
DOCUMENT RESUME

ED 395 038 TM 025 058

AUTHOR Buras, Avery
TITLE Test Equating Procedures: A Primer on the Logic and

Applications of Test Equating.
PUB DATE 25 Jan 96
NOTE 19p.; Paper presented at the Annual Meeting of the

Southwest Educational Research Association (New
Orleans, LA, January 25-27, 1996).

PUB TYPE Reports Evaluative/Feasibility (142)
Speeches/Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Equated Scores; *Item Response Theory; Models; *Raw

Scores; *Statistical Analysis; Statistical
Distributions

IDENTIFIERS *Equipercentile Equating; *Linear Equating Method;
Parallel Test Forms; Percentile Ranks

ABSTRACT
The logic and uses of test equating are discussed,

including three methods of test equating. The focus is on the
conceptual underpinnings of each test equating method, rather than on
the mathematics of the procedures. Additional consideration is given
to the assumptions of each method and its respective strengths and
weaknesses. A commonly accepted definition of equivalent scores is
based on the concept of equipercentile equating. The first step is to
determine the percentile ranks of the distribution of scores on both
instruments. The percentile ranks are then plotted against the raw
scores for each instrument, and once they are graphed, equivalent
scores can be obtained from the graph. The linear equating method is

based on the assumption that the two forms of the test, which are
designed to be parallel, will have essentially the same raw-score
distributions, apart from minor differences in the mean and standard
deviations. Item response theory (IRT), or latent trait theory, is an
attempt to measure a person's performance on a test item as a
function of the difficulty of the item and the examinee's performance
on some unobserved, or latent, trait. The three IRT models are
discussed, and conditions under which all equating methods are
similar are reviewed. (Contains 1 table, 2 figures, and 18

references.) (Author/SLD)

***********************************************************************

Reproductions supplied by EDRS are the best that can be made
from the original document.

***********************************************************************



Test Equating

u.s. ogemmaorr O ECIUCATIOM
Mc* of Educations! Airawch and impoymmant

EDUCAJONAL RESOURCES INFORMATION
CENTER (ERIC)

Ll4tus document has been reproduced as
recessed from the person ot oreanostson
oronatine st

0 Minor changes have been made to smptose
Nf Production quality

Points of yew ot opinrOns Sratd in the doc
Tent do no1 MUSS/holy ropresont official
OER1 positon or 00OCy

-PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

E-715

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"

Test Equating Procedures:

A Primer on the Logic and Applications of Test Equating.

Avery Buras

Texas A & M University 77843-4225

Paper presented at the annual meeting of the Southwest Educational Research

Association, New Orleans, LA, January 25, 1996.



Test Equating 2

Abstract

The present paper will discuss the logic and uses of test equating. Three methods of test

equating: "equipercentile equating;" "linear equating;" and equating with the one parameter or

Rasch model of "item response theory" will be included in the discussion. Rather than on the

mathematics of the procedures, the focus will be on the conceptual underpinnings of each test

equating method. Additional consideration will be given to the assumptions of each method and

their respective strengths and weaknesses.
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Introduction

During the semester break of my first year in college I had the opportunity to visit

Toronto, Canada. Because I am originally from the Southern United States, my experiences

dealing with snowy Winter conditions and cold temperatures were limited to pictures on post

cards and viewing the Winter Olympics. Not only did I not have a concept of how cold it could

be in Toronto in January, I had not bothered to learn my metric conversions while in the 6th

grade. Consequently, I had no way of knowing how cold it was since I could not convert from

Fahrenheit to Celsius and visa versa. Since the people I visited lived near the border of the U.S.

and Canada, they needed a formula to constantly convert Fahrenheit to Celsius in order to

understand such things as news casts and newspaper articles which were readily available from

both countries. Their simple conversion was to multiply the degrees Celsius by 2 and then add 32

degrees to convert to Fahrenheit. For example, if it were 10 degrees Celsius, it could be readily

calculated to 52 degrees Fahrenheit.

(10 X 2) + 32° = 52° (Fahrenheit)

Likewise, the conversion from 52 degrees Fahrenheit into Celsius could be accomplished by

subtracting 32 from 52 and then dividing by 2.

k52° - 32°) + 2 = 10° (Fahrenheit)

A more exact formula for converting the two measures of temperature include

multiplication by 9/5 rather than 2 and 5/9 rather than division by 2. However, their simple

formula allowed for quick conversions back and forth. It allowed for the understanding of one

metric in terms of another metric. Unbeknownst to me at that time, was that their simple formula

4
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contained elements of "linear equating," one of the several methods of test equating to be

covered later in the present paper.

