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ABSTRACT

Reform efforts in mathematics aim to increase conceptual understanding.

Concept maps can serve well as an assessment instrument in this area. This

study compared the conceptual knowledge of function held by college students

enrolled in third quarter reform and traditional calculus sections at z1 large state

research university. Fourteen students from reform sections and fourteen from

traditional sections served as subjects. A primary task was the construction of a

concept map of function. Eight PhD's in mathematics, four who taught reform

classes and four who taught traditional classes, also completed concept maps of

function. The study compared these expert maps with the student maps.

Quantitative analysis of the concept maps showed the two student groups'

core concepts matched up poorly with the experts' core concepts. Neither group

more closely matched the experts to a significant degree. Qualitative analysis of

the core concepts and of the maps as a whole revealed differences between the

student groups. The reform group used terminology common in the reform text

and had fewer algorithmic references than the traditional group. The traditional

students' maps contained more algorithmic references to hand-graphing

techniques. The maps of both student groups were considerable less well

structured than the experts' maps and lacked the higher-level categories found

on the expert maps.
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Introduction

In the past decade, much change has occurred in the field of mathematics

education at both the K-12 and the undergraduate levels. Many consider the old

pattern of teachers prescribing and students transcribing a generally ineffective

teacning strategy for long-term learning, higher-order thinking, and versatile'

problem-solving. Publications such as Everybody Counts (National Research

Council, 1989) and the Curriculum and Evaluation Standards (National Council

of Teachers of Mathematics [NCTM], 1989) have led the way in K-12 curriculum

reform. They have called for teaching methods that encourage students to

construct their own mathematical knowledge and have emphasized

understanding over the rote memorization of algorithms and the acquisition of

mechanical problem-solving techniques.

This paper discusses one study of calculus reform in which concept maps

played an important role as a research tool designed to capture information

about conceptual understanding. First I present an overview of the research on

conceptual understanding. Next, I delineate the development of the concept

map ?..nd its variations. A description of the study follows along with the analysis

of the subjects' concept maps. Finally, I discuss the value of the concept map as

a research tool in mathematics and make suggestions for further applications

and research.

Research on conceptual understanding

The NCTM Standards (1989) and other reform documents emphasize

conceptual understanding. Cognitive psychologists seem to agree that the

internal representation of knowledge resembles webs or networks of ideas that

are organized and structured (Chi & Koeske, 1983: Hiebert & Carpenter, 1992:

Hiebert & Lefevre, 1986; Janvier, 1987; Michener, 1978; Nickerson, 1985;
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Novak, 1977: Pintrich. Marx & Boyle, 1993; Resnick & Ford, 1981: Royer,

Cisero, & Carlo, 1993). The more connections between facts, ideas, and

procedures, the better the understanding (Hiebert & Carpenter, 1992: Hiebert &

Lefevre, 1986; Nickerson, 1985). Individuals whose knowledge is

interconnected and structured activate large chunks of ihformation when

performing an activity in the knowledge domain (Fisher & Lipson, 1985; Prawat,

1989; Royer et al, 1993). A highly integrated knowledge structure hallmarks the

transition from novice to expert performance (Royer et al, 1993).

In the current study I focused primarily on conceptual knowledge as

opposed to procedural knowledge, and especially on understanding and

meaningful learning as they apply to mathematics. Hiebert and Lefevre (1986)

define "conceptual knowledge" as knowledge rich in relationships, a network in

which the linking relationships are as prominent as the discrete pieces of

information (p. 3). Conceptual knowledge grows in one of two ways: Joining two

pieces of knowledge already in memory or adding a new piece of information to

existing structures (Resnick and Ford, 1981). As described by Hiebert and

Lefevre (1986), this construction of new knowledge occurs at two levels. A

relationship connecting two pieces of information on the same level of

abstractness constitutes the "primary" level relationship. The "reflective" level

constructs relationships on a level of abstraction higher than that of the pieces of

information they connect. This view promotes the idea that relationships in a

knowledge network may be hierarchical. 1
Following the lead of Greeno (1978), this paper equates "learning with

understanding" with "meaningful learning." A mathematical concept is

"understood" when its mental representation becomes part of a network of

representations (Hiebert & Carpenter, 1992). It follows that "a richness of

knowledge is needed for deep understanding" (Michener, 1978, p. 374, see also
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Nickerson, 1985). Conceptual knowledge, defined as a network of relationships

can be acquired only in a meaningful way. At the opposite end of the continuum

is rote learning, learning that exhibits few relationships and is closely tied to the

context in which it is learned. Rote learning of inherently meaningful material

often takes place when the student does not have sufficient background or time

to construct a meaningful network of the information (Doyle, 1983; Novak, 1977).

Development of concept maps

While conceptual knowledge in mathematics is certainly desirable, how

does one measure or assess such knowledge? This section briefly discusses

the history and development of concept maps as tools for looking at conceptual

knowledge.

Unlike assessment techniques used in heavily quantitative, primarily

behavioral studies. cognitive techniques often employ both qualitative and

quantitative measures. A cognitive approach seeks to determine the

oraanization and structure of the knowledge base as well as the fluency and

efficiency with which the knowledge can be used. Concept maps are an

example of a direct technique used to look at the organization and structure of

knowledge in this study. While Royer et al. (1993); in their review of techniques

and procedures for assessing cognitive skills, do not list concept maps, other

researchers acknowledge it as a "known technique" (Schoenfeld et al, 1993; see

also Novak & Gowin, 1984; Shavelson, Ruiz-Primo, Lang & Lewin, in press).

In this study, I found concept maps preferable to other techniques for

several reasons. First, concept maps maximize subject involvement and

minimize the researcher's intrusive role. In drawing and labeling the linking

lines, the subjects explicitly state the relationships they see. Other direct

techniques require the researcher to infer what relationship the subject

3



Carol G Williams Concept Maps as Research Tools in Mathematics

perceived. In the same manner concept maps permit experts to organize their.

knowledge in their own way. This makes comparisons between student and

experts more accurate and valid. While classifying concept into categories

produces va,:d data for some domains, concept maps better depict mathematical

knowledge and structure, which do not always lend themselves to simple

categories and subcategories.

At present, the way one constructs and uses concept maps varies widely.

In some instances, the subjects draw the maps; in other cases, the researchers

construct the map from subject protocols. Some researchers require maps to be

hierarchical; others do not. This diversity arises because concept mapping has

emerged from two different theories. A short history of concept maps helps to

explain these variations.

Novak and Gowin (1984), using the cognitive theory of Ausubel (1968).

invented the schematic device they called a concept map. The concept map

represents a set of crncept meanings embedded in a framework of propositions.

"Concepts" represent regularities in objects and events and are linked by words

to form "propositions." Concept maps reflect the theory that conceptual

knowledge forms a web or network of concepts and the connections between

them. Novak and Gowin believe concept maps to be explicit, overt

representations'of the concepts and propositions a person holds, while

acknowledging the difficulty of judging the degree of correspondence between

the map and actual internal representation. Certainly subjects cannot draw

concepts and links they do not possess in memory (unless they have memorized

a concept map). Consequently, a concept map reveals, at least partially, their

cognitive structure.

Because of their own work and their use of Ausubel's learning theory,

Novak and Gowin (1984) posit that concept maps should be hierarchical,

4

should



:arol G Williams Concept Maps as Research Tools in Mathematics

use linking words on all the conne .ig lines, and should be constructed by the

student. The emphasis on linking words and student construction is significam

Since the complexity of the knowledge network directly relates to the degree of

understanding. linking words reveal whether or not students correctly associate

the concepts--or even if they link them at all. Having students personally

construct the map provides more accurate data than having a researcher draw

the maps using a student interview protocol (assuming the students are old

enough to understand concept map construction).

