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ABSTRACT

Reform efforts in mathematics aim to increase conceptual understanding.
Concept maps can serve well as an assessment instrument in this area. This
study compared the conceptual knowledge of function held by college students
enrolled in third quarter reform and traditional calculus sections at ¢ large state
research university. Fourteen students from reform sections and fourteen from
traditional sections served as subjects. A primary task was the construction of a
concept map of function. Eight PhD's in mathematics, four who taught reform
classes and four who taught traditional classes, also completed concept maps of
function. The study compared these expert maps with the student maps.

Quantitative analysis of the concept maps showed the two student groups'
core concepts matched up poorly with the experts' core concepts. Neither group
more closely matched the experts to a significant degree. Qualitative analysis of
the core concepts and of the maps as a whole revealed differences between the
student groups. The reform group used terminology common in the reform text
and had fewer algcrithmic references than the traditional group. The traditional
students' maps contained more algorithmic references to hand-graphing
techniques. The maps of both student groups were considerable less well
structured than the experts' maps and lacked the higher-level categories found

on the expert maps.
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Introduction

In the past decade, much change has occurred in the field of mathematics
education at both the K-12 and the undergraduate levels. Many consider the old
pattern of teachers prescribing and students transcribing a generally ineffective
teacning strategy for'Iong-term learning, higher-order thinking, and versatile’
problem-solving. Publications such as Everybody Counts (National Research
Council, 1989) and the Curnculum and Evaluation Standards (National Council
of Teachers of Mathematics [NCTM], 1989) have led the way in K-12 curriculum
reform. They have called for teaching methods that encourage students to
construct their own mathematical knowledge and have emphasized
understanding over the rote memorization of algorithms and the acquisition of
mechanical problem-solving techniques.

This paper discusses one study of calculus reform in which concept maps
played an important role as a research tool designed to capture information
about conceptual understanding. First | present an overview of the research on
conceptual understanding. Next, | delineate the development of the concept
map 2nd its variations. A description of the study follows along with the analysis
of the subjects' concept maps. Finally, | discuss the value of the concept map as
a research tool in mathematics and make suggestions for further applications

and research.

Research on conceptual understanding

The NCTM Standards (1989) and other reform documents emphasize
conceptual understanding. Cognitive psychologists seem to agree that the
internal representation of knowledge resembles webs or networks of ideas that
are organized and structured (Chi & Koeske, 1983: Hiebert & Carpenter, 1992:
Hiebert & Lefevre, 1986; Janvier, 1987; Michener, 1978; Nickerson, 1985;
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Novak, 1977: Pintrich. Marx & Boyle. 1993 Resnick & Ford, 1981 Royer.
Cisero, & Carlo, 1993). The more connections between facts, ideas, and
procedures, the better the understanding (Hiebert & Carpenter, 1992: Hiebert &
Lefevre. 1986: Nickerson, 1985). Individuals whose knowledge is
interconnected and structured activate large chunks of information when
performing an activity in the knowledge domain (Fisher & Lipson, 1985; Prawat,
1989; Royer et al, 1993). A highly integrated kriowledge structure halimarks the
transition from novice to expert performance (Royer et al, 1993).

In the current study | focused primarily on conceptual knowledge as
opposed to procedural knowledge, and especially on understanding and
meaningful learning as they apply to mathematics. Hiebert and Lefevre (1986)
define "conceptual knowledge" as knowledge rich in relationships, a network in
which the linking relationships are as prominent as the discrete pieces of
information (p. 3). Conceptual knowledge grows in one of two ways: Joining two
pieces of knowledge already in memory or adding a new piece of information to
existing structures (Resnick and Ford, 1981). As described by Hiebert and
Lefevre (1986), this construction of new knowledge occurs at two levels. A
relationship connecting two pieces of information on the same level of
abstractness constitutes the "primary" level relationship. The '"reflective" level
constructs relationships on a level of abstraction higher than that of the pieces of
information they connect. This view promotes the idea that relationshirs in a
knowledge network may be hierarchical. Y,

Following the lead of Greeno (1978), this pa;;ér equates "learning with
understanding” with “meaningful learning." A mathematical concept is
“understood"” when its mental representation becomes part of a network of
representations (Hiebert & Carpenter, 1992). It follows that “a richness of

knowledge is needed for deep understanding” (Michener, 1978, p. 374, see also
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Nickerson, 1985). Conceptual inowledge, defined as a network of relationships
can be acquired only in a meaningful way. At the opposite end of the continuum
is rote learning, learning that exhibits few relationships and is closely tied to the
context in which it is learned. Rote learning of inherently meaningful material

often takes place when thz student does not have sufficient background or time

to construct a meaningful netwerk of the information (Doyle, 1983; Novak, 1977).