Overview

In psychological and educational testing situations there are occasions when examinees

are mealured with two different instruments which are designed to measure the same

psychological construct or the same content domain (Crocker & Algina, 1986). For example, a

university professor teaching a large class may want to administer a test in the smaller lab

sections of the course. Since the lab classes are spread-out throughout the week, the professor

feels the need to have several parallel forms of the test. If the scores are not equally distributed

the professor may need to establish equivalent forms on the two measures. The establishment of

equivalent scores on varying forms of a test is called "horizontal equating" (Skaggs & Lissetz,

1986b).

Angoff (1971) reported that what is being sought in test equating is a conversion from the

units of one form of a test to the units of another form of the same test. This notion carries with it

two restrictions. The first restriction refers to the idea that the two instruments in question should

be measuring the same characteristic, e.g., temperature, anxiety. Angoff noted (1971), "it makes

no sense to ask for a conversion from, say, grams to degrees of Fahrenheit or from inches to

pounds" (p. 564). While it may be mathematically possible to develop a linear function or a

regression equation to predict grams from Fahrenheit, prediction is ma the purpose of equating.

Transforming units of the same construct is the purpose of equating (Angoff, 1971). The second

restriction Angoff (1971) noted was that in order for two measures to be truly transformed, the
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resulting conversion should be independent of the individuals from whom the data were drawn to

develop the conversion and should be applicable in future situations.

Equipercentile Equating

A commonly accepted definition of equivalent scores is base 'Ton the concept of

equipercentile equating. The equipercentile method originates in the definition of equivalent

scores originally noted by Lord (1950) and Flanagan (1951), cited by Angoff (1971):

A commonly accepted definition of equivalent scores is: two scores, one on

Form X and the other on Form Y (where X and Y measure the same function with the

same degree of reliability), may be considered equivalent if their corresponding

percentile ranks in any given group are equal. (p. 563)

The first step in equipercentile equating is to determine the percentile ranks of the

distribution of the scores on both instruments. The percentile ranks are then plotted against the

raw scores for each instrument (Crocker & Algina, 1986). Figure 1 illustrates a plot of percentile

ranks for two 20 item instruments. Once the percentile rank-raw score plots are graphed,

equivalent scores can then be obtained from the graph by comparing the paired values of each

instrument. For example, a score of 10 on form X is equivalent to a score of 9 on form Y and a

score of 15 on form X is equivalent to a score of 11 on form Y. These paired values are then

plotted onto one graph. Generally, the graph of the two percentile ranks of the two instruments is

then smoothed analytically (Crocker & Algina, 1986).

Insert Figure 1 and 2 about here,

BEST COPY AVAILABLE
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Linear Equating

The linear equating method is based upon the assumption that the two forms of the test

which are designed to be parallel, will have essentially the same raw-score distributions, apart

from minor differences in the mean and standard deviations (Angoff, 1971; Crocker & Algina,

1986; Jaeger, 1981;). When this assumption has been violated, equipercentile equating has been

shown to yield better results than both linear equating and IRT models (Jaeger, 1981; Skaggs &

Lissitz, 1986a). Nevertheless, when this assumption has been met, it should be possible to

convert scores on one form of the measure into the same metric as the other form by employing a

linear function. The function relating scores on Form X to scores on Form Y using linear

equating is generally expressed as Y* = a(X-c) + d; where "a" refers to the ratio of the standard

deviations of Form Y over the standard deviation of Form X, "c" refers to the mean of form X,

and "d" refers to the mean of form Y (Crocker & Algina, 1986).

This function is analogous to an equation that is derived in regression. The multiplicative

constant of "a" is analogous to a B weight in regression and "c" and "d" are analogous to an

additive constant. The reader is encouraged to understand this similarity but to also realize that

test equating is not about prediction but is rather about calibration i.e., the re-expression of one

measure in terms of another (Angoff, 1971).

There are three basic designs which are used to collect data in order to carry out a test

equating project. In the first design, a large group of examinees are selected who are sufficiently

heterogeneous in order to adequately sample all levels the of scores on both Form X and Form Y

(Angoff, 1971). This large group is then divided randomly into two groups. Each group takes a
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different form of the test. The mean and standard deviations of both groups are calculated and

can then be inserted into the linear function discussed above. Table 1 illustrates a linear equating

example using design 1 with a small sample of 20 subjects, 10 who were administered form X

and 10 who were administered form Y. The symbol, Y*, denotes the predicted scores on Form Y

for those who have taken Form X. Since the standard deviations and means of both Forms were

so similar very little adjustment is needed. Nevertheless, a raw score of 8 on Form X can now be

expressed as a score of 8.3 on Form Y.

Insert Table 1 about here.

