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ABSTRACT

Central limit theorem (CLT) is considered an
important topic in statisti:s, because it serves as the basis for
subsequent learning in other crucial concepts such as hypothesis
testing and power analysis. There is an increasing popularity in
using dynamic computer software for iliustrating CLT. Graphical
displays do not necessarily clear up misconceptions related to this
theorem. Many interactive computer simulations allow users to explore
the programs in a '"what-if" manner. However, users may further build
up other misconceptions when they start with unclear concepts of the
components that contribute to CLT. This paper analyzes common
misconceptions in each component of CLT and evaluates the
appropriateness of use of computer simulation. CLT states that a
sampling distribution, which is the distribution of the means of
random samples drawn from a population, becomes closer to normality
as the sample size increases, regardless of the shape of the
distribution. Misconceptions are found about the following areas: (1)
randomness and random sampling; (2) relationships among sample,
population, and sampling distribution; (3) normality; (4) parameters
of the sampling distribution; and (5) relationships between the
sampling distribution and hypothesis testing. (Contains 31
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Abstract

Central limit theorem (CLT) is considered an important topic in
statistics, because it serves as the basis for subsequent learning in other
crucial concepts such as hypothesis testing and power analysis. Thereé is an
increasingly popularity in using dynamic computer software for illustrating
CLT. Graphical displays do not necessarily clear up misconceptions related to
this theorem. Many interactive computer simulations allow users to explore the

programs in & “what-if” manner. However, users may further build up other

[

misconceptions when they start with unclear concepts of the components that
contribute to CLT. In this paper, we analyze the common misconceptions in each
component of CLT, and evaluate the appropriateness of use of computer

simulation.
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Identification of Misconceptions in the Central Limit Theorem

and Related Concepts and Evaluvation of Computer Media as & Remedial Tool

Central limit thecrem (CLT) is considered an important topic in
statistics, because it serves as the basis for subsequent learning in other
crucial concepts such as hypothesis testing and power enalysis. CLT is said
to be a bridge between descriptive and inferential statistics (Webster, 1992).
Without CLT, estimating population parameters from sample statistics would be

impossible (Brightman, 1986). However, based upon cur teaching and consulting

]

experience, literature review, as well as our own research, we found that many

students and researchers have serious misunderstandings of this theorem.

To counter this problem, there is an increasingly popularity in using
dynamic computer software for illustrating CLT {(e.g. Dambolena, 1984, 1986;
Thomas, 1984; Evadiey, 1984; Gordon and Gordon, 19289; Kerley, 19%0; Myers,
1530; Bradley, Mittag, 1992; Hemstreen, & Ziegenhagen, 1992; Lang, 1993;

k 3; Marasinghe, lieekxer, Cook & Shin, 1994; Snyder, 19914). Packard
119937 found that learrners were enthusiastic about using computer animation
for learning CLT. ©Nonetheless, graphical displays dc not necessarily clear up
misconceptions related to this thecrem (Myers, 1990).
in rthis paper, we will break down the theorem into several components,
point cut the common miscenceptions in each part, and evaluate the
appropriateness of use of computer simulation in the context of instructional
strategies. The positicn of this paper is that even with the aid of computer
simulations, instructors should explicitly explain the correct and incorrect
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Cefinition and Ccmponents

that a sampling distribution, which is the distribution of

th

[t

moans of random samples drawn from a population, becomes closer to
normility as the sample size increases, regardless of the shape of

distripution. As the name implies, CLT is central tec large sample statistical

inference and is true by limitatien--it i

[44]

true given that the sampling
distribtution is infinite. More generally, CLT tells that the distribution of
4 =um v average of a large number of independent random variables 1is close to
rorytal. fascd upen this definition, TLT ran be divided into the follewing

et s oand sub-oonTepts:
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a) Randomness and random sampling

i. equality vs. independence
ii. non-self-correcting p ‘ocess
b) Relationships among sample, population and sampling distribution.
<) Hormality
i. normal distribution as probability distribution (area = 100%)
ii. asymptotic tails
iii. symmetry and identical central tendencies

iv. two inflection points

Q
re

it Parameters of sampling distribution:
i. sample size
ii. population aistribution
e) Relationships between sampling distribution and hypothesis testing

(LT is kuilt upen the preceding concepts in a correlated mann=r.

