DOCUMENT RESUME

ED 395 039 TM 025 059

AUTHOR Hester, Yvette AN

TITLE Mathematical Models Underlying Common de(gr
Analysis: An Introductory Primer.

PUB DATE 27 Jan 96

NOTE 22p.; Paper presented at the Annual Meeting of the

Southwest Educational Research Association (New
Orleans, LA, January 25-27, 1996).

PUB TYPE Reports - Evaluative/Feasibility (142) --
Speeches/Conference Papers (150)

EDRS PRICE MFO1/PCOl1 Plus Postage.

DESCRIPTORS *Factor Analysis; Factor Structure; Heuristics;
*Mathematical Models; *Matrices; Research
Methodology

IDENTIFIERS *Data Reduction Methods; Statistical Analysis System;

Statistical Package for the Social Sciences

ABSTRACT

Data reduction techniques seek to combine variables
that account for patterns of variation in observed dependent
variables in such a way that a simpler model is available for
analysis. Factor analysis is a data reduction technique that attempts
to model or explain a set of variables in terms of their
associations. To understand why this technique yields an accurate
analysis, an examination of the mathematical models underlying the
procedure is necessary. Execution of factor.analysis by the
Statistical Analysis System and the Statistical Package for the
Social Sciences will then not be a "black box." Mathematical models
underlying true factor analysis and principal components analysis are
presented and discussed. An explanation of the terms and basic
differences is given in terms of the mathematical models. A small,
heuristic example is included to illustrate the concepts and matrix
algebra procedures involved in the factor analysis data reduction
technique. An appendix presents commands for the MAPLE computer

algebra system. (Contains 2 tables, 2 figures, and 10 references. )
(Author/SLD)

Jed e e e e Je e de e e e ok e Fe g de e e dede dede s e dedede dede de dede e do sk de e de o ek e dededk sk dedededededede ek ek ek ek ek

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
Jede e Jesede e e e dede e de ek de o et ook g o o de ok e de g e e o e e ok e sk e o de e ok de o dede ok dede o e o




U.S. DEPARTMENT OF EDUCATION

om S, oucAT: “PERMISSION TO REPRODUCE THIS
€0 ONAL RESOURCES INFORMATION MATERIAL HAS BEEN GRANTED BY
CENTER (ERIC}
A ha document has been reproduced s VEZ 7L &ES7 & /e
o trom the p or orge §
o ofginating it
O Minor Changes have been made to improve
g reproduction quishty
t tated in this docu:
o ® rant o nor necossariy reprasent offcra TO THE EDUCATIONAL RESOURCES
Q OER! position Of poiCy INFORMATION CENTER (ERIC).”
48]

Mathematical Models Underlying Common Factor Analysis: An
Introductory Primer

Yvette Hester
Texas A&M University

Paper presented at the annual meeting of the Southwest Educational Research
Association, New Orleans, LA, January 27, 1996

2
BEST COFY AVAILABLE




Abstract

Data reduction techniques seek to combine variables that account for patterns of
variation in observed dependent variables in such a way that a simpler model is available
for analysis. Factor analysis is a data reduction technique that attempts to model or
explain a set of variables in terms of their associatioﬁs. To understand why this technique -
yields an accurate analysis, an examination of the mathematical models underlying the
procedure is necessary. Execution of factor analysis by SAS and SPSS will then not be a
"black box". Mathematical models underlying true factor analysis and principal
components analysis are presented and discussed. An explanation of terms and basic
differences is given in terms of the mathematical models. A small, heuristic example to
illustrate the concepts and matrix algebra procedures involved in the factor analysis data

reduction technique is included.
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Techniqu

Data reduction techniques discussed in this paper are generalized regression-like
techniques. In regression, the decision to keep regressors in the model is based on finding
the "smallest-largest" subset of regressors--smallest in the sense that costs associated with
a large number of variables should be minimized, largest in the sense that enough variables
need to be retained for reliable predictions to maximize variance accounted for by the
variables. There is no one statistical procedure to find this best subset of variables and
personal judgment is required, as it is in all statistical analysis (Seber, 1977). To illustrate
the magnitude of the number of possible regressions for a given situation, suppose that
there are k possible regressors. Since each regressor is either in the equation or not,
there are 2* possible such regressions. If k is large, 2% becomes extremely large,
quickly, e.g., 213 =32,768.

