
DOCUMENT RESUME

ED 395 943 TM 025 010

AUTHOR Braun, Henry I.; And Others
TITLE Developing and Evaluati:e, a Machine-Scorable,

Constrained Constructed-Response Item.
INSTITUTION Educational Testing Service, Princeton, N.J.
REPORT NO ETS-RR-89-30
PUB DATE Jun 89
NOTE 49p.

PUB TYPE Reports Evaluative/Feasibility (142)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS Computer Science; *Constructed Response; *Expert

Systems; High Schools; *High School Seniors; Problem
Solving; Programming; Reliability; *Scoring;
Standardized Tests; Test Construction; *Test Items

IDENTIFIERS Advanced Placement Examinations (CEEB); *Constraints;
Free Response Test Items; Large Scale Programs

ABSTRACT
The use of constructed response items in large scale

standardized testing has been hampered by the costs and difficulties
associated with obtaining reliable scores. The advent of expert
systems may signal the eventual removal of this impediment. This
study investigated the accuracy with which expert systems could score
a new, non-multiple choice item type. The item type presents a faulty
solution to a computer programming problem and asks the student to
correct the solution. This item type was administered to a sample of
high school seniors enrolle,d in an Advanced Placement course in
Computer Science who also took the Advanced Placement Computer
Science (APCS) Test. Results from 737 students for the first problem
and 734 of these students for the second problem indicate that the
expert systems were able to produce scores for between 82% and 977. of
the solutions encountered and to display high agreement with a human
reader on which solutions were and were not correct. Diagnoses of the
.specific errors produced by students were less accurate. Correlations
with scores on the objective and free-response selections of the APCS
examination were moderate. Implications for additional research and
for testing practice are offered. Appendix A presents the faulty
solutions problems, and Appendix B gives the correlation matrices for
the APCS and the problems. (Contains 10 tables and 17 references.)
(Author/SLD)

* Reproductions supplied by EDRS are the best that can be made *

from the original document.

U S DEPARTMENT OF EDUCATION
Onrce 01 Educatanat Research and Impoovernent

FOUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

Thrs document has been reproduced as
tecerved Iron, the prson or Ofgahrzhon
Orgnating It

C M.nOr changes have been mad* to Irnprov
reOrOduCtion quality

Forms of view or oprnronsstatedrnthrsdocu-
men! do not neCessarily represent ottrcral
OEM posrtron or poIrcy

PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Sgoe 19- U

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC,

RR-89-30

DEVELOPING AND EVALUATING A MACHINE-SCORABLE,
CONSTRAINED CONSTRUCTED-RESPONSE ITEM

Henry I. Braun
Randy Elliot Benneti

Elliot Soloway
Douglas Frye

Educational Testing Service
Princeton, New Jersey

June 1989

BEST COPY AVAILABLE

Developing and Evaluating a Machine-Scorable,

Constrained Constructed-Response Item

Henry I. Braun

Randy Elliot Bennett

Educational Testing Service

Doug:1.1s Frye

Yale University

and

Elliot Soloway

University of Michigan

Copyright 1989. Educational Te,ting Service. All rights reserved.

Developing and Evaluating

Acknowledgements

Appreciation is expressed to Jim Spohrer of Yale

University for his help in analyzing the faulty solutions data

and his insights on programming knowledge and skill.

Assistance in data analysis was provided by Minh Wei Wang and

Bruce Kaplan. Hazel Klein and Terri Stirling were

instrumental in organizing and managing the data collection

effort. Thanks are due to Carl Haag of the AP program and to

C. Victor Bunderson for their encouragement and support.

Finally, we are indebted to the students and teachers of the

Advanced Placement Program without whom this study would not

have been possible.

Developing and Evaluating

1

Abstract

The use of constructed response items in large scale

standardized testing has been hampered by the costs and

difficulties associated with obtaining reliable scores. The

advent of expert systems may signal the eventual removal of

this impediment. This study investigated the accuracy with

which expert systems could score a new, non-multiple choice

item type. The item type presents a faulty solution to a

computer programming problem and asks the student to correct

the solution. This item type was administered to a sample of

high school seniors enrolled in an Advanced Placement course

in Computer Science who also took the Advanced Placement

Computer Science (APCS) Test. Results indicated that the

expert systems were able to produce scores for between 82% and

97% of the solutions encountered and to display high agreement

with a human reader on which solutions were and were not

correct. Diagnoses of the specific errors produced by

students were less accurate. Correlations with scores on the

objective and free-response sections of the APCS examination

were moderate. Implications for additional research and for

testing practice are offered.

Developing and Evaluating

2

Developing and Evaluating a Machine-Scorable,

Constrained Constructed-Response Item

Constructed-response items offer the opportunity to

present examinees tasks similar to those they encounter in

education and work settings. This similarity enhances face

validity--the perceptior among examinees, program sponsors,

test users, and critics alike, that the test is measuring

something important. In addition, constructed-response items

may measure somewhat different skills than their multiple-

choice counterparts (Ward, Frederiksen, & Carlson, 1980),

offer a window onto the processes used to solve the problem

(Birenbaum & Tatsuoka, 1987), and better predict some aspects

of educational performance (Frederiksen & Ward, 1978).

Finally, constructed-responses may reduce the susceptibility

of some items to a popular multiple-choice test-taking

strategy: working backwards from solution to question by

substituting each response option in turn until the correct

response is found. Given these potential benefits, there is

good reason to explore the utility of constructed-response

items for a variety of assessment purposes.

Though constructed-response items have compelling

advantages, they have seen relatively limited use in large-

scale testing programs. The primary difficulty has been the

subjectivity and high cost associated with scoring; whether

for national programs like the Scholastic Aptitude Test or for

such locally-managed efforts as district-wide achievement

testing, the costs associated with training human graders to

Developing and Evaluating

3

achieve acceptable levels oE agreement and supporting them

while they score thousands of exams are prohibitive.

With the advent of low-cost computing capability, and

with advances in cognitive psychology and computer science,

has come the expert system, a program designed to emulate in a

very circumscribed domain, the actions of a human specialist

(Waterman, 1986). With such systems, moderately complex

constructed-response items can be objectively and

automatically scored (e.g., Bennett, Gong, Kershaw, Rock,

Soloway, & Macalalad, 1988), and there is good justification

to believe that more complex ones will be scorable in the not-

too-distant future.

An example of applying expert systems to the scoring of

constructed-response items is found in PROUST and its progeny,

MicroPROUST (Johnson, 1985; Johnson & Soloway, 1985). PROUST

was developed to study the conceptual errors made by students

in learning to program in Pascal. The program is comprised of

15,000 lines of LISP code and runs on a VAX minicomputer.

MicroPROUST was developed as a portable demonstration of the

concepts embodied in PROUST. It is one-tenth the size of its

forebear and, as a consequence, less powerful in its

analytical techniques.

