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ANOVA with Rasch Measures

Abstract: ‘

Various methods of estimating main effects from ordinal data are presented and contrasted. Problems discussed
include: 1) at what level to accumulate ordinal data into linear measures, 2) how to maintain scaling across analyses,
3) the inevitable confounding of within cell variance with measurement error. An example shows three methods

of estimating demographic main effects from student responses to an arithmetic test, and three approaches to
reporting those results.

Text:

Analysis of variance (ANOVA) encompasses a family of techniques for discovering what differences between sizes
of observations could be systematic and what could be random. A simple example is an investigation of whether
men are taller than women. A t-test could be formed by computing the difference between the mean height of a
sample of men and the mean height of a sample of women, then dividing this difference by the standard deviation
of all the heights from the grand mean. Yet problems arise even in this simple example: What if the sample sizes
are different? What if the heights of the men are much more dispersed than the heights of the women? What if
the distributions of heights are skewed? What if the heights are measured with different precisions? What if the
“heights” are measured on a non-linear scale?

Empirical data is always so complex that any attempt at analysis of variance requires that simplifying assumptions
be made. Frequent ones are that the numerical quantities to be analyzed are measures 1) located on a linear scale
and 2) observed with perfect precision. With ordinal observations both these assumptions are untenable. For
instance, for rating scales, each ordinal observation represents, not a point, but a zone of performance from a
conceptually infinite range. Further, each nominal value represents a performance zone of a different size. The
extreme observations represent infinite ranges above or below the other category zones. The sizes of the zones
corresponding to the intermediate categories depend on how those zones are defined and used. Further, the choice
of which category to report may be influenced in many minor irrelevant ways. Thus rating scale data are not linear
and precise, but ordinal and diffuse.

Rasch analysis permits the analyst to address some ANOVA assumptions directly, but Rasch analysis also prompts
the analyst to consider other assumptions of which the analyst may have been unaware.

Analysis with Rasch Measures
When ordinal data usefully fit the Rasch model, measures are estimated on a scale constructed to be linear. This
contrasts with numbers that are on scales only asserted to be linear for the convenience of later analysis. Such

assertion occurs when essay ratings and other clearly non-linear observations are subjected to linear-based analytic
approaches, such as generalizability theory.

Example: A numerical value, the raw score, asserted to be the ability a person 1 measured on a linear scale
with pin-point precision:
D Xy (1)
i
where X, is the scored response of person n to item i.
Rasch analysis estimates linear measures and their standard errors. ANOVA based on linear estimates with
standard errors 1s more demanding than analysis based on point estimates, but it can be readily performed with

sophisticated statistical software, such as HLM.

Example: A numerical value, a logit measure, constructed to be the ability person n measured on a 'iacar
scale with estimable precision:

Bn + SE (én) @)

where B, is the measure of person n estimated from all items.
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Obtaining measures from ordinal observations
What degree of data summary most usefully underlies Rasch measures? Estimation of measures requires replication
in the data, but which replications should be summarized into measures? For instance, in order to estimate a
subject’s math ability, we could administer a 100 item test containing 10 subtests. Each subtest addresses one strand
of math competence: addition, subtraction, multiplication, word problems, etc. Two analytical approaches spring
to mind:

a) Estimate the subject measure directly from the 100 items, simultaneously with the measures of the N-1
other subjects. This approach can be performed directly with a Rasch analysis of an N person by 100 item response
matrix. This procedure can be summarized as: :

100 R A
Y. X,; = B, + SE(B,) €)
i=1
b) Estimate a subject sub-measure for each of the 10 subtests, and then combine these sub-measures to produce
subject measures:
10
(Y X, = (B, = SEB,)} = B, + SEB,) @

1=leS,

where S, indicates subtest ¢, and B,, indicates the ability measure of person n on subtest Z.

These two methods, 2) and b), usually produce similar, but not identical results. But even for similar results to be
obtained, further constraints must be introduced. For instance, an immediate dilemma is presented by subjects who
have extreme scores (zero or perfect) on one or more subtests, but not on the whole test. Such subjects will have
poorly defined measures on some subtests. Either these subjects must be put to one side as inestimable or arbitrary
(Bayesian) measures must be imputed for extreme subtest scores. In either case, the relationship between subtest
and whole test measures is no longer indisputable.

Another complication in method b) is that independent analysis of each subtest permits each subtest to exhibit its
own discrimination depending on the local stochasticity of the test. The subtests’ logits have different “length”
(Linacre & Wright 1989). Rescaling the dispersion of abilities to be uniform across subtests assists with this:

% 5D By
Y1

6))

" SD(B)

Further, in method b), routine analysis of each subtest allows each subtest to define its own local origin at the mean
of the subtest’s item difficulties. A solution would be to use common person equating of subtests to locate the

person abilities within each subtest in one frame of reference that maintains the grand mean of all subtest ability
measures:

B, ~B, -8B B

nt nt {n)e M

(6)

{ne}

Another difficulty in method b) is the differential precision of the subtest measures. A solution is to treat each
subtest measure as though it were the result of a separate study and then apply the method of “effect sizes” used
in meta-analysis:

B, - B

nt n{n)

)Y
]
(M g, » __E(lBﬁ_ « SE(B,)

2,: SE(B,)

nt

For details of computing the combined standard error, sce Hedges & Olkin (1985).
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Measuring within a common frame of reference
The problems of differential subtest discrimination and origin can be addressed by using the “item bank” approach
of establishing all subtest measures in one frame of reference. This method is successful when a subject’s
performance level across subtests is fairly homogeneous (Wright 1994).

