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Confirmatory Analysis of Tst Structure

using MUltidimensional Item Response Theory

Abstract

The purpose of this researdh was to develop and evaluate a confirmatory

approadh to assessing test structure using multidimensional item response

theory (NERT). The approadh investigated involves adding to the exponent of

the MIRT model an item structure matrix that allows the user to specify the

ability dimensions measured by an item. Various combinations of item

structures were fit to two sets of sinulation data NATith known true structures,

and the results were evaluated using a likelihood ratio dhi-square statistic

and two information-based model selection criteria. The results of these

analyses sqpport the use of the confirmatory MIPT approadh, since it was found

that the procedures could recover the true item structures. It was also found

that adding an additional ability dimension that forces together items that

ought not to be together noticeably detPriorates the quality of the solution.

On the other hand, imposing structures different from, but not inconsistent

with, the true structures does not necessarily yield worse fit. Finally, in

terms of model fit statistics, the consistent Akaike information criterion

performed better than the simple Akaike information criterion, while the

likelihood ratio dhi-square was cleArly inadequate.



Confirmatory Analysis of Test Structure

using MUltidimensional Item Response Theory

Introduction

Although item response theory (IRT) has proven to be a very powerful and

useful neasurement tool, use of IRT models has been somewhat limited because

the available models require the assumption that the test being analyzed

measures only a single ability dimension. This unidimensionality assumption

often limits the application of IRT-based methods to tests consisting of

relatively homogeneous sets of items, sudh as might be found on a vocabulary

test. Tests including items 3ampled from several content areas, sudh as a

science test containing both physics and chemistry items, are probably not

sufficiently homogeneous as to permit analysis using IRT. Sudh may also be

the case with tests containing multi-faceted items, sudh as a mathematics test

containing problem-solving items requiring a high level of reading

comprehension or vocabulary Skill.

Because it is clear that many tests measure more than a single ability

dimension (Ttaub, 1983), attempts have been made to extend IRT to

multidimensional tests. In multidimensional IRT, or M1RT, examinee responses

are modeled as a function of a set of examinee traits, and the assumption of

unidimensionality is replaced by the less restrictive requirement that the

dimensionality of the item responses matches the dimensionality of the set of

examinee traits used in the MIRT model.
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This assumption is less restrictive in that it permits the application of

IRT methods to a much broader range of instruments, but it has its awn

disadvantages. The most serious difficulty encountered in the application of

MIRTmethodology is matching the model dimensionality to the dimensionality of

the test. This problem is particularly serious in view of the fact thPt there

are no generally accepted procedures for determining the dimensionality of a

test, especially if the test items are dichotomously scored. In addition, in

the case of correlated dimnsions, a number of multidimensional solucions

might fit the data almost equally well. If this is so, it may be desirable to

choose a solution with a theoretical foundation in cognitive psychology or

test content rather than a solution with a slightly greater likelihood,

perhaps obtained by fitting error.

The purpose of this research was to develop and evaluate multidimensional

IRT procedures designed to permit the extraction of theory-based solutions.

The procedures developed include a MIRT model, a mechanism for *posing a

priori structures on the data, procedures for estimating the model parameters,

and model selection criteria for choosing among alternative structures. The

evaluation performed on these procedures included assessing the reasonableness

of simulation data generated to fit the model, evaluating the estimation

procedures, and evaluation of the model selection criteria.

4,
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Background

Multidimensional IRT

Most of the recent progress in MORT research has occurred in two areas

the developnent of nonlinear factor analysis models (Bock, Gibbons, & Muraki,

1985; Christoffersson, 1975; and Muthen, 1978), and the development of

multidimensional two- and three-parameter logistic MIRT models (McKinley,

1983, 1987, in preparation; Reckase, 19'35; Reckase, Ackerman, & Carlson, 1988;

Reckase & McKinley, 1985). Work on these procedures is still at an parly

stage, but has progressed to the point that estimation procedures are

available.

Nonlinear factor analysis model. The basic nonlinPar factor analysis

model is based on the two-parameter logistic normal ogive (2PNO) model,

although the method does allow for the input of previously estimated

c-parameter values. The 2PNO model ssumes there is an unobservable response

variable wbidh is on a continuous scale, and which is dichotomized into an

observed score of 0 or 1 depending on whether the examinee is above or below

some threShold point. The 2PNO rodel is given by

P.(8.) = ((Y-a.'0.)/s,) (1)

1 3 1 1 3 1

where P.(0.) is the probability of a correct response to item i by examinee j,
1 ]

1)(x) represents the cumulative normal distribution, a, is a column vector of k

item factor loadings j, 9. is a column vector of k factor scores for examinee
7

j, s is the standard deviation of the normal distribution, Y represents the
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threshold beyond which an examinee will respond correctly to the item, and

there are k dimensions.

Applications of nonlinear factor analysis procedures include analysis of

the item pool for the computerized version of the Armed Services Vocational

Aptitude Battery, or ASVAB, by Zimowski and Bock (1987), analysis of the

Graduate Management Admission Test, or G LI!, by Kingston (1986), and analysis

of the Graduate Records tion (ME) Subject Test in Mathematics by

McKinley and Kingston (1987).

Logistic models. In the logistic model approach, the normal ogive model

is replaced with the logistic distribution. Although the parallel to factor

analysis is lost in this approach, all of the desirable properties of IRT are

maintained, and the computation is greatly simplified. The multidimensional

three-parameter logistic, or M3PL, model is given by

= c. + (1 -c.)/(1+exp(-1.702(b. + a'8.))) (2)
1 3 1 3

where P.(8.) is the probability of a correct response to item i by examinee j,

8. is a column vector of k ability parameters for examinee j, a. is a column
-1

vector of k disnrimination parameters for item i, bi is the threshold

parameter for item i, and c1 is the lower asymptote parameter for item i.