Development of concept maps

While conceptual knowledge in mathematics is certainly desirable, how
does one measure or assess such knowledge? This section briefly discusses
the history and development of concept maps as tools for looking at conceptual
knowledge.

Unlike assessment techniques used in heavily quantitative, primarily
behavioral studies. cognitive techniques often employ both qualitative and
quantitative mzasures. A cognitive approach seeks ‘0 determine the
organizaticn and structure of the knowledge base as well as the fluency and
efficiency with which the knowledge can be used. Concept maps are an
exampie of a direct technique used to look at the organization and structure of
knowledge in this study. While Royer et al. (1993), in their review of techniques
and procedures for assessing cognitive skills, do not list concept maps, other
researchers acknowledge it as a "known technique" (Schoenfeld et al, 1993; see
also Novak & Gowin, 1984; Shavelson, Ruiz-Primo, Lang & Lewin, in press).

In this study, | found concept maps preferable to other techniques for
several reasons. First, concept maps maximize subject involvement and
minimize the researcher's intrusive role. In drawing and labeling the linking
lines, the subjects explicitly state the relationships they see. Other direct

techniques require the researcher to infer what relationship the subject
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perceived. In the same manner concept maps permit experts to organize their
knowledge in their own way. This makes comparisons between student and
experts more accurate and valid. While classifying concept into categories
produces va'*A data for some domains, concept maps better depict mathematical
knowledge and structure, which do not always lend themselves to simple
categories and subcategories.

At present, the way one constructs and uses concept maps varies widely.
In some instances, the subjects draw the maps; in other cases, the researchers
construct the map from subject protocols. Some researchers require maps to be
hierarchical: others do not. This diversity arises because concept mapping has
emerged from two different theories. A short history of concept maps helps to
explain these variations.

Novak and Gowin (1984), using the cognitive theory of Ausubel (1968).
invented the schematic device they called a concept map. The concept map
represents a set of ccncept meanings embedded in a framework of propositions.
"Concepts" represent requldrities in objects and events and are linked by words
to form "propositions." Concept maps reflect the theory that conceptual
knowledge forms a web or network of concepts and the connections between
them. Novak and Gowin believe concept maps to be explicit, overt
representations of the concepts and propositions a person holds, while
acknowledging the difficuity of judging the degree of correspondence between
the map and actual internal representation. Certainly subjects cannot draw
concepts and links they do not possess in memory (unless they have memorized
a concept map). Consequently, a concept map reveals, at least partially, their
cognitive structure.

Because of their own work and their use of Ausubel's learning theory.

Novak and Gowin (1984) posit that concept maps should be hierarchical, should
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use linking words on all the conne Mg lines, and snould be constructed by the
student. The emphasis on linking words and student construction is significan.
Since the complexity of the knowledge network directly relates to the degree of
understanding. linking words reveal whether or not students correctly associate
the concepts--or even if they link them at all. Having students personally
construct the map provides more accurate data than having a researcher draw
the maps using a student interview protocoi (assuming the students are old
enough to understand concept map construction).

Another non-hierarchical theory of cognitive structures developed about
the same time as Ausubel's. Using word-association techniques based upon the
theory of James Deese (1965), researchers represented concepts as nodes in a
network but did not label the connecting lines. They used indirect methods
(word associations, similarity judgments, and tree building) for eliciting
representations. This school ‘of thought evolved into semantic network theory
where nodes are connected by directional and labeled lines to produce
propositions. It proposed to account for the kinds of statements people were
willing to make about a topic, as well és the relative speed with which they made
them as measured in reaction time experiments (Resnick & Ford, 1981).
However, the theory did not live up to its early promise (Joehnson-Laird, 1983),
since it failed topredict time differences within categories.

When one puts labels on the lines to produce propositions, semantic
networks resemble Novak and Gowin's concept maps--with the exception that
they do not have to be hierarchical (Shavelson et al., in press). The concept
map theory, however, makes no claim about the rate of access to information.
Studies by Fisher (Fisher, 1990; Fisher & Lipson, 1985) make it clear that some

researchers have moved from an exclusively semantic network terminology to an
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incorporation of Novak and Gowin's concept map terminology with references to
Ausubel's theory.

