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bst r a ct

This paper presents an expository development of JamesStein estimation with

substantial emphasis on exact results for nonnormal location models.

The themes of the paper are a) that the improvement possible over the best

invariant estimator via shrinkage estimation is not surprising but expected from a variety

uf perspectives; b) that the amount of shrinkage allowable to preserve domination over the

best invariant estimator, is, when properly interpreted, relatively free from the assumption

of normality; and c) the potential savings in risk are substantial when accompanied by

good quality prior information.
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I. Introduction .

This paper presents an exposiiory development of JamesStein estimation with

substantial emphasis on exact results for nonnormal location models.

The themes of the paper are a) that the improvement possible over the best

invariant estimator via shrinkage estimation is not surprising but expected from a variety

of perspectives; b) that the amount of shrinkage alk able to preserve domination over the

best invariant estimator, is, when properly interpre , relatively free from the assumption

of normality; and c) the potential savings in risk are substantial when accompanied by

good quality prior information.

Relatively, much less emphasis is placed on choosing a particular shrinkage

estimator than on demonstrating that shrinkage should produce worthwhile gains in

problems where the error distribution is spherically symmetric. Additionally such gains are

relatively robust with respect to assumptions concerning distribution and loss.

The basic problem, of course, is the estimation of the mean vector 0 of a pvariate

location parameter family. In the normal case (with identity covariance) for p = I, the

usual estimator, the sample mean, is the maximum likelihood estimator, the UMVUE, the

best equivariant and minimax estimator for nearly arbitrary symmetric loss, and is

admissible for essentially arbitrary symmetric loss. Admissibility for quadratic loss was

first proved by Hodges and Lehmann (1950) and Girschick and Savage (1951) using the

CramerRao inequality and by Blyth (1951) using a limit of Bayes type argument.

For p = 2, the above properties also hold in the normal case. Stein (1956) proved

admissibility using an information inequality argument. In that same paper however, Stein

proved a result that astonished many and which has led to an enormous and rich literature

of substantial importance in statistical theory and practice.

Stein (1956) showed that estimators of the form (1 a/(b+11X112))X dominate X for

7



a sufficiently small and h sufficiently large when p > 3. James and Stein (1961) sharpened

the result and gave an explicit class of dominating estim: t.ors, (1 a/11X112)X for

0 < a < 2(p-2). They also indicated that a version of the result holds for general location

equivariant estimators with finite fourth moment and for loss functions which are concave

functions of squared error loss. Brown (1966) showed that inadmissibility of the best

equivariant estimator of location holds for virtually all problems for p > 3, and, in Brown

(1965), that admissibility tends to hold for p = 2. Minimaxity for all p follows from Kiefer

(1957).

Section 2 gives a geometrical argument du,?: to Stein which indicates that shrinkage

might be expected to work under quite broad distributional assumptions.

Section 3 gives an empirical Bayes argument in the normal case which results in the

usual JamesStein estimator.

Section 4 presents Stein's "unbiased estimator of risk" in the normal case and

develops the basic theory for the standard JamesStein estimator in the normal case.

Section 5 describes a variety of extensions of the basic theory to cover shrinkage

towards subspaces, Bayes minimax estimation, nonspherical shrinkage, and limited

translation rules.

Section 6 considers extensions of the results of sections 4 and 5 to scale mixtures of

normal distributions.
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Section 7 presents generalizations to general spherically symmetric families of

distributions, while section 8 indicates the applicability of earlier results to the multiple

observation case.

Section 9 is concerned with results for nonspherical quadratic loss and for

nonquadratic loss. .,

Section 10 presents some additional comments.

2. A Geometric Hint

As in much of the development of the subject, the following rough geometric

argument is basically due to Stein (1962). Consider an observation vector X in p

dimensions with mean vector 0 and independent (or uncorrelated) components. Assume

n

that the components have equal variance, a`. The situation is depicted in figure 1.

Figure 1 about here.

Since E(X-0)' 0 = 0 we expect X-0 and 0 to be nearly orthogonal, especially for

large HI. Since EIIXII2 = pa2 + 1142, it appears that X as an estimator of 0 might be too

long, and that the projection of 0 on X or something close to it might be a better estimator.

This projection of course depends on 0 and therefore isn't a valid estimator, but perhaps we

can estimate it. If we denote this projection by (1a)X the problem is to approximate a.

One way to do this is to assume that the angle between 0 and X-0 is exactly a right

9



FIGURE 1
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angle and to assume that 11 X11
2

is exactly equal to its expected value 0'0 -I- p9 a- and

similarly 11 X-011-2 is equal to pa2. In this case we have 11Y112 = i.211.x112

pa2 i2.'--..2Ix!' from triangle BCD and 111112 = 11 0112 (1i)211X112

9
= 11)(11- -

9 (1i) 2
11X11

2 from triangle ABD. Equating these expressions we obtain

pa a-11X11 = 11)(11 P2 g (la)2
11X11

2 or (1-2)l1X112
= 11X11

2 2p2. This gives

2
9 2

a = po-/11X11 and the suggested estimator is (1 a) X = (1 Pa
11X11-

The above development does not particularly depend on normality of X or even that

0 is a location vector. Unfortunately, it fails to be a proof of the inadmissibility of X, and

also fails to distinguish between different values of p. It is however suggestive that the

possibility of improving on the unbiased vector X by shrinkage toward the origin may be

quite general.

