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Traditionally, even before mental test theory was proposed, the test score represented

by the number of items that are answered correctly was taken as an indicator of the

examinee's ability level. Today, researchers still tend to think that the number-correct

test score is a way of ordering individuals v. ith respect to the latent trait, justifying it

by saying that the test score is a consistent estimator of ability. This idea has gone far

enough to use monotone likelihood ratio (e.g., Grayson, 1988; Hyunh, 1994) of the test

score in the latent trait as a way of evaluating mathematical models.

Samejima (1969, 1972) proposed the general framework of ordered polychotomous

responses, and Bock (1972) proposed a nominal model for non-ordered polychotomous

responses which uncovers implicit orders among the nominal responses. After a couple

of decades, aided by advanced computer technologies, researchers started using mathe-

matical models that belong to these two big families of models for their research and also

for more practical purposes of ability and attitude assessments. The idea of monotone

likelihood ratio has also been extended to evaluate polychotomous response models.

In reality, there is no such things as an infinitely long test, and our objective should

be to make the best use of information provided by a finite number of items in the test

and estimate the individual's ability level as accurate as possible. Samejima (1969) has

shown that, in general, the use of the test score, or any aggregate of response patterns,

will decrease the amount of test information, which results in loss of accuracy in ability

estimation.

An advantage of the use of polychotomous responses over the use of dichotomous

responses lies in increment in the amount of test information. Generally speaking, how-

ever, loss of test information by using the test score, and hence loss of accuracy in ability

estimation, is greater when responses are graded polychotomously.

'Hie objective of the present study is to depict benefits of using ability estimates
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obtained directly from individuals' response patterns instead of their test scores, espe-

cially when responses are graded polychotomously, and also discuss the importance of

substantive model validation.

I. Rationale

Let 0 be the latent variable which assumes any real number, g (= 1,2, ...,n)

denote an item, Kg be a polychotomous response to item g and and kg denote its

realization. The operating characteristic, Pks,(0) , of the discrete item response kg is

defined as

Pk9(0) E prob. [Kg = kg I 0] . (1)

When ordered polychotomous responses are dealt with, K9 and kg in (1) are replaced

by the graded responses X9 and xg (= 0,1,2, ..., mg) , respectively.

Samejima (1973) defined the item respons3 information function, .49(0) , such that

k9(0) = log Pk9(0) , (2)

and the item information function 12(0) was defined as its conditional expectation,

given 0 , of the item response information function

Ig(0) E[Ik9(0) 1 01 = Eik,(0) pk9(0) .

kg

Equation (3) includes Birnbaum's item information function for a dichotomous item

(Birnbaum, 1968) as a special case.

Let V be a response pattern, or a sequence of item responses, and v denote its

realization. Assuming local independence (Lord & Novick, 1968), the operating charac-

teristic, P(0) , of a specific response pattern v is given by

(3)

1),(0) E- prob. [V = v 1 0] = II Pk9(0) . (4)
kgEt,

2
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Thus from (2) and (4) the response pattern information function, 1(0) , can be written

as
a2

I(0) = log Pu(0) = E Ik9(0) ,
ao2

k.,Ev

and the test information function, 1(0) , is defined as the conditional expectation of the

(5)

response pattern information function, given 0 , and from (2), (3), (4) and (5)

1(0) = E[1,(0) I 01 = E /v(9) P(o) E 4(o) . (6)
g=1

This amount of test information, or its square root, is used as a local measure of accuracy

in ability or attitude estimation, when the response pattern is used as the basis of

estimation.

Let T be any aggregation of response patterns, and I be its realization. The

operating characteristic, Pt(0) , of a specific aggregation t is given by

Pi(0) = E p(o) . (7)
vEt

When the aggregates t 's are disjoint and each response pattern v belongs to one and

only one t , as is the case with the test score, the test information function, 1*(0)

based on such an aggregation is defined by

a2 aI* (0) = E[ log Pt(0) 0] "--= E[{ log Pt(0) 0}2] ,
ao2 ao

as opposed to the original test information function, which can be written as

a2 a1(0) = E[ log Pv(0) I 01 = E[{ log Pv(0) 0}2]802 ao

(8)

which is obvious from (5) and (6). Using Cauchy-Schwarz's inequality, Samejima (1969)

showed that

1*(0) .< 1(0) . (9)

Inequality (9) implies that, if polychotomous response categories are more finely clas-

sified, as exemplified by a 7-point scz i versus a 3-point scale, then in general the amount

3
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of test information will be increased. More importantly, since the test score is an aggrega-

tion of response patterns, except for certain special cases, the amount of test information

will be decreased if the test score is used as the basis of ability or attitude estimation,

instead of the response pattern itself: the fact that leads to inaccuracy in the latent trait

estimation.

