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ABSTRACT
A new and unified approach to test equating is described that is based on
log-linear models for smoothing score distributions and on the kernel method of
non-parametric density estimation. The new method contains both linear and
standard equipercentile methods as special cases and can handle several impor-
tant equating data collection designs. An example is used to illustrate the new

method for the random groups and external anchor-test designs.




l. INTRODUCTION

This paper introduces a new and unified approach to test equating based on
a flexible family of equating functions that contains both the linear and the
equipercentile equating functions as special cases. The new method grows out of
the perspective on observed-sccre test equating described in Braun and Holland
(1982). We call the new approach the "kernel method of equatirg tests" because
of its close connection to the well-studied methods of non-parametric density
estimation using a gaussian kernel, Tapia and Thompson (197¢). The kernel
method may be viewed as generalizing certain features of the equipercentile
method described by Angoff (1984). Because of this we first review the equiper-
centile method from our perspective; this also allows us to introduce our ncta-
tional scheme.

Review of eguipercentile equating

Suppose we have two tests, denoted by X and Y, and let the possible raw-
score values fcr X and Y be denoted by x],...,xy and y)....,¥K, respectively.
In this notation, J and K are the number of possible raw-score values and not
the number of test items on X and Y. In the applications that concern us,
X],...,Xy will denote consecutive integers; similarly for y),...,vyg. If, for
example, X is a number-right scored test, then x; = 0, xp = l,... and x5 = the
number of items in test X. Alternatively, for a rounded formula-scored X, X is
negative but xj still denotes the number of items in X.

As Braun and Holland (1982) emphasize, observed-score test equating always
takes place on a specific population of examinees. We suppose that this popula-
tion is fixed and let rj and sy denote the score probabilities for this popuia-

tion, i.e.
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rj = Prob{X = xj} , Sk = Prob{Y = Yk} . (1)

In (1), we abuse notation slightly and let X denote both a test and the score
of a randomly <elected examinee on this test. (Similarly for Y). The score
probabilities, {rj} and {sk}, are population parameters and depend on the
underlying population of examinees. They must be estimated from the data
collected in the equating experiment. We defer a serious discussion of how they
might be estimated to section 3 and merely suppose that estimates, {Qj} and
{gk}» are available.

Associated with the score probabilities are the cumulative distribution

functions (cdfs) of the test scores for X and Y that are defined by

F(x) = Prob(X € x) = Z rj , (2)
J
XJ' < x
and
G(y) = Prob(Y £ y) = Z sy . (3)
k
Yk SV

In (2), x denotes any real number and the summation is over all j for which Xj
does not ex‘eed x. In (3), y denotes any real number and the sum is over all k
for which yy does not exceed y. The cdfs, F and G, defined in (2) and (3) are
step functions with jumps at the possible values for X and Y, respectively.

If F and G were continuous cdfs (as is, for example, the cdf for the nor-

mal distribution) then the equipercentile equating function for equating X to Y

would have the form
ey(x) = 6-L(F(x)) (4)
and for equating Y to ¥ it would have the form

ex(y) = F H(G(y)) (5)
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where F~! and G-! denote the inverse functions of . and G defined by

1t

X F-l(p) if and only if p = F(x)

W

and

G'l(p) if and only if p G(y).

W

See Braun and Holland (1982) for more discussions of this description of

equipercentile equating.

If F and © were continuous, the function ey(x) and eyx(y) defined in (4) and
(5) would exactly match the distribution of eX(Y) to that of X and the distribu-
tion of ey(X) to that of Y.

However, in practice F and G are discrete so that,

strictly speaking, -l and 67! do not exist and hence ey and ey cannot be

defined as in (4) and (5). This fact is usually glossed over in discussions of

equipercentile equating (e.g. Angoff, 1984; Lord, 1950). Instead, F and G are
approximated by linear interpolation teo obtain percentile ranks. It is instruc-

tive to see exactly how this linear interpolation is derived mathematically, anrd

we now do this.

The percentile rank of a score xy is defined as the proportion of examinees

in the population scoring below xy plus cne-half of the proportion scoring

exactly xp (Angoff, 1984). How can such a definition be justified? Here is on~

approach to justifying it.

Supnose U is a random variable with a uniform distribution on (% %)

-y

an:d

suppose that U is independent of the discrete random variable X where

rj = Prob{x = xjd, §o= 1,3
The cdf »f U is piven by
1 if u 2> %,
Prob{u < u} = 0 if u < -~ %, (6)
u o+ koif - B <u<Hh




Now consider a new random variable Xix defined by
Xie = X + U . (7
The new variable X4 has a continuous distribution that is spread over the inter-~

val x; - % to x3 + % . The cdf of Xx is found as follows.

i

Fx(x) = Prob{Xx € x} = Probfx + U < x}

= % Probfx + U< x | X xj}Prob{X = xj} = 2 Probfu < x - xj | X = xj} r;
j j

? Prob{Uu < x - Xj} r;

But from (6) it follows that

1 if x 2 x5 + %,
Prob{u < x - x;} = {0 if x £ x5 - 4, (8)
[x - x; +H 1f x5 - h<Sx<x;+ R,
and hence we have
Fa(x) = ? rj + (x - xg + A)ry, for x; - h < x < x: + B (9)
X < x-%
where the summation in (9) is over all j for which X does not exceed x - .
Now evaluate Fx(x) at xX; and we have
Fa(xji) = ; ry + Y% £y, (10)
]
Xj < Xj

which is the probability of scoring below xX; plus one half the probability of
scoring exactly x; and this is the definition of percentile ranks given above.

