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Students Difficulties with Proof by Mathematical induction

Abstract

The cognitive difficulties encountered by 40 high school and 13 college students
beginning to learn the proof technique of mathematical induction were investigated. Students
provided data in the form of proof-writing and proof-analysis tasks followed by interviews to
clarify their written responses. Both groups of students had significant difficulties with the proof
technique, both procedurally and conceptually. The evidence suggests that mathematical content
knowledge played a significant role in difficulties. Many student's focused on the procedural
aspects of mathematical induction far more often than on conceptual aspects. The evidence
collected suggests that examples play a critical role for many students in verification, for insight,
and as patterns for how proof should be conducted. There was some evidence of students trying
to reason mathematically using everyday reasoning. Difficulties predicted by earlier studies with
proof by mathematical induction, other forms of proof, and problem solving were confirmed.

***************************************k*****************************

Introduction

There are several common proof techniques in mathematics; among these is mathematical

induction1. As such, mathematical induction is a part of the curriculum in high schools and

colleges. This technique is particularly valuable in developing the theoretical foundations of

computer science.

The contributions of the previous research on mathematical induction (Brumfiel, 1974;

Dubinsky, 1986, 1989; Dubinsky & Lewin, 1986; Ernest, 1984; Lowenthal & Eisenberg, 1992;

Moore, 1990; Movshovitz-Hadar, 1993; Solow, 1990) inform our specific understanding of some

of the difficulties that students encounter in terms of procedural and conceptual knowledge, and

mathematical resources required when doing mathematical induction. Ernest (1984) provided
ta

the most comprehensive analysis of this proof technique- He identified algebra knowledge

1 Mathematical induction is one of the common proof techniques that can sometirms be applied to establish the
truth of sequences of mathematical statements (Solow, 1990). Lowenthal & Eisenberg (1992) stated the theorem
implied by the technique of mathematical induction as follows: if a statement S(n) is true for the starting value of
the sequence, say n=1, and its truth for n = k implies its truth for n = k+1, then the statement is true for all whole
numbers. My interpretation of proof by mathematical induction is as follows: the truth of the sequence of
mathematical statements is argued, first by showing that one or more specific, initial instances of the statement are
true (i.e., the base cases), and second, by showing that when the truth of one or more of these statements is assumed,
that another of the statements can be derived (i.e., the inductive step), The indirect nature of thc proof comes from
the argument that the truth of any of the mathematical statements can be derived by recursive application of the
inductive step, starting with the base cases.



Students' Difficulties with Proof by Mathematical Induction

of implication and logic, and the ability to do a proof in the correct form, as important factors.

The relative importance of these skills is not clear from his article, nor is the relationship to

cognition. In support of Ernest, however, Dubinsky and Lewin (1986) and Dubinsky (1986)

confirm the need for students to be skilled in mathematical logic, the fi,-,;tion concept, and the

method of mathematical induction. For them, a hierarchy of conceptual understanding was

measured.

Moore (1990) noted that little research had been done on the learning of mathematical

proof and found justification for the need for additional research to identify cognitive difficulties.

Moore looked at students' beliefs and ability to problem solve and found that students are often

unprepared for the demands of mathematical proof. Although mathematical induction was a

topic in the mathematics course observed by Moore, it was given little attention in the

descriptions.

Recent research related to mathematical proof provides ways to increase our

understanding of difficulties with mathematical induction. Polya clearly made a connection

between proof and problem solving by identifying "problems to prove" as one of two problem

types (1945). A further connection to problem solving was made (Polya, 1954) by dividing the

cognitive activities in proof bL1ween plausible and demonstrative reasoning, where problem-

solving skills are used to informally discover a proof that is later demonstrated formally.

Any problem must be understood, not only for the relevant information in it, but for

connections to relevant mathematical knowledge. Lester and Kroll (1990) provide a widened

definition of understanding. According to their definition, the question being posed must be

considered along with the problem's conditions and variables. Lesh and Akerstrom (1982) and

Silver (1982) report that understanding is increased with problems that are on familiar and

meaningful topics. It is, therefore, reasonable to expect that problem understanding and

familiarity are factors in students' difficulty with proof.

