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Abstract

Logit Multiplicative Models: Alterliatives to Saturated
Logit/Loglinear Models for 3-Way Tables

When the highest-way association is present in a 3-way cross-
classification of frequencies, standard logit and loglinear models have
as many parameters as there are cells in the table; that is, the models
are "saturated". Extensions of logit and loglinear models are described
here that provide more parsimonious alternatives to saturated models.
The new models, logit multiplicative models and their equivalent log
multiplicative models, are introduced here for the case where there is
one dichotomous response or criterion variable and two (polytomous)
explanatory or predictor variables. In logit multiplicative models, the
interaction between the explanatory variables is represented by the
product of scale values for the categories of the explanatory variables
and a measure of the strength of the association. Plots of the scales
values provide graphical representations and descriptions of the inter-
action. The new models are illustrated by modeling a 3-way interac-
tion between whether an elementary school student attends an extra-
curricular tutoring program, the highest educational level attained by
the student's father, and the student's grade levei.

Keywords: loglinear models, logit models. 3-way interactions, latent
variables, scaling, categorical data analysis.



1 Introduction
Variables in educational and social science research are often discrete, such
as gender, race, grade level, types of programs of study, whether a course is
passed or failed, the highest degree earned by a parent, plans after gradu-
ation, desired occupation, and actual occupation. Other variables are con-
tinuous, but are measured descretely, such as socio-economic status, ability,
and achievement. With respect to ability and/or achievement, the observed
variables are typically whether a student selects a correct or incorrect answer
on an objective test item, or the actual response option selected on a multiple
choice item.

The standard approach to analyzing niultivariate categorical is to use
loglinear or logit models. These models are extremely useful for identify-
ing interactions that are present in multivariate categorical data; however,
they are not as useful for helping to describe t he nature of the relationships
that do exist. Unlike continuous variables where a single number such as a
correlation coefficient is sufficient to summarize the association between two
variables, the number of statistics (i.e., odds ratios) needed to characterize
the association between categorical variables is an increasing function the
number of categories of the variables. For example, the minimum number of
odds ratios that are needed to completely describe the relationship between
just two variables each of which has 4 levels is ( 1- 1)(4 - 1) = 9. When asso-
ciations exist among three or more variables, t he number of statistics needed
to describe the relationship is larger making t he problem of interpreting and
describing interactions even more difficult.

In the case of two categorical variables. t lie multidimensional row-column
or "RC(M)" association model developed by ( ;oodman (1979, 1985, 1986,
1991) is extremely useful for summarizing and describing the relationship be-
tween two variables (also see Agresti. I lugg Shihadeh, 1994; Wick-
ens, 1989). The RC(M) association model is dri extension of the loglinear
model for two-way tables. Interactions .ue ',presented in RC(M) models by
the product of scale values assigned to eg. it le, f t he variables and a mea-
sure of the strength of the relationship I", .1. of scale values provide graph-
ical representations of the association be' %erti driables, which greatly aid
interpretation. Numerous generalizat ions ot e RC(.11) association model
for three or more variables have been ;,,,,;,osed I Anderson, 1996; Becker,
1989a; Becker & Clogg, 1989; Choulakian is logg, 1982a, 1982h; Gilula
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Sz Haberman, 1988; Goodman, 1986; Mooijaart, 1991); however, the exist-
ing model generalizations do not address the situation where one variable
is a dichotomous response or criterion variable and the other variables are
explanatory variables. It is this situation that we are concerned with here.

Log linear and RC(M) association models represent the relationships be-
tween categorical variables without making distinctions regarding the role
that particular variables play in an analysis. When one variable is a response
or criterion variable and the rest of the variables are explanatory or predictor
variables, logit models are often preferable to loglinear models, even though
logit models are equivalent to loglinear models. Logit models are simpler than
their equivalent log linear models. Logit models only include terms that rep-
resent the associations between the criterion and the explanatory variables,
and they do not contain terms that represent the relationship between the
explanatory variables. Extensions of logit models, logit multiplicative mod-
els, are presented here that are analogous to the RC(M) association model.
In the logit multiplicative models, the interactions between the explanatory
variables are represented by products of scale values multiplied times a mea-
sure of the strength of the association. The models are equivalent to one of
the models in the family of association model generalizations proposed by
A lderson (1996).