Another non-hierarchical theory of cognitive structures developed about

the same time as Ausubel's. Using word-association techniques based upon the

theory of James Deese (1965), researchers represented concepts as nodes in a

network but did not label the connecting lines. They used indirect methods

(word associations, similarity judgments, and tree building) for eliciting

representations. This school of thought evolved into semantic network theory

where nodes are connected by directional and labeled lines to produce

propositions. It proposed to account for the kinds of statements people were

willing to make about a topic, as well as the relative speed with which they made

them as measured in reaction time experiments (Resnick & Ford, 1981).

However, the theory did not live up to its early promise (Johnson-Laird, 1983),

since it failed to predict time differences within categories.

When one puts labels on the lines to produce propositions, semantic

networks resemble Novak and Gowin's concept maps--with the exception that

they do not have to be hierarchical (Shavelson et al., in press). The concept

map theory, however, makes no claim about the rate of access to information.

Studies by Fisher (Fisher, 1990; Fisher & Lipson, 1985) make it clear that some

researchers have moved from an exclusively semantic network terminology to an

5 3



Carol G. Williams Concept Maps as Research Tools in Mathematics

incorporation of Novak and Gowin's concept map terminology with references to

Ausubel's theory.

Theoretical distinctions do exist for other researchers, particularly in

regard to whether or not the knowledge representation must be hierarchical.

Ausubel's (1968) theory of meaningful learning describes a hierarchical structure

of conceptual knowledge, and those studies emanating from the Novak and

Gowin tradition adhere strictly to the hierarchical requirement with the most

general topic at the top of the map. White and Gunstone (1992) argue that

whether or not a concept maps should be hierarchical depends on the structure

of the subject matter. Researchers from the semantic network tradition tend

toward a map with a general concept in the center and with links coming out

much like the spokes of a wheel. Harnisch call them "spider maps" (Harnisch et

al, 1994). In many cases the spider configuration can be redrawn to show a

hierarchical relationship. However, because the question of hierarchy is not fully

resolved, I did not assume or demand hierarchical structures in this study.

Seven recent studies used concept maps to assess cognitive structure or

conceptual understanding (Beyerbach, 1986; Coleman, 1993; Laturno, 1994:

Markham, Mintzes, & Jones, 1994; Park, 1993; Rogers, in press; Wallace &

Mintzes 1990). They adhere to the Novak and Gowin tradition for constructing

concept maps and thus require hierarchical maps. Two studies in particular

(Markham et al. (1994); Wallace and Mintzes (1990)) address the use of concept

maps as an assessment activity in science while two others (Laturno (1994) &

Park (1993)) use concept maps in studies pertaining to mathematics.

Wallace and Mintzes (1990) looked at college students (n= 91) enrolled in

an elementary science methods course. They examined the validity of concept

mapping as an evaluation approach. Their conclusions support the concurrent

6
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validity of concept maps as vehicles for documenting and exploring conceptual

change in biology.

In a follow-up study, Markham et al. (199.') looked for more evidence of

concurrent validity. Their subjects were advanced college biology majors (n =

25) and beginning nonmajors (n = 25). Again the authors concluded that their

results showed further evidence for the concurrent validity of concept mapping

as a research and evaluation tool in science education.

Conspicuous by their absence in the large number of studies using

concept maps are studies in mathematics. Park (1993), in her evaluation of a

new computer laboratory calculus course at the University of Illinois, does

provide one example. She gave the students in both a traditional section and a

computer section of the course a list of concepts to use in making hierarchical

concept maps. Park scored the maps numerically and used a software program

to compare the students' maps with a teacher's map. Park's concept map scores

for the two calculus groups lists no significant differences in any scoring

category or any total although the reform group's scores were generally higher

and showed stronger congruence with the teacher's concept map. She also

found a strong correlation between the concept maps scores and the post-

achievement test scores (0.82). Park's qualitative analysis of the maps

determined differences in the concepts each group added to its maps. The

computer group gave many more visually-oriented terms, while the traditional

group gave more application and technique-related terms. The linking words

were equally low-level on all the maps.

Laturno's (1994) study sought to determine if concept maps corresponded

with clinical interviews in determining concept connectivity and to see if concept

maps could predict academic achievement. Her subjects (n=118) were

community college students in self-paced, remedial mathematics courses.

71.
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Laturno followed the tradition of Novak and Gowin and instructed the students

on hierarchical maps. She used a scoring scheme that gave points for

additional concepts, relationships, levels of hierailchy, examples, and cross-

links. Laturno's results indicate that student-generated concept maps show

indications of validity as a research tool. The concept maps gave results

comparable to both interviews concerning student knowledge of relationships

between concepts and to the academic progression of students through the

course.

Purpose of study

The work reported here is part of a larger study that included evaluation

of concept maps as assessment tools. The study also compared students' from

reform and traditional calculus classes conception of function. An example-

nonexample questionnaire looked at students' concept image of function. This

paper primarily documents the place of concept maps in the study. Williams (in

press) reports other results and analyses.

A state university of over twenty thousand students served as the setting

for this study. It is a top-tier research university and, as such, has high

admission standards for its undergraduates. For the school year of this study.

(1993-1994), the university had two, three-quarter sequences of first-year

calculus, the traditional and the reform. These sequences differed in at least

four observable ways: 1) the textbook; 2) the technology required; 3) the types

of problems assigned; and 4) the use of written group projects.

Two groups of subjects participated in the study. One group consisted of

students enrolled in the reform and traditional calculus classes. The student

subjects for the study were 28 volunteers enrolled in the third quarter of calculus

at the large state university. Fourteen came from two reform sections; fourteen
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came from a single traditional section. Each group (traditional and reform) had

seven women and seven men. Each student completed two tasks: 1) drawing a

concept map for the topic of function and 2) completing an example-rionexample

questionnaire about function in an audio-taped interview.

Each student attended a session in which I presented instruction on

concept maps. Some sessions involved a small group of students, while other

times I met with a single student, depending on the students' availability. I

explained concept maps in each session, showing them examples and stressing

the importance of linking words on the lines. The examples included hierarchical

maps, web or spider maps, and non-hierarchical maps. I told the students they

could draw their maps however they wished. After the brief instruction, the

students each drew practice maps using some concepts I gave them about

fractions. When I was sure they draw concept maps, I asked each student

to bi linstorm and come up with a list of terms related to function. After several

minutes, I instructed them to draw a concept map for function using the terms

they had generated as well as any others that might occur to them. No student

interaction occurred in any group sessions. The subjects were able to work on

the maps as long as they desired. All the students took less than an hour to

complete the maps.

The other group of subjects included eight professors (PhD's in

mathematics) at two different universities. Four taught at the large state

research university the student subjects attended. The other four taught at a

small, private, west-coast university. Two professors at each school taught the

reform text and used graphing technology the year of the study. The other two

professors at each school have taught calculus at this level, but only from

traditional texts.

14
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I gave the experts two concept map tasks. The "unrestricted" task was to

draw a concept map for function from their perspective as a mathematician. The

"restricted" task was to draw a concept map of function that represented what

they would expect students completing the first-year calculus sequence to know.

I met with each expert and explained concept maps to them in the same manner

I did the students, showing them the same examples. I asked them to

brainstorm to get their starting terms. I also gave the experts a 45-minute time

limit to complete each map, as I felt this would help them focus on what could

otherwise be considered an unlimited task. I did not stay with the experts while

they worked on the tasks. Rather, I let them complete and return the maps at

their convenience. They did not know what the second task was until after they

had completed the first. Half of the experts did the restricted task first (one

professor from the reform, one professor from the traditional at each school),

while the other half completed the unrestricted task first.

Results and Analysis Using Concept Maps

Much of the analysis in this study focused on differences between groups

of subjects, students as well as experts. Did concept maps reveal differences

about the concept of function held by students in reform sections of calculus and

in traditional sections of calculus? (For brevity and clarity, I will call these

groups of students the "reform students" and the "traditional students.") I

particularly looked for differences that might be attributable to different curricula

that are clearly shown by concept maps. I also compared the concept maps of

the two groups of experts. I looked to see if their knowledge about function, as

exhibited in their concept maps, transcended any curricular differences or if they.

too, may have been influenced by the curriculum they used.