PROUST and MicroPROUST attempt to find non-syntactic bugs

in Pascal programs. Each system has knowledge to reason about

selected programming problems within a framework called

intention-based anLlysis (Johnson, 1985; Johnson & Soloway,

1985) . Intention-based analysis is derived from research on

Developing and Evaluating

4

how experts comprehend programs (e.g., Soloway & Erlich,

1984). This research suggests that in debugging programs

experts first attempt to map the program into a deep-

structure, goal and plan representation. Goals are the

objectives to be achieved in a program whereas plans are

stereotypic means (i.e., a step-by-step procedure) for

achieving those goals. Following the lead of experts, PROUST

and MicroPROUST first attempt to identify the goals and plans

that the student intended to realize in a program, and then to

identify the bugs produced, where a bug is conceptualized as

an unsuccessful or incorrectly realized plan for satisfying a

goal.

To analyze a problem, PROUST or MicroPROUST first reads

the problem specification contained in its knowledge base.

This specification enables the system to know what goals the

student should be attempting to achieve in writing a

particular program. The system uses this goal specification,

its plan and bug knowledge bases, and the student's code to

construct the solution intended by the student. For example,

part of the specification for a problem might include the

goal, "to read in data." The system would use this goal to

locate in its knowledge base a set of plans to achieve this

result. Next, it would locate the code templates that

instantiate each of these plans. Third, it would attempt to

match a portion of the student's code to one of these code

templates. If a match is found, the system can make

inferences about the student's intentions with respect to this

Developing and Evaluating

5

code segment, for instance, what meaning to attribute to

particular variables. On the basis of these inferences, the

system can predict how these variables will be used in

achieving the next goal needed to satisfy the problem

specification. If these expectations are violated (that is,

if an appropriate code segment cannot be found to match the

templates associated with plans for achieving that next goal),

an attempt is made to match the code segment against templates

for buggy implementations of that plan. This goal-plan

matching strategy provides considerable leverage; correct and

incorrect plans can be put together in different combinations

to handle the variety of responses generated by novice

programmers.

MicroPROUST has been used in two projects involving

constructed-response items. The first project was undertaken

to test the applicability of expert systems to analysis of the

free-response item type used in the College Board's Advanced

Placement Computer Science (APCS) program and the technology's

generalizability to similar item types in other content

domains (Soloway, Macalalad, Spohrer, Sack, & Sebrechts,

1987). MicroPROUST was modified to score a demonstration set

of student solutions to two APCS problems and to one problem

in geometry; GIDE (Sebrechts, LaClaire, Schooler, & Soloway,

1986; Sebrechts, Schooler, & Soloway, 1987) , an extension of

MicroPROUST, was programmed to score demonstration solutions

in algebra and statistics. In each case, the item presented

the student with a task (e.g., a specification for a computer

Developing and Evaluating

6

program, an algebra word problem) and asked him or her to

write a solution (e.g., a computer program, the set of

equations needed to solve the algebra problem) which the

appropriate expert system then would analyze. The system's

analysis consisted of identifying and describing for the

student any conceptual errors made in solving the problem.

The second study examined the extent of agreement between

MicroPROUST and human readers in diagnostically and

numerically scoring a range of solutions to each of the two

APCS programming problems (Bennett, Gong, Kershaw, Rock,

Soloway, & Macalalad, 1988). In this activity, MicroPROUST

was able to analyze only 42% of the solutions it encountered

in a cross-validation sample (it offered no analysis on the

remaining papers). However, in those programs it was able to

analyze, its performance was comparable in most respects to

humans.

PROUST's effectiveness in diagnosing student's

constructed responses has been evaluated using responses to a

programming problem developed by Soloway and his colleagues

(Johnson & Soloway, 1985). In this study, PROUST was able to

produce a complete analysis for 79% of the programs given to

it. For the remaining programs, it produced either a partial

analysis (17%) or no analysis (4%). Because the problem used

in this study is seemingly more complex than those used in the

croPROUST studies, it is likely that PROUST's superior

performance is due to its greater complexity and computing

power. Even with these advantages, the proportion of papers

Developing and Evaluating

7

PROUST is able to analyze is probably not high enough to

justify use in operational testing environments. MicroPROUST,

which is the more portable and--because of its design--the

more modifiable of the two, is even further from such

performance levels.

It appears that the primary impediment to achieving

higher success rates is that the task of writing a computer

program is a relatively open-ended one that can be done

correctly or incorrectly in a multitude of ways. It is

plausible that a more constrained task--but one that retains

the character of a constructed response--might afford expert

systems a greater chance for successful analysis. One

possible constrained constructed-response task is to present a

completed, but incorrect, program and ask the student to

correct it. Though a program is not actually written, this

"faulty solution" task, in contrast to many multiple-choice

formulations, calls upon skills central to effective

programming. The purpose of this project was to evaluate the

accuracy of expert systems in scoring the faulty-solution task

and, secondarily, the meaning of scores from tiis task.

Method

Subiects

Subjects were located by sending letters of invitation to

all Advanced Placement Computer Science (APCS) teachers who

had 15 or more students enrolled in their classes or who had

participated in the June 1987 reading of the APCS examination.

This initial mailing was made to teachers at 112 high schools

Developin9 and Evaluating

8

throughout the United States. Te .?.rs at 70 of these schools

indicated an interest in having their classes participate.

Data collection forms were mailed to these 70 schools with

returns received from 59 schools for 916 students. Of these

students, 737 were matched with APCS examination scores in ETS

files and had complete data for the first of two faulty

solutions; 734 of these also had complete data for the second

faulty solutions problem.

Instruments

Constrained constructed-response items. In our earlier

work (Bennett, Gong, Kershaw, Rock, Soloway, & Macalalad,

1988), students were asked to write a computer program in

response to a specification (e.g., "write a program that

rotates the elements of an array such that the element in the

first position is moved to the second, the element in the

second position in moved to third, ... and the element in the

last position is moved to the first position") . To limit the

range of answers but retain the advantages of constructed

response, the task now was refined to require the student to

correct a faulty program. Two tasks of this type were

created, both adapted from existing problems. The first was

an adaptation of the "Rotate" problem from the 1985 APCS

eyamination. This problem was used in its free-response

format in the study by Bennett et al. (described above), whic'.

provides a baseline for comparing the functioning of the

expert system. The second problem, the "Rainfall" problem,

was developed by Soloway and his colleagues and has been

? t:

Developing and Evaluating

9

studied extensively by them (Johnson, Soloway, Cutler, &

Draper, 1983) . Baseline data for the free-response version of

this problem are provided by the Soloway and Johnson (1985)

investigation previously described. The Rainfall problem

tests more complex skills than the problems typically found on

the APCS examination and should provide a better evaluation of

the limits of the faulty solution format.

For each of these two problems, eight variants were

developed in order to enhance the generalizability of the

findings. Six of these variants contained a sinale bug and

two variants contained three bugs eac',. All bugs were of a

nonsyntactic nature; that is, the program was executable but

produced a result that, at least under some circumstances, was

different from that described in the problem specification.

