i are not necessarily the ones with high values for a2i and vice versa; therefore

these bounds will seldom be reached in practice.

Second, if c1 and/or c2 are set high, overconstraining may occur and no

feasible solution found. If infeasibility is found for certain values of c1 and c2, no

larger values have to be tried since these will also yield infeasibility.

Third, for brevity, let

u = E a
2
.13.0.

I
(29)

11 I

i=1

v a PI OI
'

(30)
11=

w = E a1ia2iPiQi (31)
i=1

Suppose no dependences existed between u,v, and w. The following partial

derivatives then show the impact of u and v on the variance function of 61:

17



and

avar(oi 101,02)

au

aVar(Oi 101,02)

v2
(uv_w2)2

w2

av (uvw2)2

As u,v,w 0, the derivatives are negative for all possible values of u, v, and w

(provided uv*w). Consequently, as already assumed in Equations 17-18, for a

fixed value of (01,02), Var(61101,02) is minimal for u and v maximal. However,

in the model, w is minimized, and the derivatives in Equations 32-33 show that if

an optimal solution is approached, the marginal contribution of v toVar(e1 1e1,02)

is likely to be smaller than the one of u. If w approaches zero, the contribution of v

even becomes negligible. By symmetry, the reverse conclusion holds for the

contributions of u and v to the variance function of 62. These relations seem to

suggest that a larger value of c1 relative to c2 favors minimization of

var(ei 101,02) whereas a smaller value of c1 favors minimization of

Va7;62i01,02). However, the actual problem is one of combinatoria:

over a finite pool of possible values for the item parameters. Also, as already

noted these values create dependencies between the expressions in Equations 17

through 19. It is therefore recommended to always check this suggestion for the

actual item pool in use. For an empirical example, see the analyses further on in

this paper.

Assembling Tests
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(32)

(33)

A Heuristic

The following heuristic can be used to find a (nearly) optimal solution to

the test assembly problem:

8
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1. Choose a grid of values for ( Oip,02q ) which covers the ability

area of interest. As the variance functions are well-behaved

smooth functions, a 3x3 or 4x4 grid will generally do. There is no

need to space the points evenly or to have the same numbers of

point along both dimensions.

2. Choose a series of values for (ci,c2) covering the range of

possible values below the upper bounds in Equations 27-28,

taking into account the distribution of the values of the item

parameters in the pool as well as the goal of the test (see the

following section) ;

3. Solve the model in Equations 20-26 using, for example, one of

the algorithms or heuristics in CONTEST (Timminga & van der

Linden, 1995);

4. Calculate the two variance functions for each solution in the

previous step;

5. Based on an inspection of the results, repeat steps 3-4 for a finer

grid of values for (ci,c2) in the neighborhood of the value for

which the best variance functions were obtained;

6. Repeat steps 5 until favorable variance functions are obtained.

Based on experiences with a previous test assembly problem for a given item

pool, the first selection of values for (c1,c2) can be made more effective. For

example, if infeasibility was met for certain values of (ci,c2) in a previous run, it

makes no sense to use larger values for (c1,c2) in any later test assembly problem

for the same item pool whatever other constraints are added to the model. An

implementation of the heuristic for the case of two flat variance functions will be

given in the empirical example below.

19
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Different Cases of Multidimensional Test Assembly

Five different cases of test assembly are considered in which multidimensionality

of the item pool plays a role. For each case a different use of the multidimensional

model in Equations 20-26 is proposed, with the exception of one case which leads

to the use of a modified version of the unidimensional model in Equations 4-8. The

main criteria used to classify the five cases are: (1) whether the abilities are

intentional or should be viewed as 'nuisance abilities'; and (2) whether or not the

abilities underlying the test should display a 'simple structure'.

1. Two intentional abilities. In this case, the test items are designed to

measure two abilities, and it is intended to report scores on both abilities for each

examinee. Thus, for each possible ability point (01,02) the test should produce

variances of 61 and 62 which meet realistic targets.

The model to be used in this case is the multidimensional maximin model

in Equations 20-26 possibly provided with additional (linear) constraints to deal

with remaining test specifications. As already suggested, the relative sizes of the

values of c1 and c2 can be used to control for the importance of the two variance

functions.