1 3
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Most researchers using concept maps have devised a scoring scheme to

assign a numerical value to each map. The categories used for scoring often

include valid propositions, levels of hierarchy, and cross-links. They

occasionally include examples. After studying this set of data, I concluded it did

not lend itself to a valid method of scoring. Several reasons support this

conclusion.

First, the task I assigned--to create a concept map about function--was

purposely unstructured for both the students and experts. I did not ask them to

make a hierarchical map, nor did I tell them to organize related concepts

together. I did not give them any concepts as examples, nor any hints as to

what type of concepts I might expect. None of the students had any prior

experience with concept mans, and only one expert said he had done concept

maps. Consequently, while the maps reflect only the students' or experts' work

and only their personal notions about functions, the maps proved to be widely

divergent and complex and did not lend themselves to a numerical scoring

scheme. For instance, the experts generated 197 different concepts on their

unrestricted maps of function and 133 different concepts on their restricted

maps. The students' maps produced just over 300 different terms. Figure 1 and

Figure 2 show reduced copies of experts' maps. While the concepts and links

are difficult to read, the overall complexity of the maps' structure is clearly

visible. Figure 3, Figure 4, and Figure 5 are reduced copies of the maps for

three students. These maps once again illustrate the diversity and complexity of

some of the maps.

Some might argue that the diversity in the students' maps resulted

because they did not understand the construction of concept maps. However.

each student constructed a practice map, and I checked each one personally to

be sure the student understood the basic procedure. All the student maps show



14

L;

v.
e'

.0
4

11

L
iA

C
A

r-

R
A

t

C
T

#.
1.

1t

V
et <
so

al
&

.1
1f

ry

a 
i.o

.
k;

,0

=
.. 

v.
 1

 a
u 

4-

S

S
I A

g
f-

 e
l

A

A
.

40
0/

1"

41
20

V
e

IL
 4

O
F

IM
P

-w
42

10
b

V

F
ig

ur
e 

1
A

 R
ef

or
m

 E
xp

er
t's

 C
on

ce
pt

 M
ap

B
E

S
T

 C
O

P
Y

 A
V

A
IL

A
B

LE

L.
41

 tr



_,
.

C
O

I
7

Fi
gt

ne
 2

A
 T

ra
di

tio
na

l
E

xp
er

t's
 C

on
ce

pt
 M

ap

.3
E

ST
 C

O
PY

A
V

A
IL

A
B

L
E



F
ig

ur
e 

3:
 A

 R
ef

or
m

 S
tu

de
nt

's
C

on
ce

pt
 M

ap

B
E

S
T

 C
O

P
Y

 A
V

A
IL

A
B

LE



F
A

A
N

IC
T

IO
N

(s
hh

vi
t

ta
r,

 h
-t

.
6A

t I
f

S
IM

LA
)

al
 I 

a 
bu

zi
-

tr
a

`?

F
ig

ur
e 

4:
 A

 R
ef

or
m

 S
tu

de
nf

s 
C

on
ce

pt
M

ap

B
E

S
T

 C
O

P
Y

 A
V

A
IL

A
B

LE

,o
rle

ch
j-

c.
.1

,2
1-

5

,-
, 4



23

co
A

ily

C
11

.4
01

'1
"

rn
om

m
ah

cd
ck

IN
A

Ir
kt

A
D

pr
o

aw
l c

d6
)3

O
kr

«x
ilc

lio
ns

F
ig

ur
e 

5:
 A

 T
ra

di
tio

na
l S

tu
de

nt
's

 C
on

ce
pt

 M
ap

(&
nV

in
up

t,

B
E

S
T

 C
O

P
Y

 M
/A

IL
A

B
LE

0 0 0 (D ra
)

-o (D C
D 0.
)

i-3 (D 3



Carol G Williams Concept Maps as Research Tools in Mather"at:cs

that the students understood that concepts about functions went in the ovals

while linking words denoting relationships went on the lines. Lacking any

evidence of misunderstanding, one logically concludes that the wide diversity of

the maps derives mainly from students' different conceptions about function,

rather than from any difficulties they had with concept mapping.

Thus for this particular set of data, the numerical scoring schemes

typically used do not appear to be valid. (For further discussion, see Williams,

in press.) By developing lists of concepts most frequently used by the various

groups of subjects, however, one can use the maps to make some valid

quantitative comparisons.

Since the concept map task in this study was unstructured, many

concepts emerged. In order to compare the students' concepts with those of the

experts and to compare those of the student and expert subgroups with each

other. I generated several "core" lists of concepts. Core lists consist of the

concepts most frequently found on the concept maps of a given subject group. I

detail the process below.

As mentioned, the experts each created two concept maps. For the

restricted task, they constructed a map of what they felt students completing

first-year calculus should know about function. For the unrestricted task, their

map was to depict their view of function as a mathematician. I categorized the

experts into three groups--reform experts. tradition& experts, and combined

experts. Since the three expert groups completed two concept maps, they

generated six lists of concepts. I generated a core concept list under each of

these conditions. The following sequence shows how I created three core lists

for the restricted concept mapping tasI

To form a core list, I first compiled a list of the concepts used in the

individual maps by each expert. Next I combined the reform experts' concepts to

17
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Figure 6: Formation of Core Lists

form a list--"reform experts' complete list" and the traditional experts' ccncepts to

form "traditional experts' complete list" (see Figure 6). Putting these two lists

together yielded the "combined experts' complete list"--a list of all terms used by

the eight expert. If two or more reform experts (50%) used a concept on the

reform experts' complete list, I put it on the "reform experts' core list." I used the

same criterion for compiling the "traditional experts' core list." To form the

"combined experts' core list," I chose all concepts that appeared on three of the

eight experts' (38%) lists. (A natural break occurred at the 3-expert criterion with

25 out of 197 concepts used by a least three experts, 21 concepts used by

exactly two, and 151 used by only one.) Using the same procedure and same



Carol G Williams Concept Maps as Research Tools in Mathemancs

criteria, I generated the three core lists for the unrestricted task. The six core

lists, along with the number of experts naming each concept, appear in Table 1.

The core lists for the restricted tasks were much longer than those for the

unrestricted tasks, indicating the experts were in better agreement about the

function concept as taught in first-year calculus than about function in general.

The reform experts' core list for the restricted task contains 25 concepts. while

for the unrestricted task the list has only 14. The traditional experts' core list for

the restricted task has 23 concepts, while for the unrestricted task the list

contains 8. Using the 3-out-of-8 criterion, the combined :.perts' core list on the

restricted task includes 25 terms, while its corresponding core list on the

unrestricted has 10. These core lists served as benchmarks to which I

compared the students' concepts.

I created core lists for the two groups of students in the same manner I

had the expert core lists. I used a criterion of 7 out of 14 (50%) for the individual

groups, reform and traditional, and a criterion of 10 out of 28 (36%) for the

combined group. This process yielded three core lists: "reform students' core

list", "traditional students' core list", arid "combined student's core list" (see

Table 2). They include 9, 8, and 10 concepts, respectively.

Analysis Using the Core Lists

Having compiled these lists, I was able to compare the various groups in

several ways. The quantitative analysis primarily looked for agreement between

the studmt groups' lists and the expert groups' lists and forms the first part of

this analysis. The next part of the.analysis details the qualitative differences

between the two student groups and then between the students and experts

The analysis section concludes with a qualitative comparison of the concept lists

of the two expert groups.