Samejima (1969, 1972) proposed a sufficient ',ondition for an item response to pro-

vide a unique local or terminal maximum likeihood estimate for any response pattern

consisting of such item responses. Let Akg(0) be such that

0
A.kg(0) = log Pkg(0) . (10)

Tiie sufficient condition is that Ak9(0) be strictly decreasing in 0 with non-negative

and non-positive values for its two asymptotes, respectively. For brevity, this condition

has often been called the unique maximum condition. It is noted from (2) and (3) that

the first part of this condition can be rephrased, that is, the item response information

function be positive for all 0 except, at most, at an enumerable number of points where

it is zero.

It has been shown (Samejima, 1969, 1972) that both the normal ogive model and thc

logistic model on the dichotomous response level, and also those on the polychotonious

response level, satisfy this condition, and so does Bock's nominal response model. Thus

in these models the likelihood function based on the response pattern, which is the same

as 15,(0) in (4), has a unique local or terminal maximum for every v E V . Note,

however, that neither the three-parameter logistic model nor the the three-parameter

normal ogive model satisfies the unique maximum condition (Samejima, 1972, 1973)

and thus for some response patterns the likelihood functions have multi-modes. Yen,

Burket k. Sykes (1991) have shown that multi-modality of thc likelihood function occurs

not infrequently for response patterns that usually come across in empirical data if the
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three-parameter logistic model is used.

If an aggregate T exemplified by the test score is used instead of the response pattern

V as the basis of ability or attitude estimation, however, unimodality of the likelihood

function is not assured, even if the model itself satisfies the unique maximum condition.

This is obvious from the likelihood function P(0) shown in (7).

From (4) and (10) it is obvious that the likelihood equation is given by

a 100)(e) = E A(0) o . (11)
kg Ev

Thus if the model satisiies the unique maximum condition the argorithrn for obtaining

the maximum likelihood estimat Ot, will be easy and straightforward, using the ba-

sic functions. In this way, without usning any aggregates such as the test score, the

exarninee's ability can be estimated directly from his/her response pattern.

II. Test Score with Polychotomous Responses

In Rasch model (Rasch, 1960), equality in (9) holds if the number-right test score

is used as T , since it is a sufficient statistic. Thus in this model accuracy in ability

or attitude estimation will not decrease even if it is based on the number-right test

score. It has been reported by many researchers, however, that in many cases estimated

operating characteristics of the correct answer, or item characteristic curves, provide

distinct discrimination powers for separate items in a test. Thus it will be an unjustified

approach to adopt Rasch model in such cases even though the model porvides the benefit

of mathematical simplicity.

When the discrimination parameter is considered as in the normal ogive and logistic

models, the number-right test score is no longer a sufficient statistic. Thus inequality

holds in (9) that results in the loss of accuracy in estimating the latent trait when the

test score is used as the basis of ability or attitude estimation instead of the response
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pattern itself. Decrease in the amount of test information is illustrated in Figure 1 for

10 hypothetical, dichotomous test items following the logistic model, whose operating

characteristic, P9(0) , of the correct answer to item g is given by

1Pg(0) = (12)
1 + exp[Da9(0 bg)]

where ag and bg are the discrimination and difficulty parameters, respectively, and

D is a scaling factor approximately equals 1.7 (Birnbaum, 1968). The values of these

parameters for the 10 items are shown in the same figure. Considering that the rniinber-

right test score classifies individuals into only (n + 1) categories, whereas the number

of possible response patterns is as large as 2n , indicating that if n = 10 these numbers

are 11 versus 1, 024 , decrease in the amount of test information is readily acceptable.

Insert Figure 1 About Here

When eac'i item is polychotomously scored, the test score is given by >z9Ev sg ,

where xg (= 0,1, ..., mg) is the graded item score. Thus even if the smallest number,

mg = 2 , applies for each and every item, the number of possible response patterns

becomes as large as 3n , whereas that of distinct test scores is only 2n + 1 . This

implies that if n = 10 there are 59,049 possible response patterns in contrast to

the 21 test score categories, and, for example, the test score 10 includes as many as

8,95', different response patterns. To be more specific, consider two response patterns,

(2,2,2,2,2,0,0,0,0,0) and (0,0,0,0,1,1,2,2,2,2) , with the 10 items arranged in

the ascend:ng order of difficulty. Should these two response patterns be treated as

equivalent because they provide hip same test score 10 ? Common sense tells us that

these two response patterns that belon;., to the same test score category may represent

6
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substantially different latent trait levels. Use of the test score results in the loss of all

specific information contained in each response pattern, however, and these two response

patterns are treated as if they were equal.