3. An Empirical Baves Argument

The following well known Empirical Bayes argument also leads to the JamesStein

estimator. The origins of this argument, which we only briefly sketch, is unknown (to us).

It has appeared numerous times in print (e.g. Lehmann (1983) p. 299).

Let X have a pvariate normal distribution with mean vector 9 and (for simplicity)

covariance matrix equal to a2 (known) times the identity. Suppose the prior distribution

of 0 is normal with mean vector 0 and covariance matrix equal to b times the identity,

1 1
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here b is an unknown scalar. The posterior mean (assun-iing for the moment that b is

coknown) is ( b - )X = (1 )X.
+b a +b

One way to estimate the unknown scalar b is the following. Since X-0, conditional

on 9 is normal with mean vector 0 and covariance 6-21, X-0 and 0 are independent. Hence

X = (X-0) + 0 is marginally distributed as a pvariate normal with mean vector 0 and

covariance (a2 + b)I. Therefore, 11X112/(b + a2) has a central chisquare distribution with

1

p degrees of freedom. It follows that marginally, E(p-2)/(IXIl
2 = and hence

e+b

(1

IIXII

normal prior with unknown scale. This estimator of course is exactly the usual

) X may reasonably be considered an Empirical Bayes estimator for the above

JamesStein estimator.

4. Some Spherical Normal Theory

Let X have a pvariate normal distribution with mean vector 0 and covariance

matrix equal to the identity. The problem is to estimate 0 with loss equal to

(4.1) VOA = IIS 6112 = (6; 102.
i=4

Stein (1956) showed for p > 3, that the usual estimator 60(X) = X is dominated by

provided a is sufficiently small and b is suffigjently large.äa,b(X) = (1 a(b+

James and Stein (1961) showed that

(4.2) 5a(X) = (1

1 2



dominates X for 0 < a < 2(p-2) and that a = p-2 gives the uniformly best estimator in

the class.

Their proof used the Poisson representation of the noncentral chisquare

distribeon, but since the mid 1970's the "unbiased estimation of risk" technique of

Stein (1981) been used and simplifies proofs substantially.

The technique, which we describe below, depends on the following Lemma.

LEMMA 4.1: Let Y N(0,1), then E[h(Y)(Y-0)1 = Cov(Y,h(Y)) = Eh'(Y) (provided e.g.

1

that h(Y) is the indefinite integral of h' (Y), 1 im h(Y) exp[ 1(Y-0)2 = 0 and all
Y-4 ± co

integrals are finite).

Proof: Integration by parts gives

h(Y)(Y-0) exp[(Y-8)2]dy =
47 -co

1 r d 1 2
) ( exp( 2.(YO) )dy

4/2.7r -00

1 1 C 0

11(Y)(exp[--- iY-0)
2
)1,0

+ -1- r h'(Y) exp[ 1(Y-0)2]dy

= Eh' (Y)
1 3

a

6



To obtain an unbiased estimator of the risk of 6a(X). write

(4.3) 11.(0,5a(X)) = EIR1 - 6112

= EIIX 01I2 a2E I 9 2aEX(X-9)
IIXII 11X112

2 1
(X;-0;)

= p + a E 2a E E( )
i=1 x2

j =1

P d
X

= p + a2 E , 2a E E( i
77:- (--,y)) (by the lemma)

IIXII i=I

2 2
p EX - 2Xi

= p + a2 EI 2a i=El E 2 2

2 1= p + a Ell)--(y2

1= p + (a2 - 2a(p-2)] E
IIXII

Note that the quadratic a2 2a(p-2) is negative in the range (0,2(p-2)) and attains

its minimum at a = p-2. Hence, we have the following result.

THEOREM 4.1 a. The estimator öa
(X) in (4.2) dominates X for 0 < a < 2(p-2)
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(for p > 3). The estimator bp--2, (X) = (1 2.---1)X has the uniformly smallest risk of any
X' X

estimator in the class.

b. The risk of Sp_9(X) at 0 = 0 is equal to 2 for every dimension p > 3.

The proof of part b follows by noting that for 9= 0, IIXII
2 has a chisquare

distribution with p degrees of freedom and hence by (4.3)

R(0,Sp_2(X)) = p (p-2) 1

v iiX112

2.

Past b suggests, particularly for large values of p, that very large savings in risk are

possible over the classical estimator in the region near 0 = 0 at no cost of increased risk

elsewhere.

Note also, that while substantial savings in risk are possible, the JamesStein

estimator is itself inadmissible due to its strange behavior for small X'X. The shrinkage

factor (1 ) becomes negative for X'X < p-2. A better estimator is given by the

"postivepart" estimator (1 )+X.
Interestingly, this estimator is itself inadmissible

because it fails to be generalized Bayes, but to the authors' knowledge, no improved

estimator has been found.

