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Confirmatory Analysis of Test Structure

using Multidimensional Item Response Theory

Abstract

The purpose of this research was to develop and evaluate a confirmatory
approach to assessing test structure using multidimensional item response
theory (MIRT). The approach irvestigated involves adding to the exponent of
the MIRT model an item structure matrix that allows the user to specify the
ability dimensions measured by an item. Various combinations of item
structures were fit to two sets of simulation data with known true structures,
and the results were evaluated using a likelihood ratio chi-square statistic
and two information-based model selection criteria. The results of these
analyses support the use of the confirmatory MIRT approach, since it was found
that the procedures could recover the true item structures. It was also found
that adding an additional ability dimension that forces together items that
ought not to be together noticeably deteriorates the quality of the solution.
On the other hard, imposing structures different from, but not inconsistent
with, the true structures does not necessarily yield worse fit. Finally, in
terms of model fit statistics, the consistent Akaike infoimation criterion
performed better than the simple Akaike information criterion, while the

likelihood ratio chi-square was clearly inadequate.




Confirmatory Analysis of Test Structure

using Multidimensional Item Response Theory

Introduction

Although item response theory (IRT) has proven to be a very powerful and
useful measurement tool, use of IRT models has been samewhat limited because
the available models require the assumption that the test being analyzed
measures only a single ability dimension. This unidimensionality assumption
often limits the application of IRT-based methods to tests consisting of
relatively homogeneous sets of items, such as might be found on a vocabulary
test. Tests including items sampled from several content areas, such as a
science test containing both rhysics and chemistry items, are probably not
sufficiently hamogenecus as to permit analysis using IRT. Such may also be
the case with tests containing multi-faceted items, such as a mathematics test
containing problem—solving items requiring a high level of reading
caaprehension or vocabulary skill.

Because it is clear that many tests measure more than a single ability
dimension (Traub, 1983), attempts have been made to extend IRT to
miltidimensional tests. In multidimensional IRT, or MIRT, examinee responses
are modeled as a function of a set of examinee traits, and the assumption of
unidimensionality is replaced by the less restrictive requirement that the
dimensionality of the item responses matches the dimensionality of the set of

examinee traits used in the MIRT model.
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This assumption is less restrictive in that it permits the application of
IRT methods to a much broader range of instruments, but it has its own
disadvantages. The most serious difficulty encountered in the application of
MIRT methodology is matching the model dimensionality to the dimensionality of
the test. This problem is particularly serious in view of the fact th~t there
are no generally accepted procedures for determining the dimensionality of a
test, especially if the test items are dichotamously scored. In addition, in
the case of correlated dimensions, a mumber of multidimensional solicions
might fit the data almost equally well. If this is so, it may be desirable to
choose a solution with a theoretical foundation in cognitive psycholegy or
test content rather than a solution with a slightly greater likelihocod,
perhaps obtained by fitting error.

The purpose of this research was to develop and evaluate multidimensional
IRT procedures designed to permit the extraction of theory-based solutions.
The procedures developed include a MIRT model, a mechanism for imposing a
priori structures on the data, procedures for estimating the model parameters,
and model selection criteria for choosing among altermative structures. The
evaluation performed on these procedures included assessing the reasonahleness
of simulation data generated to fit the model, evaluating the estimation

procedures, and evaluation of the model selection criteria.




Background
Maltidimensional IRT

Most of the recent progress in MIRT research has occurred in two areas —-
the developaent of nonlinear factor analysis models (Bock, Gibbons, & Muraki,
1985; Christoffersson, 1975; and Muthen, 1978), and the development of
multidimensional two- and three-parameter logistic MIRT models (McKinlev-,
1983, 1987, in preparaticn; Reckase, 1%75; Reckase, Ackerman, & Carlson, 19887
Reckase & McKinley, 1985). Work on these procedures is still at an early
stage, but has progressed to the point that astimatio;'n procedures are
available.

Nonlinear factor analysis model. The basic nonlinear factor analysis
model is based on the two-parameter logistic normal wgive (2PNO) model,
although the method does allow for the input of previously estimated
c-parameter values. The 2PNO model ~<sumes there is an unobservable response
variable which is on @ continuous scale, and which is dichotomized into an
observed score of 0 or 1 depending on whether the examinee is akove or below

same threshold point. The 2PNO model is given by
P.(8.) = &((¥,-a,'8 , 1
i( j) (( i a, _j)/Si) (1)

where Pi(ej) is the probability of a correct response to item i by examinee j,
% (x) represents the cumilative normal distribution, ai is a column vector of k
item factor loadings j, ej is a colum vector of k factor scores for examinee

j, s is the standard deviation of the normal distribution, Y represents the




threshold beyond which an examinee will respond correctly to the item, and
there are k dimensions.

Applications of nonlinear factor analysis procedures include analysis of
the item pool for the camputerized version of the Armed Services Vocational
Aptitude Battery, or ASVAB, by Zimowski and Bock (1987), analysis of the
Graduate Management Admission Test, or G I, by Kingston (1986), and analysis
of the Graduate Records Examination (GRE) Subject Test in Mathematics by
McKinley and Kingston (1987).

Logistic models. In the logistic model approach, the normal ogive model

is replaced with the logistic distrilution. Although the parallel to factor
analysis is lost in this approach, all of the desirable properties of IRT are
maintained, and the computation is greatly simplified. The multidimensional

three-parameter logistic, or M3PL, model is given by
P.(8.,) = + (1 1 ~1.702 (b, + 's 2

where Pi (Qj) is the probability of a correct response to item i by examinee j,
_Qj is a column vector of k ability parameters for examinee j, gi is a column
vector of k discrimination parameters for item i, bi is the threshold
parameter for item i, and ci is the lower asymptote parameter for item i.
There are k dimensions, and the ability and discrimination parameter vectors
contain one element for each dimension.

