ED 398 886

AUTHOR
TITLE

SPONS AGENCY
PUB DATE

CONTRACT
NOTE

PUB TYPE

EDRS PRICE
DESCRIPTORS

ABSTRACT

DOCUMENT RESUME
IR 018 066

Goldenson, Dennis

Why Teach Computer Programming? Some Evidence about
Generalization and Transfer.

National Science Foundation, Arlington, VA,

96

MDR-8652015

16p.; In: Call of the North, NECC '96. Proceedings of
the Annual National Educational Computing Conference
(17th, Minneapolis, Minnesota, June 11-13, 1996); see
IR 018 057.

Reports - Evaluative/Feasibility (142) —-
Speeches/Conference Papers (150)

MF01/PCOl Plus Postage.

Academic Achievement; Authoring Aids (Programming);
Computers; Computer Software; Educational Objectives;
Generalization; *Grade 9; Instructional
Effectiveness; Learning Processes; *Programming;
Programming Languages; Secondary Education; *Skill
Development; *Thinking Skills; *Transfer of

Training

The assertion that "higher order" thinking skills can

be improved by learning to program computers is not a new one. The
idea endures even though the empirical evidence over the years has
been mixed at best. In fact, there is no reason to expect that all
programming courses will have identical, or even similar, effects.
Such courses typically differ more by the languages in which they are
taught than by anything else, and rarely do they explicitly address
higher level instructional goals. To properly assess the extent of
transfer, or any other learning, empirical measures must be
criterion-referenced to specific curriculum objectives. This paper

describes the results from three field studies.

In two of them, ninth

graders who learned structured programming methods using the "Karel
the Robot" teaching language performed considerably better on a
series of expository writing tasks than did students in the studies'
control groups. In the third study, students who began their
introductory programming methods course with Karel performed
substantially better on difficult structured programming tasks using

Pascal.

(Author/SWC)

ER R R R R R R R S R e e SR R S R R R TR R S SR R R T S S e S P S S RS R SR R R R L R R R R SR 21T

* Reproductions supplied by EDRS are the best that can be made

%

from the original document.

*
%

Fedededede dede e dedode e e s et st st st e S v st e e s e s o e e ek e e de bl de e dledle st e e ko ke ek e e v e e e ek b e de bk e e koot

| ROV Olvlo

ED 398 886

Q

ERIC

Aruitoxt provided by Eic:

144

Paper

- Why Teach Computer Programming? Some Evidence About

Generalization and Transfer®

~
CATION
i o«liJc'eséqDEpARTMb:NT o EELU p “PERMISSION TO REPRODUCE THIS
Dennis Goldenson EDUCATIONAL RESOURCES INFORMATION S BEEN GRANTED BY
CENTER (ERIC) MATERIAL HA
Software Engineering Institute O This document has been reproduced as D. Ingham
received from the person or organization
originating it.

Came‘qle Mellon Umversxty O Minor changes have been made to
Pittsburgh, PA 15213-3890 improve reproduction quality.

412.268.8506 ® Ppoints of view or opinions stated in this TO THE EDUCATIONAL RESOURCES

document do not necessarily represent "
official OER! position or policy. INFORMATION CENTER (ERIC).

dg@sei.cmu.edu

Key Words: transfer, generalization, structured programming, higher order thinking
skills, Karel

Abstract

The assertion that “higher order” thinking skills can be improved by learning to
program computers is not a new one. The idea endures even though the empirical
evidence over the years has been mixed at best. But, there is no reason to expect that all
programming courses will have identical, or even similar, effects. Such courses typically
differ more by the languages in which they are taught than by anything else, and rarely
do they explicitly address higher level instructional goals. To properly assess the extent
of transfer, or any other learning, empirical measures must be criterion referenced to
specific curriculum objectives.

This paper describes the results from three field experimental studies. In two of them,
ninth graders who learned structured programming methods using the Karel the Robot
teaching language performed considerably better on a series of expository writing tasks -
than did students in the studies’ control groups. In the third study, students who began
their introductory programming methods course with Karel performed substantially
better on difficult structured programming tasks using Pascal.

Programming and Transfer

Why should students study computer programming? Aside from the pressing need to
educate properly future programmers and software engineers, one often hears the
argument that programming generates transferable problem solving and thinking skills.
But is programming really the new Latin?[1, 35] :

Undoubtedly it is not, if we are looking for evidence of widespread, incidental transfer
to all possible areas of higher level cognitive processes[38, 34, 14, 33, 20, 16]. Transfer
may be widely touted as a reason for teaching programming, but the assertion is based
on mixed results empirically,! with the strongest claims often based only on anecdotal

1 Actually the positive effects shown in some studies are only of weak magnitude. The size of effects should not be
confused with their statistical significance.[21, 37, 22]

* This material is based on work supported by the National Science Foundation under grant number MDR-8652015.
Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author and
do not necessarily reflect the views of the foundation. The research was completed prior to the time that the author
joined the Software Engineering Institute and should not be construed as an official position of the Software
Engineering Institute.

