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Estimating the importance of differential item functioning

Several methods have been proposed to detect differential item

functioning (DIF), an item response pattern in which members of

different demographic groups have different conditional

probabilities of answering a test item correctly, given the same

level of ability. In this paper, the mixture index of fit, proposed

by Rudas, Clogg, and Lindsay (1994) is used to estimate the fraction

of the population for which DIF occurs, and this approach is

compared to the Mantel-Haenszel (1959) test of DIF developed by

Holland (1985; see Holland & Thayer, 1988). The proposed estimation

procedure, which is noniterative, can provide information about

which portions of the item response data appear to be contributing

to DIF.

Key words: diffPrential item functioning, Mantel-Haenszel test,

maximum likelihood estimation, mixture index of fit
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Introduction

The absence of.differential item functioning (DIF) is regarded as an

important aspect of test fairness by most educational researchers.

The extensive literature on the detection and measurement of DIF is

reviewed in Holland and Wainer (1993) and Camilli and Shepard

(1994).

In this paper we propose to assess the importance of differential

item functioning by estimating the largest possible fraction of the

population in which DIF does not occur, or, equivalently, the

smallest possible portion of the population in which DIF may occur.

This approach is based on latent class (see Clogg, 1981) or mixture

concepts and was proposed by Rudas, Clogg, and Lindsay (1994) in

the general context of assessing the fit of an arbitrary model a

contingency table.

Let H be any model or hypothesis for a contingenL.y table. Then any

distribution P can be represented as

(1) P = (1-11)0 + n0 ,

where 0 is a distribution in H, 11, is an arbitrary distribution, and

0.--5.n=1. The above representation is not unique. The mixture index of

fit n* is defined as the minimum possible value of n,

u* = inf ( : P=(1-n)0+nT, 0EH } ,

and it is the smallest possible fraction of the population outside

the model of interest, H. Rudas, Clogg, and Lindsay (1994) described

a general method of obtaining maximum likelihood estimates of n* and
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of constructing confidence intervals. The nonrestricted

distribution, T, describes residuals, though not in the standard

sense, and n* is the total weight of these residuals. Ordinarily,

residuals are defined with respect to a model that is assumed to

hold in the entire population. By contrast, the residuals in this

approach are defined in the context of representation (1), which is

always true. The T residuals describe the distribution in the part

of the population in which hypothesis H is not true. Various

interpretations of T are discussed in Clogg, Rudas, and Xi (1995).

In the present paper, the residuals will be used to identify parts

of the population in which evidence of DIF exists.

An extension of the approach of Rudas, Clogg, and Lindsay (1994)

will be used to compare the fits of nested models using a measure of

the relative fit of a model against a restricted alternative (see

also Clogg, Rudas, & Xi, 1995). This will be applied to the "no DIF"

and "uniform DIF" (see Mellenbergh, 1982, Holland, 1985) hypotheses

of the Mantel-Haenszel (MH) type.

Application of the procedure proposed in this paper produces an

estimate of the minimum proportion of the population that would have

to be removed in order to make the rest of the population free from

DIF, as well as information about the specific portion of the

population that is the apparent source of DIF in the above sense.

This type of result may be more interpretable than conventional DIF

statistics and may provide information that can be used to modify

test items.

The paper is organized as follows: the next section formulates the

hypotheses of no DIF and uniform DIF as MH-type hypotheses for a

three-dimensional contingency table. Then simple methods for maximum

4



likelihood (ML) estimation of n* under these hypothe,.;es will be

described, along with a method for testing the hypothesis that the

fraction of the population that is free from DIF is greater than a

specified value. The conclusions that can be drawn from fmspecting

the n* values and T residuals will also be discussed. The next

section will present numerical results for two data sets -- a

simulated data set and a set of examinee responses to the 1993

Advanced Placement Physics B Exam. The last section discusses

relative advantages and disadvantages of using the mixture index of

fit n* in this context.