Uses of logistic MIRT models thus far have been somewhat limited,

primarily due to the recency of the development of estimation procedures for
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applying the models. The multidimensional two-parameter logistic (M2PL)
model, which is formed by holding the M3PL c-parameter fixed at zero for all
items, was applied to a French proficiency exam by Kaya—Carton (1988). 1In
this application, parameters of the M2PL model were obtained using the
MULTIDIM (McKinley, 1987) program with item lower asymptote parameters fixed
at zero. The method was campared to maximum likelihood factor analysis and
boolean factor analysis. Despite the shortness of the test (18 items) ard the
amall sanple size (between 700 and 800 examinees), the results obtained were
positive. The MIRT solution was found to be interpretable and consistent with
the factor analysis solutions.

Estimation. For the nonlinear factor analysis procedure, the TESTFACT
program (Wilson, Wood, & Gibbons, 1984) is available. The TESTFACT program
uses marginal maximm likelihood estimation (MMLE) to estimate the item
parameters of the 2PNO factor analysis model, and provides a mechanism for
using item quessing parameters obtained from a previous analysis. In this
approach to estimation, examinee factor scores are treated as nuisance
parameters, and are removed from the estimation process by specifying a
distribution for them, and integrating over that distrilution.

For the M2PL model, the MAXIOG (McKinley & Reckase, 1983) and MIRTE
(Carlson, 1987) programs are available, and for the M2PL and M3FL models the
MULTIDIM program (McKinley, 1987) is available. The MAXIOG and MIRTE programs
are based on a similtaneocus, or joint, maximum likelihood estimation (MLE)

algorithm. In MLE item parameters are estimated while ability parameters are




held fixed, and then ability parameters are estimated while item parameters
are held fixed. This two-step process is repeated until the procedure
converges. The MULTIDIM program us&s MMLE.

Mcdel selection. In MIRT, model selection is relatively straightforward.
Solutions for relatively simple models (such as the unidimensional 3PL model)
are obtained first. Models of increasing camplexity are then created by
adding parameters. These more camnplex models subsume simpler models, making
it possible to test the significance of the contribution of the additional
parameters using procedures such as are implemented in TESTFACT.

For example, assume one- and two-dimensional MIRT solutions have been
obtained on the same data using the M2PL model. Camparing the solutions can
be accamplished by computing, for each solution, a measure of fit such as the
likelihood ratio chi-square statistic (Bock, Gibbons & Muraki, 1985). This

statistic is given by

J .
2 = . . .
Ge = 2j§1 ry ln(r]/NPj) ' (3)

where J is the number of possible unique response strings for the item set to
be calibrated, rj is the number of examinees with response string j, N is the

total number of examinees in the calikration sample, and Pj is computed as

q
P: = T L:(xy) p (4)
] k=1Lj ke
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where Pj represents the total likelihood of observing response string j,

Lj ()_ck ) is the likelihood of ocbserving response string j given an ability
vectorequalto_y,k, arxi;gkardwkarethequadraturerndesardweightsused
for mmerically integrating over the ability distribution.

The degrees of freedom for the statistic given by Equation 3 are given by
n
daf = 2 -2(m+2) ' (5)

where n is the number of items and m is the mumber of dimensions. If the
c-parameter is not estimated the term in parentheses is m+l.

vhile it is doubtful the statistic given by Equation 3 is actually
distributed as a chi-square, the difference between the values of G2 for
subsuming models ought to be distributed as a chi-square (Habexman, 1977).
The degrees of freedom for the difference between two values of G2 is equal to
the difference between Equation 5 for the two solutions. For MIRT models,
this equals the difference in the number of item parameters estimated.
MIRT Limitations

Iogistic and factor analytic MIRT procedures share a very serious
shortcaming — they are prone to overfitting the data. This occurs in part
because these procedures deperd on large sample chi-square tests to assess the
significance of the contribution of additional ability dimensions. This
results in a very powerful test that often results in retenticn of
statistically significance, yet uninterpretable dimensions, perhaps based on

nothing more than chance relations in the data.
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Confirmatory MIRT

Confirmatory MIRT was developed largely as a response to this shortcoming
in MIRT. The goals of confirmatory MIRT, then, are to avoid overfitting the
data and to enhance the interpretability of obtained solutions by forcing a
correspondence between estimated ability dimensions and the content and
cognitive processes the instrument was intended to measure. This is
accamplished by inserting into the MIRT model an item structure matrix that
determines for a given item which ability dimensions are measured. Items that
in theory ought to measure the same ability dimensions are thereby clustered
together by assigning them identical structure matrices. Similarly, items
that in theory ocught to differ as to which dimensions are measured are forced
apart by assigning them dissimilar structure matrices. Thus, ability
dimensions are defined prior to estimation based on a priori considerations.

Confirmatory MIRT model. The confirmatory MIRT, or CMIRT, procedure used
in this research is based on a modification of the M3PL model. As indicated
above, the modification consists of adding an item structure matrix. The

confirmatory M3PL, or (M3PL, model is given by

P,(8.,) =c, + (1—..)/(1 -1.702(b, + a,'sS.8. 6

1("3) 5 ( l)/( +exp( ( RN “1‘3))) ' (6)
where §i is the item structure matrix for item i, and the remaining terms are

as previously defined.

Item styicture matrices. The item structure matrix identifies for a

given item the ability dimensions measured. This is accamplished by
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specifying either a 0 or a 1 for each element of § in such a way that, when it
is premultiplied by the transpose of the item discrimination vector, item
discrimination parameters are zeroed out for those ability dimensions the item
does not weasure. For example, if S is the identity matrix, the item measures
all of the ability dimensions. If an item is to measure only the first and
third dimensions in a three-dimensional solution, § wouiu be given by

(7}

Itn

i
[eNeREY
[eNeoNel
= OO

Estimation. The estimation procedure used in this study was the CONFIRM
program, which is based on an EM algorithm similar to those described by Bock
and Aitkin (1981), Bock, Gibbons, and Muraki (1985), Mislevy and Bock (1985),
and Reckase ard McKinley (1985). The algorithm has been modified for this
application to allow collapsing across extraneous ability dimensions in
accordance with the hypothesired item structures.