1) Perform a joint analysis of all subtcsts in order to obtain item calibrations for all subtests in one common frame
cf reference. (If the item calibrations are already known, e.g., when tests are constructed from item banks, then
this step is not needed):

’ Exn! = ﬁi ®)

2) Analyze each subtest separately, but with the items anchored at their common calibrations:
xxm' | {D}} = ém 9
it

3) Obtain joint calibrations by applying the effect-size method, equation (7) above.

Accumulating at higher levels

In many instances, the focus of attention is not at the subject ievel, but at some higher level, e.g., classroom,
school, school district, region or country. In these cases, it may be preferable to consider each student as, say, a
random representative of a fixed school effect. Thus, in a particular school there may be 150 correct responses and
50 incorrect responses to item 10. It is the school that becomes the object of measurement with a score of 150/200.
Many market surveys and political polls start off at this level, because individual response strings are not recorded,
but responses are immediately accurulated by category. These accumulated responses are difficult to analyze with
Rasch software designed to handle rectangular data matrices with one response per cell, but are straightforward with
more general purpose Rasch software, such as Facets (Linacre 1987).

Conceptualizing and estimating higher level effects requires careful thought whatever type of data is to be
aggregated, e.g., linear measures, correlations, or ordinal responses. A simple, but not trivial, example is based
on data presented in the Facets manual and attributed to Mislevy.

In Mislevy’s data, 776 students (black and white, males and females) respond to a four item arithmetic test. The
researcher is interested in gender and race effects and interactions. Several analytical methods appear reasonable:

Method a) Perform a routine Rasch analysis of 776 students by 4 items.

This yields a measure and standard error for each student. Then identify each student by race and gender.
Compute the main effects and their standard errors for each race and gender by combining effect sizes or by
information weighting (see Linacre 1992). Figure 1 shows the student measures produced by method (a) and the
results of a simple unweighted decomposition into main effects. Despite the potential voluminosity of this method,
it is computationally simple with standard software. Nevertheless, there are snags:

a.1) Extreme scores. In Mislevy’s data, 99 students succeeded on none of the items. 134 succeeded on all of
them. The measures and standard ercors imputed to these students will have an arbitrary aspect, but they will also
be influential in the outcome of the analysis. Consequently, a different analysis that avoids this particular

arbitrariness is preferable. Accurnulating the ordinal data at the main effect level would prevent any occurrence
of an extreme score.

a.2) Singular data. If the inath test had consisted of only one item, then every score would have been extreme.
Thus individual subject measures would be arbitrary, though accumulated main effect measures based on marginal
scores would be meaningful. Each main effect’s measure could be modelled as the outcome of a series of as many
Bernoulli trials as there were subjects relevant to that main effect.

a.3) Latent traits only meaningful at higher levels. In the Mislevy data, the items are homogencous enough that
it is reasonable to think of a student as having the same #bility level across all of them. But a similar study might
consider 4 items with each item selected from a very difierent content area. In this case, it may not be reasonable
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to think of a student having a particular constant level across items, but it may be reasonable to think of such a level
for a school. Thus, if the items were to “elate to participation in extra-curricular activities, each activity might be
so different that it is unreasonable to think of each stude:t as having one overall participation proclivity. But at the
school level, some school environments will promote greater participation and some less. This school-level effect
is reflected in school level data analysis, rather than individual analysis.

Method b) Accumulate the data at a main effect level and Rasch analyze.
For the Mislevy data, a promising model is

P .
= 1
log —%| = R, + G, - D, 10
rg0
where R, is the main effect for Race r, G is the main effect for Gender g. Results based on this model are shown
in Figure 1.

With this model, there is no need for a statistically balanced design. Eack tace and gender can appear as often as
is convenient for substantive, e.g., demographic, reasons. If, say, there are more males than females in the data
set, then the male main effect will be estimated more precisely than the female effect. Further, the occurrence of
extreme scores is very unlikely in any reasonably sized data set. But again there are predicaments:

b.1) Fixed effect vs. Random effect. Equation (10) models each main effect as a fixed effect, as though each
member of each gender weld exhibit the same measure except for measurement error. In fact, we expect members
of each gender to differ in measure. We would find it more convenient to think of our subjects as normally
distributed, with a particular mean and variance, i.e., as exhibiting a random effect. But the random effect variance
interacts with the probabilistic nature of the Rasch model, and so cannot be conveniently parameterized.
Nevertheless, differential main effect variances are reflected in mean-square fit statistics. The more variance among
the subjects producing a main effect relative to the other main effect variances, the larger the mean-square.

