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Abstract

Operational procedures for the Graduate Record Examinations Validity Study Service
(GREVSS) are reviewed, with the emphasis on the problem of frequent occurrence of
negative coefficients in the fitted within-department regressions obtained by the empirical
Bayes method of Braun and Jones (1985). Several alterations of the operational procedures
are proposed that would reduce the frequency of negative coefficients, and, if desired,
completely eliminate them. It is argued, however, that there are no a priori reasons for
assuming that all the coefficients are nonnegative. Reports of the fitted within-department
regressions should be based on a single model, that would be found by model exploration.
The estimation procedures could be improved by employing more flexible software for

modelling between-department variation.
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1. Background

The GRE Validity Study Service (GRE VSS) provides participating graduate school
departments with an array of infomation about the association of the first-year grade
average (FYA), a measure of academic performance, with the GRE verbal (V), quantitative
(Q), and analytical (A) scores, and the undergraduate grade-point average (U). The report

to a department consists of two parts:

1. A regression formula with the estimates of the regression coefficients of FYA on'V,
Q, A, and U.

2. Expectancy table - estimated distributions of FYA based on the predicted FYA
(pFYA). |

The departments can use the estimated regression formula and the expectancy table
to assess the relative importance of various admission measures and to predict the success
of the applicants. Some departments may use these formulas to adjust their admission rules.

Under normal circumstances it is expected that the regression formula would have
all four coefficients nonnegative, and that the distribution of the outcomes for each feasible

value of pFYA would be unimodal. Examples to the contrary are:
Regression formula:'
pFYA = 2.8 + .09V + .14Q - .02A + .04U

Expectancy table for pFYA = 3.0 (one row of the Table):

In order to simplify the presentation, the scores V, Q, and A are defined on the scale
| - 4, obtained by dividing the original GRE scores by 200.
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In this example the negative coefficient on A has no straightforward interpretation
and can be explained only by a reference to the complex processes of selection and self-
selection of students into departments and the idiosyncratic influences of the
department/school environment on the students. The example of the expectancy table,
containing a percentage breakdown of students with a specific value of pFYA into bands of
FYA scores, appears to suggest that a student with predicted FYA of 3.0 is slightly more
likely to have an eventual FYA in the range 3.4 - 3.6 than in the range 3.2 - 3.4, even though

the latter range is closer to the actual prediction. This is clearly a contradictory outcome,

indicating problems at some stages of the statistical analysis.

2. Purpose of the Study

_ The main purpose of the study reported here is to explore the sources/reasons for
these aberrant features of the statistical analyses on which the GRE VSS reports are
based and to devise alterations to the currently used procedures that would integrally
produce nonnegative coefficients for all the departments.

The currently used procedures are based on a hierarchy of empirical Bayes
models. For each data set, 16 empirical Bayes models are fitted. The software for
model fitting employs the method of Braun and Jones (1985). In the fitted models each
of the four regression coefficients is either constrained to zero for every department or
department-specific coefficients are estimated. The estimates of the sets of five
coefficients (the four variables and the intercept) may vary across the departments. The
distribution of a coefficient across the departments is characterized by its mean and
variance. Estimating department-specific regression formulas is the underpinning of the

Validity Study Service, since its purpose is to describe department-specific characteristics.

0




3

For each department, estimated regression coefficients are reported from one of
the 16 models, in which each regression coefficient is nonnegative. Such a procedure
may involve bias due to selection of the reported formula. The size and importance of
this model selection bias depend on the relative sizes of the estimated means and
variances of the regression slopes across the departments. The analyses reported in
Section 6 imply that in general the means of the slopes are small relative to their
standard deviations, and so the associated bias is not ignorable. However, this problem
is confounded with that of multicollinearity; the means of the slopes are relatively small
or the standard deviations of the slopes relatively large, partly because of
multicollinearity among the estimated parameters. The issue of multicollinearity is
discussed in detail in Section 6. We propose a method that would rely on a single model
fit for all the departments, and we describe simple procedures for selection of this
model.

Sections 3 and 4 provide a summary of the empirical Bayes methods and of their
relevance to the GRE VSS. In Section S an "extended" shrinkage method is described,
and its application for the GRE VSS is discussed. The extended shrinkage can remove
most of the negative coefficients, and, in judiciously selected models, all the negative
coefficients. The empirical Bayes models have certain optimality properties, and so the
coefficients estimated by the extended shrinkage are likely to have poorer statistical
properties than those obtained by the original empirical Bayes method. Therefore, it is,
important that extended shrinkage be used sparingly. In Section 6 muiticollinearity is
identified as one reason for frequent occurrence of negative estimated coefficients. We
propose two approaches to combatting this problem: use of simpler models and
enhancement of software to extend the model choice. The scope of possible
improvements in statistical modelling of the GRE VSS data is summarized in Section 7.
In Section 8 a simple method for calculation of the expectancy tables is described. It is
almost identical to the currently used procedure, but it avoids repeated (numerical)
multidimensional integration. Analogues of the ordinary regression R* "proportion of the

variation explained" are given in Section 9. The report concludes with a discussion of
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admissibility of negative coefficients (Section 10) and a list of recommended changes
(Section 11).

3. Empirical Bayes Models

The first prerequisite for an empirical Bayes analysis is the clustering of the
observations. In the case of the GRE VSS we have students clustered within graduate
school departments. Modelling of further clustering of the departments within schools, or
department years within departments, has not been considered in the operation of the GRE
VSS because the clusters at the higher levels contain very few units; for example, no
department has provided data for more than three years, and no schoal has contributed to
the data with more than six departments.

The largest available dataset contains records of the students who communicate best
in English (dataset CE). It consists of 9,200 records of students from 606 departments,
collected over the eight cycles of the study. The most recent cycle?, cycle 18, has 2,230
students, and the previous cycles, 11 - 17, contain 6,970 students. The data from these cycles
are pooled in order to make full use of between-department information. Records from the
same de; artment at different cycles are regarded as separate units, and in this report we
refer to them as different departments. The departments have provided data for between
5 and 106 students. Throughout the report we refer to this dataset for illustration.

Most graduate departments have a very small number of students in any particular
year, or even over several years, and so estimates of the regression coefficients based solely
on the data from a department would have very large standard errors. For example, in the
CE dataset there are two departments with more than 100 students: Department No. 1 has
102 records, and department No. 229 has 106 records in the dataset. The within-department
ordinary regressions for these departments are given in Table 1. We see that only the
variable U is significantly different from zero (at the 5% level), and that modelling of

nonlinear regression is impractical because the standard errors become vastly inflated. Even

*At the time of writing o7 the report, September 1989,
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for lincar regression models any comparison of the regression coefficients across the two
departments is meaningless because only unrealistically large differences would be
statistically significant.