In this algorithm, item parameter estimation is performed using a
two~-step marginal maximm likelihood procedure. In this procedure, examinee
ability is treated as a random variable, and is eliminated frum the estimation
process by specifying a form for the ability distribution and integrating over

that distribution. The integration over the ability wustribution, which is
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accamplished through numerical quadrature, is performed during the first step,
the E-step, and produces an expected sample size ard number-correct score at
each quadrature node for each item.

In MIRT applications, the values produced by the E-step are immediately
input into the M-step. In CMIRT applications, however, there is an
intermediate step performed prior to execution of the M-step. This additional
step involves a process that collapses expected sample size and number-correct
scores over ability dimensions not measured by an item. The output of this
step, then, is the expected sample size and number-correct scores for each
item collapsed in accordance with the specified item structures.

These values are then input into the M-step, which uses these values to
perform marginal maximm likelihood item parameter estimation. This process
is repeated until the item parameter estimates converge. As a final, optional
step, the item parameter estimates can be used as input into an expected a
posteriori, or EAP, ability estimation routine. For a complete description of
the OONFIRM program, see McKinley (in preparation).

Model selection. Clearly many different sets of S matrices can be

applied to a given set of data. Consequently, a procedure for selecting from
among them is necessary. Unfortunately, the chi-square procedure described
above often cannot be applied, since in CMIRT alternative models are not
necessarily subsuming. For example, consider a four item test in which the
first two items are intended to measure vocabulary, and the last twc items are

intended to measure reading comprehension. One test structure that might be

[
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evaluated using CMIRT involves fitting one common ability dimension that all
four items are assumed to measure, and one additional dimension that only the
last two items are assumed to measure.

An alternative test structure that might be considered would be to assume
all four items measure a cammon dimension, and the middle two items measure a
second dimension. This structure would not correspond to any content-based
hypothesis about the structure of the test, but would serve as a useful
baseline for evaluating the first model. That is, it would provide an
indication of the extent of improvement (or deterioration, as the case may be)
in the quality of the solution to be expected simply from adding a second
dimension for two items.

Unfortunately, the model selection procedure described above cannot be
applied in this case. Not only are the campeting models not subsuming, but
they result in equal degrees of freedom. Although the resulting chi-squares
could still be visually campared, the significance of the difference in the
chi-squares could not be tested.

One way these two campeting models of test structure might be compared is
based on the work of Akaike (1973, 1987). This approach is based on a
criterion called the entropic information criterion (Bozdogan, 1987), also
known as the AIC, and involves evaluating model fit in terms of the natural
logarithm of the likelihood of the solution, which is presumed to be an

approximation of the expected natural logarithm of the likelihood of the true
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model. The greater the likelihood of the solution (in practice, the lower the

negative log likelihood), the closer the fitted model is presumed to

approximate the true model.

The AIC statistic is given by

AIC = =2 log(L) + 2k ' (8)
where log(L) denotes the natural logarithm of the likelihood, and k is the
mmber of parameters estimated. The 2k term constitutes a sort of a penalty
function that penalizes over-parameterization.

A variation on the AIC, called the consistent AIC (CAIC), was proposed by
Bozdogan (1987). This statistic was derived in response to the criticism that
the AIC statistic does not provide an asymptotically consistent estimate of
model order (Bozdogan, 1987).

The CAIC statistic is given by

CAIC = -2 log(L) + k(log(n)+1) , (9)

where n is the sample size. This modification of the AIC has the effect of
increasing the penalty for over-parameterization and, consequently, tends to
lead to the selection of simpler models.

One reason these statistics are desirable is that they are designed to
identify which of a class of models is the closest approximation to the true

model. Unlike classical chi-square tests of model fit, in which a constrained

iy




13

model is typically evaluated by coomparing it to a more saturated, subsuming
model, with the AIC and CAIC statistics each model under consideration is
evaluated in terms of its closeness to the true model. Different models are
not directly compared, so there is no reguirement that competing models be
subsuming.

The AIC and CAIC statistics have a very irteresting property that makes
them very desirable even in situations where use of the chi-square statistic
is possible —— the level of significance for testing whether a particular
model is the best-fitting model is implicit to the model-selection criterion
(Bozdogan, 1987). In effect, the critical valve is embodied in the penalty
for over-parameterization, and the probability of a Type I error is determined
by the sample size. Thus, selecting the CAIC over the AIC is tantamcunt to
selecting a larger critical value, which results in a reduction in the Type I
error rate. Moreover, once a statistic has been selected, increasing the
sample size has the effect of decreasing the probability of a Type I error.
Irdeed, the Type I error rate decreases exponentially with increased sample
size. In fact, for the CAIC statistic, the error rate asymptotically goes to

Zero.

Method
Qverview
The evaluation of the CMIRT procedure described above was perforwed using
simulation data. Two sets of simulation data were generated using different

true structure matrices. Several different solutions, based on different

9
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structure matrices, were then obtained and campared in terms of model fit

Although the mciel proposed above was a muitidimensional extension of the
unidimensional 3PL model, for the purpose of evaluating the proposed CQMIRT
procedures the lower asymptote parameter, c, was held constant. This was done
to avoid camplications arising fram errors in estimation of the c-parameter.
At this point it is unclear how such errors in estimation affect the solution
obtained, kut experience with unidimensional IRT estimation procedures suggest
the effect is potenti_ily serious.