In Section 2, the logit multiplicative model for the specific case of a
dichotomous response variable and two explanatory variables is described.
Since fitting the models is a non-trivial problem and cannot be done using
standard procedures in readily available statistical software packages, two
methods currently available for estimating the new models are discussed in
Section 3. As an example, the models are used to analyze data from a study
by Hsieh (1996) on the effects of extra-curricular tutoring programs on math-
ematics achievement in elementary school children in Taiwan.

2 The Logit Multiplicative Model
In Section 2.1, the logit multiplicative model is presented as an extension
of a standard logit model, followed in Section 2.2 by a discussion of the
identification constraints needed to estimate model parameters. Lastly, in
Section 2.3, the interpretation of the model and its parameters is discussed.



2.1 The Basic Model
Let Fijk equal the number of individuals (students, parents, subjects, ob-
jects, etcetera) who fall into categories i, j, and k of variables A, B, and C,
respectively, where variables A and B are explanatory variables and variable
C is a dichotomous response variable (i.e., k = 1, 2). The number of cate-
gories of variable A equals I (i.e., i =1,... 1) and the number of categories
of variable B equals J (i.e., j = 1, , J).

We start with the standard logit model with two explanatory variables
where the "dependent" variable is the odds of one response versus the other
(i.e., F1i1/F0). The most complex or saturated model is

Fijl
Fij2

where is a constant, A(i) and ,i3B(;) are "main" or marginal effect terms
for variables A and B, respectively, and 13A2(i1) is the interaction term. Since
the odds of response 1 versus response 2 is a multiplicative function of the
model parameters, the logarithm of Fii1/Fil2 is a linear function of model
parameters; that is,

, , ,
= T + TA(8) TB(j) 7.4B(i))

r ij2

where T = 1413) is a constant, TA(2) = ln(3A(i)) and TB(j) = lnG3B(3)) are
"main" effect terms, and TAB(ij) = ln(3AB(i3)) is the interaction term. This
model has as many unique parameters as there are data points, which in
this case equals the number of odds that can be formed for the variou ;

combinations of variables A and B (i.e., I x J ). The saturated logit model
(equations 1 and 2) will always fit the data perfectly.

To obtain a more parsimonious and simpler representation of the data, we
note that the interaction terms TAB(o) in equation 2 (or AB(i1) in equation 1)
are unstructured in the sense that they equal whatever they need to equal
so that the data are fit perfectly. The new models presented here impose a
multiplicative structure on these terms and break the interaction down into
component pieces as follows:

13 A(013B(j)0 AB(ij) (1)

(2)

.11Fi .1
ln( = r + TAW TB(j) E Onaltuiv.im

r i j2 In =1

5

(3)



where M equals the number of components or dimensions used to represent
the interaction, and vim are scale values for categories i and j of variables
A and B, respectively, on dimension in, and Om is a measure of the strength of
the interaction between A and B on dimension m. When M = min( /, J) 1,

equation 3 is equivalent to the saturated logit model; however, when M <
min(I, .J) 1, the model is not saturated and provides a summary of the
inter Iction. In practice, models such as equation 3, the RC(M) association
mod d. and it's various generalizations, typically only need a small number of
dimei:sions (i.e., 1 or 2) to adequately fit data.

Assigning numbers to the categories of "ordinal" variables seems natural,
but what about scaling the categories of "nominal" variables? While no a
priori ordering cf categories may exist (i.e., a variable is "nominal"), when
considering the r?.lationship between observed variables, there may be an or-
dering of the categories on some underlying or latent (continuous) dimension.
Even when categories have an a priori ordering (i.e., an "ordinal" variable),
this ordering may not be the appropriate one for describing an interaction be-
tween variables. Since the parameters of model 3, including the scale values
and association parameters, are estimated from the data, we can discover the
appropriate ordering and relative spacing between categories that is needed
to summalize the interactions by fitting the model to data.