Bugs were chosen to reflect three categories that have

been found to capture most of the nonsyntactic errors produced

by novices when writing programs (Spohrer, 1989). These

categories were arrangement, completeness, and detail. An

arrangement bug occurred when all of the parts of a program

were present but not put together properly. A completeness

bug existed when one component was missing. When a single

part of a component was at fault (e.g., a variable, operator)

and could be repaired by changing one word or operator, the

bug fell into the last category.

Two bugs were selected from each category, for a total of

six different bugs (one for each single-bug variant) . Each of

the triple bug variants contained one bug from each category.

Developing and Evaluating

10

One variant for each problem, along with the directions to the

student, is presented in Appendix A.

Expert systems. Because each of the expert systems has

associated with it specialized knowledge bases, PROUST was

used for the Rainfall problem and MicroPROUST the Rotate

problem. The knowledge bases for both systems were developed

within the context of previous studies. They were constructed

to provide the systems with enough understanding to analyze

complete programs written in response to a given

specification. The Rainfall knowledge base resulted from

analysis of approximately 150 programs; the knowledge base for

the Rotate problem was developed from 45 student pape-_-s.

Neither knowledge base was expanded or modified in any way for

the current study.

The analysis produced by MicroPROUST consisted of a

diagnostic comment, which identified the presence of a

specific fault in the student's solution, and a grade on a

five-point scale for the 1-bug variants and on a six-point

scale for the 3-bug variants. Differences in the scales

emanated from the need to award points for correcting

different numbers of seeded bugs and to deduct points for the

ex2ected introduction of different numbers of new bugs (e.g.,

students would be expected to introduce more new bugs in

solving the 3-bug variants than in the 1-bug variants because

of the added complexity of the former items) . Both scales

were set to range from 0-2, with a score of 2 indicating a

Developing and Evaluating

11

perfect solution. However, because of the aforementioned

differences, scores from the two scales are not comparable.

Because of the manner in which PROUST was originally

constructed, only diagnostic comments were generated by the

program. To produce numerical scores, a sample of 292 student

solutions to the Rainfall problem (143 1-bug and 149 3-bug)

was rated on a five-point scale by one of the authors without

reference to the diagnostic comments generated by PROUST.

These human ratings were used in all analyses of the Rainfall

problem that required a numerical score.

Advanced Placement Computer Science Examinations. Two

Advanced Placement Computer Science Examinations are offered

by the College Board: an "A" exam intended to assess mastery

of topics covered in the first semester of an introductory

undergraduate course in computer science, and an "AB" exam

covering the full year's material. Computer Science "A"

emphasizes programming metlaodology and procedural abstraction,

but also includes the study of algorithms, data structures,

and data abstraction. Computer Science "AB" includes all

topics of Computer Science "A" as well as a more formal and

in-depth study of algorithms, data structures and data

abstraction. Computer Science "A" is comprised of 35

multiple-choice and 3 free-response items. Computer Science

"AB" includes these items plus an additional 15 multiple-

choice and 2 free-response questions. For this latter exam,

both "A" and "AB" grades are reported.

Developing and Evaluating

12

Procedure

Each student was asked to respond to one variant of the

Rotate problem and one variant of the Rainfall problem, where

one problem contained three bugs and one contained a single

bug. Problems were paired in counterbalanced order for a

total of 24 combinations (2 problems x 6 single-bug variants x

2 triple-bug variants), with a single-bug variant always

placed first. To give each problem set, or "packet," an equal

chance of being administered, packets were mailed to schools

in a "spiralled" fashion based on the number of APCS students

at each site (e.g., combinations 1-18 mailed to school #1, 19-

24 and 1-6 to school #2, and so on). Teachers were instructed

to administer both problems in a single class period.

Each problem was presented on an 11" x 17" multi-layer

form. The form was divided vertically into two halves, each

of which had a triple-spaced copy of the faulty solution (see

Appendix A). Students were given written instructions that

presented the problem specification and directed them to

modify the solution on the right half using the one on the

left as a reference. Allowable modifications were limited to

insertions and deletions.

When the student had completed the task, he or she was

instructed to tear off the bottom layer of the sheet (which

contained a copy of the original problem and a carbon of the

corrections made by the student) , and return the top half to

the teacher for mailing to ETS. Correct answers were then to

be given out by the teacher who was provided with a packet of

Developing and Evaluating

13

instructional suggestions for maximizing the use of the

materials.

Data Analyses

Student responses were put into machine-readable format

by transcribing the student's handwritten corrections. (The

student's corrections were modified by the authors only where

obvious, minor errors in program syntax were detected.) This

corrected program was analyzed by the appropriate expert

system, and in some cases hand-scored as described above. Two

types of analyses were then conducted with each analysis run

separately on the total group and on the "AB" group (i.e.,

those students taking the complete APCS examination). The

first focused on the expert systems' success in analyzing

student responses. For each system, the percentage of

responses for which an analysis was produced was calculated.

For both systems, these percentages are directly comparable to

the systems' success in analyzing the free responses to the

Rotate and Rainfall problems produced by earlier cohorts.

These percentages were 42% for MicroPROUST in analyzing Rotate

(Bennett, et. al, 1988) and 79% for PROUST's assessments of

Rainfall (Soloway & Johnson, 1985).

The second analysis centered upon the meaning of scores

from the faulty solutions item type. This analysis involved

(1) estimating the agreement between human and machine ratings

of students' responses to the item-type, and (2) computina the

product-moment correlations between these scores and multiple-

choice and free-response scores on the APCS examination.

Developing and Evaluating

14

To assess the rater reliability of scores assigned to the

faulty solution problems, a sample of 84 responses to the

Rotate problem was graded by one of the authors without

knowledge of the scores assigned by MicroPROUST. The Pearson

Product-Moment correlations between scores assigned by the

human grader and the expert system were then computed.

Because PROUST does not generate numeric scores, a

somewhat different approach to estimating rater reliability

for the Rainfall problem had to be taken. First, 79 of the

292 responses that had already been handscored without

reference to PROUST's comments were selected. The scores on

these 79 papers served as human ratings. Next, a scoring

component for PROUST was simulated by having one of the

investigators read PROUST's comments--without knowing to which

student's paper a set of comments referred--and assign a score

to the paper based only on those comments. These two sets of

scores were then correlated. This method is, at best, an

approximation of the scores PROUST would assign if it had such

capability and, hence, its results need to be corefully

considered.

Once the correlations between human and machine scores

were computed, the agreement levels for the Rotate and

Rainfall problems were compared. This was accomplished by

transforming the correlations to z-scores and testing this

difference (McNemar, 1962).