192



9 
3

T
ab

le
 1

E
xp

er
ts

' C
or

e 
C

on
ce

pt
 L

is
ts

 a
nd

 F
re

qu
en

cy
 C

on
ce

pt
s 

W
er

e 
C

ho
se

n:
 R

es
tr

ic
te

d 
T

as
k

R
ef

or
m

 E
x 

er
ts

' C
or

e 
Li

st
T

ra
di

tio
na

l E
x 

er
ts

' C
or

e 
Li

st
C

om
bi

ne
d 

E
x 

er
ts

' C
or

e 
Li

st
!c

om
po

si
tio

n
do

m
ai

n
4

ex
po

ne
nt

ia
l

4

'u
nc

tio
n

4

gr
ap

h/
gr

ap
hi

ca
l

4

in
ve

rs
e

4

po
ly

no
m

ia
l

4

ra
ng

e
4

ti 
ig

on
om

et
ric

4

de
riv

at
iv

e

in
te

gr
al

/a
nt

id
er

iv
at

iv
e

lo
ga

rit
hm

ic
3

sy
m

bo
lic

/e
qu

at
io

n
3

1-
1

2

co
m

m
on

/ty
pe

s
co

nt
in

uo
us

ex
pl

ic
it

im
pl

ic
it

2

in
ve

rs
e 

tr
ig

lim
it

on
to

op
er

at
io

ns
ra

tio
na

l
2

re
pr

es
en

ta
tio

ns
2

I a
bl

e/
nu

m
er

ic
al

ly

fu
nc

tio
n

4

gr
ap

h
co

nt
in

uo
us

di
ffe

re
nt

ia
tio

n
3

do
m

ai
n

3

ra
ng

e
3

1-
1

2

co
m

po
si

tio
n

I
2

co
rr

es
po

nd
en

ce
2

de
riv

at
iv

e
2

sy
m

bo
lic

/e
qu

at
io

n
2

ev
en

2

ex
po

ne
nt

ia
l

2

in
cr

ea
si

ng
2

in
te

gr
at

io
n/

in
te

gr
ab

le
2

in
ve

rs
e

2

lo
ga

rit
hm

ic
2

m
ax

/m
in

/m
ax

im
al

2

po
ly

no
m

ia
l

2

pr
op

er
tie

s
2

ra
te

 o
f c

ha
ng

e

tr
ig

on
om

et
ric

va
ria

bl
e

,

2

2 
3

fu
nc

tio
n

do
m

ai
n

gr
ap

h/
gr

ap
hi

ca
l

ra
ng

e
7

co
m

po
si

tio
n

ex
po

ne
nt

ia
l

6
in

ve
rs

e
6

po
ly

no
m

ia
l

tr
ig

on
om

et
ric

co
nt

in
uo

us
5

de
riv

at
iv

e
5

lo
ga

rit
hm

ic
5

sy
m

bo
lic

/e
qu

at
io

n
1-

1
4

cl
as

se
s/

co
m

m
on

/ty
pe

s
4

di
ffe

re
nt

ia
tio

n/
di

ffe
re

nt
ia

te
4

in
te

gr
al

/a
nt

id
er

iv
at

iv
e

4

ar
ith

m
et

ic
 o

pe
ra

tio
ns

3

co
rr

es
po

nd
en

ce
in

te
gr

at
e/

in
te

gr
at

io
n

lim
it

3

pr
op

er
tie

s
3

ra
te

 o
f c

ha
ng

e/
ch

an
ge

3

ra
tio

na
l

re
al

 w
or

ld



T
ab

le
 1

 (
co

nt
in

ue
d)

E
xp

er
ts

' C
or

e 
C

on
ce

pt
 L

is
ts

 a
nd

 F
re

qu
en

cy
C

on
.;e

pt
s 

W
er

e 
C

ho
se

n:
 U

nr
es

tr
ic

te
d 

T
as

k
R

ef
or

m
 E

xp
er

ts
' C

or
e 

Li
st

fu
nc

tio
n

4
ch

ao
tic

2
co

nt
in

uo
us

2
do

m
ai

n
2

fu
nc

tio
n 

sp
ac

e
fu

nc
to

r
2

gr
ap

h
2

ho
m

om
op

hi
sm

is
om

or
ph

is
m

lin
ea

r

op
er

at
or

2

ra
ng

e
re

cu
rs

iv
e

ta
bl

e
2

30

T
ra

di
tio

na
l E

xp
er

ts
' C

or
e 

Li
st

C
om

bi
ne

d 
E

xp
er

ts
' C

or
e 

Li
st

fu
nc

tio
n

4
1-

1

do
m

ai
n

ra
ng

e
3

co
nt

in
uo

us

di
ffe

re
nt

ia
bl

e
gr

ap
h

2

pr
op

er
tie

s

fu
nc

tio
n

do
m

ai
n

ra
ng

e
1-

1
4

gr
ap

h
4

co
nt

in
uo

us
3

di
ffe

re
nt

ia
bl

e
3

fu
nc

tio
n 

sp
ac

e
3

is
om

or
ph

is
rn

pr
op

er
tie

s
3



Carol G Williams Concept Maps as Research Tools in Mathematics

Table 2

Student Groups' Core Concept Lists and
Number of Students Choosing Each Concept

Reform Students' Traditional Students' Combined Students'
Core List Core List Core List

function 14 function 14 function 28

derivative 13 variables 11 derivative 22

graph 12 derivative 9 variables 21

slope 11 graph 9 graph 20

variables 10 integral 9 equation/

symbolically

15

equation/

symbolically

9 limit 7 integral/

integration

15

input 7 max/mm 7 max/min 13

integral 7

7

slop_e 7 slope

line/linear

13

10line/linear

polynomial 10

I compared the students' core concept lists to the experts' core concept

lists in two ways. First, I took each of the three student core lists and computed

a ratio to reflect the number of students concepts matching the experts'

concepts to the total number of concepts on the expert list (see Table 3). For

example. of the nine concepts on the reform students' core list, five of them are

on the reform experts' core list (restricted task) that has 25 concepts, giving a

ratio of 5 to 25 or 20%. (On Figure 7, this is the ratio of c to b.) Thus the
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Carol G Williams Concept Maps as Research Tools in Mathemat:cs

c = Number of concepts that match

Student Expert
. List I \ List
\ A B

a = Number of concepts
on student list

b = Number of concepts
on expert list

Figure 7: General Relationship of Lists and Number Concepts Used to Compute

Comparison Percentages

percentages in Table 3 represent the portion of the experts' lists which the

students also used.

This comparison yielded several observations. First, in general, the

students' core lists do not match the experts lists to a high degree. The

correspondence is less than 40% for all comparisons, with most in the 20%

range. Each of the three groups of students' core concepts matched the

traditional experts' lists a little better than the other expert groups on both the

restricted and unrestricted tasks. This may indicate the students know and use

a higher percentage of concepts similar to those of the traditional experts.

Although several percentages for the unrestricted task are higher than their

corresponding percentages on the restricted task, one cannot conclude that the

students' maps more closely resemble the experts' maps on the unrestricted

task. One must take into account that the number of concepts on the core lists

for the unrestricted task are much smaller. Consequently, a single concept can

represent as much as 12%. Yet another comparison more accurately

determines which expert mapping task that the students' maps most closely

resemble.



Carol G. Williams Concept Maps as Research Tools in Mathematics

I computed a second ratio: the number of students' concepts matching

the experts' concepts to the total number of concepts on the student list (see

Table 4). Again, using the same example, 5 of the 9 concepts on the reform

students' core list match those on the reform experts' core list (restricted task),

but this time the comparison is made to the nine-concept student list for a 5 to 9

or 56% ratio. (In. Figure 7 this is the ratio c to a.) Thus Table 4 values show the

percentage of student groups' core concepts that were also on the various

experts' lists.

These figures show that a greater proportion of all the student lists match

the experts' restricte..d task lists more closely than they match the experts'

unrestricted task lists. The range for the restricted task comparisons is 43% to

67%, while for the unrestricted task, the range of match is only 21% to 38%.

This result was expected, since the restricted task asked for what experts

thought first-year calculus students should know.