Methods for Selection of

The type of\ method used to select a regression subset or reduce the data varies
based on the type of analysis performed. Specific methods discussed in the present paper’
are common (principal) factor analysis, principal components analysis and principal
components factor analysis. Figure 1 shows the relationship between these methods and
other common methods such as confirmatory factor analysis, exploratory factor analysis
and maximum-likelihood factor analysis. Principal components factor analysis is a
combination of the two primary methods, principal components analysis and common
factor analysis. The other three methods, confirmatory factor analysis, exploratory factor
analysis and maximum-likelihood factor analysis are considered types of true factor
analysis. Maximum-likelihood analysis is frequently employed within both confirmatory
and exploratory factor analysis.

Differences between principal components analysis and common factor analysis are
illustrated here during a general explanation of factor analysis and a small, heuristic

example of principal factor analysis is presented. Procedures involving the factor analysis
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model as a basis have been more widely used and are generally better developed (Velicer
& Jackson, 1990).

All generalized regression, data reduction techniques estimate parameters of
regression-like linear models. Indeed, since canonical correlation analysis subsumes all
parametric statistic methods (¢.g., ANOVA, t-tests, discriminant analysis) as special cases
(Knapp, 1978), and since canonical correlation analysis invokes a principal components
analysis as part of its mathematics (Thompson, 1984), therefore all parametric methods
implicitly invoke some kind of factor analytic logic.

Factor analytic techniques are multivariable, like the reality being modeled, and can
be understood through the mathematics of matrix algebra. Each seeks a way to comEine
variables that accounts for patterns of variation in the observed dependent variables. This
yields a simpler model, making further analysis less complicated. The following discussion
is an introduction to factor analysis with similarities and differences to principal
components analysis highlighted.

Principal (Com:non) Factor Analysis versus Principal Components Analysis

Factor analysis, like principal components analysis, regresses standardized
observed variables on a set of unobserved factors. Factors are the underlying components
or dimensions for which estimates of values are obtained. Factor analysis is a statistical
model that includes unique, uncorrelated error terms, whereas principal components
analysis is simply a mathematical transformation of data (Hamilton, 1992). Factor
analysis attempts to model each of k standardized observed variables 2, as a linear

combination of j unobserved factors FJ , where j <k, along with an error term for each
observed variable, ;. The factors F; are common factors, since each of the observed

variables 2 is written in terms of these factors. The error term  #; is called the unique

factor, as each observed variable has it's own uniquely determined residual. In general, the

linear function for each Z; has appearance
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) Z = lkll:l + lk2F2+"'+1kj}7j + Uy

The l,q- are equivalent to standardized regression coefficients and are called factor

loadings. If there is only one factor or if the factors are all orthogonal (uncorrelated), the
factor loadings are equivalent to the correlation between that factor and the observed
variable. The matrix notation for this model is
(1) Z=FL'+U,

where L' represents the transpose of the matrix containing the factor loadings.

Principal components analysis is a mathematical transformation of the data on the
k observed variables represented by k principal components or factors. There is no
unique factor or error term since k principal components will exactly explain all the
variance of k observed variables (Hamilton, 1992). Principal components analysis is
simpler mathematically than factor analysis and is a mathematical maximization procedure
that uses uncorrelated linear functions. The linear function for principal components
analysis is: .

2 z, =l R+ LB+ Fy

Model (2) is similar to model (1) without the %, term and j = k. The matrix equation
(2)' will look like (1) without the U matrix.

@y Z=FL.

Principal components factor analysis is a combination of true factor analysis and
principal components analysis in that if less than k factors explain a large amount of the

variance of the observed variables, those factors will be used and an error term v will be

introduced to represent the shared residual for each linear combination of faciors. The

difference between the v, error terms and the #; error terms for the true factor analysis
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model is that the v; are not unique, i.c., have nonzero correlation. Principal components

factor analysis yields a principal components factor model that resemﬁles the true factor

analysis model and is
B  Z=lyR+hEB+. +yFi+v,

where Vv, =Ik’j+le+l+Ik’j+2Fj+2+...+lk’kF}¢. The v, linear function shows that
these residuals cannot be uncorrelated as in the true factor analysis model (Hamilton,
1992). For the remainder of this paper, the term principal components imalysis will refer
to model (3), since most researchers combine true factor analysis and principal
components analysis into this model. The controversy regarding the similarities and
diYerences between these three techniques is a lengthy issue. This paper will address only
obvious differences in the represantations of the mathematical models. For more extensive
discussions of Component Analysis versus Common Factor Analysis see the January
(1990) issue of the Journal of the Society of Multivariate Experimental Psychology,
Multivariate Behavioral R h.

