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Abstract

Central limit theorem (CLT) is considered an important topic in

statistics, because it serves as the basis for subsequent learning in other

crucial concepts such as hypothesis testing and power analysis. There is an

increasingly popularity in using dynamic computer software for illustrating

CLT. Graphical displays do not necessarily clear up misconceptions related to

this theorem. Many interactive computer simulations allow users to explore the

programs in a "what-if" manner. However, users may further build up other

misconceptions when t,hey start with unclear concepts of the components that

contribute to CLT. In this paper, we analyze the common misconceptions in each

component of CLT, and evaluate the appropriateness of use of computer

simulation.
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Identification of Misconceptions in the Central Limit Theorem

and Related Concepts and Evaluation of Computer Media as a Remedial Tool

Central limit theorem (CLT) is considered an important topic in

statistics, because it serves as the basis for subsequent learning in other

crucial concepts such as hypothesis testing and power analysis. CLT is said

to be a bridge between descriptive and inferential statistics (Webster, 1992).

Without CLT, estimating population parameters from sample statistics would be

impossible (Brightman, 1986) . However, based upon cur teaching and consulting

experience, literature review, as well as our own research, we found that many

students and researchers have serious misunderstandings of this theorem.

To counter this problem, there is an increasingly popularity in using

dynamic computer software for illustrating CLT (e.g. Dambolena, 1984, 1986;

Thomas, 1984; Bradley, 1984; Gordon and Gordon, 1989; Kerley, 1990; Myers,

1990; Bradley, Mittag, 1992; iiemstreet, & Ziegenhagen, 1992; Lang, 1993;

Packard, 1993; Marasinghe, Meeker, Cook & Shin, 1994; Snyder, 1994). Packard

(1993 found that learners were enthusiastic about using computer animation

for learning CLT. Nonetheless, graphical displays do not necessarily clear up

misconceptions related to this theorem (Myers, 1990).

In this paper, we will break down the theorem into several components,

point out the common misconceptions in each part, and evaluate the

apprepriateness of use of computer simulation in the context of instructional

strategies. The position of this paper is that even with the aid of computer

simulations, instructors should explicitly explain the correct and incorrect

=cp's in each eomponent of CLT.

Definition and Components

CLT states that a sampling distribution, which is the distribution of

the means of random samples drawn from a population, becomes closer to

normality as the sample size increases, regardless of the shape of

distri'r:,ution. As the name implies, CLT is central to large sample statistical

inference and is .r-tle by limitation--it is true given that the sampling

distribe!Aen is infinite. More generally, CLT tells that the distribution of

average ef a large number of independent random variables is close to

ur= this definition, CLT can be divided into the following

,pt ond stIL-
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a) Randomness and random sampling

i. equality vs. independence

ii. non-self-correcting p-ocess

b) Relationships among sample, population and sampling distribution

c) Normality

i. normal distribution as probability distribution (area = 1001)

ii. asymptotic tails

iii. symmetry and identical central tendencies

iv. two inflection points

Parameters of sampling distribution:

i. sample size

ii. population aistribution

e) Relationships between sampling distribution and hypothesis testing

(--7 is built upon the preceding concepts in a correlated manner.

iseonceptions in one is likely to cause problems in others. For example, if

one misconceives that random sampling is a self-correcting process, one may

believe that the sampling distribution will compensate biases and magically

restore egnilibrium though the sample size is small or the distribution is

non-normal. This oversimplif:ed notion may lead one to overlook the

asymptotic feature of normality--sampling distribution results from infinite

hu:bers of sampling, as we as the mechanism of sampling distribution

cohstruction--sampling distribution is a function of both sample size and

population. As a result, all these misconceptions together give one a false

sense of security in conducting hypothesis testing with small ana non-normal

samples. Each of the above categories is addressed now:

Randomness and random samplino

Foualitv of chances. Many people define random sampling as a sampling

process that e.eh element within a set has equal chances to be drawn (e.g.

Loether & McTavish, 1988; Myers, 1990; Moore & Me:abe, 1993; Aczel, 1995).

FAuality is associated with fairness. This definition contributes to the myth

that if the occurrence of a particular event is very frequent, the outcome is

considered "unfair" and thus the sampling may not be random. This definition

fails to reflect the reality that complete fairness virtually does not exist.