This provides a rationale for application of the empirical Bayes (EB) regression. The
EB estimates of the department-specific regression coefficients are formed as a mixture of
two estimates: (a) the estimates of the regression coefficients based solely on the data from
the department and (b) the cocfficients from the pooled regression using data from all the
departments.

The within-department regression a, is unbiased but statistically inefficient in that the
collateral information, contained in the data from the other departments, is not used. The
pooled regression (b), is biased but has certain consistency properties. The optimal mixing
weights are established by the EB procedure. A detailed exposition of the empirical Bayes
models is given in Braun and Jones (1985) and Braun (1989), and here we provide only a
minimal summary. Readers interested in further background are referred to the review
paper by Morris (1983) and the references therein.

We assume the linear model®
FYA; = ¢ + v, Vij + g Qij + o Ay oy Uij + & (1)

where the lowercase letters ¢;, v, q;, 4; and u; denote the coefficients for the department j

(G =1,2,.,1]), and the uppercase letters denote the scores for the student i (i = 1, 2, ...,

n,) on the relevant variables. The random terms ¢; represent the composite of the

measurement error for FYA and model inadequacy (lack of fit). The linear model (1)

*Typographical note: Throughout the report the following notation is used; statistical
parameters are denoted by lowercase characters, vectors of parameters by bold lowercase
characters, and matrices of parameters by bold uppercase characters. Students’ scores are
denoted by capitals with double subscript ij denoting the student i in department j (e.g. V).
For dcpartment mean scores the "dot" notation is used (e.g.,, V.). Estimates of parameters
and of conditional expectations are denoted by the * (e.g., b denotes an estimate for b).

[
GC.D
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relates the individual scores to department-level coefficients, which are then further related

to a set of population parameters:

Cj = Bec + Eev v-j + gcq Q-j + Bea A'j + Beu U-j + 8c.j

Vi = Bt B Vit 8 QB Ayt B U + 5,
Q) = 8qc t Bav Vi + Bog Qy + 8o Ay + 8qu Uy + 8 (2)
= Bae t By Vit 8Bag Qi + 8aa Ay + 8o Uy + 8,
t 8w Vit B Qy + 8L At g, U, + 8,

x£=
]

oc

<

A

where V,, Q,, A, U, are the department means for the explanatory variables V, Q, A, and
U, respectively, g are the population parameters, and §,; are (department-level) residual
terms. The model (2) refers to a specific choice of departmental covariates; in principle any

variable defined for the departments can be used as a covariate. It is advantageous to

introduce more compact notation for (1) and (2), such as

FYA; = X;b + ¢,

_ _ , T — .
where X;, = (1, Vij, Qij. Ay Uij), X, = (1, ¢ v, q; 2 uj) » X = (1, V.j, Q. A, U,) and 5,

= (8 Sy Bqpr 8ujp 8uj)'- Braun and Jones (1985) use a more compact notation:

FYA,

b

il

ijj + €

Xg+é (4)

where FYA,, ¢; and X; are the department vectors and matrix, respectively, corresponding
to the outcome, the random terms, and the explanatory variables, and b, 8, and X are the
respective vectors and matrix of the department coefficients, the department-level random
tcﬁrms, and the within-department means. In principle, the department means in these

models can be replaced, or augmented, by other covariates defined for the departments,

14
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although in the GRE VSS only the department means are used. We assume that the vectors

of random terms € and & are mutually independent and that

8 ~ Ny(0, %) (i1 d), (5)

means and a (nonnegative definite) variance matrix %. The student-level random terms ¢;
are assumed to be themselves mutually independent and distributed according to N(O, a?).
Alternatively, the model (1) - (2) can be described as a random coefficients model, in which
the within-department regressions form a set of independent normally distributed random

variables with a common structure for the mean, and common variance,
b, ~ Ns(X,g, %). (6)

Flexibility of model choice is achieved by deleting department- and/or student-level

variables from the model (1) - (2). For example, for the CE dataset the following submodel
of (1) - (2) is considered:

FYA; = ¢; + v, Vij + q Qij + 3 Aij +y Uij + g
¢ = B t B V,j + SCJ
Vj = B + Bw v‘j + Sv,j
q; = gqc + gqv v‘j + Sq.j (7)
a, = Bac + Bav V-j + Sa,j

i

Uj Buc + Euv V.] + 8u]

Exclusion of a student-level variable - say A; - from the student-level model (1)
corresponds to setting a; = 0 or, equivalently, g,. = g,, = 0 and §,; = 0. In the operation
of the GRE VSS each of the coefficients for the four variables U, V, Q, and A, is either

constrained to zcro or is estimated. This gives rise to the 16 models that are routinely fitted
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for each dataset in the GRE VSS. Note that exclusion of a variable in (1) implies not only
deletion of the associated row in (7), but also deletion of the corresponding row and column
of % (or setting each element of this row and column to 0).

A computational algorithm for fitting the EB model is described in the technical

appendix of Braun and Jones (1985).
4, Validity of the EB Model

The empirical Bayes model (1)-(2) provides an idealized description for the available
data. Firstly, the assumption of normality of the random terms ¢ is grossly violated because
of the "lumpiness" of the data: The outcome score FYA is the average of a small number
of (integer) grades, which are themselves highly correlated. As a result, more students tend
to have FYA scores near the values 3, 3.5, and, 4 and in several departments only a very
limited number of possible scores can be achieved. The scale of the FYA is too coarse for
any assumptions of normality to be satisfied. Also, the scoring of FYA may reflect different
standards of the institutions, or even of the departments.

Similarly, the predictor score U is not objectively scaled, and students in a graduate
department usually come {rom a variety of undergraduate colleges. For the observed
predictor scores V, Q, A, and U we have to consider the underlying latent traits as the
appropriate explanatory variables, and in this perspective the observed scores represent the
latent traits subject to measurement error. In the EB analysis this component of
contamination is ignored; no practical methods for its incorporation are available.

The department-level variables are included in the model to represent the "context”
of the department. In this respect the within-department means represent proxies for some
department-level traits. The reliability of such proxies cannot be assessed since we do not
have a definition of the underlying traits.

Search for additional predictors for the EB model is likely to be futile unless it is
based on information about the underlying educational processes. Operationalizing these

additional predictors would lead to a number of difficulties, including developing & rigorous

16
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definition of the predictor, devising reliable means of eliciting additional information from
the departments without loss of cooperation, and so on,

A large proportion of the students have achieved the perfect score on the outcome
FYA and/or on the predictor U; about 109 have achieved the perfect FYA score, 4, and
5% have a U score of at least 3.9. This may significantly diminish the validity of the
underlving scales and is an additional threat to the assumptions of normuality.