The hypothesis of no differential item functioning

Let A and B be two groups of respondents, often labeled as the focal

and reference groups. The focal group is the group of primary

interest and the reference group serves as a basis for comparison.

The analysis of DTP" can be conducted by comparing the reference and

focal group odds of answering the item correctly, conditional on a

measure of ability, such as a test score. Under the hypothesis of no

DIF, group membership and item response (correct or incorrect) are

conditionally independent, given ability. The following table gives

the notation for the conditional probabilities at level j of the

matching test score

Group

Response

Correct Incorrect

A
PACj PAIj

PBCj PBIj

5



The hypothesis of no DIF is

P -PACJ BIj
(2) H (no DIF) : a = 1 for j=1,...,J.

P -13AIJ BCj

Holland (1985) suggested the use of the Mantel-Haenszel procedure

for testing the hypothesis of no DIF (see also Holland, & Thayer,

1988). The Mantel and Haenszel (1959) chi-square test approximates

the uniformly most powerful unbiased test of the null hypothesis

against the alternative that the conditional odds ratios (see Rudas

& Leimer, 1992) in (2) are all equal to a common value other than

one (Holland, & Thayer, 1988), which is the hypothesis of uniform

DIF:

(3)
P -P -

H (uniform DIF) :

ACJ BIJ
a (#1) for all j.

PAIjPBCj

The amount of DIF, as measured by the conditional odds ratio, is

assumed to be constant over all levels of the matching variable.

When the sample size of the focal group is much smaller than the

sample size of the reference group, the method for fitting the same

log-linear model to two groups of very different sizes described in

Rudas (1991) may be applied instead of testing (2) against (3).

Holland and Thayer (1988) discussed the relative advantages of

testing (2) against (3) over other methods of testing for the

presence of DIF (see also Zwick, 1990). They proposed the use of a

transformation of the Mantel and Haenszel (1959) odds ratio

estimator (i.e. the estimator under (3)), to measure the amount of

DIF. In practice, a combination of the MH chi-square and odds ratio

estimate is often used to assess the degree of DIF in an item (see

6
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Zieky, 1993).

In the next section we provide an alternative way of assessing the

amount of DIF by estimating the smallest fractions of the population

that have the property that their complements can be described by

hypotheses (2) and (3), respectively. The comparison of these two

fractions can be used as a measure of the relative fits of

hypotheses (2) and (3).

The hypotheses considered in this section can be extended to items

with more than two possible scores, such as partial credit items or

items that are scored on an ordinal scale. Within each level of the

matching variable, the data can be represented as a 2xL table, where

L is the number of options. In this case, the association structure

can be described by considering either the conditional means of the

two groups (e.g., see Zwick, Donoghue, & Grima, 1993a; Zwick &

Thayer, in press) or the set of conditional odds ratios pertaining

to these 2xL tables (Zwick, Donoghue, & Grima, 1993b). These can be

the odds ratios based on neighboring columns (see Goodman, 1979) or

on the reference cell approach (see Rudas, 1991). The methodology

discussed in the next section can be applied in these cases as well,

but iterative procedures are needed for fitting the models of no DIF

or uniform DIF. A fourth, unobserved variable is introduced, showing

whether or not an observation came from the part of the population

in which the hypothesis holds. Then the EM algorithm (Dempster,

Laird, A Rubin, 1977) can be applied to fit the mixture in (1) with

various trial values of n. The value of n* is the smallest value

with which perfect fit can be achieved.' This procedure is described

in Rudas, Clogg, and Lindsay (1994) in a general form and will not

be discussed here. On the other hand, when the responses are

classified only as correct or incorrect, the ML estimate for n* has
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a closed form for the hypothesis

the result of a finite-step

hypothesis of uniform DIF. These

next section.