b.2) Error variancz vs. within variance. Whenever separate observations are to be represented by one parameter,
the Rasch moiie! specifies that all between observation variance, not otherwise parameterized, is to be explained
by the probabilistic aspect of the measurement model. Thus if 50 book-keepers with high arithmetic skills are
accurmulated with 50 first graders with low arithmetic skills and all are to be represented by one parameter, then
their joint “fixed effect” will correspond to a raw score of 50/100. The very real within-group variance is combined
with the inevitable imprecision in the observations and together they are modelled as measurement error. Of course,
this combining of within variance and error variance occurs even at the individual subject level, because no one
performs at exactly the same level across all items of a test. In the individual subject case, however, it is usually
reasonable (and often necessary) to think of the subject’s level as steady.

b.3) Change of measurement scale. A side-effect of combining error variance and within variance is redefinition
of the measurement scale unit. The logit is defined in terms of the variance in the observations. As the apparently
random variance (error and within) connected with each parameter increases, the less discriminating the
measurement system becomes. Then estimates of the same pair cf parameters become closer together in logit terms.
The difference between the mean abilities of each gender, computed according to more discriminating method a)
above, will be larger than accorr'ing to less discriminating method b). Tue effect of change of measurement scale
can be diminished in two ways:

b.3.1) Maintain the frame of reference by pre-calibrating the items - see “Measuring with a common frame of
reference” (above). The calibrations can either be obtained by method a) and then anchored in method b) or vice-
versa. Often, particularly with rating scales or very sparse data, one method produces much more stable, useful
and defensible item and rating scale calibrations. Nevertheless, the greater the within variance, the less comparable
the results become. Mean-square statistics reported, on average, far away from 1.0 and large logit displacements
are an indication that pre-calibrated values are not working well in the target analysis. In Figure 1, anchoring is
seen 1o stretch the scale only a small amount for Mislevy’s data set.

b.3.2) Rescale to a common linear scale. Though the logit has a well-defined probabilistic interpretation, this is
often irrelevant to the final purposes of the analysis. Consequently, it may be more meaningful to equate the results
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of method a) and method b) by asserting common means and variances for comparable parts of the analyses. :hus
the results of routine, unanchored analyses according to method a) and b) could be made comparable. by rescaling
both outputs so that the mean and standard deviations of the item difficulties become identical. This would maintain
the substantive meaning of the linear scale, but lose much of the probabilistic interpretation. In Figure 1, rescaling

item calibrations from method b) to match those from method a) increases the distances between main effects beyond
those in method a).

b.4) Loss of dinqnostic power. After subject responses have been accumulated, it is no longer possible to identify
subjects with .zven response strings. Further, the entire response string of very high or very low performing
subjects may be flagged as uncharacteristic of the group, and so misfitting. Consequently, it is often advisable to
perform data validation at as low a data level accumulation level as convenient, e.g., at subject or subtest level.

b.5) Interactions. Once the main effects have been estimated, interaction effects can be computed:

|

where RG,, is the effect due to the interaction of Race r with Gender g. These interaction effects are measures in
the same frame of reference as the main effects. They can, however, be difficult to interpret, because the reported
interaction measure adds to the sum of the corresponding main effects.

Pl . .
1og(i] =R +G,-D, +RG, an

Method ¢) Accumulate the data at a main cell level and Rasch analyze.
Since, for the Mislevy data, interaction effects are of the same order of magnitude as main effects, within parameter

variance is probably of the same size as between parameter variance. This suggests that a more effective
measurement model might be:
log[&
PrgO

Results based on this model are shown in Figure 1. For these data, this model has one more unconstrained
demographic parameter tha: the model shown for method b) in equation (10), but the model fit is about the same.
The reparameterization ha: redistributed the apparent error variance by making some within-cell variance into
between-cell variance and v.ce versu. Consequently, the measurement system has about the same discrimination,
i.e., the logit distances between equivalent parameter estimates (item difficulties) is about the same. On the other
hand, the interaction effects of equation (11) are incorporated into the main effects, making the output
straightforward to interpret. Anchored and rescaled results using this model are also shown in Figure 1, and are
similar to those obtained with the model in method b).

= - 12
=RG, - D, (. )

H

Conclusion
The problems in data analysis, as presented in this paper, are not the result of using the Rasch model. They have
existed all along, though usually hidden behind the apparently unequivocal, linear form of the data and the
deceptively obvious way to analyze it. In fact, ordinal data is always blurry and non-linear. Moreover, there are
many ways in which it can be analyzed. It is the task of the analyst to discover meaningful ways to analyze the data
and to communicate the results of those analyzes to the target audience. Some have been suggested in this paper.
Hedges LV & Olkin 1. 1985. Statistical methods for meta-analysis. New York: Academic Press.
Linacre JM. 1987. Facets computer program for man-facet Rasch measurement. Chicago: MESA Press.
Linacre JM. 1992. Treatment effects. Rasch Measurement Transaction 8:2 218-219.

Linacre JM & Wright BD. 1989. The “length” of a logit. Rasch Measurement Transactions 3:2 p. 53-55.

Wright BD. 1994. Part-test vs. whole-test measures. Rasch Measurement Transactions 8:3 p. 376-377.
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