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Abstract

A Monte Carlo study compared the usefulness of six variable weighting methods for cluster

analysis. Datasets were 100 bivariate observations from two subgroups, generated according to a finite

normal mixture model. Subgroup size, within-group correlation, within-group variance, and distance

between subgroup centroids were manipulated.

Of the clustering methods examined, the flexible average clustering algorithm with

13 = -.15 or -.20 gave the best recovery. Of the remaining methods, Ward's method yielded the best

recovery, followed closely by beta-flexible linkage (p = -.50) and SAS's EML algorithm.

In the absence of variable weights, negative within-group correlation resulted in much poorer

recovery for all clustering algorithms. The ACE weighting method of Art, Gnanadesikan, and Kettenring

provided a net improvement in 17-24% of the datnsets when used with better clustering algorithms. When

used with the same clustering alogrithms, De Soete's ultrametric weighting yielded improved recovery 16-

22% of the time. However, although ultrametric weighting was more sensitive than ACE to negative

within-subgroup correlation. Clustering based on principal components was less effective. Therefore, the

ACE method is preferred overall.

There is still room for improvement, however. Clustering with Mahalanobis distance based on the

pooled within-group covariance matix indicated that knowing the correct covariance manix wou/d yield

improved recovery (over ACE) approximately 10% of the time.
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Often in educational and psychological research, a researcher is confronted by a population which,

for lack of a better term, seems too heterogeneous. In such circumstances, the investigator is likely to

hypothesize that the population under study is actually composed of two or more relatively homogeneous

subgroups. For example, several investigators have suggested that the umbrella term "learning

disabilities" actually encompasses a variety of disorders, with different etiologies and strategies for

treatment.

In such circumstances, one may appeal to clinical insight to describe possible subgroups.

However, to bolster such insight, the investigator may also turn to the statistical method of cluster analysis

to try to isolate relatively homogeneous subgroups within the more heterogeneous population. Indeed,

cluster analysis often has been used to try to identify putative subtypes of learning disability.

Unfortunately, the applied investigator is faced with a myriad of clustering techniques, most of

which present options and suboptions in the analysis. To guide these choices, numerous studies have

examined various aspects of the clustering process, including comparison of clustering algorithms (e.g.,

Belbin, Faith, & Milligan, 1992; Blasi-field, 1976; Donoghue, 1994b, 1995; Milligan, 1979, 1989a;

Scheib ler & Schneider, 1985), the effect of various types of "errors' in the data to be clustered (Milligan,

1980), variable standardization (Milligan & Cooper, 1988; Barton, 1993), selection/weighting of irrelevant

variables (De Soete, 1986, 1988; Milligan, 1989b; Donoghue, 1994a), procedures to determine the

number of clusters (e.g., Milligan & Cooper, 1985), and procedures to compare clustering solutions

(Milligan & Cooper, 1986).

Although these studies have obtained a variety of useful findings, one aspect of the clustering

process has not received much attention: the within-group covariance structure. Recent work (Donoghue,

1994b) examined the case of two groups in two dimensions, and found a very large effect of within-group

correlation. Specifically, within-group correlation which did not coincide with the direction of separation
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in subgroup means was associated with lower recovery for all clustering methods; within-group correlation

which did coincide with the direction of separation was associated with higher recovery. This result was

interpreted in terms of the similarity' measure used, the Euclidean distance.

A fundamental issue raised by Donoghue (1994b) is what the analyst should do to minimize the

deleterious effect of within-group correlation. Donoghue suggested several possible alternatives to the

Euclidean distance, but, in the absence of comparative data, could provide no guidance. The present study

compares several of these variable weighting methods. In the remainder of this section, the finite mixture

model which implicitly underlies this work will be introduced, and the various weighting strategies used in

this study will be examined.

The Finite Mixture Model

This paper adopts the view of cluster analysis as the attempt to "umnix a mixture of distributions"

(e.g., Titterington, Smith, & Makov, 1985; McLachlan & Basford, 1988). Tlf finite mixture model

states that the distribution function for the entire population, h(x), is given by:

h(x) = E
g
f

g
(X) ,

g. 1

(1)

1tg>O 7T = 1 .

g-

Subgroups are the homogeneous distributions fa(x), which are mixed, and the itg are termed the "mixing

proportions." The conceptual framework of the finite mixture model of clustering underlies the present

paper, and some of the results may not make sense in situations in which the finite mixture model does not

apply.

The general term "measure of sinnhuity" will be uscxl in this paper to denote both tnie measures of similarity,
such as correlations and coefficients of concordance, and measures of dissimilarity, such as distances.
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In the discussion that follows, X will be the full (entities by variables) data vector, and xi be the

column vector of variable values associated with entity i (i.e, the transpose of the ith row of matrix X.

Variable Weighting_Metbncis

Prior to clustering, hierarchical clustering methods convert two-mode (variables by entities)

multivariate data into a one-mode (entities by entities) univariate measure of similarity, which is then used

as the basis of the clustering. The vast majority of clustering studies (applied and simulation) use dE,

Eucidean distance (or the squared distance) between entities i and j as similarity measure:

= t (x4, xj)2
1"1

(2)

where P is the number of variables used in the clustering. Basic geometry of vector spaces reveals that

Euclidean distance is correct only if computed on an orthogonal basis. If the variables are correlated, the

Euclidean distance can misrepresent the distance between two points. By ignoring the within-group

correlations of variables, Donoghue (1994b) demonstrated that dE can seriously degrade cluster recovery.

Euclidean distance is widely used and is the default measure for most clustering software.