There are k dimensions, and the ability and discrimination parameter vectors

contain one element for eadh dimension.

Uses of logistic MIPT models thus far have been somewhat limited,

primarily due to the recency of the development of estimation procedures for
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applying the models. The multidimensional two-parameter logistic (N2PL)

model, which is formed by holding the M3PL c-parameter fixed at zero for all

items, was applied to a Frendh proficiency exam by Kaya-Carton (1988). In

this application, parameters of the M2PL model were obtained using the

MULLIDIM (Mcginley, 1987) program with item lower asymptote parameters fixed

at zero. The method was compared to maximum likelihood factor analysis and

boolean factor analysis. Despite the shortness of the test (18 items) and the

small sample size (between 700 and 800 examinees), the results obtained were

positive. The M1RT solution was found to be interpretable and consistent with

the factor analysis solutions.

Estimation. For the nonlinear factor analysis procedure, the TESTFACT

program (Wilson, Wood, & Gibbons, 1984) is available. The TESTFACT program

uses marginal maximum likelihood estimation (M(LE) to estimate the item

parameters of the 2PNO factor analysis model, and provides a mechanism for

using item guessing parameters obtained fram a previous analysis. In this

approach to estimation, examinee factor scores are treated as nuisance

parameters, and are removed from the estimation process by specifying a

distribution for them, and integrating over that distribution.

For the M2PL model, the MAXLOG (McKinley & Reckase, 1983) and M1RTE

(Carlson, 1987) programs are available, and for the M2PL and M3PL models the

MULT1D1M program (McKinley, 1987) is available. The MAXLOG andlIERTE programs

are based on a simultaneous, or joint, maximum likelihood estimation (MLE)

algorithm. In MLE item parameters are estimated while ability parameters are
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held fixed, and then ability parameters are estimated while item parameters

are held fixed. This twostep process is repeated until the procedure

converges. The MULT1DIM program uses MMLE.

Model selection. In MIMI, model selection is relatively straightforward.

Solutions for relatively simple models (sudh as the unidimensional 3PL model)

are obtained first. Mbdels of increasing complexity are then created by

adding parameters. These more complex models subsume simpler models, making

it possible to test the significance of the contribution of the additional

parameters using procedures sudh as are implemented in TBSTFACT.

For example, assume one and two-dimensional MORT solutions have been

obtained on the same data using the M2PL model. Comparing the solutions can

be accomplished by computing, for eadh solution, a measure of fit sudh as the

likelihood ratio dhi-square statistic (Bodk, Gibbons & MUraki, 1985). This

statistic is given by

G2 = 2 E ri 1n(r./NP.)
3

j=1
(3)

where J is the number of possible unique response strings for the item set to

be calibrated, r. is the number of examinees with response string j, N is the
7

total number of examinees in the calibration sample, and P. is computed as
7

Pi = E i(x.k)Wk

k=1

(4)
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where P. represents the total likelihood of observing response string j,

3

L.(x ) is the likelihood of observing re-ponse string j given an ability
3 -k

vector equal to zk, and zlc and Wk are the quadrature nodes and weights used

for numerically integrating over the ability distribution.

The degrees of freedom for the statistic given by Equation 3 are given by

df = 2 -2(m+2) (5)

where n is the number of items and m is the number of dimensions. If the

c-parameter is not estimated the term in parentheses is m+1.

While it is doubtful the statistic given by Equation 3 is actually

distributed as a chi-square, the difference between the values of G fcr

subsuming models ought to be distributed as a chi-square (Haberman, 1977).

The degrees of freedom for the difference between two values of G
2

is equal to

the difference between Equation 5 for the two solutions. For MIRT models,

this equals the difference in the number of item parameters estimated.

MIRT Limitations

Logistic and factor analytic M1RT procedures share a very serious

shortcoming -- they are prone to overfitting the data. This occurs in part

because these procedures depend on large sample chi-square tests to assess the

significance of the contribution of additional ability dimensions. This

results in a very powerful test that often results in retention of

statistically significance, yet uninterpretable dimensions, perhaps based on

nothing more than chance relations in the data.
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Confirmatory MIRT

Confirmatory M1RT was developed largely as a response to this shortcoming

in MIRT. The goals of confirmatory M1RT, then, are to avoid overfitting the

data and to enhance the interpretability of obtained solutions by forcing a

correspondence between estimated ability dimensions and the content and

cognitive processes the instrument was intended to measure. This is

accomplished by inserting into the MIRT model an item bLLucture matrix that

determines for a given item ubidh Ability dimensions are measured. Items that

in theory ought to measure the same ability dimensions are thereby clustered

together by assigning them identical structure matrices. Similarly, items

that in theory ought to differ as to whidh dimensions are measured are forced

apart by assigning them dissimilar structure matrices. Thus, ability

dimensions are defined prior to estimation based on a priori considerations.

Cgpfirmatory M1RT model. The confirmatxzy MORT, or CMIRT, procedure used

in this researdh is based on a modification of the N3PL model. As indicated

above, the modification consists of adding an item structure matrix. The

confirmatory M3PL, or C43PL, model is given by

P.(0.) = c. + (1 -c.)/(1+exp(-1.702(b, + a.'S.0.))) , (6)
1 3 1 a. 1 1 3

where S. is the item structure matrix for item i, and the remaining terms are
1

as previously defined.

