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Abstract

This paper begins with a description of a set of difficulties in classes where
students were given problems which asked them to explore and "make conjectures." After
presenting background on debates about discovery learning, changing philosophical
conceptualizations of the role of Lie empirical in mathematics, and innovations involving
the use of geometry construction programs, the paper focuses on two philosophical views
on induction and the origin of conjectures. These philosophical views are used to
distinguish two approaches to and rationales for exploratory laboratory problems in
geometry classes. Concerns are then raised about one of these approaches which may be
carried out under the banner of current reforms but which may lead students to
conceptualize classroom exploration as a search for the single idea on a teacher's mind.



WHERE DO STUDENT CONJECTURES COME FROM?
EMPIRICAL EXPLORATION IN MATHEMATICS CLASSES

Daniel Chazan

As a researcher on a project helping teachers integrate C7Ipirical exploration into

their high school geometry classes, I had occasion to visit classrooms where new sorts of

tasks were introduced, where students were asked to "make conjectures," Here is some of

what I saw.

I saw teachers give students problems which they chose as well-structured,

"simple" problem appropriate for introducing this new activity into their classes. An

example of such a "simple" problem might be:

Use the software to draw a median
in a triangle. Measure the lengths
of the new segments created along
the side of the triangle (CD and
DB). Repeat these steps on a series
of triangles and make conjectures.'

The problems told students how to generate data and which data to collect. Then students

were asked to examine their data and made generalizations, conjectures. I saw students

dutifully collect the data but, then, not know what to do. They did not know what it

meant to "make conjectures." They seemed unaware of what, to the teachers, were self-

evident patterns in the data.

Teachers gave separate grades for data collection and conjectures. The data

collection grades were high, but the conjecture grades were very low. An uncomfortable

dynamic was created; after an exploration, the teacher would lead the students to see a

pattern in their data or would say, "What you should have found was . . ." Sometimes,

when students heard what their teacher was looking for, they would say that they had

'This problem has an added twist because students are being asked to "discover" a property that is the
definition of a median.
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noticed the pattern but didn't realize it was what the teacher wanted. One teacher began

to elicit these patterns by asking, "What is the duh?" implying that some patterns were so

self-evident that they might not seem worth mentioning.

In ,,ne class, lie teacher thought the students needed more direction
and . . . was convinced that this difficulty [making conjectures] stemmed
from an inability to see patterns in the numerical data. She therefore
carefully structured their [students1 inquiry, rewriting problems, providing
explicit directions and charts for recording data. She hoped that this
structured approach would make patterns in the data apparent ant. lead
students to conjectures. (Yerushalmy, Chazan, and Gordon 1987, p. 10)

This teacher had well-thought-out reasons for using charts to structure the activity

for students. The charts reduced some of the students' anxiety with a new type of

activity. They specified ". . . what needs to be done [in the sense of data to be collected]

to create a successful solution" (Yerushalmy, Chazan, and Gordon 1990, p. 239). Yet, the

chatts didn't solve the problem. Students' difficulties making conjectures were greatest

with problems that provided a chart indicating the measurements to be made: While the

charts suggested which data to collect, there wasn't similar guidance for how to create

generalirations. As a result, "in a class where tables and charts were used frequently,

students ignored written instructions and turned directly to them [the charts], limiting

their inquiry to the headings specified in the charts" (Yerushalmy, Chazan, and Gordon

1990, p. 239).

These initial observations intrigued me and led me to think about how to help

students "make conjectures." My explorations led to readings in the philosophy of science

about theories of induction. These readings made it clear that my question was not a

technical one but one that must be addressed with respect to one's goals and purposes in

having students "make conjectures." This deepening of the question sensitized me to

different goals and purposes that teachers had for two different sorts of exploratory

activities they used in their classes.

Michigan State University East Lansing, Michigan 48824-1034 CP 95-8 Page 2



Empirical Exploration in Current Mathematics Education Reform

In current mathematics education reform efforts, there is little discussion of the

goals of empirical inquiry or the relationship between inquiry and mathematical ideas

which students are to develop. Too often, such hiquiry, In and of itself, seems to be one

of the goals of reform efforts.