Agreement was also assessed by tabulating the frequency

with which,a rater and the expert system concurred on whether

Developing and Evaluating

15

a paper was error free. For this analysis, a two-by-two

contingency table was constructed and the proportion correct

(i.e., the number of agreements divided by the number of

agreements and disagreements), and Cohen's kappa were

calculated. Kappa is the proportion of correct

classifications beyond that expected by chance and can be

tested statistically (Fleiss, 1981) . In general,

statistically significant values greater than .75 may be taken

to represent excellent agreement, values between .40 and .75,

fair to good agreement, and ones below .40 poor agreement

beyond chance (Landis & Koch, 1977) . Finally, the frequency

with which the reader and system agreed on the diagnosis given

individual bugs was tabulated. Both the contingency table

analysis and the analysis of individual bugs were conducted on

a sample of 186 solutions and were completed only for the

Rotate problem and only for a combined sample of 1- and 3-bug

variants.

The meaning of faulty solution scores was also assessed

through correlational analyses. Using the Fisher r-to-z

transformation, averages were computed for the correlations

(1) among the free-response questions, (2) between Rotate and

the free-response questions, (3) between Rainfall and the

free-response questions, and (4) between the free-responses

and the objective score. Selected averages were compared

among themselves and with the individual correlations between

each faulty solution and the APCS objective score.

Developing and Evaluating

16

Results

Tables 1 and 2 present APCS means and standard deviations

for the two study samples and for the population taking the

1988 APCS examination. (Scores in this and all other analyses

were originally delived from number-right raw score as opposed

to the formula scores used in the APCS program.) For each

score, sample means were tested for differences with the

population mean which was treated as a population parameter.

While several significant differences were observed, their

magnitude was relatively small, ranging from 9% to 11% of a

standard deviation on the "A" test, and from 10% to 14% of a

standard deviation on the "AB" examination. The size of these

differences suggests that the study sample did not

dramatically differ in computer science knowledge from the

population taking the test.

Insert Tables 1 and 2 about here

Table 3 presents data on the proportion of solutions that

MicroPROUST and PROUST were able to analyze. Of the 737

students responding to the Rotate problem, MicroPROUST was

able to provide an analysis for 614 or 83%. Of the 123

solutions it was not able to analyze, 18 were unparsable; that

is, they were so poorly formulated syntactically, that the

program rejected them outright. When the 105 parsable but

ungraded programs were analyzed by a human grader (Spohrer,

Frye, & Soloway, 1988) , two findings emerged: (1) all

Developing and Evaluating

17

failures could be classified as due to incompleteness in

MicroPROUST's knowledge base, and in the bulk of cases to a

limited set of omissions, and (2) the overwhelming majority of

solutions were wrong. With respect to the first point, 81 of

the 105 analysis failures could be accounted for by 7 major

classes of bugs. In fact, by adding a single new bug rule,

MicroPROUST was able to analyze 30 more of the 105 solutions.

On the second point, only 9 of the 105 programs were correct,

organized in ways unknown to MicroPROUST. Adding in the

unparsable solutions (which were by definition incorrect), 114

of the 123 analysis failures (93%) represented wrong solutions

to the problem.

Insert Table 3 about here

PROUST was able to analyze 94% of the 734 Rainfall

solutions it was given. 1:,ROUST's greater success rate was

presumably due to its added flexibility and power. Because of

its high success rate, an analysis of its failures was not

conducted.

Aside from the overall difference between problems

evaluated by PROUST and MicroPROUST, the rate of successful

analyses held fairly constant across variants and study

samples. The largest difference, between the Rotate 1- and 3-

bug variants in the "AB" sample, was four percentage points.

Table 4 reports data on the agreement between scores

assigned by humans and those assigned by the expert system.

Developing and Evaluating

18

For both the total sample and the "AB" sample, the agreement

for the Rotate problem significantly exceeded that for

Rainfall when all variants were combined within a problem (z =

3.56, p < .001 for the total sample; z = 3.68, R < .001 for

the "AB" sample). When the variants were separated into l-

and 3-bug types, however, the correlations between the two 3-

bug problems were no different (z = -.59, p > .05 for the

total sample; z = -.42, n > .05 for the "AB" group), though

the differences between Rotate and Rainfall remained for the

1-bug problem (z = 3.54, R < .001 for the total sample; z =

3.70, p < .001 for the "AB" sample). With the exception of

the 1-bug Rainfall variant, the levels of agreement were

comparable to those found for the Rotate problem in its fully

free-response format (Bennett et al., 1988).

Insert Table 4 about here

Shown in Table 5 are the proportions of papers classified

by MicroPROUST and by a reader as perfect or not (i.e.,

containing one or more bugs). For this sample, the observed

proportion correct was .94 (the sum of the diagonal entries in

table 5), indicating that in the overwhelming majority of

cases the two raters agreed. Kappa for this table is .87 (R <

.001, z = 4.85) , suggestive of excellent agreement beyond

chance.

Developing and Evaluating

19

Insert Table 5 about here

Although agreement on the dichotomous classification of

papers was substantial, a lower level of agreement is evident

when the individual bugs are considered. For this analysis,

MicroPROUST and the reader agreed on the diagnosis of 384

bugs; that is, both gave the same location and interpretation.

In 322 cases the reader and MicroPROUST disagreed: on 141 of

these, the reader believed MicroPROUST's diagnosis of the bug

to be spurious; the remaining 181 cases constituted bugs the

reader believed to exist but MicroPROUST failed to confirm.

Whereas such levels of disagreement may seem substantial, it

is well to note that considerable disagreement in identifying

individual bugs also appears among human readers (Bennett et

al., 1988).

Table 6 presents the summary statistics for performance

on the faulty solutions problems for the total student sample

and for those taking the "AB" examination. Each problem is

graded on a 0-2 scale (Rotate by MicroPROUST and Rainfall by a

human rater) . Because the two problems were graded by

different mechanisms, and because the scales used for the 1-

vs. 3-bug variants were different within problems, performance

comparisons are best restricted to the same problem variant

taken across samples. In these cases, the group taking the

"AB" examination does marginally better than the total sample.

Developing and Evaluating

20

Insert Table 6 about here

The complete correlation matrices for the different item

types are presented in Appendix B. Table 7 summarizes these

matrices by showing selected mean and individual correlations

between the faulty solution problems and the components of the

APCS score, with the means computed using the Fisher r-to-z

transformation. For example, the first entry in the first

row, .46, is the mean of the correlations (.49, .43, .44 from

Table 8, Appendix B) among free-response items #1, #2 and #3

for students in the total sample who took the 1-bug Rotate and

the 3-bug Rainfall faulty solution items. The second entry in

the first row, .50, has the same interpretation but is based

on students in the total sample who took the 3-bug Rotate and

the 1-bug Rainfall versions. Since these two groups are

(approximately) random half samples, the two entries should be

equal but for sampling fluctuations. The same is true of the

pair of entries in the fourth row of the table.

Similarly, each pair of entries (row-wise) in the next

two columns is based on random half samples of the "AB" group.

The entries in the first row are the means of the correlations

among the three free-response questions in the APCS "A"

examination. Finally, each pair of entries in the last two

columns is also based on random half samples of the "AB"

group. However, the entries in the first row are now the

Developing and Evaluating

21

means of the correlations among the five free-response

questions in the full APCS "AB" examination.