Thanks to David Kaufer for his many insights about the writing process, and the original idea behind this study.

Michele Matchett coauthored the CMU Writing Quality Rubric that appears in this paper’s Appendix, graded the
Minneapolis essays, and participated in many productive discussions about the paper’s content.

National Educational Computing Conference 1996, Minneapolis, MN

2 BESTCOPY AVAILABLE - -

145

evidence. Clearly the case for transfer from programming has been overstated. Indeed
introductory programming courses often have been characterized by disturbingly high
failure and drop rates. We seem to have enough trouble teaching the narrow subject
matter[16, 12], never mind transfer of generic thinking skills. Yet the insight still
remains compelling to many educators.

Recent empirical work does show more evidence of transfer than some critics have
conceded[29, 26]. However a great deal more remains to be learned about the
conditions where transfer reasonably can be expected to occur[7, 10, 32, 31].

Programming deals, or at least can deal, in structure and abstraction. Yet it does so in
an uncommonly concrete and tangible manner: programs are realized in a physical
machine, that students can touch and on which they can see immediate results of their
logic.2 Unfortunately, though, programming languages are only tools, and certainly do
not assure that curricula and teachers will focus explicitly on generalizable problem
solving skillsf11, 36, 19, 19, 4, 14, 33, 16].

Many introductory programming courses limit their attention to writing short,
syntactically correct, but contrived programs. Serious attention to topics such as
procedural abstraction are often postponed to more “advanced” courses. Explicit
consideration of debugging strategies tends to be neglected altogether[4]. There is little if
any reason to expect such courses to teach programming very well, much less transfer to
other domainsf12].

So What Ought We be Teaching Anyway?

Properly done, introductory programming courses can foster at least two important
sets of thinking skills: disciplined attention to details; and high level
abstraction/planning/organizational/design skills. Though both sets of skills characterize
programming proficiency, the former usually gets emphasized by default. Students write
short programs graded on the basis of whether they “work,” because getting them to
work requires considerable attention to error prone syntax and tool invocation details.
The latter barely get spoken to, since the programs novice students write tend to be so
short and lacking in abstract complexity. Hence we reward tenacity rather than
conceptual clarity in design and implementation.

Methodological Confounds

Many transfer studies suffer from an all too common fault: namely actuarial
description is not the same as explanation[9, 13]. Indeed, one ought to expect minimal
effects when students who have completed many different, widely divergent,
programming courses are lumped into the same predictor categories[21]. Rather, we
need knowledge about the specifics of curricula to design appropriate criterion
referenced indicators of effect.

Moreover it may be impossible to do the definitive experimental study in field
conditions. Internal validity is bound to be compromised in the classic trade-off for
external validity. Too often we have small Ns, and less than ideal design and

Thanks also to Bill Hefley, Mark Shermis, Bing Jyun Wang, Mei-Hung Chiu, and the MacGNOME group at Carnegie
Mellon. Special thanks to the teachers who have participated in the various stages of this research: JoAnn Avery,
Don Baker, Jim Bowlby, Jane Bruemmer, Larry Faulk, Laura Gardner, Joyce Hotchkiss, Bruce McClellan, Mary
Northcutt, John Sutula, and Jim Turpin.

t Software Engineering Institute, Pittsburgh, PA 15213; 412/268-8506; dg@sei.cmu.edu.

2. At least since Socrates, educators have stressed the importance of active involvement by students in the learning
process. Similar ideas underlie notions of inquiry, case studies and “constructionist” learning.

Q
Call of the North”
ERIC e No

Aruitoxt provided by Eic:

3

Q

ERIC

Aruitoxt provided by Eic:

146

experimental subject selection criteria. So confidence in results must come through
internal consistency and replication.3

The three field experiments reported here were done as spin-offs of a larger project
that focused on the development and evaluation of structure editor based programming
environments[6, 11, 12]. Most resources in the larger project were devoted to the
development of the software, and evaluation of its value in the learning by novice
programmers of software engineering skills and knowledge.

The external validity is quite defensible in all three studies. Yet the Ns are small and
the control conditions are imperfect. Still, several individual relationships are statistically
significant. Moreover the results across the various relationships are quite consistent,
which is highly unlikely by chance, especially with small numbers of cases[28].

Transfer or Associative Learning?

Clearly it is difficult to establish conditions that induce extensive incidental learning
without explicit instructional intervention. Transfer in that sense is undoubtedly rare.
Only the most outstanding students are likely to apply what they have learned in one
domain to another in a truly novel manner. But it is more than enough to demonstrate
associative learning, where higher level abstractions are explicitly taught and connected
across traditionally separate subject matter boundaries. It is difficult enough to establish
direct learning effects in educational research. I am more than happy to show evidence
of associative learning across the curriculum.