One goal of involving students in empirical inquiry seems based both on an image

of mathematical practice and on a desire to have students do mathematics. In presenting

its view of mathematical practice, the National Council of Teachers of Mathematics

(NCTM) suggests in its publication Curriculum and Evaluation Standards for School

Mathematics (NCTM 1989, P. 7) that "making conjectures, gathering evidence, and

building an argument to support such notions are fundamental to doing mathematics." In

many cases, the Standards' illustrate the process of having students do mathematics with

activities involving manipulativesobjects like base 10 blocks which are used as teaching

tools (known in the '60s as concrete embodiments) or microworlds (like the geometry

software described below), a popular type of design in the mathematics education

software design community. Microworlds in mathematics are intended to allow students

to explore models of mathematical concepts "empirically" by manipulating objects which

appear on a computer screen.

Support for having students make conjectures based on empirical exploration is

also marshaled from constructivist views of learning popular in the cognitive sciences

(NCTM 1989, p. 10). Yet neither the 1989 Standards nor other reform documents (for

example, NCTM 1991; National Research Council and Mathematical Sciences Education

Board 1989) explicitly outline views of the relationship between students' empirical

experimentation and the mathematical ideas that they develop (Schmittau 1991).

As Ball (1992) points out with reference to manipulatives, this omission may

result in problematic pedagogy in the name of student-centered learning. Specifically, she

argues that son:e uses of manipulatives assume "that mathematical ti uths can be directly

'seen' through the use of concrete objects" (Ball 1992, p. 17), while her classroom

'Standards refers to Curriculwn and Evaluation Standards for School Mathematics (NCt M 1989) and
Professional Standards for Teaching Mathematics (NCTM 1991).
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experience suggests that students may interpret these objects differently than is intended

(Ball 1992, p. 18).4 Similarly, experience with microworlds leads me to believe that this

omission may result in the use of exploratory microworlds advocated by reform

documents in ways which cause students to conceptualize exploration as figuring out

what the teacher would like them to "fmd."

This paper concentrates on the relationship between empirical exploration by

students and the conjectures they create.5 I believe that the arguments made in the paper

are broadly useful in conceptualizing empirical exploration in the mathematics class,

including work with graphing calculators, manipulatives (or concrete embodiments), and

microworlds. However, in order to ground the philosophical discussion in teaching

practice, I will illustrate these issues in the specific context of instructional uses of

geometry construction programs (like Schwartz et al. 1985; Laboratoire Structures

Discretes et Didactique 1988; Jackiw 1991), microworlds for use in high school geometry

classes which have received acclaim from the mathematics education reform community.

The paper will not address exploration in other disciplines, like science, in which the role

of empirical evidence is arguably different.

The first section of the paper situates the current discussion in a historical context

by rehearsing formulations of the central questions in the 1960s' debates about discovery

learning. The second section outlines philosophical issues surrounding the "empirical" in

mathematics, while the third uses a description of The Geometric Supposers6 to illustrate

the capabilities of geometry construction programs. The fourth section contrasts two

views of inductionthe creation of general notions from specific examplesby

illustrating them with two types of laboratory exploration problems posed by teachers

"For an example of a philosophically rigorous approach to this issue, see Nesher (1989).

'This paper focuses on the empirical and the particular in the context of students' creation or discovery
of mathematical ideas. For an article which explores the teaching of deductive proof in light of quasi-empirical
developments in the philosophy of mathematics, see Chazan (1990).

'This is the software that was used in the project in which I participated. I use it because it is the
program with which I am most familiar. My remarks would apply equally well to other geometry construction
programs.
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using geometry construction programs. The fifth and fmal section presents a principled

critique of one type of exploratory activity.

Changing Conceptions of Student Exploration

As constructivist views of learning began to gain ascendancy and while

curriculum projects like the New Math were being developed, there was a debate about

discovery learning. The U.S. Department of Health, Education, and Welfare gave

Stanford University and the Social Science Research Council a contract to convene a

conference. The central question of the debate was formulated differently by the various

participants in the debate. Shulman and Keislar (1966) include various formulations in

their volume of proceedings, Learning by Discovery: A Critical Appraisal. An

unidentified participant offered:

When people advocate discovery, they are advocating the withholding of
answers from pupils. The teacher knows how an answer is obtained, but
the students do not. Hence, the major question in the issue of learning by
discovery is the extent to which you get better pedagogy by not telling the
student what the teacher already knows. (P. 27)

The editors suggest that this central question is enacted on instructional, curricular,

psychological, and research levels. For example, at the psychological level:

"[The] question becomes, What is the transfer value of statements of
principles given to a subject, as contrasted with individually derived
principles?" (P. 181)

