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Abstract

The present paper demonstrates some characteristics that all parametric

statistics have in common, using the general linear model as a framework

and emphasizing that canonical correlation analysis is the general linear

model. Four characteristics of the general linear model are delineated and

explained using a program for SPSS. This program can be duplicated by

statistics students and used to teach the concept of the general linear model.

More importantly, the characteristics of the general linear model can be used

to teach students about the interrelationships between all parametric statistics.

Students taught this way can integrate the information about the specific

models into the framework of the general model. In this manner, the

learning of statistics becomes less of a chore of memorizing confusion and

more of an adventure in learning and thinking.
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Several Scholars have noted that canonical correlation analysis

subsumes all parametric statistics (Fan, 1992; Friedrich, 1992; Gittins, 1985,

Knapp, 1978; Thompson, 1985, April). Authors hav e suggested that statistics

be taught in the framework of the general linear modei, teaching canonical

correlation analysis as the final analysis and demonstrating to students how

they can use canonical correlation analysis to compute all parametric statistics

(cf., Friedrich, 1992; Knapp, 1978). The present paper supports that suggestion

by arguing that teaching univariate and multivariate statistics using the

general linear model helps students to integrate statistical concepts, as against

memorizMg key points that can be meaningless without context. In this

model students learn the inter-relatedness of the parametric statistics (e.g.,

correlation, t-test, ANOVA, MANOVA, multiple regression, discriminant

analysis, and canonical correlation analysis). Students integrate the

information more easily when they have a framework that holds true for

each analysis. The present paper outlines a framework used by Thompson

(1985) and explains the basics of canonical correlation analysis and

demonstrates how all parametric statistics can be calculated using the

framework and canonical correlation analysis.

The General Linear Model Framework

Some students learn the framework of the general linear model in

each of their statistics courses. Such students frequently hear,

1) All analyses are correlational and yield a measure of effect size that is

analogous to r2..

2) All parametric techniques invoke least-squares weights.

3) The general linear model can do anything that the specific models can do.

4) Canonical correlation analysis is the general linear model.
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Line (1) of the framework refers to the concepts that links each of the

specific parametric procedures to the general linear model. As Morrison

(1976) explained, there are two notions that enable the link. First, one can use

dummy variables to account for the degrees of freedom associated with the

partitioning of a sample into nominal categories. (Canonical correlation

analysis can be computed using nominal data. Dummy variables and

plant.ed contrast variables are used to compute statistics from categorical data,

such as ANOVA or MANOVA, using canonical correlation analysis. This

will be demonstrated later.) Secondly, differences between sample means and

correlations between variables are analogous concepts. That is, a small

difference between the means of two different samples on the same variable

conveys the same information as a small correlation between the scores on

the variable and the dummy variable of sample membership.

A demonstration of this concept helps the uninitiated reader. Gittins

(1985) defines dummy variables as "variables whose realizations consist of

arbitrary values to which meanings are assigned". (p. 68) A heuristic example

of the comparison between self-esteem and pet ownership demonstrates the

dummy variable concept. Table 1 lists hypothetical data regarding 10

children's self-esteem scores on a scale from 1 to 100 and also relates whether

or not the children have a pet. Children who have a pet are given the value

"1" for the etimmy variable; children who do not have a pet are given the

value "0" for the dummy variable. This number assignment is arbitrary. The

researcher decides which group receives the "1" and which group receives the

"0". Below the table are calculated (a) the difference between the mean self-

esteem scores of the sample of children who have pets and the sample of

children who do not have pets, and (b) the correlation between self-esteem

scores and the dummy variable of pet ownership. Both statistics--the
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difference between means (arao_ 0.6) and the correlation coefficient (r=.09)--

indicate that there is very little relationship between self-esteem and pet

ownership.

Table 2 is provided for comparison. In this analysis there is a

substantial difference between the self-esteem of pet owners and the self-

esteem of non-owners. This difference is reflected in both statistics--the

difference between sample means (iti-ao= 36.6) and the correlation coefficient

(r=.96). These two small data sets demonstrate how differences between

means are related to the correlation coefficient, thus revealing the link

between specific parametric procedures (such as ANOVA) and the general

model (canonical correlation analysis). Furthermore, since all analyses have

correlation as their basis, it is possible to calculate an r2 type of effect size in all

analyses. (This point will be elaborated upon in later examples.)