Item structure matrices. The item structure matrix identifies for a

given item the ability dimensions measured. This is accomplished by
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specifying either a 0 or a 1 for each element of S in such a way that, when it

is premultiplied by the transpose of the item discrimination vector, item

discrimination parameters are zeroed out for those ability dimensions the item

does not ueasure. For example, if S is the identity matrix, the item measures

all of the ability dimensions. If an item is to reasure only the first and

third dimensions in a three-dimensional solution, S wowu be given by

= 0
0

0

0

0

0

0
1

(7)

Estimation. The estimation procedure used in this study was the CONFIRM

program, whidh is based on an EM algorithm similar to those described by Bock

and Aitkin (1981), Bodk, Gibbons, and MUraki (1985), Mislevy and Bodk (1985),

and Redkase and McEinley (1985). The algorithm has been modified for this

application to allow collapsing across extraneous ability dimensions in

accordance with the hypothesized item structures.

In this algorithm, item parameter estimation is performed using a

two-step marginal maximum likelihood procedure. In this procedure, examinee

ability is treated as a random variable, and is eliminated frJm the estimation

process by specifying a form for the ability distribution and integrating over

that distribution. The integration over the ability (-Lstribution, which is
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accomplished through numerical quadrature, is performed during the first step,

the E-step, and produces an expected sample size and nuMber-correct score at

eadh quadrature node for eaCh item.

In M1RT applications, the values produced by the E-step are immediately

input into the M-step. In CMIRT applications, however, there is an

intermediate step performed prior to execution of the *-step. This additional

step involves a process that collapses expected sample size and number-correct

scores over ability dimensions not measured by an item. The output of this

step, then, is the expected sample size and number-correct scores for each

item collapsed in accordance with the specified item structures.

These values are then input into the M.-step, which uses these values to

perform marginal maximum likelihood item parameter estimation. This process

is repeated until the item parameter estimates converge. As a final, optional

step, the item parameter estimates can be used as input into an expected a

posteriori, or EAP, ability estimation routine. For a complete description of

the CONFIRM program, see McKinley (in preparation).

Mbdel selection. Clearly many different sets of S matrices can be

applied to a given set of data. Consequently, a procedure for selecting from

among them is necessary. Unfortunately, the dhi-square procedure described

above often cannot be applied, since in CMAIRT alternative models are not

necessarily subsuming. For example, consider a four item test in which the

first two items are intended to measure vocabulary, and the last two items are

intended to neasure reading comprehension. One test structure that might be



evaluated using CMIRT involves fitting one common ability dimension that all

four items are assumed to measure, and one additional dimension that only the

last two items are assumed to measure.

An alternative test structure that might be considered would be to assume

all four items measure a common dimension, and the middle two items measure a

second dimension. This structure would not correspond to any content-based

hypothesis about the structure of the test, but would serve as a useful

baseline for evaluating the first model. That is, it would provide an

indication of the extent of improvement (or deterioration, as the case may be)

in the quality of the solution to be expected simply from adding a second

dimension for two items.

Unfortunately, the model selection procedure described above cannot be

applied in this case. Not only are the competing models not sUbsuming, but

they result in equal degrees of freedom. Although the resulting dhi-squares

could still be visually compared, the significance of the difference in the

dhi-squares could not be tested.

One way these two competing models of test structure night be compared is

based on the work of Akaike (1973, 1987). This approadh is based on a

criterion called the entropic information criterion (Bozdogan, 1987), also

known as the AIC, and involves evaluating model fit in terms of the natural

logarithm of the likelihood of the solution, whiCh is presumed to be an

approximation of the expected natural logarithm of the likelihood of the true
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model. The greater the likelihood of the solution (in practice, the lower the

negative log likelihood), the closer the fitted model is presumed to

approximate the true model.

The AIC statistic is given by

AIC = -2 log(L) + (8)

where log(L) denotes the natural logarithm of the likelihood, and k is the

number of parameters estimated. The 2k term constitutes a sort of a penalty

function that penalizes over-parameterization.

A variation on the AIC, called the consistent AIC (CAIC), was proposed by

Bozdogan (1987). This statistic was derived in response to the criticism that

the AIC statistic does not provide an asymptotically consistent estimate of

model order (Bozdogan, 1987).

The CAIC statistic is given by

CAIC = -2 log(L) + k(log(n)+1) (9)

where n is the sample size. This modification of the AIC has the effect of

incrpaqing the penalty for over-parameterization and, consequently, tends to

lead to the selection of simpler models.

One reason these statistics are desirable is that they are designed to

identify which of a class of models is the closest approximation to the true

model. Unlike classical chi-square tests of model fit, in which a constrained
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model is typically evaluated by comparing it to a more saturated, subsuming

mcdel, with the AIC and CA1C statistics eaeh model under consideration is

evaluated in terms of its closeness to the true model. Different models are

not directly compared, so there is no reauirement that competing models be

subsuming.

The AIC and CAIC statistics have a very iriterting property that makes

them very desirable even in situations where use of the chi-square statistic

is possible -- the level of significance for testing whether a particular

model is the best-fitting model is implicit to the model-selection criterion

(Bozdogan, 1987). In effect, the critical value is embodied in the penalty

for over-parameterization, and the probability of a Type I error is determined

by the sample size. Thus, selecting the CAIC over the AIC is tantamount to

selecting a larger critical value, which results in a reduction in the Type I

error rate. Mbreover, once a statistic has been selected, increasing the

sample size has the effect of decreasing the probability of a Type I error.

Indeed, the Type I error rate decreases exponentially with increased sample

size. In fact, for the CAIC statistic, the error rate asymptotically goes to

zero.

Method

Overview

The evaluation of the CM1RT procedure described above was perforged using

simulation data. TWo sets of simulation data were generated using different

true structure matrices. Several different solutions, based on different

1 ' t
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structure matrices, were then obtained and compared in terms of model fit

using the indices described above.

Although the mciel proposed above was a multidimensional extension of the

unidimensional 3PL model, for the purpose of evaluating the proposed CMIRT

procedures the lower asymptote parameter, c, was held constant. This was done

to avoid complications arising from errors in estimation of the c-parameter.