More Normal Theory

In the previous section we showed that the JamesStein estimator dominates the

classical estimator in the (identity covariance) spherical normal case and that its risk at
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the origin is equal to 2 regardless of the dimension of the problem. One may interpret this

result as saying that if your prior guess that the origin is the true value is correct you may

save substantially, but if you are wrong you loose nothing. This suggests, and it is

obviously true, that a similar result holds for any arbitrary origin 00. That is, the

estimator

(5.1) 00 + (1 -P:2--2-)(X 00)
1IX-0011

will dominate the usual estimator and have risk equal to 2 at 00 provided p > 3.

Suppose it is believed that 0 lies in V, an s dimensional subspace of R. Then

letting the projection of X onto V be V and W ---. XV, the projection of X onto the

orthocomplement of V, we have the following result.

THEOR,EM 5.1 The estimator [(5.2) V + (1 )W )dominates X, and has risk equal

to s + 2 for all 0 in V, provided p s > 3. This is perhaps most easily seen by considering

a canonical version, when V represents the first s coordinates and W the remaining ps

coordinates. The estimator (5.2) then uses the classical estimate on V and the

JamesStein estimate on the (ps) dimensional subspace W = RP V. In general thes
result follows by noting that V and (1

2 )W are independent (and orthogonal)

and that the estimation problem breaks up into two orthogonal components (0 = v + co,

veV weW).

One particularly important application of this idea is the estimator proposed by

i C
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Lindley (in discussion of Stein (1962)) where V = Opl, dim V = 1, and the

estimator (5.2) becomes

(5.3) X1 + (1 (1)-3) ) (X X1)

E(X1X)2

with 1 = (1,...,1).

As the preceding discussion and section 2 indicate there is a strong Bayesian

connection to be made. In particular we indicated in section 2 that the JamesStein

estimator could be viewed as an Empirical Bayes estimator for a normal prior with mean 0

and covariance matrix a2I, with a2 unknown and estimated for the data. Strawderman

(1971) established a more formal Bayesian (as opposed to Empirical Bayesian) connection

along these lines. We now describe this development.

First, an extension of the basic JamesStein result due to Baranchick (1964, 1970) is

helpful.

LEMMA 5.1: The estimator (1 rXX))X is minimax for the loss (4.1) provided

0 < r(.) < 2(p-2), and r(.) is monotone increasing.

Proof: The proof in the case satisfies the conditions of lemma 4.1

essentially follows that of Theorem 4.1. By Lemma 4.1

E(X-0)'X r(X'X (p-2) E + 2E

I_ 7



Hence

E110

11

)X - 0112 = p + E

p + [2(p-2) - 2(p-2)1E = p

9 0' X X' X)

This lemma allows smoother shrinkage factors than the positive part James-Stein

estimators and opens the possibility that generalized Bayes and perhaps proper-Bayes

estimators may be found in the class (other than X itself). To this end, consider a two

stage prior for 0 such that at the first stage 01A
1-A I), and at the second stage

A - (1-a)A-a (for a < 1). Then the Bayes estimator is given by

(5.5) E(01X) = ERE0(X,A)1X1

= E[(1 1

1+(l_A
)X1X1 =

-A---)

A straightforward calculation gives

[1 E[A 1 X1]X

1

x I,x[
2 exp

(5.6) E(A 1 X) = p+2 2a
(- XX)

1
1

I 2 13-a A

IOA
exp( - .2-X'X)dA

r ( X ' X)-/-rx---

Where r(X'X) is defined to be the term in brackets on the right side of (5.5). Since

I
1 7yp-a X'

r(X' X) p+2-2a, and since PA " exp{- x(1-A)JcIA is increasing, the conditions of
0
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Lemma 5.1 will be satisfied provided p+2-2a < 2(p-2) or equivalently

(5.7)
6?

Since in order for Aa (the second stage prior) to be integrable we must have a < 1, it is

seen that (5.7) is satisfied for such an a provided that p > 5. Hence we have

THEOREM 5.2. a) For p > 5 the properBayes estimator (5.5) is minimax provided

a > 1(6p)
2.

b) For p > 3 the estimator (5.5) is generalized Bayes and minimax provided

;-(6p) a <

The proof of b) follows by noting that (5.6) makes sense (i.e. the generalized Bayes

1estimator exists) provided 2- pa > 1, which is equivalent to the right inequality. Note

that the double inequality holds only if p > 2. Strawderman (1972) showed that no proper

Bayes minimax estimators exist for p < 5.