The main advantage of the EB models for the GRE VSS is in their compromise
between parsimony and adequacy. We prefer to use models with as few parameters as
possible, while insisting on having all the salient features of the data (and of the processes
that generate them) explicitly represented in the models. In the absence of complete
information about these processes the analyst would be inclined to represent in the model
as much collateral information, in the form of explanatory variables, as possible.ﬁ This
improves the chances of generating an adequate model, at the cost of possible redundancy
and loss of efficiency.

In standard statistical models several tools for arbitrating between model adequacy
and statistical efficiency are available. In ordinary regression (ordinary least squares) the
well-known t- and F-tests are often employed to find variables that make unimportant
contributions toward description of variation of the outcomes. In the implementation of
Braun and Jones (1985) the analogues of the t- and F-tests cannot be performed because
standard errors for the estimated parameters are not available. The likelihood ratio test
could be used for comparing the quality of fit for two models, one of which is a special case
of the other.

The extreme case of model redundancy is multicollinearity, or linear dependence, of
the predictors. For example, if the scores V, Q, and A were linearly dependent, one of
these three variables could be excluded from the models without any loss of adequacy.
Standard statistical packages implement various measures for collinearity such as the
"Mcasure for Collinearity" in F4STAT, the square of the partial correlation of the variable
with the outcome, given all the other predictor variables. Another simple indicator of
collinearity is the condition number (see Section 6). In practical situations, the more

explanatory variables are used, the greater the threat of collinearity. This is certainly the
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case in many educational research applications where many predictors are highly correlated
with the general ability g.

Consider an alternative representation of the EB model (1) - (2)

FY’L\ij = Bee + ng°j + gch°1 + gca‘A‘-j + gcuU°j
t 8V 2V T BQyYy  BGAY F BWULY
T 8Qy 8 ViQi 8 QQy * BAQy Tt gUQy

+ gacAij * gavv-inj + gqu'inj + gaa[_\'inj + gauU'inj.
+ 8 U + gVl + g, QU+ gAY+ U
T Y (8)

where y; = 8., + 8,;V; + 6,,Q; + 6,;A; + 6,;U; + ¢ accumulates all the random terms.
The threat of the collinearity in (8) is obvious. The regressor variables A;, VA, QA
A A; and U,A; [a row of (8)] are very closely related. The range of values of the
department-means of the four scores V, Q, A, and U is very narrow, and many departments
have students with very similar scores, thus strengthening the redundancy in the EB models
that use several department-level means. The analysis reported in Section 6 indicates acute
collinearity not only among the 25 predictors, but also within the set of 10 predictors that
would be considered in the present operation of the GRE VSS as relatively simple models.

It turns out that the cross-level interactions V,V;, V.Qy, VA, and VU, included to take

ijs
account of the context of the department, are the main causes of collinearity. The model
(7) contains five parameters for the students’ scores (g, .) and five parameters for the context
(g,.). Description of dependence of the outcome on the student background could be
supplemented by quadratic terms if more adequacy was required, but the description for the
context contains a lot of redundancy.

The variance matrix % that describes the department-level variation contains 15
parameters - S variances and 10 covariances. The parametrization for % may also contain
some redundancy, but with the software used in the operation of the GRE VSS no

constraints on % can be imposed. Of particular importance would be setting the variances

to zero (common regression slope for all the departments) and certain covariances to zero,
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so as to enhance statistical efficiency. We note that even in data with a large number of

clusters (departments) the data may not contain plentiful information about the multivariate

[
C. 2
nature of variation of &

s regression coefficients. Therefore, it is essential in model
selection to have the option of 2m _;;&zgning the covariance structure in % and to have
suitable criteria for selection among the av;;.l.:%?ptions. Clear evidence of redundancy
in the parametrization of % is that in most cases'the sinate of this matrix is almost
singular, and would probably be singular if perfect convergence were acfiiéwed (in order to
control costs in the operation, the EB procedure is stopped after a prese.t\number of
iterations).

Another element of model redundancy is in allowing separate student-level variances
o} for each department. As an alternative, a common variance o should be considered.
The need for differing student-level variances could be established only if the data contained
a lot of large departments. At present, the parsimonious model with common o =
preferable.

From the formulation (7) we can see the EB model is a special case of the random
regression model in which each regression coefficient is either constant across all the
clusters or varies from cluster to cluster according to the normal law. In (7) the regression
coefficients in the first line are declared as varying from department to department.
Software for these general models is available, using the EM algorithm* (Raudenbush and
Bryk, 1986), the Fisher-scoring algorithm (Longford, 1987), or the iteratively reweighted
least squares (Goldstein, 1986). The EM algorithm is generally very slow, especially with
complex models (as many as 500 iterations may be required), while the other two algorithms
require usually fewer than 15 iterations, and provide standard errors for all the estimated
parameters. Convergence of the EM can be substantially speeded up by simple acceleration

routines (such as reported in Lindstrom and Bates, 1988).

*EM stands for Expectation - Maximization; see Dempster, Laird, and Rubin (1977) for
details.

o -
~re/
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5. Negative Coefficients and Extended Shrinkage

In the model formula (7), rewritten in the form

FYAij =g, + ng,j + SCJ
+ (8w + BV + 8V
* (Bge + BV + 8))Q;
+ (8 + BV * 85j)Ay
+ (Buc + 8wV + 8,y + gy )

the parentheses in lines 2 - 5 contain the respective regression coefficients on the scores V,

Q, A, and U. We can see from (9) how the regression coefficient, say,

g, + gWV,j + O,

for V, depends on the department means V,;. A condition for these "true" coefficients to
be nonnegative for all the departments is that their expectations g, + g,,V.; be nonnegative
for all values of V, that occur in the data, and substantially larger than the standard

deviation (the square root of the variance) of 5,;:
e * 8V > (B

and analogously for the other variables,

gqc + gqvV°j > (qu)l/Z,
Bac + gavV°j > (Eaa)]/z’ (10)
Suc + guvv°j > (Euu)l/z'

In practice we consider the estimates of the parameters g,, and of the variance matrix ¥ in
place of the parameters in (10), and the posterior expectations of the random terms &, in

place of the random terms in (9), see (11). The condition (10) is less likely to be satisfied

)
20
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the more overparametrization there is for the variance matrix . In particular, when the
estimate of % is singular, its diagonal elements (the estimated variances) tend to be inflated.
The conditional expectations for the within-department regression coefficients

bi = (CJ' Vir Qpr @) UJ)

are obtained by the formula

=x
I

, = E(b | FYA, X; {0}};, G, %)
(P" + PY(P'G™X, + PB), (1D

where P* = ¥, P, = XX;'/o, B, = (X;X;")'X}y] is the within-department ordinary least
squares solution, X,; the vector of within-department means of the scores on X, and G is the
matrix of the parameters g,.. The unknown parameters in (11) are replaced by their
maximum likelihood estimates. The vector of coefficients (11) is a mixture of two estimates,
the pooled regression estimate GTX,‘- and the within-department regression B. An
alternative interpretation is that the within-department regression estimates are being shrunk
toward the overall regression, and the amount of shrinkage is determined so as to optimally
combine the within-department and the pooled-data information. The mixing weight for the
latter is given by the (estimated) within-department information, P.  Since the
within-department regressions have a lot of sampling variability, a necessary condition for
obtaining nonnegative coefficients for all the departments is that the "stable" component, the
pooled regression estimate G'X, be positive for all the departments. Even if this condition
is satisfied. a negative coefficient for a department can arise when the within-department
regression has a negative coefficient so large in absolute value that it remains negative even
after the shrinkage to the pooled regression.