This shows that the percentile rank of x; is simply the value of the cdf Fx at




xi{, i.e. Fx(xjy). We may view Fx as a continuous approximation to the step-
function F. From (9) we see that Fx is a piecewise linear function that starts
at zero at x| - % and (if the xj are consecutive intergers and ry > 0) steadily
increases to the value of | at xj + %

The standard versior of equipercentile eguating can be viewed as replacing
F by F, and G by a corresponding G,. When {rj>0} and {sk>0}, the inverse func-

tions, F;l and G;l both exist and the functions in (ll1) are well-defined, i.e

ey(x) G;I(F*(x))

and (1)

ex(y) F;l(G*(Y))
By definition, ey and ey given in (11) are the population eqguiipercentile
equating functions for equating X and Y. Sample estimates of ey and ey in (11
are defined by substituting in gj for rj and gk for sy in the definitions of I
and G*, t.e. (9). {In addition, in practice a post-smoothing step may be
introduced to make the final equating functions even smoother than the piecewise
linear functions in (11), Angoff (1984), Fairbank (1985), Kolen (1984), Kolen
and Jarjoura (1987)).

There are various problems with this version of equipercentile equating.

For cne, consider the mean and variance of X and 1ts "continuous approximaticn",

Xx. We have

E(¥%) = E{X + U) = E(X) + 0 = E(X)
buxv
Var(xx) = Var{X + U) = Var(X) + Var(U)
It i3 we l-known that Yar(U) = 1/12 so that X and Xx have the same means but
differen: variances. The higher moments of Xi also fail to agree with those of
il
Q




X. Hence, what the traditional version of equipercentile equating actually dnes
is to exactly match the distribution of the two cont inuous random variables ¥4
and Yx rather than to match the discrete distributions of X and Y. No momente:
beyond the first can be expected to be exactly matched using the standargd
equipercentile equating function although they may te cliose encupgh for practy o
work. In addition, because F* and G* place no probability outside the interg..
(x) - %, x5 + %) and (y; - %, yg + %), it is automatically true that ey ant

ex(y) defined in (11) map the end-points of these two intervals cnto each ~'i.r.

This is often an undesirable property in test equating since it usuai.ly

JEN G
the highest (and iowest) score on X to be mapped onto the highest {and 1. wu .t
score on Y. If X were much easier than Y this property is unreascnanie ani .

cie solely to the arbitrary use of F* and G* to form the equating furotio -

il

These problems with the traditional form of equipercentile eqguating ul.

. ECEPEIN

stem from the arbitrary form assumed for U, i.e. that it be uniform cn (- =

v
L]

The crux of the kernel method is to replace U with a more flexihie chuice of

random variable. In particuiar, the point of view taken here is that the trid-.

2

tional equipercentile method is a version of the kernel method using a fisxed

"bandwidth" (i.e. the variance of continuous randem 2,14 le adled to . T

i

gerneral, it is always better to use bandwidths that can vary inouseful wawvs wi.

kxernel methods are employed.

1
. Ae
O
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2. THE KERNEL METHOD OF EOQUATING
Our approach is to accept the fact that X and Y are discrete and hence that

F and G must be approximated, in some sense, by continuous cdfs before (4) and
(5) can become well-defined (as they are in (11}). Picking up on the ideas in
section 1, suppose we now consider the distribution of the random variable,
X(hy), defined by

X(hX) = aX(X + hXV) + (l—ax) pX (1.,
where X is the discrete random variable that appeared in section 1l and V ic a
random variable that is independent of X and has a standard normal, N(O,1l),

distribution. Also, in (12) Uy and ay are defined by:

px = E(X) = ? Xjry (13)
j
2
aZ Ox (14)
= —
X 0% + hy
0)2( = Var(X) = Z (x5 - px)zrj . (15)
J

The bandwidth, hX’ is a non-negative constant that we are free to select to
achievn some useful purpose. What we have done in (12) is replaced U in (7) by
hXV and then rescaled the sum of X and hyV to preserve the mean and variance of
X, i.e. it is easy to show that

E(X(h, 1) = E(X) = Y,

and

Var(X(hX)) = Var(¥x) = o;

O
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for any choice of hX > 0. Observe that X(0) is identical to X and X{=) is a
normal random variable with the same mean and variance as X. When hX > 0, X(hx)
has a continuous distribution with cdf

Fp, (x) = Prob{X(h ) < x} . (16)
X

X

We will regard {Fh (x), for hX > 0}, as a family of continuous approximations to
X
the discrete cdf F(x). Hence, instead of the single X, of section l, we may con-

sider the entire collection of approximations, {X(hx), h, » O}.

X

Observe that Var(hXV) = h; , whereas in section 1, Var(U) = 1/12. Hence

hx=l/}/l_2= 289 ~ .3 (17)
corresponds roughly to the traditional form of the continuous approximation to F
used in equipercentile equating, i.e. Fx(x) in (9).
A nice feature of th(x) is that it has a reasonably tractable analytic
form. This is given in theorem 1, below.