Factor analysis centers on attempting to explain a set of observed variables in
terms of their correlations. Principal components analysis centers on attempting to explain
a set of observed variables in terms of their variance. The decision as to which of the
methods to use in an analysis in not clear-cut, especially as these methods produce similar
results when applied to strongly correlated data. Confusion with terminology and
computer packages further complicate the choices, as principal components is typically
listed as an option within a factor analysis computer package. Principal components
analysis is the default method for extraction in SPSS. If true factor analysis is desired, the
researcher must indicate another method of extraction, e.g., principal axis factoring

(Pedhazur & Smelkin, 1991). Component analysis will typically involve less computer

processing time.
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"Principal components appeals more to a ‘data analysis’ perspective, whereas
factor analysis fits better with a ‘model building’ approach," as Hamilton (1992, p. 252)
noted. The goal of both types of analyses is to find subsets of variables that are both
highly correlated and weakly (or not at all) correlated with each other. Patterns for how
the variables cluster are determined.

The goal of data reduction examines output in terms of which factors to retain in
the model. Each factor will have an associated eigenvalue, denoted A (lambda), to help
in determining retention. Mathematically, eigenvalues are the roots of the characteristic
polynomial associated with a given matrix. In the data reduction techniques, eigenvalues
represent the variances of the original components. In principal components analysis,
since k components explain k standardized variables, the sum of the eigenvalues will
equal the number of variables. A component that has an eigenvalue of less than one will
account for less than a single variables' variation since each standardized variable has
variance of one. Thus, for principal components analysis, components with A >1 are
retained in the model. For true factor analysis, eigenvalues are typically smaller and the
eigenvalue greater than one criterion is inappropriate and not as useful (Pedhazur &
Smelkin, 1991).

An analyst must bear in mind that these are simply recommendations and a large
amount of subjectivity and thought are required when making these complex decisions.
Substantive issues must be considered in the specific context of each particular research
situation.

Screeplots can be helpful to get an overview of the data. A screeplot is a plot of
eigenvalues in descending order plotted against the factor number. As the slope of the
lines between points becomes less steep or smaller, a leveling off becomes apparent. A
clear break in the slopes, i.c., where they begin to approach a horizontal line, will help a
researcher determine a useful or natural cut-off for contributing factors.
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Since true factor analysis centers on correlations between the original observed
variables, a correlation matrix R must be obtained. The original observed variables are
first standardized and placed in a data matrix Z. To form the original correlation matrix

R, the vectors (columns) of Z must be normalized by taking the product A =

s/—l_l Z . This scalar multiple takes out the vn—1 factor introduced by the standard
n -—

deviation in the computation of the z-scores. The correlation matrix is the product of the
matrix A andit’s tfanspose A'. Thus, R=A"'A and has ones on its major diagonal.
Factor analysis uses a modified correlation matrix, R*, which has estimates of the
proportion of a variables explained variance on the major diagonal instead of ones, like the
original R. Principal components analysis does not involve this reduction of the variance
on the diagonal elements. The reduced variance terms are referred to as communality and
are denoted h,f. These values represeat the proportion of variance 2xplained by the
extracted factors. The predictor is taken as the dependent variable and the factors are

taken as the independent variables. One approach to estimating these values uses the
coefficient of determination R,f . These values would appear on the major diagonal of

R* as the ipitial estimates of h,f. Each R,-z, 1<i<k, isdetermined by regressing the
i th standardized observed variable z; on the remaining standardized observed variables
21,23 0052115 415+++s 2k Matrix algebra allows this computation by first forming R,
the inverse of the correlation matrix R.  Take the diagonal entries of R 1 invert them

and subtract them from 1. The resulting values become the initial estimates of the
communalities h,f and are piaced on the diagonal of R*. Thus, fora k xk correlation

matrix R, theinitial R* is given by

-1
R* = R-] +[diag(R'l)] , where I isthe k xk identity matrix.