Other researchers lamented that the word "discovery" doesn't capture a single

phenomenon. During the conference, Robert Davis presented a film in which he taught a

junior high school mathematics class a unit on the multiplication of matrices. As a

practitioner, he said:

It is my present notion that there are many different kinds of discovery
experience, and we confuse the issue badly when we treat discovery as a
single well-defmed kind of experience. (P. 114)
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The editors summarize the discussion which followed the examination of this film by

indicating ways in which discovery experiences might differ:

There appeared to be two independent axes operating in this definition of
teaching by discovery. One was the extent to which "messing around" was
characteristic of the behavior of the student. The second was the extent to
which students were called upon to invent or discover facts or
generalizations in the subject matter, in contrast to being told the given
statements directly. In messing around, the -tudents may generate a wide
variety of possible gap-fillers, all of which may be equally acceptable to
the teacher.. . . In contrast to messing around, the object of discovery was
to come up with one right answer. (P. 129-30)

At the same time, in their conclusion, Shulman and Keislar use a quote from Dewey to

subvert the notion of "defining" what is meant by discovery learning:

"Intellectual progress usually occurs through sheer abandonment of
questions together with both of the alternatives they assume . . ." We have
seen in this volume a recurrent call for this kind of reformulation of the
present issue . . . It is the hope of the authors of this chapter that a
highlighting of the terms of the controversy will hasten the process of
reformulations rather than impede it. (P. 198)

I do not know whether the hope of the authors was borne out; however, since the

publication of their volume, there has been some reformulation of the question, or at least

a change in the vocabulary. When describing pedagogy in which students "mess around,"

the terms "inquiry" and "exploration" are now used more often than "discovery."

In judging whether this "messing around" leads to "desirable pedagogy,"

researchers now consider a wider range of pedagogical goals; the desirability of pedagogy

is not gauged solely by student achievement on timed, paper-and-pencil examinations.

Alternative assessments are advocated to assess student learning (e.g., Webb 1992).

Pedagogy is also scrutinized for the messages it presents about the origins of

mathematical knowledge (e.g., Nickson 1992).

Little has been done, however, to flesh out Robert Davis's notion of different

kirids of discovery learning. As a first step, this paper distinguishes between two

pedagogical strategies for incorporating student empirical exploration into mathematics

Michigan State University East Lansing, Michigan 488241034 j CP 95-8 Page 6



classes. Later, I critique one such strategy which can deteriorate into students trying to

guess what is on the teacher's mind. I hope thst this distinction will encourage others to

pursue more careful characterizations of different strategies for incorporating empirical

exploration into mathematics classes.

I now turn more specifically to an examination of the use of empirical expi_ Lion

in geometry classes. I begin with philosophical views about the empirical in inathematics

before introducing a description of geometry construction programs.

On the Empirical in the Philosophy of Mathematics

Traditional rationaEsts' views of mathematics, like the views presented by

Nagel (1956), suggest that mathematics, unlike science, does not describe natural objects

and is not dependent on nature. In such views, mathematics is not subject to falsification

through experience; the "facts" of nature cannot call mathematical truths into question.

For example, he argues that if experimentation revealed that, when adding gallons of

alcohol, seven plus five is not twelve, one's confidence in arithmetic would not and

indeed should not be shaken or influenced. Instead, one should question whether addition

of whole numbers is the correct mathematical tool to model the combinations of two

volumes of liquid alcohol. Scheffler (1965, p. 3) illustrates such a rationalist position by

arguing that:

A diagram may well be used to illustrate' a geometrical theorem, but it
cannot be construed as evid2nce for the theorem. Should precise
measurement of the diagram show that it failed to embody the relations
asserted by the theorem, the latter would not be falsified. We should rather
say that the physical diagram was only an approximation or suggestion of
the truth embodied in the theorem.'

While not suggesting that mathematical objects are empirical in the same way as

the objects of scientific study, Imre Lakatos disagrees and points to "A Renaissance of

'Author Schemer's italics.

'Indeed, it was a combination of thinking of this sort and examples of misleading diagrams which led
many textbooks in the late 1800s to avoid including diagrams.
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Empiricism in the Recent Philosophy of Mathematics" (Lakatos 1586). Along with other

philosophers Ric... Putnam (1986), Kitcher (1986), and Tymoczko (1986); historians of

mathematics like Grabiner (1986); and mathematicians like P. Davis (1986), Polya

(1954), and Hersh (1986), he makes cogent arguments for the importance of the

"empirical" and the particular in the practice of mathematics. Such a view calls for

concomitant revisions in philosophical views of mathematical practice.'