Comparing the second row to the first, we see that the

mean correlation between scores on the Rotate problem and

scores on the free-response items are just slightly lower than

correlations among the free-response items themselves. On the

other hand, correlations between scores on the Rainfall

problem and the free-response items are substantially lower

(see third row) . There does not seem to be a simple explana-

tion of this finding. While Rainfall was somewhat harder than

Rotate, the standard deviations of the score distributions

were similar. Moreover, only the 1-bug variants of the

Rainfall problem had lower scoring reliability. It would be

useful to collect data on other problems to better understand

these relations.

Comparisons in the lower half of the table mirror those

in the top half. Correlations between scores on the Rotate

problem and the Objective score are somewhat lower than thcse

between the free-response items and the Objective score.

Correlations between scores on the Rainfall problem and the

Objective score are substantially lower.

Two points concerning the Rotate problem are worth

noting. First correlations with the Objective score are

uniformly higher than the mean correlations with the free-

response items. Second correlations involving the 1-bug

variants are uniformly higher than those involving the 3-bug

variant.

BEST COPY AVAILABLE

Developing and Evaluating

22

Insert Table 7 about here

Discussion

This study was motivated by a desire to devclop a non-

multiple choice item that could be reliably and accurately

scored by computer. The availability of valid items of this

type could potentially broaden the scope of standardized

testing and open new vistas in the area of diagnostic

assessment. Building on previous work on the scoring of

Pascal programs, a new constrained free-response item type was

developed and its amenability to automated scoring inves-

tigated. The item type required the student to debug a faulty

program that was meant to accomplish a set series of tasks.

The results were quite encouraging. The)ercentage of

student solutions that could be analyzed ranged from 82% to

97%. Most of the programs that could not be analyzed were

incorrect. For those that could, the classification into

correct or incorrect was highly accurate. The more

fine-grained diagnosis of specific bugs was less accurate, but

still quite promising. The cause and nature of this

inaccuracy (i.e., the types and seriousness of the

misdiagnoses) will need to be explored further.

These statistics represent a substantial improvement over

the results reported for the scoring of unconstrained student

solutions to similar problems. Moreover, neither PROUST nor

MicroPROUST were modified for this experiment. It seems

Developing and Evaluating

23

likely that with some tuning and an expansion of the plan and

bug catalogs, the success rate could be increased. Of course,

interest centers not on these particular problems, or even

variants employing different seeded bugs. Rather, we would

want to demonstrate that these expert systems could be quickly

"educated" to deal with entirely new problems, with comparable

success rates. This goal represents one important direction

for future work,

An obvious limitation of a small-scale study such as this

is that it raises many more questions than it can answer.

Future studies will not only have to investigate the mechanics

of gearing up to analyze many problems but also have to

explore and corroborate the correlational patterns that were

examined in Table 7. One obvious question is under what

circumstances the single-bug or the multiple-bug formats are

to be preferred. Do they have systematically different

psychometric properties? Only added experimentation can

provide answers.

Despite these-- limitations, much remains to be done with

the data already collected. Before constrained free-response

items can be incorporated into stand;,rdized testing programs,

their construct validity must be further explored. The

correlational analyses described above are only a first step.

Additional steps include (1) a detailed substantive analysis

of student solutions, with particular emphasis on comparing

strategies on the free-response and constrained constructed-

response items, and (2) the application of factor analytic

Developing and Evaluating

24

methods to investigate the psychometric relations among the

three item types (multiple choice, free response, and

constrained constructed-response).

On the basis of the evidence accumulated so far, it

appears that the faulty solution item type represents a

plausible complement to the standard item types now employed

in the APCS. The work described above should further

illuminate the differences and similarities among the item

types.

The incorporation of the new item type into the APCS

examination would have substantial effects. For the student

it would give explicit recognition of the importance of the

ability to debug programs. This, in turn, may affect the

content of the APCS curriculum. For the APCS program,

replacirg some of the free-response items with machine-scored

faulty solutions--which are relatively brief--might well

facilitate the inclusion of more non-multiple choice questions

in the exam. Moreover, the cost of scoring the exam would be

decreased because of the reduced numbers of graders required.

Constrained constructed-response items, thought of more

generally than simply as faulty solution problems, may play an

important role in other settings. In computer-based systems

in which assessment is linked to instruction, these items can

serve a very useful function. For example, consider an expert

system that presents students with a series of tasks in which

each successive task depends on the responses to previous

tasks. As soon as the tasks go beyond the conventional

' I

Developing and Evaluating

25

multiple choice format, the system is faced with the burden of

"understanding" the student's response before any inferences

can be made.

If o'i:-n-ended responses are permitted, the results may be

effectively infinite in variety, preserting the system

developer with a nearly impossible job. The introduction of

constrained constructed-response items can substantially

reduce that burden, as we have already seen. Further,

analytic power might be achieved by controlling the

presentation of different item formats. For example, students

might be first routed from multiple choice to the constrained

constructed-response format. Only when they perform at a

sufficiently high level would they be permitted to tackle the

free-response items.

The benefits of such a presentation strategy would be

twofold. First, the students who reach the free-response

items would be more likely to produce unconstrained solutions

that could be analyzed by an expert system. Second, the

system could, in theory, "learn" enough about the student's

knowledge and style from the constrained format to improve its

chances in interpreting the unconstrained solutions. While

this scenario is entirely speculative, it does not appear to

go much beyond present capabilities. Our task is to extend

those capabilities to comfortably include these visions of

future assessments.

Developing and Evaluating

26

References

Bennett, R. E., Gong, B., Kershaw, R. C., Rock, D. A.,

Soloway, E., & Macalalad, A. (In press). Assessment of

an expert system's ability to automatically grade and

diagnose students' constructed-responses to computer

science problems. In R. 0. Freedle (Ed), Artificial

intelligence and the future of testing. Hillsdale, NJ:

Lawrence Erlbaum Associates.

Birenbaum, M., & Tatsuoka, K. K. (1987). Open-ended versus

multiple-choice response formats--It does make a

differenee for diagnostic purposes. Applied

Psychological Measurement, 11, 385-395.

Fleiss, J. L. (1981) . Statistical methods for rates and

proportions. New York: Wiley.

Frederiksen, N., & Ward, W. C. (1978) . Measures for the

study of creativity in scientific problem solving.

Applied Psychological Measurement, 2, 1-24.

Johnson, W. L. (1985). Intention-based diagnosis of errors

in novice programs (Tech. Report No. 395) . New Haven,

CT: Yale University, Department of Computer Science.

Johnson, W. L., & Soloway, E. (1985). PROUST: An automatic

debugger for Pascal programs. Byte, 10(4), 179-190.

Johnson, W. L., Soloway, E., Cutler, B., & Draper, S. (1983).

Bug Collection I (Tech. Report No. 296). New Haven, CT:

Yale University, Department of Computer Science.