The initial modified correlation matrix has the form

2
R ’ig g
Re=|m Ry o |

L] * L] :2
N N2 o Ry

It follows that R = R* + Q where Q is the diagonal matrix containing the error terms
u, on the major diagonal and zeros everywhere else.

The initial factor loadings are derived by extracting the principal eigenvalues and

forming the corresponding eigenvectorse,,...,e;, 1< j<k, each having norm (length)
J

one. Set a, = Ze;, n=1,..,k. Theneach a, will be the sum of squares of the nth
i=1

entries in each of the eigenvectors and h:' =1-u =a,.

Once the initial factor loadings are derived, the new R* is given by

a, o --- 0
R* =R-I+|, 2 0

i 0 .. 0

0 - 0 ak

the new estimates for the communalities on the main diagonal. Iterations are performed
until the communality estimates are stable.

Principal components first determines the factor loadings /; to compute the
communalities directly. The residual is then found by v, =1- h,f. Principal components
analysis performs no iterations of any kind and does not begin with estimates. Some
researchers are uncomfortable with the estimation involved in the true factor analysis

procedure (Stevens, 1992), along with other objections witi: respect to multicollinearities
(Hawkins, 1973).
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Each factor can now be expressed in terms of the original variables. During the
process of attempting to combine variables, composites called factor scores are formed.
These scores derive from the coefficients found by the regression of factors on the
observed variables. Factor scores are estimates of the factors and can be found by first

computing the eigenvalues and corresponding eigenvectors for the last R*. The first

factor F} will be a linear combination of the original variables that explains the most

variance. This will be the factor that has the largest eigenvalue. The second factor F;

will have the second largest eigenvalue, and so on. Each factor can be expressed as

C)) F; =e z+.+e, 2, n= L...J,
k
where Zejz.‘. =1 In matrix notation F =Ze, 1<n<j where ee =1 and
J=1

e']em =0, for all j < m, since each component is uncorrelated with every other

component (Hamilton, 1992). S

Factor scores replace the original observed score: and can be analyzed or
interpreted like any other variable through regression, etc., as a subsequent analysis. If the
same number of factors are retained from both factor analysis and principal components
analysis, and when the factors are well-defined, highly similar results are expected from
the two methods. Velicer and Jackson (1990) report a correlation of .99 or better
between alternative types of scores in this situation. Even when loadings were low and
factors were poorly defined with few variables per factor, correlations were .9 or more.
"Improvements in the quality of the data increased the degree of similarity” (Velicer &
Jackson, 1990, p. 6). Some of the observed differences between the two methods are
thought to be the result of overextraction of the number of components by the Kaiser rule;
the default in many computer programs that employ principal components analysis.

Maximum-likelihood factor analysis done with large sample sizes can also cause problems

frwa
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with overextraction (Tucker & Lewis, 1973). This test assumes a multivariate normal
distribution. Zwick and Velicer (1986) provide more on this topic. -

A rotation of the factor loadings is sometimes required to simplify the factor
structure and make the factors more interpretable. If only one factor is retained in the
model, then rotation is ignored. Mathematically, rotation is a transformation or a rotating
of the axes represented by the factors about the origin that enables variables to load more
strongly or polarize on a single factor. Orthogonal rotation holds the factor axes
perpendicular, i.e., keeps them uncorrelated during rotation. The factor loading matrix L,
having columns J:l_l l ,...,JT; ’,- , is multiplied by an orthogonal transformation matrix
M, to obtain a new factor loading matrix L*, where L* =LM. Then a least squares-
like procedure is invoked. See Gorsuch (1983) for a discussion of various rotations.