Comparing core lists in this manner provided a quantitative measure by

which to compare the concepts of the various groups. From a broad

perspective, one can see that one-half to two-thirds of the students' core

concepts are on the experts' core lists (restricted task) and yet they account for

no more than 38% of any expert list, indicating disparity between the students

and experts when it comes to concepts relating to function. Using this

comparison, one also finds little difference between reform 'and traditional

students' core concepts in their relation to the experts' core :oncepts.

Since creating composite lists such as the core lists may have masked

some differences, I also looked at how the individual students' concepts

compared to the experts' concepts on their core lists and their complete lists. I

limited the comparison to the experts' restricted task, since it resembles the

students' maps most closely.

25



Carol G Williams Concept Maps as Research Tools in Mathematics

In the first comparison, I determined for each student the number of

concepts that matched each expert core and complete list. Using t-tests I found

no significant differences between the two student groups in the number of

concepts individuals used that matched concepts on the expert core concept

lists.

In a manner similar to that described above, I found the percentage of

each student's concepts that matched those on the experts' core lists (in Figure

7 this is the ratio c to b) as well as the number matching the experts' complete

list of concepts (see Table 5). Looking at Table 5, one can see that the student

lists corresponded better to the experts' core lists than to the experts' complete

lists. Table 6 summarizes the comparisons using these individual match

percentages. The mean percentage of match to the experts' core concepts

ranged between 23% and 31%. The mean percentage of match to the experts'

complete list of concepts ranged between 7.6% and 13.3%. Both the reform and

traditional student groups matched the traditional experts' core and complete

lists slightly better than they did the corresponding reform experts' lists. This

finding is consistent with student core list comparisons reported above.

Another way in which I compared the student groups was to look at what

percentage of each individual student's concepts was also on any of the experts'

core or complete-lists (in Figure 7 this is the ratio c to a). Table 7 shows the

percentages for each student as well as the number of concepts each student

map contained. In this comparison, the percentages for the match to the

experts' complete lists are higher than those for the core lists. Since the

combined experts' complete list consists of all terms used by the experts,

Column H of Table 7 is a good indication of how meaningful and relevant the

students' concepts are if one considers all expert concepts to be meaningful and

relevant. 37

26



Carol G. Williams Concept Maps as Research Tools in Mathema:ics

Table 5

Individual Student's Percentage Match to Expert Lists
Restncted Task

A
No of

Concepts 25 23 25 97 75 133
R1 24% 26%

1
20% 11% 11% 10%

R2 24% 26% I 24% 8% 11% 7%
R3 24% 26% I 20% 9% 12% 8%
R4 24% 30% 24% 6% 13% 3%
R5 16% 26% 24% 9% 12% 8%
R6 32% 30% 32% 9% 11% 7%
R7 32% 39% 32% 12% 17% 13%
R8 20% 22% 16% 5% 8% 5% 1

R9 12% 17% 12% 6% 8% 6%
R10 48% 57% 40% 13% 21% 14%
R11 8% 13% 8% 3' .- 5% 3%
R12 20% 26% 20% 7% 11% 7%
R13 16% 22% 16% 7% '' 1% 7% '
R14 28% 30% 28% 8% 13% 8%
T1 24% 30% 24% 7% j 11% 6%

10%T2 28% 35% 28% 39'; j 17%
13 28% 35% 28% 9% 1 17% 11%
14 28% 22% 28% 9% 11% 7%
15 28% 43% 28 A 7% 20% 11%
T6 8% 9% 8% 3% 7% 4%
17 36% 39% 40% 12% 16% 11%
18 40% 43% 36% 11% 1 20% 12%
T9 20% 26% 20% 5% 9% 5%
110 16% 13 k 16% 4% 7%

1
5%

111 48% 57% 52% 14% 21% 13%
T12 20% 30% 24% 6% 13% 8%
T13 20% 26% 20% 6% 9% 6% '
T14 16%

1
22% I 16% 4 % 8% 5%

Column Codes:
A: Student Designation
B: Match to Reform Experts Core List
C: Match to Traditional Experts' Core List
a Match to Combined Experts' Core List
E. Match to Reform Experts' Complete List
F: Match to Traditional Experts' Complete List
G Match to Combined Experts' Complete List
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Table 6

Comparison of Percent Match of Individual Student's Concepts to
Expert Lists--Restricted Task

Com arison to Reform Ex erts' Core Conce ts
Reform Students Traditional Students

Mean 23.4% 25.7%
Variance 0.9% 1.1%
Rano e 8%-48% 8%-48%

Com arison to Traditional Ex cgs Core Conce ts
Reform Students Traditional Students

Mean 28.0% 30.7%
Variance 1.0% 1.8%

Range 13%-57% 9%-57%

Com arison to Combined Ex erts' Core Conce ts
Reform Students Traditional Students

Mean 22.6% 26.3%
Variance 0.7% 1.2%
Range 8%-40% 8%-52%

Com arison to Reform Ex erts' Com lete List
Reform Students Traditional Students

Mean 8.3% 7.7%
Variance 0.1% 0.1%
Range 3%-13% 3%-14%

Com arison to Traditional Ex erts' Complete List
Reform Students Traditional Students

Mean 11.7% 13.3%
Variance 0.2% 0.3%
Range 55-21% 7%-21%

Com arison to Combined Ex erts' Com lete List
Reform Students Traditional Students

Mean 7.6% 7.9%
Variance 0.1% 0.1%
Range 3%-14% 4%-13%

Q 0

28
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Table 7

Percentage of Individual Student's Concepts
That Matched Expert Lists (RGstricted Task)

A i B C D E F G H
R1 22 27% 27% 23% 50% 36% 59%
R2 31 19% 19% 19% 26% 26% 29%
R3 21 29% 29% 24% 43% 43% 52%
R4 29 21% 24% 21% 21% 34% 14%
R5 26 i 15°/. 23% 23% 35% 35% 42%
R6 21 I 38% 33% 38% 43% 38% 43%
R7 27 30% 33% 30% 44% 48% 63%
R8 17 29% 29% 24% 29% 35% 41%
R9 23 13% 17% 13% 26% 26% 35% .

R10 32 38% 41% 31% 41% 50% 59%
R11 29 7% 10% 7% 10% 14% 14%
R12 22 23% 27% 23% 32% 36% 41%
R13 22 18% 23% 18% 32% 36% 41%
R14 36 19% 19% 19% 22% 28% 31%
T1 31 19% 23% 19% 23% 26% 26%
T2 44 16% 18% 16% 18% 30% 30%
T3 41 17% 20% 17% 22% 32% 34%
T4 20 35% 25% 35% 45% 40% 45%
T5 28 25% 36% 25% 25% 54% 54%
T6 19 11% 11% 11% 16% 26% 26%
T7 35 26% 26% 29% 34% 34% 40%
T8 29 34% 34% 31% 38% 52% 55%
T9 17 29% 35% 29% 29% 41% 41%
T10 12 33% 25% 33% 33% 42% 50%
T11 36 33% 36% 36% 39% 44% 47%
T12 45 11% 16% 13% 13% 22% 22%
T13 15 33% 40% 33% 40% 47% 53%
T14 24 17% 21% 17% 17% 25% 25%

Column Codes:
A: Student Designation
B: Number of Concepts Generated by Student
C: % Student's Concepts on Reform Experts' Core List
D: % Student's Concepts on Traditional Experts' Core List
E: % Student's Concepts on Combined Experts' Core List
F: % Student's Concepts on Reform Experts' Complete List
G: % Student's Concepts on Traditional Experts' Complete List
H: % Student's Concepts on Combined Experts' Complete List

Comparison of the two student group's number of concepts generated

using a t-test revealed no significant difference. Although the traditional

students generated more concepts on average (28.3 concepts was the mean for

29 4 0



Caro: G. Williams Concept Maps as Research Tools in Mathematics

the traditional students, 25.6 the mean for the reform), this difference was not

significant at the 0.05 level. Table 8 summarizes the data about the percentage

of the students' concepts that matched the experts'. In looking at the proportion

of the students' concepts that were on the experts' complete lists, each group

matched its corresponding expert group to a higher degree than its peers.