However, most hierarchical clustering algorithms can make use of any one-mode measure, and of -a-

similarity measures are available. Two commonly mentioned possibilities are Mahalanobis distance Ds,

and clustering based upon principal component scores. The problems with these obvious choices will be

discussed, and then some possible alternatives will be discussed.

Mahalannhis Distanct

Ideally, one would cluster based on the Mahalanohis distance measure, DM:

(xi xj)/ .j (3)
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in practice however, Dm is difficult to compute because of the difficulty in estimating the appropriate E

matrix. The correct choice is the pooled within-group covariance matrix, Ew:

=
g (4)

6

Without knowing the subgroup structure, it is not possible to compute the Eg matrices. An alternative is to

use the overall covariance matrix, Er:

=

However, the standard MANOVA decomposition reveals:

(5)

The inclusion of Eg can give Er very different properties from E. Hartigan (1975, p. 63) provides an

example demonstrating that Dm based on Er can result in worse cluster recovery than using dE.

PrineipaLCompnnents

Another commonly suggested alternative is to cluster based upon principal component scores

rather than the original variables. The chief advantage of this method is that principal component scores

are orthogonal to one another; because dE implicitly assumes orthogonal variables, clustering based on the

principal components seems to remove the objections to this measure. However, the difficulty with

principal components is identical to that of Dm. The ideal is to perform principal components analysis

based on Ew. In practice, however, Ely is not known, and so component scores are computed based on Et

(or the correlation matrix RT). As is the case with Dm, the inclusion of ; can give Er very different

properties from Ew. Rohlf (1970) discusses some of the difficulties with using principal components, and

Chang (1983) gives a theoretical analysis of the difficulties involved, and pr2vides a clear example of the
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problems with this approach.

The_ACEAlgorithm

Art, Gnanadesikan, and Kettenring (1982) devised an ingenious method to estimate the pooled

within-group covariance matrix without knowledge of the subgroup structure. They start with the known

property that the covariance can be computed from inter-entity relations:

1 n n
0 _ EE xJk)(x xkl 2n ,

(7)
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Analogous to the usual MANOVA decomposition in Equation (7), the inter-entity relations give a between-

and within-groups decomposition:

T I I + W . (8)

If A is the matrix of differences between subgroup centroids, Art Gnanadesikan, and Kettenring show that

W"A has the same eigenvectors as VOA, and so Dm based on W. is equivalent (up to a multiplicative

constant) to Dm based on W.

Reasoning that most of the smaller inter-entity distances are likely to be within-group distances,

Art Gnanadesikan, and Kettenring use the inter-entity relations from the rn smallest distances to form an

approximate covariance estimate (ACE), W:

w. = E (xi xpi(x x)
n d c ph

(9)

where the summation runs over the m smallest pairs. The distances are then recomputed as Dm based on

W9, and the process c'.peated until the current estimate of W. does not differ significantly from that of the

previous iteration.

A modified version of ACE is computed by SAS's PROC ACECLUS (SAS Institute, 1988),
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including the option to output a matrix of inter-entity similarities for further analysis. The present study

used the original algorithm given in Art, Gnanadesikan, and Kettenring (1982). To date, I am not aware

of any published studies (beyond the original article) of this approach, although work is underway at

Bellcore (J. Kettenring, personal communication, July 2, 1993).

Illirametric_Weights

De Soete (1986, 1988) developed an algorithm which determines weights to apply to variables in

computing a distance measure:

du(i.0 = E w
P

(X )2
.1.1,

P" 1

W > 0 E W =
P P

IP. 1

8

(10)

The weights are chosen so that the resultant distances maximally satisfy the "ultrametric inequality," which

states that any three points i, j, and k, the distances between the points should satisfy the relation:

max (d. d )dy s 5 jk

This is equivalent to requiring all sets of three points to lie on an acute isosceles (or equilateral) triangle.

Johnson (1967) and Milligan (1979) demonstrated the relationship between the ultrametric inequality and

many commonly usec hierarchical clustering algorithms, and Milligan and Isaac (1980) give simulation

results which provide support for the utility of the conceptualizadon. Two studies (Milligan, 1989b,

Donottue, 1994a) have exan1ned De Soex's algorithm, and found that it greatly improved cluster

recovery when the data contained "error" dimensions, i.e, dimensions which contained no information

about subgroup membership. However, it is not known whether this method helps with the difficulties of

within-group covariance stnictore.
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The present study sought to examine these weighting strategies, and compare their usefulness in

recovering known subgroup structure in data with the presence of a variety of within-group covariance

structures.

Method

This study used Monte Carlo methods to systematically investigate the utility of various variable

weighting methods to account for the effects within-group covariance structures. Subgroups were

generated according to a model of a finite mixture of normal dist 'butions (e.g., McLachlan & Basford,

1988). Similar to Donoghue (1994b), the study will examine the limited case of two groups in two

dimensions, but this case will be examined in some detail. While restricting the investigation to bivariate

data somewhat limits its generalizability, this provides a minimal test of the weighting procedures; any

procedure which does not function well with bivariate data seems unlikely to be useful for higher

dimensional cases.

Design

ive aspects of the data were manipulated in data generation. The first three of these determined

the within-group covariance matrices.

1) Ri: The within-group correlation of subgroup 1 (3 levels) 1.1 = -.7, 0.0, .7.

2) R2: The within-group correlation of subgroup 2 (3 levels) r2 = -.7, 0.0, .7.