Transfer from Programming to Writing

On the surface, writing is an unlikely candidate for “far transfer” from programming.
Yet both fields share a common concern for planning, organization, structure and
design. However properly presented programming methods courses can get to the
essentials of planning and design much more quickly and easily than can writing
courses. Introductory programming language and problem semantics are much simpler
than those found in a rich (and vague and ambiguous) spoken language. A common
problem for writing teachers is that students must spend a great deal of time learning
and summarizing the basic facts of a topic before they are ready for any serious attempts
at synthesis and analysis. Early emphasis is by necessity on the concrete before the
abstract[15].

Karel the Robot and the Karel GENIE

Richard Pattis’ Karel the Robot [27] teaching language has extremely simple semantics,
allowing it to be taught in a very short period of time, with early and sustained emphasis
on the procedural abstraction of complex tasks. The GENIE syntax directed structure
editing environment? simplifies programming in Karel even further, while also
providing a powerful set of online design and testing tools.

The Karel Language

Named for Karel Capek, the Czechoslovakian playwright who wrote R.U.R. (Rossum'’s
Universal Robots), Karel indeed is a pleasant and “gentle introduction to the art of
programming.” Equally important, it is a serious high level language that focuses

3. The importance of replication is fundamental to science. Unfortunately the notion remains foreign to too many

scientists who crave definitive proof.

4, The Karel GENIE is distributed by the Chariot Software Group. For further information or to place an order
(catalog # 570-0801), contact them at 800/CHARIOT. A Pascal GENIE is also available through Chariot.

National Educational Computing Conference 1996, Minneapolis, MN

4

147

immediately on the essentials of programming method and problem solving. Even
students who initially are reticent about programming find themselves learning a great
deal before they realize what has happened.

Karel is an imaginary robot who moves through a Cartesian coordinate quarter-plane
of “streets” and “avenues.” It is easy for students (and teachers) to anthropomorphize
problems in Karel’s “worlds.” But the problems are by no means trivial intellectually.

The language requires very little attention to extraneous detail. It is a sparse language,
with only five primitives, almost no concrete syntax (none with a structure editor), “no”
variables, and no subtle input/output details. Karel is easy to learn, even for middle
school-aged children. Thus novices can attempt some rather non-trivial problems after a
very short period of study.

An excellent introduction to programming methodology, Karel introduces key
structured programming concepts, including the major logic control structures of many
other “more serious” high level languages. Yet, because of the absence of distracting
details, Kare] also is actually more amenable than “real” languages to early serious study
of control abstraction.

Of particular value in an expository writing context is Karel’s emphasis on modular
programming and procedural abstraction. This is accomplished through user definition
of new instructions, which are functionally equivalent to Pascal parameterless
procedures.

The language was designed to enable teachers to emphasize top-down, modular design
skills that would be transferable to programming in other algorithmic languages such as
Pascal. The anecdotal evidence from those who have taught, and learned, with Karel is
that it can perform that role admirably well. Karel’s combination of new instructions and
simple problem semantics does seem to help students to tackle conceptually complex
search and traversal problems in an organized, intellectually manageable manner.

LadyOrTiger Lady and Tiger
Define-New-Instruction CollectBepers As s
() * * L] L] L] * * * * L] L]
Begin 8 e e e e o o o o o o o
WHILE next-to-a-beeper DO
Begin Tle e e o o o o o o o o
pickbeeper
End [3 e o . . e je .
End; S . . . e e . e o . ° .
Beginning-0f-Execution 4 Jleje o o o o o o oje o
CollectBepers]
T |leje o o o @‘ e e ole o
CheckEast; 2 ejeo o o o e o o ole o
CheckWest;
MeetLady 1 ¢ @ o & o o o o o o o
End-0f-Execution 5
End-Of-Program Ry 1 2 3 4 5SS 6 7 8 9 10 11
step [Mark][one) (Over) (0ut) (Favse) (0f7) K
Trace ® ANl O None Cirection @ Forward O Reverse
Corner:3,6 N Beepers: 0 Beeper Bag: 0

Figure 1. Karel’s Run Time System:
Tracing Karel’s Movement Through One of His Worlds

Q ” ”
- ”Call of the North
ERIC)

BEST COPY AVAILABL

148

LadyOrTigereOesign

char: levels
=foof +[-[oo] +

Main Execution Block

CollectBeepers GoNorth CheckEast

takeAStep movekast returnifNecessary
E[J== returneLadyCrTigersNew-Instruction ===
Define- New-Instruction As
{ ..don't forget the loop snd & helf, and to dispose of the extra [
two beepers... }
Begin
CleanUpIfThewallWaesinTheway;
- WHILE .next-to-s-beeper DO
Begin
l‘:::: eepers CleanUpIfThewallWasInTheWay
End;
putbeeper;
putbeeper
End;

=

] o

Figure 2. Karel’s Design View & a Scope View

The Programming Environment -

As shown in Figure 1, the Karel GENIE is a “seamless” environment that integrates
syntax free structure editing with high level “CASE? like” design tools and powerful run
time testing and debugging tools.6 The basic structure editing functionality and run time
system make it even easier to cover Karel and programming methods comprehensively
with young (and not so young) children in a very short time period.