Oblique rotation permits acute angles (correlation) between the factor axes. This
type of rotation permits further polarization and involves a nonorthogonal matrix
transformation represented by the matrix equation L** = L*P, where L** is the matrix
of new factor loadings and P - is the nonorthogonal transformation matrix. Oblique
rotation is more complex than orthogonal rotation and somewhat arbitrary, but since the
loadings are further polarized, it provides easier interpretation. An analyst should use
different rotation methods and examine the results. If different methods reach the same
results, conclusions can be considered stable (Hamilton, 1992). The two types of rotation
“reflect different frames of reference in viewing phenomena” (Pedhazur & Smelkin, p.
615). Communalities are not affected by rotation or type of rotation.

Ezample
Suppose a survey of S questions conceming treatment by peers was givento 10

lecturers in a certain department at a large university. The questions are listed in Table 1.

Insert Table 1 about here
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The responses are recorded in a raw data matrix X, where a negative response is coded

as 0 and a positive response is coded as 1.

o
|

cCcoo—~0co=00O0
OO rm st e O s = OO
—— e s bt O = O = O

—.—.p—._.—.p—.p—.o—.

1
1
0
1
1
0
0
1
1
1

The matrix is entered into a MAPLE session (a computer algebra system), after loading
the linear algebra package and setting the digits to 6. The statistics package is also
loaded. The exact MAPLE commands for this example are listed in appendix A.

A matrix of z-scores needs to be computed. The mean and standard deviation of
each column of X is listed in Table 2. Exact arithmetic was used throughout all
computations and then converted to 6 decimal places as each of the matrices needed to
be examined. Only the decimal representations of the matrices are given in this paper, but -
the MAPLE commands for both the exact arithmetic matrices and the decimal
representations are listed in appendix A.

Insert Table 2 about here

The matrix Z of standardized variables is

474342 -.948684 621059 -1.44914 3162287
474342 -948684 621059 .621059 316228
474342 948684 -144914 -144914 -2.84605
189737 948684 621059 .621059 316228
go|-474342 -948684 621059 -144914 316228

474342 948684 -144914 621059 316228
1.89737 948684 -144914 621059 .316228
474342 948684 621059 621059 316228
474342 -943684 621059 621059 .316228
474342 -948684 621059 621059 316228

10 1
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Each column in Z -‘must be normalized (given length 1) so that the correlation

matrix R can be computed. This normalized data is listed in a matrix A.
- 158114 -.316228 207020 -483046 105409
= -.158114 -316228 .207020 .207020 .105409
B -158114 316228 -483046 -483046 -.948684
= 632456 316228 .207020 .207020 .105409
A= -158114 -316228 207020 -483046 .105409
=1-.158114 316228 -483046 .207020 .105409
632456 .316228 -.483046 .207020 .105409
-.158114 316228 .207020 .207020 .105409
-.158114 -316228 207020 .207020 .105409
-.158114 -.316228 .207020 .207020 .105409

—

To obtain R, find A’ (A transpose) and form the matrix product R =A4'4.
[1.00000 .500000 -.218219 .327326 .166666
500000 1.00000 -654658 218221 -.333334
R=|-218219 -.654658 .999999 .0476189 .509178
327326 218221 .0476189 .999998 509177
\_.166666 -.333334 509178 509177  1.00000

To obtain the initial estimates of the communalities or shared variances, R (the

inverse of R) is computed.

; 1.60000 -1 0 0 -.6000007]
-1. 270833 = 114565 -763767 875000
Rimv - 0 1.14565 2.10000 0 -.687389

0 - 763767 0 1.75000 -1.14565
-.600000 .875000 -687389 -1.14565 232500

The diagonal entries are inverted and subtracted from 1. The resulting values become the

new entries along the diagonal of R*. :
375000 .500000 -.218219 .327326 .166666

500000 630769 -.654658 218221 -.333334
Rstar =|-.218219 -654658 523809 .0476189 .509178
327326 218221 0476189 428569 .509177
166666 -333334 509178 509177 569892

To start the iterative process, the eigenvalues of R* are found.
-.237107, -.138579, -.427933 10'6, 1.21591, 1.68782
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Two of the eigenvalues are positive and three are negative. The eigenvectors
corresponding to the positive eigenvalues are found. MAPLE will return these
eigenvectors already scaled to have norm 1.

el =[ 477755 .238664 .C775400 .630349 .558054)

€2 =[-282451 -629440 590471 .009117 .418665]

The next R* is formed by taking the sums of squares of the corresponding entries
in these two eigenvectors and placing them on the diagonal as new estimates of the

communalities.
308029 .500000 -.218219 327326 .166666
500000 453156 -.654658 218221 -.333334
newRstar =|-.218219 -.654658 .354667 .0476189 509178
327326 218221 .0476189 .397421 .509177
166666 -333334 509178 509177 486704

This process will be repeated until the R* matrix converges. Convergence can be
checked by looking at the difference in the last two consecutive R* matrices.