3) COV: The relationship of the within-group covariance matrices (5 levels). For the first three

levels, the variances of each variable were equal (o2is = o24) within a subgroup, and both of the

variances of the second subgroup were equal to a constant times the variance within the first

ubgroup (0217 ko211, o' ko'21). For the 1::;t two conditions, the variances of the Iwo
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variables within a subgroup differed. The within-subgroup matrices vere equal for one of the

,..onattions, but differed for the other condition. The five levels of COV were:

011 =A) 1;9 2

B) 1;9 0211 =

C) 9:1 a2 =

D) HO 0211 =

E) II 1 0211 =

1,

1,

9,

1,

1,

2021

0221

0221

0221

0221

=

=

=

=

=

2(312

1.7 0212

9 2, a12

9, 0212

9, O212

=

=

=

=

1,

1,

9,

2(322

02=

(3 2 22

0222

a222

= ;1

= ;1

= 9;

= 1

In generating the data, two other "nuisance variables" were manipulated, due to their consistently

large effects in other studies:

4) PROB: Probability of each of the subgroups in the population (pi and p2). This was manipulated

by varying the sizes (ni = N*pi, n2 = 1V-p2) of the subgroups (2 le.ve:s)Equal sized groups

(n1=50, n2=50) or unequal group sizes (n1=90, n2 = 10).

5) DIST: Separation of subgroups. This was defined in terms of Dm, the Mahalanobis distance (in

the populations) between the subgroup centroids:

Dm( 1 2) =, it2)(.11 112) (12)

This distance was based on the pooled within-group covariance matrix: E = pi*E, + p2*E2 DIST

had 3 levelsDm = 2, Dm = 4, or Dm = 6.

6) WEIGHT: The method of weighting the variables to form the similarity measure (6 levels)--which

are discussed in a separate section below.

7) METHOD: The method of cluster analysis (11 levels)-- which arc discussed in a separate section

below.

The first five factors were fully crossed to yield 270 conditions. Twenty datascis were generated
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for each condition according to the procedure given below, giving a total of 5400 base datasets. Although

more replications would be desirable, 1,',e results of previous work (e.g., Donoghue, 1994b) indicate that

this number of replications is likely to provide sufficient precision for the purposes of this study. Each

dataset was then weighted according to each of the weighting methods, and analyzed by each of the

hierarchical clustering methods, yielding a total of 356,400 cluster analyses. For each cluster analysis, the

solution for the correct number of subgroups (i.e., G=2) was used as the result for that clustering method.

Data generation, variable weighting, and clustering were performed using FORTRAN programs

written by the author. Eigenvalues and eigenvectors were computed using routines from EISPACK

(Smith, Boyle, Garbow, Ikebe, Klema, & Moler, 1974). Accuracy of these programs was ensured

through numerous comparisons of results of subroutines and final classifications with routines from SAS

and SPLUS.

Data Generation

Subgroups were generated according to a finite mixture of normal distributions. All datasets

consisted of 100 observations. The means were separated by both variables equally. To ensure that the

data generation procedures worked properly, the Mahalanobis thstance between the two 'mown groups was

computed for each dataset. Table 1 presents descriptive statistics for Dm.

Insert Table 1 about here

The means and medians for each of the conditions are very close to the desired values, supporting the

validity of the data generation proce-duces.

A/Priable_Weighting_Methods

For analysis, each dataset was subjected to 6 variable weighting procedures. The procedures

either yield a set of weights to apply to the variables before forming the Euclidean distance, or they yield
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an alternative similarity measure such as Dm.

1) Euclidean distance (no weighting)

2) PC-R: Principal component scores based on RT

3) Dm-T: Dm based on ST

4) Ultrametricd, computed using weights from De Soete's (1986, 1988) algorithm to maximize

agreement with the ultrametric inequality

5) ACE: Dm based on We from the ACE algorithm (Art, Gnanadesikan, & Kettenring, 1982). As in

Art et al., the parameter M (the number of inter-entity distances used to determine the pairs used

to estimate W°) was set at two-thirds of the number of within-group pairs: in .= 1633 for pi = 0.5

and M = 2700 for pi = 0.9.

6) Dm-W: Dm based on pooled within S.

A seventh method, principal component scores based on ST, was originally included. However, because

both component scores were retained, these scores are an orthogonal rotation of the original variables.

Because the Euclidean distance is invariant under orthogonal rotation, every one of the 59,4(X) solutions

was identical to that computed from 4, and so these results were not included in the analyses discussed

below. Clearly, clustering based on principal components is not the solution to the problem of within-

group correlation.

The first and last methods provide useful comparisons for the other methods. Clearly, a weighting

method which results in worse cluster recovery is undesirable. On the other hand, the last method

provides a useful upper bound on how good recovery could be in a given dataset.

OnsterAlgorithms

Each dataset was analyzed 11 times, corresponding to different hierarchical clustering algorithms.

The clustering methods are:
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1) Single linkage, distance

2) Complete linkage, distance

3) Ward's (1963) method, squared distance

4) EMEL-SAS's (1988) maximum likelihood hierarchical clustering procedure, which is a

modification of Ward's method to alleviate the method's tendency to yield equal-sized

clusters, squared distance.

5) Average flexible method, (Belbin, Faith, & Milligan, 1992), distance. Five levels of p were

examined, 0.0, -.10, -.15, -.20, -.25. Note that ri = 0 is the usual average linkage

method.

6) Flexible-beta method (Lance & Williams, 1967), distance. Two levels of p were examined,

-.25 and -.50.

The clustering methods were chosen because: a) they are widely used (single linkage, complete

linkage, average linkage, and Ward's method); b) they have performed well in previous studies (average

linkage, Ward's method, beta-flexible and flexible average); or c) they are designed to recfify a known

weakness of another algorithm (EML). The values of 13 used are based on the studies by Milligan (1989a),

Belbin, Faith, and Milligan (1992), and Donoghue, 1994b, 1995). For a discussion of these algorithms,

the reader is referred to standard introductions to cluster analysis (e.g., Everitt, 1993; Lorr, 1983).