of no DIF and can be obtained as

maximization procedure for the

procedures are considered in the

Estimating the fraction of population outside of the hypotheses of

no DIF and uniform DIF

The goal of the n* approach, sketched briefly in the introduction,

is to consider the observed table of frequencies and take away the

smallest possible fraction of oLdservations, so that what remains

corresponds to the hypothesis of interest exactly. Note that the

exact correspondence to the hypothesis which results does not imply

that the procedure overfits the model; rather it is a consequence of

the fact that representation (1) always holds true with an

appropriate value of n. The ratio of the number of observations

removed to the sample size is the ML estimate of the mixture index

of fit n* and the distribution of the portion of observations that

was taken away is the ML estimate of T, where T is the distribution

in that part of the population in which the hypothesis of interest

does not hold (Rudas, Clogg, & Lindsay, 1994).

In the case of model (2), this leads to the following algorithm. For

every level j of the matching variable, consider the table of

observed frequencies and suppose that none of the entries are equal

to zero. If the observed conditional odds ratio

fACjfBIj

IAIj BCj

is grc)ater than a=1, only the smaller of f and needs to be
ACj fBIj
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reduced. The smaller of these, g .=min(f f .), must be reduced
smj ACj BIj

by

d. = g . (1-a/a ) .

smj

When a. is less than a=1, only the smaller of and needs to
fAIj fBCj

be reduced. The smaller of these, h .=min(f . f .) must be
smj BCj '

reduced by

d. = h :1-a /a) .

j smj j

See Clogg, Rudas, and Xi (1994) for related discussion. The ML

estimate of e for model (2) can be obtained as

e(no DIF) = (1/N) Z d. ,

j

where N is the total sample size.

Wh
ACj BIj

en f .=f . or fAirfBCY either one of the frequencies can be

reduced. The cell of the conditional table in which the frequency is

reduced is not uniquely defined, but the amount of decrease, and

therefore the value of 10, are uniquely defined.

To design a simple algorithm yielding e(uniform DIF), consider (3)

as the union of infinitely many hypotheses:

H (uniform DIF) = u Ha = u
PACjPBIj

a }

aeR aeR PAIjPBCj
a;t1

For cotg, Ha and H are disjoint. Therefore, one may obtain e for
0

(3) by first fixing a, finding e(Ha)=70(a), and then taking the
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infimum over the possible values of a. Note that Ha is a prescribed

conditional interaction model in the three-way table (see Rudas,

1991).

For arbitrary but fixed a, the algorithm to find n*(a) is exactly

like the one described above for hypothesis (2). This yields a n*(a)

value and the ML estimate under hypothesis (3) can be obtained as

(4) e(uniform DIF) = inf n*(a) .

There is, however, no need to minimize over all positive cicl values.

It can be assumed without loss of generality that the ability levels
A A

are indexed by j in ascending order, that is a.-sa. , for every j.
A A

j j+1

ifforsorrej,a.<0.-s , then
j j+1 mj+1

Nn*(a)=Ehsirt.i(1-a./a) + g
smi

i=j+1

Intherangea.<a<a.the first derivative of the above function is
J+1

positive, and the second derivative is negative, implying that in

the range a.<a< a the function n*(a) is convex. Therefore, in the
j+1

range a.--5a--sa. the function 70(m) has its minimum either for a=a.
j j+1

or for a=aj+1. Also, the minimum in (4) cannot occur for an a value

outsideoftherangeoftheobserveda.values, because for a<a 1,

and for a>a n*(a)>n*(a ). Therefore, it suffices to

inspect only the values of n*(a) at the observed ability levels.

e(uniform DIF) = min 70(a) .

a= ,...,
al aJ

Note that the estimates for n* do not depend on the sample size as

do the chi-square values for the hypotheses of independence or
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conditional independence. If two samples have the same rflative

frequencies, the estimates of the mixture index of fit n* are the

same.