Data Generation

As was indicated above, two sets of data were used for this eveluation.
As was pointed out previously, for both sets of data true c-parameters were
not allowed to vary. Rather, a constant value of 0.15 was used. For each
similation dataset responses were generated for 1000 examinees and 80 items.

The first set of simulation data was generated to have only one ability
dimension. For these data examinee true abilities were selected randomly from
a standard normal distrilution. The same item structure matrix was used for
all items. The matrix used was, in effect, a scalar with a value of 1.

The second set was generated using three uncorrelated ability dimensions.
Examinee true abilities were selected fram a trivariate normal distribution
with a mean vector equal to zero and a covariance matrix equal to the identity
matrix. Two different item structure matrices were used to generate these

data. The first matrix, used for the first 40 items, is given by

A

C{'\
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[1 0 O
s =0 1 o0 . (10)
0 0 0
Thus, these items each measured the first two ability dimensions. The second

item structure matrix, used for items 41 through 80, is given by

0
0 O . (11)
0

These items each measured the first and third ability dimensions.

Table 1 provides summary statistics for each model parameter used to
generate each dataset. Note that for the three—dimensional data, there were
only 40 item discrimination values on the secend and third dimensions. The
remaining 40 values were set equal to zero.

For the unidimensional data, the correlation between the true a-values
and b~values was 0.01. For the three-dimensional data, the correlation
between the a-values was -0.14 for the first and second dimensions, 0.21 for
the first and third dimensions, and 0.0 for the second and third dimensions
(note that no item had a-values for both the secord and the third dimensions).
The b-values for the three-dimensional data had correlations of -0.09, 0.23,
and 0.17 with the a-values on the first, second and third dimensions,

respectively. For the three-dimensional data, the correlations of the true

3 |‘€
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ability parameters were 0.0 for the first and second dimensions and for the

first and third dimensions, and -0.02 for the second and third dimensions.

Table 1

True Parameter Distribution Summary Statistics

Dataset/Parameter N Mean Std. Dev. Min. Max.

1-Dimensional
a 80 1.GO 0.29 0.52 1.48
b 80 -0..l4 0.93 -2.28 1.83
lo] 80 0.15 0.00 0.15 0.15
3] 1000 -0.03 0.93 -2.85 2.77

3-Dimensional
a, 80 1.01 0.28 0.53 1.48
a, 40 1.00 0.26 0.53 1.43
aj 40 0.92 0.29 0.53 1.48
b 80 0.01 0.93 -3.34 2.28
c 80 0.15 0.00 0.15 0.15
81 1000 -0.05 0.99 -4.03 3.76
82 1000 -0.01 0.99 -3.13 2.83
83 i00¢C 0.00 0.99 =-3.12 3.70

Solutions
Severa. different solutions were cobtained for each set of data. For both
sets of data, the first solution obtained was unidimensional, and used for
‘ each item an item structure matrix that was, in effect, a scalar with a value
of 1. For the unidimensional data, this solution, signified by the code 1DU
(one—dimensional unconstrained), represents the true structure of the data.

The second solution obtained for each set of data was two—dimensional,

with each item measuring both dimensions. This was accomplished by using for




17

all items an item structure matrix equal to a two-by-two identity matrix. This
solution is signified by the code 2DU (twe-dimensional unconstirained) .

The third matrix used for both sets of data was also two—dimensional.
However, for this solution, designated 2DC (two—dimensional constrained), the
two-by—-two identity matrix was used only for items 41 through 80. For items 1

through 40, the matrix used is given by

1 0
s = |0 o0 . (12)

For the three-dimensional simulation data, two additional solutions were

obtained. The first of these, designated as 3DCa (three-dimensional
constrained, solution a), used for each item th> matrix used to generate the
data (given by Bquations 10 ard 11). The other solution, designated 3DCb
(three-dimensional constrained, solution b), used for items 1 through 20 and
items 61 throuch 80 the matrix given by Bguation 10, and for items 21 through
60 the matrix given by Bquation 11. Thus, the first and last 20 items
measured the first two ability dimensions, while the middle 40 items measured
the first and third ability dimensions.

For all solutions derived during this evaluation, estimates of the
c-parameter were held fixed at their true value, 0.15. All other item
parameters were estimated, with the restriction that a maximm value of 1.8
and a minimm value of 0.1 was imposed on the a-values. The estimation

procedure was allowed to cycle through the EM process until the likelihood of
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the response matrix, given the CMIRT model and current item parameter
estimates, ceased to increase, or until the item parameter estimates ceased to
change, whichever came first.

Analyses

For each set of data the following analyses were performed. First, a
principal camponents analysis of phi coefficients and a traditional item
analysis were performed to evaluate the reasonableness of the generated data,
and to provide information to aid in the interpretation of the results of the
CMIRT analyses. (It should be noted that tetrachoric correlations were also
camputed for both sets of data, but in both cases the correlation matrix was
found to be non-Gramian.)

Secord, several different CMIRT solutions were obtained for each set of
data. Then, these solutions, which varied not only in dimensionality, but
also in the item stru rture matrices uvsed, were evaluated using the AIC and
CAIC model selection cuiteria, as well as the likelihood ratio chi-square
goodness-of-fit statistic.

In addition, as aw aid to interpretation correlations between the true
parameters and the parvameter estimates obtained for each solution were
computed. Of course, these correlations cannot be used to evaluate the
quality of the solutions, since in some cases estimates are cbtained for
parameters not even used in the data generation. Moreover, it is possible
that some solutions with estimates that have low correlations with the true
parameters may, in fact, represent rotations and/or translations of the true

structures used to generate the data.

2
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Finally, residuals were camputed and analyzed, using the procedure
described by Divgi (1980), to determine whether there appeared to be any
interpretable common variance remaining after the model was fit to the data.