Milligan (1989a), Belbin, Faith, and Milligan (1992), and Donoghue (1995) contain discussions of the

beta-flexible and flexible average methods, and the SAS documentation (SAS Institute, 1988) is the

primary reference for the EML algorithm.

Ontcome-Measure

The outcome measure for the study was the Hubert and Arabie (1985) modification of Rand's

(1971) statistic, which will be denoted HA-Rand. The index was computed between each cluster solution
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and the true subgroup membership used to generate the data. This index is based on examining pairs of

entities, and determining whether they are classified into the same or different subgroups. A value of zero

reflects chance agreement with the true membership, and 1.0 reflects perfect agreement. A study by

Milligan and Cooper (1986) supports the accuracy of Hubert and Arabie's modification.

Analyses

To summarize the results, a factorial analysis of variance was conducted, as in Milligan (1980,

1981, 1989a) and Donoghue (1994b, 1995). The HA-Rand index served as the dependent variable. The

independent variables were the design factors used to generate the data, weighting method, and the cluster

algorithm used to analyze the data. The purpose of the ANOVA was to summarize the data and help to

highlight the more important effects. Therefore, a measure of effect size was adopted in favor of

traditional significance testing. Usually, 712 would be used in this context:

SS

SST°,
(13)

However, this index has a disadvantage in large designs, namely that the denominator contains not only

error variance and systematic variance of interest, but also irrelevant systematic variance due to other

effects. The larger the design becomes, the more apparent this effect becomes. In the present case, this is

particularly noisome, because one of the factors, Mahalanobis distance between the subgroup means, has a

very large effect and so serves to obscure the effects of other factors. Therefore, an alternate version, rl'ait

(Tabachnick & Fide II, 1983, p. 47), was used:

2 SSeffc,:t

alt
cucct + SSerror

(14)

Note that, unlike the other formulation, this version, 712it, does not sum to 1.0. As in Donoghue (1994b),

the practical criterion of re,., .03 was selected. Note that, given the large amount of data, any effect
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which met the pracfical criterion was always highly significant (e.g., p < .0001).

Results

The results of the ANOVA and values of Teak are summarized in Table 2. All of the main effects

were identified as salient, with the exception of Prob. and R2, the correlation within subgroup 2. Meant'

for the main effects are presented in Table 3. The main effects are all modified by salient interactions, and

so will not be discussed in detail. However, a few comments are in order, bearing in mind that the

observations may well be modified by the interactions. First, the extremely large effect of D, the distance

between the subgroup centroids, is both noteworthy and expected; as the subgroups become more

separated, the clustering task becomes easier and hence recovery improves. The smaller effect for R2

(compared to R1) is also an expected artifact of the design; for one-half of the datasets, subgroup 2

comprised only 10% of the sample, and so had a smaller effect. Finally, for the weighting methods, Table

3 reveals that, overall, best recovery is obtained for Dm-W, the Mahalanobis distance based on the pooled

within-group covariance matrix. This is followed by distances based on the approximate covariance

estimate, ACE; distances computed from the ultrametric weights; and PC-R, the principal components

based on the total correlation matrix. Overall, Dx4-T, Mahalanobis distance based on the total covariance

matrix, yielded worse recovery than simply using the Euclidean distance dE.

Tr--- 2 and 3 about here

Weighting_Method

The main effect of weighting method was modified by several salient interactions. Figure 1

portrays the R1 by Weight interaction. Three of the weighting methods, dE, PC-R, and the ultrametric

weights show large drops in recovery when RI -= -.7. The other thyee methods based On Dm (DwW,
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ACE, and DieT) show a relatively flat profile; recovery using ACE actually decreases slightly as RI

increases. Although ultrametric weights and PC-R show lower recovery for RI =-.7, both methods yield

good recovery for RI =0 and RI = .7, outperforming ACE.

Insert Figure I about here

Figure 2 plots the means of COV by Weight interaction. The effect appears to be due to the

methods which are not based on Mahalanobis distance methods, dE, PC-R and the ultrametric weights.

The chief effect seems to be for HO, the condition in which on =am = I and on = CI= = 3. The ultrametric

weights show a small decrease in recovery for this condition; PC-R has a substantial decrement in

recovery, and dE demonstrates a huge decrement in recovery. The three methods also differ to a lesser

extent on HI, but give virtually identical results for the other conditions.

Insert Figure 2 about here

The Prob. by Weight interaction is portrayed in Figure 3. Dm-W is relatively unaffected by

subgroup size. PC-R and ultrametric weights yield moderately lower recovery when pi = .9, and dE

yields substantially worse recovery. On the other hand, DieT and ACE yield better recovery for pi = .9

than for pi = .5. For ACE, the number of pairs used in the estimation, m, was larger for pi = .9, so this

result may simply reflect more stable estimation from more data.

Insert Figure 3 about here

Finally, Figure 4 displays the means for the Weight by Method interaction. Although there are

some differences, five of the weighting methods give very similar profiles of recovery across the clustering

algorithms. On the other hand, DM-T differs wildly in effectiveness. it performs well for Ward's method
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and flexible average, but performs at or below the level of dE when used with other methods. Because

these two factors (clustering algorithm and weighting method) are under control of the analyst, this

interaction is of considerable interest. Therefore, it will be examined in more detail below.

Insert Figure 4 about here

Clustering_Methods

Three additional two-way interactions involving clustering method were identified as salient:

Distance by Method, Prob. by Method, and COV by Method. Figure 5 portrays the means of tie Distance

by Method interaction. In general, the ordering of the methods is similar for each distance, although

complete linkage ranks ahead of average linkage for Dm =2, but behind average linkage when the groups

are further apart. The largest difference is due to the single linkage method, which shows a very small

gain (relative to other methods) from Dm = 2 to Dm 4, and a consequent large relative gain from Dm =

4 to D m = 6. Otherwise, the effects of increasing subgroup separation are relatively stable across the

other methods.