We briefly take a broader view and describe a result of Stein (1981) concerning

minimaxity of (generalized) Bayes estimators. If r(0) is the (generalized) prior density,

then the (generalized) Bayes estimator is given by

1
2.11 X-011

2

0 (19(5.6) S(X) f e
7(

0)
1 2
2511X-011

f e 7(9)0
19
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X-0II2
= X + V log f e r(0)(10

= X + V log f(X) = X +

where V (;4?( , ), and f(X) is (essentially) the posterior density of 0 given X.
1 2 p

An easy application of Lemma 4.1 gives the following very general unbiased estimate

of risk for a nearly arbitrary estimator of the form X+g(x).

LEMMA 5.2 Let 5(X) = X+g(X) be such that g() is almost differentiable and such that

E V.g.(X)I < co. Then
i=1 1 1

EIIX+g(X) 0I2 = p + E0[IIg(X)112 + 2Vog(X)).

Hence if Ilg(X)II2 + 2Vog(X) < 0 for all X then X + g(X) dominates X.

(Note that Theorem 4.1 and Lemma 5.1 are special cases).

Application of the lemma to a (generalized) Bayes estimator of the form (5.6) gives

(5.7) R(0,57r) = EIIX
0112

= EFT( ) 2 -
4. 2 flAiv

2
f(X) itvf(X)1121

f ( X) f 2 (X)

= p + EEV2g3 11S7V )11
2

1

f ( X)



p + E

23=
(Actually the penultimate expression can be simplified to equal p + 4E where

i/fIxT
21(X) = a2

9 f(X), the Laplacian of f( )).

'Xii=1 8.

11

A function f(X) such that V2f(X) < 0 V X is called superharmonic. It has the

property that the average of the function over a sphere of radius r about a point X0 is

never greater than f(X0
) for all X0

and r > 0. Further it is easily seen that convex

combinations of superharmonic functions are superharmonic. It follows then that if 7(0) is

2.111XOli2

a superharmonic prior, then f(x) = f e r(0)d0 is also superharmonic. We then
(47-r)P

have the neat result.

THEOREM 5.2. If r(0) is superharmonic,then the estimator (5.6) is minimax.

Incidentally, note that if x
7(0)

is superharmonic for each 7, then so is

( 0) = I ir7( 0) dF(7) for any distribution F( ). This opens up a nice class of multiple

shrinkage minimax estimators due to George (1985).

To conclude this section we present three examples which illustrate the utility of

lemma 5.2.

EXAMPLE 5.1 (Stein 1981)
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Let

(5.8) 6(X) = X AX

Then

1012 432 IA:r1y A 2v
Eli (5(X)

AX
.1 2 Vo

(X'BX ) X ' BX

Ev32 X A2X 2fit r A 4,3X ABX1

(m) 2 X' BX (XBX)2'

(provided the expectations exist).

If A is a fixed symmetric matrix, B = [(tr A)I 2A1-4A2, and 2A < (tr A)I (the

1largest eigenvalue of A is less than 2.5. the trace of A). Then
`.

ElI4X)
0112 = P 2,3)E X ' A2 X

( X BX)2

Hence 5 dominates X provided 0 < < 2. Furthermore = 1 is the uniformly best choice.

Stein (1981) gives an intereting application of this result to three term symmetric

moving averages of the form

(5.9) .0i = Xi A(X)(X1 + Xi+i))
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where X
0

X= . Here-p

1

1

2 if j -i -± 1 (mod p)
1 if j -i 0 (mod p)

0 otherwise

The characteristic roots are 1 - cos(27r -.11;4-) 5. 2 with -[] 5. j < [3] giving tr(A) = p. Hence

for p > 5 (5.9) dominates X for A(x) = x-uxAt X

EXAMPLE 5.2 (Berger 1980).

Let the generalized prior density be given by

1

1f o[det /AAA- 7 exp[ (9'-11)11--
1

(A)(9-11)] An-12

where 13(A) = A-I C-I for 0 < A < 1, C-I positive definite and n > 0. Here the distribution

of 0 given A is N(p,(B(A)) and reduces to the two stage prior of Strawderman discussed

earlier in this section if C = I. The (generalized) Bayes estimator is given by

r ((X - p)'C-4(x -
(5.10) ö(X) = A + (I n )(X -14)

(X - p)C-4 (X p)

1 WVfn An exp(- (-2-) dA
where r(V) =

Jo An- exp(

= 2n(1 - [n flo expP:24)11 dAI-1)
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It follows from Lemma 5.2 (as in Example 5.1) that if (2+n) ChmaxC-1 < tr C--4 then

S(X) is minimax.

EXAMPLE 5.3 (Stein 1981).

Efron and Morris (1971, 1972) considered estimators which modified the JamesStein

estimator by requiring that no coordinate moves by more than a preassigned quantity C.

Stein gave an alternative "limited translation" rule based on order statistics as follows. Let

Zi = 1)(11 and Z(1) < Z(2) <...< Z(p), be the order statistics. Fix K a positive integer (a

large fraction of p) and consider 5(X) = X + g(X) when

a

E(X1 AZ20( )

a

E(XIAZ2(K)

where a A b = min(a,b).