To argue his point, Lakatos (1976) presents an imagined classroom in which the

discussion mirrors the historical development of the theory of polyhedra. The text begins

from a relationship between the vertices, edges, and faces of polyhedra noted by the

mathematician Euler, V - E + F = 2. In Lakatos's "historical" classroom, this result is

corroborated, proven (with a proof historically attributed to Cauchy), and then "empirical"

counterexamples arise. These counterexamples force a reevaluation of the accepted

theory. In the course of the discussion, the class takes up the following examples (see

Figure 1) which suggest refinements both in their definitions of polyhedra and their

proofs. In each of these cases, V - E + F # 2. Interestingly, Lakatos notes that the nested

cubes counterexample suggested itself to one mathematician after examining a

mineralogical collection in which there was a transparent crystal enca:Ang a violet one

(Lakatos 1986, p. 13, footnote 1).

Figure 1. Nested cubes, the double prism, and the (thick) picture frame

'The introduction of computers into mathematical practice has helped fuel this reevaluation of the role
of the empirical both in the discovery/creation and in the justification of mathematical ideas. See
Tymoczko (1986) for an analysis of the ramifications of the proof of the Four Color Theorem for understanding
justification in mathematics and Gleick (1987) for descriptions of the explorations behind recent developments in
Chaos Theory.
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While Lakatos does not describe these mathematical objectS (the counterexamples)

as empirical, sensory objects, he argues that proven mathematical results axe elaborated

and refmed by a dynamic of proofs and refutations. Thus, in contrast to Nagel, Lakatos

suggests that mathematical results are indeed open to falsification through experience

with mathematical objects. He later names his view "quasi-empiricism."

If we find Lakatos's description of the role of experience in mathematics

plausible, it is reasonable to investigate the role of these objects in the development of

mathematical ideas. Within Lakatos's imagined classroom, there are different views about

the relationship between empirical data (examples) and the development of conjectures.

Beta, a student in the class, suggests that data precedes conjectures. He argues that his

original conjecture (V E + F = 2) was suggested to him by the facts appearing in a

table of data about the vertices, edges, -rid faces of polyhedra. The teacher disagrees

strongly and labels this view as "the myth of induction."

Beta: Then what suggested V - E + F = 2 to me,'' if not the facts,
listed in my table?

Teacher: I shall tell you. You yourself said you failed many times to fit
them into a formula. Now what happened was this: you had
three or four conjectures which were quickly refuted. Your table
was built up in the process of testing and refuting these
conjectures. Naive conjectures are not inductive conjectures: we
arrive at them by trial and error, through conjectures and
refutations. But if youwronglybelieve that you arrived at
them inductively, from your tables, if you believe that the
longer the table, the more conjectures it will suggest, and later
support, you may waste your time compiling unnecessary data.
Also, being indoctrinated that the path of discovery is from
facts to conjecture, and from conjectures to proof (the myth of
induction), you may completely forget about the heuristic
alternative: deductive guessing. (Lakatos 1976, pp. 73-74)

The teacher suggests an alternative view of the relationship between examples and

conjectures. Rather than the examination of a collection of examples leading to a

°Author Lakatos's italics.
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conjecture, conjectures lead to the examination of examples. Stronger conjectures are

built out of the corroboration and refutation of prior conjectures.

This debate over the relationship between examples and conjectures presents an

exciting challenge to philosophers of education who suggest that students' learning

experiences should help them appreciate the pr cesses used in the disciplines (for

example, Scheffler 1965), to those advocating that teachers acquire pedagogical content

knowledge (for example, Shulman 1987), and to mathematics educators who believe that

"mathematical theory and practice should be reflected in the secondary school

curriculum" (Hanna 1983, p. 3) In particular, this debate suggests that mathematics

education needs to develop its views of the "empirical" in mathematics teaching,' yet, for

most practicing and prospective high school teachers taught a rationalist view of

mathematics, the empirical and the particular is almost by definition nonmathematical.

This situation raises questions: As philosophers' and practitioners' views of the

processes used in a discipline like mathematics change, how should these changes be

examined critically with teachers interested in changing their teaching practice? More

pointedly, are all approaches to teaching mathematics which involve students in empirical

exploration created equal? Are there grounds for preferring some approaches over others?