Going beyond problem understanding, Schoenfeld (1985) provides a comprehensive

model for studying problem solving in terms of cognitive and affective variables: mathematical

2
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resources, heuristics, metacognitive control mechanisms, and belief systems. Schoenfeld's model

provides an avenue for understanding students' difficulties with mathematical resources in terms

of: (a) the domain-specific knowledge for interpreting symbols and the procedural knowledge

required for doing proofs, (b) the mathematical connections the learner has made in his or her

knowledge, and (c) the informal knowledge possessed by the learner and applied to problem

solving. Schoenfeld's second variable, heuristics, is the general knowledge one possesses that

guides actions in doing new problems. The third variable, metacognitive control, is the ability to

allocate resources and to monitor one's progress. According to Schoenfeld, planning and

monitoring are essential elements of control. The fourth variable, belief systems, assumes that

beliefs about oneself and mathematics influence success in mathematics. In addition to beliefs,

McLeod (1992) and Piaget (1981) suggest that emotional factors influence mathematical

problem solving.

In addition to the research literature on problem solving, the research topics on heuristics

in doing proof, students' requirements for convincing evidence, and the development of

reasoning ability provide clues to students' difficulty with proof. For instance, it has been

suggested that worl-ing forwards is used by higher level students (Hart, 1994). A work-forward

strategy is certainly more consistent with our notion of proof as demonstrative reasoning where

the argument starts with what is known and reasons toward the unknown. However, a strategy of

working backwards is consistent with the plausible reasoning in finding a proof through

problem-solving. It also seems consistent with a tendency for people to be predisposed to

confirm a theory (Kuhn, Amsel, and O'Loughlin, 1988). Since proof is a form of reasoning, the

literature related to everyday and mathematical reasoning provided explanations for students'

responses. Additionally, examples seem to play a significant role in convincing evidence.

Porteous (1990) found that children will provisionally accept the truth of a mathematical

statement from examples, and further, Moore (1990) reported that students want and need

illustrations of concepts and definitions through worked examples. These factors were studied to

determine their role in students' difficulties with mathematical induction.

3
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In Summary

There are four missing components from previous studies on proof by mathematical

induction. First, the prior experiences of students have only been given limited attention.

Second, although conceptual understanding and procedural knowledge have been studied by

other researchers, conceptual, procedural, and applications knowledge have not been investigated

as separate aspects of understanding. Third, the resources needed to be successful with proof by

mathematical induction have not been analyzed relative to cognitive factors involved in problem

solving. Fourth, findings from research on proof- related topics and on everyday reasoning have

not been applied to proof by mathematical induction.

Research Questions

Specifically, this study pursued an answer to the following question: What kinds of

cognitive difficulties do high school and college students encounter when they are beginning to

learn the proof technique of mathematical induction?

Three additional questions were also considered/. (a) what depth of understanding did the

sample of students have of the procedures and concepts in a proof, (b) how was performance in

proof by mathematical induction related to mathematics backgrounds, and (c) what differences

did high school algebra students and college computer science students exhibit in their learning?

Unique Contributions to the Study of Proof

There are four contributions to understanding students' difficulties with proof by

mathematical induction not found in the research literature. First, both high school and college

students answered essentially the same tasks. The second contribution is that students were

given both proof-analysis and proof-writing tasks. Third, the analysis of student responses was

placed in a context of difficulties predicted by literature on problem solving as well as on proof

in general. Fourth, I have made connections to students' attempts to mimic everyday reasoning

when analyzing proofs by mathematical induction.

4



Students Difficulties with Proof by Mathematical Induction

Methodology

This study was conducted in the first half of 1995 at a high school and university in an

Indiana town of about 60,000 residents. Participants were recruited from two university classes

of a lower-division, computer science course in the foundations of digital computing and two

high school mathematics classes of honors algebra. The high school algebra course was

equivalent to second-year high school algebra. Participants were given a brief description of the

value of the study and offered $5 r<3 incentives.