The straightforward solution to this aberration is to extend the shrinkage until the
coefficient is shrunk to zero. Such an extended shrinkage is guaranteed by the positive

regression coefficients of the pooled-data regression. Of course, no theoretical justification

for this procedure can be given, other than prior information that all the departments hiwve

<
34
- A
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nonnegative regression coefficients. The procedure can be partly justified on the grounds
of poor resampling properties of the estimators of the variance matrix % (because of
over-parametrization) and of the variances o'f (based on too few data-points).

The consequences of this extended shrinkage have to be carefully weighed. First, if
sampling variation of the estimators for % and of is ignored, the extended shrinkage is less
optimal, in terms of statistical efficiency, than the original shrinkage determined by the EB
procedure. Therefore, this adjustment method should be used sparingly. Second, if we
insist on nonnegative estimated coefficients, then for successful application of the extended
shrinkage we require an EB solution for which GTX.j has nonnegative components for all
values of the departmental covariate(s) X;. The matrix of parameters G can be consistently
estimated by ordinary least squares, that is, by analyzing the entire dataset without
department identification (treating all students as a single department). Thus, the burden
of model selection is shifted to the pooled-data regression.

Model selection based on the pooled-data regression may turn out to be
advantageous for the GRE VSS. If model selection is based on ordinary pooled-data
regression, the use of the computationally intensive EB procedures can be postponed to the
fitting of only a very small number of models. At the first stage, ordinary regression models
would be fitted for the pooled data using the student-level scores, their department-level
means, and the cross-level interactions. One or a small number of parsimonious models
would be adopted for which all the departments have nonnegative pooled regression
coefficients. The corresponding EB models would be fitted, with the addition of the
extended shrinkage. The amount of extended shrinkage would be monitored to provide an
additional criterion for selection among the EB model fits. Various diagnostic procedures
for multicollinearity in ordinary regression can be directly applied, as discussed in Section

6.

6. Multicollinearity in EB Regression

For the analysis of the CE dataset in the operation of the GRE VSS the EB model

(7) with the covariate V., is used. The expectation of an outcome is
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E(FYA;)) = (1 V;Q; A; UpG(1 V.j)T,

or in matrix notation
E(FYA;) = X8, (12)
where X is a matrix with N=9,200 rows (students) and 10 columns representing the

regressor variables 1 (intercept), V,, Q. A;, Ui, V., ViV, Q; V., AV, and U;V.. The
, Y jo Nijr Dhijp Hijp Ve YijVep NGj Y ep XV ij Yo

parameter vector 8 is uniquely defined only if X is of full rank, r(X)=10. Otherwise, if X

is singular, a column of the matrix X could be reconstructed as a linear combination of the
other columns, say, '

X0 = X408, (13)

where X ;, is the Nx9 matrix formed from X by deleting the 10th column, and B is a 9x9

matrix of full rank. Then the regression formula becomes
E(FYAij) = x-loﬂ.’ (14)

with 8° = BB. Therefore, the 10th variable could be deleted from the model and the data
description simplifie '. Some elements of 8° may be substantially different from the
corresponding elements of B, thus making these parameters difficult to interpret.
Often in regression problems the matrix X is of full rank, but is almost singular.
Proximity of the matrix X to singularity is referred to as multicollinearity, or ill-conditioning.
The extent of multicollinearity of the design matrix X can be established by an

eigenvalue analysis of the corresponding matrix of crossproducts, X'X. Let

T 10 T
XX = E A'kakak’
k=1

[ X
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te the eigenvalue decomposition for X"X, with the (positive) eigenvalues A, = 4, = ... =
A0 in descending order. The ratio of the largest and smallest eigenvalues is referred to as
the condition number, and it is a useful indicator of multicollinearity in ordinary regression.
A large condition number implies almost linear dependence of a column of the design
matrix X, such as (13). Let B be the estimate of 8 obtained by EB analysis. Then the
vector of fitted expected values, X8, is very close to the vector of fitted expected values from
the model with the abbreviated list of regressors (14), X_;,8". Thus, we have two vectors of
estimates for B, 8 and (8°,0), which lead to very similar fitted expected values, but the
corresponding elements of these vectors may be substantially different, and may even have
different signs. Multicollinearity in ordinary regression is associated with highly inflated
standard errors for some of the estimates. Also, the estimates tend to be very unstable; a
small change in the data, or in the model specification, may cause a profound change in the
estimates. The EB estimates share these undesirable properties; the inflation of the
standard errors could be demonstrated if the standard errors of the estimates were available,
and instability can be observed by the substantial changes in the estimates that occur after
even a modest change of the model specification.

When the estimated regression parameters are unstable, they are less likely to satisfy

certain inequalities believed to hold for the parameters, such as

évc + équ >0
gqc + gqvv i >0
ga(‘ + g;wv'j >0 i
éuc + g:’uxvj > 0, (]5)

[compare with (10)] for the values of V,; that occur in the dataset, or in the underlying
population of departments. The left-hand sides of the inequalities in (15) are the estimated
average slopes of the respective scores V. Q, A and U in a department with the mean V
score V.

Suppose (f=) g, + £,V < 0 for a specified value of V'. The fitted

department-regression cocfficient on Q for a department with V, = V' (denoted by 4,)

24
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differs from the mean regression coefficient f by the posterior mean of the deviation 3, .
The mean of the posterior deviations §, = q; - f for the departmcats with the
department-mean V score V' is very close to zero (unless the model is seriously
misspecified), and therefore at least half the departments with department-mean V scores
in the vicinity of V' have negative fitted coefficients on Q. Nevertheless, owing to the
multicollinearity of X, it is feasible that the fit for the data could be almost exactly
reproduced by a completely different set of regression parameters . Although this would
imply substantially different department-regression coefficients b, there might be only
insubstantial changes in the fitted values for the students. In other words, the currently
applied EB model may have very good crossvalidation properties for prediction of the
outcome scores {y;} (see Braun and Jones, 1985, Section 3.6), but not so as good properties
for prediction of the regression coefficients.
The eigenvalues of the matrix of crossproducts for (1 V; Q; A; Uy V) ViV,