The structure editor based design tools may be even more important[30, 6]. It is
possible to display concurrently different aspects of a program in alternative “views” that
are not limited to the program’s concrete syntax. For example the “design” view depicted
in Figure 2 allows the programmer to focus attention in a hierarchical, graphical manner
on the program’s high level procedural call structure. “Scope” views, such as the one
also shown in Figure 2 may be used to attend to lower level implementation details.
Since program structure is maintained in an underlying structure database, changes
made in any one view are reflected elsewhere immediately. In the case of the design
view, one can use it to understand the structure of an already existing program, and/or
to map program code from the graphical representation.

Results

As already indicated, initial analyses have found statistically (and substantively)
significant results, showing transfer from Karel (or at least associative learning) in two
separate domains thus far: “far transfer” to expository writing; and “near transfer” to

5. “CASE” isan acronym for Computer Assisted Software Engineering.

6. GENIE also adds recursion and comments to the Karel language. 6' BEST @@Py AVAEILABL%

E TC National Educational Computing Conference 1996, Minneapolis, MN

Aruitoxt provided by Eic:

149

programming performance in a standard structured language (Pascal). The results of
three separate studies are reported here.

Expository Writing -1

In this study a group of Minneapolis ninth graders learned Karel the Robot in the
context of a team taught, interdisciplinary science course. Another group covered a unit
on the mechanics of word processing taught by the same teacher during the same time
period.” Students in both groups completed the same major writing assignment: a
research design for a year long project in field biology, chemistry and/or ecology.

The two groups were chosen on the basis of administrative convenience (periods 4 &
5). However we are aware of no known prior selection effects. Students in both classes
had similar overall course schedules and extra curricular activities and similar grade
point averages.

We emphasized several parallels between good programming and good writing, both
in structuring our Karel curriculum unit and assessing writing quality. The writing
samples were blind graded, following the grading rubric that is reproduced as an
appendix to this paper. Following similar assessment procedures with high inter coder
reliability used in Columbus, Ohio, California, and elsewhere{8, 3, 25], the rubric
focuses on structure and design criteria. As seen in the appendix, we drew explicit
parallels from our own computer science program grading rubrics, informed by the
theoretical framework implicit in previous writing assessment rubrics.

The student science project research designs were completed about ten weeks after the
Karel unit. Unlike the short essays so prevalent in English classes, these writing samples
tend to be longer (up to ten pages) and are based on topics that the students knew well.

All of the students received the same exhortations to structure their essays in a well
organized fashion, but the computer science teacher did draw specific analogies with
programming methods for the Karel group. Hence any effects can be better characterized
as evidence of associative learning as opposed to true incidental transfer.

As seen in Tables 1 through 4, the Karel group did indeed perform considerably better
on blind graded writing samples. Interestingly enough, on first reading, the grader (a
writing teacher) was struck by the poor grammar and spelling in both groups’ essays.
However, using the CMU rubric to assess organizational structure, the papers basically
fell into two piles.

Table 1. Median Writing Quality Scores’

Karel Control

Expressed as:

Raw Score™ 20 16
% of Total Possible 77 56
X Component Score 3.67 2.67
N= 16 16

7. The Karel unit lasted about four weeks, after which the experimental students also were introduced to the word
processing topics covered by the control group. The teacher’s impression was that the Karel students in fact did
equally well on the word processing tasks. They seemed to enjoy the work with Karel, which also introduced them
to common Macintosh editing conventions.

- "Call of the North”

150

Individual student scores are Asimple summed composites of all six grading
criteria summarized in the appendix.

p = .05 according to Mann-Whitney U-Test Criteria

Table 2. Categorized Writing Quality Scores”

Karel | Control

highest (23-24) 44% 31%
high (18-22) 44 6
low (16-17) 12 25
lowest (13-15) Q 38

100% 1 100%

N= 16 16

Individual student scores are simple summed composites of all six grading
criteria summarized in the appendix.

p = .01 according to Chi2 Criteria

Table 3. Repetition Rubric Criterion Only*

Karel Control

highest (4) 75% 31%
high (3) 19 69
low (2) (1 Q

100% 100%

N= 16 16

p = .01 according to Chi? Criteria

Table 4. Hierarchy Rubric Criterion Only”