The next iteration yields the eigenvalues
-.352971, -.275860, ;-.062'7888. 1.15194, 1.53%67

and new R* matrix ~ RS ) _
(316082 500000 -.218219 327326 .166666 |
500000 435714 -654658 218221 -333334
-218219 -654658 344568 0476189 .509178
327326 218221 .047618% 417134 509177
| .166666 -.333334 509178 509177 486483 ]

Four more iterations are given

[.317330 500000 -.218219 .327326 .166666
500000 431027 -654658 218221 -.333334
-218219 -654658 .343960 .0476189 .509178
327326 .218221 .0476189 423766 .509177
166666 -.333334 509178 509177 483915

[.317135 500000 -.218219 327326 .166666
500000 429600 -.654658 .218221 -.333334
-218219 -654658 .344579 0476189 509178
327326 218221 .0476189 426671 .509177
|.166666 -.333334 509178 509177 482011 ]

12
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[.316738  .500000
500000 429128
-218219 -.654658
327326  .218221
166666 -.333334
316402  .500000
500000 .428960
-.218219 -.654658
327326  .218221
|.166666 -.333334
and then a check for convergence:
-.000336 0
0 -.000168
0 0
0 0
0 0
Two more iterations
[.316173  .500000
500000 428907
-.218219 -.654658
327326 218221
| 166666 -.333334
[.316016 500000
500000 .428888
-218219 -.654658
327326 .218221
| .166666 -.333334
and a check for convergence:
-.000157 0
0 -.000019
0 0
0 0
0 0
Two more iterations
315913 .500000
.500000 .428879
-218219 -.654658
327326  .218221
166666 -.333334

-.218219
-.654658
345089
0476189
509178
-.218219
-.654658
345384
0476189
509178

0

0
.000295

0

0

-.218219
-.654658
.345551
0476189
508178

-.218219
-.654658
.345646
.0476189
.509178

0

0
.000095

0

0

-.218219
-.634658
.345685
.0476189
509178

13

.00

327326
218221

0476189

428192
508177
327326
.218221

0476189

429057
509177

> =X=X=]

865

o

327326
218221

0476189

429576
509177

.327326
218221

0476189

429888
209177

0
0
0
0

.000312

0

327326
218221

0476189

430062
509177

16

.166666 |
-333334
.509178
509177
480855 |
.166666
-333334
.509178
.509177
480177

OO0OO0O

-.000678

166666 ]
-.333334
509178
309177
479794 |

.166666 |
-.333334
509178
509177
479573 _

(= e B o B =

-.000221

.166666
-.333334
509178
309177
479427




315847 500000 -.218219 327326 .166666
500000 428876 -.654658 218221 -.333334
-218219 -654658 345713 .0476189 .509178
327326 218221 .0476189 430176 509177
166666 -333334 509178 .509177 479350

and another check for convergence:

000066 0 0 0 0
0  -31000 0 0 0
0 0  .000028 O 0
0 0 0  .000114 O
0 0 0 0 -000077

That is close enough.

To obtain estimates of the principal factors, find the eigenvalues and eigenvectors
of the last R*. The principal factors are the product of Z and these eigenvectors, and

are given by

F1=[-1.19815 .158920 -2.54522 174197 -1.19815 490422 163098
601408 158920 .158320]

F2=[1.18905 123712 -2.58979 -.613639 118905 -1.13620 -1.82583
0759950 1.23712 1.23712]

A screeplot of the eigenvalues from the last iteration is given in figure 2.

Insert Figure 2 about here

Conclusion

Factor analysis is a regression-like data reduction technique that involves a
generalized least squares procedure. As with all data reduction techniques, factor analysis
seeks to combine variables into common, underlying factors that can be further analyzed.
Matrix algebra helps illustrate the dynamic involved in the procedure. A computer algebra
system such as MAPLE makes the matrix algebra bearable. An examination of factor
analysis in this manner makes clear the processes that SAS and SPSS execute and do not
allow them to be a black box.