The above algorithms assume that there are no zero observed

frequencies in the data. If, for a given level of the matching

variable, zeros occur in both cells of the same column (i.e. either

everybodl in both groups, or nobody in either group could answer the

item correctly), this can be regarded as inconsistent with DIF;

these 2x2 tables may be omitted from the analysis. Two other ways to

eliminate zero cells which may be appropriate in some instances are

combining the data across two or more levels of the matching

variables (Donoghue & Allen, 1993) or smoothing the data by using a

suitable prior or by adding small constants to the empty cells

(Agresti, 1990).

Having estimated n*(no DIF) and n*(uniform DIF), several inferential

procedures are feasible. These parameters can be interpreted as the

smallest possible fractions of the population that cannot be

described by the model. The values of n* can be used as measures of

the misfit of the respective models, i.e. ac; measures of the amount

of DIF. Also, these measures can be compared across items.

The pattern of the residual T, i.e., the locations and relative

sizes of the amounts that were removed from the conditional tables,

provide information about where (in terms of ability level, group

membership, and item response) D1F occurs.

If the hypothesis of uniform D1F is extended to include the case of

ft=1, then hypothesis (2) is nested in hypothesis (3) and n*(no DIF)

e(uniform D1F). The difference between these two values can he



used as a measure of how much better (3) fits the data than (2)

does; i.e. what fraction of the population is lost by restricting

the value of the common conditional odds ratio to one.

The above inferential procedures are illustrated in the next

section.

In some cases, testing the hypothesis that the proportion of the

population in which DIF is present is less than a specific value,

say, n may be of interest. This can be done by fitting the model

P = (1-ii)4) + ;i4r, teli(no DIF)

to the data. To fit this model, standard latent class techniques can

be used, which involve defining a fourth, unobserved, variable that

identifies whether an observation came from the distribution T or

from the distribution T, and applying the EM algorithm (Dempster,

Laird, & Rubin, 1977). Details of this procedure and properties of

the resulting chi-square statistic are described in Rudas, Clogg,

and Lindsay (1994).

Examples

The first example is based on simulated data from a previous study

(Zwick, Thayer, & Wingersky, 1994). The data consist of the item

responses of SOO reference group (A) and SOO focal group (B)

members. The reference group ability distribution was standard

normal N(0, 1), while the focal group distribution was N(0.5, 1).

The item responses were generated using a three-parameter logistic

model (Birnbaum, 1968).
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(5) P(8) = c
1 - c

1 exp(-1.7a(0-b))

where P(0) is the probability of answering the item correctly for an

examinee with ability O. The item used in the example had a lower

asymptote of c=0.15 and a discrimination of a=1 in both groups. The

reference group difficulty was bk=0 and the focal group difficulty

was b
F
=0.35. The item response functions for the reference and focal

groups differed only in location; conditional on ability, the item

was more difficult for the focal group. The measure of ability that

served as a matching variable was the number-correct score on a

75-item test that included the example item.

For this analysis, the data can be summarized in a 76x2x2

contingency table. The sufficient statistics for n* under (2)or (3)

arethe76(j=0,...,75)observedconditionaloddsratios(cciand

thefrequencies.and h . .

gsmj smj

Out of the 304 observed frequencies, 103 were equal to zero; i.e.

over one third of the cells were empty. Moreover, out of the 76

conditional 2x2 tables, 45 contained at least one zero frequency;

therefore more than half of the 76 conditional odds ratios were

impossible to estimate from the data or yielded estimated values of

zero. Eliminating the 2x2 tables that contained empty cells would

have required the deletion of 351 observations over one third of

the sample which would not have been desirable.

To overcome the problem of empty cells we replaced the zero

frequencies with small positive values. To assess the effect of this

approach, the main analysis was carried out with various choices of

the flattening (or smoothing) va)ues. The values were either

13



constant (0.0001, 0.001, 0.01, 0.1, or 0.5), or uniformly

distributed random on an interval starting at 0 and with the same

expected values as above.