Teaching With Geometry Construction Programs

Traditional histories of mathematics celebrate the Greek creation of systematized,

nonempirical, Euclidean geometry (e.g., Boyer [1968] 1985). In line with the celebration

of this progress away from the empirical, traditional geometry courses reify deductive

reasoning as the only way to decide the truth of statements and dismiss empirical

verification as a nonmathematical tool (e.g., Jurgensen, Brown, and King 1980, p. 27).

This trend became so pronounced at the time of the development of non-Euclidean

"Edwin Moise (1975) argues that geometry is an especially important course in the secondary math
curriculum because it plays a special role in helping students see how mathematics work. It is the only place in
the high school curriculum where proof is emphasized.

"This seems especially important in light of current reforms. For example, in college-level courses, the
Mathematics Association of America is now actively promoting "laboratory" calculus courses.
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geometries that it was suggested that all diagrams should be omitted from geometry texts

lest students be led erroneously to rely on diagrams (Greenberg 1980, p. 48).

The introduction of microcomputers into classrooms has led to a daring challenge

to this view of the pedagogy of geometry. In the early 1980s, building on the ease and

speed with which computers can draw diagrams, Judah Schwartz and Michal Yerushalmy

created computer software called The Geometric Supposers to reintroduce the empirical

into geometry classes. Their program is composed of three sets of electronic tools: a

compass and straightedge, a ruler and protractor, and a repeat function.' The user

chooses an initial shape (e.g., a right scalene triangle), creates a diagram with the

compass and straightedge tools (e.g., draws a median in the original triangle and two

medians from the foot of this median), makes measurements of the parts of the diagram

(e.g., the areas of the four subtriangles), and can then repeat this construction and these

measurements on a new initial shape (e.g., any other type of triangle).

A

acute scalene
areas all 3.21 units

right scalene
areas all 4.06 units

obtuse scalene
areas all 3.15 units

Figure 2. Drawings and measurements created by repeating a single procedure

With the computer, one can quickly produce a series of diagrams for any construction

and a set of data about those diagrams. The availability of this empirical information

makes possible a new pedagogy in geometry (Schwartz 1989).

Because geometry is usually taught to college-bound high school students in the

United States, a large portion of the course is devoted to production by the students of

short deductive proofs for statements provided in the textbook. Students know that these

"Other construction programs have similar capabilities but slightly different architectures. Recent
versions of geometry construction programs make use of the "mouse" which was not available when the first
geometry coustniction programs appeared.
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statements have been "proven" year after year by others sweating at their desks. Teachers,

texts, and students assume that the truth value of these statements has been established.

In traditional texts (like Jurgensen et al. 1980), these assignments are typically

given with a diagram and a description of the "given," that which the student is to assume

to be true from the start, and the "to prove," that which the student must show to be true.

In textbooks, the ratio between diagrams and problems is usually one to two; for every

diagram, there are two problems, an odd-numbered and an even-numbered problem.

With geometry construction software, the ratio of diagrams to problems is inverted

and multiplied. Diagrams proliferate. Rather t' In have students write deductive proofs for

statements from the text, constructions ("the givens") are described for students, usually

in a worksheet format. Using the measurement capabilities of the software, students then

create diagrams that fit these givens ane .--xplore these diagrams to develop conjectures

about all the diagrams which share these givens. It is these conjectures, whose truth value

is always in some doubt, which students then attempt to prove deductively (NCTM 1989,

p. 158).

Two Pedagogical Approaches and Their Philosophical Bases

Are all pedagogical approaches which involve students in empirical exploration

created equal? I will argue that they are not, but, in order to do so, I must distinguish

between different approaches and their underlying theories about the origins of what

Lakatos calls "naive conjectures." In Philosophy of Science: The Link Between Science

and Philosophy, Philip Frank (1957) makes a distinction between two types of

inductioninduction by hituition and induction by enumerationand reports about

conflict between Mill and Whewell over their roles in the origins of scientific theories

(Frank 1957, pp. 316-22). While this distinction may not be as sharp as Frank suggests, I

will use it to characterize different ways teachers organize student empirical exploration

in geometry.
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Induction by Enumeration and Discovery Problems

According to Frank (1957, p. 316):

[Induction by enumeration describes the collection of] a series of observed
events in which we recognize that some sequences of events repeat
themselves again and again . . . In this context, we mean by "law of
induction" the assertion that after such uniformities of sequences have been
observed through many repetitions without exception, or with few
exceptions, this uniformity will go on forever, provided that the conditions
in the surroundings are not changed.