The second point of the framework states that all analyses invoke least-

squares weights. These weights are employed to maximize the explained

variance (the correlation coefficient between the latent variable, "Yhat'', and

the independent variables) and to minimize the error variance. These

weights are known by many names: "beta weights" in multiple regression,

"discriminant function coefficients" in discriminant function analysis and

MANOVA, "factor pattern coefficients" in factor analysis and "canonical

function coefficients" in canonical correlation analysis. The unsuspecting

graduate student might assume that these weights are all different since they

all have different names. However, the weights listed above are all

equivalent after a change in metric (e.g., Thompson & Borrello, 1985;

Thompson, 1988). As Thompson (1991) notes,

It is difficult to fathom why the equivalent weights used in the various

parametric methods are given different names since the primary result
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is confusion and the illusion that the parametric methods are different.

( p. 83).

All of these weights share common properties, some of which Gittins

(1985) has summarized and are listed below. Note that Gittins uses yet

another name for these weights--"standardized weights". This name is

probably th . most sensible of all the names because it does not promote the

illusion that the parametric analyses are different; rather the name

emphasizes a characteristic that is common to all the weig:-.-s listed above.

All of the weights are standardized within their respective equations, and

thus can be compared directly.

(a) Standardized weights are scale free.

(b) The magnitude and sign of canonical [standardized] weights

can in principle at least be used as an indication of the

presence of certain variables or effects and of their direction.

(c) The numerical value of canonicel [standardized] weights

depends on the selection of variables as well as on their

scales. Addition or deletion of variables in either set is likely

to produce major alterations in the remaining coefficients.

Prior standardization of the observed variables to zero mean

and unit variance will remove the scaling effects but the

inter-dependencies will remain.

(d) Vulnerability to suppression phenomena. Suppression refers

to the effect of a predictor variable which is itself positively

correlated with a response variable y but which nevertheless

receives a negative weight in the canonical relationship. . . .

(e) The weights tend to be highly unstable in replicate samples

drawn from the same population. Several factors may
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contribute to instability, notably measurement errors in the

observations, collinearity of the variables of either set and

inadequate sample size (Gittins, 1985, p. 25).

The third point of the framework from which to teach parametric

statistics states that the general model can do anything that the specific

models can do, but the specific models cannot do what the general model can

do. And finally, the fourth point states that canonical correlation analysis is

the general linear model. These points are best explained through a

demonstration using SPSS. The data for this demonstration can be found in

Table 3 and the SPSS commands can be found in the appendix.

The variables to be used in this demonstration include three

continuous variables, Y, X, and A, two categorical variables, B and APRIME

and five planned contrast variables, Al, A2, Bl, A1131 and A2B1. Variable A'

or APRIME represents the partitioning of variable A into three categorical

variables. Notice that any value on A of 1-4 equals a value of 1 on APRIME;

whereas 5-8 and 9-12 on A equal 2 and 3, respectively, on APRIME.

The Al variable is a planned contrast variable derived from the

APRIME variable. Notice how any value of 1 on APRIME obtains a value of

-1 on the Al variable, while any value of 2 on the APRIME variable obtains a

value of 1 on the Al variable and APRIME of 3 equals Al of 0. The Al

variable is a planned contrast variable used to compare the members of the

APRIME group 1 to the APRIME group 2. APRIME group 3 is not included in

this planned contrast. Following this same pattern, A2 is a planned contrast

variable that compares the members of the APRIME groups 1 and 2 to the

APRIME group 3 and B2 's a planned contrast variable that compares

members of group 1 on variable B to members of group 0 on variable B. The
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final two variables are planned contrast variables that investigate the

interaction effects between Al and B1 and bet deen A2 and B1.

Hotelling (1936) introduced canonical correlation analysis as a way of

investigating the linear correlation between two sets of continuous variables.