2.2 Identification Constraints
To estimate the parameters of equation 3, identification constraints on the
model parameters are required. These constraints do not effect the predicted
or "fitted" values, and thus do not effect how well the model fits the data. The
identification constraints do effect the actual numerical values of estimated
parameters. The constraints imposed on the TA(,)'s and TBcds are the same
as those typically imposed on the analogous terms in logit and loglinear
models; that is, either a particular term is set equal to a constant (e.g.,
TAW = TB(1) = 0), or the sum of the terms for a variable is set equal to a
constant (e.g., Ef_i TA(i) = TB(3) = 0).

The sets of scale values for each variable need to be centered and scaled.
The centering constraints set the location of the scale. The centering con-



straints used here are

E itimhA(i) = 0 (4)

E vinike(j)
j.1

= 0 (5)

where hA(i) and hB(;) are fixed and known weights for categories i and j of
variables A and B, respectively. Possible choices for hA(1) and hB(i) include
unit weights, uniform weights (i.e., = 1// and hB(i) = 1/J), cr.: marginal
probabilities. Becker and Clogg (1989) discuss the choice of weights for the
RC(M) association model, and their results apply here as well.

The scaling constraints used here are

= smm,

= (5mIn'

(6)

( )

where 6,,, = 1 for rrt = m' and 0 for ni m'. These constraints set the unit
of measurement and constrain the scale to be orthogonal across dimensions.

In !ium, the constraints on the scale values can be thought of as setting
the ME ans of the sets of scale values equal to zero, the variances equal to one,
and the covariances (or correlations) bet ween scales equal to zero. Thus, the
scale alues are an interval level measure on underlying continuous variables.
Linear transformations of the scale values will not effect the fitted (predicted)
values.

Given the identification constraints, t he degrees of freedom for the logit
multiplicative model in equation 3 can now be computed. The degrees of
freedom equals the number of data points minus the number of unique pa-
rameters (i.e., the number of parameters in equation 3 minus the number of
constraints needed to identify them). Thus. t he degrees of freedom equal

df = (I 1 ) ( J M 1) (8)



2.3 Interpretation of Model Parameters
In logit multiplicative models, as well as in standard logit, loglinear, and
RC(M) association models, interactions between variables are defined in
terms of odds ratios. A direct relationship exists between odds ratios and
the model parameters. Since interactions between categorical variables are
defined in terms of odds ratios (and for three variables, ratios of odds ratios),
this relationship has implications regarding the proper interpretation of the
logit multiplicative model.

Let Oiew equal the ratio of the odds F1310'132 to which is an
odds ratio for variables A and C conditional on category j of variable B;
that is,

Fij1 Fij2 Fijl Fi'j2
= Fili / Fisi2 F1j2 Fej 1

If there is no interaction between variables and B in their relationship to
variable C (i.e., no 3-way association among variables A, B and C), then
the conditional odds ratio given category j equals the conditional odds ratio
for any other category of variable B (i.e.. O,(,) = Oii,(j,) for all i, il = 1, . . .

and j, j' = 1, , J). Alternatively, we can consider odds ratios conditioning
on the categories of variable A; that is.

Fi j'2

jj'(i) Fi Ff 1 ij2

If there is no interaction between variables .1. B and C, then the conditional
odds ratios for all categories of variable ..4 will all be equal (i.e., 0;;,(i) =
for all i, = 1, . , I, and j, j' = 1 ......Ii. Finis, when no 3-way association
exists,

0;;,(i)
Ow tip 1

Oji,(e)

If a 3-way interaction does exist, then . .t . or equivalently In(Oiii,iji)
0 for at least some = 1, , I , and I. / J

In terms of the parameters of the lovit ,:1, it .1)1icative model, the logarithm
of the ratio of conditional odds ratios