The estimates of n* for the hypotheses of no DIF and uniform DIF,

using the above flattening values, are reported in Table 1. The main

finding is that, for every choice of the flattening values,

DIF) and e(uniform DIF) are very close to each other.

*** insert Table 1 around here ***

n* (no

The numerical results in Table 1 show that increases in the

flattening values result in decreases in the estimates for n* (for

the flattening values included). Estimates for n* under both

hypotheses have their minima near the flattening constant 0.9, where

the estimates are 0.06064 and 0.06057, respectively. Taking into

account, however, that several observed frequencies were equal to 0

or 1, it appears that 0.9 is too big to be used as a flattening

constant.

The results in Table 1 show that we estimate that about 7% of the

population needs to be disregarded in order to remove DIF, or about

93 % the population can be described by the model of no DIF. The

actual choice of the flattening constant has very little effect on

this result. Rudas, Clogg, and Lindsay (1994) described a method of

obtaining lower confidence bounds for a*. With this data set. using

the flattening value of 0.1, one obtains the 95% lower confidence

bound of 0.055 (rounded value) for le(no DIF). As the resulting 95%

confidence interval does not contain zero, our procedure detects the

DIY present in the original data generating mechanism.



The difference

(6) O(no DIF) - 0(uniform DIF)

can be used as a measure of the gain in fit due to using the model

of uniform DIF over the model of no DIF. This quantity compares the

estimates of the fractions of the population that cannot be

described by the respective models. Although developing a formal

test for the significance of this quantity is outside of the scope

of the present paper, the results in Table 1 suggest that there is

no substantial gain in using the model of uniform DIF to describe

the data, compared to using the model of no DIF; in both cases we

estimate that about 7% of the entire population (reference plus

focal) cannot be described by the model.

In what follows, results using the flattening constant 0.1 will be

described to illustrate the conclusions that cA.n be reached using

the n* approach. The following table shows the 2x2 marginal of T for

the hypothesis of no DIF multiplied by the sample size. These are

the observations that have to be removed in order to achieve

condition-1 independence.

crroup

Reference

Focal

Response

Correct Incorrect

7.85 12.57

14.14 35.82

These may be compared with the corresponding marginal of the

observed data:
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Reference

Focal

Response

Correct Incorrect

279 221

326 174

This shows that we estimate over 20% (35.82/174) of focal group

members who answered the item incorrectly to be outside the model of

no DIF, while in the other categories, the fractions are much

smaller. The observations that were removed from among focal group

members who answered the item incorrectly account for more than 50%

(35.82/70.38) of the total number of observations that must be

removed. This means that although the model of uniform DIF does not

describe our data substantially better than the model of no DIF, the

model of no DIF fails to account for some focal group members who

did not answer correctly. This indicates the presence of some degree

of DIF in favor of the reference group, as in the original mechanism

of data generation. Note that the estimate of T under the hypothesis

of uniform DIF is very similar to the estimate under the hypothesis

of no DIF and has the same interpretation as above. That is, both

the magnitude of the misfit (as measured by n*) and the pattern of

residuals are similar for the two hypotheses.

Under the hypothesis of uniform DIF, the value of the conditional

odds ratio for which the minimum occurred is a(uniform DIF)=1.09375.

There are only two types of conditional tables in which the pattern

of decreases in cell counts is different for the no DIF and uniform

DIF hypotheses: (1) tables in which one of the hypotheses holds

ex.actlyand(2)tablesinwhicha.is between a=1 and a(uniform

16



The value of a(uniform DIF) Js equal to the odds ratio that was

observed among those who had 44 correct answers. An interesting

interpretation of this value can be obtained by noting that, out of

the 1000 observations, 473 were in conditional tables where the

estimated conditional odds ratio (after replacing each zero by 0.1)

was less than 1.09375, 24 were in the conditional table where the

estimated conditional odds ratio was exactly 1.09375 and 503 came

from tables where the estimated conditional odds ratio was greater

than 1.09375. This means that the n* approach led to a median-type

estimate of the common conditional odds ratio.