Insert Figure 2 About Here

Figure 2 illustrates decrease in the amount of test information caused by the use

of the test score instead of the response pattern itself, for 10 hypothetical, ordered

polychotomous items with m9 = 2 each, with the second difficulty parameter 0.5 higher

than the first one for each dichotomous item illustrated in Figure 1. As is expected, a

greater amount of decrement is seen in Figure 2 than in Figure 1.

A strength of the general ordered polychotomous model is that mg can be different

for separate items. In such a case, a single test score contains a greater variety of

response patterns, and a greater loss of test information is expected. Another strength

of the general ordered polychotomous response model lies in a variety of configurations

of item response difficulty parameters within each item and across separate items. For

example, the distance between the difficulty parameters between x9 = 1 and x9 = 2

may be substantially larger than the one between x9 = 2 and x9 = 3 within a single

item, and this relationship may be reversed across two separate items. The test score

ignores such distinct configurations of difficulty parameters, and treat them as if they

were equal, whereas the likelihood equation (11) based on the response pattern reflects

such differences as they are.

Scatter diagrams of the test score for polychotomous response items and an estimate

of the individual's latent, trait based on the response pattern usually provide a wide

range of dispersion, especially when m.9 is large for most items. This indicates that
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the test score for polychotomous response items does not represent individual differences

with respect to the latent trait.

It is easily seen from (11) that, as long as the model satisfies the unique maximum

condition, for a test of n graded items, there only Egn=i m9 + n basic functions.

From this small number of basic functions, using an appropriate, simple algorithm,

jign=1(mg + 1) likelihood equations can be produced, and the maximum likelihood es-

timate, k , of the latent trait is obtained as the solution of the likelihood equation

(11) for a specific response pattern v . For example, when n = 10 and nt, = 2 ior

all items, there are only 30 basic functions in total, and they provide ot, for each of

59,049 response patterns.

III. Substantive Criteria for Model Validation

Most researchers are concerned with the goodness of fit of the operating characteristics

that a mathematical model provides to their set of empirical data as the criterion for

model validation. Samejima (in press) pointed out the danger of this conventional way

of model validation, illustrating that two mathematical models that are based on totally

different rationale can produce practically identical sets of operating characteristics, and

there will not be any way to decide which model is more suitable if curve fitting is

exclusively used for model validation. In the same token monotone likelihood ratio of

the test score cannot be used as a criterion for model validation, since the test score only

asymptotically converges in probability to the latent trait.

Samejima (in press) proposed more substantive criteria for model validation sudi as

the fitness of the rationale or principle behind the model to our data, additivity intrinsic

in the model, its natural generalizability to a continuous model, satisfaction of th unique

maximum condition, and orderliness of the modal points of the operating characteristics

that the model provides. Among others, the rationale on which a specified mathematical

8
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model is based should be considered intensively.

One of the issues that needs to be considered is how to accommodate differences in

difficulty levels o: ;terns in ability estimation. On the dichotomous response level, for

example, should the correct answer to a more difficult item be credited mure than that

to an easier item, or should failure in answering correctly to an easier item be penalized

more than failure in answering a more difficult item correctly? Samejima (1969) pointed

out that symmetric models that provide point-symmetric item characteristic curves with

(1)9,0.5) as the point of symmetry, which are exemplified by the normal ogive and logistic

models, have a certain logical problem, because they treat correct answers and incorrect

answers symmetrically, accommodating both of the above philosophies. Taking the

normal ogive model as an example, whose operating characteristic of the correct answer

is given by
ag(Obg) U2P(0) = exp[ I du (13)

where ag and bg are the discrimination and difficulty parameters, respectively, this

problem was presented and discussed in the original literature (Samejima, 1969, pages

85-86) as follows:

"Now let us consider a situation in which examinees are required to solve n di-

chotomous items, all of whose discriminating powers are the same, but whose difficulty

levels are different from one another. For simplicity, let us suppose that n = 5 and

the five items are denoted by 1, 2, 3, 4, and 5, in the order of easiness. If there are

five examinees who have tried to solve all the five items but succeeded in only one, and

each item s&-ed is different from each other, to which of the five examinees should be

assigned the highest valu,. of estimate? The answer to this question may largely depend

upon subjective judgments or preferences. On the normal ogive model, however, the

answer is definite, as we can easily observe by following the preceding reasoning. We

9
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can arr..nge the five response patterns in the order of high evaluation as the following:

(0,0,0,0,1) (0,0,0,1,0) (0,0,1,0,0) (0,1,0,0,0) (1,0,0,0,0)

This fact appears to suggest that the philosophy of scoring underlying the normal ogive

model is such that an examinee is evaluated as low in the ability tested because he can

only solve an easy item, while an examinee who has solved a difficult item is evaluated

as high in the ability tested because of the difficulty of the item solved.