= E om(pim )( ., (9 )

c,)
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The associations in the data that are attributable to the 3-way relationship
arc represented by the scale values and the association parameter, and not
by any of the other terms in the model. The scale values provide informa-
tion about the structure of the interaction between variables A and B in
their relation with variable C. Since the scale values provide an interval
level measure on latent continuous variables, only the relative differences be-
tween scale values for the categories of variable A are meaningful, as well
as the relative differences between the scale values for categories of variable
B. Categories with the relatively larger differences between their scale val-
ues have (conditional) odds ratios that are more dissimilar and thus their
ratio Ow jji is further from 1 than do categories with relatively smaller dif-
ferences. Alternatively, categories with nearly equivalent scale values, have
nearly equivalent odds ratios, and thus e11,1 for these categories will be
close to 1, the point of no association.

Plots of scale values provide "pictures" of the relationship among the
variables. Such "pictures" are graphical representations of all possible ratios
of odds ratios that can be formed. These plots greatly facilitate the substan-
tive interpretation and description of interactions in data. The geometry and
interpretation of such plots is similar to that of plots of scale values from the
RC(M) association model (see Goodman, 1986; Clogg, 1986), except that
interactions are defined in terms of ratios of odds ratios rather than just odds
ratios. In these plots, the relative distances between points provides infor-
mation about the relationship between the variables. An example of such a
plot and its interpretation is given in Section 4.

To gain insight into the meaning and interpretation of ck, we first examine
the simple case of the one dimensional model where

In(eiii,iii) = Cb(iti Pii)(11.7

For a one unit change in the scale for variable A (i.e., (pi = 1) and
a one unit change in the scale for variable B (i.e., (3 vii) = 1), cb is the
logarithm of the ratio of conditional odds ratios. In other words, the associ-
ation parameter 4) is a measure of the strength of the relationship between
variables A, B and C. In the case of two or more dimensions, Om measup s
the strength of the relationship on the mth latent dimension.

At times, we may wish to consider t he effect" of one variable holding the
other variable constant; that is, we may want to consider what happens to
the odds Ft,1/F0 when we change to category i' of variable A. To examine

9



such eff-cts, we look at the appropriate conditional odds ratios, which in this
case is Oii,(3). In terms of the logit model parameters, this equals

ln(Oii,(;)) = (TA(1) TA(11)) + E 1)771(j.4m m)Vjm
In

Thus, the difference between the odds ratio for category i and that for cat-
egory depends on both the main effect of variable A and the interaction
effect between variables A and B. Alternatively, if we hold the level of vari-
able A constant and examine the change in odds ratios between categories j
and j' of variable B, we find that the change in odds ratios depends on both
the marginal effect of B and the interaction between A and B; that is,

= (rB() TB(j,)) + E omitim(,,m -

Rather than odds and odds ratios, for some purposes it is more convienent
to use predicted probabilities or relative frequencies. The fitted odds can be
transformed to probabilities as follows:

1

= 1+ (Fi1/Fii2)-'

1 + ,(7-4-TA(,)+,-B(,)+Em ompt.,,m)
(10)

where iri31 is the predicted probability of response 1 given categories i and
j of variables A and B, respectively. However, with respect to interpreting
the model parameters, the interpretation using equation 10 is not as simple,
straight forward, or direct as it is when we discuss odds and odds ratios.

3 Estimation
While the model can be estimated by least squares, only maximum likeli-
hood estimation under the standard sampling assumptions of independent,
homogeneous observations from either a Binomial or Poisson distribution is
discussed here. The same inherent difficulties encountered when estimat-
ing che RC(M) association model apply to estimating logit multiplicative
models (see Haberman (1995) for a discussion of the difficulties involved in
estimating the RC(M) association model). Two currently available methods

10



of estimating the models are briefly outlined here. One method uses com-
mon statistical packages, but this method requires specially written modules
and can only be used to estimate a one dimensional model (i.e., M = 1).
This method is described in Section 3.1. The other method makes use of the
equivalence between the logit multiplicative model and a special case of one
model from the family of models proposed by Anderson (1996). This family
of models, 3-mode association models, are generalizations of the RC(M) as-
sociation model to 3-way tables. This latter method makes use of a program
written to estimate the entire family of 3-mode associations models devel-
oped by Anderson (1996). In Section 3.2, the equivalence between the logit
multiplicative model and the 3-mode association model is given, as well as
some general comments about the algorithm used in the program.