At this point it is unclear haw such errors in estimation affect the solution

obtained, but experience with unidimensional IRT estimation procedures suggest

the effect is potenti-ily serious.

Data Generation

As was indicated above, two sets of data were used for this evaluation.

As was pointed out previously, for both sets of data true c-parameters were

not allowed to vary. Rather, a constant value of 0.15 was used. For each

simulation dataset responses were generated for 1000 examinees and 80 items.

The first set of simulation data was generated to have only one ability

dimension. For these data examinee true abilities were selected randomly from

a standard normal distribution. The same item structure matrix was used for

all items. The matrix used was, in effect, a scalar with a value of 1.

The second set was generated using three uncorrelated ability dimensions.

Examinee true abilities were selected from a trivariate normal distribution

with a mean vector equal to zero and a covariance matrix equal to the identity

matrix. Two different item structure matrices were used to generate these

data. The first matrix, used for the first 40 items, is given by

1 5
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r, 0 0

S =

[

0 1 0 (10)

0 0 0

Thus, these items each measured the first two ability dimensions. The second

item structure matrix, used for items 41 through 80, is given by

S =
1

0
0

0

0
0

0

0
11

..1

(11)

These items each measured the first and third ability dimensions.

Table 1 provides summary statistics for each model parameter used to

generate each dataset. Note that for the three-dinensional data, there were

only 40 item discrimination values on the second and third dimensions. The

remaining 40 values were set equal to zero.

For the unidimensional data, the correlation between the true a-values

and b-values was 0.01. For the three-dimensional data, the correlation

between the a-values was -0.14 for the first and second dimensions, 0.21 for

the first and third dimensions, and 0.0 for the second and third dimensions

(note that no item had a-values for both the second and the third dimensions).

The b-values for the three-dimensional data bad correlations of -0.09, 0.23,

and 0.17 with the a-values on the first, second and third dimensions,

respectively. For the three-dimensional data, the correlations of the true
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ability parameters were 0.0 for the first and second dimensions and for the

first and third dimensions, and -0.02 for the second and third dimensions.

Table 1

True Parameter Distribution Summary Statistics

Dataset/Paraneter N Mean Std. Dev. Min. Max.

1-Dimensiona1
a 80 1.00 0.29 0.52 1.48
b 80 -0.14 0.93 -2.28 1.83
c 80 0.15 0.00 0.15 0.15
8 1000 -0.05 0.93 -2.85 2.77

3-Dimensional
al 80 1.01 0.28 0.53 1.48
a2 40 1.00 0.26 0.53 1.43
a3 40 0.92 0.29 0.53 1.48
b 80 0.01 0.93 -3.34 2.28
c 80 0.15 0.00 0.15 0.15

81 1000 -0.05 0.99 -4.03 3.76

82 1000 -0.01 0.99 -3.13 2.83
83 1000 0.00 0.99 -3.12 3.70

Solutions

Severa.i. different solutions were obtained for each set of data. For both

sets of data, the first solution obtained was unidimensional, and used for

each item an item structure matrix that was, in effect, a scalar with a value

of 1. For the urddimensional data, this solution, signified by the code 1DU

(one-dimensional unocrotrained), represents the true structure of the data.

The second solution obtained for each set of data was two-dimEnsional,

with each item measuring both dimensions. This was accomplished by using for
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all items an item structure matrix equal to a two-by-two identity matrix. This

solution is signified by the code 2DU (two-ddmensional unconstimaired).

The third matrix used for both sets of data was also two-dimensional.

However, for this solution, designated 2DC (aqo-dimemsional constrained), the

two-by-two identity matrix was used only for items 41 through 80. For items 1

through 40, the matrix used is given by

[1
0]S = 0 0 (12)

For the three-dimensional simulation data, two additional solutions were

obtained. The first of these, designated as 3DCa (three-1dimensiona1

constrained, solution a), used for each item thl matrix used to generate the

data (given by Equations 10 and 11). The other solution, designated 3DCb

(three-dimensional constrained, solution b), used for items 1 through 20 and

items 61 through 80 the matrix given by Equation 10, and for items 21 through

60 the matrix given by Equation 11. Thus, the first and last 20 items

measured the first two ability dimensions, while the middle 40 items measured

the first and third ability dimensions.

For all solutions derived during this evaluation, estimates of the

c-parameter were held fixed at their true value, 0.15. All other item

parameters were estimated, with the restriction that a maximum value of 1.8

and a minimum value of 0.1 was imposed on the a-values. The estimation

procedure was allowed to cycle through the EM process until the likelihood of
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the response matrix, given the CMIRT model and current item parameter

estimates, ceased to increase, or until the item parameter estimats ceased to

change, whichever came first.

Analyses

For each set of data the following analyses were performed. First, a

principal components analysis of phi coefficients and a traditional item

analysis were performed to evaluate the reasonableness of the generated data,

and to provide information to aid in the interpretation of the results of the

CMIRT analyses. (It should be noted that tetrachoric correlations were also

computed for both sets of data, but in both cases the correlation matrix was

found to be non-Gramian.)

Second, several different CMIRT solutions were obtained for eadh set of

data. Then, these solutions, which varied not only in dimensionality, but

also in the item strut-lure matrices used, were evaluated using the AIC and

CAIC model selection c..-iteria, as well as the likelihood ratio chi-square

goodness-of-fit statistic.

In addition, as an aid to interpretation correlations between the true

parameters and the parameter estimates obtained for each solution were

computed. Of course, these correlations cannot be used to evaluate the

quality of the solutions, since in some cases estimates are obtained for

parameters not even used in the data generation. Mbreover, it is possible

that same solutions with estimates that have low correlations with the true

parameters may, in fact, represent rotations and/or translations of the true

structures used to generate the data.