Karel Control

highest (4) 38% 38%
high (3) 56 19
low (2) 6 44

100% 100%

N= 16 16

p = .02 according to Chi? Criteria

Tables 1 and 2 report the summary results using a simple summed index based on all
six grading rubric criteria summarized in this paper’s appendix. Individual items are
notoriously unreliable. But it is worth noting that the Karel group performed better on
all six component indicators. Even with the small number of cases in the experiment,

8

National Educational Computing Conference 1996, Minneapolis, MN

151

the repetition and hierarchy differences reported in Tables 3 and 4 are statistically
significant.8

Expository Writing -2

Conceived as a pilot study, this experiment was conducted with ninth graders in a
Kansas City suburb. In it we were less concerned with experimental design niceties than
with demonstrating to ourselves that the idea had merit. We were aware of the fact that
Karel has been used in middle school computer science curricula. But we also wanted to
satisfy ourselves that it is possible to teach the language in a short time period to less
technically oriented students.® The results were encouraging in their own right.

Two groups of students were drawn randomly from the same ninth grade language
arts class. One group left class early in the semester for a three week unit on Karel
taught by the school’s lead computer science teacher.10 The other group did Karel at
semester’s end. The entire class completed three writing assignments in the interim.

Grading of the three assignments was done by the writing teacher who participated in
the study. Although the grading was not done blind, the teacher did pool all of the
assignments into one group rather than grading them separately, and reported that he
indeed was unaware of the students’ group membership while grading. The grading was
based on the participating teacher’s explicit organizational criteria, which are
summarized in a note to Table 5.

Table 5. Pilot Study Writing Performance Median Scores’

Karel First | Control p=T

Three Paragraph Work

Raw Score 97 83 .04

Residual +9 -5 .44
Three Paragraph Paper

Raw Score 69 21 .01

Residual +10 -20 .04
Reading Test

Raw Score 75 59 .02

Residual +2 -3 .19
Karel Grade 84 80 .04
N= 13 13 —

Grades on the three writing assignments were based on the following criteria,
and constrained to a zero to 100 point scale by the participating teacher: topic
sentence=1; explicit conclusion=1; supporting details=1 each; coherence
(transitional device and direct references to other related information=3; one of
the above=2; none used, can follow=1; can’t be followed=0). The Karel grade

8. Of course the probability that all six would consistently favor the Karel group is highly unlikely by chance alone,
especially given the small N. Remember the multiplication rule{28].

9. We also have begun work with third graders, who seem quite capable of learning Karel.
10_she also taught Karel to the writing teacher.

Q 1z 1z
- “Call of the North
ERIC

Q

ERIC

Aruitoxt provided by Eic:

152

was a summary performance grade assigned by the computer science teacher
who taught the Karel unit.

t According to Chi? Criteria

As can be seen in the table, the group who completed the Karel unit first did better on
all three writing assignments. But there was a confound: they also did somewhat better
on Karel. Perhaps they were better motivated earlier in the academic term and/or the
Karel work itself was a good motivator, such that they paid better attention to their
subsequent writing tasks. In spite of the random assignment, possibly there was indeed a
selection effect with the small number of cases.

Hence I also calculated residual scores, based on the difference between the students’
actual scores on each of the three writing assignments and their predicted scores given
the positive relationship between performance on Karel and the writing quality

‘measures. In the residuals analysis the Karel first group still did better on all three

assignments. Given the small number of cases only one relationship was statistically
significant but the characteristic differences were present in all three instances. 11

Of course one can attribute the results to explicit instruction and resultant associative
learning rather than to “true” incidental transfer. As already noted, the writing teacher
did become somewhat familiar with Karel during the experimental period. The students
also may have realized that their teachers thought programming experience could
impact on their writing. But, unlike in the Minneapolis study, explicit parallels between
Karel and writing were »not emphasized in the writing class.

Near Transfer to Programming in Pascal

A major purpose of using Karel in an introductory programming methods course is
that it facilitates very early attention to non-trivial issues of procedural (and control)
abstraction. Such abstractions presumably make for a simpler transition to Pascal, where
students will expect to use modular programming as a matter-of course.

In this last study Karel was taught as an introduction to work in Pascal by ninth
graders in a Pittsburgh area private school. One group studied Karel for about six weeks
in total, with heavy emphasis on procedural abstraction and explicit consideration of
relatively complex control abstraction as well. This group thus spent comparably less
time on Pascal as a result.

The other group also did some Karel. The participating teacher felt strongly that it was
important to use Karel enough to familiarize the students with the GENIE software
environmental semantics. However these students were quickly weaned from Karel,
having worked with no procedurally complex Karel programs.

The two groups of students were chosen on the basis of administrative convenience
from the school’s introduction to computing course. However, based both on the
teacher’s judgment in a small class where he knew the students well and a review of
school records, there were no known selection effect differences between the groups.

10

11 once again note that consistency across relationships is much less likely to occur by chance alone than is a single
significant relationship.