Students

Most of the 40 high school ard 13 college students were from middle-class families.

Both high school and college students were recruited so that different mathematical backgrounds

and different levels of academic achievement could be compared. Most of the high school

students were sophomores and all of them had either completed high school geometry or its

equivalent, or were currently enrolled in a geometry course . The mathematics backgrounds of

the college students differed widely, ranging from some high school and college mathematics to

completion of high school calculus and courses beyond college calculus.

Data Collection

Volunteers completed two phases of data collection. Phase I was completed after

approximately two weeks of instruction on mathematical induction. The questionnaire included:

(a) questions about the students' mathematics backgrounds (b) a proof-writing task, (c) four

proof-analysis tasks, (d) questions about the tasks, and (e) thne general questions about proof

and mathematical induction. Written responses to Phase I tasks provided the primary source of

evidence for this study. Phase 2 of data collection consisted of individual interviews to clarify

and elaborate the students' written responses.

The proof-writing task of Phase 1 was an algebraic identity involving the summation

symbol and factorials. The proof-analysis tasks were four arguments that looked like proofs by

mathematical induction: (a) with a missing base case, (b) that relied on one base case rather than

the required two base cases so that thc inductive step was not a general argument, (c) that
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reasoned with specific values of the mathematical statement rather than providing a generalized

inductive step, and (d) that was correctly reasoned but contained non-trivial algebra involving the

square-root symbol. The proof-analysis tasks were based on the work of Movshovitz-Hadar

(1993).

Following each proof-writing and proof-analysis task in Phase 1, five questions were

asked. Specifically, students were asked: (a) if there was anything about the mathematical

statements that was not understood, (b) if they were already familiar with the problem, (c) about

their confidence in the correctness of the proof, (d) about their confidence in the truth of the

mathematical statement being argued, and (e) about planning and monitoring for the proof-

writing task and if the argument was a proof by mathematical induction for the proof-analysis

tasks. Phase 1 questions concluded with three general questions: to describe how mathematical

induction works, to state when this proof technique can be applied, and to indicate whether a

proof can be correctly done in more than one way.

Phase 2 of data collection began a few days after Phase 1. After a preliminary analysis of

data collected from the first phase, 21 students were interviewed to clarify and elaborate on their

written answers. The criteria for choosing students for interviews was one of the following: (a)

recent graduates from high school, (b) poor or excellent backgrounds in mathematics, or (c)

answers that were ambiguous or intriguing. The prompts for the open-ended interviews were

students' answers to questions in Phase 1 of data collection. Individual interviews were audio

taped for subsequent analysis.

Data Analysis

Written answers and responses during personal interviews were analyzed in thr;e

categories: (a) student performance, (b) knowledge about mathematical induction, and (c)

difficulties with this proof technique.

Student performance was evaluated with researcher-developed scoring rubrics for the

proof-writing and proof-analysis tas For the proof-writing task, students' proofs were scored

based on successful completion of the base ease and progress in doing the inductive step. For the

6
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proof-analysis tasks, the scoring rubric was based on students' ability both to identify whether the

argument was a proof by mathematical induction and to explain why they thought so. Most

students' answers fit easily within the scoring criteria. The few exceptions that arose were

assigned a category based on the researcher's judgment. The overall score given to each student

was this study's measure of performance.

Data was analyzed to identify aspects of students' procedural, conceptual, and

applications knowledge. Procedural knowledge was demonstrated by recognizing a missing base

case, identifying the need for a generalized inductive step, recognizing correctly argued proofs,

and identifying the elements of a proof by mathematical induction. Conceptual knowledge was

demonstrated by identi fying the need for multiple base cascs and conceptual describing

mathematical induction. Applications knowledge was demonstrated with a correctly written

proof and with examples of other statements where this proof technique might be applied.

Students needed only to provide a minimal amount of evidence for these criteria.

All data were examined for evidence of students' difficulties within one week of data

collection for written responses and within one day for recorded interviews. The datawas

repeatedly analyzed by the researcher in several independent sessions to provide consistency of

interpretation.