2 f
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Finally, residuals were computed and analyzed, using the procedure

described by Divgi (1980), to determine whether there appeared to be any

interpretable common variance remaining after the model was fit to the data.

Residuals were computed as

R.. = P.. u..
13 13 13

(13)

where P. is the probability of the observed response to item i by examinee j
13

predicted fram the MIRT model, and u., is the observed response. Residual

correlation matrices were analyzed using principal components analysis, and

resulting component loadings were examined. [Note that, since residuals are

on a continuous scale, the problem of using principal components analysis with

binary data is avoided using this procedure.]

Results

Item Analyses

Table 2 presents the means, standard deviations, minimums, and maximums

of the examinee number-correct scores, item-total biserials, and item

proportion-correct (pi-) scores for each dataset. The correlation between item

biserials and pm+ values was 0.59 for the unidimensional data and 0.65 for the

three-dimensional data. The KR-20 coefficient of reliability was 0.94 for the

unidimensional data, and 0.95 for the three-dimensional data.
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Table 2

Traditional Item Analysis Results

Dataset/Statistic Mean S.D. Min. Max.

1-Dimensional
Number-Correct 42.95 15.38 7.00 77.00
Item Biserial 0.51 0.15 0.09 0.77
Item p+ 0.54 0.19 0.17 0.92

3-Dimensional
Number-Correct 45.34 16.52 8.00 80.00
Item Biserial 0.56 0.11 0.22 0.73
Item p+ 0.57 0.18 0.19 0.92

These results indicate that the response data simulated according tc the

CMIRT model were fairly realistic. The means and standard deviations of the

examinee number-oorrect scores suggest a test of appropriate difficulty for

the distribution of ability used in this research. Moreover, item p+ and

biserial values varied to a reasonable degree. The only departures from what

might typically be obtained with real data are: 1) the mean biserials and the

KR-20 are somewhat high, indicating the relative purity of the simulation

data; and, 2) the correlation between the item p+ and biserial values was

high (for comparison, values of this correlation computed on items pretested

for the Test of English as a Foreign Language over the eight year period from

1981 through 1988 were 0.33, 0.29, and 0.44 for Sections 1, 2, and 3,

respectively). This, too, is probably a reflection of the purity of the data.
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Principal Components Analyses

Table 3 summarizes the results of the principal components analyses

performed on the two datsets. Provided for each dataset are the first 10

eigenvalues, along with the percent and cumulative percent of variance.

Table 3

Principal Components Analysis Results

Canponent 1-Dimensional Data 3-Dimensional Data

Eigen-
value

Percent of
Variance

Cumulative
Percent

Eigen-
value

Percent of
Variance

Cumulative
Percent

1 14.91 18.6 18.6 16.44 20.6 20 6
2 1.95 2.4 21.1 6.51 8.1 28.7
3 1.33 1.7 22.7 1.97 2.5 31.2

4 1.31 1.6 24.4 1.54 1.9 33.1
5 1.27 1.6 26.0 1.34 1.7 34.8
6 1.24 1.6 27.5 1.18 1.5 36.2

7 1.22 1.5 29.1 1.13 1.4 37.6
8 1.20 1.5 30.6 1.11 1.4 39.0
9 1.18 1.5 32.1 1.09 1.4 40.4

10 1.17 1.5 33.6 1.08 1.3 41.7

As has been pointed out by many researchers (see, for example, Bock,

Gibbons & Muraki, 1985; Carroll, 1945; Lord & Novick, 1968; Reckase, 1981;

and, TUcker, Humphreys, & Roznowski, 1986), a principal components analysis of

phi coefficients is fraught with dangers. Among these are the likelihood of

obtaining spurious components due to item difficulty and nonlinearity. The

results reported above illustrate these problems. Although the first set of

data were generated to have only one dimension, the principal components

analysis suggests the presence of a second component. However, further
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examination reveals that the second component is essentially a difficulty

component. The correlation between the item loadings on the second component

and item proportion-correct score was -0.86. In contrast, the correlation

between the first component and the item proportion-correct scores was 0.48,

wilidh is about what would be expected in light of the previously reported

finding that the item proportion-correct scores and item biserials had a

correlation of 0.59 for these data. The correlation between the first

component and the item biserials was 0.98.

A similar, though more complex, pattern emerged for the three-dimensional

data. The data were generated to have three ability dimensions -- one

dimension which all items measured, one dimension only the first 40 items

measured, and one dimension only items 41 through 80 measured. This resulted

in a principal components solution in which there were two components one

common component, on which all items had positive loadings, and one bipolar

component, on which the first 40 items all had positive loadings, and the last

40 items all had negative loadings. However, the principal components

analysis results shown in Table 3 indicate the presence of a small third

component. As was the ca qvi. with the unidimensional data, this additional

component is the result of using phi coefficients. The correlation between

the loadings on the third component and the item proportion-correct scores was

-0.89. The correlation of item proportion-correct scores and item loadings

was 0.49 and -0.11 for the first and second components, respectively. As
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reported above, the correlation between the item biserials and item

proportion-correct scores for these data was 0.65. The item biserials had

correlations of 0.95, -0.12 and -0.53 with the first, second, and third

components, respectively.

CMIRT Analyses

Unidimensional data. TabTh 4 presents summary statistics for the

parameter estimates obtained for the unidimensional data. Shown are the

means, standard deviations, minimum, and maximum values for eadh parameter

estimated in eadh solution, along with the number of values estimated for eadh

parametPr. It should be noted that no attempt was made to place the estimates

on the same scale as the true parameters. Nor have different sets of

estimates been placed on the same scale. Consequently, the summary statistics

Shown in Table 4 should not be used to assess similarity of estimates to true

parameters or other estimates.

It can be seen fram Table 4 that the summary statistics for the a-values

on the first dimension (the only dimension for the IDU solution) were similar

across solutions, although the mean was a little higher for the 2DU solution.