2. One intentional and one nuisance ability. The test items in the pool are

designed to measure one intentional ability but happen to be sensitive to another

ability. When scoring the test, the nuisance ability is ignored and only a score for

the intentional ability is reported. An obvious example is the case of a nuisance

ability which creates 'differential item functioning' because a focal and a reference

group have different distributions on it. Removing the effect of the nuisance ability

by fitting a two-dimensional IRT model and scoring only for the intentional ability is

believed to be a strategy yielding more informative ability estimates than simply

20
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removing all items sensitive to the nuisance ability from the test.

The best approach in this case seems to ignore the variance function for

the estimator of the nuisance ability and set a target for the intentional ability only.

If 02 is the nuisance ability, this approach is implemented if the same model as in

the previous case is applied, but now with c2 small relative to c1. Again, additional

linear constraints can be added to the model to deal with other test specifications.

3. One composite ability. This case arises if both abilities are intentional

but an estimates of the linear combination 13101 + (3202, with pi, R2 >0, are to

be reported. A practical motivation for this case might be that the construct

measured by the test is truly two dimensional but that test consumers want a

single score equally reflecting both abilities. The variance function of the estimator

of the linear composite is equal to

var(13161 + 0262101,02) = 13Var(61101,02) + 1322Var(62101,02)

+ 2[31132Covar(e1 ,62101,02)-

(34)

(Ackerman, 1994, Eqs. 15-16). Though this function is also an expression

cons;s:ing of the sums of the elements in the information matex

analysis of the expression shows that it misses the monotonicity which could lead

to a conclusion as in Equations 17-19. The best solution in this case, therefore, is

to rotate the ability space such that in the reparameterized model the composite

corresponds to the first ability dimension. Henceforth, the case is identical to the

previous one.

4. Simple ability structure: Case I. The item pool is again assumed to

measure two intentional abilities but the test has to be assembled such that one

subtest is maximally informative on 02 and another subtest on 02. This case may

arise if for diagnostic purposes test performances have to be reported at item level

21
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and it is thus necessary to know which items measure 01 best and which items

02.

Let n1 be the number of items required to be informative on 01 and n2

the number of items informative on 02. An obvious approach in this case seems

to apply the multidimensional model in Equations 20-26 first to assembly n1 items

under the condition of c
1
>c

2 and a second time to assemble n2 items under the

reverse condition of c1<c2 removing the items already selected from the pool.

However, a clear disadvantage of a sequential approach is that some of the items

fitting the constraints of the second subtest better have already gone into the

former. Also, it is not possible to directly constrain item selection with respect to

item content, format, etc., at the level of the complete test.

A more favorable solution, therefore, is to select the two subtest

simultaneously. This choice leads to an adaptation of the multidimensional model

in Equations 20-26. New decision variables xis are introduced which take the value

of 1 if item i is assigned to subtest s and the value 0 otherwise (s=1,2). The

adapted model is:

minimize y

subject to

2 I

(35)

I I al ja2iP i(Oip,02q)Qi(Oip,02q)xis y
s=1 i=1

2 2 n n tr, IA.L. ai ir it1011 13,1112q)lolik011 p,d2eis C1,

s=1 1=1

0, p=1,..,P,

p=1,...,P,

q=1,...,Q,

q=1,...,Q,

(36)

(37)

22
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p=1,...,P, q=1,...,Q, (38)

E xis = ns,
i=1

s=1,2, (39)

2

E xis 5. 1,
s=1

i=1,...,I, (40)

X E (0,1),

y ?_ O.

i=1,...,I; (41)

(42)

New constraints in the model are the ones in Equation 39 which define the lengths

of the two subtests as well as those in Equation 40 which prevent the items from

being assigned to both subtests. The model can be solved using the algorithms

and heuristics referred to earlier. However, the doubling of the number of decision

variables generally has an effect on the speed of the algorithms and heuristics

comparable to the one of doubling the size of the item pool, and, as a

consequence, some of the heuristics slow down considerably.

5. Simple ability structure: Case II. For completeness' sake, the case of

two subpools of items each fitting a unidimensional IRT but with the complete pool

fitting only a two-dimensional model is mentioned. The practical motivation for

assembling a test with this simple structure for its ability space is the same as the

one in the previous case.