Fisher (1936) demonstrated that canonical could be used with categorical data

for the two-group case (e. g., variable B in Table 3). Rao (1948, 1952) later

demonstrated that canonical correlation analysis could also be used with

categorical data containing more than two groups (e. g., variable APRIME in

Table 3). The remaining tables are abridged outputs from the appended

computer program. The equality of results (e.g., p values and r or squared r

values) establishes that canonical is, indeed, a general linear model.

Table 4 displays the results of two analyses. First, a t-test was performed

using the continuous variable "Y" and the categorical variable "B". Next, a

canonical correlation analysis was run using the same variables. Note that the

obtained p values are exactly the same (R=.215). The obtained value of t=1.32

which when squared (t2=1.75) exactly equals the F. (F=1.75). The t was a result

of the t-test analysis while the F came from the canonical analysis of the same

data. You may recall that the squared t statistic with n degrees of freedom is

equivalent to the F statistic with 1 and n degrees of freedom (Glass and

Stanley, 1970; cited in Friedrich 1992).

Thompson (1984) has written that canonical correlation is basically a

bivariate correlation coefficient.

Conventional canonical correlation analysis investigates the degree of

relationship between two sets of variables. In effect, the analysis

proceeds by initially collapsing each person's scores on the variables in

each variable set into a single composite variable. The simple or
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bivariate correlation between the composite scores (one for each of the

two variable sets) is a canonical correlation. (p. 14)

It is not surprising, then, that canonical correlation analysis can be used to

compute a bivariate correlation coefficient. Table 5 displays the results of

such an analysis with the results of a Pearson r correlation; both analyses were

run on the same data. Note that the results are equivalent, except for the

number of decimal places that are reported in the output.

Table 6 reports the results of a one-way ANOVA computed using two

different procedures on the variables "Y" and "APRIME". One analysis uses

the ANOVA procedure, while a second analysis used canonical correlation

analysis. Table 6 shows how canonical correlation analysis can result in the

same values as the ANOVA procedure. The squared canonical correlation

(Rc=.392) is exactly the same as eta2 (eta2 = SOS between/ SOS

total=56/143=.3916). As in all other tables in this demonstration, the p. value

obtained using canonical (p=.107) equals the p. value obtained with the other

parametric statistical procedure (in this case ANOVA, p.=.107).

Canonical analysis can also be used to achieve factorial ANOVA

results. To compute factorial ANOVA using canonical correlation analysis it

is necessary to run several canonical analyses using planned contrast

variables and to do some computations. Table 7 outlines a conventional 3-by-

2 ANOVA summary table for the ANOVA that was run using the dependent

variable Y and two main effect categorical variables.

Table 8 details the lambdas and models used for four canonical

correlation analyses. The first model used planned contrast variables for the

APRIME way, the B way and the interaction effects. In this manner, it is an

omnibus analysis because it tests all hypotheses. The remaining three

canonical models tested all hypotheses except ,one. In the second model, the
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APRIME hypotheses were not run. In the third model the B-way main effects

were not run. In the third model, the interaction effects were not run. The

analyses were done this way so that models 2, 3 & 4 could be used as divisors

of the omnibus hypothesis to derive the main effect lambdas for APRIME, B

and for the interaction effects. Table 9 shows these calculations. Finally,

Table 10 uses a formula detailed by Rao (1952) that converts lambda (X) to F.

[(1-A.)/X] x (df error/ df effect) F

This table shows that the Fs derived using canonical correlation analysis and

the subsequent conversion are identical to the Fs derived using the factorial

ANOVA procedure that were shown in Table 7.

Canonical correlation analysis is the correlation between two groups of

variables (Thompson, 1984). It is not surprising then, that canonical

correlation analysis can be used to compute multiple regression analyses.

Table 11 displays the results of a multiple regression analysis and a canonical

correlation analysis--both of which correlate the criterion variable Y with the

predictor variables X, A and B. Notice that the multiple R exactly equals the

canonical correlation (R=Rc=.699). The canonical lambda has been converted

to the regression F, showing that the two values are equivalent. And, as in all

of the other examples, the p value obtained using canonical equals the p

value obtained using the parametric procedure--in this case, multiple

regression. Tables 12 and 13 show the relationship between the standardized

weights in canonical and those in regression. The function coefficient times

the canonical correlation (Ro equals the regression beta weight (a).