Likewise, the ability estimate distributions for the first dimension and the

b-values did not vary much across solutions. The second dimension summary

statistics were also similar across solutions for both the a-values and

ability estimates, and in both cases the statistics were different from those

obtained for the first dimension. The ability estimates on the second
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dimension has relatively small standard deviations, and the a-values on the

second dimension had low means compared to the first dimension, suggesting

the second estimated dimension may be nothing but noise.

Table 4

Parameter Estimate Distribution Summary Statistics
for the Unidimensional Data

Solution/Parameter N Mean Std. Dev. Min. Max.

1DIU

a 80 0.77 0.23 0.37 1.26
b c10 -0.12 0.95 -3.41 1.91
8 1000 -0.08 1.13 -2.78 2.99

2DC
al 80 0.71 0.22 0.33 1.20
a2 40 0.30 0.15 0.10 0.74
b 80 -0.15 0.92 -2.65 1.92

el 1000 -0.04 1.18 -2.77 3.15

02 low -0.01 0.54 -1.54 1.72

210U

al 80 0.85 0.27 0.34 1.42
a2 80 0.44 0.20 0.10 0.86

80 -0.08 0.97 -3.60 1.98

el 1000 -0.11 0.90 -2.37 2.58
e2 1000 -0.06 0.69 -1.82 1.97

Table 5 shows the correlations of the true item parameters with the

estimated item parameters for each solution for the unidimensional data.

[Note that, since the c-parameter was held fixed, it is not included in Table

5.] It can be seen from the data shown in Table 5 that, for each solution the

a-parameter estimates for the first dinension were highly correlated with the

true parameters. The meaning of the moderate correlations obtained between
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the a-parameter estimates on the second dimension and the true a-values is

unclear, and may be a result of averfitting. It is interesting to note that

the correlation between the a-parameter estimates on the second dimension and

the true a-values was higher for the 2DU solution than for the 2DC solution,

and that the correlation between the a-parameter estimates on the first

dimension and the true values was lower for the 2DU solution. It appears as

though increasing the number of parameters estimated on the second dimension

produced a deterioration of the fitting of the first dimension.

Table 5

True and Estimated Item Parameter Correlations
for the Unidimensional Data

Solution/Parameter N True Parameter

a

1DU
a 80 0.89 0.07

80 0.05 0.99

2DC
al 80 0.91 0.15

a2 40 0.53 -0.18
80 0.03 0.99

2DU
al 80 0.81 -0.04

a2 80 0.67 0.22

80 0.07 0.98

The true and estimated ability parameter correlation was 0.96 for the 1DU

solution. For the 2DC solution, the correlation between the true ability
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parameter and the ability estimates on the first dimension was 0.96, and for

the second dimension it was 0.32. For the 2DU solution, the correlation

between the true abilities and the ability estimates was 0.92 for the first

dimension and 0.65 for the second.

Table 6 shows the chi-square, AIC, and CAIC values obtained for each

solution for the unidimensional data. For these data, all three pair-wise

comparisons could be tested for the significance of the differences in the

associated chi-square values. All three chi-square differences were

significant.

Table 6

Model Selection Criteria Values
for The Uhidimensional Data

Chi
Solution Square AIC CAIC

1DU(true) 70947.6 85083.2 86028.4

2DC 71102.7 85318.2 86499.8

2DU 70618.0 84913.5 86331.4

As Shown in Table 6, if the Chi-square criterion is used, the

unconstrained two-dimensional solution would be selected as optimal, even

though the data are actually unidimensional. The unidimensional solution

would be Chosen over the constrained twow-7'imensional solution. Ute of the AIC

would result in the same ordering of solutions. Using the CAIC as a
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criterion, hcwever, would result in selection of the unidimensional solution.

The unconstrained two-dimensional solution would be selected over the

constrained two-dimensional.

Three-dimensional data. Table 7 provides summary statistics for the

parameter estimates obtained for the three-dimensional data. As was the case

previously, no attempt at scaling these estimates has been made.

The summary statistics for the a-parameter estimates on the first

dirension were similar across solutions, although for the 2DU and 31003

solutions the mean a-value tended to be a little lower than for the other

solutions, and the mean a-value was a little higher for the mca solution than

for the others. There was very little variation across solutions in the

ability estimate distributions for the first dimension, or for the b-values.

For the two-dimensional solutions, the a-values on the second dimension

differed noticeably in mean value, with the mean being 0.3 higher for the 2DC

solution, and the 2DC a-vajues on the second dimension were less variable

than for the 2DU solution. There was not a difference in the second dimension

ability estimate distributions for these two solutions.

For the three-dimensional solutions, the a-values on the second and third

dimensions had similar means and standard deviations, and on both dimensions

the means were higher for the 3DCa solution than for the 3DCb solution. The

ability estimate distributions were similar for the second and third

dimensions for both three-dimensional solutions.
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Table 7

Parameter Estimate Distribution Summary Statistics
for the Three-dimensional Data

Solution/Parameter N an Std. Dev. Min. Max.