Insert Figure 5 about here

Figure 6 plots the means for the Prob. by Method interaction. The clustering methods differ

substantially in their recovery of equal- versus unequal-sized groups. Consistent with other studies (e.g.,

Donoghue, 1994b), single linkage yields much better recovery for unequal-sized groups, as do, to a lesser

exwnt, EML and complete linkage. On the other hand, Ward's method yields much better recovery for

equal-sized groups. EML and Ward's method showed a similar pattern in Dor.oghue (1994b), but there

EML yielded slightly better recovery for equal-sized groups.
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Insert Figure 6 about here

Finally, the COV by Method interaction is portrayed in Figure 7. The 1:1, HO and Hi conditions

present similar profiles of recovery across the clustering algorithms. The 1:9 condition results in much

higher recovery for flexible average, beta-flexible and Ward's methods but lower reawery for average

linkage. In general, the 9:1 condition yields a similar profile to the 1:9 condition, although the 1:9

condition results in worse recovery for single and average linkage. In spite of these differences, however,

the clustering methods are, in general, similarly ordered for each condition of COV.

Insert Figure 7 about here

Other Effects

The two-way interaction of Distance by COV was identified as salient, as was the three-way

interaction of Distance by Prob. by COV. Figures 8a and 8b plot the means of this three-way interaction.

When pi = .5 as in Figure 8a, the Distance by COV interaction is fairly small. For each level of DM,

recovery is slightly lower for the HO condition of COV than for the other conditions, although the amount

does differ somewhat by Dm. However, when pi = .9 as in Figure 8b, there is a substantial interaction of

Distance with COV. For Dm = 2, the 1:9 condition results in good recovery, while the recovery for the

9:1 condition falls near chance, and HO and H1 yielded recovery equal to or better than that of the 1:1

condition. For Dm = 4, the 1:9 condition yields similar recovery to that of 1:1 and 9:1, and for DM =6,

1:9 results in somewhat lower recovery than the other two conditions.

Insert Figure 8 about here
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Other Weight hy Method Triterantions

Insection of Figure 4 indicated that the bulk of the Weight by Method interaction was due to the

differing utility of Dsi-T, the Mahalanobis distance between entities computed from E. Table 2 indicated

that two three-way interactions involving Weight and Method (Distance by Weight by Method and Prob.

by Weight by Method) were large but did not meet the criterion for salience. For completeness, plots of

the means for these interactions are presented in the appendix. These interactions are largely due to the

behavior of DieT; the interaction of Dsi with Method increases with subgroup separation, and the

interaction is much larger for pi = .5 than for pi = .9.

What Works Rest

As was noted above, the Weight by Method interaction is of particular interest. While the other

factors in the design are aspects of the data which are outside of the analyst's control, the weighting

method and clustering algorithm are decisions made by the analyst. The key questions are:

1) Which weighting method yields the best recovery?

2) Which clustering algorithm yields the best recovery?

The salient interaction between Weight and Method indicates that the answer to either of these questions

may depend on the value of the other factor. Essentially, we would like to know if the interaction is

ordinal (effect size changes but the order of the levels of one factor remains stable across levels of the

other) or disordinal (the ordering of results for one factor depends upon the level of the other factor).

Because these are explicitly ordinal questions, Cliff s (1993) distribution free method of comparing

two distributions was used. Ordinal comparisons were performed using a modified version of Cliff s

(1992) program PAIRDEL1, for paired observations. Two types of ordinal comparisons were made. The

first estimates the probability that a randomly sampled observation from one distribution is higher (i.e.,

better recovery) than a randomly sampled observation from the other distribution. This results in one of
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three decisions for each pair of methods: a) Method A is higher (better recovery) than Method B; b)

Method B is higher than Method A; or c) the methods do not significantly differ. These pairwise

comparisons were made on HA-Rand index recovery values. Shaffer's (1986) modification to the

Bonferroni procedure was used to maintain familywise Type I error at a =0.05. Finally, the pairwise

relations were converted into ranks based upon the number of methods which were significantly higher

than a given method versus the number which were significantly below it.

The second type of ordinal comparison is based on Cliff's index 4, which is the proportion of

datasets for which Method A yielded higher recovery than Method B minus the proportion of datasets for

which Method B yielded higher recovery than Method A; d,,, is the net proportion of datasets for which

Method A yielded higher recovery. In the present context, it may be interpreted as the probability (for a

randomly chosen dataset) of getting better recovery using Method A. Negative values of 4 indicate lower

recovery for Method A.

Comparison_of_Weighting_Methods

To determine which weighfing methods work better, pairwise comparisons of the weighting

methods were computed within each clustering algorithm, and ranks were formed based on the pAirwise

comparisons. For each clustering algorithm, the initial family size was 6 take 2 = 15. The results of

these comparisons are summarized in Table 4.

Insert Table 4 about here

In spite of the strong interaction, the ranks of weighting methods are very consistent across

clustering algorithms; only 4 and Dst-T show reversals across methods. Clustering using Ds4-W

(Mahalanobis distance based on the pooled within-groups covariance matrix) yielded best cluster recovery.

Of the remaining methods, which do uot require knowledge of the cluster structure, the ACE algorithm
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(Art et aL , 1982) is best, followed by the ultrametric weighting algorithm of De Soete (1986, 1988).