Application of Lemma 5.2 gives

Xi if PCi Z(K )

z(K)sgn Xi if 1 X11 Z(K)
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1Ellö(x) 6112 = p + [a2 2(K-2)a] E[ ,5-

E(XIAZZK)

Hence the estimator is minimax if 0 < a < 2(K-2) and the uniformly best choice of a is

K-2.

6. Scale Mixtures Of Normals

Stein (1956) showed that the usual estimator of a location vector could be improved

upon quite generally for p > 3 and Brown (1966) stubstantially extended this conclusion to

essentially arbitrary loss functions. Explicit results of the JamesStein type however were

restricted to the case of the normal distribution. Strawderman (1974) considered scale

mixtures of multivariate normal distributions as follows. Let X have density f(IIX 0112)

where

(6.1) 0112) = 9 I expf 0112lciPdG(a)

where G( ) is a known distribution function. The object is to estimate 0 with loss (4.1).

Such a random vaziable X clearly has the interpretation that given a, X is normal

2with mean vector 0 and covariance matrix a I. The unconditional distribution of a is
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G( ). This interpretation together with Lemma 5.2 allows the following calculation of the

risk of a smooth estimator X + g(X).

(6.2) EIIX + g(X) 0112 = EC[EX1 + g(X) 0112 I a2]

Ea0,2[EX anX g(.`7) 0112101

a a

E6a2EX 1 + 21a-11g(*,:' a)(12

1 X
+ 2 -c-fix g(-(-7 a) I a]

Tr

p Eca2 + ECEXI6HIg(X)112.+ 2a2V g(X) a]

Xwhere Vxg(77- a) = Vg(u a)l
"

For estimators of the JamesStein type, g(X) = a, and, V g(X)

and hence
2

ENO
0112 PEacr2 EaEX I a baux a2 a2]

2 2

= pEcto2 + Ei(at
2a(p-2))E"y

ia(h1 a)].

Note that X'X/a2 given a2 is distributed as a noncentral x2 with p degrees of
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0' 0 (7, a2freedom and noncentrality parameter Hence EX1 xl a) is an increasing function
a

9
9 a-

of a-. Since 2a(p-2) is decreasing in a2 we have
a-

y I 2
(6.3) 2 a 2 a. a2

Ell(1 xrPix)X pE a + E 2a(p-2)JECE' 6[6 la] < E 2X7X P

1provided 0 < a < 2(p-2)/E a -4= 2/Es . Therefore we have the following result.
a

THEOREM 6.1. Let X have the distribution 6.1 for p > 3. Then the estimator (1 a, )X

dominates X (for the loss 4.1) provided 0 < a < 2/Es(x1x).

It is interesting to note that this result reduces to Theorem 4.1 a if the distribution

1of a is degenerate at a =1. Furthermore, the shrinkage factor a = 2/E0( i, ) s an upper

bound for any distribution such that each coordinate has mean 0, as an easy calculation

shows. What is remarkable about Theorem 6.1 is that if the shrinkage factor is interpreted

properly, the JamesStein result extends directly to the entire class of scale mixtures of

normal distributions.

Note that this class includes (if 1/a2 x?() the family of multivariate t

distributions with tails of the order (1 + 0'0) as well as the family of normal

distributions.

27
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The geometrical argument of section 2 which hinted at shrinkage factors of the order

of pa2 regardles's of normality is thus validated for a wide class of distxibutions.

Chou and Strawderman (1986) extended this result to include estimators of the type

studied in Lemma 5.2. Here is a simple form of their result.

THEOREM 6.2. Let X be as in Theorem 6.1, and let g(X) be such that

a) 11g(X)112 + 2V.g(X) < 0

b) g(bX) = -..g(X)(g( ) is homogeneous of degree 1)

c) {X: 11g(X)112 > c} is convex for each c > 0.

Then X + ag(X) dominates X for 0 < a < 2/E(1/a2).

Proof: By (6.2)

EIIX + ag(X) 0112
pEa2 EaEX1a[a2lig(x)112 2aa2s,

pEa2 EaEXI ang(x)112[a2 22,0,2] a2]

= pEa2 + EaEX 6[11g(2(F)112[4 2341 a2]

< pEa2.

X
The last inequality follows since ElIg()112 is increasing in a (by Anderson's Theorem) and

a

- 2a} is decreasing in a2, and EN 2a1 < 0 if < a < 2 .

a E(11 a )

Hence versions of the estimators of Example 5.1, 5.2 and 5.3 extend to the scale

mixture of normal families.
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7. Other Spherically Symmetric Distributions

Extensions of JamesStein type results to distributions other than scale mixtures of

normal distributions are due to Berger (1975), Brandwein and Strawderman (1978),

Brandwein (1979), and Bock (1985).

We present a new proof of Brandwein's result which gives shrinkage factor for p > 4

which holds uniformly for all spherically symmetric distributions such that EXX < co and

E(XX)I is fixed. The factor given is the best possible and is attained for uniform

distributions concentrated on a spherical "shell" of radius R.