3.1 Uni-Dimensional Model
Uni-dimensional model can be estimated using software that estimates gen-
eralized linear models (Dobson, 1990; McCullagh & Nelder, 1990), such as
GLIM (Francis, Green & Payne, 1993) or SAS/GENMOD (SAS Inc., 1994).
Generalized linear models are extensions of traditional linear models that
have two basic parts: a structural component and a random component.
The structural component is a linear function of the predictor or explana-
tory variables. The random component is a probability distribution for the
response variable, which can be any distribution from an exponential family
of distributions. The "link function" describes how the mean of the response
variable is related to the linear predictor. The pros-edure used to estimate
generalized linear models can be used to fit the one dimensional logit multi-
plicative model.

Both the one dimensional RC model and the logit model are generalized
bilinear models (as opposed to generalized linear models). The RC model
has a log link function and its random component is the Poisson distribution,
while the logit bilinear model has a logit link function and its random com-
ponent is the Binomial distribution. By changing the link function and the
distribution, the algorithm given by Becker (1989b) for estimating the one
dimensional RC association model using generalized linear models can be
modified to fit the one dimensional logit model (or any generalized bilinear
model).

The procedure to estimate logit bilinear models is iterative and requires

11



starting values for the scales values. To describe the basic steps required for
the iterative portion of the procedure, we write equation 3 as

In(Fi)1/F0) = T TA(i) TB(s)+ xiyj (11)

where ckitivi = xiyj. Variables A and B are declared to be classification
variables and x and y are alternately treated as numerical variables and pa-
rameters that are to be estimated. In one step, equation , is fit to data with
xi's treated as the values of a numerical variable and ti,e yi's are estimated
parameters. On the next step, the new estimates of yi are treated as the
values of a numerical variable and the x,'s are estimated parameters. This
process is repeated until the change between fitted values on successive cycles
is less than some specified criterion (i.e., a very small number). After the so-
lution has converged, the identification constraints are imposed on the scales
values (i.e., Ai, = a 'Xi b, and = c + d, where a, b,c and d are constants
such that E, ilihA(1) = Ej i/jhB(j) = 0 and E,14hA(i) = Ei ihw =- 1). The
model is estimated a final time using the p.oduct fLi1)3 as a numerical variable
to obtain an estimate of 0 and the final estimates of the other parameters in
the model. The fit statistics for the final model are correct, but the degrees
of freedom and estimated standard errors of the model parameters given by
the program are not correct. The correct degrees of freedom are given in
equation 8.

Since the procedure require6 iteratively fitting models, in practice, mod-
ules written to perform the cycles and steps within each cycle are used.
Becker (1989b) describes one such module for the program GLIM. A module
using SAS/GENMOD is available from the author. One advantage of this
procedure is that it uses existing and generally available software. Another
advantage is that the model statement can be readily modified to fit more
complex bilinear models. For example, more variables can be included and
additional bilinear terms for other 2-way interactions can be estimated (e.g.,
Anderson St Wasserman, 1995). The major disadvantage of this method is
that it cannot be used to estimate multiple dimensions, which is why we turn
to a second method of estimation.

12
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3.2 Multi-Dhremsional Model
The estimation procedure described here can be used to estimate both uni-
and multi-dimensional models. Equation 3 is a special case of one class
of 3-mode association models proposed by Anderson (1996). Three-mode
association models, which are log multiplicative models, are extensions of
the saturated loglinear model for 3-way tables, as well as generalizations
of the RC(M) association model to :3-way tables. The 3-mode association
model that is equivalent to the logit multiplicative model is

ln(Fijk) = A + A A(1) AB(j) AC(k) + A ABM AAC(ik)
R S T

ABC(jk) F EEE Or3tiltrilj3rikt
r=1 3=1 t=1

(12)