National Educational Computing Conference 1996, Minneapolis, MN

153

Table 6. Near Transfer from Karel to Pascal

Karel Control

Game Program

median 85 85

first quartile 80 56

% failing grade” 0 25
Course Grade

median 85 83

first quartile 79 56

% failing grade™ 0 25
N= 9 12

* p=.05 according to Chi2 Criteria

As shown in Table 6, the Karel group in fact did better on both the “capstone” final
program assignment and on final course grades. The programs were graded for both
procedural abstraction and functionality.12 The Karel group’s programs were both better
structured procedurally, and tended to include more complex functionality and better
looking graphical user interfaces.

Again the small number of cases make it unlikely that any one relationship is
statistically significant. But the characteristic group differences remain. Moreover there
were in fact significantly fewer failures in the Karel group.

Implications for Teaching Writing

Clearly teaching students to be good structured programmers will not obviate the need
for teaching writing! As seen in the Minneapolis study, the Karel group’s written essays
showed room for considerable improvement in attention to spelling and similar “low
level” syntax details. Of course such is not surprising; the Karel programming lessons
purposefully ignored such issues. But what is impressive is that a short introduction to
programming methods apparently did serve to help the same students better organize
their essays for structure and readability.

Moreover the transfer seems to be asymmetrical.13 That is, it seems to be easier to teach
well structured programming than writing. Since the semantics of both the language and
problem (with Karel) domains are simpler than in writing essays, there is far less
detailed information to summarize before the students are asked to analyze and
synthesize.

Of course we should continue to build (computer based) tools to teach writing
skills[23, 23, 17, 2]. After all, computers are well suited for supporting data hiding,
revision, hierarchical organizational and related tools. But schools also must do much
more to encourage making connections across the curriculum.

12 The assignments were not graded blind. However the teacher did pool them into one group. Since so much time
had passed following the Karel unit, he claimed to be unaware of group membership at the time of grading.

13, 0f course none of the data directly support this assertion about asymmetrical transfer. But it seems both a very
plausible conjecture and worthy of further research[5].

O “call of the North”

11

154

Conclusions

References

In the three studies reported here I have been able to demonstrate some intriguing
transfer effects attributable to programming in the Karel the Robot teaching language. Of
course such effects require proper attention in the classroom to issues of structure,
organization, planning and design. Although this particular language does facilitate such
attention, even it does not insure that teachers will focus on programming method and
problem solving as opposed to language constructs alone.

All too often programming courses have been notoriously badly done. The response in
many secondary schools has been to drop programming altogether, in favor of computer
literacy courses organized around spreadsheets, word processors, databases and similar
standard software applications. Yet some of us continue to believe that appropriate
programming education is (and will become increasingly) essential for both pre-
professional and general education[1, 35]. I hope that these results will contribute to a
continuing dialogue and effort to improve programming education, with serious
attention to the possibilities for computing across the curriculum.

[1] Bonar, J., “Everyone Will Be a Programmer,” Technology and Learning, July 1987.

[2] Britton, B. K., and S. M. Glynn (eds), Computer Writing Environments: Theory, Research,
and Design, Hillsdale, New Jersey: Lawrence Erlbaum Associates, 1989.

[3] California Association of Teachers of English, “California Essay Scale,” in A Guide for
Evaluating Student Composition, Urbana, Illinois: National Council of Teachers of
English, 1965.

[4] Carver, S., “Learning and Transfer of Debugging Skills: Applying Task Analysis to
Curriculum Design and Assessment,” in R. Mayer (ed), Teaching and Learning
Computer Programming: Multiple Research Perspectives, Hillsdale, New Jersey: Lawrence
Erlbaum Associates, 1988.

[5] Carver, S., and M. Walker, “In Search of General Planning Skills,” Proceedings of NECC
‘89, National Educational Computing Conference, Boston, June 1989.

[6] Chandhok, R., D. Garlan, D. Goldenson, P. Miller, and M. Tucker, “Programming
Environments based on Structure Editing: The GNOME approach,” Proceedings of the
1985 National Computer Conference, Chicago, 1985.

[7] Chatel, S., F. Detienne, and I. Borne, “Transfer among Programming Languages: An
Assessment of Various Indicators,” paper presented at the Fifth Workshop of the
Psychology of Programming Interest Group, PPIG5, Paris, December 1992.

[8] Columbus Public Schools, The Columbus Rubric for Writing, Columbus, Ohio:
Columbus Public Schools, 1987.

[9] Converse, P., “Attitudes and Non-Attitudes: Continuation of a Dialogue,” in E. Tufte
(ed), The Quantitative Analysis of Social Problems, North Reading, Massachusetts:
Addison-Wesley, 1970.