Design 2 is generally used when the test administrator has the luxury of more time to

administer tests. In this design, both Form X and Form Y are administered to all subjects. In

order to control for an order effect, half of the subjects receive Form X first and the other half of

the subjects receive form Y first. The calculation of the multiplicative constant, i.e. "a" and the

additive constants, i.e. "c" and "d" are slightly more involved with Design 2 (Angoff, 1971;

Crocker & Algina, 1986) and are not included in the present paper.

Design 3 involves two randomly assigned groups each taking a different test and a

common equating test administered to both groups. This common test is used as an "anchor test"

(Parshall, Du Bose Houghton, & Kromrey, 1995). The calculation of the multiplicative constant,

i.e. "a" and the additive constants, i.e. "c" and "d" are also more involved with Design 3 and are

not included in the present paper. Crocker and Algina (1986) noted that Design 3 involves an

additional assumption besides equal raw score distributions:
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1. The slope, intercept, and standard error of estimate for the regression of

X on Z in subpopulation 1 are equal to the slope, intercept, and standard error of

estimate for the regression of X on Z in the total population.

2. The slope, intercept, and standard error of estimate for the regression of Y

on Z in subpopulation 2 are equal to the slope, intercept, and standard error of

estimate for the regression of Y on Z in the total population. (p. 460)

This design, also called an anchor test design, is the one most commonly used in test

equating situations (Skaggs & Lissitz, 1986b). The anchor test may be internal, i.e., part of the

content of both test, or the anchor test may be an external test as described above. For this

design, intact or non-random groups may be used. The anchor test is designed to adjust for any

between group differences that may be present (Parshall, Du Bose Houghton, & Kromrey, 1995).

Equating Using Item Response Theory

Item response theory (IRT), or latent trait theory, is an attempt to measure a person's

performance on a test item as a function of the difficulty of the item and the examinee's

performance on some unobserved, or latent trait (Skaggs & Lissitz, 1986b). The IRT model

posits the relationship between a latent trait and the performance on a test designed to measure

this latent trait. There are three IRT models. The first model is called the one-parameter or Rasch

model. In the Rasch model, the only parameter that is dealt with is item difficulty. The second

model, call the two-parameter model is essentially the same as the first with the addition of an

item discrimination parameter. The third model includes both the difficulty and discrimination

parameters and a parameter for guessing, and is called the three-parameter model. While there is
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extensive research on the two and three parameter models, the present paper will limit discussion

to only the "Rasch" model.

IRT has at it's heart the notion of "Parameter Invariance" (Crocker & Algina, 1986;

Divgi, 1986; Skaggs & Lissitz, 1986b). Basically, the item statistics that are derived from the

application of an IRT model are independent of the sample of examinees to which the test was

administered, sometimes referred to as "sample-free measurement." Also, the personal statistics,

i.e., ability levels, obtained for examinees are independent of the sample of the items included on

the test. This is sometimes referred to as "test-free measurement." But simply, IRT allows item

independence and person independence (Crocker & Algina, 1986). Skaggs and Lissitz (1986b)

stated,

The basic advantage of IRT methods is that if data fit the model reasonably

well, it is possible to demonstrate the invariance of item and ability parameter.

That is, for a set of calibrated items, an examinee will be expected to obtain the

same ability estimate from any subset of items. Moreover, for any subsample of

examinees, item parameters will be the same. (p. 503)

For example, an examiner has a four item test with item 1 being the easiest and item 4

being the hardest, i.e., item I has a lower item difficulty than item 2. The examiner can give

items 1 and 2 to person A and items 3 and 4 to person B. If person A answers item 1 correctly

and misses item 2 and person B answers items 3 and 4 correctly, the examiner could then

conclude that the latent ability level of person B was higher than the latent ability of person A

(Crocker & Algina, 1986). This example illustrates the power of latent trait theory, if in fact, the

item difficulty parameters do not vary from sample to sample. A more precise comparison
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between the two examinees could be accomplished with a larger sample of test items with

varying difficulty levels (Crocker & Algina, 1986).

This discussion of the basics of IRT has been intentionally non-technical and lacking of

sufficient details. It is well beyond the scope of this paper to have a more detailed discussion of

IRT. The reader is referred to several sources for further reading on this topic (Hambleton &

Swaminathan, 1985; McKinley & Mills, 1989; Skaggs & L issitz 1986b).

In IRT applications, it still may be necessary to place two or more sets of test results into

a common metric. Under IRT, test equating involves finding the coefficients of a linear

transformation of the metric of one test to the metric of another (Baker, 1993). The basic function

for IRT is given by (Baker, 1993):

0;* = AO; + K,

where: A is the slope, K is the intercept, 0; is the examinee's trait level parameter in the metric of

the current test, and 01* is 0; expressed in the target test metric.