Q;V, AV, UV, t‘he regressors implied by the model (7), are

2.71x10%, © 2.02x10%, 1.28x10%, 7.58x10°, 2.93x10°,
679, 26.5, 14.8, 9.25, 1.34,

and so the condition number is about 2x10°. If we simplify the structure of the model
(12) by excluding the regressors V,, ViV, Q;V,;, A;V, and UV, that is, by deleting the

covariate V., the corresponding matrix of crossproducts has the eigenvalues
323x10°,  2.50x10°%,  149x10°, 921, 118,

with the condition number of about 2,750. Deletion of these five regressors,
corresponding to deletion of the covariate V,; from (7), may lead to a substantially
poorer fit to the data. It would be more appropriate to delete one regressor at a time
and assess the loss of adequacy of the resulting regression fit. Deletion of a variable -
say A - corresponds to deletion of the regressors A; and A;V,; (a row of the matrix G),

and the eigenvalues of the corresponding matrix of crossproducts are
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2.09x10°, 1.78x10%, 1.37x10%, 2.38x10°, 658, 23.6, 14.6, 1.36,

(condition number 1.55x10°%, and so multicollinearity remains present. Deletion of a
variable (of a GRE test score, since U is the predictor with the largest estimated slope and
smallest standard error) would also be undesirable on theoretical grounds; it is believed that
the GRE analytical score A makes a contribution toward description of the performance in
graduate school above and beyond the verbal and quantitative scoies. Sources of
multicollinearity can be explored in more detail by considering submatrices of the
functionally related regressors. Foi example, the eigenvaiues corresponding to the
regressors 1, Vi, Vi, ViV, are

6.51x10°, 2.71x10°, 497, 391

(condition number 1.66x10°). This indicates that the regressor V;V,; could be deleted with
minimal loss to the quality of the fit. A similar pattern of the eigenvalues is observed for
the other sets of regressors 1, Z;, V,, Z;V,, where Z; is either U, Q, or A (the
corresponding condition numbers are 6.75x10°, 1.65x10° and 1.88x10°).

We consider two methods for combatting multicollinearity. The first method involves
model simplification and a description of the causes of multicollinearity. The second
method, ridge regression (Hoerl and Kennard, 1970), is a general principle based on

adjustment of the matrix of crossproducts X'X.

Model Simplification

Within the framework of the algorithm of Braun and Jones (1985) and the
operational software based on it, two kinds of model simphtication are possible: (1)
deletion of a covariate (a column of G), and (2) deletion of a variable (a row of G). For
the CE dataset the former leads to deletion of five regressors and possibly a substantially
poore; fit for the data. By deleting a variable two regressors are removed, but, as the

eigenvalue analysis indicates, this would not reduce the acute multicollinearity among the

regressors,

N

Keos




19

Clearly, multicollinearity is caused by the cross-level interactions VijV.j, QijV.j, A,.jV.j
U;V,; some, or all of which should be deleted from the model, while retaining the
department mean V,;, or if necessary even adding another mean (e.g., U,) to the list of
regressors. These models cannot be fitted by the operational software based on Braun and
Jones (1985), although in other implementations of the EB models, such as Bryk,
Raudenbush, Seltzer, and Congdon (1988), Rasbash, Prosser, and Goldstein (1988) and
Longford (1988) they can be fitted routinely.

Ridge Regression

Ridge regression is a standard method for combatting multicollinearity in ordinary
regression. If the matrix of crossproducts X"X has a small eigenvalue, then its inverse
(X™X)! and the ordinary least squares solition (X"X)'X"y are unstable. Stability of the
solution can be enhanced by replacing the matrix of crossproducts by X*X + hl, where I is
the unit matrix and h>0 a tuning constant. The choice for h should be such as to induce
little bias (the smaller h the lesser the bias) and to promote stability (the higher h the higher
the eigenvalues of X*X + hl, and the more stable the ridge regression solution
(X*X + hI)'XTX). In the EB approach we may consider applying ridge regression for the
within-department regressions as well as for estimation of the matrix G. The
within-department regressions involve ordinary least squares, and so the application of the
ridge regression is straightforward as long as we have an intelligent method of choosing the
constant h; each department may have a different ridge constant. The matrix G is

estimated by the multivariate regression
G = (Z'2)'7'R,

where Z is the matrix of covariates, with rows (1 V,), and R is the matrix of the estimated
department-regression coefficients, consisting of rows Bj. An opportunistic choice for the
ridge constant would be the smallest value of h for which the components of

(Z'Z + h1)'Z"R satisfy the inequalities (15). The choice of the ridge constant h affects the

estimates of the regression parameters G, which in turn influence the estimate of the matrix
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of department-regression coefficients R. Thus, another layer of iterations of the EB
procedure would have to be implemented, which would iteratively calculate the matrices G
and R and update all the variance and covariance parameters in the process. A "short-cut"
solution would involve finding a suitable value of h for the fixed set of within-department

regression coefficients R obtained after convergence of the operational EB algorithm.
7. Scope for Improvement of the Regression Model

The importance of the covariate V,; can be explored by fitting the EB model in two
stages. First we fit the EB model (1) with no covariates ("shrinking to a point" in the
terminology of Braun and Jones, 1985) and obtain the within-department regression
coefficients. In the second stage, these within-department regression coefficients are
regressed on the covariate V.. The results of this stage are displayed in the "Submodel”
column of Table 2. For comparison, we fit the operational model, (7) (using V,; as a
covariate), and regress the resulting department-regression coefficients on V,. Having
accounted for the covariate V,; in the model (7), the estimated slopes on V,; should be equal
to zero. But the estimated slopes, displayed under the column heading "Operational model”
in Table 2, are of comparable size with the corresponding estimated slopes for the
submodel. Some of the simple regressions on V,; are even significant, using the traditional
t-ratio test, say, at the 5% level of significance. We see that the intended role of the
covariate in the operational model, to account for systematic variation due to V,;, has not
been fulfilled. This is most likely due to the combination of acute multicollinearity and
imperfect convergence of the employed algorithm.

Another area of possible model improvement is in nonlinear regression. In general
we can consider a polynomial regression in the variables V, Q, A, and U. It turns out that
a small number of quadratic terms significantly improve the fit of the model, and these
additional variables contribute only marginally to multicollinearity. In the operational
software these variables would have to be associated with between-department variation, but

in other software the associated variances could be constrained to zero. We note that

nonlinear regression would substantially complicate the discussion of negative coefficients,
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and would involve substantial changes in the presentation of the regression formulas in the
GRE VSS reports.

Variances and Covariances in %

The variances in the matrix % can be interpreted as a measure of variation of the
within-department regressions. A randomly selected department with the verbal score mean
V. has the slope on Q equal to q = g, + g, V. + 8,, where 8, ~ N(0, 2.,), or equivalently,
q ~ N(ge + 84Vo ¥ ). Therefore, the probability that q is positive is equal to
D{(ge + ngV.)/(EW)I/Z}, where ¢ is the distribution function for the standard normal
distribution N(0,1). The estimates of the variances in X%, 1n conjunction with the regression
parameter estimates, indicate the frequency of negative department-regression coefficients.