Residuals were camputed as
R,.=P,, —u,, ’ (13)

where Pij is the probability of the cbserved response to item i by examinee j
predicted fram the MIRT model, and uij is the observed response. Residual
correlation matrices were analyzed using principal camponents analysis, and
resulting component loadings were examined. [Note that, since residuals are

on a continucus scale, the problem of using principal components analysis with

binary data is avoided using this procedure. ]

Results

Ttem Analyses

Table 2 presents the means, standard deviations, minimums, and maximms
of the examinee number-correct scores, item-total biserials, and item
proportion~correct (p+) scores for each dataset. The correlation between item
biserials and p+ values was 0.59 for the unidimensional data and 0.65 for the
three-dimensional data. The KR-20 coefficient of reliability was 0.94 for the

unidimensional data, and 0.95 for the three-dimensional data.
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Table 2

Traditional Item Analysis Results

Dataset/Statistic Mean S.D. Min. Max.

1-Dimensicnal
Number—-Correct 42.95 15.38 7.00 77.00
Item Biserial 0.51 0.15 0.09 0.77
Item pt+ 0.54 0.19 0.17 0.92

3-Dimensional
Number—Correct 45.34 16.52 8.00 80.00
Item Biserial 0.56 0.11 0.22 0.73
Item p+ 0.57 0.18 0.19 0.92

These results indicate that the response data simulated according tc the
CMIRT model were fairly realistic. The means and stardard deviations of the
examinee number-correct scores suggest a test of appropriate difficulty for
the distribution of ability used in this research. Moreover, item pt+ and
biserial values varied to a reasonable degree. The only departures from what
might typically be obtained with real data are: 1) the mean biserials and the
KR-20 are samewhat high, indicating the relative purity of the simulation
data; and, 2) the correlation between the item p+ and biserial values was
high (for carparison, values of this correlation camputed on items pretested
for the Test of English as a Foreign langquage over the eight year period from
1981 through 1988 were 0.33, 0.29, and 0.44 for Sections 1, 2, ard 3,

respectively). This, too, is probably a reflection of the purity of the data.
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Principal Components Analyses

Table 3 summarizes the results of the principal camponents analyses
performed on the two datsets. Provided for each dataset are the first 10

eigenvalues, along with the percent and cumulative percent of variance.

Table 3

Principal Components Analysis Results

Camponent 1-Dimensional Data 3-Dimensional Data
Eigen- Percent of Cumilative Eigen- Percent of cCumilative
value Variance Percent value Variance Percent

1 14.91 18.6 i8.6 16.44 20.6 20.6
2 1.95 2.4 21.1 6.51 8.1 28.7
3 1.33 1.7 22.7 1.97 2.5 31.2
4 1.31 1.6 24.4 1.54 1.9 33.1
5 1.27 1.6 26.0 1.34 1.7 34.8
6 1.24 1.6 27.5 1.18 1.5 36.2
7 1.22 1.5 29.1 1.13 1.4 37.6
8 1.20 1.5 30.6 1.11 1.4 39.0
9 1.18 1.5 32.1 1.09 1.4 40.4
10 1.17 1.5 33.6 1.08 1.3 41.7

As has been pointed cut by many researchers (see, for example, Bock,
Gibbons & Muraki, 1985; Carroll, 1945; ILord & Novick, 1968; Reckase, 1981;
and, Tucker, Humphreys, & Roznowski, 1986), a principal camponents analysis of
phi coefficients is fraught with dangers. Among these are the likelihood of
obtaining spuriocus components due to item difficulty and nonlinearity. The
results reported above illustrate these problems. Although the first set of
data were generated to have only one dimension, the principal components

analysis suggests the presence of a second camponent. However, further
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examination reveals that the second camponent is essentially a difficulty
camponent. The correlation between the item loadings on the secord camponent
and item proportion-correct score was -0.86. In contrast, the ccrrelation
between the first camponent and the item proportion-correct scores was 0.48,
which is about what would be expected in light of the previocusly reported
finding that the item proportion-correct scores and item biserials had a
correlation of 0.59 for these data. The correlation between the first
component and the item biserials was 0.98.

A similar, though more camplex, pattern emerged for the three—dimensiocnal
data. The data were generated to have three ability dimensions — cne
dimension which all items measured, one dimension only the first 40 items
measured, and one dimension only items 41 through 80 measured. This resulted
in a principal components seolution in which there were two camponents — one
common camponent, on which all items had positive loadings, and one bipolar
camponent, on which the first 40 items all had positive loadings, and the last
40 items all had negative loadings. However, the principal components
analysis results shown in Table 3 indicate the presence of a small third
camponent. As was the case with the unidiwensional date, this additional
component is the result of using phi coefficients. The correlation between
the loadings on the third component and the item proportion-correct scores was
-0.89. The correlation of item proportion—correct scores and item loadings

was 0.49 and -0.11 for the first and second components, respectively. As
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reported above, the correlation between the item biserials and iten
proportion-correct scores for these data was 0.65. The item biserials had
correlaticns of 0.95, -0.12 and -0.53 with the first, second, and third
caonponents, respectively.

CMIRT Analyses

Unidimensional data. Tabl~ 4 presents summary stetistics for the

parameter estimates obtained for the unidimensional data. Shown are the
means, standard deviations, minimum, and maximm values for each parameter
estimated in each solution, along with the number of values estimated for each
parameter. It should be noted that no attempt was made to place the estimates
on the same scale as the true parameters. Nor have different sets of
estimates been placed on the same scale. Consequently, the summary statistics
shown in Table 4 should not be used to assess similarity of estimates to true
parameters or other estimates.