Miszonceptions in one is likely to cause problems in others. For example, if
one misconceives that random sampling is a self-correcting process, one may
beli=ve that the sampling distribution will compensate biases and magically
restore equilibrium though the sample size is small or the distribution is
non-normal. This oversimplif:2d notion may lead one to overlook the

asymptotic f

l

ature of normality--sampling distribution results from infinite
numbers of sampling, as we . as the mechanrism of sampling distribution
construction--sampling distribution is a function of both sample size and
population. As a result, all these misconceptions toqether give one a false
sense of security in conducting hypothesis testing with small ana non-normal
samgles.  Each of the above catzgories ls addressed now:

Randomness and random sampling

Equality of chances. Many people define random sampling as a sampling

process that e.ch element within a set has equal chances to be drawn (e.qg.
Loether & McTavish, 1988; Myers, 1990; Moore & M-Zabe, 1993; Aczel, 1995).
Fruality is associated with fairness. This definition contributes to the myth
that if the occurrence of a particular event is very frequent, the outcome is
considered “unfair” and thus the sampling may not be random. This definition

fails to reflect th

{3

reality that complete fairness virtually does not exist.
For exanrie, it a psycho-killer do a random shooting in a public area,
Sl el who Lave skalior bodies do not have egual chanoes to b shot o oas

sy adults, Ry the same tokan, one should not expect that in an urn ot
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balls, small balls have equal pr sabilities to be sampled as large balls.

Even if we put the same size balls in the urn, we cannot "equalize" all other

-

actors that are relevant to the outcome. Jaynes (1995) fully explained this
problem:

The probability of drawing any particular ball now depends on

deraiils such as the exact size and shape of the urn, the size of

lralls, the exact way in which the first one was tossed back in,

the elastic properties of ba'ls and urn, the coefficients of

friction between balls and between kall and urn, the exact way you
reach in to draw the second ball, etc.. (Randomization) 1is

deliberating threwing away relevant information when it becomes

too complicated for us to handle...For some, declaring a problem

to be 'randomized' i1s an incantation with th: same purpose and

i)
r
-1y

cct as those uttered by an exorcist te drive out evil

4}

pirits...The denger here is particulariy great because
mathematizians generally regard these limit theorems as the most
important and sophisticated fruits of probability theory. (pp.
219-320)
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LL98B) «lsc made a similar criticism in a even

D

wore radical tone: "Chance s only the measure cof our ignorance." (p.1359)

Phenemana appear to occur according te egual chances, but indeed in those

idents there are mary bidden biases and thus observers assume that chance
alone wonld doside.  Jince authentic equality of opportunities and fairness of
cutcomes are not rroperties of randomness, a proper definition of rancom
sampling snould boe a szimpling process that each member within a set has
independent chances to be drawn. In other words, the prokability of one being
sampled 1s not related to that of others.

™

At the esarly stage of the development of randemness, the essence of

randomness was believed to be tied to independence rather than fair

[d

ecpresentation. it is important to note that when R. A. Fisher and his
~ownrkers introdueaed randomization into expariment, their motive was not
trying to obtain a representative sample. Instead they contended that the
value of an experiment depends on the valid estimation of error (Cowles,

ERIN It other words, the errors must be independent rather than systémati-=.

Gelf-rorrecting process. The idoas of equality and fairness in random

)

campling iead ‘o another pepular mind ¢ bug: random sampling is a self-

t
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correcting process i.e. different types of members of the population will

eventually have a proportional representation in the sample (Tversky and

Kahneman, 1482). Myers (7990) found that a computer simulation is not
effective in removing the preceding misconception. Myers’ finding is
expected. First, a computer simulation tends to reinforce this erroneous
telief. In a clese system which is artificially generated by a computer,

random sampling seems to restore eguilibrium because variables in computer do
not carry the complexity that are equivalent to the real world. Second, even

a well-written scftware can mimic the perplexity of reality, “independence,”
“equality,” “fairness,” and “non-self-correcting” are too abstract to be
illustrated in a computer environment. Carnap (1988} arcied that one can
generalize empirical laws, but not theoretical laws, from observing events and
obiects. It is unlikely that a learner will find out randomness does not
guarantee sguality and fairness after lcoking at the randem sampling process
on a computer screen many times.

Salationship between sample, population and_sampling distributions

The concept of fair representation due to egual chances partly
contributes to the confusion in the relationship among sample, pcpulation and
sampling distribution. Many learners tend to perceive that a sample or a
sampling distribution conforms to the shape of the population (Yu and Spencer,
1994). T[urther, students tended to forget the importar. of random
fluctuation and think of their sample as though it were the population. This
ivads to an under-appreciation of the role of probability in hypothesis
testing as well, which will be discussed later. 1In addition, Yu and Behrens
(19991 found that Learners confused & sampling distribution with a sample i.e.
learnere failed to understand that a sampling distribution is constructed of
the mrans from an infinite number of samples, instead of being a
representation of a single sample. As stated earlier in the definition, CLT
tells that the sum or average of a large number of independent random
variables i approximately ncrmally distributed. However, students failed to
generalize bayand the sampling distribution of the mean (Yu & Behrens, 1994) .