Multicollinearity can also arise among the estimated variances and covariances. The
procedures for detecting multicollinearity can be based on the estimated information matrix
(and its eigenvalue decomposition) for the variances and covariances or the standard errors
associated with these parameters. These are not available in the operational software, but
are readily available in the software based on the iteratively reweighted least squares
procedure (Goldstein, 1986) and the Fisher-scoring algorithm (Longford, 1987).
Multicollinearity is present to some extent among the variance and covariance parameters,
because information about the within-department slopes is very scarce, but the problem is
not as acute as for the regression parameters. To alleviate multicollinearity, several
covariances could be constrained to 0, and so the number of (co-)variance parameters in %
would be reduced from 15 to 12 or even lower. Moreover, constraining the coefficients on
A to a constant, and those of V to a different constant - which implies constraints on two
more variance and seven more covariance parameters - would, in the CE dataset, be
justified. For the CE dataset the corresponding likelihood ratio statistic is equal to 10.1 (x*
null-distribution with 9 degrees of freedom), indicating insignificant loss of model adequacy.
Such model simplification would contribute toward reduction of the number of departments
with negative department-regression coefficients since less multicollinearity in 2, would lead

to smaller estimates of the variances and more pronounced shrinkage.

oo
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Modelling Within-department Variation

In Braun and Jones (1985) different within-department variances 02] are fitted. Their
estimates are based on the (iteratively updated) within-department sums of squares of
residuals, and so for small departments they have very poor resampling properties. Many
departments with small numbers of students with a wide range of backgrounds or a small
range of outcomes have very small estimated variances af In the formula for the
within-department regression coefficients Bj, (11), with the parameters replaced by their
estimates, the between-department and within-department regressions are weighted in the
proportions of their estimated precisions. A small value of the estimate af then causes the
within-department regression to be inaccurately regarded as very well determined (X;"X;/0?
is very large relative to %), and therefore minimal shrinkage takes place. The plots in
Figure 1 demonstrate the association of the estimated regression coefficients with the
estimated within-department variance. In these plots only the departments with fitted
variance af <.l are represented. Among the departments with larger fitted variance there
are only three instances of negative fitted coefficients (each with respect to the score A).
The EB algorithm could be adapted to estimate a common within-department variance ¢*
to hedge against this phenomenon, as well as to promote model parsimony. Technical
details are given in Appendix B.

Thus, common variance ¢® ensures more equitable shrinkage, but we note that
overparametrized regression part of the model may cause some of the coefficients for some
departments to shrink toward negative values. Therefore, application of extended shrinkage

is suitable only in conjunction with careful choice of the EB model.
8. Expectancy Tables
In the current procedures, computation of the expectancy tables involves numerical
integration with respect to a five-variate normal density. The number of random draws from

the integrating distribution, set at 100, is most likely insufficient, and that causes aberrant

features in the simulated expectancy tables. We propose a method that involves no
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numerical integration and guarantees unimodality of the row- and column-distributions in

the expectancy tables.

The posterior distribution of the department-regression coefficients is
(bj I G’ E’ Uf) = N[rj’ (P. + Pj)-ll’
where r; is the vector of the posterior means for department j, P° = ¥ and X is the

unconditional variance of {b;}, and P; = XjTXj/a? is the within-department information

matrix.

The fitted regression formula for department j is
Yi = Xgby + &
so that the posterior distribution of the outcome y; given the vector scores x; is

Yij ~ N(aij’ dij)’ (16)

where a; = x;r; and d;; = o} + x;(P* + P))'x];. Note the different vectors of background

scores x; may yield the same mean a; but different variances d;.

Calculation of the Expectancy Tables.

The expectancy tables contain the estimated conditional probabilities of the outcome
score y; in a given department, given that predicted score a; is in a specified range. If we
conditioned on the scores x;, a standard confidence interval could be derived from (16) by
ignoring the sampling variability due to estimation of a; and d,. If for a given posterior
mean a;; the variance d;; as a function of the predictor vector x; has a wide range of values,
estimation of the probabilities in the expectancy tables could be substantially improved by
conditioning on the future scores x;. For departments with small numbers of students, it

would be meaningful to consider the average of the fitted posterior variances d; = Y d;/n,

o
i
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and, therefore, for the prediction in the expectancy tables we could use the approximation
to (16),

yij ~ N(ay, d)).
This implies equal variances corresponding to each row of the expectancy table.
For the departments with the largest representation in the GRE VSS data (say, 40
or more students) it may be advantageous to consider separate averages of the posterior
variances for the students with fitted scores in each of the specified ranges.

The conditional probabilities are approximated by the formula

Pric, <y < ¢ |8 G0} %} = (- a)/\[d, } - P{(ci - a)/\Ju, ),

where a is the predicted outcome score (column of the expectancy table), (¢, ¢,) the range
of scores, and d;; and d;, the corresponding averages of the posterior variances (equal to
a common value d; for small departments). Note that in Section 7 we recommend that a

common within-department variance o® be estimated (o} = o for all j).
9. Measures of Quality of the Model Fit

In this section we propose an R*-type coefficient, specific to a department, that would
reflect the quality of the model fit for the data from each department. In the regression
analysis of independent observations (e.g., when there are data from one department only)

we use the familiar R?, defined as
R* = 1= d*/d,, (17)

where ¢? is the residual variance in the assumed model (i.e., with regressors 1, V, Q, A, and

U), and o%,,, is the raw variance of the outcomes FYA or, equivalently, the residual variance
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in the model with no explanatory variables (regressor 1 only). There are two natural
extensions of the definition (1) for the two-level data (students within departments).

For the adopted model (e.g., variables 1, V, Q, A, and U and the covariate) we have
the within-department variances {0]?} (possibly equal to a common value) and the
between-department variance matrix %. The variance of an observation in this model is

a? + xijEx?j. The two-level analogue of the "empty" model is
yi =m + 8 + ¢ (18)

where §; ~ N(0, 2., and e; ~ N(O, o%.). The variance of an observation in this model is

2., + o%,,. Now for the empirical Bayes R* we can consider two definitions:

A. R?
B. R?

1- (0% + XZX1) /(O + o) (192)

jraw raw.

1-d/o%,. (19b)

The definition A is based on the unconditional variance of an observation and the
definition B on the within-department variances. To provide a single figure (percentage)
for each department, using the definition A, xijExq;j in (19a) should be replaced by the
department-mean of these quantities, X, xijEij/nj. Both definitions provide measures of
improvement of prediction due to the explanatory variables, and these measures are
department-specific. In practice the variance matrix % and all the variances are replaced
by their maximum likelihood estimates. The definition B will always yield R? in the interval
(0,1), and it will be constant across the departments if common within-department variances
are fitted in both the raw and the assumed models; the definition A will yield values of R?
outside (0,1) only in the most pathological cases not expected to arise in the GRE VSS data.