Results

The primary question for this investigation was to characterize students' difficulties with

the proof technique of mathematical induction. Secondary questions to be addressed by this

study involved depth of understanding and characteristics of performance.

A Characterization of Difficulties

Students' difficulties with proof by mathematical induction were predicted in: (a)

mathematical resources, (b) conceptual understanding, (c) convincing evidence, (d) everyday

reasoning, (e) metacognitive control, (0 heuristics, (g) meaningfulness, (h) procedural

knowledge, and (i) affective factors. As predicted in the literature, one additional category

emerged from the data collected: difficulty associated with everyday reasoning.

7
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Mathematical resources. Students were found to have many difficulties with

mathematical content and deductive logic, especially the high school students.

Lack of mathematical content knowledge resulted in many difficulties with doing proof-

writing and proof-analysis tasks. In many cases, students were unable to operate with symbols

and to use algebraic procedtr-,,s; the ones that appeared in tasks were a subset of what students

might have mastered in high school or college courses. Specifically, students had difficulties due

to incorrect representations of the proof-writing task, faulty calculations, wrong interpretations of

algebraic statements, and inability to follow algebraic steps. Table I characterizes the types of

difficulties students had with mathematical content and the effects they had in being able to write

and analyze proofs.

Mathematical Content Effect on performance

Summation symbol Unable to make progress in proof writing: the
mathematical statement was not represented
correctly

Factorial symbol Unable to make progress in proof writing: the
base case was incorrectly calculated

Definition of divisibility Unable to correctly analyze arguments: either
being unsure whether the definition meant
evenly divisible or not understanding the
algebraic representation given

Definition of variable Unable to correctly analyze arguments: x was
interpreted to mean a constant

Algebra Unable to make progress in proof writing: the
representation of (n+2)! was incorrect

Unable to correctly analyze arguments: either
10k+1 and (10)10k were not recognized as
being equivalent or the base case was believed
to be incorrect

Thhle 1 . Specific difficulties with mathematics content
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High school students found the level of mathematics difficult; much more difficult than

problems demonstrated in class by their teacher. As one particularly frustrated high school

student put it,

We learned a couple of really simple proofs, then you throw these at us. Do you really
think we're going to understand? It's like teaching a 10 year old how to play basketball,
then put him in the NBA the next week! How do you think he's gonna do!

Rules for deductive logic also were difficult for many high school and college students in

three ways. First, reliance on informal rules of logic seemed to interfere with an ability to look at

the logic of given arguments. For example, 11 of the students said that the*Palsehood of the

mathematical statement indicated that the proof was wrong. Although this is a correct inference

on their part, it does not explain the flaw in a mathematical argument. There were other personal

rules of inference: me college student believed that an incorrect proof implied that the

mathematical statement was false, another college student expressed some discomfort with the

idea that a true statement could have a faulty proof, and one high school and one college student

believed that the truth of the mathematical statement implied that the proof was correct. These

personal rules of inference seem to indicate that many students make a strong connection

between the truth of a mathematical statement and the accuracy of its proof.

Second, students had trouble connecting the base case of a proof with the validity of the

hypothesis of the inductive step. Students needed to realize that the base case is required to

establish the truth of the hypothesis for the inductive step. About half of the 13 college students

and almost all of the I iigh school students--30 out of the 39 who completed the taskdid not

recognize a missing bat,e case in a proof-analysis task. Further, only 5 college students and 2

high school students recognized the need for more than one base case. Many students did not

appreciate the depencknce of the inductive step on the ba:ie case, as 11 high school students

expressed suspicions about a proof technique that relies on assumptions.

Third, students had difficulty with the requirement that the inductive step must be a

general argument that applies to all cases of the statement. Over one third of the college students

9 11
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and about two-thirds of the high scheol students did not fully appreciate that the argument of a

proof must be generalized, rather than rely on special cases.