This analysis generally agrees with the insights gleaned from the student

core list comparisons. It is useful, however, because comparing the students'

individual percentages of concepts that are on the expert list approximates

assigning each map a numerical score for number of relevant and meaningful

concepts.

The data presented in Tables 7 and 8 also provides further evidence of

how difficult it would be to score the students' concept maps numerically. If one

assumed that a concept mentioned by any expert was meaningful, the majority of

the students' concepts (which did not match those of experts) would have to be

judged meaningless or irreleVant. Can a proposition be considered meaningful if

it contains one or more concepts that are not meaningful? How would one

assign such "partial credit?" How would one judge levels of hierarchy if some of

the propositions in the chain were invalid? Once again, scoring this data

presents serious problems that might be solved arbitrarily but never

satisfactorily.

In summary, one can draw several important conclusions from

quantitative analyses of the concept lists: 1) In general, the core concepts of the

reform students' lists matched the experts' lists to the same degree that

traditional students' lists did. Student lists from both groups matched traditional

experts slightly better than reform experts. 2) Both student groups' core

concepts matched a relatively low percentage of the experts' lists. 3) When

considering the proportion of the individual student's concepts that matched

30
4 '1



Carol G. Williams Ccncept Maps as Research Tools in Mathematics

Table 8

Comparison of Portion of Individual Student's Concepts That
Matched Expert ListsRestricted Task

Com arison of Number of Conce ts Generated
Reform Students Traditional Students t-Statistic

Mean 25.6 28.3 -0.838
Variance 28.1 118.7
Range 17-36 12-45

Com arison to Reform Ex efts Core Conce ts
Reform Students Traditional Students t-Statistic

Mean 23.3% 24.3% -0.295
Variance 0.8% 0.8%
Range 7%_38% 11%-35%

Com arison to Traditional Ex erts' Core Conce ts
Reform Students Traditional Students t-Statistic

Mean 25.4% 26.0% -0.186
Variance 0.6% 0.8%
Range 10%-33% 11%-40%

Com arison to Combined Ex erts' Core Conce ts
Reform Students Traditional Students t-Statistic

Mean 22.3% 24.6% -0.738
Variance 0.5% 0.8%
Range 7%-38% 11%-36%

Com arison to Reform Ex erts' Com lete List
Reform Students Traditional Students t-Statistic

Mean 33.2% 28.0% 1.253
Variance 1.2% 1.1%
Range 10%-44% 13%-45%

Com arison to Traditional Ex erts' Com lete List
Reform Students Traditional Students t-Statistic

Mean 33.7% 36.7% -0.539
Variance 0.9% 1.1%
Range 14%-50% 22%-54%

Com arison to Combined Ex erts' Com lete List
Reform Students Traditional Students t-Statistic

Mean 40.3% 39.2% 0.212
Variance 2.3% 1.4%
Ran e 14%-79% 22%-55%
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those on experts list, the reform students and traditional students performed

about the same. 4) The individual students' proportion of match to the experts'

complete list of concepts is an indicator of the number of meaningful and

relevant concepts the students used. As such it provides a way to numerically

compare a portion of the students' concept.maps.

Qualitative Analysis of Core Concepts

While quantitative comparisons provide information about how many or

what proportion of concepts are the same or different for various groups,

qualitative analysis looks for substantive similarities and differences. I

qualitatively compared the experts' core concept lists with the students' core lists

with interesting results. A similar analysis of the concepts with respect to the

students' core lists did highlight differences in the two student groups. The final

comparison in this section looks for differences between the reform and

traditional experts.

The quantitative analysis of the concept lists revealed low

correspondence of students' concepts with experts' concepts. Comparing

students' concepts with experts' concepts on a qualitative basis sheds some light

on why this disparity exists. Since earlier analysis showed little difference

between the reform and traditional students' agreement with the experts, I used

the combined experts' core concepts and the combined students' core concepts

for the qualitative comparison. As has been stated, the experts produced 25

core concepts, the students only 10 (see Table 9). Six of the 10 student

concepts are on the experts' list. Of particular interest, however, are certain

items on the experts' list that seldom appear on any student's map.

One group of concepts from the experts' listdomain, range, and

correspondence--relates to the definition of a function. None of these terms
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Table 9

Combined Core Concept List for Expen's and Students

Combined Experts Core
Conce ts

function
domain
graph/graphical
range
composition
exponential
inverse
polynomial
trigonometric
continuous
derivative
logarithmic
'symbolic/equation
1-1

classes/common/types/familiar
differentiation/differentiate
integral/antiderivative
adding/dividing/arithmetic
operations
correspondence
integrate/integration
limit
properties
rate of change/change
rational
real world

Combined Students' Core
Conce ts .

function
'derivative
variables
equation/symbolically
integral/integration
max/min
slope
line/linear
polynomial

Concepts given in descending
order by frequency of use

appears on the students' combined core list (nor on t' ie othr two student core

lists). Seven of the eight experts (88%) listed domain and range, indicating that

these concepts form an integral part of their view of function. This does not hold

true for the students.
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Another group of concepts on the experts' combined list fits together

nicely. Exponential, polynomial, trigonometric, logarithmic, and rational are

all classes or common types of functions. Only polynomial, the simplest and

most pervasive function in high school algebra, made the students' combined

list, although undoubtedly the students have encountered all these different

types of functions. Trigonometric and rational appeared only on student maps

from the traditional classes (and rational was sometimes used to mean rational

number, not rational function). Only two students (7%) seemed to set up a class

or type grouping of functions on their concept maps. One student had

polynomial and rational as her two branches, another had linear, exponential,

and quadratic as his. Five of the experts (63%) had such a grouping on their

maps.

A third group emerging from the experts' core list involves properties of

functions, 1-1, continuous, differentiable, and having an inverse. Thirty-eight

percent of the experts had such a group. Once again, none of these concepts

figured on the students' combined list. Only one student from the traditional

group used 1-1, continuous, and inverse, while four others listed continuous

alone. One student %ted inverse. No student used differentiable.

The experts' list yielded a fourth cluster of concepts: operations one

performs on funCtions. These include composition, differentiation,

integration, and combining with arithmetic operations. Determining the

inverse of a function might also be considered a part of this group. Only one

student used differentiation or differentiate; four used integrate or

integration; two mentioned composite; and one said functions could be added,

subtracted, multiplied, or divided. No student concept map showed any

indication of an operations group, while four of the eight (50%) expert maps

showed a strong operations grouping. To summarize this comparison of the
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Tab le1 0

Concepts Used Primarily by One Student Group

Concepts Used by Reform
Students

behavior (3)*

contour lines (2)

evaluated (3)

global (2)

implicit (2)

increasing/decreasing (3)

level sets (2)

local linearity (3)

numerically (3)

real life (3)

slope of tangent (3)

symbolically (4)

table (5)

understanding (2)

input/output (7 of 9)**

geometrically (2)

algebraicalltip

Concepts Used by Traditional
Students

absolute (4;

asymptotes (4)

defined (6)

rational (5)

real numbers (3)

trigonometric (3)

undefined (4;

volume (4)

domain (6 of 8)

numbers (6 of_8)

shape (3 of 4)

f(x) (3 of 4)

velocity (4 of 5)

range (5 of 7)

'3 students from this group are the only
students who used this concept.

"7 of the 9 students using the
concept were from this group

experts and students, one can say that the experts' core lists showed higher-

level groupings that are not present in the students' concepts.