Theorem 1: I X(hx) is defined by (12) and Fp (x) is the cdf in (16) then
:heorem 1L 1s ce-ined anc X is the ccl 1in then

Fp_(x) = £ rj 8(Rjx(x))
X j

—_
b—
w

where §(x) denote the standard normal cdf and ij(x) is the linear function of x

given by

X - a_ xj - (l—aX)]JX

R.,(x) = . (19)
jiX aX hX

In (19), ay and Uy are defined as in (133} - (1%).

ERIC
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Proof:

th(x) = Prob{X(hX) < x} = Prob{aX(X + hX V) + (l—ax)uX < x}

= Prob{axh V<x-a, X- (l—aX)uX}

X X X
= ; Prob{axhX V£ x - ay Xj —(l—ax)uxlx = xj}rj
3
x - a, x, -(l-a )H
= % Probiv < X X X =% s B(R, (X)) . QED.
. a, h J BN jX -
J X X J

Because the mean and variance of X(hX) exactly match those of the original
discrete random variable X, it is of interest to know how the higher moments of
X(hx) differ from those of X. It is, however, the cumulants of X(hy) rather
than its moments that have the simplest relationship to those of X. The jﬁﬁ
cumuiant of a distribution is the coefficient of (t)j/j! in the Taylor expansion
(about zerc) of the natural logrithm of its moment gererating function, M(t).

It is well-Xnown that the first and second cumulants are the mean and variance,
respectively, of the distribution. Furthermore, the third and higher cumulants
of any normal distributicn are all zero. See Kendall and Stuart (1958) for a

1

thorough discussion of cumulants.

~no

Theorem shows the relationship between the cumulants of X(hy) and those of X.

Theorem : If k;{h_ ) denotes the jﬁﬂ cumulant of X(h_ ), and k,_ denotes the
— ")y =/ —_ X —_— X ——

jiﬁ cumulant of X, then for j 2 3 we have

(h.) = (a,)] Kig (20)

where ax 15 defined in (14,

4

The proof of Theorem 2 is glven in the appendix.

EECN
¢ )
O
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We may interpret Theorem 2 by saying that the higher cumulants of X(hy)

are all smaller in absolute size (i.e.

mcre like those of the

normal distiribu-

tion) than the corresponding cumulants of the original distribution of X.

This is because

(ax)d < 1 if hy > 0.

The kernel method of equating

t inuous approximations to F and G are found via (18),

Fhy(x), and Gy, (y),

y

and then the equating functions ey(x) and ey(y) are

ey(x) = G’é;FhX(x))
and

ex(y) = F'é&GhY(y))
Note that (23) and (24) define families of equating
In (23) and (24) the inverse functions Fi; and
x = Fai (p) if and only if p =
y = 6-! (p) if and orly if p =

hy

in practice, these inverse functions do not have an

tn easilvy computed by interpolation.

O
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is now easy to describe.

(21)
First of all, con-
i.e.,
(220
defined by
(239
(2a3

functions indexed by hy arnd

G-l are defined by
hy

F,. (x) and
h-_\'

GhY ().

explicit form but thev ~a

i




i1

In (22) the bandwidths, hy and hy, are called the continuization constants.

When they are both chosen to be .3 the resulting equating functions, (23) and
(24), agree closely with the traditional equipercentile equating functions, as
ncted in (l7). When hy and hy are both large, the equating functions closely

appoximate the standard linear equating function as we demonstrate in the next

theorem.
Theorem 3: If ey(x) is defined by (23) then
oY
lim ey(x) = U, + — (x - H,) = Liny(x)
Y 0 X
hy,hy 2@ X

Proof: 1t is obvious that as hy and hy ==, F_ (x) and G
X

(y) approach these nor-
h Y

h

mal cdf's:

and

G'l(p) > U, + 0, Q'l(p) ,
hY Y 1

where P79 (p) is the inverse of the standard neormal cdf, therefore

x - |

evix) > U + o d-Lid(—20
) 1 { g,
X
xom My
UL+ O (=) QED
' Y o <2
X
S
L.d
Q
WJ:EEE




We now point out that the cobiections to equipercentiie equating ol
at the end of section | do not apply to the kernel method of equating.
varving the choice of the continuization constants, h% and hy’ we may a b

wide vairiety of equating functicns that «re "in between" the tradiiicng:

and eguipercentile functicns. All of these equating functions ernisuly
weans and variances of eyiY) and ¥oand of ey(X) and Y. Furthermore, oo

cn the chnice of continuisation constante the eqguating fun.li.n o onaon

the top and bottom scrres an X onte the top and hotiom scoares of U .
the eqguating functicnas given by (22) and (24) are definea for all x oz

are not restricted to the raw score intervals, l.e. [xl x;] ol [v~ RERN

Sammary of the kerne

We view observed-store test equating as having thres distinnot ot

sea, each of which wevolve separate ideoas.,

3
7
.
[¢]
—
3

"
r
U
0
—
[P
~
ow

Cimazes of {ro] ant b0

strained, Tils o lsoa purely statisticail plaase i o :
meldels fopr the data are tiled out anz are sclected to give a pocld £