14
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Table 1
Five questions asked to lecturers

Do you feel you have input in departmental decisions?

Do you feel the professional faculty consider you as an integral part of the program?

Are there procedures or events that cause you to feel unnecessarily separated from
the rest of the faculty?

Does your Department Head or a designated supervisor discuss your evaluation with
you each year?

Are you interested in long term employment at this university?

Table 2

Mean and standard deviation of the columns of X

Mean Standard Deviation
2 421636
S .527048
i 483046
7 483046
9 316228

16 19




Figure 1

The relationship among some data reduction techniques
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Appendix A

Maple Commands -- Note: Calls to eig_info and f below are session dependent.
> Digits:=6:
> with(linalg):
> with(stats);
> with(describe);
> with(transform);

> X:=matrix(10,5,[0,0,1,0,1,0,0,1,1,1,0,1,0,0,0,1,1,1,1,1,0,0,1,0,1,0,1,0,1,1,1,1,0,1,1,0,1,
> barlist:=NULL: for i from 1 to § do barlist:=barlist,mean(convert(col(X,i),list)): od:

> Xbar:=vector(5,[barlist]);

> devlist:=NULL: for i from 1 to § do

> devlist:=devlist,standarddeviation[1](convert(col(X,i),list)): od
> Xdev:=vector(5,[devlist]);

> for i from 1 to § do evalf(Xdev(i]); od

> matlist:=NULL.: for i from 1 to § do

> matlist:=matlist,standardscoroﬁ](convert(col(x,i).Iist)): od:

> Zstar:=transpose(matrix([matlist]));

> Z:=map(evalf,Zstar);

> Astar:=evalm(Zstar*1/3);

> A:=map{evalf,Astar);

> R1:=multiply(transpose(Astar),Astar);

> R:=multiply(transpose(A),A);

> Rlinv:=inverse(R1);

> Rinv:=map{evalf,R1inv); :

> diaglist:=NULL: for | from 1 to § do diaglist:=diaglist,1/Rinv[i,i]: od:
> Rstar'=evalm(R-diag(dla9list)).

> eigenvals(Rstar);

> eig_info:=eigenvects(Rstar);

> e1:=eig_info[1][3][1]; e2:=eig_Info[4][3][1};

> comlist:=NULL: for i from 1 to § do comlist: =comlist,e1m“2+92[l]“2 od:
> newRstar:=evalm{R-diag(1,1,1,1,1)+diag{comlist));

> eigenvals(newRstar);

> eig_info:=eigenvects(newRstar);

> f:=proc(m,n)

local comlist, i, v1, v2:

global newRstar:

vi:=eig_info[m][3][1]): v2:=eig_info[n][3](1]:

comlist:=NULL.:

forifrom1to 5 do
comlist:=comlist,v1[i]*2+v2[i}*2:

od:
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>  newRstar:=evalm(R-diag(1,1,1,1,1)+diag(comlist));
> end;

> £(3,5);

> eig_info:=eigenvects(newRstar);
> £(3,5); .

> eig_info:=eigenvects(newRstar);
> f(1,3);

> eig_info:=eigenvects(newRstar);
> 1(1,2);

> eig_info:=eigenvects(newRstar);
> 1(1,2);

> evalm("-ul"!);

> eig_info:=eigenvects(newRstar);
> #(2,3);

> eig_info:=eigenvects(newRstar);
> £(3,5);

> evalm("-ﬂl"');

> eig_info:=eigenvects(newRstar);
> 1(2,3); ‘

> eig_info:=eigenvects(newRstar);
> £(1,3);

> evalm(n.!"lu);

> eig_info:=eigenvects(newRstar);

> e1:=eig_info[1][3][1]); e2:=eig_info[3][3][1];

> F1:=multiply(Z,e1); F2:=muitiply(Z,e2);
> orderlist:=|3,1,4,5,2]: plist:=NULL: for | from 1 to § do

> plist:=plist,i,eig_info[orderlist[i[][1]: od: plist;

> plot([plist],style=line);

)

b