[10] Fix, V., and S. Wiedenbeck, “Designing a Tool for Learning Ada Using Empirical
Studies,” Proceedings of The Fifth Workshop of the Psychology of Programming Interest
Group (PPIG5), Paris, December 1992,

[11] Goldenson, D., and B. J. Wang, “Use of Structure Editing Tools by Novice
Programmers,” in J. Koenemann-Belliveau, T. G. Mohr, and S. P. Robertson (eds),
Empirical Studies of Programmers: Fourth Workshop, Norwood, NJ: Ablex Publishing
Corporation, 1991.

12

National Educational Computing Conference 1996, Minneapolis, MN

155

[12] Goldenson, D., “Learning to Program with Structure Editing: An Update and Some
Replications,” Proceedings of NECC '90, National Educational Computing Conference,
Nashville, June 1990.

[13] Hovland, C., “Reconciling Conflicting Results Derived from Experimental and
Survey Studies of Attitude Change,” The American Psychologist, 14 (1959).

[14] Johanson, R., “Computers, Cognition, and Curriculum: Retrospect and Prospect,”
Journal of Educational Computing Research, 4 (1988).

[15] Kaufer, D., C. Geisler and C. Neuwirth, Arguing from Sources: Exploring Issues Through
Reading and Writing, New York: Harcourt-Brace, 1989.

[16] Kurland, D., R. Pea, C. Clement and R. Mawby, “A Study of the Development of
Programming Ability and Thinking Skills in High School Students,” in E. Soloway
and J. Spohrer (eds), Studying the Novice Programmer, Hillsdale, New Jersey: Lawrence
Erlbaum Associates, 1989.

[17] Kurland, M., and A. Bardige, “Language: The Next Generation of Writing Tools,”
Proceedings of NECC ‘89, National Educational Computing Conference, Boston, June
1989.

{18} Linn, M., and M. Clancy, “Can Experts’ Explanations Help Students Develop
Program Design Skills?” International Journal of Man-Machine Studies, 37 (1992).

{19] Linn, M., and J. Dahbey, “Cognitive Consequences of Programming Instruction:
Instruction, Access, and Ability,” Educational Psychologist, 20 (1986).

[20] Mayer, R., J. Dyck and W. Vilberg, “Learning to Program and Learning to Think:
What'’s the Connection?,” Communications of the ACM, 29 (July 1986).

[21] McCoy, L., and N. Dodl, “Computer Programming Experience and Mathematical
Problem Solving,” Journal of Research on Computing in Education, (Fall 1989).

[22] Mohamed, M., The Effects of Learning LOGO Computer Language Upon the Higher
Cognitive Processes and The Analytic/Global Cognitive Styles of Elementary School Students,
unpublished Ph.D. thesis, University of Pittsburgh, 1985.

[23] Neuwirth, C., R. Chandhok, D. Kaufer, P. Erion, J. Morris, and D. Miller, “Flexible
Diff-ing in a Collaborative Writing System,” Proceedings of CSCW ‘92 Sharing Perspectives,
Toronto, November 1992.

[24] Neuwirth, C., D. Kaufer, R. Chandhok, and J. Morris, “Issues in the Design of
Computer Support for Co-authoring and Commenting,” Proceedings of CSCW ‘90
Conference on Collaborative Work, Los Angeles, October 1990,

[25] Odell, L., “Defining and Assessing Competence in Writing,” in C. Cooper (ed), The
Nature and Measurement of Competency in English, Urbana, Illinois: National Council of
Teachers of English, 1981.

[26] Palumbo, D. B., “Programming Language/Problem-Solving Literature: A Review of
Relevant Issues,” Review of Educational Research, 60 (Spring 1990).

[27] Pattis, R., Karel the Robot: A Gentle Introduction to the Art of Programming, New York:
John Wiley & Sons, 1981.

[28] Payne, J., “Fishing Expedition Probability: The Statistics of Post Hoc Hypothesizing,”
Polity, 7(Fall 1974).

[29] Pennington, N., and R. Nicolich, “Transfer of Training Between Programming
Subtasks: Is Knowledge Really Use Specific?” in J. Koenemann-Belliveau, T. G.
Moher and S. P. Robertson (eds), Empirical Studies of Programmers: Fourth Workshop,
Norwood, New Jersey: Ablex Publishing Corporation, 1991.

'BEST COPY AVAILABLE

O “cCall of the North”

13

156

[30] Roberts, J., J. Pane, M. Stehlik and J. Carrasquel, “The Design View: A Design
Oriented High Level Visual Programming Environment,” Proceedings of the IEEE 1988
Workshop on Visual Language, Pittsburgh, October 1988.

[31] Scholtz, J., “Transfer by Experienced Programmers: A Longitudinal Study,”

Proceedings of The Fifth Workshop of the Psychology of Programming Interest Group (PPIG5),
Paris, December 1992.