,Tonversely, the regression beta weight (a) divided by the canonical

correlation (Rc) equals the canonical function coefficient.

The final three tables in this paper demonstrate that results of

multivariate statistics such as MANOVA can be obtained using the canonical
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correlation procedure. These tables are analogous to the factorial ANOVA

tables d _ussed previously. Table 14 is a MANOVA summary table while

Table 15 shows the lambdas obtained using planned contrast variables and

canonical correlation analysis. Table 16 shows the conversion of the canonical

lambdas into MANOVA lambdas. The lambdas displayed in Table 16,

derived using canorical, exactly equal the lambdas found in Table 14 which

were derived using MANOVA.

Conclusion

The object of the present paper was to demonstrate the characteristic. of

all parametric statistics according to the gener,.1J linear model while

demonstrating the interrelationships between the parametric statistics and

emphasizing that canonical correlation analysis is the general linear model.

1.7,our characteristics of the general linear model were delineated and

explained using a program for SPSS. This program can be duplicated by

statistics students and used to teach the concept of the general linear model.

More importantly, the characteristics of the general linear model can be used

to teach students about the interrelationships between all parametric statistics.

Students taught this way can integrate the information about the specific

models into the framework of the general model. In this mc iner, the

learning of statistics becomes less of a chore of memorizing confusion and

more of an adventure in learning and thinking. As Gittins (1985) has noted,

The multivariate general linear model generates a family of methods

of which canonical analysis is the most versatile. Several benafits

follow from awareness of the unifying capacity of canonical analysis.

Perhaps the most useful advantage is that comprehension and

appreciation of a large number of statistical tools is facilitated. ( p. 123)

1
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Table 1

Heuristic Example Using a Dummy Variable to show the Link between

Correlation Coefficients and Differences between Means

Continuous Variable Categorical Variable
Name
Mary
Joe
Chris
Molly
Kevin
Stacy
Matt
Sara
George
Virginia

Self-esteem Score
98
90
96
93
91
89
88
97
92
99

Pet-ownership status
1

1

1

1

(a) Mean for sample of children with pets =
Mean for sample of children w/out pets=
Difference between sample means=

(b)

93.6
93.0
0.6

Correlation coefficient that explains the relationship between self-
esteem and the dummy variable of pet ownership (or sample
membership) r=.09
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Table 2

Heuristic Example Using a Dummy Variable to show the Link between

Correlation Coefficients and Differences between Means

Name Self-esteem Score Pet-ownership status
Mary 98 1

Joe 90 1

Chris 96 1

Molly 93 1

Kevin 91 1

Stacy 79 0
Matt 68 0

Sara 57 0
George 42 0
Virginia 39 0

(a) Mean for sample of children with pets = 93.6
Mean for sample of children w/out pets= 17,D
Difference between sample means= 36.6

(b) Correlation coefficient that explains the relationship between self-
esteem and the dummy variable of pet ownership (or sample
membership) r = .96
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Table 3

Data u d in H x lain that an ni al i th

16

n ral Linear Md-1

Y X A A' Al A2 B1 A1B1 A2B1
1 11 5 1 2 1 -1 -1 -1 1
2 5 3 1 1 -1 -1 -1 1 1
3 2 2 1 1 -1 -1 -1 1 1
4 8 8 0 2 1 -1 1 1 -1
5 4 4 0 1 -1 -1 1 -1 -1
6 12 10 1 3 0 2 -1 0 -2
7 7 6 1 2 1 -1 -1 -1 1

8 1 1 0 1 -1 -1 1 -1 -1
9 9 12 0 3 0 2 1 0 2

10 3 7 0 2 1 -1 1 1 -1
11 6 9 0 3 0 2 1 0 2
12 10 11 1 3 0 2 -1 0 -2

Table 4

Canonical Correlation Analysis subsumes t-tests

[Interval Variable "Y" by Categorical Variable "B" (0,1)]