where the terms A, AA(t), Asco, AC(k), A48(1;), AAntk), and ABc(jk) are marginal
effect terms for the various margins of t he table; /lir, Vjs and rlkt are scale
values for variables A, B and C, respectively, on dimensions r, s, and t,
respectively; and 4brst is the association parameter measuring the strength
of the relationship among dimensions r. .s and t. Given the identification
constraints for the 3-mode association model (Anderson, 1996), if variable
C only has 2 levels (i.e., k = 1,2), then .1 =1. R S, Tin = 7721 =
and c/or3I = 0 for r ,s, such that equation 12 reduces to

ln(Fijk) = A + AA(i) + AB() A(k) + AB(t j) AAC(ik)

ABC(ik) E Orr
r=1 V.)

(13)

This log multiplicative model is equivalent to t he logit multiplicative model
given in equation 3. This equvialence lietwnes readily apparent when we
express ln(Fiii/F1i2) in terms of the parameters of equation 13:

ln(Ftit/Fij2) = (Ac(i) Ar(2)1 ii AAc02))

(ABC(jl) A HI V. V IDrrlitirlijr



The correspondence between parameters in equations 3 and 13 is

(A G. (1) C (2))

7.4(i) = (AAC(il) AAC(i2))

TB(j) = vBC(j1) ABC(j2))

Pm = fic6rrl
Pim =
V'Jrn = Vjr

Since the logit and log multiplicative models are equivalent, a program that
fits equation 12 (and thus equation 13) can be used to fit the multidimensional
logit multiplicative model.

Anderson (1993, 1996) gives maximum likelihood equations and an algo-
rithm using univariate Netwon-Raphson procedure to fit 3-mode association
models, including model 12. The FORTRAN program, 3mode, implementing
this algorithm is available from the author. The major disadvantage of this
method is that a global solution is not guaranteed (Anderson, 1996; Haber-
man, 1995); however, in practice, the method works well. Furthermore, to
ensure convergence, the program can be run itetatively with different starting
values.

4 Example
As an example, logit multiplicative models are fit to data from a study by
Hsieh (1996) on the effects of extra-curricular tutoring programs on mathe-
matics achievement test scores of elementary school children in Taiwan. High
achievement test scores are critical for children to gain access to higher ed-
ucational and thus occupational opportunities. One question in this study
are what are potential factors or determinants of whether a student attends
an extra-curricular tutoring program. These tutoring programing, known as
"cramming schools", purport to increase students' achievement test scores.
The data used here, given in Table 1, consist of frequencies of children cross-

ord, .4th 5thclassified by their grade level or 01), the highest education
level attained by their father (less than a sixth grade education, graduated

1 0



from elementary school, giaduated from junior high, graduated from high
school, graduated from college, or attended graduate or professional school),
and whether the student attends a cramming school in mathematics. The
goal of this analysis is to determine whether grade level and/or father's edu-
cation are related to whether a student attends a cramming school. Whether
a student attends a cramming school is the criterion variable, and grade level
and father's education are the explanatory or predictor variables.

Logit models for various numbers of dimensions were fit to the data in
Table 1. The fit statistics for these models are reported in Table 2, where
G2 is the likelihood ratio statistic and X2 is Pearson's chi-square stafictic.
The first column of Table 2 indicates how many dimensions were fit. The
first model with M = 0, which is the additive effects logit model (i.e., the
no 3-factor interaction loglinear model), does not fit the data. A 3-way
interaction among grade level, father's education, and whether a student
attends cramming school exists Rather than having to settle for the saturated
logit model (the last model in the table, M = 3), we have two intermediate
models (M = 1 and M = 2), both of which appear to fit based on the global
fit statistics.

The (standardized) residuals and estimated parameters for both of the
one and two dimensional models were examined. The fitted values from
the one dimensional model are reported in Table 1. Comparing these to
the observed frequencies, there is unusually large residual for fourth graders
whose father graduated from junior high. The estimated scale values and
association parameters for the two dimensional model reveal that the second
dimension essentially accounts for the cell for fourth graders whose father's
completed junior high. We selected the one dimensional model as the better
of the two models partially on the basis of parsimony and partially on the
basis of its interpretation, which is given below.