In order to remediate this misconception by computer simulation, the

e

sroqram should show rhe process of drawing samples from a huge population for
constructing a sampling distribution. However, some programs show the outcome
imediately after parameters have been entered, and leave the viewer to

Lt the process (e.g. Thomas, 1984). Some provide only « small population
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size and thus tends to encourage the confusion between sample and population
{e.q. Mittag, 1992; Lang, 1993).
Normality

The confusion among sample, population and sampling distribution leads
students to leave out important details of a normal sampling distribution such
as asymptotic cas:s. There are four major properties in a normal curve. The
feature that the total aiea underneath the curve is egual to 100 percent 1is
straight-forward and causes less problems. Misunderstunding is likely to

orcur in asymptetic tai.s, symmet:y and identical central tendencies, and
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hsymptotic tails. By definition, a sampling distribution is infinite

and asymptotic. However, when showing a ncermal population, sample, and
sampling distribution te students, most students were unable to distinguish

:

the sampling distributicn from the other two. When students were asked to

Q.

raw a normal curve, mnst of them represented a normal curve as an inverted-U,

;..‘

ailing to represent tails that extend without touching the x-axis (Yu &

Lo

Srencer, 1993) This misconception may carry over to advanced statistical
conveprs For example, Yu <nd Behrens (1994) found that quite a few students,
including sophisticated learners, wondered why the normal curve in a power
simulation does not touch the x~axis while power analysis is based on sampling
distributions

Syvmmetry, identical ceniral tendencies and inflection poings. Most

students know that in a normal curve, the two halves below and above the
central tendencies are symmetrical, and the mean, mode, and median are all the
Same. Howaver, (his 1s a necessary but nct sufficient condition of normality.

Indeed, playtokurvic and leptokurtic distributions also share this

~haracteristic. Recauses of this over-generalization, playtokurtic and
leptokurtic distributions are susctimes misidentified as normal curves. As
mentioned before, students usually represent a normal curve as an inverted-U

(playtcokurtic distribution). Many times both playtokurtic and leptokurtic

distribution:

i

only have only one inflection point while a normal curve has two

inf!

action points.

we do not have empirical evidence to decide whether visualization by
~empater could provide help in fixing these misconceptions.  Many computer
simulations do not show thoe property c¢f asymptotic tails (e.g. Lang, 1992,

Mirasinghe =t al. 1594}, Some programs used histograms rather than smcothed
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curves and therefore inflection points are not cbvious. To remediate this
problem, Wolfe (1991) overlald a density curve »n a histogram. However, even
if a computer program does illustrate asymptotic tails and inflection points,
wa doubt if viewers can discover these subtle features.

As menticned before, some programs use histograms instead of density
curves to display distributions (e.g. kerley, 1990; Wolfe, 1991). Kerley
114990) acknowledged that the appearance of a histegram is tied to the number
of intervals {bandwidth). It is quite often not apparent whether the
distributicn is normal or not. To compensate this limitation, kerley
grachically illustrated the result of Kolmogorov-Smirnov normality test by
confidence intervals. However, it may add more ccmplexity to the problem by

2xplaining Kolmogoreov-Smirnov test and confidence bands.

Faramet=ars of sampling distribution

crnly students had difficulties in identifying characteristics of
rormal ity, they also did not fully understand the parameters that determine
the normality of a sampling distributien, which are sample size and

population.  Yu and Behrens {1994) found that guite a few students viewed a

normal sampling distribution as the outcome of a magical sample size--30.

This misconcep-ion is popularized by scme statisticians who tried to set a

9}
o
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int -~f large sample size for agenerating a bell-shaped samplin
9 J r

distribution cut of a neon-normal population. Some argued that the sample size

ieast 30, others have said 50 or 100, and some as high as 250
Saddler, 1971; Marasinghe et al. 1994). Gordon and Gordon (1989) arqued

that if the sample size is less than 30 and the population is nct normal, th

]

Pirsg disvriburion will be a t-di stribution, otnerwise, & hormal
distrikbuticon. Some authors whe applied computer-based instruction to
remediate misconzteptions of CLT alsc erroneously adopted N=30 as the cut-off

{e.3. Dambolena, 1986; bMyers, 1930). The im

o)

ortance of the shape of the
opulation is cbsoured with this kind of tegiz. We agree with Marasinghe et
41, 11694' tha= thera isn't any definite wut-off due to the infinite degrees
4f non-narmality the underlying population ~euld have. The worse the
distortion from normality, the higher the sample size needed to torm a normal
sampling distribution.