F-r psycho-killer do a random shooting in a public area,

hen w1-0 m,ve emaler bodies ds re:t have equal ':11._1(2s, h- sh'

` ill Y adults. By the same token, one should not expect that in an urn oi



balls, small balls have equal pr oabilities to be sampled as large balls.

Even if we put the same size balls in the urn, we cannot "equalize" all other

factors that are relevant to the outcome. Jaynes (1995) fully explained this

problem:

The probability of drawing any particular ball now depends on

details such as the exact size and shape of the urn, the size of

halls, the exact way in which the first one was tossed back in,

the elastic properties of bails and urn, the coefficients of

friction between balls and between ball and urn, the exact way you

reach in to draw the second ball, etc.. (Randomization) is

deliberating threwing away relevant information when it becomes

too complicated for us to handle...For some, declaring a problem

to be 'randomized is an incantation with th: same purpose and

effect as those utt7ered by an exor:7-ist to drive out evil

spirits...The danger here is particularly great because

mathematians generally regard these limit theorems as the most

important and sophisticated fruits of probability theory. (pp.

31q-320)

:3efore -aynes, L'oincare 19C,B1 also made a similar criticism in a even

mre radlcal tone: "Chance is only the measure of our ignorance." (p.1359)

Fhenemena appear to occur according to equal chances, but indeed in those

in,.:idnts there are many hidden biases and thus observers assume that chance

weuld or authentic equality of opportunities and fairness of

outcomes are not properties of randomness, a proper definition of random

rvg snould be 3 sT:mpling process that each member within a set has

independent chances to be drawn. in other words, the probability of one being

L;ampled is not related to that of others.

At the early stage of the developr7.ent of randomness, the essence of

randomness was believed to be tied to independence rather than fair

representa-on. It is important to note that when R. A. Fisher and his

,:ewrkers introduced randomization into experiment, their motive was not

tryinq to obtain a representative sample. Instead they contended that the

ef iii experiment depends on the valid estimation of error (Cowles,

1 Pc,). 1h ether words, the errors must be independen rather than systemati,:.

:7;e1f-eorrecting 1.,rcess. The ide,ts of equality and fairness in random

samplIng lead to another popular mind's bug: random sampling is a self-

t
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correcting process i.e. different types of members of the population will

eventually have a proportional representation in the sample (Tversky and

Fahneman, 1982). Myers 1990) found that a computer simulation is not

effective in removing the preceding misconception. Myers' finding is

expected. First, a computer simulation tends to reinforce this erroneous

belief. In a close system which is artificially generated by a computer,

random sampling seems to restore equilibrium because variables in computer do

not carry the complexity that are equivalent to the real world. Second, even

a well-written software can mimic the perplexity of reality, "independence,"

"equality," "fairness," and "non-self-correcting" are too abstract to be

illustrated in a computer environment. Carnap (1988) aroled that one can

generalize empirical laws, but not theoretical laws, from observing events and

objects. It is unlikely that a learner will find out randomness does not

guarantee equality and fairness after looking at the random sampling process

on a computer screen many times.

Pelationshio between samnle, copulation and sampling distributions

The concept of fair representation due to equal chances partly

contributes to the confusion in the relationship among sample, population and

sampling distribution. Many learners tend to perceive that a sample or a

sampling distribution conforms to the shape of the population (Yu and Spencer,

199i). Further, students tended to forget the importan of random

fluctuation and think of their sample as though it were the population. This

ledds to an Jnder-appreciation of the role of probability in hypothesis

testing as well, which will be discussed later. In addition, Yu and Behrens

119:1 found that lea:neis confused a sampling distribution with a sample i.e.

Learnc=rs, failed to understand that a sampling distribution is constructed of

the mr-ans from an inf nite number of samples, instead of being a

representation of a single sample. As stated earlier in the definition, CLT

tells that the sum or average of a large number of independent random

v,iriables appl.oximately normally distributed. However, students failed to

gener,iliee beyend the sampling distribution of the mean (Yu & Behrens, 1994).

In order to remediate this misconception by computer simulation, the

pro2r-im sh:-)nld show the process of drawing samples from a huge population for

..onstrnct:2ng a sampling distribution. However, some programs show the outcome

immediately after parameters have been entered, and leave the viewer to

;.!Illne the proess (e.g. Thomas, 1984). Some provide only d small population
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size and thus tends to encourage the confusion between sample and population

(e.g. Mittag, 1992; Lang, 1993).