Plotting T against the number correct score may be informative in

revealing the pattern of occurrence of DIF, but, because of the

small value of r*, we did not apply this technique here. Note that

for examinees with at least 47 correct answers, only the frequencies

of the cells with incorrect responses were reduced (under both

hypotheses).

The conventional MH DIF analysis involves calculation of the MH

chi-square and the index

D-D1F -2.35(1nama),

A

a transformation of the MH odds ratio estimate
'

to the delta

metric of item difficulty (Holland, & Thayer, 1988).

For the (unsmoothed) example data, the MH chi-square statistic is

0.30, amH=1.11, and MH D-DIF is -0.24, with a standard error of 0.38

(see Phillips & Holland, 1927). Since the chi-square statistic is

17



close to zero and MH D-DIF is close to its null value of zero, the

conclusion from the MH analysis is that there is no reason to reject

the hypothesis of no DIF. That is, the MH method fails to detect the

DIF in the population, in contrast with the n* approach.

The data for the second example were taken from the 1993 Advanced

Placement Physics B Exam. There were 70 multiple choice items and

the goal of the analysis was to detect male/female DIF. There were

data available on 9104 male (re..7erence group) and 4118 female (focal

group) examinees. The matching variable was the number-correct score

on the 70 items. Only results for the first 10 items will be

reported here. Zero observed frequencies were replaced by 0.1, as in

the previous analysis.

*** Insert Table 2 around here***

The results are summarized in Table 2. For the 10 items considered,

the n* values for the no-DIF hypothesis are between 0.02 and 0.06,

and for the uniform-DIF hypothesis between 0.02 and 0.04, i.e. we

estimate that for each item, DIF is absent in 94-98% of the

population, and uniform DIF characterizes 97-98% of the population.

The values of (6), showing the gain in fit due to assuming uniform

DIF instead of no DIF, are between 0.00 and 0.03. For items 1, 2, 5,

9, and 10, the uniform-DIF hypothesis does not fit better, as

measured by the u* index of fit, than the no-DIF hypothesis. The

gain is the highest for items 3, and 7, namely 3%. Whether this gain

should be considered substantial or not, may depend on several

factors. One possible approach is to consider the ratio n(uniform

DIF)/n(no DIF). This shows that for items 3, and 7, the fraction of

the population not described reduced by 50% as one moves from the

no-DIF hypothess to the uniform-DIF hypothesis.

18



Except for items 3, 8, and 10, the a(uniform DIF) values suggest

superior item performance for males conditional on number-correct

score. The magnitude of DIF is greatest (above 2) for item 4.

Assuming a uniform DIF of this magnitude, leads to the description

of an estimated 987. of the total population. No other assumed value

of the common conditional odds ratio could lead to the description

of a greater fraction of the population.

There are several further analyses that are facilitated by the n*

approach. For example, in the case of item 4, DIF appears to be

concentrated at lower ability levels, and, consequently, examinees

at higher ability levels are affected by DIF to a lesser degree. It

was found, that 81% of the individuals who could not be described by

the no-DIF hypothesis had number-correct scores below the median.

Ninety-five percent of those who could not be described by the

no-DIF hypothesis had number correct-scores below the 75th

percentile. The corresponding figures for item 10 are 79% and 91%

respectively, showing again a concentration of DIF at lower ability

levels. All 10 items showed the sane effect to some degree.

*** Insert Table 3 around here ***

Results of the MH analysis are reported in table 3. Items 3 and 8

had odds ratios less than one, indicating that females tended to

perform better, conditional on number-correct score, whereas the

other items showed better conditional item performance for males.

Using ETS criteria (Zieky, 1993), only item 4 shows substantial D1F

against females.