Tt can be seen from Table 4 that the summary statistics for the a-values
on the first dimension (the only dimension for the 1DU solution) were similar
across solutions, although the mean was a little higher for the 2DU solution.
Likewise, the ability estimate distributions for the first dimension and the
b-values did not vary much across solutions. The second dimension summary
statistics were also similar across solutions for both the a-values and
ability estimates, and in both cases the statistics were different from those

ocbtained for the first dimension. The ability estimates on the second
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dimension has relatively small standard deviations, and the a-values on the
second dimension had low means campared to the first dimension, suggesting

the second estimated dimension may be nothing but noise.

Table 4

Paraneter Estimate Distribution Summary Statistics
for the Unidimensional Data

Solution/Parameter N Mean Std. Dev. Min. Max.
10U

a 80 0.77 0.23 0.37 1.26

b 30 -0.12 0.95 =3.41 1.91

o 1000 -0.08 1.13 -2.78 2.99
2DC

a; 80 0.71 0.22 0.33 1.20

a, 40 0.30 0.15 0.10 0.74

b 80 -0.15 0.92 -2.65 1.92

81 1000 -0.04 1.18 -2.77 3.15

82 1000 -0.01 0.54 -1.54 1.72
2Dy

a; 80 0.85 0.27 0.34  1.42

a, 80 0.44 0.20 0.10 0.86

b 80 -0.08 0.97 -3.60 1.98

81 1000 -0.11 0.90 -2.37 2.58

e, 1000 -0.06 0.69 -1.82 1.97

Table 5 shows the correlations of the true item parameters with the
estimated item parameters for each solution for the unidimensional data.
[Note that, since the c-parameter was held fixed, it is not included in Table
5.] It can be seen from the data shown in Table 5 that, for each solution the
a-parameter estimetes for the first dimension were highly correlated with the

true parameters. The meaning of the moderate correlations obtained between
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the a-parameter estimates on the second dimension and the true a-values is
unclear, and may be a result of overfitting. It is interesting to note that
the correlation between the a-parameter estimates on the second dimension and
the true a-values was higher for the 2DU solution than for the 2DC solution,
and that the correlation between the a-parameter estimates on the first
dimension and the true values was lower for the 2DU solution. It appears as
though increasing the number of parameters estimated on the second dimension

produced a deterioration of the fitting of the first dimension.

Table 5

True and Estimated Item Parameter Correlations
for the Unidimensional Data

Solution/Parameter N True Parameter
a b
15U
a 80 0.89 0.07
b 80 0.05 0.99
2DC
ay 80 0.91 0.15
a, 40 0.53 -0.18
b 80 0.03 0.99
2DU
aj 80 0.81 -0.04
a, 80 0.67 0.22
b 80 0.07 0.98

The true and estimated ability parameter correlation was 0.96 for the 1DU

solution. For the 2DC solution, the correlation between the true ability
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parameter and the ability estimates on the first dimension was 0.96, and for
the second dimension it was 0.32. For the 2DU solution, the correlation
between the true abilities and the ability estimates was 0.92 for the first
dimension and 0.65 for the second.

Table 6 shows the chi-square, AIC, and CAIC values obtained for each
solution for the unidimensional data. For these data, all three pair-wise
comparisons could be tested for the significance of the differences in the
associated chi-square values. All three chi-square differences were

significant.

Table 6

Model Selection Criteria Values
for The Unidimensional Data

Chi
Solution Square aIcC CAIC
1DU (true) 70947.6 85083.2 86028.4
2DC 71102.7 85318.2 86499.8
2D0 70618.0 84913.5 86331.4

As shown in Table 6, if the chi-square criterion is used, the
unconstrained two—dimensional solution would be selected as optimal, even
though the data are actually unidimensional. The unidimensional solution
would be chosen over the constrained two-?imensional solution. Use of the AIC

would result in the same ordering of solutions. Using the CAIC as a

ol
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criterion, however, would result in selection of the unidimensional solution.
The unconstrained two—dimensional solution would be selected over the
constrained two—dinensional.

Three-dimensional data. Table 7 provides sumary statistics for the

parameter estimates obtained for the three-dimensional data. As was the case
previcusly, no attempt at scaling these estimates has been made.

The summary statistics for the a-parameter estimates on the first
dimension were similar across solutions, although for the 2DU ard 3DCh
solutions the mean a-value tended to be a little lower than for the other
solutions, and the mean a-value was a little higher for the 3DCa solution than
for the others. There was very little variation across solutions in the
ability estimate distributions for the first dimension, or for the b-values.
For the two-dimensional sclutions, the a~values on the secord dimension
differed noticeably in mean value, with the mean being 0.3 higher for the 2DC
solution, and the 2DC a-values on the second dimension were less variable
than for the 2DU solution. There was not a difference in the second dimension
ability estimate distributions for these two solutions.

For the three-dimensional solutions, the a-values on the second and third
dimensions had similar means and standard deviations, and on koth dimensions
the means were higher for the 3DCa solution than for the 3DCh solution. The

ability estimate distributions were similar for the second and third

dimensions for both three-dimensional solutions.
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Table 7