Developing and Evaluating

27

Landis, J. R., & Koch, G. G. (1977). The measurement of

observer agreement for categorical data. Biometrics, 33,

159-174.

McNemar, Q. (1962) . psychological statistics. New York:

Wiley.

Sebrechts, M. M., LaClaire, L., Schooler, L. J., & Soloway, E.

(1986). Toward generalized intention-based diagnosis:

GIDE. Proceedings of the 7th National Educational

Computing Conference.

Sebrechts, M. M., Schooler, L. J., & Soloway, E. (1987, May).

Diagnosing student errors in statistics: An empirical

evaluation of GIDE (abstract). Proceedings of the Third

International Conference on Artificial Intelligence and

Education.

Soloway, E., & Ehrlich, K. (1984) . Empirical studies of

Programming knowledge (Research Report #16) . New Haven,

CN: Yale University, Department of Computer Science

Cognition and Programming Project.

Soloway, E., Macalalad, A., Spohrer, J., Sack, W., &

Sebrechts, M. M. (1987) . Computer-based analysis of

constructed-response items: A iemonstration of the

effectiveness of the intention-based diagnosis strategy

across domains (Final Report). New Haven, CN: Yale

University.

Developing and Evaluating

28

Spohrer, J. C. (1989). MARCEL: A generate-test-and-debug

(GTD) impasse/repair model of student programmers (CSD/RR

#687). New Haven, CN: Yale University, Department of

Computer Science.

Spohrer, J. C., Frye, D., & Soloway, E. (1988). A note on

one aspect of MicroPROUST's performance. Unpublished

manuscript.

Ward, W. C., Frederiksen, N., & Carlson, S. B. (1980).

Construct validity of free-response and machine-scorable

forms of a test. Journal of Educational Measurement, 17,

11-29.

Waterman, D. A. (1986). A guide to expert systems. Readjng,

MA: Addison-Wesley.

Developing and Evaluating

29

Table 1

Means and Standard Deviations of the APCS "A" Examination for Study

Samples and the APCS Population

Group

APCS Score

Total
Test
Population
(N=10,719)

Total
Student
Sample
(N=737)

"AB" Test
Population
(N=7,372)

"AB"
Student
Sample
(N=617)

35-item Objective
(scale = 0-35)

Mean 16.1 16.8** 17.5 17.8

SD 6.5 6.5 6.3 6.3

3-item Free-
response
(scale = 0-27)

Mean 11.0 11.5 12.6 12.8

SD 7.3 7.6 7.2 7.3

Composite
(scale = 0-70)

Mean 30.4 31.7* 33.9 34.5

SD 14.9 15.5 14.6 14.9

Free-response #1
(scale = 0-9)

Mean 4.1 4.3 4.7 4.8

SD 3.5 3.7 3.5 3.6

Free-response #2
(scale = 0-9)

Mean 5.3 5.6** 6.0 6.1

SD 2.9 2.9 2.7 2.7

Free-response #3
(scale = 0-9)

Mean 1.6 1.7 2.0 1.9

SD 2.7 2.6 2.9 2.8

Note. All scores are calculated using number-right raw score.

< .05, two-tailed test of total student sample mean with total
test population mean.

**2 < .01, two-tailed test of total student sample mean with total
test population mean.

Developing and Evaluating

30

Table 2

Means and Standard Deviations of the APCS "AB" Examination for

Study Samples and the APCS Population

APCS Score

Group

"AB" Test
Population
(N=7,372)

"AB"
Student
Sample
(N=617)

50-item Objective
(scale = 0-50)

Mean 26.2 27.1**
SD 8.8 8.6

5-item Free-
response
(scale = 0-45)

Mean 16.2 17.0
SD 10.4 10.7

Composite
(scale = 0-100)

Mean 43.7 45.8**
SD 19.1 19.1

Free-response #1
(scale = 0-9)

Mean 4.7 4.8
SD 3.5 3.6

Free-response #2
(scale = 0-9)

Mean 6.0 6.1
SD 2.7 2.7

Free-response #3
(scale = 0-9)

Mean 2.0 1.9
SD 2.9 2.8

Free-response #4
(scale = 0-9)

Mean 2.0 2.4***
SD 2.8 2.9

Free-response 45
(scale = 0-9)

Mean 1.5
SD 2.4 2.4

Note. All scores are calculated using number-right raw score.

**p. < .01, two-tailed test.
***2 < .001, two-tailed test.

Developing and Evaluating

31

Table 3

Ability of PROUST and MicroPROUST to Analyze Student Responses to

Faulty Solution Problems

Group

Total
Number of
Responses

Percent
Analyzed

Percent Unanalyzed
Parsed Unparsed

Total sample
MicroPROUST
Rotate (all) 737 83% 14% 2%

Rotate 1-bug 382 82% 15% 3%

Rotate 3-bug 355 85% 13% 2%

PROUST
Rainfall (all) 734 94% 4% 2%

Rainfall 1-bug 353 95% 3% 1%

Rainfall 3-bug 381 93% 5% ..)%

"AB" sample
MicroPROUST
Rotate (all) 617 85% 13% 2%

Rotate 1-bug 318 83% 15% 2%

Rotate 3-bug 299 87% 11% 2%

PROUST
Rainfall (all) 614 95% 3% 2%

Rainfall 1-bug 297 97% 2% 1%

Rainfall 3-bug 317 94% 4% 2%

Note. Percentage totals may not sum to 100% due to rounding.

Developing and Evaluating

32

Table 4

Agreement Between Handsdored and Computer Scored

Student Responses to Faulty Solutions

Grou

Product-
Moment
Correlation

Total sample
Rotate (MicroPROUST)
All variants
1-bug
3-bug

Rainfall (PROUST)

.86

.88

.82

84
40
44

All variants .62 79
1-bug .51 42
3-bug .86 37

"AB" sample
Rotate (MicroPROUST)
All variants .87 70
1-bug .90 32
3-bug .83 38

Rainfall (PROUST)
All variants .60 68
1-bug .49 37
3-bug .86 31

Developing and Evaluating

33

Table 5

Proportions of Papers Classified by MicroPROUST and a Reader as

Perfect or Imperfect (N=186)

Reader

MicroPROUST
Perfect
Paper

Imperfect
Paper

Total

Perfect
Paper .33 .01 .34

Imperfect .05 .61 .66

Paper

Total .38 .62

Developing and Evaluating

34

Table 6

Performance on Faulty Solution Problems

(Score Scale = 0 - 2.0)

Faulty
Solution

Total
Student
Sample

"AB"
Student
Sample

Rotate (all variants)
Mean
SD

Rotate 1-bug

1.06
.84
614

1.15
.82
524

Mean 1.23 1.34
SD .94 .91

314 265
Rotate 3-bug

Mean .89 .95
SD .69 .67

300 259
Rainfall (all variants)