Canonical Analysis t-test Analysis
Rc* .386
Squared Rc .149

1.32
1.75 t2 1.75
.215 .215

*Rc is the Canonical Correlation
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Table 5

Canonical Correlation Analysis Subsumes Pearson r

[Continuous Variable Y with Continuous Variable A]

Canonical Analysis Correlation Analysis
Rc .566 .5664
Squared Rc .321 r2 .3208

4.72
.055 .055

Table 6

Canonical Correlation Analysis Subsumes One-Way ANOVA

[Continuous Variable Y by Categorical Variable APRIME]

Canonical Analysis
Rc* .626

Squared Rc .392
lambda .60839

2.89655
df hypothesis 2.00
df error 9.00

.1069

ANOVA Analysis
SOS between
SOS Total
eta

56.0000
143.0000
56/143=.3916

2.8966
df between 2
df within 9

.107

Note. The relationship between lambda and F is described in the following

equation.

[(1-20/X] x (df error/ df effect) = F
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Table 7

Factorial ANOVA: Continuous Variable "Y" by Categorical Variables

"APRIME" and "B"

Source SOS df M S

APRIME 56.000 2 28.000 2.754 .142

21.333 1 21.333 2.098 .198

APRIME B 4.667 2 2.333 .230 .802

Error 61.000 6 10.167

Total 143.000 11 13.000

eta2 82/143=.573

Table 8
Canonical Analysis Using Four Models

Model Predictors of Y Lambda

1: Omnibus Al, A2, Bl, A1B1, A2B1 .42657

2: No APRIME Bl, A1B1, A2B1 .81818

3: No B Al, A2, A1B1, A2B1 .57576

4: No interaction Al, A2, B1 .45921

Table 9
Calculating Lambda for each Source of Variance

Source Models Calculation Lambda

APRIME Model 1/Model 2 .42657/.81818 .52136

B Model 1 /Model 3 .42657/.57576 .74088

APRIME B Model 1/Model 4 .42657/.45921 .92892
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Table 10

Conversion of Canonical's Lambdas to ANOVA'S Fs

Source [(1-lambda)/lambda] *(df error/df effect) = F

APRIME [(1-.52136)/.53136]*(6/2)

.91806 *3 = 2.754

[(1-.74088) [74088]*(6 /1)

.34975*6 = 2.098

APRIME B [(1-.92892)/.92892]*(6/2)

.07652 * 3 = .230

Table 11

Canonical Correlation Subsumes Multiple Regression

Variable "Y" with Variables X, A & B

Canonical Analysis Regression Analysis

Rc .699 69920

Squared Rc .836 Squared R .83618

Lambda .30080

Conversion to F [(1-.3008)/.3008][8/3] 6.19861

=6.1985816

.018 .0175
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Table 12

Canonical Function Coefficients Converted to Regression Beta Weights

Predictor Function
Coefficients

(Canonical
Correlation)

(Beta Weights)

X (-1.18685) (.83618)= -.992424

A (1.54635) (.83618)= 1.293030

(.14582) (.83618)= .121930

Table 13

Regression Beta Weights Converted to Canonical Function Coefficients

Predictor (Beta Weights) /(Canonical
Correlation)

= Function
Coefficients

X (-.992424) /(.83618)= -1.18685

A (1.293030) /(.83618)= 1.54635

(.121930) /(.83618)= .14582

Table 14

Factorial MANOVA: "Y","X" with "APRIME" and "B"

Source SOS df

APRIME .03202 4, 10 .001

.60902 2, 5 .289

APRIME B .37812 4, 10 .257
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Table 15
Models

Model

1: Omnibus Al, A2, B1, A1B1, A2B1 .02113

2: No APRIME B1, A1B1, A2B1 .65989

3: No B Al, A2, A1B1, A2B1 .03469

4: No interaction Al, A2, B1 .05588

Predictors of Y, X Canonical Lambda

Table 16
Canonical's Lambda for each Source of Variance Equals MANOVA's Lambda

Source Models Calculation Lambda

APRIME Model 1/Model 2 .021131.65989 .03202

B Model 1/Model 3 .021131.03469 .60911

APRIME B Model 1/Modc,! .021131.05598 .03781



Appendix

TITLE 1$$$ Show how canonical subsumes other methods' .