As was mentioned in the introduction, the (squared) Euclidean distance dE is the default measure of

similarity for most implementations of clustering procedures (e.g., statistical packages). Table 5 provides

d, values for each of the weighting methods compared to dE. A negative value indicates that the method

indexed at the top of the column gave superior recovery to that of dE. For example, using dE instead of

ACE would yield lower recovery 8-24% (depending upon the clustering algorithm used) of the time when

analyzing datasets similar to those used here. Table 5 also gives 4,, values for each of the remaining

methods compared to the best method, ACE. In comparing the two best methods which do not require

knowledge of the subgroup structure, ACE and ultrametric, the d, value varies somewhat by clustering

algorithm, but is always greater than 0; for the type of data considered in this study, ACE provides better

recovery than ultrametric weights.

Insert Table 5 about here

The last two columns of Table 5 compare cluster recovery using the two best weighting methods

(ACE and ultrametric weights) to cluster recovery using Ds.4-W. Thus, knowing the subgroup structure

and clustering based on Dsi-W instead of ACE would result in improved recovery 10-18% of the time,

unless the analyst used the single linkage algorithm.

Comparison of Clustering Algprithms

A similar prooedure was used to rank the clustering algorithms. Within each weight method, all

pairwise ordinal comparisons of clustering methods were performed and the pairwise relations were

converted into ranks. Shaffer's modification to the Bonferroni was again used, with the initial family size

of 11 lzke 2 = 55. The results of these anal' .ses are summarized in Table 6.



Variable Weighting in Cluster Analysis

Insert Table 6 about here

The ranks of the clustering methods a.'.e more variable than those of the weights. However, the

flexible average method of Belbin, Faith, and Milligan (1992) clearly outperforms the other algorithms.

For the conditions examined in this study, p = -.15 or p = -.20 gave the best recovery. These values

coincide with Belbin et al.'s recommendation that p -.2, although they are slightly lower than the finiza

value they suggest, 13 = -.10. Howewr, for the best weighting conditions, i3 = -.10 yielded very similar

results to the best values.

Although there are some minor differences, the results for the remaining methods are similar to

those obthined in other studies (e.g., Donoghue, 1994a,b; Milligan 1989a,b; Belbin, Faith, & Milligan,

1992). The results for the lowest of the methods, complete linkage and single linkage, are quite consistent.

Based on theoretical considerations, such as its relationship to the minimum spanning tree of graph theory,

some authors continue to recommend single linkage (e.g., IMS Panel on Discrimination, Classification,

and Clustering, 1989). Yet this method uniformly produced the lowest recovery of the methods examined,

a result that is routinely found in comparisons clustering algorithms (e.g., Milligan & Cooper, 1987, and

the references therein).

Table 7 presents cln, values for comparing each clustering method to one of the best (although not

widely available) clustering methods, flexible average with f3 = -.15, and comparing each clustering

method to one of the best of the widely available algorithms, Ward's method. In the present study, using

the flexible average method instead of single linkage gives cl, = .441 for dE, .590 for ACE, and .524 for

ultrametric weights. Using linkage gives worse recovery about one-hau. of the time! Even

compared to Ward's method, which is very widely available, d, is over .30 for all weighting methods.

22
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Insert Table 7 about here

imitntions and Future, Work

The following is a very brief discussion of some related areas for future research. It is not

intended to be exhaustive by any means. In order to keep this section reasonably brief, procedures which

differ from the present paper's focus on distance-based measures are not discussed. Examples of other

approaches not considered here include non-distance similarity coefficients (e.g., q-correlations) and

algorithms which combine specific variable weighting or multidimensional scaling models with specific

clustering algorithms.

While restricting the present investigation to bivariate data somewhat limits its generalizability, it

was felt that this provides minimal test of the weighting procedures; any procedure which does not function

well with bivariate data seems unlikely to be useful for higher dimensional cases. Having established here

that variable weighting methods can provide substantial benefit in cluster recovery, further work is needed

to determine the extent to which the results obtained here generalize to higher numbers of subgroups and

higher dimensional clustering problems.

Certain aspects of the methods used, such as how to choose the number of distances m to use in

computing the ACE estimate of E, need to be addressed. Currently, there is little to guide the applied

rmarcher. J. Kettenring (personal communication, July 2, 1993) indicates that some work along these

lines is underway at Bellcore. Obviously, more work would be useful. A related sue is the relationship

of the original formulation of the method, used here, to the somewhat modified version which is

implemented in SAS's PROC ACECLUS (1988).

The relationship between thn methods used here and procedures aimed at variable standardization
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(Milligan & Cooper, 1988; Barton, 1993) should be examined. Variable standardization methods seek to

deal with problems associated with combining variables measured on very different scales (such E s SAT

and GPA) into a single similarity coefficient. Hence, variable standardization procedures tend to treat

variables sequentially, as opposed to the multivariate focus of the procedures examined in the present

study.

Of the c...ustering methods examined in this study, the flexible average clustering method (Belbin,

Faith, & Milligan, 1992) gave the best recovery of the methods in this study. The optimal value of p was

found to be -.15 to -.20, which is slightly lower than the value of f3 = -.10 suggted by Belbin et al.

(1992). A companion papez (Donoghue, 1995) presents further results comparing the flexible average and

beta-flexible methods. Of the remaining methods, Ward's method and beta-flexible linkage (p = -.50)

yielded the best recovery, followed closely by SAS's EML algorithm.

The relationship of the weighting methods identified here to the closely allied problem of variable

selection (Milligan. 1989b; Donoghue, 1994a) remains to be addressed. Both of these papers found that

the ultrametric weights were useful in ameliorating the degradation of cluster recovery caused by including

irrelevant variables in the cluster analysis. Donoghue (1994a) also compared two additional variable

selection procedures, and in their original paper, Art et al. (1982) presented preliminary evidence that the

ACE weighting method may be useful with the variable selection problem. More work is needed to

understand the interrelationship of the various variable weighting techniques proposed to solve different

problems in clustering.