1 Parameter Estimate Distribution Summary Statistics
for the Three-dimensional Data

Solution/Parameter N Mean Std. Dev. Min. Max.
1DU
a 80 0.78 0.19 0.41 1.26
b 80 0.02 0.85 -2.54 2.26
e 1000 -0.05 1.17 -3.04 3.31
2DC
a; 80 0.77 0.23 0.31 1.25
a, 40 0.92 0.22 0.53 1.31
b 80 -0.06 1.02 -3.37 2.57
81 1000 0.08 1.20 -2.61 3.06
82 1000 -0.07 1.12 -3.11 3.48
2DU
ay 80 0.55 0.40 0.10  1.40
an 80 0.62 0.36 0.10 1.33
b 80 0.10 1.01 -3.19 2.68
81 1000 -0.09 1.18 -2.74 2.75
85 1000 -0.09 1.16 -2.61 3.06
3DCa
ag 80 0.81 0.24 0.41 1.58
a, 40 0.69 0.19 0.24 1.04
aj 40 0.68 0.17 0.31 1.10
b 80 0.00 1.03 -3.18 2.62
81 1000 -0.03 1.03 -2.51 2.76
82 1000 -0.04 0.96 -2.72 2.64
83 1000 0.03 1.00 -2.89 2.61
3DCh
a; 80 0.62 0.32 0.10 1.32
a, 40 0.55 0.38 0.10 1.17
aj 40 0.58 0.37 0.10 1.30
b 80 -0.05 0.99 -3.36 2.46
81 1000 0.01 i.27 -2.78 2.83
82 1000 0.08 1.04 =2.10 2.65
83 1000 -C.01 1.03 -2.65 2.45

oy |
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Table 8 shows the intercorrelations for the true and estimated item
parameters for the three-dimensional data. Because the number of values in
cammon to the true structure and the imposed structures varies across
dimensions and solutions, the number of items on which each correlation is
based is shown in parentheses after each correlation.

The values shown in Table 8 indicate that the dimension estimated for the
1DU solution was most strongly related to the first true dimension. For the
oDC solution the two estimated dimensions appeared to be equally strongly
related to the first true dimension. The first estimated dimension appeared
to be slightly more strongly related to the first true dimension, while the
second estimated dimension appeared to be more strongly related to the second
true dimension.

For the 2DU solution, the first estimated dimension appeared to be
related to the second true dimension, while the second estimated dimension was
related to the third true dimension. Neither dimension appeared to be
strongly related to the first true dimension.

For the 3DCA solution, the first estimated dimension appeared to
correspond to the first true dimension, while the second and third estimated
dimensions corresponded to the second and third true dimensions, respectively.
For the 3DCb solution, the first estimated dimension was most strongly related
to the second true dimension, while the second and third estimated dimensions

both appeared most strongly related to the third true dimension.




Table 8

True and Estimated Item Parameter Correlations
for the Three-Dimensional Data

Solution/Parameter True Parameter
aq (N) a5 (N) a3 (N) b(N)
1DU
a 0.76(80) 0.44(40) -0.10(40)  .17(80)
b -0.06(80) 0.17(40) 0.25(40) .99(80)
2DC
a; 0.57(80) 0.42(40) 0.40(40) 0.00(80)
a5 0.58(40) 0.80(40) 0.00( 0) 0.16(40)
b -0.10(80) 0.16(40) 0.23(40) 0.99(80)
200
ay 0.37(80) 0.70(40) -0.40(40) 0.11(80)
a 0.24(80) 0.17(40) 0.67(40) -0.07(80)
b -0.08(80) 0.17(40) 0.24(40) 0.99(80)
3DCa
a, 0.86(80) 0.31(40) —0.17(40) 0.02(80)
ay 0.19(40) 0.86(40) 0.00( 0) 0.15(40)
a -0.09(40) 0.00( 0) 0.85(40) 0.11(40)
b -0.09(80) 0.17(40) 0.24(40) 0.99(80)
3DCh
aq 0.40(80) 0.68(40) -0.29(40) 0.09(80)
ay 0.26(40) 0.10(20) 0.52(20) -0.13(40)
as 0.07(40) —0.02(20) 0.69(20) -0.01(40)
b -0.10(80) 0.15(40) 0.25(40) 0.99(80)

30

The true and estimated akility parameter intercorrelations are shown in
Table 9. These data indicate that, for the 1DU solution, the estimated
abilities were most similar to the first dimension true abilities. For the
2DC solution, the first dimension ability estimates were most highly

correlated with the first dimension true abilities, while the second dimension
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ability estimates were most strongly related to the second dimension true
abilities. The first dimension ability estimates were also fairly strongly
related to the third dimension true abilities.

For the 2DU solution, the ability estimates on the first dimension were
most. strongly related to the second dimension true abilities, and the second
dimension ability estimates were most strongly related to the first dimension
true abilities. The first and second dimension ability estimates were equally
strongly related to the first dimension true abilities.

For the 3DCa solution the first dimension estimates were most strongly
related to the first dimension true estimates, the second dimension ability
estimates were most strongly related to the second dimension true abilities,
and the third dimension estimates were most strongly related to the third
dimension true abilities. For the 3DCb solution, the first dimension ability
estimates were strongly related to both the first and second dimension true
abilities, though the correlation was slightly higher for the second
dimension. The second and third dimension estimates were both most strongly
related to the third dimension true abilities.

Table 10 shows the chi-square, AIC, and CAIC values obtained for each
solution for the three—-dimensional data. For these data not all chi-square
differences could be tested for significance. Table 11 summarizes which pairs
of chi-squares could be tested. All testable pairs were significantly

different.
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Table 9

True and Estimated Ability Parameter Correlations
for the Three-Dimensional Data

Solution,/Dimension True Ability Dimension
1 2 3
10U
1 0.80 0.42 0.33
2DC
1 0.73 0.03 0.62
2 0.32 0.78 =0.40
2DU
1 0.57 0.74 -0.19
2 0.58 -0.20 0.72
3DCa
1 0.87 0.29 0.21
2 0.19 0.85 -0.23
3 0.24 -0.27 0.84
3DCo
1 0.64 0.70 =-0.09
2 0.54 -0.25 0.70
3 0.49 -0.25 0.72

Like the unidimensional case, the chi-square and AIC would result in the
same ordering of the models for the three~dimensional data. Using either the
absolute magnitude of the chi-square criterion or the AIC, the 3DCa solution
would have been selected as best. The unconstrained two—dimensional solution
was next, while the constrained two—dimensiocnal solution was third. The 3DCb
solution was fourth, and the unidimensional solution was last. Of course,
since not all of the pair-wise camparisons are testable, this rank-ordering

isn't entirely objective.