Mean .91 .98
SD .75 .76

292 248
Rainfall 1-bug

Mean 1.06 1.17
SD .85 .83

143 122
Rainfall 3-bug

Mean .77 79
SD .61 .63

149 126

Developing and Evaluating

35

Table 7

Selected Mean and Individual Correlations for Faulty Solutions

Problems and APCS Scores

Correlation

APCS "A" APCS "AB"
Total Sample "AB" Sample -"Alli" Sample '

1-bug
Ro'te/
3-bug
Rain

3-bug 1-bug 3-bug 1-bug 3-bug
Ro'te/ Ro'te/ Ro'te/ Ro'te/ Ro'te/
1-bug 3-bug 1-bug 3-bug 1-bug
Rain Rain Rain Rain Rain

Relations with Free Responses
Mean Among
Free Responses

Mean Between
Rotate and
Free Responses

Mean Between
Rainfall and
Free Responses

.46

.43

.22

.50 .40 .47 .41

.40 .36 .34 .36

.26 .22 .19 .23

.44

.33

.14

Relations with Obiective Score
Mean Between
Free Responses
and Objective
Score

Between Rotate
and Objective
Score

Between
Rainfall
and Objective
Score

.61

.51

.29

.66 .58 .63 .57

.47 .46 .39 .47

.35 .30 .25 .30

.59

.37

.28

Developing and Evaluating

36

Appendix A

Faulty Solutions Problems

Rotate Array Program

Program specification: A procedure is needed that rotates the elements of an array 5.
with ji elements so that when the rotation is completed, the old value of am will be in 0],
the old value of a[2] will be in a[3],..., the old value of i[n. - 1] will be in a[n], and the old
value of 5.[a] will be in a[l]. The procedure should have 5 and n as parameters. It should
declare the type Item and have a be of type List which should be declared as List =
array[1..Max] of Item.

Instructions. On the next page is a PASCAL program that was written to conform to
this specification. The program contains 1 to 3 bugs (errors). All of the bugs are located
within the lines that are triple spaced. The bugs are not syntactic; the program will compile
and execute, but it will not produce the desired results. On the program on the right,
correct the bugs by deleting lines and/or inserting new ones. Use the program on the left as
your reference copy (both programs are exactly the same). The insertions and deletions
you make will be recorded on a carbon copy of the program that you may keep. To keep
the copy legible, use scratch paper to work out the exact form of the code you wish to
insert, and erase only when absolutely necessary.

To delete a line, place a D in the space '-,.!fore it and draw a line through the code like this:

s[i] := s[i 1];

To insert a new line, write in the new code and then place an I in the space to the left of it.
For example:

s[i]CL11J
Do not use arrows to indicate where lines should be moved in the program; use the delete-
and-insert technique instead. If you want to change part of a line, you should delete the
whole line and insert the corrected one.

Remember to write your name, date of birth, and school at the top of each sheet and to print
legibly.

YOU SHOULD TAKE NO LONGER THAN 20 MINUTES TO COMPLE Lb THIS
PROBLEM.

Rotate Array Program

Please print the following information:

Lastr.ame:j111111111111 I 1 1 I First name:11111111-1i111
Date of Birth (mmiddlyy):1111 Name of school: 1 1 I L 1 1 1 1 I 1 I I J 1 L I I I

Reference Side
(Use this side for reference.)

1 program foo (input, output);
2 const
3 Ma.x = 100:
4
5
6
7
a
9

1 0
1 1

1 2
1 3
1 4 var
1 5
1 6
1 7
1 8 temp : Item;
1 9
2 0
2 1
2 2 i : I-Max;
2 3
2 4
2 5
2 6 begin
2 7
2 8
2 9
3 0 for i := n downto 2 do
3 1
3 2
3 3
3 4 s(i):= s[i -
3 5
3 6
3 7
3 8 := s[ril
3 9
4 0
4 1

4 2 end:
4 3 begin
4 4 Rotale(PassedAsS, PassedAsN)
4 5 i!nd.

tYPe
Item = integer;
List = array(I_Max) of Item;

var
PassedAsS : List:
PassedAsN : integer:

procedure Rotate (vas s : list; n : integer);

Answer Side
(Please mark your corrections on this side.)

1 _program foo (input, output):
2 const
3 Max =
4 tYPe
5 hem = integer;
6 List = array[1..Max] of Item;
7 vat
8 PassedAsS : List;
9 PassedAsN : integer:

1 0 procedure Rotate (var s : list: n : integer):
1 1

1 2
1 3
1 4 var
1 5
1 6
1 7
1 8 temp : item;
1 9
2 0
2 1
2 2 i l_Max;
2 3
2 4
2 5
2 6 begin
2 7
2 8
2 9
3 0 for i := n downto 2 do
3 1
3 2
3 3
3 4 s(i] := s[i I);
3 5
3 6
3 7
3 8 sill := s(n1
3 9
4 0
4 1
4 2 end:
4 3 hegm
4 4 RotatetPassedAsS, PassedAsN)
4 5 end.

Rainfall Program

Program Description. A weather station needs a program to keep track of daily
rainfall. The program must allow the user to type in the rainfall every day. It should reject
negative values, since negative rainfall is not possible. When the user types in '99999', a
sentinel value, then the program should stop accepting input. At that time, the program
should print out the number of valid days that were entered, the number of rainy days, the
average rainfall per day over the period, and the maximum amount of rainfall that fell on
any one day.

Instructions. On the next page is a PASCAL program that was written to conform to
this specification. The program contains 1 to 3 bugs (errors). All of the bugs are located
within the lines that are triple spaced. The bugs are not syntactic; the program will compile
and execute, but it will not produce the desired results. On the program on the right,
correct the bugs by deleting lines and/or inserting new ones. Use the program on the left as
your reference copy (both programs are exactly the same). The insertions and deletions
you make will be recorded on a carbon copy of the program that you may keep. To keep
the copy legible, use scratch paper to work out the exact form of the code you wish to
insert, and erase only when absolutely necessary.

To delete a line, place a D in the space before it and draw a line through the code like this:

To insert a new line, write in the new code and then place an I in the space to the left of it.
For example:

0, ly -ccc.

Do not use arrows to indicate where lines should be moved in the program; use the delete-.
and-insert technique instead. If you want to change part of a line, you should delete the
whole line and insert the corrected one.

Remember to write your name, date of birth, and school at the top of each sheet and to print
legibly.

YOU SHOULD TAKE NO LONGER THAN 20 MINUI ES TO COMPLETE THIS
PROBLEM.

Rainfall Program

Please print the following informauon:

Date of Birth (mmidd/yy): 1_111111 Name of school: I

Reference Side
(Use this side for reference.)

1 Program RainfaIllinput.output):
2 Vat DarlyRamfall,TotalRamfall.MaiRainfall.Aserage : Real:
3 RainyDays.ToulDays : Integer;
4 Begin
5
6
7
8 Rawly Days:- 0; ToulDays:- 0; Max Rainfall:- I;
9

10

1 2 Total Rainfall:. 0; Datly Rainfall
13
14
15
I 6 While tDatlyRainfall <> 99999) Do
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 3
2 9
3 0
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
4 0
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
50
51
52
53
54
55
56
57
58
59
60
61
5 2
6 3
5 4
55

57
58
59
70
71
72
"3

4

7 5

Begin

Wrueln ('Please Elmo' Amount of Rainfall");

ReadlniDaslyRainfall);

If DadyRainfall s. 0 Then

Begin

If DailyRainfall > 0 Then RamyDays RamyDays

TotalRamfall TotalRainfall DallyRamfall.