Algina and Crocker (1986) described a test equating method using a one parameter IRT

model in which design 3 is used. Essentially, Form Y is given to group A and Form X is given

to group B, with both forms containing a number of anchor items. Estimates of the item

difficulties are derived. If the anchor items have different difficulty levels, an average of the

differences in the item difficulties are obtained. This average differences is added to the

appropriate test form and the scores on both tests can then be compared.

Evaluation of the Three Methods

As mentioned earlier, equipercentile equating is used when the assumptions of linear

equating have not been met. However, the equating error is much larger with equipercentil:..

I t
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equating (Angoff, 1982). Crocker and Algina (1986) suggest the use of linear equating

procedures when the distributions of z- scores for X and Y are not too different.

With regard to the varying designs of linear equating, because design 2 includes

information on all persons on both tests, it has a smaller standard error than does design 1

(Angoff, 1971). However, design 2 does require more time. Time may also be a factor in

choosing design A over C as well. Like design 2, design 3 has a smaller standard error and is

preferred when time is not.an issue (Crocker & Algina, 1986).

Traditionally, equating methods are employed when there ire several thousand examinees

(Parshall, Du Bose Houghton, & Kromrey, 1995). However, some studies have been conducted

to test the efficacy of using smaller samples and whether or not small samples have drastic

effects upon the standard errors of the equating models for these small samples. Marks and

Lindsay (1972) concluded that sample size directly increased test equating error and

recommended that a minimal sample size be no lower than 250. Kolen (1985) examined the

effects of sample sizes of 100 and 250. Samples of 250 appeared to have adequate accuracy of

the estimates of standard errors of equating.

Since design 2 appears to be on of the most used designs across methods, research has

examined the length of the anchor test, the extent to which the anchor test is similar to the

content of the total test and the strength of the correlation between scores on the anchor test and

scores on the total test. Budescu (1985) concluded that the best results were obtained when one

half of the total test consisted of anchor items. Research has also indicated that the magnitude of

the correlation between the total test and the anchor items is the single most important predictor

of equating efficiency (Budescu, 1985; Parshall, Du Bose Houghton & Kromrey; 1995).
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With regard to the one parameter or Rasch model, it appears that since guessing is such a

distinct possibility i multiple choice tests, this model does not hold up well to multiple choice

situations. Essentially, latent trait theory is based upon the assumption of ur, ;dimensionality.

Unidimensionality refers to the idea that the only trait being measured is the so called latent trait.

Guessing introduces another dimension or trait, since guessing ability also varies across people.

Nevertheless, guessing is and can be addressed in the three parameter model.

Summary and Conclusion

In a review of the literature on test equating, Skaggs and Lissitz (1986a) summarized

research in the area of horizontal test equating with the following 6 general statements:

1. No single method is consistently superior to the others. However, IRT

equating seems to produce better results than conventional methods when the

examinee samples taking each test form to be equated have not been randomly

selected.

2. If the data are reasonably reliable, tests are nearly equal in difficulty,

and samples are nearly equal in ability, then most linear, equipercentiles, and IRT

methods will achieve satisfactory result.

3. The Rasch model is not robust to its assumption that no guessing has

occurred in answering multiple-choice items. (p. 523)

4. Three-parameter model equating is not accurate when small sample

sizes (less than 1,000 responses per item) have been used to estimate item

parameters.
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5. For small sample sizes, it is not clear which method works best or how

stable the results will be.

6. Changes in the examinee population can bias a series of equatings that

take place over an extended period of time.

The present paper was designed to be an introduction to the basics of test equating

procedures. Emphasis was placed upon the concepts underlying the methods of test equating

rather than on the statistical details of each method. While equating may at first appear to look

like prediction (regression), the reader was encouraged to comprehend the difference between

regression and test equating, i.e., the transformation of one metric into the metric of another.

Also, since there are many methods to equate tests, the reader is encouraged to choose the

method that is best suited for their particular needs and the characteristics of their samples.

14
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Plot of Percentile Ranks of Two Instruemtms (Adopted From Crocker and Algina, 1986).



Y.

20--

15--

10-

5-

F igure 2

pAri

Test Equating 17

I I I

5 10 15 20

X

Plot of Percentile ranks of two 20 item intruements. (Adopted from
Croker and Algina, 1986).

Is



Test Equating 18

Table I

FORM X FORM Y FORM X Y*

5 9 5= 5.002732
6 8 6= 6.106557
4 4 4= 3.898907
6 5 6= 6.106557
7 6 7= 7.210382
8 7 8= 8.314207
9 8 9= 9.418032

10 9 10= 10.52185
7 10 7= 7.210382
8 5 8= 8.314207

Sum X= 69 Sum Y= 71

Mean X 6.9 Mean Y= 7.1

SD X= 1.83 SD Y= 2.02

a= 1.103825
c= 6.9
d= 7.1