An important advantage of these definitions over those in current use for GRE VSS
reports is that they involve pooling of information across the departments. The sampling
properties of the estimators A and B are only moderately affected by the department size
and the within-department distribution of the GRE and U scores. Thus, the definition of

predicted R? in Braun and Jones (1985), based on within-department half samples, would
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be suitable only for larger departments; for department sizes 10 and smaller, it has a very

large resampling variation because the implied prediction is based on too few observations.
10. Discussion

Although the main purpose of this report is to design adjustments to the EB
procedures that would guarantee nonnegative within-department coefficients, it should be
emphasized that there are no profound reasons why all the coefficients should be
nonnegative. On the one hand, owing to small department sizes strong evidence of a
negative coefficient for any particular department is most unlikely. On the other hand, from
the EB analyses we have evidence that a small (but significant) proportion of the
departments does have negative coefficients. For example, in several EB analyses of the CE
dataset both the estimated mean and the estimated standard deviation for the
within-department coefficients on the quantitative score are about .06. That implies that
about 1009(-1)=16%" of the departments have negative coefficients on the quantitative
score. The unpredictability of the composition of backgrounds of the students of a
department, and the imperfect explanation of the (graduate school) academic performance
in terms of the predictors scores, provide a purely substantive explanation for negative
coefficients. The complex processes of selection and self-selection of students may, purely
by chance, lead to an apparent negative association of a predictor score with the graduate
school performance in a small proportion of the departments.

The regression formula is derived from enrolled students, but its application is
extrapolated to applicants, who may have much more varied background scores. In addition,
the fact that FYA is not a perfect measure of academic performance in graduate school will
cause a distortion of the relationship of the academic performance (as a latent variable) on
the predictor scores, and since there are a large number of departments, evidence about

negativeness of some of the coefficients may strengthen.

S® is the distribution function of a standard normal variate.
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We believe that in the current procedures negative coefficients probably arise much
more frequently than it would be reasonable to expect. The proposed procedures can
substantially reduce and, if desired, even eliminate occurrences of negative coefficients. The
motivation for avoiding negative estimated coefficients is based on the entirely
understandable inability to provide a case-by-case (or comprehensive) explanation of why
a particular negative coefficient has arisen, and probably on the belief that negative
coefficients would be seen as evidence that GRE scores are not very useful predictors.
Certainly, negative coefficients are difficult to interpret without reference to the complex
and not very well understood processes of selection and self-selection of the student body,
and as a consequence, such reports might be regarded by an uninformed client as not useful,
or suspected to be incorrect.

However, there are realistic configurations of student background in a department
for which the true coefficients are negative. After all, we should regard these configurations
as outcomes of a random process, and so among the large number of departments there are
bound to be a few with extreme or unexpected configurations that are associated with
negative coefficients. Therefore, by establishing an unreserved committment to nonnegative
estimated coefficients, the GRE VSS is threatened with systematic biases in its reports.

The reported regression formula cannot be used on its own to justify a substantial
adjustment of the process of selection of students in the coming academic year. The
formula reflects a mixture of two causes: how the background scores are "converted” into
academic performance and how successful the selection and self selection processes are.
Thus, any substantial change of the selection process will affect the relationship of the
studied scores in the future. In the extreme case, if selection of students were based solely
on this formula, the selection procedures might be changed over time so dramatically that
a substantially different formula for the dependence of FYA on GRE scores would then
apply. Also, in prediction formulas based on models with a covariate (say, V,) the "new"
value of V,; (unknown at the time) should be applied. Reliance on small variation of the
covariate across the years is not justified, and the current procedures do not have any means
for adjustment due to uncertainty about the future value of the covariate, which for most

departments is the average of a very small number of scores. This raises the issue of the
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covariate as a suitable representation of the context. The GRE VSS should search for a
more valid representation of the context in the employed models. For example, the average
of GRE score means, (V; + Q, + A,)/3, could be considered, but as a contextual covariate
it still suffers from the same ills as V., instability, imperfect representation of the context,
and high correlation with the predictor variables. '

As an iniual step, information about departments that have provided data for several
years should be collected. For these departments the stability of the estimated coefficients
as well as the quality of the prediction could be assessed.

The procedure of selecting separately for each department a model that has no
negative coefficients is prone to serious biases. In EB analysis (potential) bias is a property
of the model as applied to the entire dataset. As we select a subset of the data
(departments with nonnegative coefficients), the estimators with no bias for the entire
dataset may be substantially biased for the selected subset, especially if this subset is of

moderate size and if the selection is based on the results themselves.
11. Recommended Changes in the GRE VSS

We recommend that the program staff investigate the feasibility and cost of the

following changes in the operational analysis of the GRE VSS:

1. Limit the use of covariates to such an extent that acute collinearity would not arise.
In analyses of large datasets, either only one or no covariate should be used. In
analyses of smaller datasets, such as students with GRE Subject Test scores, the
model should be substantially reduced; no interactions of covariates with the special
subject indicators should be used. The guidelines for minimal data sizes for special
subjects (at present 100 students from at least 10 departments) should be reviewed

and increased substantially.

2. The departments that have provided data over several years should be used for cross-

validation and to provide empirical evidence of stability of the regression coefficients
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in consecutive years. Changes in the values of the covariates (such as V,;) should be
recorded because they are a threat to the usefulness of the GRE VSS reports. The
current practice of using the last year’s value of V,; in the prediction formula for the
next year’s should be reviewed. It would be more appropriate to use the latest
available value for the mean of the verbal scores, or impute its estimate. As an
alternative, the prediction formulas could be presented in the form requiring the
department to substitute its current value of V,. It would not be appropriate to
substitute the mean verbal score of the applicants because of substantial variation in

selectivity of the departments.

A common value of the within-department variance o® should be used. See

Appendix B for technical details.

The extended shrinkage should be implemented and the amount of shrinkage

recorded. See Appendix A for technical details.

For new datasets, pooled ordinary regression models (ignoring between-department
variation) with covariate-by-variable interactions should be used to establish the

extent of the problem with negative coefficients and to assess multicollinearity of the

regression parameters.

A single model should be used for the report to all the departments in a datset.

This would avoid the "report" bias.

The value of the log-likelihood should be used in the choice between candidate

models.

The procedure for expectancy tables described in Section 8 should be implemented.
It will produce results very similar to those obtained by the current procedure, except

that errors due to numerical integration would be largely avoided.

Lo
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9. The minimum numbers of departments and students for a subject test dataset should

be reviewed and increased substantially.