This is Beta's view, that his table "suggested" the conjecture, yet it does not explain how

one knows which aspects of experience to count and put in one's table. Frank goes on to

identify this method for arriving at general conclusions with superficial views of the

scientific method (Lakatos's teacher's myth of induction) and suggests that Mill believed

that this kind of induction is used to find new theories (Frank 1957, pp. 318-19).
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This description of the way people create general laws, or students create

conjectures, is evident in the practice of many teachers and the suggestions of many

curriculum materials (Carey et al. 1986). Geometry teachers using geometry construction

software who hold this belief give their students problems like the one described earlier

which, in addition to specifying a construction to be made, also suggest a set of

measurements to be taken (see Figure 3).

"Discovery" problems of this type are typically designed toward a specific content

goal. The goal is to bring students to "discover" an important relationship or theorem

which the teacher has in mind and which is central to the cours.1:t content (Serra [1993]

takes this approach). For example, in Figure 3, in the problem on the left, students are

asked to discover that the sum of the interior angles of a triangle is 180 degrees, and, in

the problem on the right, they are expected to conjecture that the midsegment of a

trapezoid is half as long as the sum of its bases.

The rationale for such focused exploration, as opposed to teacher telling, flows

from a theory of discovery learning; students are more likely to remember/learn/transfer

ideas which they discover themselves than those introduced to them in a lecture. For this

reason, it is important to have students explore and discover the central ideas of the

course, the ones which the teacher most wants the students to know.

Teachers using such tasks have Beta's linear view of the development of

conjectures (the one criticized by Lakatos's teacher). First, students collect the data which

the teacher or problem request, and then a conjecture is developed from analysis of

patterns in the data. In such an approach, teachers ask students to go to the computer lab,

create the construction, and collect the requested measurements. Frequently, they will

then tell their students to take these data home "to make their conjectures." In this view,

lab time is not a time to think about the data; lab time must be used to collect as much

data as possible, and frequently there isn't "enough time" during this period for students

to make their conjectures. Many teachers who work in tracked situations with students of

low achievement feel that they must work this way with their students, though they might

work with other students differently. They speak of their students as "needing structure."
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Induction by Intuition and Guided Inquiry Problems

By contrast, in Frank's (1957, p. 317) description of induction by intuition:

[People find general laws] by what we may call "intuition" or
"imagination," or perhaps just "guessing" [Lakatos's teacher's "deductive
guessing"?], and test the results of such intuitions by comparing the results
with actual sense observations . . . This procedure leads us also from the
observation of single facts to the statement of general laws because there is
no guessing at a general law before a certain number of individual facts
have been observed."

This view of the creation of general laws is manifest in geometry teachers' pedagogy

when they use more open-ended, "guided inquiry" problems which can lead to a wide

range of conjectures. Teachers guide student inquiry by choosing constructions which

have pedagogically relevant relationships. Students may still wonder why they are

exploring a particular construction at a particular time. For example, Figure 4 is a

problerr that might be given after students have worked with the concept of similarity of
triangles.

As in the description of "messing around," teachers using a problem like this one

do not have an investment in the "discovery" of a particular conjecture; they would like

students to use the ideas studied in class to explore the assigned construction. In such an

approach, students occasionally raise ideas that are unfamiliar to the teacher or had not

occurred to the teacher. For example, here are some of the ideas that a group of students

developed in response to the problem in Figure 4 (Education Development Center 1987):

The triangle whose vertices are the reflected points is similar to the
triangle whose vertices are the "feet" of the altitudes.
The sides of these two triangles are parallel.
The sides of these two triangles are in a 2:1 ratio.
The altitudes of the original triangle are the angle bisectors of the
triangle whose vertices are the "feet" of the altitudes.

'Notice that, in Frank's description of induction by intuition, there is an examination of individual facts
before the creation of a guess. Here is where the distinction between the two types of induction can become
fuzzy. A skeptic might argue that it almost seems as if the difference boils down to the number of cases
examined before making a guess.
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If the altitudes are extended, they also bisect the angles of the
triangle whose vertices are the reflected points.

Students in other classes that used this problem explored relationships between the type

of original triangle (acute, obtuse, right, . . .) and the types and locations of the triangles

created by connecting the reflected points. Others noticed that the reflected points and the

vertices of the original triangle lie on the same circle. One group also developed formulas

relating the measures of the angles in the original triangle and those of the angles in the

reflected triangle (Yerushalmy and Houde 1987).
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Figure 4. A 'guided inquiry'. problem (Yerushalmy and Houde 1987)

Michigan State University East Lansing, Michigan 488241034 CP 954 Page 16



In geometry, guided inquiry problems tend to be about complex constructions

which can be &composed into many subfigures (more than those in discovery problems).