To describe the interaction between grade level and father's education
with respect to whether a student attends cfamming school, we examine the
estimated scale values of the one dimensional model. The estimates of the
model parameters are reported in Table 3 and the estimated scale values are
plotted in Figure 1. In estimating these parameters, zero sum constraints
were imposed on the main (marginal) effect terms and unit weights (i.e.,
hG(,) = hp()) = 1) were used for the scale values.

In Figure 1 (or Table 3), we see that the scale values for student's whose fa-
ther have had some education are nearly equivalent and that the scale values

l5



Table 1: Frequencies (first row) and fitted values (second row) from the
logit(1) multiplicative model cross-classified by whether a student attends
cramming school, student's grade level, and father's education level.

Cramming Grade None

Father's Education Level
Junior Senior

Primary High High College
Post-
Grad.

School Level 0 1 2 3 4 5
3rd 3

1 3 13 35 4

3.00 0.54 3.94 14.65 33.79 :3.08

Yes 4th 1 2 9 19 27 4

0.99 1.88 4.83 17.75 29.77 6.78
5th 0 4 12 35 44 10

0.01 4.59 15.30 34.59 42.41 8.10
6th 0 19 25 64 51 5

0.00 18.99 24.93 64.01 51.03 5.04
3rd 2 2 8 29 76 4

2.00 2.46 7.06 27.35 77.21 4.92
No 4th 1 8 4 30 67 13

1.01 8.12 8.17 31.25 64.23 10.22
5th 3 16 94 48 72 8

2.99 15.41 20.70 48.41 73.59 9.90
6th 4 13 29 47 78 7

4.00 13.01 22.07 46.99 77.97 6.96



Some None

1.0 .50 0 .50 1.0

Father s Education: lj

6th 5th3rd 4th

1 111
t t t t t t t i

1.0 .50 0 .50 1.0

Grade Level:

Figure 1: Estimated scales values from the logit(1) multiplicative model fit
to the odds of attending cramming school cross-classified by grade level and
father's education.



Table 2: Fit Statistics for logit multiplicative models for various numbers of
dimensions.

Model (M) df C2 p-value X2 p-value
0 15 29.33 .01 27.71 .02
1 8 11.91 .16 12.03 .15
2 3 .75 .86 .87 .93
3 0 .00 1.00 .00 1.00

for student's in the third, fourth and fifth grades are also nearly equivalent.
This implies that odds ratios for students in grades 3 through 5 and whose fa-
ther have had some education are nearly equivalent (i.e., Oii,,;;, 1). There
is a relatively large distance f:om the scale values for "None" and "Some"
and between the scale values fcr grF.des 3 through 5 and grade 6. The ob-
served pattern of scale values indic,.tc:i that the odds that children in the
3rd, 4th and 5th grades attend a cramm:hg hool are greater than the odds
for children in the 6th grade when their fathers have no education versus
when their father has had some education. 'File odds that children in the 6th
grade attend a cramming school are greater than those for children in the
younger grades given that their parents had more than an elementary school
education. Overall (except for children whose fathers have the lowest level
of education, the odds (and in this ca.-,e, probability) that children attend
tutoring program are larger when they're in t he sixth grade versus one of the
other grades.

We should note that the estimated a...,,kciat ion parameter = 220.62 is
extremely large. Given that the differetne between scale values for "Some"
and "None" is approximately equal to I trid that the difference between
the scale values for sixth graders and (liddreti in t he other grades is a little
larger than 1, the odds ratio for sixth vi.,ders whose father has had some
education versus no education is more t Liu pi 220.62) (a very large numer)
times larger than the corresponding odds .,tios for childern in the other
grades. Alternatively, the odds ratio for dren whose father has had some
education and who are in the sixth %,!,.. ..!.e f the other grades is more
than exp(220.62) times larger than t he i c Hind i ng odds ratios for children

(J
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Table 3: Parameter Estimates from the logit bilinear model (i.e. Al = 1).