Again, a simple solution would seem to assemble the two subtest

sequentially but the same objections to sequential assembly as before apply. A

model for simultaneous assembly can be obtained by adapting the model in

Equations 4-8 analogously to Equations 35-42.
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Empirical Example

Data from an ACT Assessment Program Mathematics Item Pool were used to

assemble a test. The pool consisted of 176 items to which a two-dimensional

version of the model in Equation 9 showed an acceptable fit. The items in the pool

were classified according to content (PG: Plane Geometry; PA: Pre-Algebra; EA:

Elementary Algebra; CG: Coordinate Geometry; TG: Trigonometry; IA;

Intermediate Algebra) as well as skill (BS: Basic Skill; AP: Application; AN:

Analysis). It was attempted to assembly two tests with flat variance functions for

both ability estimators over the complete grid of points defined by 01,92= -2, -1,

0, 1. 2, where measurement of both ability variables was assumed to be intentional

and equally important. One test was assembled using the basic model in

Equations 20-26 (Model I). The other test was assembled adding the following set

of constraints to the previous model to simulate the presence of content and skill

specifications in the assembly program (Model II):

I xi ?. 5 , (43)
ie V pG

E xj ?.. 5 , (44)
iE V pA

E xi 5, (45)

IC V EA

I xj 5 , (46)

ic VCG

E xi >_5, (47)

i VTG
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xi

je VIA

5 , (48)

Z xi 15, (49)
Vgs

I xi
iE VAp

15, (50)

Z xi 5, (51)
iE VAN

where, for example, VpG is the set indices of the items with content classification

Plane Geometry. For both models test length was set at n=50. The two models

were solved using the First Acceptable Integer Solution algorithm as implemented

in the CONTEST program (Timminga & van der Linden, 1995, sect. 6.6; see also

Adema, Boekkooi-Timminga & van der Linden, 1991). This algorithm was used to

find the first integer solution with a value for the objective function within 5% from

the optimal value for the fully relaxed model. Since the two variance functions were

assumed to be equally important, the values of c1 and c2 in Equations 22-23 were

set equal to each other.

For both models values of c
1
=c

2 larger than or equal to 1.4 led to

overconstraining and no feasible solutions was found. Therefore, the two models

were run for c1 =c2=0.0(0.1)1.3. The results are summarized in Table 1. As the

variance functions had to be both low and flat, the mean value (g) plus one

standard deviation (a) of the

[Table 1 about here]

values of the two variance functions over de 25 points of the grid of (01,02)
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values was used as a summary measure. For both models the solutions for the

smallest values of c
1
=c

2
not only yielded the same value for this measure but also

contained the same set of items. The best solution for Model I was obtained for

c1=2=1.0 Plots of the variance functions Var(61101,02) and Var(62101,02)

associated with the items in this solution are given in Figure 2. Both functions

show a flat surface over the ability space considered, albeit the one for 61

[Figure 2 about here]

has a tendency to slightly increase for 01 approaching the value of 2.0, whereas

the one for 62 goes up for 02 approaching -2.0. For Model II, the best solution

was obtained for c1= c2 =0.9. Both the numerical results in Table 1 and the plots of

the two variance functions for the solution obtained for this value show that adding

the additional constraints in Equations 43 through 51 to the model hardly

deteriorates the results.

To assess the numerical effects of setting c1 lower or higher than the

*v-atue o c2, solutions for Model I were computed over the full range of possible

values for c
2

both for c1 =0.2 and c
1
=1 2 Observe that these two value for c

1
are

near the extremes of the range of values in Table 1 for which feasible solutions

were obtained. The results are presented in Table 2. The general conclusion from

this table is that the lower value for c
1

favors minimization of the variance function

[Table 2 about here]

for 62 both in terms of its average value and spread, whereas the higher value of

c
1

favors minimization of the function for 61. These results are as predicted.
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However, surprisingly, none solutions was better than the one in Table 1 for

c1 = c2 =1.0.

The software in the examples was run on a PC with a 486 processor (66

Mhz). None of the runs took more than 2 seconds of computing time to reach a

solution.