Jata. These mode:s then generate the values of {rj} and {ﬁk}. Wer peet

that fop-ilhear ode i pixe (hose desotited in Holiand ani

Resenbawn and Thayer (19873 be used two do this data firting cinge thew .-

LRt

=

lexiblie enough tn describe a wide variety of real situatinns. fn e

tilustrate this approach.
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Phase 11: The continuization step. In this step, hX and h_, are chosen 190

determine continunas approximations, {x) and Gh (y), to F(x) and G(y).
Y

th
(ﬁ(x) and é(y) are obtained by substituting ;j for rj in (2) and gk for sy

in (3Y). The approximating cdf's have the form

. R X - ay X;i -~ (l—éx)ﬁ
(X)) = 2 5p 8¢ AL X (25)
" j hy ay
and
R _ . y - '-:n; yr - (l-ay)H
Gh‘{(y) = 2 sy b Y) (26)

A
k hy ay

In (2% and (26¢), tie estimated quantities, ay, ay, Hy, Wy, arc all found by
substitut ing r for ri and sy feor sk in (13) - (15). It should be emphasized

4

.

that continuizaticn is not a statistical procedure so that "optimal" choices o
hy and hy cannot e btased on optimizing statistical properties such as the esti-

mation of the {ri} or {sk}. Father, in continuization we are attempting to

deciae whiclh continucas odf, Fy (x), is "closest" in some appropriate sense tg

A
F(x). The naive -hoice af hy = 0 makes th(x) = F(x), but we are then no longer
dealing with veontinuons odf's and the whole purpose of continuization (i.e. to

pel unigie iovirse taestyensd s Jdefeated.  1n section 4 we discuss some methoos

for choosing 1y and by

Phase 11° The equating stop. In this step, the estimated equating func-
tions are computed via the foermaias
evixy = G ler (ko ‘.
iy by
and
A ‘-‘ l ’
eply) = E? (G} (y)) . (2g)
DN by
i
10

El{fC‘ BEST COPY AVAILABLE
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Once phases 1 and T1 are completed, phase III is straight-forward. However
because 1t is in this phase that the data on tests X and Y are finally combined
we identify it as a separate phase. In phase III, we also include the com-
prutation of the standard error of eguating (the SEE) that measures the accuracy
. . ~ - . . .
associared with ey and ey. In a cempanion paper to this one (Holland, King ani
Thayer, 1988) we give the details of a computation of the SEE that is based on
. 5 ~ ~ - - .
the estimated standard errnrs for Lj and sy that are available if these estima-
ted score probabilities are cbtained in a particular way using the log-linear

medels descaribed in Holland and Thaver (1987).

2
)
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3. THE ESTIMATION STEP

The population score probabilities, {rj} and {sk} defined in (1), must be
estimated from the data collected in the type of equating experiment that is
available to the analyst. sngoff (1984) describes a variety of these experi-
ments. In this section we shall be concerned with two major classes of such
experiments -- the random groups designs (Angoff's Designs I and II) and the
common item or anchor-test designs (Angoff's Designs III and IV). Each class of
design is considered in a separate subsection.

The estimation of the score probabilities is a purely statistical problem
in the sense that the {rj} and the {sk} are well-defined parameters and hence
estimates of these quantities, say {;j} and {ék}, should have desirable sta-
tistical properties. Some authors, e.g. Fairbank (1985), refer to the estima-
tion step as "pre-smoothing". While it is true that the estimates, {gj} and {gk},

ought to exhibit appropriate degrees of smoothness, this can be achieved in

various ways. There are at least four statistical properties that might be con-
sidered in the choice of the estimated score probabilities. These are listed
below.

Consistency: As sample sizes increase, the estimates ;j and ék ought to con-
verge, in an appropriate sense, to the population values, rj and sy.

Positivity: For each possible score value, Xj and yy, the estimated score pro-
babilities, ;j and ;kv ought to be positive. For most tests, estimating a score

probability to be zerc is unreasonable.

o A

RIC o
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Stability: Given the sample sizes involved, che deviations of rj from rj and sy

from sy ought to be as small as possible. Of course these deviations always
involve a random element, and the problem is to keep it to a minimum in an
appropriate average sense.

Integrity: When possible (as, for example, in the random groups design) the
integrity of the sample mean, variance, and possibly other sample moments ought
to be preserved in the estimated score distributions, {gj} and {ék}' This
means, for example, that z xjgj and the sample mean for X are equal and that the
sample second moment for X and z x§§j are equal as well.

The approach to the estimaiion step that we favor is to fit a sequence of
parametric models to the data and to make appropriate diagnosis of these fitted
models until one is found that describes the data well with as few parameters as
possible. The log-linear models 'escribed in Rosenbaum and Thayer (1987) and in
Holland and Thayer (1987) are especially useful in this regard. These models
are all well-behaved because they are exponential families of discrete distribu-
tion and may be estimated by max.mum likelihood using standard iterative tech-
niques. Because these models are exponential families, maximum likelihood
estimation forces the equality of some sample and estimated moments. Our
experience is that with 3 - 6 parameters these models can adequately describe a
wide variety of univariate score distributions. Bivariate distributions, useful
for anchor-test equating designs, are also easily estimated using the class of
log-linear models. Finally, these models automatically satisfy the positivity
and integrity conditions listed above. Careful data analysis using these models

also leads to the consistency and stability conditions being satisfied as well.

o0
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3.1 Random Groups Equating Designs

In Angoff's Design I class of equating experiments, two independent random
samples are drawn from a common population, P, and test X is administered to one
sample while test Y is administered to the other. Angoff's Design II is similar
except that after each sample has been tested with either X cr Y, they also
take the other test as well -- i.e. the two groups take both tests but in
counter-balanced order. We will ignore the data pooling problem that arises in
Design II and merely mention the close connection of this case to Design I to
which we now devote our attention.