Normality

The confusion among sample, population and sampling distribution leads

students to leave out important details of a normal sampling distribution such

as asymptotic Lai.Ls. There are four malor properties in a normal curve. The

feature that the total aiea underneath the curve is equal to 100 percent is

straight-forward and causes less problems. Misunderstanding is likely to

c_icur in asymptotic tai_s, symmetiy and identical central tendencies, and

inflection points.

Asmptotic tails. By definition, a sampling distribution is infinite

and asymptotic. However, when showing a normal population, sample, and

samplini distribution tc students, most students were unable to distinguish

the sampling distribution from the other two. When students were asked to

draw a normal curve, mo.f.t of them represented a normal curve as an inverted-LI,

failino to represent tails that extend without touching the x-axis (Yu &

.7,poncer, 1094) . This misconception may carry over to advanced statistical

concepts. For example, Yu 0:.d Behrens (1094) found that quite a few students,

including sophisticated learners, wondered why the normal curve in a power

simulation does not touch the x-axis while power analysis is based on sampling

distributions

tivmmetry idcnticil cen;ral tendencies and inflection poin;s. Most

students know that in a normal curve, the two halves below and above the

central tendencies are symmetrical, and the mean, mode, and median are all the

scr. iiowever, thi:3 is a necessary but net sufficient condition of normality.

Indeed, playtkurLic and leptokurtic distributions also share this

.71-Jara:7terisri. Because of this over-generalization, playtokurtic and

loptokurtic distributions are somotimes misidentified as normal curves. As

mentioned before, students usually represent a normal curve as an inverted-U

(playtokurtic distribution) . Many times both playtokurtic and leptokurtic

distributions only have only one inflection point while a normal curve has two

infleetion points.

We do not have emOrieal evidence to decide whether visualization by

eompliter eould provide help in fixing these misconceptions. Many computer

simutdtins do n,t show the property cf asymptotic tails (e.g. Lang, l9q3,

Marasi:!qhe ft at. 1594) . Some programs used histograms rather than smoothed
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curves and therefore inflection points are not obvious. To remediate this

problem, Wolfe (1991) overlaid a density curve on a histogram. However, even

if a computer program does illustrate asymptotic tails and inflection points,

we doubt if viewers can discover these subtle features.

As mentioned before, some programs use histograms inste3d of density

curves to display distributions (e.g. kerley, 1990; Wolfe, 1991) . Kerley

19c-)0) acknowledged that the appearance of a histogram is tied to the number

of intervals (bandwidth) . It is quite often not apparent whether the

distribution is normal or not. To compensate this limitation, kerley

graphically illustrated the result of Kolmogorov-Smirnov normality test by

confidence intervals. However, it may add more complexity to the problem by

explaining Kolmogorov-Smirnov test and confidence bands.

Parameters of sampling distribution

Not only students had difficulties in identifying characteristics of

normality, they also did not fully understand the parameters that determine

the n=mality of a sampling distribution, which are sample size and

population. Yu and Behrens (1994) found that quite a few students viewed a

normal sampling distribtion as the out,7ome of a magical sample size-30.

This misconception is popularized by scme statisticians who tried to set a

cut-off point of large sample size for generating a bell-shaped sampling

distribution out of a non-normal population. Some argued that the sample size

at least 30, others have said 50 or 100, and some as high as 250

Saddler, 1971; Marasinghe et al. 1994). Gordon and Gordon (1989) argued

that if the sample size is less than 30 and the population is not normal, the

samrlina dsrrrhoricn will be d t-distribution, otherwise, a normal

distribution. Some authors who applied computer-based instruction to

remediate miscon-2eptions of OLT also erroneously adopted N=30 as the cut-off

Dambolena, 1996; Myers, 1990). The importance of the shape of the

;,4:ulation is obscured with this kind of logic. We agree with Marasinghe et

al. 19941 that there isn't any clfinit,, -ut-off due to the infinite degrees

the underlying population could have. The worse the

distortion from normality, the higher the sample size needed to form a normal

samplin; distribution.

A c'cmpur .:imulation is supposed to .Jmpirically show the above fallacy

to learners. However, some programs provide only one population (e.g. Thomas,

1,1',.1; Lang, 1993. In some other programs neither the population nor the



CLT 9

sample size can be controlled by users (e.g. Dambolena, 1984) . Consequently,

they oifer little help in clearing up this misunderstanding. By using a more

versatile program :=!atutor (Wolfe, 1991), Yu and Spencer (1994) asked the

subjects to manipulate different combinations of sample size and population.