Now let us consider another instance, if there are another five examinees who have

also tried to solve the same five items and who have succeeded in four of them, but

failed in only one, and each item failed is different from each other, to which of these

five examinees should be assigned the highest value of estimate? On the normal ogive

model, again we can easily see that these five response patterns are arranged in the order

of the magnitudes of estimates as follows:

(1,1,1,1,0) (1,1,1,0,1) (1,1,0,1,1) (1,0,1,1,1) (0,1,1,1,1)

In this case the philosophy of scoring seems to be that an examinee is evaluated as low

in the ability tested because of the fact that he cannot P:fiye even an easy item, while

an examinee who has failed in a difficult item is evaluated as high in the ability tested

because it is no proof of his inferiority that he has failed in a difficult item.

The above two philosophies are, in one sense, contradictory with each other, since the

principle is completely reversed. That is to say, the difficulty of an item in the former

instance is treated just as the easiness of an item in the latter instance, and vica versa.

If we apply the principle in the former case to the latter, the order of evaluation of the

five response patterns should be reversed, sincc, for instance, an examinee with response

pattern (0,1,1,1,1) has succeeded in the most difficult four items, while an exarninee

with response pattern (1,1,1,1,0) has succeeded in the easiest four items."

10
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A solution of this contradiction can be found in the adoption of a certain asymmetric

model. Samejima (1972) called the family of models represented by

eg
1

IVO) [ 1 -I- exp[Da9(64 kg)]
(14)

with G (> 0) as the third parameter the positive exponent family of the logistic model.

It can be shown that, when > , the model consistently follows the philosophy of

giving more credit to the success in answering a more difficult item correctly, providing

the reversed order of 6, 's for th( response patterns that have only one item score 0

each while the order of the et, 's for the response patterns having only one item score 1

each is unchanged. This is illustrated in Table 1 with n = 5 , and with the parameter

values a9 = 1 for all items, 1.9 = 3.0, 1.5,0.0,1.5,3.0 , respectively, and G 2 .

Insert Table 1 About Here

In this situation, rationale behind the family of models represented by (14) includes

the slip ratio defined as an monotone decreasing function of 0 . When it is incorporated

in the logistic model represented by (11), if the slip function is assumed to be

1

1

1 + exp[Da9(0 kg)]

which is strictly decreasing in 0 , the third parameter G in (14) will become 2 ; if it

is assumed to be

1

±1 + exp[Da9(0 b9)]1

which is also strictly decreasing in 0 , G will become 1.5 in (14), et c.

When G < 1 , the model represented by (14) follows the principle t hat failure in

answering an easy item correctly be penalized more than failure in answering a more dif-
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ficult item correctly. Rationale behind this family of models, including both of the above

two situations, is discussed in detail in a separate paper (Samejima, in preparation).

I. Discussion and Conclusions

It should be kept in mind that the objective of psychological measurement is to

estimate the latent trait as accurately as possible making the best use of information

provided by item responses. The use of the test score instead of the response pattern

itself in ability or attitude estimation will, in general, reduce accuracy of estimation, and

the loss of accuracy can be enormous especially when items are scored polychotomously.

It is strongly suggested that ability or attitude estimation be made directly from the

response pattern using basic functions given by (10), instead of using the test score as

the estimate of ability or attitude, or estimating the latent trait from the test score.

In so doing, substantive model validation is essential, for if we use an inappropriate

model for our data information provided by the model will be useless, or even harmful.

Usefulness of models that provide asymmetric operating characteristics for dichotomous

items, or its expansion to ordered polychotornous items such as the acceleration model

(Samejima, 1995) should seriously be considered.
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TABLE 1

The Maximum Likelihood Estimates of 0 Based on 32 Response Patterns of 5
Dichotomous Items Following the Normal Ogive Model with the Parameters a9 = 1.0

for All Items and b9 = -3.0, -1.5,0.0,1.5,3.0 , Arranged in the Ascending Order.

Response Pattern MLE Theta

1 00000 neg.infinity
2 10000 -1.77109
3 01000 -1.40646
4 00100 -0.83936
5 00010 -0.44235
6 00001 -0.34778
7 11000 -0.24612
8 10100 0.10334
9 01100 0.13035
10 10010 0.66449
11 01010 0.67548
12 00110 0.77745
13 10001 1.06032
14 01001 1.06796
15 00101 1.14590
16 11100 1.25580
17 00011 1.47795
18 11010 1.60421
19 10110 1.63116
20 01110 1.63323
21 11001 2.16546
22 10101 2.17644
23 01101 2.17729
24 10011 2.27846
25 01011 2.27907
26 00111 2.28672
27 11110 2.76207
28 11101 3.11779
29 11011 3.14533
30 10111 3.14744
31 01111 3.14760
32 11111 pos.infinity