The raw data that results from the two random samples in Design I may be
summarized as two sets of frequencies, i.e. the X-frequencies,

nj number of examinees with X

Xj,

and the Y-frequencies,

my = number of examinees with Y Yk~
The two sample sizes are given by

n=2 nj and m = 2 my
j k

The raw sample proportions {nj/n} and {mk/m} are estirates of the popula-
tion parameters {rj} and {sk} respectively. However, rarely will the raw sample
proportions satisfy the positivity or stability conditions mentioned earlier.

Of course, they always satisfy the consistency and integriiy conditions, and,
when m and n are very large, the raw sample proportions may be acceptable estima-
tes of the population parameters.

Table | gives the raw sample frequencies of number-right scores for two
parallel, 20-item mathematics tests given to random samples from a national popu-

lation of examinees.

ey
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Table 1 about here

It is evident that test Y, with a mean of 11.6 (%.1) is about one raw score
point easier than test X, which has a mean of 10.8 (f.1). 1In this example, the
single zero in the Y-frequencies would prevent the raw sample proportions from
satisfying the positivity condition. Table 2 shows the fitted frequencies and
Freeman-Tukey residuals (Bishop, Fienberg and Holland, 1975) for log-linear

models of the form

Ly
log rj = d + .Z Bi(x;)
i=1
and (29)
Ly
log s = @’ + 2 Bi(y)?t,
i=1

with Ly = 2 and Ly = 3. The likelihood ratio chi-square statistic for the
model for {rj} is 18.35 on 18 degrees of freedom while that for {Sk} is 20.24
on 17 degrees of freedom and these values suggest that, overall, the fits of
these two models are quite good. To get a more detailed look at these fits we
examine the Freeman-Tukey residuals in Table 2. These residuals should behave
roughly like independent standard normal deviates if the model fits adequately.
Since these residuals all lie within * 2.0 and show no pattern we conclude that
the fitted probabilities (i.e. r} and sﬁ) from these models are improved esti-
mates of the population score distributions in the sense of "consistency"”" and

"stability" described earlier.

Table 2 about here

24
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Table 1

Score Frequencles for Tests X and Y
for Random Samples from the Same Population

Score X-frequencies Y-frequencies
0 1 0
1 3 4
2 8 11
3 25 16
4 30 18
5 64 34
6 67 63
7 95 89
8 116 87
9 124 129
10 156 124
11 147 154
12 120 125
13 129 131
14 110 109
15 86 98
16 66 89
17 51 66
18 29 54
19 15 37
20 11 17
Total 1453 1455
Mean 10.8 11.6
Sd 3.8 3.9

i s
(i




Table 2

Fitted Score Frequencies and Freeman-Tukey Residuals for Tests X and Y
for Random Samples From the Same Populations

Test X Test Y
Score Fitted Frequencies® FT Residuals Fitted Frgggencies** FT Residuals
0 3.30 -1.4 1.7} -1.8
1 6.44 -1.4 3.77 0.2
2 11.77 -1.1 7.65 1.2
3 20.17 1.1 14.24 0.5
4 32.43 -0.4 24,44 ~1.3
5 48.89 2.0 38.75 -0.7
6 66.10 -0.2 56.98 0.8
7 91.57 0.4 77.91 1.2
8 113.79 0.2 96.35 -1.3
9 132.58 -0.7 118.54 1.0
10 144,83 0.9 132.72 -0.8
L1 148.36 -0.1 136.87 1.2
12 142.49 -1.9 139.15 -1.2
13 128.32 0.1 131.10 0.0
14 108.35 0.2 117.31 -0.8
L5 85.79 0.1 160.00 ~0.2
16 63.69 0.3 81.46 0.8
17 44,33 1.0 63.60 0.3
18 28.93 0.1 47.73 0.9
19 17.71 -0.6 34.54 0.5
20 10.16 0.3 24.18 -1.5

X9 _moment fit

*%3 _moment fit




E

O

21

3.2 The Anchor-Test Equating Design

In Angoff's Design IV class of equating experiments, two independent random
samples are drawn from two different populations, P and Q. Test X and an
anchor-test, A, are given to the P-sample, while test Y and the anchor-test, A,
is given to the Q-sample. Angoff's Design III is similar except that, in Design
111, P and Q are the same population.

In the anchor-test designs, when P and Q differ, there is a choice of pou-

lation on which to do the egquating. In general the synthetic population, S,

describes this choice of populations. Let w be a proportion, 0 £ w £ 1, then S
may be denoted wP + (1-w)Q and viewed as composed of two strata, P and Q, that
are given relative weight w and l-w, respectively. This means that probabili-

ties for S are defined as weighted averages of corresponding P and Q probabjlii-

ties. For example, ProbS{X = xj} is defined by:

ProbS{X = wProbE{X = Xj} + (l—w)Pron{X = xj}

]
%
s
———

iy

and (30)

sy = ProbS{Y = yk} = wProbP{Y Yk} + (1»w)Pron{Y o= yk}.