Students could immediately understand that the shape of the sampling

distribution is a function of both parameters.

Reationship between e.,,mplino distributiop and hypothesis testinD

Hyoothesis testino as probabilist.Lc inference. All the previous

misunderstandings partly lead to the improper application of CLT to hypothesis

testing. When the relaticsnship among population, sample and sampling

di.4tribution is not clear to students, most students failed to understand the

rationale of hypcthesis testtng in terms of CLT. In hypothesis testing we

usually draw orly one sa::Tle o'lt of the population and make inferences about

the population based upon the sinale sample. Some students perceived that

this sample alone can reflect the charaeteristic of the population without

knowing thel hypothesis testing is a probabilistic inference based upon thc,

theoretical infinite number of samples with replacement.

It is imporr.ant to note that CLT is based upon the notion that

probability is a lono run relative frequency, the ratio of the number of ways

an event can oecur to the total number of possible events (Cowles, 1989).

ple this "foundation" of hypothesis testing without realizing that

t.here are other views to probability. Although James Bernoulli, one of the

eeIntibut.:rs te the development of CLT, accepted the inductive theory of

probability, he was al.lo attracted by the subjective concept of probabiljty.

c:oml.rded by severdl incompatible ideas, he was not sure where to rest

his ease (cited in Cowles, 1989; Hacking, 1971) . Skipping the history of CLT

and probabilif-y in learning the relationships between che theorem and

hfpothesis testing may create an over secure sense of hypothesis testing.

False security of small and non-normal samples. The problem is

perplexed hy snme statistical instructors and researchers who believe that C.T.T

can "take cello of" small or non-normal samples. For example, in the ListServe

grrenp St3t-L, a statstician said that a small sample size doesn't matter in

heypothesis restirej. because the t table and F table, which were computed based

upri ,,:ampling distributions, will adjust the degrees of freedom for small

sdmples. M:-)rec-)ver, a statistician at ACT stated that a non-normal sample will

re)t. Atfect parametiic hypothesis testing, beeause aceording to CLT, the
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sampling distribution will eventually become normal. We suspect that this

misconception is related to the notion that "random sampling is a self-

correcting process."

This represents a common confusion between the importance of the

sampling distribution in hypothesis testing and the assumptions of a specific

statistic (such as a t-test or an ANOVA) . This is illustrated in a textbook:

"Since the sampling distribution, and not the population, is used to test

hypotheses, this means that whenever the sample is large we can completely

relax the assemption about normality of the population and still use the known

characteristics of the normal curve to test hypotheses." (cited in Brewer,

1985).

None of the software packages we reviewed addressed the above issues.

This eonceptual problem is more likely to be effectively taught by other media

such as a lecture er a book rather than a computer par:kage.

Conclusion

There is a strong support for the efficacy of dynamic computer graphic

as an instructional medium (e.g. Flake, McClintock, & Turner, 1985; Riskin,

1,00; Myers, 19N. The suppn-t-ing theories that Myers (1991) adopted are

eeunitive model and Constructivism. The former states that learners

are benefited from linking abstract ideas with concrete representations. The

latt.or endere.es interactive media because students can construct knowledge

threuelh interaction rather than accepting information without deep processing.

There ,:re some drawbacks in the above applieations. By dividing CLT

inte eemponents, it is obvious that some aspects of OLT can be clearly

uettaLed lv seltware bu' ccm cannot. FOI example, dynamic

computer gtaphi: can perform the function of showing the process of sampling

distlibution. Fut it iscii fficult to present -.iL)stract concepts such as

"equality," "independence," and relationship between CLT and hypothesis

testing by gra!-hical examples.

The e.Dnstru7eivist approaeh gives learners much freedom to explore and

-onstre 't ideas on their me. We are a raid that employing this approach to

lea_n CLT may cau,,e ,r;,-epticns. Ac mentioned before, some subtle

teaturo,- :;bch as .1sympt tc tai]s and two inflection pbints of a normal

distlibuti-n c,nnr,t Pe easily bse!vd by lyitners without expli,-it verbal

BEST COPY AVAILABLE
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In conclusion, we recommend that in addition to computer-assisted

instruction, statistical teachers should explicitly address all crucial

aspects of CLT by telling both correct and incorrect concepts. Attention

should be paid to the relationship between CLT and hypothesis testing because

competent statisticians still commit mistakes in this regard.
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