The problem may suggest a few areas for exploration or measurement, but it assumes that

students must take responsibility to decide which questions to explore and which

measurements to choose to test the hypotheses they have developed based on their

intuitions (from prior experience and knowledge developed in the class) about the figures.

Some of these hypotheses will be expected by the teacher, others may not be.

A rationale for exploration of this sort is to have students use previously

developed ideas as intellectual tools to create new ideas. The implicit theory of learning

is that, by using the central ideas of the course to develop other ideas, the students will

come to kliow these central ideas thoroughly. However, this theory of learning doesn't

specify how these central ideas are learned. They may indeed be told, but they are

learned or understood through use. Their importance and centrality become clear by

virtue of their utility.

Teachers working with such problems suggest that their students go into the lab,

create an instance of a construction, examine the resulting diagram, use all their

accumulated knowledge to make hypotheses about that single case (or maybe a few

others), test their hypotheses, and then ask themselves, "What if the figures were not the

same? What if it was slightly different? Would these conclusions still hold?" as a spur to

further empirical work. Finally, students are asked to develop written conjectures that

outline the results which they have tested empirically and think warrant deductive proof.

Yet, these steps are not deemed to follow in a linear order. As ideas are explored,

revised, or discarded, the student may move back and forth among each of these steps.

They mey even turn to proving deductively as a way to spur further questions for

empirical study. To help their students learn to be proficient explorers and locate their

progress among these steps, teachers using these problems distinguish between hypotheses

which are ideas that have not yet been tested empirically, obs3rvations which are

conclusive remarks about specific cases, conjectures for those general ideas which have

withstood empirical testing but have not been proven deductively, and, finally, theorems

for those which have been proven deductively.
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A Critique of the Use of Discovery Probletns

It is often very hard to have critical dialogue about differences in teaching. On the

one hand, important differences are sometimes treated as purely stylistic or personal; on

the other hand, there are many instances in which teaching is evaluated as good or bad in

light of a small number of actions taken out of context and their match or mismatch with

a reformer's vision. Yet, as mathematics teachers, following the Standards' emphasis on

student exploration, begin to engage students in empirical exploration, it is important for

them to develop a language with which to examine critically the ways exploration is

being used as a pedagogical strategy. Such an examination may help inform changes in

teaching practice adopted as a result of the reform efforts.

My initial misgivings about discovery problems stemmed from my observations of

students' difficulties making conjectures. Teachers and students in the classes I described

were having difficulties creating shared meaning for the term "conjecture." The task was

a different one from those to which students and teachers were accustomed; yet the

structure that teachers wanted to provide seemed only to exacerbate the problem. These

misgivings deepened as I visited with other teachers around the country who were

beginning to use geometry construction programs. It seemed that the first ideas people

had for student explorations were usually discovery problems. While I appreciate the

desire to help students be successfula potential embedded in the structure of discovery

problemsI prefer other types of problem. I present below two sets of reasons for this

preference: one set is pragmatically related to students' difficulties making conjectures,

while the other set focuses on the kind of teaching teachers seek to create.

The first set of reasons is structured around explanations for the phenomenon of

students having difficulties making the conjectures, explanations which argue that this

phenomenon is not surprising. In regard to students' difficulties making conjectures,

discovery problems are reminiscent of "funneling""procedures which seem to begin with

great openness, but then narrow the student's options until the 'desired' response is

virtually guaranteed" (R. Davis 1992, p. 342-43)and a "dozed questioning" style, where

the teacher begins a sentence, pauses to have a student fill in a word, and then completes

the thought as if the exchange had not occurred (Pinun 1987). In analyzing the sacrifices
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involved with the cloze questioning style, Pimm (1987, P. 53-54) notes the difficulties

created because "the amswer can usually only be a single word which fits in with the

grammatical structure already specified by the 'floating' part of the teacher's utterance."

There seem to be similar difficulties with discovery problems.