A computor zimalation is supposed to ompirically show the above fallacy
to learners. However, some programs provide only one population (e.g. Thomas,

19%4; Lang, 1932), In some cther programs neivher the population nor the
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sample size can be controlled by users (e.g. Dambolena, 1984). Consequently,
they oifer little help in clearing up this misunderstanding. By using a more
versatile program Starutor (Wolfe, 1991), Yu and Spencer (1994) asked the
subiccts to manipulate different combinations of sample size and populaticn.
Students could immediately understand that the shape of the sampling

distribution is a function of both parameters.

Rerationship between campling distribution and hypothesis testing

Hypothesis testing as probabilistic inference. All the previous

misunderstandings partly lead to the improper application of CLT to hypothesis
testing. When the relaticnship amona population, sample and sampling
di<tribution is not clear to students, most students falled to underztand the

rationale of hypecthe

D
47
o
0
a3
D
i
pos
o

:ing in terms of CLT. In hypothesis testing we
usually draw orly one sarple out of the population and make i1nferences akout

the populatiosn tased upon the single sample. Scome students perceived that

7

this sample alone can reflect the characteristic ¢f the population without
knowing thae hypethesis testing is a probabilistic inference based upon the
theoretical infinite number of samples with replacement.

Tt is imporrnant to note that CLT is hkased upon the noticn that
probability is a long run relative frequency, the ratio of the number of ways
an event w=an coour to the total number of possible events (Cowles, 1989).
People socopt this “roundation” of hypothesis testing without realizing that
there are other views to probability. Although James Bernouill, ona of the
centvibutsrs to the development ot CLT, accepted the inductive theory of
probability, he was also attracted by the subjective concept of probability.
Zoeing ronbarded by several! incompatible jdeas, he was not sure where to reast

his case (cited in Cowles, 1989; Hacking, 1971). Skipping the history of CLT

e

and prokabiliry in learning the relationships between the theorem and

5

hypothesis tasting may create an over secure sense of hypothesis testing.

False security of small and non-ncrmal samoles. The problem is

verplexed by zome statistical instructers and researchers who believe that CLT
can "take caie of" small or non-normal samples. For example, in the ListServe
gqroap Stac-lL, a statistician said that a small sample size doesn't matter in
hypothesis vtesting. because the t table and F table, which were computed based
upon sampling distributions, will adjust the degrees of freedom for small
samples.  Moreover, a statistician at ACT stated that a non-normal sample will

not afifect parvametric hypothesis testing, because ac-ording to CLT, the

<
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csampling distribution will eventually become normal. We suspect that this
misconception is related to the notion that "random sampling is a self-
correcting process.”

This represents a common confusion between the importance of the
sampling distribution in hypothesis testing and the assumptions of a specific

statistic {such as a t-test or an ANOVA). This is illustrated in a textbook:

"Since the sampling distributicn, and not the population, is used to test
hypotheses, this means that whenever the sample is large we can completely
relax the aszumption abkout norimality of the populatiorn and still use the known

characteristics of the normal curve to test hypotheses.” (cited in Brewer,

None of the software packages we reviewed addressed the above issues.

This conceptual problem is more likely to be effectively taught by other media

q

such as a2 rec

ot

ure ¢r a book rather than a computer paczkage.
Conclusion

There is a strong suppgort for the efficacy of dynamic computer graphic

[
T

as an instru

[O)

ional medium (e.g. Flake, McClintock, & Turner, 1985; Riskin,

y—
£
el
-3

1398 Myers, 3i. The supporting rheories that Myers (1991) adopted are
Praget’ s coanitive model and Constructivism. The former states that learners
are benofited fvom linking abstract ideas with concrete representations. The
latter endoraes interactive media because students can construct knowledge
through interaction rather than accepting information without deep processing.

There ore zome drawbacks in the above applications. By dividing CLT
intoe Jomponents, it is obvious that some aspects of CLT can be clearly
Pllustraled by o songuter sottware put somsc cannct. For esanple, dynamic
computer yraphis can perform the function of showing the process of sampl ing
distribution. Fut it is difficult to rresent anstract concepts such as
“egquality,” “indep=nderce,” and relaticnship between CLT and hypothesis
testing by grarhical examplas.

The -onstruttivist approasn gives learnaers much freedom to explore and
~amstre ot ideas on fheir cwn. We are afraid that employing this approach to
lea.n CLT may cause ©ore pisc noeptions.  As mentioned before, some subtle
{eaturcs such as asymerot 1o tails and twe inflection polints of a normal
disriibution cannet be easily cbsarved by learners witnout explicit verbal

InoTr ez san.
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In conclusicn, we recommend that in addition to computer-assisted
instruction, statistical teachers should explicitly address all crucial
aspects of CLT by telling both correct and incorrect concepts. Attention
should be paid to the relationship between CLT and hypothesis testing because

competent statisticians still commit mistakes in this regard.
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