36
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Using the CAIC resulted in a slightly different ordering of models. The
3DCa solution was first, as it was using the chi-square and AIC. However,
using the CAIC, the constrained two-dimensional solution was second. This
ordering is more reasonable than that obtained using the chi-square and AIC,
since the constrained two—dimensional solution used an item discrimination
parameter that was consistent with the true pattern. The unconstrained
two—dimensional solution was third, the 3DCb solution was fourth, and the

unidimensional solution was last.

Table 10

Model Selection Criteria Values
for The Three-Dimensional Data

Solution Chi-Square AIC CAIC
10U 70706.4 84823.8 85769.0
2DC 65828.9 80022.6 8§1204.1
2DU 65592.6 79871.3 81289.2
3DCa (true) 65450.4 79723.6 81141.5
3DCh 67548.8 81815.3 83233.2

Table 11

Testable Pair-Wise Chi-Square Camparisons
for The Three-Dimensional Data

Solution DU 2DC 2DU 3DCa 3DCh
10U - * * * *
2DC - * * -
20 - - -
3DCa (true) - -

Note. Dash (-) indicates not testable, asterisk (%)
indicates testable.

b
.
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Analysis of Residuals

Table 12 summarizes the results of the residual analyses for both the
unidimensional and three—dimensional data. Shown are the first three
eigenvalues obtained fram a principal camponents analysis of Pearson product
moment correlations camputed on the matrix of residuals for each CMIRT
solution. Also shown is the percent of variance and cumulative percent of
variance corresponding to each eigenvalue.

For the unidimensional data, the results reported in Table 12 indicate
no meaningful variation remaining in the residuals. This is consistent with
the fact that the data were truly unidimensional. It is interesting to note
that increasing the number of parameters estimated did not reduce the size of
the first eigenvalue of the residuals to any meaningful degree.

For the three-dimensional data, the pattern is quite different. For
these data, increasing the number of estimated parameters noticezinly reduced
the size of the first eigenvalue, and correctly clustering the items in the
3DCa solution reduced the first eigenvalue to a smaller value than was
obtained for the 2DU solution, even though the rmumber of item parameters
estimated did not irncrease. Incorrectly clustering the items in the 3DCb

solution, on the other hand, did not produce a smaller first eigenvalue than

was obtained for the 2DU solution.
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Table 12

Principal Camponents Analysis of Residuals

Dataset/ Solution
Camponent/
Statistic 1DU 2DC 2DbU 3DCa 3DCH
Unidimensional
1
Eigenvalue 1.62 1.62 1.61
% Variance 2.02 2.02 2.02
Cumlative % 2.02 2.02 2.02
2
Eigenvalue 1.56 1.56 1.57
% Variance 1.97 1.95 1.96
Cumlative % 3.99 3.97 3.98
: 3
Eigervalue 1.54  1.55 1.55
3 % Variance 1.92 1.94 1.94
E cumlative % 5.91 5.91 5.92
Three—-dimensional
1
Eigenvalue 8.37 2.07 1.95 1.63 1.93
% Variance 10.46 2.58 2.44 2.04 2.42
CGumiative % 10.46 2.58 2.44 2.04 2.42
2
Eigenvalue 1.96 1.61 1.61 1.61 1.63
% Variance 2.45 2.01 2.02 2.01 2.03
Cumilative % 12.91 4.60 4.45 4.05 4.45
3
Eigenvalue 1.72 1.57 1.57 1.58 1.58
% Variance 2.15 1.96 1.97 1.98 1.98
Cumulative % 15.07 6.56 6.42 6.02 6.43
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Summary and Conclusions

The purpose of this research was to develop and evaluate a confirmatory

approach to assessing test structure using multidimensional item response

theory. The approach investigated involves adding to the exponent of the MIRT

model an item structure matrix that allows the user to specify what ability

dimensions are measured by an item. Variocus cambinations of item structures
were fit to two sets of simulation data with known true structures, and the

results were evaluated using three different model selection criteria and an
analysis of residuals procedure. In addition, item ard principal components
analyses were perxformed to assess the reasonableness of the data.

The results of the item and principal camponents analyses tend to support
the reasonableness of the (MIRT model. The data generated according to both
the unidimensional and three-dimensional models appeared to be realistic with
respect to item difficulty and discrimination, and the structure of each test,
as revealed by the principal components analysis, was neither unrealistic nor
uncammon. The reliabilities of the tests did appear to be a little higher
than normally obtained with real data, as did the correlations between the
item biserials and difficulties, but these results were most likely a
reflection of the purity of the similated data.

The camwparisons among the varicus solutions derived for each set of data
using the three model selection criteria were encouraging. The likelihood
ratio chi-square statistic was clearly inadequate, since its significar e
could not always be tested, and both the chi-square and AIC statistics tended

to result in over-parameterization. However, the CAIC criterion appeared to

1y
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function quite well. Far both the unidimensional and three-dimensional data,
the CAIC criterion resulted in selection of the true structure.

In addition to finding that the procedures could recover the true item
structures, it was also found that adding an additional ability dimension that
forces together items that cught not to be together (the 3DCb solution)
noticeably detericrates the quality cf the solution. On the other hand,
imposing structures different fram, but not inconsistent with, the true
structure (the 2D solutions) does not necessarily yield worse fit.

The residual analyses indicated that, for the unidimensional data, adding
additional dimensions did not reduce the proportion of cammon variance
remaining in the residuals below what was obtained for the unidimensional
solution. For the three-dimensional data, however, adding dimensions did
reduce the remaining cammon variance below what was obtained for the
unidimensional solution, and correctly clustering items reduced the remaining
camon variance below what was obtained when items were incorrectly clustered,

even when the number of dimensions (or parameters) did not increase.
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