The three student core lists are very similar (see Table 2). The

differences between the two student groups pertain to concepts that did not

make the core lists. Table 10 shows the concepts used only by one group of

students or primarily by one group. The resulting sets of concepts illustrate the
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distinctions in the two teaching methods. For example, asymptotes, defined,

rational, real numbers, undefined, and domain--concepts used only by

traditional students--all relate to graphing by hand. To graph a rational function,

one must determine which real numbers must be excluded from the domain. At

the values for which the denominator is zero, the function is undefined, and an

asymptote may exist. Velocity and volume, again terms used by traditional

students, represent typical applications used in traditional texts for derivatives

and integrals. On the other hand, the concepts from the students in the reform

group strongly reflect the emphasis and terminology of the reform text. It

presents topics "geometrically, numerically, and algebraically" (Hughes-

Hallett et al., 1992, p. v). Only the reform students used these terms. Reform

students call the numerical form tables. Instead of being concerned with

graphing by hand, reform students stress with the behavior of the functions--

where they are increasing or decreasing. One can discuss the slope of a

tangent ih terms of local linarity. The examples reform students use come

from real life and promote understanding. lnputtoutput terminology in the

reform classes replaces the domain/range language of the traditional classes.

Even though the reform subjects had experienced a traditional approach to

functions in their high school algebra classes, their distinctive terminology

indicates that they are assimilating, at the very least, the vocabulary used in the

reform calculus classes and textbook. It may also point to a difference in the

content being covered in the two classes.

A comparison of the experts' core concepts completes this section. For

thQ restricted task, the combined experts' core list contains 25 terms (see Table

1). Fifteen of the terms (60%) are on both the reform experts' core list and the

traditional experts' core list. I looked at the concepts that were only on the

reform experts' core list to determine any groupings that might distinguish them
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from the concepts only on the traditional experts' core list. No strong differences

emerged. The reform experts' core list had two terms, representations and

table, that are emphasized more in reform classes. The traditional experts' core

list contained max/min and increasing, concepts used primarily by the

traditional students. Terms from the professors' different curricula do distinguish

the core lists, but only minimally considering the size of the lists.

On the experts' unrestricted concept mapping task, the eight professors

generated 197 different concepts. The combined experts' core list contained

only 10 concepts, showing the great diversity of these maps (see Table 1). All

eight of the traditional experts' core concepts were on the combined experts'

core list. The reform experts' core list had 14 concepts, only 7 of which are on

the combined experts' core list. The other seven concepts relate more to higher

mathematics than to the reform curriculum.

In summary, qualitative analysis of the lists of concepts gleaned from the

concept maps dia show distinctions between the two student groups, differences

in terminology that linked each group to its respective curriculum. The

qualitative analysis also reflected differences between the experts and the

combined student group. The experts' combined core of concepts shows at

least four higher-level categories--definition, class or type, properties, and

operationsall of which are virtually non-existent in the students' maps. A

qualitative study of the experts' core lists did not reveal any major differences

along curricular lines.

General Analysis of the Concept Maps

Since this set of data did not lend itself to further quantitative analysis, the

qualitative study of the concept maps took on added importance. Once again. I

looked for differences between the two students groups that would correlate to

the differences in their curricula or to their respective experts. A study of the
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maps general appearance and structure did yield insights about the two student

groups and about the experts. This sections details those findings.

The most striking observation about the students' maps, and this holds for

both reform and traditional groups, is that many of their concepts and

propositions were trivial or irrelevant. For example, many of the maps showed

an emphasis on variables, even listing x, y, and z as concepts. Another student

termed them "letters" and has three concepts under letters: a-z, Greek. and x's

and yes. Thirteen of the 14 students from the traditional group have.some

reference to variables on their maps, as do 12 of the 14 students from the

reform classes. Two students from each group also connected slope to rise

over run, a concept taught in first-year algebra and far from the topic of function.

Often the students list concepts closely tied to the types of exercises they did in

class, such as finding maxima and minima and classifying them as "absolute"

("global" for the reform classes) or "local." One could say their preoccupation is

with the "trees" and not the "forest."

Some maps had sections that completely veered from the topic. One

might hypothesize the students were simply trying to fill up the page or use up

the time. Figure 8 shows half of a map on which there are no actual

mathematical terms (the other half was little better). Another map contains the

propositional chbin "solutions help to get good grade may produce job lead $

pursue happiness." Figure 9 shows one student's complete map. Were it not

for the concepts integrals and derivatives, one would not know this student had

been in a calculus course.

The second most noticeable characteristic of the students' maps was their

algorithmic nature, particularly among the students from traditional classes. By

algorithmic nature, I mean that instead of giving concepts and the relationships

among them, the students gave steps in a procedure. For example, one student
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has the chain: "function can be continuous if you can draw without lifting

your pencil or they have no undefined points such as f(x)=1/x at x = 0 is a

hole' at x = 0 which is incontinuous." She starts out with the concepts of

function and continuous but then drifts into procedural steps. The algorithmic

portions of the maps can usually be identified by the nature of the linking words,

such as "by plotting" or "by locating," or by long phrases in the concept ovals,

such as "it passes the vertical line test if f -1(y) =x-1 ."

Seven of the traditional students (50%) had groupings where algorithms

or processes are evident, while only four (29%) from the reform classes did. The

two most extensive maps from the traditional group show heavy algorithmic

influence and could almost serve as procedural outlines of chapters in a

traditional text. No map from the reform group showed extensive algorithmic

groupings.

The reform text regularly presented functions in different representations

I studied the student maps to determine, if possible, a student's predominant

view of functionwhether it was an equation, a graph, a set of ordered pairs, or

perhaps something else. The linking words played an important part in this

analysis. For instance, one student's map has these propositions: "function

consists of variables," "function can be graphed," "function can be

polynomial." Using the same link for graphed and polynomial indicates the

same connection: possibility, not necessity. These propositions, along with

heavily algorithmic portions of her map, indicate an equation view of function.

Other maps I judged to have an equation perspective had graph separated from

function by other propositions. Some students said straightforwardly, "function

(sic) are equations."

Three students from the traditional group (21%) and four from the reform

group (29%) made a connection between function and real life situations, but
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from the two groups one gets a different sense of the relationship. The three

students from the traditional group had these propositional chains: "functions

serve to represent complex problems, e.g. velocity," "function uses

mathematical interpretation of real life situations," "equations discover

natural phenomena links velocity and acceleration example balls falling in

air." .Velocity and acceleration are the typical examples in a traditional text. The

least extensive example from the reform group contained the chain "function is

found in the real world like economics and engineering and medical field."

Another reform student connects three chains and conveys the important

concept of using functions to make predictions from collected data. A third

student from the reform group shows that functions serve as approximations to

real-life situations. A fourth map from the reform group has these propositional

chains: "functions don't always involve equations some are about real life

situations an example death rate of a population as a function of Vme," and

"functions involve modeling an example exponential decay--an example

interest rate for a savings account." While the evidence is not conclusive, the

concept maps indicated that students from the reform group had a better

understanding that functions may be used to model actual, real-life situations.

I also examined the maps to see if they reflected knowledge about the

definition of funaion. In the group from the reform classes, one student has

domain and range as concepts. Four others have input and output. None of

the reform students indicated that each element of the domain can be paired

with only a single range element, an essential part of the function definition. In

the group from the traditional classes, four simply listed domain and range as

concepts. Three others used domain and range and included the requirement

about unique values for the range elements on their maps.
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Did the maps reveal any differences in hierarchy and integration of

concepts between the two groups? In a word, no. Few maps showed any

significant hierarchical structuring, although I. did show them examples of

hierarchical maps. The number of concepts emanating directly from function

ranged from 1 to 13, with an average of 7 for both groups. The branches that

did have several levels generally delineated procedures rather than linked

coi it-epi6. Integration of concepts, as shown by number of cross links, virtually

did not exist. I found only two instances of cross links that showed an important

connection, such as the inverse relationship of differentiation and integration. I

had shown the students examples of cross links and had stressed their

importance as part of the instruction on concept maps. While several students

drew cross links, most were trivial, for example, "variables can be letters."