Discussion

The choice to base the assembly of tests measuring multiple abilities on the

variance functions associated with the ability estimators seems obvious. However,

as indicated earlier, the choice involves a multi-objective decision problem with

nonlinear objective functions. The current paper offers a model along with a

heuristic scheme to solve the problem. Implementations of the heuristic for other

tartlets than the one for the case of two intentional abilities in the emoirical

example above still have to be examined. It is not unlikely that practical experience

fit , trIe heuristic will reveal that, for some of the cases discussed at,-.r.s., cerrairi

patterns of item parameter values guarantee optimal variance functions. If so, this

knowledge, in turn, could be used to further improve the focus of the heuristic.
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Table 1

Values of It and a for selected values of c1 =c2 for Model I and Model II

c1 = c2

II

Model I

a 11+0" II

Model II

a 11+0

0.0 1.551 0.833 2.384 1.586 0.922 2.508
0.1 1.551 0.833 2.384 1.586 0.922 2.508
0.2 1.551 0.833 2.384 1.586 0.922 2.508
0.3 1.551 0.833 2.384 1.586 0.922 2.508
0.4 1.551 0.833 2.384 1.562 0.833 2.395
0.5 1.386 0.505 1.891 1.387 0.508 1.895

0.6 1.311 0.373 1.684 1.335 0.384 1.719
0.7 1.286 0.369 1.655 1.277 0.363 1.640
0.8 1.180 0.313 1.493 1.189 0.322 1.511
0.9 1.057 0.295 1.352 1.085 0.294 1.379
1.0 1.037 0.281 1.318 1.104 0.294 1.398

1.1 1.169 0.320 1.489 1.231 0.325 1.556
1.2 1.500 0.437 1.937 1.479 0.410 1.889
1.3 1.826 0.486 2.313 1.907 0.509 2.416
1.4 Inf Inf

Note. info means no feasible solution available.

31



Assembling Tests

30

Table 2

Values of gi and 112 for c1=0.2 and c1=1.2 (Model I)

c2

111

c1=0.2

'71 112 a2 111

c1=1.2

a1 112 a2

0.0 2.029 0.893 1.073 0.038 1.296 0.265 3.472 0.516
0.1 2.029 0.893 1.073 0.038 1.296 0.265 3.472 0.516
0.2 2.029 0.893 1.073 0.038 1.296 0.265 3.472 0.516
0.3 2.029 0.893 1.073 0.038 1.296 0.265 3.472 0.516
0.4 2.029 0.893 1.073 0.038 1.296 0.265 3.472 0.516
0.5 2.029 0.893 1.073 0.038 1.296 0.265 3.472 0.516
0.6 2.029 0.893 1.073 0.038 1.235 0.230 3.085 0.373
0.7 2.029 0.893 1.073 0.038 0.974 0.102 2.069 0.123
0.8 2.029 0.893 1.073 0.038 1.010 0.110 1.698 0.081
0.9 2.412 1.624 1.014 0.042 0.923 0.096 1.456 0.063
1.0 2.663 2.330 0.949 0.042 0.981 0.107 1.441 0.066
1.1 7.123 2.449 1.426 0.062 1.212 0.166 1.441 0.091

1.2 12.819 1.650 2.036 0.123 1.428 0.232 1.572 0.141

1 11.606 2.461 1.951 0.140 1.564 0.276 1.533 0.146
1.4 8.520 1.769 1.661 0.088 2.230 0.373 1.889 0.243
1.5 7.193 1.254 1.643 0.107 Inf
1.6 4.554 1.047 1.470 0.121 Inf
1.7 Inf Inf

Note. id' means no feasible solution present.
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Figure Captions

Figure 1. Three examples of variance functions for 61 and 62 (for the

values of the item parameters, see the text).

Figure 2. Variance functions for the tests assembled under Model I (upper

panel) and Model II (lower panel).
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Author Note

This paper was prepared for T.A. Ackerman (Ed.), Multidimensional IRT, Applied

Psychological Measurement [Special Issue]. The author is indebted to Wim M.M.

Tie len for his computational support and to Terry A. Ackerman for the data set

used in the empirical example.
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