[32] Scholtz, J., and S. Wiedenbeck, “Learning New Programming Languages: An
Analysis of the Process and Problems Encountered,” Behaviour ¢ Information
Technology, 2 (1992).

[33] Seidman, R., “New Directions in Educational Computing Research,” in R. Mayer
(ed), Teaching and Learning Computer Programming: Multiple Research Perspectives,
Hillsdale, New Jersey: Lawrence Erlbaum Associates, 1988.

_ [34] Singley, M. K., and J. R. Anderson, The Transfer of Cogmtwe Skill, Cambridge, Mass.:
Harvard University Press, 1989.

[35] Soloway, E., “Why Kids Should Learn to Program,” Proceedings of the 6th Canadian Al
Conference, Montreal, 1986.

[36] Soloway, E., J. Spohrer and D. Littman, “E UNUM PLURIBUS: Generating
Alternative Designs,” in R. Mayer (ed), Teaching and Learning Computer Programming:
Multiple Research Perspectives, Hillsdale, New Jersey: Lawrence Erlbaum Associates,
1988.

[37] Tu, J., and J. Johnson, “Can Computer Programming Improve Problem-Solving
Ability?” ACM SIGCSE Bulletin, 22 (June 1990).

[38] Wu, Q., and J. R. Anderson, “Knowledge Transfer among Programming
Languages,” Proceedings of The Fifth Workshop of the Psychology of Programming Interest
Group (PPIG5), Paris, December 1992,

Appendix: The CMU Writing Quality Rubric

Organization and Composition

Hierarchy (top-down design)

4 The central idea is stated very clearly and examples and details are used as
support. The subordinate ideas/examples/details are stated separately in clearly
connected hierarchical fashion. Good transitional words and phrases as well as
sectional headers delineate the sections.

3 While the central idea is stated, subordinate ideas, examples and details are not
always well developed to support and develop the main argument of the paper.
The use of some transitional devices helps indicate the delineation of sections.

2 The central idea is vague with no development or supporting details/examples.
Few, if any, transitional devices are used.

1 There is no central idea. There are also no examples or details and the author
seems to have used “spaghetti logic” when writing this paper.

Sectioning (modularity)

4 Ideas/information are logically developed and expressed in a separate cohesive
fashion (e.g. sections) instead of being interwoven with other ideas.

El{fC National Educational Computing Conference 1996, Minneapolis, MN

. 157

3 Theideas/information are presented in a logical manner, but the author may
stray from the topic and occasionally interweave ideas or information.

2 The ideas/information are often interwoven which makes it difficult to
determine how the author has sectioned the information.

1 There is no indication as to how the author has sectioned the
ideas/information.

Distinction Between Detail and Abstraction (granularity)
4 Major ideas are well-emphasized by keeping details and examples distinct
(perhaps but not necessarily in separate sections) from those ideas.

3 Although major ideas tend to be emphasized, examples and details are not
always kept distinct.

2 The major ideas are often unclear because details and examples are
intermingled with those ideas.

1 Details and examples are generally indistinguishable from major ideas.

Repetition (repetitive code)
4 The authors repeat information only when the repetition clarifies their
arguments. When doing so, the authors use effective paraphrasing.

3 Although the author repeats information when it is necessary, he/she also
occasionally repeats information when it is not necessary. The author does,
however, usually use effective paraphrasing.

2 The author tends to be unnecessarily redundant and does not use paraphrasing
effectively.

1 The paraphrasing and repetition of ideas/information suggest that little thought
was given to the topic.

Information

General Data Definitions (data structure/definitions)
4 General classes/types of information are defined explicitly perhaps in a single
location with any structural relationships among those classes stated explicitly.

3 While definitions and/or relationships are explicitly stated, structural
relationships are sometimes omitted.

2 While definitions and/or relationships are stated, they are vague and/or
incomplete.

1 General classes and structural relationships are rarely if ever defined.

Specific Instance Declarations (data declaration/instantiation)

4 Specific instances of information are explicitly described in the context where
they are used or by explicit reference to another context if that information has
been used there.

3 Specific instances of information are often defined or referenced and these
definitions and references are usually in context.

2 Specific instances of information are sometimes described or referenced but
usually not in context,

“Call of the North”
Q
ERIC ;
'Full Text Provided by ERIC . 1

- 158

1 Rarely if ever is explicit information described or referenced.

Grading Score Sheet

___Top/down design (hierarchy)

— Modularity (sectioning)

_ Granularity (distinction between detail and abstraction)
—_Repetitive Code (repetition)

__Data structure/definitions (general data definitions)
___Data declaration/instantiation (specific instance declaration)
___Total Score

16

:
ik

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement (OERI)
Educational Resources Information Center (ERIC)

- NOTICE

REPRODUCTION BASIS

This document is covered by a signed “Reproduction Release
(Blanket)” form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a “Specific Document” Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release
form (either “Specific Document” or “Blanket”).