The spirit of the proof is to first obtain the result for spherical shells and to extend

it by use of a technical lemma to mixtures of such distributions. Since the class of

spherically symmetric distributions is precisely those obtained by scale mixtures of

spherical shells, the desired result follows.

Suppose X has a pvariate spherically symmetric density of the form f(IiX-0112).

Then X = 0 + U where U has density f(IIU112).

We v.. need the following facts:

F1: V
11011 IIUIIJ = (cos(0,U))2

1
ihas a Beta (7, ) distribution ndependent of 11u112 (see Dempster (1969) p.272).

F2: If p(v) is the density of V then
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p7(v) = c(7)p(v)[1 + 7 4/4-9)---1 and p*7 (v) = c*(7)p(v)[1 + 7

have monotone likelihood ratio decreasing for 0 < y < 1 and increasing for 1 < 7 < 03

(Proof: easy calculation).

We will prove

THEOREM 7.1: If X has density f(IIX-0112) and EIIXII
2 and PIXIE2 are finite then for p ?. 4,

(1- xrP-,t)X dominates X for 0 < a < 2(2)[E01)X11-21-1 for loss (4.1).

Proof: R(0,(1- A)X) =

(7.1) EN(l - 3A) X - 01121 = EI1X-01I2 + a2E 1XX a2 E X (-0)
' X,

Let X = U + 8, U'U = R.2 and use the fact that the distributions of U and -U coincide to

get

1 1

(7.2)R(0, (1 Ac)X) = EU'U + Ela2
I + 0' 0 + 2U' 0 + U + 8' 8 - 2U' 81

2a r U'U + U' U'U -
1771T---1/777-7170 U + 0'0 2(PG

= ER.2 +
a2 (R2

(R2 + 8' 0) 2 - 4(O'U)2

2a, [112 ( R2 + 0'0) - 2 ( O'U)211

(R2 + 0, 0)2 - 4(0'U)2

Tr

Since R(0,X) = EIIX - 8112 = ER2, we have, letting V =
(n 12

11 Pr
(0 < V 5. 1)

110
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(7.3) R(0,(1 x?x)X) - R(0,X)

0,u
)

A. 2a1R2(R2 + 0' 0)
(R2 + 0'0)2 - 4 0' OR2V

20' 0R2VII

5, EEI 9
a2 - 2aR2(1 - 2V)

(R" + 0'0) - 4 0' OR2V[ 0 ' 0 + R21-I
IR}

2
--?"' 2- 2a( 1-2V)
R= EEI 0'01-1 1111'

1 - 4 -2-V[1 + -2-j
R R R

Now using fact F2 that if p(v) is the density of V then

'
c(-0 -1.0)p(v)ir = pp 9(v) has monotone decreasing likelihood ratio if

1 + " d 8 8 fi-75-- - .. -75--v1. + --4.9 --ri
R.' R"

9' 023 < 1 and monotone increasing likelihood ratio if 4g- > 1 to conclude that
R" R`

V
E[

1

1 + -1-
R

2-19 - 4 12-P8 V[1 + 11:211-)
R

(7.4) p n, n(v)dv -
10 ry E[ 9, OP 0 rI 0' 01-111111 + 2- 4 --2-- V i + --2-1

R R R

1 1

< max[i. vp(v)dv, limf vp (v)dv] = i)1-.
0 u 7

31
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The last equality follows since p(v) = Pih(v) and hence

Here we also use Fl that po(v)
1 im
7-4 co

1

vp (v)dv" = 1 im
0 7 7-4 co

1

vp1h(v)dv =
0

1
1vpn(v)dv =

0

1is a Beta (n, o-1)

Hence combining (7.3) and (7.4)

(7.5) R(0,(1 3A)X) R(0,X) EEI

We will show below that

E[
1

0'0 0'0 r 01011 + 75 4 75Vil +

95

a 2
--.2- 2a(2-72)
R

0 6 ' ' 61-1 1111'
1 + 4 --72V[1 +

is decreasing in
0-075 and hence increasing in R2 for fixed 110112. This together with the fact'
R"

2
that 2a(--Z) is decreasing in R2 implies that

p

R( 0,(1 3A)X) R( 0,X) Er-ry a, a L, a a, < 0
4=-22=V[1 +
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1 1provided a2 1E -- 2(2--L2) < 0. The Theorem follows since E E ---7-.R2 P 0IIXII---2 R-
1 0'0It remairis to show E[

+ u
, fi

47 V[
a, a

1 +
a, a_rifij is decreasing in -75- to

1

-72-
7 - " `-'-qL1

1R R.'

complete the proof. Note first

2d

JO

p(v)dv 1 4v (7+1)
(7.61 a-3; 1+7 4-yv[1+71-1 0 [1+7 47v[1+ 71-1, 1`

p(v)dv

Clearly if 7 > 1 this derivative is negative. To prove (7.6) is negative in the range

0 < < 1 use F2 and show

c*(7)i-
1 14v - (7+ 1 ) _21 6 p v c*( 7).1 4v - I p(v)dv
0 [1+7 - 47v[1+7j

Md
0 [1+7 - 47v[1+71

1 1

i -1) 5. 0 if p 4 where c*(7) = i.[
p(v)

0 P 0[1+7 - 47v
This completes the proof.

We have noted that the factor 2(y)/E011XII-2 is the best possible constant which

holds uniformly for all spherically symmetric distributions with E011X11-2 fixed. For

specific distributions, obviously, better results are possible (see Bock (1985)). It is



remarkable however, that the best possible constant for any distribution can be no larger

than 2/E HX11-2 as can be easily seen by calculating the risk at 0. Hence the factor 0criven
0

in Theorem 7.1 which applies uniformly is surprisingly close to the best that can be

attained for any given distribution.