Conclusion

This study was meant to constitute a first step in understanding the utility of various variable

weighting algorithms. The results of Donoghue (1994b) clearly indicate that cluster analyses based upon
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the Euclidean distance can yield suboptimal results in the presence of within-group correlation, but could

not offer clear suggestions for alternatives.

Variable weighting methods were found to have a large effect on cluster recovery. Of the

methods which do not require a priori knowledge of the subgroup structure, the ACE method of Art,

Gnanadesikan, and Kettenring (1982) yielded the best results. When used with the better clustering

algorithms, this method provided a net improvement in 17% (EML) to 24% (beta-fiexible, 3 = -.50) of

the datasets exainined. When used with the same clustering methods, the next best weighting method,

ultrametric weights, yielded improved recovery 16-21% of the time. However, ultrametric weighting was

found to be more sensitive than ACE to within-subgroup correlation. Therefore, ACE is the method

which is preferred overall. There is still plenty of room for improvement, however. Comparisons of

ACE with Dm based on the pooled within-group covariance matrix indicated that knowing the correct

covariance matrix would yield improved recovery (over ACE) approximately 10% of the time.

Finally, it should be noted that the procedures examined and the results obtained here only apply to

situations in which a mixture model formulation of the clustering problem makes sense. In some

educational applications, such as clustering test items based on mullidimensional IRT parameters (Miller &

Hirsch, 1992), it is far from obvious whether the mixture model formulation of the clustering problem is

valid. The application of the present work to such situations is problematic.

This study is intended to be a first step in understanding variable weighting methods. It attempts to

provide some information to those educational investigators faced with doing empirical cluster analyses,

allowing them to make a better informed choice of variable weighting methods and clustering algorithms.
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Table 1
Descriptive Statistics for Observed Dm

Mean Std. Mi Q1 Med. Q I Max.

2.086 0.454 0.372 1.835 2.051 2.300 4.611

i
4.106 0.558 2.127 3.775 4.063 4.357 7.185

6.143 0.730 3.5!1 5.691 6.067 6.500 10.690

3
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Table 2
Main Effects and Salient Interactions (T12,, .03) for ANOVA of HA-Rand Index

DF SS 2hill-bCT

D 2. 23826.77 .641

i P
.004

4. 648.85 .046

RI 2. 425.51 .031

R2 2. 97.03 .007

M 10. 4166.77 .238

W 5. 1452.93 .098

D*C 10. 540.93 .039

D*M 20. 702.38 .050

P*M 10. 723.06 .051

C*M 40. 436.27 .032

C*R1 8. 337.65 .025

10. 332.11 .024

5. 671.72 .048

CW 20. 834.55 .059

RI*W 10. 568.05 .041

10. 83.78 .006

50. 631.73 .045

DPC 8. 414.63 .030

D*M*W 100. 328.51 .024

P*M*W 50. 312.40 .023

Error 338580. 13353.61 -
Abbreviations: D Mahalanobis distance between subgroup centroids, P - probability of subgroup

membership, C - covariance matrix condition, R1 - correlation in larger group
(when pi 0 p2), R2 - correlation in smaller group (when p, p), M - method of
clustering, W - weighting method.

3 `I;
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Table 3
HA-Rand Index Means and (Std. Dev.) for Selected Effects

Prob.

2 4 6 Pi = 0.5 p, = 0.9

.241 (fl_9_)A3_7g_g_l .867 (..283)_ .595 (.396) .569 (.399)

COV

1:1 1:9 9:1 HO HI

.594 (.405) .636 (.354) .584 (.441) .505 (.410) .590 (.395)

R1 R2

-.7 0.0 0.7 -.7 0.0 0.7

.533 (.411) .607 (.389) .606 (.387) .559 (.408) .591 (.394) .596 (.389)

Weight

Euclid Dm-T Dm-W PC-R ACE Ultametric

.512 .418 .492 .400 .677 .352 .583 .402 .627 .381 .599 .39

Method Mean Recove

Sin! e Link S. .318 .414

Com slete Link Cm .456 .390

Ward's Method a .623 .385

I EML .609 .389

Avera e Linka e Av. .
1

I Flexible Average, p . -.10 (Av10) .663 .365)

Flexible Averamil = -.15 (Av15) .682

.682

.353

.353Flexible Avera e = -.20 Av20

Flexible Avera e I = -.25 Av25

Beta Flexibleil5 (Fx25) .568 (.388)

1 Beta Flexible, 13 = -.50 (Fx50) .609 (.381)

3.;
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Table 4
Ranks of Weighting Methods Based on Ordinal Comparisons

(by Clustering Method)

Weighting Method Si Cm Wa EML Avg. Av10 Av15 Av20 Av25 Fx25 Fx50

Dm-W 1.56 1
1 1 I 1 I I 1 1 1

ACE 1.54 2.5b 2

Ultrametric 3 3 3 3 3 2.5b 3

PC-R 4 4 4 4 4 4 4 4.5` 4.5d 4

Dm-T 6 6 5 6 6 5 5 4.5c 4.5d 6
5.5e

Euclid 5 5 6 5 5 6 6 6 6 5 55e

abcde . .Entries with common superscripts do not significantly differ from one another.

t
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Table 5
dn, Values for Selected Comparisons of Weighting Methods

(by Clustering Method)

Euclid ACE Dm-W

Dm-T PC-R Ultra. ACE Dm-W Dm-T PC-R Ultra. ACE I Ultra.