However, (30) shows the need to estimate probabilities for which there can
be no data, i.e., Pron{X = xj} and ProbP{Y = yk}. This estimation must be
accomplished by making assumptions that, in general, can not be tested. One
such assumption, origirally suggested by Tucker and discussed in Braun and
Holland (1982) is the what we call the Conditional Homogene ity Assumption

defined below:

Conditional Homogeneity Assumption: The conditional distribution of X given A

(and of Y given A) is the same (i.e. is homogeneous) in P and Q, i.e.,

RIC
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ProbE{X = x;lA = au} = Pron{X = ijA = au}

and (31)
ProbP{Y = yk{A = au} = Pron{Y = yk|A = au}

Note that when P = Q the conditional homogeneity assumption is automatically

satisfied.

We call the assumption "conditional homogeneity" because it asserts that
the conditional distributions of X {and of Y) i~ F and Q are homogeneous, i.e.
the same in the two populations.

The next thecrem summarizes the use of this assumption in the estimation or
calculaticn of Pron{X = xj} and ProbP{Y = Yk}-

Theorem 4: TUnder the Conditional Homogeneity Assumption

T Probp{X
u

]
n
]
]

Probgix

]

['8)
=
st

xj} xj[A au} Pron{A

and (32)

au} ProbP{A

]
['8)
=
st

z Pron{Y = YklaA
u

ProbP{Y yk}

The proof of this result is straight-forward and omitted.

In (32) we see that the right-hand sides of the equations involve only
parameters (i.e. probabilities) that can, in principle, be estimated from the
data collected in the design. When (32) is combined with (30), the probabilities
{rj} and {Sk} can ali be estimated. The relevant equations on which this esti-
m2.ion is based are given below:

uProbP{X = xj} + (l-w) Z ProbP{X
u

n
"
1t

rj % A au} Pron{A = au},

and (33)

S (l—w)Prch{Y = Yk} + W2 Pron{Y = vy |A = au} PrﬂbP{A = au}.
u

O [N ]
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The raw data that arises in anchor-test designs consists of two sets of

bivariate fregquencies, i.e., the (X,A)-frequencies from P,

Njy = number of examinees with X = X and A = ay
and the (Y,A)-frequencies from Q,
my, = number of examinees with Y = yy, A = ay.

The two sample sizes are given by

The raw sample frequencies could be used to estimate the various probabili-
ties that go to make rj and sy given in (33). However, rarely will these raw
sample frequencies yield satisfactory estimates of all the probabilities involved
except when m and n are very large. Tables 3 and 4 give bivariate frequencies
for (¥,A) and (Y,A) where X and Y are the same as in secuion 3.1 and A is a 20
item anchor-test chat is parallel to X and Y. Note that in this example, P = Q

so that the conditional homogeneity assumption is automatically satisfied.

Tables 3 and 4 about here

Let {Pju} and {qku} be the population joint distribution given by

I
1
n

Pju ProbP{X X A au}

(34)

[}
"

gy = Probol¥ = vy, A = a,}.

Tables 5 and 6 give the fitted distributions that are obtained by fitting

log-linear models of the form

O
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Table 3

Bivariate Score Distribution for Tests X and A

Anchor Scora A

X Seore

20 XMAhwl

14 15 16 17 I8 19

13

i1

10

<o)

6]

feV]

30
64

(951

67

10
17
24

12
16
16

10

95
116

10
20

it

16
14
19
14

i1

12
20
20
13

i1

N

17 17 13
19 28 24

17
14

9

||

14

17
27

10

147

[a

13
10
13

23
26
21

21

120
129

i8

12

16

19
i8
12

i1

20

110

21

17
10

14
15
16
17
18
19
20

86

10
10

15 i0
13
11

15
12

66

51

29
15

o

1453

N -

\
{

|

3
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f Tests Y and A
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20
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10
21
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13
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10

14
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12
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2 2
log (Pju) =d+ 2 B (Xj)l + T ¥y (at o+ & Xj ay
i=1 i=1
and (35)
2 ] 2 )
log (qpy) = @* + £ BT (y)* + = Y§ (aw)t + 8% yi ay

i=1 i=1

Tables 5 and 6 about here

The likelihood ratio tests for adding extra terms to the models in (35)

were not significant. Table 7 gives the estimates of gj and gk that follow from
these smoothed distributions using (33), with w = .5.
This is an example of an external anchor test. 1In Holland, King and Thayer

(1988) the internal anchor test is also discussed and shown to be easily trans-

fomed to the external anchor-test case.

Table 7 about here
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Table 7

Estimated Values for {rj} and {sk} Computed from Equation (33)
and the Fitted Distributions in Tables 5 and 6
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4, THE CONTINUIZATION STEP

There are a variety of ways to select the continuization constants h, and

X
hY. Perhaps the easiest is to always use specific fixed values such as
hx = hY = @, which corresponds to linear eguating, or hX = hY = .3, which we have
shown to correspond roughly to traditional equipercentile equating. Rather than

always using fixed choices of hX and h_, ve suggest a flexible approach toward

Y
the choice of continuization constants, remembering that various goals may need
to be achieved in selecting a satisfactory equating function.