1DU
a 80 0.78 0.19 0.41 1.26

b 80 0.02 0.85 -2.54 2.26

0 1000 -0.05 1.17 -3.04 3.31

2DC
al 80 0.77 0.23 0.31 1.25

a2 40 0.92 0.22 0.53 1.31
b 80 -0.06 1.02 -3.37 2.57

81 1000 0.08 1.20 -2.61 3.06

02 1000 -0.07 1.12 -3.11 3.48

2DU
al 80 0.55 0.40 0.10 1.40
a2 80 0.62 0.36 0.10 1.33

b 80 0.10 1.01 -3.19 2.68

el 1000 -0.09 1.18 -2.74 2.75

82 1000 -0.09 1.16 -2.61 3.06

3Dc.
al 80 0.81 0.24 0.41 1.58
a2 40 0.69 0.19 0.24 1.04

a3 40 0.68 0.17 0.31 1.10

80 0.00 1.03 -3.18 2.62

el 1000 -0.03 1.03 -2.51 2.76

82 1000 -0.04 0.96 -2.72 2.64
93 1000 0,03 1.00 -2.89 2.61

3DC:b

al 80 0.62 0.32 0.10 1.32
a2 40 0.55 0.38 0.10 1.17

a3 40 0.58 0.37 0.10 1.30

b 80 -0.05 0.99 -3.36 2.46

81 moo 0.01 1.27 -2.78 2.83

82 low 0.08 1.04 -2.10 2.65
83 low -0.01 1.03 -2.65 2.45
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Table 8 Shows the intercorrelations for the true and estimated item

parameters for the three-dimensional data. Because the number of values in

common to the true structure and the imposed structures varies across

dimensions and solutions, the nuMber of items on whidh eadh correlation is

based is Shown in parentheses aftPr eadh correlation.

The values Shown in Table 8 indicate that the dimension estimated for the

IDU solution was most strongly related to the first true dimension. For the

2DC solution the two estimated dimensions appeared to be equally strongly

related to the first true dimension. The first estimated dimension appeared

to be slightly more strongly related to the first true dimension, while the

second estimated dimension appeared to be more strongly related to the second

true dimension.

For the 2DU solution, the first estimated dimension appeared to be

related to the second true dimension, while the second estimated dimension was

related to the third true dimension. Neither dimension appeared to be

strongly related to the first true dimension.

For the 3DCA solution, the first estimated dimension appeared to

correspond to the first true dimension, while the second and third estimated

dimensions corresponded to the second and third true dimensions, respectively.

For the 3DCb solution, the first estimated dimension was most strongly related

to the second true dimension, while the second and third estimated dimensions

both appeared most strongly related to the third true dimension.
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Table 8

True and Estimated Item Parameter Correlations
for the Three-Dimensional,Data

Solution/Parameter True Parameter

al(N) a2(N) a3(N) b(N)

1DU
a 0.76(80) 0.44(40) -0.10(40) .17(80)

-0.06(80) 0.17(40) 0.25(40) ).99(80)

2DC
al 0.57(80) 0.42(40) 0.40(40) 0.00(80)

a2 0.58(40) 0.80(40) 0.00( 0) 0.16(40)

-0.10(80) 0.16(40) 0.23(40) 0.99(80)

2011

al 0.37(80) 0.70(40) -0.40(40) 0.11(80)

a2 0.24(80) 0.17(40) 0.67(40) -0.07(80)
-0.08(80) 0.17(40) 0.24(40) 0.99(80)

3Dca
al 0.86(80) 0.31(40) -0.17(40) 0.02(80)

a2 0.19(40) 0.86(40) 0.00( 0) 0.15(40)

a3 -0.09(40) 0.00( 0) 0.85(40) 0.11(40)

-0.09(80) 0.17(40) 0.24(40) 0.99(80)

3DCb
al 0.40(80) 0.68(40) -0.29(40) 0.09(80)

a2 0.26(40) 0.10(20) 0.52(20) -0.13(40)
a3 0.07(40) -0.02(20) 0.69(20) -0.01(40)

-0.10(80) 0.15(40) 0.25(40) 0.99(80)

The true and estimated ability parameter intercorrelations are shown in

Table 9. These data indicate that, for the 1W solution, the estimated

abilities were most similar to the first dimension true abilities. For the

2DC solution, the first dimension ability estimates were most highly

correlated with the first dimension true abilities, while the second dimension

3 4
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ability estimates were most strongly related to the second dimension true

abilities. The first dimension ability estimates were also fairly strongly

related to the third dimension true abilities.

For the 2DU solution, the ability estimates on the first dimension were

most strongly related to the second dimension true abilities, and the second

dimension ability estimates were mcst strongly related to the first dimension

true abilities. The first and second dimension ability estimates were equally

strongly related to the first dimension true abilities.

For the 3DCa solution the first dimension estimates were most strongly

related to the first dimension true estimates, the second dimension ability

estimates were most strongly related to the second dimension true abilities,

and the third dimension estimates were most strongly related to the third

dimension true abilities. For the 3DCb solution, the first dimension ability

estimates were strongly related to both the first and second dimension true

abilities, though the correlation was slightly higher for the second

dimension. The second and third dimension estimates were both most strongly

related to the third dimension true abilities.

Table 10 Shows the chi-square, AIC, and CAIC values obtained for each

solution for the three-dimensional data. For these data not all chi-square

differences could be tested for significance. Table 11 summarizes which pairs

of dhi-squares could be tested. All testable pairs were significantly

different.
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Table 9

Ttue and Estimated Ability Parameter Correlations
for the Three-Dimensional Data

Solution/Dimension Ttue Ability Dimension

1 2 3

1DU
1 0.80 0.42 0.33

2DC
1 0.73 0.03 0.62
2 0.32 0.78 -0.40

2DU
1 0.57 0.74 -0.19
2 0.58 -0.20 0.72

3Dca
0.87 0.29 0.21

2 0.19 0.85 -0.23
3 0.24 -0.27 0.84

3DCb
1 0.64 0.70 -0.09
2 0.54 -0.25 0.70
3 0.49 -0.25 0.72

Like the unidimensional case, the chi-square and AIC would result in the

same ordering of the models for the three-dimensional data. Using either the

absolute magnitude of the chi-square criterion or the AIC, the 3DCa solution

would have been selected as best. The unconstrained two-dimensional solution

was next, while the constrained two-dimensional solution was third. The 3DCb

solution was fourth, and the unidimensional solution was last. Of course,

since not all of the pair-wise comparisons are testable, this rank-ordering

isn't entirely objective.
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Using the CAIC resulted in a slightly different ordering of models. The

3DCa solution was first, as it was using the chi-square and AIC. However,

using the CAIC, the constrained two-dinensional solution was second. This

ordering is more reasonable than that obtained using the chi-square and AIC,

since the constrained two-dimensional solution used an item discrimination

parameter that was consistent with the true pattern. The unconstrained

two-dimensional solution was third, the 31Th solution was fourth, and the

unidimensional solution was last.