The analyses based on the u* approach and on the MH method agree
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considerably as to the estimates of the common conditional odds

ratios for all the 10 items of the test considered. In the case of

item 10, the two analyses disagree concerning the direction of DIF;

However, the estimated common conditional odds ratios are close to

one in both analyses, and in the MH approach the result is not

significant. However, the strength or importance of DIF is

conceptualized in very different ways in the two approaches: the

magnitude and statistical significance of the odds ratio estimate in

the MH analysis versus the size of the fraction of the population

that cannot be described by the hypothesis of interest in the n*

approach.

Discussion

The n* approach offers a new way to assess the importance of DIF in

educational testing. The importance of DIF, in this approach, is

influenced by the size of the subgroup of the population in which

DIF may be present, as well as the magnitude of DIF for this

subpopulation. In this sense, the results of the n* method, when

applied to the problem of DIF, will depend to some degree on the

distribution of the observations in the reference and focal groups,

and the distribution of the matching variable. Note that the MH cids

ratios are also affected by the distribution of the examinees. The

MH odds ratio estimate can be expressed as a weighted sum of the a.

values, where the weights are a function of the observed

within-level cell frequencies (Holland & Thayer, 1988). In addition,

the examinee ability distribution can have unintended effects on the

MH odds ratios (Zwick, 1990).

The e approach gives results with a straightforward interpretation,

20

0
4,4



and may provide diagnostic information concerning the specific parts

of the population where DIF is evIdent. By inspecting T, it might

be found, for example, that the lack of fit of the no-DIF hypothesis

tended to occur among examinees who chose a particular incorrect

response. This type of information could be helpful in pinpointing

the source of DIF. Or it might be found that lack of fit to the

no-DIF hypothesis occurred only among examinees in the extremes of

the test score distribution. This might be viewed as less

consequential than DIF occurring near the mean of the distribution.

Finally, it should be mentioned that recent research (Chang, Mazzeo,

& RAUSSOS, 1995; Roussos & Stout, 1993) has shown that under some

circumstances, the SIBTEST method of DIF detection (Shealy, & Stout,

1993) maintains better Type I error control than MH-type methods.

The n* approach has no intrinsic connection to the MH method and

could be applied in conjunction with SIBTEST or with other DIF

detection methods as well.
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Table 1

Maximum likelihood estimates of n* for the hypotheses of

no DIF and uniform DIF using different flattening values

for the data generated by (5)

Flattening value ;*(no DIF) e(uniform DIF)

0.0001 0.07338 0.07274

0.001 0.07335 0.07272

0.01 0.07309 0.07243

0.1 0.07039 0.06953

0.5 0.06387 0.06339

U(0, 0.0002) 0.07339 0.07275

U(0, 0.002) 0.07338 0.07274

U(0, 0.02) 0.07332 0.07265

U(0, 1) 0.07071 0.06928
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Table 2

Maximum likelihood estimates of

re(no DIF), re(uniform DIF), a(uniform DIF)

for the first

Item No

10 items of the 1993 Advanced Placement Physics B Exam

e(no DIF) e(uniform DIF) a(uniform DIF)

1 0.03 0.03 1.03

2 0.03 0.03 1.08

3 0.05 0.02 0.63

4 0.04 0.02 2.08

5 0.03 0.03 1.24

6 0.03 0.02 1.28

7 0.06 0.03 1.62

8 0.04 0.03 0.87

9 0.02 0.02 1.15

10 0.02 0.02 0.92
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Table 3

Results of the Mantel-Haenszel analysis for the first

10 items of the 1993 Advanced Placement Physics B Exam

Item No MH odds ratio MH D-DIF standard error

of MH D-DIF

1 1.07 -0.16 0.11

2 1.10 -0.23 0.10

3 0.69 0.89 0.11

4 2.00 -1.63 0.13

5 1.02 -0.05 0.10

6 1.16 -0.35 0.10

7 1.49 -0.94 0.10

8 0.87 0.32 0.10

9 1.26 -0.54 0.12

10 1.08 -0.19 0.12
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