Our approach is to choose hy so that th(x) is close to F(x) in some sense.
Some care needs to be exercised in selecting a notion of closeness. For
example, if the sup norm, i.e

*

suplFp (x) - F(x)| (36)
b4 X

is used to measure how close th(x) is to F(x), then this is minimized for
hy = 0 and the result is useless.

The density of th(x), i.e. Fﬁx(x), can be used to clarify what we want in
a "good" continuous approximation to F(x). Consider Figure !. It is the den-
sity that arises when hX = .3 in the example of section 3.!l. It exhibits a
"stegosaurian" character that would appear, on its face, to be undesiratble.
Wiien hX = 1.0, the result is Figure 2. Evidently, hX has a big influence on the
shape of the continuous approximation for F(x).

When the xj are consecutive integers, we can use the density, Fﬁx(x), to
create a histogram that we can then compare to the {;j}' This is done in the
following way. Imagine a histogram centered on the {Xj} with heights {ng(xj)]
and unit wicth. If hX is chosen appropriately this histogram will be cleose to

the unit width histogram on the X with heights {;jl' To choose hX we can

Figurcs | and 2 about here
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minimize the "squared difference" criterion.

S (ry - Ffp (x3)? . (37)
j X

The minimizing values of hX and hY for the example of section 3.1 are .62 and
.57 respectively.

In the case of anchor test equating, i.e. section 3.2, the same
considerations arise but are applied to {rj} and {sk} from (33). Using the
estimates of rj and sy in Table 7, the optimai values of hy and hy that minimize
the gquared difference criterion are .62 and .56, respectively.

The count inuization step can be used to remove the need for a final
"pestsmoothing" of the equating function (Fairbank (1985}, Kolen (1984), Kolen
and Jarjoura (1987)). The reason postsmoothing arises is that if the continuous
approximations to F and G are not smooth enough, the equating functions computed
via (1l) will exhibit unreasonable oscillations about an otherwise smooth trend.
Pestsmodthing eliminates these oscillations. One situation that can produce
these oscillations arises when tests are formula-scored. 1In formula-scored
tests with few omitted responses the raw-score distribution will often produce
"pwaps" at specific scores. Figure 3 illustrates this phenomenon. When
smeothing frequencies that exhibit gaps one has the choice of whether or not the
sma~thed frequencies ought to have "gaps" in them. Figure &4 shows a fitted
distritution to the data in Figure 3 that has gaps. It was achieved by fitting
roments to the "gpap" scores as well as to all the scores using the techniques
Aiscusserd in Holland and Thayer (1687). 1I1f a distribution that had no gaps had

m fit to these data, the fit would have been poor according to the usual

Firures 3 and 4 about here




Figure 3

A Raw-score Distribution for a Formula-scored Test
That Exhibits "Gaps" at Regular Intervals on the Score Scale
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Figure &

A Model With "Gaps" Fitted to the Data in Figure 3
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goodness-of~fit statistics and it would have been unclear how to choose a satis-
factory model. When data with gaps are encountered in test equating we recom-
mend that the gaps be accounted for in the estimation step, i.e. by fitting a
model like the one in Figure 4. The reason is that standard goodness-of-fit
tests then provide a rational basis for choosing a model, and the resulting
estimated standard errors for the fitted model (used to compute the standard
error of equating) can be expected to be approximately correct. In the con-
tinuization step, the gaps can then be removed by taking hx large enough.
Figures 5 and 6 show the approximating densities for the fitted model in Figure
4 for hx = 1 and 3, respectively. When hX = 1 there are still some remnants of
the gaps left but by hx = 3 they are gone and the undesirable oscillations have
been smoothed out. Figure 7 shows the fitted probabiiities from Figure 4 and
the continuous density for hX = 3 from Figure 6. The density shows the general
shape of the fitted probabilities but the gaps have been filled in.

We recommend that gaps be preserved in the estimation step and then removed
in the continuization step in order to insure the accuracy of the standard error
of equating that is discussed extensively in the comnanion paper, Holland, King

and Thayer (1988).

Figures 5, 6 and 7 about here
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Figure 5

-

"x

Graph of the Density F,_ (x) for hX = 1.0 for {rj} in Figure &4
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Figure 6

Graph of the Density Féx(x) for hX = 3.0 for {rj} in Figure &
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Figure 7
Graph of the Density for hX = 3.0 and the Fitted Probabilities

Showing How the Gaps Have Been Filled In
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5. THE EQUATING STEP

Once continuous approximations to g(x) and é(y) are in hand, it is a
relatively straightforward process to compute the equating functions via (23)
and (24). The only computational issue is the accuracy with which the inverse
functions ng(p) and Ggé(p) need to be approximated. We have not investigated
this carefully but have found that for the cases we have considered a grid of
width .05 has proved sufficient.

In the examples of sections 3.1 and 3.2 the equating functions are very
nearly linear. Figure 8 shows the difference between the graphs of the linear
equating function (hy = hy = @) and the approximate equipercentile equating
function (hy = hy = .3) for equating Y to X for the example in section 3.1l.