DATA LIST FILE=1A:GLM.DTA'/1
Y 1-2 X 4-5 A 7-8 B 10 APRIME 12 Al 14-15 A2 17-18 B1 20-21
A1B1 23-24 A2B1 26-27 .

LIST VARIABLES=ALL/CASES=50/FORMAT=NUMBERED .

SUBTITLE '1. CCA subsumes t-tests #######' .

T-TEST GROUPS=B(0,1)/VARIABLES=Y .

IIANOVA Y WITH B/PRINT=SIGNIF(MULTIV EIGEN DIMENR)/
DISCRIM=STAN CORR ALPHA(.99)/DESIGN .

SUBTITLE '2. CCA subsumes Pearson r
CORRELATIONS VARIABLES=Y A .

MANOVA Y WITH A/PRINT=SIGNIF(MULTIV EIGEN DIMENR)/
DISCRIM=STAN CORR ALPHA(.99)/DESIGN .

SUBTITLE '3. CCA subsumes ANOVA #######' .

ONEWAY Y BY APRIME(1,3) .

MANOVA Al A2 WITH Y/PRINT=SIGNIF(MULTIV EIGEN DIMENR)/
DISCRIM=STAN CORR ALPHA(.99)/DESIGN .

SUBTITLE '4. CCA subsumes one-way ANOVA #######'
ONEWAY Y BY APRIME(1,3) .

MANOVA Al A2 WITH Y/PRINT=SIGNIF(MULTIV EIGEN DIMENR)/
DISCRIM=STAN CORR ALPHA(.99)/DESIGN .

SUBTITLE '5. CCA subsumes factorial ANOVA #######' .

ANOVA Y BY APRIME(1,3) B(0,1) .

MANOVA Al A2 B1 A1B1 A2B1 WITH Y/PRINT=SIGNIF(MULTIV EIGEN DIMENR)/
DISCRIM=STAN CORR ALPHA(.99)/DESIGN .

MANOVA Bl A1B1 A2B1 WITH Y/PRINT=SIGNIF(MULTIV EIGEN DIMENR)/
DISCRIM=STAN CORR ALPHA(.99)/DESIGN .

MANOVA Al A2 A1B1 A2B1 WITH Y/PRINT=SIGNIF(MULTIV EIGEN DIMENR)/
DISCRIM=STAN CORR ALPHA(.99)/DESIGN .

MANOVA Al A2 B1 WITH Y/PRINT=SIGNIF(MULTIV EIGEN DIMENR)/
DISCRIM=STAN CORR ALPHA(.99)/DESIGN .

SUBTITLE '6. CCA subsumes multiple R #######' .

REGRESSION VARIABLES= Y X A B/DEPENDENT=Y/ENTER X A B .

MANOVA X A B WITH Y/PRINT=SIGNIF(MULTIV EIGEN DIMENR)/
DISCRIM=STAN CORR ALPHA(.99)/DESIGN .

SUBTITLE '7. CCA subsumes factorial MANOVA #######' .

MANOVA Y X BY APRIME(1,3) B(0,1)/PRINT=SIGNIF(MULTIV EIGEN DIMENR)/
DESIGN .

MANOVA Al A2 B1 A1B1 A2B1 WITH Y X/PRINT=SIGNIF(MULTIV EIGEN
DIMENR) /
DISCRIM=STAN CORR ALPHA(.99)/DESIGN .

MANOVA Bl A1B1 A2B1 WITH Y X/PRINT=SIGNIF(MULTIV EIGEN DIMENR)/
DISCRIM=STAN CORR ALPHA(.99)/DESIGN .

MANOVA Al A2 A1B1 A2B1 WITH Y X/PRINT=SIGNIF(MULTIV EIGEN DIMENR)/
DISCRIM=STAN CORR ALPHA(.99)/DESIGN .

MANOVA Al A2 Bl WITH Y X/PRINT=SIGNIF(MULTIV EIGEN DIMENR)/
DISCRIM=STAN CORR ALPHA(.99)/DESIGN .