Conceptual understanding. Most students did not describe mathematical induction in

terms of its concepts. In proof writing, most students relied exclusively on procedures to convey

a convincing argument, and did not explain what was being shown. Only 4 college and 5 high

school students made any reference in their written proof to what was being shown by the proof.

Poor performance often resulted from the understanding that if the proof-analysis task followed

the general form of a proof, then it was a proof by mathematical induction. One high school

student put it this way, "Yes, it started with an equatior md proved it true through a number of

different steps or assumptions."

A focus on the form of a proof over its substance was clearly in evidence. Showing

difficulty with conceptual understanding, some students expressed a lack of confidence in the

proof te hnique. One high school student said, "When I do induction, I don't believe it's true."

Another high school student was more specific, "No, it is just by algebra and some general

common sense." These two students did not appear to appreciate the convincing argumentation

in a proof by mathematical induction.

Convincing evidence. There was evidence that examples played roles in providing

convincing evidence for students. Examples were found to be important to students: (a) to

verify statements, (b) to gain insight into how to go about doing a proof, and (c) as a guide in

recognizing or doing a proof (as a template).

First, many students verified the truth of mathematical statements with examples other

arm the base case. Seven of the 13 college students and 13 of the 40 high school students used

examples to verify the truth of the mathematical statements presented in the data collection tasks.

Seven students used examples to verify more than one of the statements in the research tasks.

One of the high school students said that examples give him confidence that statements are

actually true.

IO
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Second, some students used examples to gain insight into how to go about doing a

particular proof by mathematical induction. In interviews, 3 college students indicated that

examples provide a case to follow in proving mathematical statements.

Third, examples seemed to be particularly important as templates. Students used

examples to decide whe:her the arguments in proof-analysis tasks were proofs. For example, one

college student performed a generalized inductive step for the proof-analysis task that was shown

as a specific case. However, the template role of examples was subject to error. In many cases,

students identified surfitce features of proof-analysis arguments in making their decisions. For

example, 4 high school students made decisions about proof-analysis based on "adding the same

thing to both sides" of an equation.

Everyday reasoning. When investigating students' resources in deductive logic, evidence

of everyday reasoning applied to mathematical situations was found. Three specific instances of

reasoning that resembled everyday reasoning were reported. One high school student drew from

her everyday reasoning developed from school experience when she decided that the proof-

analysis arguments were true because whoever wrote them was smarter than she. Second, in a

response not unlike one trying to confirm a theory (Kuhn et al., 1988), one college student

redefined the domain of a proof-analysis argument to try and justify it as a proof. Third, one

student reacted to his experience with mathematical induction and said in an interview that he

thought he may have used mathematical induction all his life, but he did not elaborate further. I

interpret this response to mean that there is something about mathematical induction that makes

it seem like some aspect of his everyday reasoning. These examples may be indications that

students try to associate the logic of proof to their everyday reasoning.

Based on previously-discussed evidence that students develop informal rules of inference

about a proof-like argument from the truth of the mathematical statement, it appears that stucknts

make rules from limited experience to guide their actions in mathematical situations, just like

they would be expected to do in everyday reasoning situations.
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Metacognitive control. Confirming the findings of Moore (1990), there was little

evidence of planning or reflecting. Four college students and 5 high school students specifically

stated that they did not see the need to plan before starting the proof-writing task. Only one high

school student said she reread through one of the proof-analysis tasks in order to better

understand the mathematics and one college student said that his false starts in proof-writing

were due to a lack of elegance or were not getting him closer to a solution.

Heuristics. A difficulty was predicted by Hart (1994); namely, that low-level students

would use a work-backwards strategy more often than high-level students. In confirmation of

Hart's finding, college students with experience in mathematical induction preferred the work-

forwards strategy and high school students who had the highest performance scores--9 cr above

out of 20also chose a work-forwards strategy.

However, college students used a work-backwards strategy more often, but a work-

forwards strategy was used more often by high school students. Of the 11 college students who

attempted the inductive step of the proof-writing task, 8 used a work-backwards strategy. For the

few high school students who had a recognizable solution strategy when attempting the proof-

writing task, the preference for wAking forwards mirrored the way similar problems had been

shown in class.