Variable Category Marginal Effect Scale Value
= 12.3351 (1 = 220.6313

Grade Level 3rd

4th
5th
6th

i.G(1) = 11.7323

= 11.7096

7-G(3) = 10.9070

fIG(4) = 34.3490

.2984

.2964

.2709

.8658
Father's Education None i'F(i) = 59.1020 iii = .9128

1 7tF(2) = 11.3814 7"/_2 = .1867
9 Tp(3) = 12.0125 i "3 = .1821
3 i*F(4) = 12.0309 1)4 = .1830
4 f-F(5) = 11.6925 /^)-5 = .1809
5 TF 6) = 11.9845 i'i-6 = .1799

whose fathers have had no education.
In this data set, the interaction between father's education and grade level

is due to the sixth graders and the student's whose father had no formal
education. The additive logit model fit to all the data except the cell for
the sixth graders whose father had no education does not adequately fit the
data (i.e., G2 = 24.53, df = 14, pvalue= .03)'. However, if we delete
the sixth graders and those students whose fathers had no education, we
find that the additive logit model with iust marginal effects for grade and
father's education (i.e., the model without an interaction between grade level
and father's education) fits the data quite well (G2 = 11.80, df = 8, p-
value= .16)2. Furthermore, the additive logit model fit to data with just
children in the sixth grade deleted provides an adequate fit (G2 = 16.38,
df = 10, p-value= .09), and the model fit to the data with just children

'Fitting this model makes use of methodology for incomplete tables. The odds for
sixth graders whose father had no education was fit perfectly, which uses up one degree of
freedom relative to the logit model with M =

2T1iis result was an additional reason for y.lecting the model with one versus two
dimensions
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whose father had _-_ , education also fits adequately (G' = 20.08, clf = 12,
p-value= .07). While the nature of the interaction in this example is a rather
simple one, it illustrates the power of logit multiplicative models with respect
to identifying where the interaction is and its ability to give a parsimonious
representation of the data.

5 Discussion
The logit model extension proposed here provides a means not just of test-
ing whether there is a relationship between discretely measured variables,
but it provides a metric description and representation of the interactions.
While the specific logit model described here was designed for the case of
one dichotomous response or criterion variable and two explanatory vari-
ables, extensions of this model to polytomous responses and/or more pre-
dictor variables in a similar fashion that the RC(M) association model has
been extended to higher-way tables is straight forward (see especially Becker
& Clogg, 1989; Clogg & Shihadeh, 1994).

The new logit model and related models such as the RC(M) associa-
tion model and its generalizations are very powerful tools for representing
and describing associations in cross-classifications. Such models have been
primarily (and successfully) used in sociology (e.g., Clogg, 1982b; Clogg,
Eliason & Wahl, 1990; Faust & Wasserman, 1993; Yamaguchi, 1987; Xie,
1992). Clogg (1982b) gives just a sample of the potential applications of
these models. Examples of their use in educational research are surprisingly
rare, especially given that variables in educational research are often mea-
sured discretely (e.g., see first paragraph of this paper). These models can
be used in observational studies such as the one described in this paper or
in qualitative studies where behaviors are observed and coded according to
some defined scheme (e.g., Anderson & Kramer, 1996).

Due to the latent (continuous) variable interpretations of the models (e.g.,
Bartholomew, 1980, 1987; Goodman, 1981, 1985; Lauritzen and Wermuth,
1989; Whittaker, 1989), the models have potential applications in the area
of educational measurement where concern is focused on the measurement
of underlying abilities. The resemblance of equation 10 to an item response
model is not by coincidence. There are very close relationships between
models for categorical data and more commonly (and some not so commonly)
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known latent variable models (e.g., see Agresti, 1995; Anderson, 1986; Clog&
1982b).

Logit multiplicative models, as well as the RC(M) association model and
its various generalizations, are relatively recent developments in the method-
ology for categorical data analysis. Given the wide range of potential applica-
tions in educational research for such models, we anticipate that researchers
will find these models valuable tools.
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