Si .085 -.031 -.053 -.081 -.069 .169 .050 .026 ,007* .017

Cm .275 -.121 -.182 -.234 -.417 .486 .123 .053 .184 .251

Wa -.070 -.133 -.168 -.230 -.331 .166 .104 .067 .112 .176

EML .165 -.147 -.160 -.168 -.272 .342 .046 .025 .109 .134

Avg. .213 -.097 -.120 -.132 -.224 .350 .043 .010* .096 .109

Av10 -.034 -.148 -.162 -.160 -.280 .140 .025 .016* .128 .135

Av15 -.113 -.160 -.163 -.184 -.296 .086 .048 .033 .130 .160

Av20 -.127 - 155 -.176 -.210 -.306 .091 .069 .052 .116 .165

Av25 -.121 -.139 -.171 -.222 -.303 .104 .086 .061 .103 .155

Fx25 .114 -.154 -.211 -.239 -.393 .348 .114 .066 .161 .214

Fx50 -.010* -.144 -.174 -.244 -.366 .246 .119 .072 .118 .199

Does not significantly differ from 0.0, p = .05.
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Table 6
Ranks of Clustering Algorithms Based on Ordinal Comparisons

(by Weighting Method)

Euclid Dm-T Dm-W PC-R ACE
.,

Ultrametric

Av20 2 1.5f
h 2 1.5

Av15 10 21sf 1 30 1.5r

Av10 bc 4 4 3.51 5P

Av25 c 3 31 3.51 2n° 33

5 5.5-i 6.5m 5P 6t

Fx90 e 6 5.5i 6.5

EML 5d 7 7.5k 5 7

Fx75 8 8 7.5k 8 8

Avg. 9 9.5g 10 9 9.5q 9

Cm 10 9.5g 9 10 9.5q 10

S' 11 11 11 11 11 11

abcdcfghtjklinnopqr51 tri with common superscripts do not significantly differ from one another.



Table 7
Values for Selected Comparisons of Clustering Methods

(by Weighting Method)

- -
Comparison with Flexible Average, 13 = -.15

Si Cm Wa I EML Avg. Av10 Avl 5 Av20 Av25 Fx25 Fx50

Euclid .440 .394 .142 1 .131 .247 .030 ---- 9 .025 .221 .137

Dm-T .723 .689 .159 .385 .566 .107 ---- -.006* .017* .442 .259

D -W .613 .295 .088 .118 .274 .034 ---- .011* .131 .079

PC-R .536 .411 .136 .123 .273 .035 ---- .016 .034 .216 .150

ACE .591 .326 .076 .116 .296 .055 ---- -.018 MO* '142 .069

Ultrhmetric .521 .359 .114 .114 .262 .021 ---- ..003* .010* .180 .116

Comparison with Ward's Method

Euclid .319 .270 ---- .005* .122 -.109 -.142 -.126 -.110 .086 ..005

Dm-T .543 .546 ---- .251 .431 -.044 -.159 -.173 -.148 .285 .077

Dm-W .545 .212 ---- .026 .200 -.054 -.088 -.087 -.065 .028 -.012*

PC-R .386 .273 ---- -.008* .143 -.102 -.136 -.124 -.104 .071 Ole

ACE .541 .274 - - .058 .246 ..011* '076 -.096 -.095 .076 ..015

Ultrametric .416 .259 --- .008* .158 -.087 -.114 -.116 -.110 .059 -.005*

Does not significantly differ from 0.0, p = .05.

41



Figure Captions

Figuire 1. Plot of mean cluster recovery (HA-Rand) for two-way interaction of correlation in the
larger group (R1) with variable weighting method (Weight).

Fivre Plot of mean cluster recovery (HA-Rand) for two-way interaction of covariance
condition (COV) with variable weighting method (Weight).

Figtire 3 Plot of mean cluster recovery (HA-Rand) for two-way interaction of subgroup size
(probability of subgroup 1 membershippi) with variable weighting method (Weight).

Figure 4 Plot of mean cluster recovery (HA-Rand) for two-way interaction of variable weighting
method (Weight) with clustering method (Method).

Fivire. 5 Plot of mean cluster recovery (HA-Rand) for two-way interaction of Mahalanobis
distance between the centroids of the subgroups (Distance) with clustering method (Method).

Figure 6 Plot of mean cluster recovery (HA-Rand) for two-way interaction of subgroup size
(probability of subgroup 1 membershipp1) with clustering method (Method).

Figure 7 Plot of mean cluster recovery (HA-Rand) for two-way interaction of covariance
condition (COV) with clustering method (Method).

Eigur-3. Plot of mean cluster recovery (HA-Rand) for three-way interaction of Mahalanobis
distance between the centroids of the subgroups (Distance) with covariance condition (COV) with
subgroup size (probability of subgroup 1 membershipp1).

a) Distance by COV interaction for equal-sized groups (pi = .5).
b) Distance by COV interaction for unequal-sized groups (pi = .9).

4 3
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Prob. by Method Interaction
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COV by Method interaction
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Dist. by COV Interaction
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Additional Figures
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Captions for Additional Figures

oire A I Plot of mean cluster recovery (HA-Rand) for three-way interaction of Mahalanobis
distance between the centroids of the subgroups (Distance) with variable weighting method
(Weight) with clustering method (Method).

a) Weight by Method interaction for Dm = 2.0.
b) Weight by Method interaction for Dm = 4.0.
c) Weight by Method interaction for Dm = 6.0.

Fivre A/ Plot of mean cluster recovery (HA-Rand) for three-way interaction of subgroup size
(probability of subgroup 1 membershippl) with variable weighting method (Weight) with
clustering method (Method).

a) Weight by Method interaction for equal-sized groups (ro, =.5).
b) Weight by Method interaction for unequal-sized groups (p1= .9).
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