We note for completeness that the results of Theorem 6.1 for mixtures of normals

and Theorem 7.1 for spherically symmetric distributions can be extended to prove

minimaxity of estimators of the form (1 )X. The conditions on a are as in their

respective theorems and the conditions on r(.) are : a) 0 < r(.) < 1; b) r(Y) is monotone

nondecreasing; and c) r(Y)/Y is monotone nonincreasing.

8. Multiple Observations

So far we have concentrated our attention on improving the estimator X based on a

2
single observation from a population with.density faiXOii ). Suppose we have a sample

X1,..,Xn from such a population and the problem is to estimate the pdimensional vector 0

with loss (4.1).

In this case the natural estimator is Pitman's estimator, one version of which is

given by 6,(X,Y) = X1 E0[X1IYI, where Y = (X1 Xn, X2 Xn,...,Xn_i Xn). This

estimator which is minimax and best among equivariant estimators is inadmissible if p > 3.

For n > 2, X, the vector of sample averages, is Pitman's estimator if and only if the
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population is normal. For nonnormal populations, Pitman's estimator is typically

difficult to calculate and its distribution tends to be analytically intractable. A variety of

other estimators such as X., or the M.L.E. might be used instead, all of which are in the

class of estimators equivariant under the orthogonal and location groups. That is for any

such estimator

ö(QX1 c, QX2 c,...,QXn .c) = Q 8(X1,...,Xn) c.

Since the sampling distribution of any such estimator (when sampling from a spherically

symmetric distribution) is itself spherically symmetric, Theorem 7.1 applies and we may

aconclude that e5(X1,...,Xn) is dominated by (1 o(X1,...,Xn) for
(5(X1,-

0 < a <

9. Other Loss Functions

There are two major lines of development relating to generalizations concerning the

loss function (4.1). The first is to consider general quadratic loss given by

(9.1) L( (5,0) = (5-0)'D(5-0)

where D is a given pxp positive definite matrix. The second relates to nonquadratic loss.
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The earliest results for loss 9.1 in the normal case are due to Bhattacharya (1966).

An early representative result is the following due to Bock (1975). Let

1 1

(9.2) 5(X) = [I aD 2CD21IXII-2IX

1 1

where C is a known positive definite matrix. Let be the largest eigenvalue of D CD
2

1 1

and 7
L

be the largest eigenvalue of D C2 D2.

THEOREM 9.1. Let X N (O,I), then the estimator (9.2) dominates X under loss (9.1)

provided 0 < a < 2[trCD 2eL1/7L.

Proof:

I 1 1 1

R(O,X) R(0,5)
a2ErV D-2-C 2 D X/ piX'D-2-C D2.(X-0)]

(X'X) 2 v"-'1 (X'X)

1 1 1 1

2 D C D
= a2EX

D C D X 2aV
(X'X) 2

(by lemma 4.1 as in example 5.1)

1 1 1 1 1 1

= a2 EX' DTC 2 D2X [X X trD C 2X' D D2)(1

(X'X) 2 2a (X'X) 2
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(9.3)

1 2< E XX[a 7L 2a(tr CD

< 0 .

There are a number of results of this type for estimators of the form

a r X which may be proved in much the same way.

30

It is worth noting that the problem of estimating the mean vector 0 when

X N(0,E) with E known, loss given by (9.1), and estimators of the form (9.3) is essentially

reducible to the case E = I. In this more general setting a variety of justifications for

different choices of B and C in (9.3) have been given from the robust Bayesian perspective

(Berger (1982)) from the ridge regression perspective (Thisted (1976), Strawderman (1978),

Draper and Van Nostrand (1979), Casella (1980)), and from an empirical Bayesian

perspective (Efron and Morris (1973, 1975), Morris (1983)) among others.

A variety of results covering nonnormal situations have been found by Berger

(1975) and Chou and Strawderman (1986) in the scale mixture of normal case, and by

Brandwein and Strawderman (1978) in the spherically symmetric unimodal case, and by

3"
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Brandwein (1979) in the spherically symmetric case.

In particular, Brandwein's (1979) result for X from a spherically symmetric

distribution replaces the upper bound for a in Theorem 9.1 by

2 (trcD 2 1.,)-y
- 1 [E0(X ' X)-1]-1

In the normal case this is (p-2)/p times the upper bound in Theorem 9.1 and again,

the degree of shrinkage allowed is relatively unaffected by the assumption of normality.