%
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Appendix A

Extended Shrinkage Empirical Bayes Estimation

The empirical Bayes estimates of the within-department coefficients are given by

the formula

_ A . o _1 Ly A'I‘ 2
r = (B + Py &'Z + PB) (A1)
where
P’ = 31is the inverse of the estimated between-department variance matrix,
“j = (;%XJ.TXj is the estimated within-department information matrix,
B, = (X"X))'Xy, is the least-squares estimate of the within-department

coefficients,
G is the estimate of the department-level regression coefficients,
and

Z is the vector of covariates for the department j,

(Braun and Jones, 1985). The estimator r; is a mixture of the within-department estimate
ﬁj, which is unbiased but inefficient, and the pooled regression estimate ﬁj' = CTZj, which
is suitable for the "average" department. The advantage of the empirical Bayes method is
in optimal "trading" of unbiasedness for efficiency (lowest mean-square error). The
optimality properties hold under the unrealistic assumption of known variance and
covariance parameters, {0’?} and the elements of £. The optimality of the empirical Bayes
estimates is under threat when inappropriate models are used and when the estimates of the
variances and covariances are subject to substantial sampling variation. From the form of
(A.1) we can deduce that these prcblems are particularly acute if the estimates of some of
the within-department variances 02J are very small. As observed in Section 7 (see Figure 1)

most of the negative cocfficients occur for such departments.

11




We propose to adapt the empirical Bayes estimator to satisfy the additional constraint

of nonnegativity of the regression coefficients at minimal loss of efficiency. We consider a

more general class of estimators:
r(c) = (B" + ¢P)'(P'B + ¢PB), (A2)

where 0 < ¢; < 1 is a department-specific constant (to be chosen by the analyst). The
extreme choices are r; = r;(1), the empirical Bayes solution, and r,(0) = ﬁj', the least-
squares solution for the pooled dataset.

For the simplest department-level design, Z; = 1, we have
e
r(0) = G,

which is expected to be positive for each dataset. More complex choices for Z, such as
Z = (1, V. A.j), where V.j and A, are the department-means for verbal and analytical
scores, respectively, should be admitted only when G'Z; = (8;, + 82V, + 813A,, 8 + 822V
+ éBA,j, ...) have nornegative components for all values of V,; and A, that occur in the data.
Let’s assume that r(0) = G"Z, is positive for all departments and suppose that the
k™ component of r,(1) is negative. Then there is a constant ¢; such that the second
component of ric) is equal to zero. This constant can be found by a simple iterative

procedure: As an initial approximation we set
i = (G"Z)/{(GZ), - [r(0)]}, (A.3a)
where the subscript k denotes the k' component of the vector. This value of ¢; is used to

evaluate (A.2). If the k™ component of the new vector r,(c;) is not close enough to zero, we

essentially iterate (A.3a) by updating

cj.NliW = cj.()LD(GTZj)k / {(CTZj)k - [rj(cj‘0141))]k}- (A3b)

0
S




The iterative formula {A.3b) would be applied until |[r(¢;orp)lk| < .002.

Applying no shrinkage corresponds to ¢; = 1. Repeated application of the extended
shrinkage (more than one negative coefficient for a department) corresponds to the product
of the shrinkage ¢ fficients. The amount of shrinkage could be effectively monitored by
recording all *he departments for which it was employed, together with the shrinkage
coefficients, and a suitable summary would be the total shrinkage Ej Cj-

As an alternative the linear Taylor expansion for ry(c)
r(c) = r(1) + (1-¢)(P" + PY'PB; - r,(1)} (A4)

at ¢; = 1 could be used. This approximation can be used iteratively until a constant ¢; is
found for which the component of rj(¢;) is close enough to zero (so that after rounding to
the usual number of decimal places it would be reported as .0). If a different component
of ri(¢c;) is negative, the procecure will be repeated for that component.

The procedure based on (A.3b) is much simpler and requires only a moderate

number of iterations (usually less than 6).

[k
P, .
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Appendix B
Common Within-department Variance

The maximum likelihood estimator for the common within-department variance is

given by the formula
o* = eVie"/N, (A.5)

where e is the vector of student-level residuals, e = y - XGZ, V is the >-multiple of the

estimated variance matrix for the observations y (FYA-scores),

- ) A

V = Iy + diag{X; QX;},
I, the NxN identity matrix, Q = /0%, X; the segment of the design matrix X corresponding
to the department j, and N the number of students in the dataset. The matrix V depends
on the estimates of the variances and covariances, and therefore it has to be updated at

every iteration. Since V is a block-diagonal patterned matrix, formulas for evaluation of

(A.S) without inversion of any large matrices can be employed; see LaMotte (1972) or
Longford (1987). We have

V= I - o diag {X' (&' + XX['/P) X}, (A.6)
and hence

o e e T

o’ = ee'/N - L, eX'(&" + XX]'/0?)'Xpe/, (A7)
where

- . . AT AT v T
ee! =X ee' =YY, -2YX/'G'Z + Z'G'XX;'GZ)




T _ T TATy T

Note that &' + XX.T/o? in (A.6) is equal to P* + P,
In an iterative procedure the residual mean-squared error from the pooled ordinary
regression can be used as the initial estimate for ¢>. For the CE dataset the estimate of the

common variance ¢? is about .10.

[t
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Table 1
Ordinary Regression Models for the Departments with Large Numbers of Students

Department 1 has 102 students, department 229, 106 students. Standard errors for the

estimated regression parameters are in parentheses.

Department 1

pFYA = 1.355 + 532U + .068V + .055Q - .108A
(103)  (.128) (.115) (.114)

PFYA = 2.926 - .662U + 0723V + .064Q + .082A + .192U% + .041A°
(1.026) (.128)  (.116)  (492) (.164)  (.091)

Department 229

pFYA = 1.944 + 378U + .121V - .010Q - .007A
(.089)  (.072) (.085) (.063)

pFYA = 4498 - 1.203U + .105V - .026Q + .020A + .248U7
(1.499)  (.074) (.086) (.064) (.234)




Regression of the Operational Model and Submodel Coefficients on the Covariate V.,

The operational model is given by (7), that is using the department mean verbal score as
a covariate. The submodel is obtained from (7) by deleting the covariate, that is, by setting
B = Bw = Bqv = Bav = 8w = 0. The operational software was used to fit these two models
(500 iterations). The resulting department coefficients were then regressed, using the
ordinary regression with equal weights, on the department mean score V.. The standard

Table 2

errors corresponding to the ordinary regression are given in parentheses.

Operational
Coefficient Submodel Model
U 127 + .035V.j 280 + .020V.j
(.012) (.013)
\" 102 - .008V.j 280 - .008V.j
(.004) (.004)
Q .06S - .002V.j .193 - .005V.j
(.004) (.004)
A - 006 + .013V.j .039 - .003V.j
(.003) (.003)
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