Work-backwards strategies were subject to two kinds of difficulty. First, through

inattention to detail, 4 c ollege students arrived at what appeared to be a circular argument, having

dropped one side of their equations. The reasoning appeared to start and end with the same

mathematical statement. To be mathematically correct when working backwards, an identity

should have been reached. Therefore, this approach to writing a proof may be prone to the

misconception about mathematical induction reported by Ernest (1984) that you assume what

you want to prove.

Second, a work-backwards approach can obscure proof as an argument where the truth of

an unknown is reasoned from known or assumed truths. In ordcr to make the meaning clear,

students should explicitly state that the steps in working backwards can be reversed. I asked 3

1 2
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college students who had worked through the proof-writing task using a backwards strategy what

had been shown and none of them was able to explain why the proof had been completed. To

one of them, the procedure had become so automatic that its meaning had been lost.

Meaningfulness. Several students reported that they did not have enough time to

comprehend the new material on proof. This was a frustration primarily expressed by high

school students. Familiarity with the mathematical statements in the research tasks was not a

factor in difficulty as far as the data showed, but only a limited portrayal of familiarity could be

derived from the evidence collected.

Procedural knowledge. High school students seemed to have much greater difficulty

with procedures than college students. No high school student completed the proof-writing task;

24 scored 4 or below (out of 20) on the performance measure. In contrast, half of the college

students successfully wrote a proof and most received a performance score of at least 9.

Affective factors. From the evidence collected, neither the high school nor the college

students studied expressed a belief that there is only one right way to do a proof. Although

affective factors can cause difficulties, I could find only indirect evidence that affective factors

were causal. Instead, it certainly was the case that negative attitudes and feelings accompanied

difficulties with proof.

A Characterization of Understanding

Most students were struggling to gain an understanding of the three aspects of

knowledge. However, results of the researcher-developed criteria revealed trends in students'

understanding. As shown in Table 2 below, more participants satisfied the criteria for procedural

knowledge than for either conceptual or applications knowledge. Further, high school students

were iess likely to provide criteria for knowledge about procedures than did college students.

This evidence seems to indicate that the students tended to focus their cognitive attention on

procedures rather than On concepts or applications.

13
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Knowledge: No. of college students
satisfying all criteria

No. of HS students
satisfying all criteria

...
Procedural 7 of 13 5 of 40

Conceptual 3 of 13 none

Applications 3 of 13 none

Table 2. Students providing all criteria for knowledge about mathematical induction

An example of a high school student's description of mathematical induction illustrates

the procedural nature of students' thinking,

First you show that the statement is true for the first number P1. Then you assume it is

true for any given number k and show that you can get to the next number Pk+1

College students' descriptions tended to be more conceptual in nature; for example, one college

student's description was as follows:

1. Prove base case. 2. Prove that for any arbitrary starting point, if thnt point gives a true

value then the next consecutive point also gives a true value.

These examples illustrate the best descriptions; some students' descriptions were put in more

algebraic terms and many were not mathematically correct.

The 3 college students who provided evidence to satisfy the criteria for conceptual

knowledge also satisfied criteria for procedural knowledge. This cvidence seems to indicate that

a hierarchy of knowledge may exist, as Dubinsky and Lewin ( 1 gs 6) and Dubinsky (1986) have

suggested, but the evidence was too limited to make any cone1rsions.

A Characterization of Performance

Researcher-developed scoring rubrics rr-asured students' performance on proof-writing

and proof-analysis tasks. As expected, ovc..al performance was related to students' mathematics

background, as Figure (below) sly, is for the Loilegestudents. For comparison, high school

students' average performance asu ed 4.9 out of 7).

1,1
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College Students' Backgrounds in Mathematics
vs. Average Scores on Research Tasks
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Figure I. Mathematics backgrounds vs. scores on research tasks

When performance scores for each task were presented as distributions for the high

school and college students separately, the distributions showed that the college students scored

zero or 4 (out of 4) more frequently than they scored the median score of 2. Showing weaker

performance than the college students, the high school stude--,ts scored zero most often. When

scores of zero were removed from the analysis, the gap in performance between high school and

college students narrowed dramatically, but still, the college students outperformed their high

school counterparts.