Table 10

Model Selection Criteria Values
for The Three-Dimensional Data

Solution Chi-Square AIC CAIC

1DU 70706.4 84823.8 85769.0

2DC 65828.9 80022.6 81204.1

2DU 65592.6 79871.3 81289.2

3DCa(true) 65450.4 79723.6 81141.5

3DCb 67548.8 81815.3 83233.2

Table 11

Testable Pair-Wise Chi-Square Comparisons
for The Three-Dimensional Data

Solution 1DU 2DC 2DU 3DCa 3DCb

1DU
2DC
2DU
3DCa(true)

_ * * *
- * *

-

Note. Dash (-) indicates not testable, asterisk (*)

indicates testable.
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Analysis of Residuals

Table 12 summarizes the results of the residual analyses for both the

unidimensional and three-dimensional data. Shown are the first three

eigenvalues obtained from a principal components analysis of Pearson product

moment correlations computed on the matrix of residuals for each CMIRT

solution. Also shown is the percent of variance and cumulative percent of

variance corresponding to each eigenvalue.

For the unidimensiona/ data, the results reported in Table 12 indicate

no meaningful variation remaining in the residuals. This is consistent with

the fact that the data were truly unidimensional. It is interesting to note

that increasing the number of parameters estimated did not reduce the size of

the first eigenvalue of the residuals to any meaningful degree.

For the three-dimensional data, the pattern is quite different. For

these data, increasing the number of estimated parameters noticePinly reduced

the size of the first eigenvalue, and correctly clustering the items in the

3DCa solution reduced the first eigenvalue to a smaller value than was

obtained for the 2DU solution, even though the number of item parameters

estimated did not increase. Incorrectly clustering the items in the 3DCb

solution, on the other hand, did not produce a smaller first eigenvalue than

was obtained for the 2DU solution.

1.3 L.
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Table 12

Principal Ccoponents Analysis of Residuals

Dataset/
Component/
Statistic

Solution

1DU 2DC 2DU 3DCa 3DCb

Unidimensional
1

Eigenvalue 1.62 1.62 1.61

% Variance 2.02 2.02 2.02

Cumulative % 2.02 2.02 2.02

2

Eigenvalue 1.56 1.56 1.57

% Variance 1.97 1.95 1.96

Cumulative % 3.99 3.97 3.98

3

Eigenvalue 1.54 1.55 1.55

% Variance 1.92 1.94 1.94

Cumulative % 5.91 5.91 5.92

Three-dimensional
1

Eigenvalue 8.37 2.07 1.95 1.63 1.93

% Variance 10.46 2.58 2.44 2.04 2.42

CUmulative % 10.46 2.58 2.44 2.04 2.42

2

Eigenvalue 1.96 1.61 1.61 1.61 1.63

% Variance 2.45 2.01 2.02 2.01 2.03

Cumulative % 12.91 4.60 4.45 4.05 4.45

3

Eigenvalue 1.72 1.57 1.57 1.58 1.58

% Variance 2.15 1.96 1.97 1.98 1.98

Cumulative % 15.07 6.56 6.42 6.02 6.43
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Summary and Conclusions

The purpose of this resea:thwas to develop and evaluate a confirmatory

approach to assessing test structure using multidimensional item response

theory. The approach investigated involves adding to the exponent of the MEW

model an item structurematrix that allows the user to specify what ability

dimensions are measured by an item. Various caMbinations of item structures

were fit to two sets of simulation data with known true structures, and the

results were evaluated using three different model selection criteria and an

analysis of residuals procedure. In addition, item and principal components

analyses were performed to assess the reasonableness of the data.

The results of the item and principal camponents analyses tend to support

the reasonableness of the CMIRT model. The data generated according to both

the unidimensional and three-dimensional models appeared to be realistic with

respect to item difficulty and discrimination, and the structure of each test,

as revealed by the principal Caaponents analysis, was neither unrealistic nor

uncommon. The reliabilities of the tests did appear to be a little higher

than normally obtained with real data, as did the correlations between the

item biserials and difficulties, but these results were most likely a

reflection of the purity of the simulated data.

The comparisons among the various solutions derived for each set of data

using the three model selection criteria were encouraging. The likelihood

ratio chi-square statistic was clearly inadequate, since its significar:m

could not always be tested, and both the dhi-square and AIC statistics tended

to result in over-parameterization. However, the CAIC criterion appeared to
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function quite well. For both the unidimensional and three-dimensional data,

the CAIC criterion resulted in selection of the true structure.

In aadition to finding that the procedures could recover the true item

structures, it was also found that adding an additional ability dimension that

forces together items that ought not to be together (the 3DCb solution)

noticeably deteriorates the quality of the solution. On the other hand,

imposing structures different from, but not inconsistent with, the true

structure (the 2D solutions) does not necessarily yield worse fit.

The residual analyses indicated that, for the unidimensional data, adding

additional dimensions did not reduce the proportion of common variance

remaining in the residuals below what was obtained for the unidimensional

solution. For the three-dimensional data, however, adding dimensions did

reduce the remaining common variance below what was obtained for the

unidimensional solution, and correctly clustering items reduced the remaining

common variance below what was obtained When items were incorrectly clustered,

even when the number of dimensions (or parameters) did not increase
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