Results concerning extensions to nonquadratic loss are relatively few. Berger

(1978) has results in the normal case for polynomial loss. Brandwein and Strawderman

(1980) and Bock (1985) have results for losses of the form

(9.4) L(9,45) = 4110-0112)

where f( ) is an increasing concave function. Here is a version of Brandwein and

Strawderman's result.

THEOR.EM 9.2. Let X have a spherically symmetric distribution with p > 4. Then

6(X) = (I a, )X dominates X for the loss (9.4) provided 0 < EGNR2) < co and

0 < [2(p-2)1/[pE11ll-2 where G( ) is the cdf of R = IIX-011 and

H(R) = 11:11'(s2)dG(s)/rdf'(s2)dG(s). EG and EH denote expected values under the cdf
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G( ) and H( ) respectively.

Proof: We use.the fact that f( ) concave implies

f(IIX-0112 + u) 5. f(IIX-01[2) + uf'(JlX-0112) to obtain

(9.5) R( 0,6) R( 0,X)

= ERIPC-0112 + a2/X'X 2a(X-0)' X/X'X) faIX-0(12)1

< E{V(IIX-0112)[a2/X'X 2a(X-0) ' X/X ' X11

= EE[(a2/X 'X 2a(X-9)' X/X'X)P(R2)11X011 = R1

But it follows from Theorem 7.1 that the last expression in (9.5) is negative provided

0 < a < 2(p-2)/[pEHR-21. Hence the theorem follows.

a. 'The proof for estimators of the form (1 ,- X X )X; where r(.) satisfies the

conditions of the remarks following the proof of Theorem 7.1, is essentially identical to the

above proof.

As an application of this result to the spherical normal case, let X

LOA = 115--00 , 0 < q < 2. Hence f(u) = u(1 f' (u) = q/2 u(c1-2)/2 and since

2
R2 = IIX-011

2
N Xp' EHR-2 = EG

11.-2+q-2 /EGO-2 = (p+q-4) -1. Hence we are assured

that the estimator (1 a/X' X)X dominates X for 0 < a < 2(p-2)(1 (4q)/p), for p ? 4.
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The most important results for nonquadratic loss are those for confidence set

estimation. Hwing and Casella (1982) showed that the usual spherical confidence set

centered at X may be dominated by one centered at an appropriate (positivepart)

JamesStein estimator. Hwang and Chen (1986) extend domination results for confidence

sets centered at positivepart JamesStein estimators to nonnormal settings.

10. Comments

I. Unknown Scale. We have assumed throughout that the scale is known. For the

N (0,a2 I) distribution, if an estimator of a2 is available which is distributed as a multiple

of a chisquare distribution independently of X this case causes no difficulty. The original

JamesStein paper treats this problem as do several others. In the nonnormal case much

less is known. One can make some progress if an independent estimate of the scale is

known (at least in the mixture of normal case (see Bravo and MacGibbon (1987)) but such

an assumption seems unwarranted generally.

2. Non Spherically Symmetric Distributions. The discussion of section 9 can be extended

to handle distributions of the form f((X-0)E-1(X-0)) where E is a known positivedefinite

1

matrix by working with the random vector E X which has a spherically symmetric

distribution. In cases where the whole problem is not spherically symmetric a tension



between "being Bayes" (doing well on the average) and being minimax (never doing worse

than the best irivariant estimator) often develops. It typically happens that minimax

estimators will shrink coordinates with larger variances relatively less than will Bayes

estimators. The phenomenon is complicated by the fact that for quadratic loss, the

minimax estimator will depend on the choice of D in (9.1) while the Bayes estimator will

not. See Berger (1985) and references therein for more details. The current

recommendations for choice of shrinkage procedures in such situations seems to favor a

Bayesian or Empirical Bayesian basis as opposed to a purely minimax one even among

more classically oriented decision theorists. This seems to be at least partly on the grounds

that minimaxity may be too strict a requirement here, and that relaxation to something

like Eminimaxity might preserve the large gains possible (near the origin, say) at a slight

cost for "large" values of 0 in certain directions.

3. Independent Coordinates. It can be argued that a much more natural class of problems

than the ones we have been considering are those nonnormal location problems where the

coordinates are independent. Since sphericity and independence implies normality we

have, unfortunately described no results for the nonnormal case. Shinozaki (1984), Miceli

and Strawderman (1986,1988) have some results for independent nonnormal observations

but the results are not nearly as extensive as for the spherical case.
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4. Applications. We have said little about applications of JamesStein estimation. Efron

and Morris in a'series of papers (1971,1972,1975, 1976,1977 and others) fostered the

application of shrinkage estimation and addressed a number of practical considerations

including the unequal variance case, shrinkage in groups, and limited translation

estimators. Most of the published applications have had an empirical Bayes orientation.

For some examples the reader is referred to Efron and Morris (1973,1975), Casella (1985),

Green and Strawderman (1985,1986) and Braun et al (1983).

4 2
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