A related psychological argument, made by Inhelder (Karmiloff-Smith and

Inhelder 1977, p. 305) in an article titled "If You Want to Get Ahead, Get a Theory," is

that, in order to make thoughtful progress, learners need to consider goal and means

simultaneously: "Only when goal and means are considered simultaneously do pauses

precede' action."16 In the discovery problems, this is not the case. The teacher indicates

the means by telling students how to make the construction and which data to collect

without indicating why these data are important or useful. After all, indicating why these

data are useful or important may "give away" the central result, which is to be

discovered. As a result, students may have no idea why they are collecting the requested

data; there may not be a question guiding their exploralion. (Yerushalmy et al. [1990]

indicates that this criticism of discovery problems has some validity, especially with

students who have been less successful in mathematics.) In contrast, in the guided inquiry

problems, the construction is chosen for students, yet students then must decide which

questions they would like to explore about this construction and figure out how to

explore these problems.

A third explanation for why students have difficulty making conjectures with

"simple" discovery problems is based on views of how knowledge is created. Those who

theorize about the i,eneration of knowledge simply no longer believe the common sense

notions which underlie the view that knowledge is created by what Frank (1957, p. 303)

terms "induction by enumeration." Much greater weight is now given to the categories

which observers bring to their explorations. Thus, it does not make sense to have students

"blindly" collect a lot of data to examine subsequently for patterns.

"Author Inhelder's italics.

'Similar arguments appear in Kuhn et al. (1988).
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The second set of reasons for being critical of discovery problems involve

messages such problems send about the nature of mathematics and the roles of teachers

and students in classrooms. Reform documents embrace a dynamic view of mathematical

practice. In such a view, once a problem has been developed, isolated, or suggested to

them, mathematicians must decide which aspects of the problem they wish to attend,

which data to collect.' As Polya indicates, they must decide which aspects of the

'question are crucial, or of inte7est, and which are not. The explorations then undertaken

are not linear ones directed towards a single goal (even though the title of one of his

books, How to Solve It, and its four-stage heunItic might give a different impression).

These explorations frequently end up in unexpected places or entail the creation of new

mathematics. Thus, when "trying to fmd the solution, we may repeatedly change our

point of view, our way of looking at the problem. We have to shift our position again

and again. Our conception of the problem is likely to be rather incomplete when we start

the work" (Polya 1945, p. 5). Finally, once results have been developed, they must be

communicated to others who may be skeptical and who have not shared in one's

exploration of examples. In such situations, deductive proofs are an established means in

mathematical communities for communicating ideas and convincing one's peers of the

validity of one's results.

The rhetoric of reform efforts emphasizes having students do this kind of

mathematics, yet an approach based on induction by enumeration leads to a pedagogy

which seems to contradict the view of mathematical practice embraced in reform

documents. In these problems, there is only one answer of importance.

A fmal reason for being critical of discovery problems is their relationship to

efforts to change the roles of teachers and students in classrooms. If such problems

degenerate into an activity where students are guessing what is on the teacher's mind, the

teacher is still the ultimate authority and arbiter of the correctness of student's ideas; the

teacher's ideas are the most important ideas in the classroom.

By way of contrast, the guided inquiry type of problem supports a teaching style

which alters the roles of students and teachers. It emphasizes the importance of students'

"A series of interesting examp1e-3 are given in Gleick (1987).
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ideas, allows students some choice, and changes the teacher's role 'from herder to that of

facilitator, coach, and community builder. In geometry classes, when students have

developed a wide-ranging set of conjectures, class discussions can become a forum for

sharing these ideas which express the individuality of students. Some of the ideas will not

be found in the text. Thus, the class (and even the teacher) may genuinely not know 'f

the conjecture is true or false, though, based on their empirical work, they should have

good reason to believe that it is true. The class as a whole can make progress through the

diverse exploration of individuals. All of this is in stark contrast to students asked to

explore "discovery" problems whose important results are found in the text and have been

proven year after year.

Conclusions

To a mathematician, who is active in research, mathematics may appear
sometimes as a guessing game: you have to guess a mathematical theorem
before you prove it. (Polya 1954, p. 158)

I believe that it is high time that secondary and tertiary mathematics education

afford a larger role for plausible reasoning and empirical exploration. Yet, as we begin to

do so, it is important that our first steps be carefully thought through. This paper

distinguished between two views of induction and raised concerns about exploratory

activities created in accordance with one such view. These activities, which may be

carried out in mathematics classes under the banner of current reforms, can leave little

room for students to explore and discover anything other than the single idea on the

teacher's mind. Rather than help defme new roles for teachers and students in classrooms,

such activities may simply help perpetuate the view sometimes held by students that the

purpose of school activities is for students merely to articulate to the teacher what the

teacher already has in mind.
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