Summary

Both high school and college students had significant difficulties with the proof

technique, procedurally and conceptually. A primary source of difficulty was attributable to a

lack of mathematical content knowledge. The evidence collected suggests that examples play a

critical role for many students in verification, for insight, and as patterns for how proof should be

conducted. Some students showed evidence of trying to reason mathematically using informal

reasoning. In general, students focused on the procedural aspects of mathematical induction far

more often than on conceptual aspects. Difficulties predicted by earlier studies relating to

15
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procedural knowledge, conceptual understanding, use of a backwards or forwards strategy, and

metacognitive control were confirmed.

Discussion

From the evidence in this study, the following aspects of difficulty were most critical to

performance: (a) knowledge of mathematical symbols and content, (b) the ability to identify the

steps in a proof, and (c) the need for and connection between the base case and the inductive step

of a proof. Five aspects were suggestive of being important causal factors: (a) insufficient

formal mathematics backgrounds, (b) the use of a work-backwards or work-forwards strategy, (c)

inability to recognize substantial elements in examples of proof, (d) flawed generalizations that

acted as prototypes for evaluating other proofs, and (e) attempts to use everyday reasoning and to

generate informal rules of inference.

Limitations

There were four limitations of this study. First, the number of students studied did not

allow any generalizations to be made. Second, the research tasks were pilot-tested only on

college students so that the mathematical content may have been too difficult for many of the

high school students. Third, data was collected in the early stages of instruction on mathematical

induction. Therefore, the evidence collected did not reflect learning that occurred later. Fourth,

the instruction given to the high school students differed substantially from that given to the

college students. In their courses, college students received instruction on deductive logic. In

contrast, high school students had no instruction in deductive logic and had somewhat less class

time devoted to the study of mathematical induction before the study started. Therefore, the

comparisons between high school and college students studied must be qualified.

Implications for Instruction

The results of this study suggest three responses by practicing teachers of courses where

proof techniques are an introductory topic. First, since proof requires sufficient mathematical

content knowledge to be successful, instructors should not assume mastery of content knowledge
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when demonstrating examples or constructing examinations. Otherwise, excessive cognitive

burden may interfere with students' ability to show mastery of proof techniques.

Second, examples act as templates for action and for verification. Because of this,

students should be given proof-analysis tasks to confirm the important features of a proof, to gain

insight for what action to take next in a proof, and for conceptual understanding, including when

mathematical induction breaks down.. In demonstrated examples, the instructor can help

students by explicitly and carefully pointing out important aspects of what is being demonstrated

(e.g., what parts of an example demonstrate proper form). Further, both proof-analysis and

instructor-demonstrated examples can help make up for a lack of student-generated examples.

Third, students have difficulties with proof by mathematical induction as documented

here and elsewhere, especially Dubinsky and Lewin (1986), Ernest (1984), Lowenthal and

Eisenberg (1992), Moore (1990, 1995), and Movshovitz-Hadar (1993). I expect that instructors

of courses where proof is an introductory topic who are aware of common difficulties can better

monitor students' progress when analyzing in-class questioas and homework problems, as well as

when designing classroom lessons.

Suggestions for Further Study

I have three general recommendations for further study. First, I believe that there are

many factors associated with difficulty, not just those directly considered for this study.

Therefore, other studies on students' difficulties with proof by mathematical induction are

warranted. Second, issues of frequency, potency, and persistence of difficulties were not in the

scope of this study, but are important questions. Third, the question of how mathematical

induction can most effectively be taught is worth considering. How does the curriculum

available to teachers address students' difficulties? What is the relative amount and order of

emphasis that should be placed on conceptual versus procedural knowledge for students learning

mathematical induction? Finally, for students learning mathematical induction, how can the

form and procedures of a proof be presented so as not to obscure its conceptual nature?

17
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