While there are some differences between these equating functions they are quite

small in this example. Figure 9 shows three equating functions for simulated data
in which there is a great deal of curvilinearity when hX = hY = .3. The
equating functions for hX = hY = 5 and hX = hY = 10 are also shown to illustrate

that as the h's increase the equating functions become more linear.

Once hX and hY are selected, th(x) and GhY(y) are determined as functions
of the estimated score probabilities {;j} and {gk}. The computation of the
standard error of eyuating (SEE) can then proceed by a straight forward, but
tedious, application of the 8§-method of computing asymptotic variances of func-
tions of random quantities -- in this case the random quantities are {;j} and

{gk}. This is the approach described in detail in our companion paper, Holland,

King and Thayer (1988).

Figures 8 and 9 about here
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Figure 8

The Difference Between the Linear and the Approximate Equipercentile
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Equating Functions, for the Example of Section 3.1
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EQUATED X

Figure 9

Three Equating Functions for Simulated Data
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6. DISCUSSION

We believe that the kernel method of equating, when coupled with estimated
score distributions using log-linear models, has a number of advantages over
other observed-score equating methods.

First of all, the three phases, estimation, continuization and equating,
form a unified approach to many problems that arise in equating. Most of the
difficulties in equating arise in the estimation and continuization phases and
these are quire different and ought to be treated separately. The problem of
devising equating diagnostics is fairly easy once this separation is made. Some
diagnostics will concern the estimation phase (i.e. the adequacy of model fit)
while others concern the choice of continuization constant (e.g. the treatment
of the "gaps" in formula score distributions).

Because log-linear models are very flexible they provide useful models for
both large and small samples. Hence their use with the kernel method eliminates
many of the problems that arise in equating with small samples of examinees. At
the same time, large samples can also be fit adequatcly using these models.

The kernel method essentially contains linear and traditional equipercen-
tile metheds as special cases and cuan therefore exploit the best features of both
methods.  Furthermore, because it can handle both random groups and common ite:
designs, the use of log-lincar models in the latter case provides a substan-
tially improved version of the method called "frequency estimation" (as called

for in Braun and Holland, 1982).
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The kernel method does not force the high and low score on the two tests to
match as traditional equipercentile (and IRT true-score) methods do. It also
does not restrict the equating function to be defined for only those raw score
values that occur on the test. This can be very important for the chains of
equatings that build up as a long sequence of new test forms is built up. In
addition, btecause th and th are given by analytic formulas it is unecessary to
specify the equating function by a table as most equipercentile methods do.
Instead, if hy, hy and the estimated probabillities {;j} and {Sk} are kept, th,
GhY and the equating functions can be computed anew and chained together when-
ever they are needed. Although this is more complicated than carrying equating
chains through by linear equating, it is still more satisfactory than the ad hoc
tables of traditional equipercentile equating.

Finally, computationally efficient methods of estimating the standard error
of equating are available and, for the first time, honest SEEs can be provided
for a wide variety of equating designs. These SEEs reflect both th: shape of
the equating function, the design of the equating experiment, and the method
used to pre—smoo}h the data in the estimation phase of the equating process.

In view of these advantages we see the kernel method of =quating as a
complete equating package that can provide measurement statisticians with a

powerful set of tools for solving practical everyday problems in equating.
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Future research in this area might explore a range of topics such as these.

1) Are there methods for choosing hy and hy that are better than the
minimization of the squared difference criterion, (37)7

2) What is the effact of data dependent choices of hy and hy on the SEE?

3) Are the SEEs found by the §-method good enough or are higher-order
methods needed?

4) What is the relation between the kernel method and IRT or linear true-
score equating methods?

5) What role can the kernel method play in the assessment of the invariance

of equating functions across different populations of examinees?
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APPENDIX: Proof of Theorem 2.
Let the moment generating function (mgf) of X be My(t). It is well-known
that the Taylor expansion of log[MX(t)] is given by
log[My ()] = Myt + oge?/2 + T kyy(e)d/jt . (38)
j23
But the mgf of X(hy) is given by
E[exp{tX(hx)}] =
E[exp{t(ax(X+hXV) + (l-ay) ux)}]
= exp{t(l-ax)ux}E[exp{taxX + taxhxv}]
Rut since X and V are independent
E[exp{taxx + taxhxv}]

E[exp{taxx}]E[exp{taxhxv}]

i

Mx(tax) Mv(taxhx)

orr My and My are the mgfs of X and V respectively. But, it is well-known
that
My(t) = exp{% t?},
so that the mpf of X(hy) nan be expressed as
E[exp{tX(hx)}]
= exp{t(l-ax)ux} My (tay) exp{%tza;h;}.
How take logs to get the cumulants, i.e.,
tog Elexpitx(hy)}]
t(l-agify + % L’a;h; + log[Hx(tax)]. (39)

How ~ombine (38) and (39) to get
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log E[exp{tx(hx)}] =
((L-ag)Py + agly)t + (aghy + Oxax)t?/2

+ 2 ij(ax)j (t)J/J 1,
J

2 2 2 2 2, 2 2 2
But (l-ay)lig + axhx = Hx and ayxhy + Oxay = ay(hg + Ox) = Oy, so we obtain
log E[exp{tx(hx)}] =

gt + Og t2/2 + T (ap)dkjx()i/ir.
i23

But the coefficients of a Taylor expansion are unique so the cumulants of X(hg)

are (ax)jij, QED.