If Dail yRainfall > MaaRainf all

Then MaAllainfall:DnlyRainfall;

TotalDays TutalDays I

End

Else

Wnieln I Rainfall Must Be Greaser Than 01;

Answer Side
(Please mark your corrections on this side.)

Program Rain 'alltinput.ouiput):
2 Var DailyRainfail.ToalRainfall,MauRainfail.Aserage Real;

3 RamyDays.TotalDays : Integer;
4 Begin
5
6
7
8 RainyDays:. 0; TotalDays:- 0; Sta.:Rainfall:. I.
9

10
1 1

12 TotalRainfall:. 0; DailyRainfall
1 3
1 4
15
16 While (DailyRainfall <> 99999) Do
17
1 8
1 9
20 Begin
21
22
23
2 4 Writeln (Please Enter Amount of Runfain:
25
26
27
28 ReadIntDaJI)Ramfall).
2 9
3 0
3 1
3 2 If DailyRainfall a. 0 Then
3 3
3 4
3 5
3 Begin
3 7
38
39
4 0 If DailyRamfall > 0 Then RamyDays RainyDass - I
4 1
4 2
4 3
4 4 TotalRainfalI TotalRainlall DatiRatnfall.
4 5
46
4 7
4 6 If DailyRainfall > MaaRamfall
4 9
50
51
52 Then MaaRamfall'-DallyRainfall;
53
5 4
55
5 6 TotalDays TotalDays I

9 a
59
60 Erd
61
6 2

E

63
6 4 lse
55
66
67
68 Wtneln Ramfall Must Be Greater Thun 0 ;.
69

1

serage TotalRainfaitToolDays 72

7 4
75
7 5
7 7
7 9

3 g

3 0 ;1 I .,1 Oren 0.rgin 0
s

32 2
33 3

; \ ser Ice \ seine 4

5 0.ritoor 4.1.1.1,10.1m is Ii.ftarnf.tII 10 ?I 5
36 u,sriefm 1 oili ',lumber i1 lb) s is 1 oiaililvst,

ISrricIrri fqal Nuntber Rain. lisys a RarnyDaysl
9 I ,o1

.33 else ss eels 1ri aird Days Entered
9 0 Ind

6
7

a
9
0

Aerage TcuRamfall T,naliiass

:f) Then Be;r)

55(Iteins AstIne is A,Yriet :
welro Masvourr s '.IasRa,,ul 311 10 :

\ intim Total Number Disc is T.111.)3N r.

I,IttelniTutal Number of Rater 1)151 ,s C1s,s(Is.
Erd

Hse ruelnt No Valid DayS Entered-
--Cod

Developing and Evaluating

41

Appendix B

Correlation Matrices for APCS

and Faulty Solution Problems

I

Developing and Evaluating

42

Table 8

Product-Moment Correlations Among APCS "A" and

Faulty Solution Scores for Total Student Sample

Students Taking 1-Bug Rotate/3-Bug
Faulty Solution Variants

Rainfall

Score 1 2 3 4 5 6

1. 35-item Objective
2. Free-response #1 .56
3. Free-response #2 .67 .49
4. Free-response #3 .60 .43 .44
5. Rotate .51 .43 .48 .38 --
6. Rainfall .29 .15 .31 .20 .29

Students Taking 3-Bug Rotate/1-Bug Rainfall
Faulty Solution Variants

Score 1 2 3 4 5 6

1. 35-item Objective
2. Free-response #1 .65
3. Free-response #2 .69 .54
4. Free-response #3 .64 .47 .50
5. Rotate .47 .43 .45 .32
6. Rainfall .35 .24 .35 .19 .26 --
Note. For upper half of table, N = 314 for all correlations except
those with Rainfall for which N = 120. For lower half of table, N
= 300 for all correlations except those with Rainfall for which N =
129. Students whose Rotate or Rainfall solutions could not be
analyzed are excluded from the computation of all correlations.

Developing and Evaluating

43

Table 9

Product-Moment Correlations Among APCS "A" and

Faulty Solution Scores for "AB" Student Sample

Students Taking 1-Bug Rotate/3-Bug
Faulty Solution Variants

Rainfall

Score 1 2 3 4 5 6

1. 35-item Objective
2. Free-response #1 .53 --

3. Free-response #2 .63 .40

4. Free-response #3 .58 .40 .41

5. Rotate .46 .34 .39 .36

6. Rainfall .30 .12 .34 .20 .32

Students Taking 3-Bug Rotate/1-Bug Rainfall
Faulty Solution Variants

Score 1 2 3 4 5 6

1. 35-item Objective
2. Free-response 41 .60

3. Free-response #2 .65 .50

4. Free-response 43 .63 .44 .47

5. Rotate .39 .35 .37 .29

6. Rainfall .25 .14 .29 .13 .20 --

Note. For upper half of table, N = 265 for all correlations except
those with Rainfall for which N = 104. For lower half of table, U
= 259 for all correlations except those with Rainfall for which N =
112. Students whose Rotate or Rainfall solutions could not be
analyzed are excluded from the computation of all correlations.

Developing and Evaluating

44

Table 10

Product Moment Correlations Among APCS "AB" and

Faulty Solution Scores for "AB" Student Sample

Students Taking 1-Bug Rotate/3-Bug Rainfall
Faulty Solution Variants

Score 1 2 3 4 5 6 7 8

1. 50-item Objective
2. Free-response #1 .52
3. Free-response #2 .66 .40
4. Free-response #3 .57 .40 .41
5. Free-response 44 .52 .32 .36 .48
6. Free-response #5 .57 .34 .38 .51 .45 --
7. Rotate .47 .34 .39 .36 .36 .34
8. Rainfall .30 .12 .34 .20 .17 .29 .32 --

Students Taking 3-Bug Rotate/1-Bug Rainfall
Faulty Solution Variants

Score 1 2 3 4 5 6 7 8

1. 50-item Objective --
2. Free-response #1 .61
3. Free-response 42 .66 .50
4. Free-response 03 .64 .44 .47
5. Free-response 44 .48 .45 .40 .37
6. Free-response 45 .55 .40 .39 .53 .43
7. Rotate .37 .35 .37 .29 .32 .34
8. Rainfall .28 .14 .29 .13 .10 .05 .20 --
Note. For upper half of table, N = 265 for all correlations except
those with Rainfall for which N = 104. For lower half of table, N
= 259 for all correlations except those with Rainfall for which N =
112. Students whose Rotate or Rainfall solutions could not be
analyzed are excluded from the computation of all correlations.