Complete analysis of the students maps required comparison with the

experts maps. Again, I have chose to use the experts' restricted maps, since

they are much closer to the students' maps in content. Inasmuch as the experts

are all PhD's in mathematics, I assumed all their concepts and propositions to be

valid and relevant.

Unlike many of the students' maps, the experts' maps showed no hint of

algorithms. Instead, they reflected many categorical groupings, several of which

I discussed in detail in the section above on core lists. None of the experts

demonstrates the students' propensity to think of a function as an equation.

Instead, they define it as a correspondence, a map, a pairing, or a rule. All

incorporate a definition in their map. Five experts (3 traditional, 2 reform) give

real-world examples or allude to them. Looking at the overall content and

complexity, the experts' maps as a group show much more homogeneity than the

students'.
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Distinguishing between the two expert groups' concept maps is difficult.

As I have noted, all experts referenced the definition and none gave algorithmic

groupings, which points to homogeneity rather than divergence. In looking at

the structure of the maps, one notes that two experts from each group drew

hierarchical maps. One expert from each group drew a spider map, one expert

from the traditional group used an unstructured web, and one expert from the

reform group used a narrative style. (The expert who used the narrative style

told me when I gave him his concept map instruction that he had done concept

maps before in a curriculum development setting. His map more closely reflects

that setting than the example maps I showed him.) I redrew all but the narrative

map in a hierarchical style, realizing I might well be making inferences the

experts never intended. The redrawn maps showed three to five levels of

hierarchy with no distinctions between the two expert groups. They also showed

that two of the reform experts' maps had a large number of cross links, 14 and

17, while the three traditional experts' maps with cross links had a total of 11

between them (5, 5, and 1).

To summarize, a qualitative analy of the maps as a whole did indicate

two differences between the reform and traditional student groups. The

traditional group's maps displayed more and larger algorithmic portions. The .

traditional students' maps virtually all pointed to an equation view of function.

while a good number of the reform students allowed other viewpoints. The

reform students may also have a different, broader view of function in real life

The differences between the students' maps taken altogether and the experts'

maps altogether were much more striking. The reform experts were unanimous

in their lack of algorithmic portions while 39% of the student maps included

algorithmic groupings. All the expert maps referenced the definition, but only

43% of the students gave terms that could be loosely considered as referring to
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the definition. The expert maps contained higher-level categories and were

more homogeneous than the students maps, which contained trivial and widely

varied groupings. Comparing the reform experts' maps to the traditional experts'

maps yielded no major differences.

Implications for concept maps as research tools

A major purpose of this study was to explore the use of the concept map

as a research tool in the area of mathematics, particularly as it reflects

conceptual understanding. The degree to which concept maps describe a

person's actual mental representation is, of course, impossible to know.

Nevertheless, the general homogeneity of the experts' maps and their distinct

variance from the students' maps lend credibility to the conclusion that concept

maps do capture a representative sample of one's conceptual knowledge.

The concept maps in this study shed some light on the issue of hierarchy

in knowledge representation. As mentioned in the literature review, Novak and

Gowin (1984) require hierarchical maps, since they base their maps on

Ausubel's (1968) hierarchical view of knowledge. Other researchers (Hiebert &

Lefevre, 1986; White & Gunstone, 1992) allow for hierarchy. For White and

Gunstone, certain knowledge domains are hierarchical while others are not. In

this study I gave no hierarchical restraint. Consequently, four of the eight

experts did not create a hierarchical map but rather made a web or spider map.

Since the experts did not all draw hierarchical maps, it appears function is not

inevitably a hierarchical domain. Yes, one can redraw the web maps in a

hierarchical fashion, but such a process necessarily requires the researcher to

make her own assumptions about the relative levels of hierarchy. These

second-party assumptions may not be consistent with intentions or perceptions

of the original map maker.
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Some might argue that the diversity in the experts' maps resulted from

inadequate instruction on how to draw concept maps. Rogers' (in press) study

speaks to this point. Despite detailed instruction on hierarchical maps to

students who had drawn 20 concept maps prior to the study, Rogers reports the

students' maps showed three patterns of conceptual organization: hierarchical,

spider (she terms them "branching"), and random. It appears the students'

personal organization of knowledge took precedence over the researcher's

prolonged, explicit instruction. I would argue the subjects in my study received

adequate instruction for their level of expertise and that differences in the maps'

organization reflect their personal views.

Before concept maps become an accepted research tool in mathematics,

researchers must resolve issues concerning numerical scoring schemes.

Judging from the data I collected and from other studies that have used concept

maps, the hierarchical constraint provides one important key to creating a valid

scoring scheme for concept maps. Another key is whether one gives the

subjects several concepts to use in the maps or merely supplies one main topic.

Stuart (1985) describes this process cf creating a map from a single given topic

as "constructing maps de now ' The six studies (Beyerbach, 1986; Coleman,

1993; Laturno, 1994; Markham et al., 1994; Park, 1993; & Wallace & Mintzes

(1990)) most relevant to this study all worked in the Novak and Gowin tradition.

required hierarchical maps, and gave the maps a numerical score. Beyerbach

(1986) is the only one who used concept mapping de novo, and her scoring

scheme is different from most research in the Novak and Gowin tradition. I did

not find her scoring scheme to be valid for measuring the degree of knowledge

differentiation. (For more details, see Williams, in press.)

None of the studies convinced me that valid and reliable scoring schemes

are currently available for concept maps constructed de novo. It does appear
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that training students on hierarchical maps, giving them core concepts with

which to build their maps, and limiting the subject domain can create a setting in

which numerical schemes are valid. Yet in my view, each of these practices

reduces the usefulness of concept mapping as a representation of a subject's

own personal knowledge structure.

As with all research tools, the concept map has limitations. Concept

maps created de novo display so much diversity that they are difficult to score

numerically, particularly if they do not exhibit a hierarchical structure. White and

Gunstone (1992) liken scoring non-hierarchical maps to scoring an essay--one

looks for the overall point of view rather than specific knowledge content. If a

researchers aim is primarily to gather quantitative evidence to support an

hypothesis, a more structured concept map task can be appropriate. For

example, a task where one gives subjects terms to interrelate is better if the

researcher is particularly interested in how subjects see the connections

between those particular terms. However, if one is looking for an individual's

knowledge structure in its "purest" most personal form, the unstructured mapping

task is better because it does not put concepts into the subjects' heads. In this

study, where concept maps on function were used for the first time, the

unstructured task proved appropriate and provided useful information about the

broad topic.

The results of this study suggest several areas relating to concept maps

where further research is needed. One is the area of knowledge hierarchy. A

second is numerical scoring schemes. Would training the experts and students

to draw hierarchical maps substantially alter the findings? The researcher could

teach the experts to perform the restricted task (relating to first year calculus

concepts) by drawing hierarchical maps. One could then compare those

hierarchical maps to the ones drawn for this study without the hierarchical
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stipulation. A variation on tOe same study would give the experts the 25

concepts on the combined experts' core list and ask them to draw a concept map

limited to these concepts. This could be done with or without the hierarchical

constraint. One could study how the maps differed from the de novo expert

maps drawn for this study, determining if the experts organized their concepts

differently or if they added or deleted categories. One could ascertain whether

these maps lend themselves to a scoring scheme. And would experts draw

hierarchical maps as instructed or would they choose to ignore that instruction

as the subjects in Rogers' (in press) study did?

Stuart (1985) states the need for a more holistic and qualitative scoring

technique in order to make maps created de novo more useful in research. I

think concept maps created de novo can be useful in research without a

numerical scoring technique. While numerical scoring helps compare different

groups, de novo concept maps as drawn also show major differences between

groups. Numerical scoring may conceal the idiosyncratic nature of the maps.

Often, researchers find new ideas and relationships in these idiosyncratic maps.

As the mathematics community continues to promote meaningful learning and to

look for conceptual links, the concept map places an appropriate tool at the

researcher's disposal.
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