Theoretical distinctions do exist for other researchers, particularly in
regard to whether or not the knowledge representation must be hierarchical.
Ausubel's (1968) theory of meaningful learning describes a hierarchical structure
of conceptual knowledge, and those studies emanating from the Novak and
Gowin tradition adhere strictly to the hierarchical requirement with the most
general topic at the top of the map. White and Gunstone (1992) argue that
whether or not a concept maps should be hierarchical depends on the structure
of the subject matter. Researchers from the semantic network tradition tend
toward a map with a generai concept in the center and with links coming out
much like the spokes of a wheel. Harnisch call them “spider maps" (Harnisch et
al, 1994). In many cases the spider configuration can be redrawn to show a
hierarchical relationship. However, because the question of hierarchy is not fully
resolved. | did not assume or demand hierarchical structures in this study.

Seven recent studies used concept maps to assess cognitive structure or
conceptual understanding (Beyerbach, 1986; Coleman, 1993; Laturno, 1994
Markham, Mintzes, & Jones, 1994; Park, 1993; Rogers, in press; Wallace &
Mintzes 1990). They adhere to the Novak and Gowin tradition for constructing
concept maps and thus require hierarchical maps. Two studies in particular
(Markham et al. (1994); Wallace and Mintzes (1990)) address the use of concept
maps as an assessment activity in science while two others (Laturno (1994) &
Park (1993)) use concept maps in studies pertaining to mathematics.

Wallace and Mintzes (1990) looked at college students (n= 91) enrolled in
an elementary science methods course. They examined the validity of concept

mapping as an evaluation approach. Their conclusions support the concurrent
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validity of concept maps as vehicles for documenting and exploring conceptual
change in biology.

In a follow-up study, Markham et al. (199.') looked for more evidence of
concurrent validity. Their subiects were advanced college biology majors (n =
25) and beginning nonmajors (n = 25). Again the authors concluded that their
resuits showed further evidence for the concurrent validity of concept mapping

_as aresearch and evaluation tool in science education.

Conspicuous by their absence in the large number of studies using
concept maps are studies in mathematics. Park (1993), in her evaluation of a
new computer laboratory calculus course at the University of 1llinois, does
providé one example. She gave the students in both a traditional section and a
computer section of the course a list of concepts to use in making hierarchical
concept maps. Park scored the maps numerically and used a software program
to compare the students' maps with a teacher's map. Park's concept map scores
for the two calculus groups lists no significant differences in any scoring
category or any total although the reform group's scores were generally higher
and showed stronger congruence with the teacher's concept map. She also
found a strong correlation between the concept maps scores and the post-
achievement test scores (0.82). Park's qualitative analysis of the maps
determined differences in the concepts 2ach group added to its maps. The
computer group gave many more visually-oriented terms, while the traditional
group gave more application and technique-related terms. The linking words
were equally low-level on all the maps.

Laturno's (1994) study sought to determine if concept maps corresponded
with clinical interviews in determining concept connectivity and to see if concept
maps could predict academic achievement. Her subjects (n=118) were
community college students in self-paced, remedial mathematics courses.

o A
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Laturno followed the tradition of Novak and Gowin and instructed the students
on hierarchical maps. She used a scoring scheme that gave points for
additional concepts, relationships, levels of hierafchy, examples, and cross-
links. Laturno's results indicate that student-generated concept maps show
indications of validity as a research tool. The concept maps gave results
comparable to both interviews concerning student knowledge of relationships

between concepts and to the academic progression of students through the

course.

Purpose of study

The work reported here is part of a larger study that included evaluation
of concept maps as assessment tools. The study also compared students' from
reform and traditional calculus classes conception of Tuiiciion. An example-
nonexample questionnaire looked at students' concept image of function. This
paper primarily documents the place of concept maps in the study. Williams (in
press) reports other resuits and analyses.

A state university of over twenty thousand students served as the setting;
for this study. It is a top-tier research university and, as such, has high
admission standards for its undergraduates. For the school year of this study .
(1993-1994), the university had two, three-quarter sequences of first-year
calculus, the tra;jitional and the reform. These sequences differed in at least
four observable ways: 1) the textbook; 2) the technology required; 3) the types
of problems assigned; and 4) the use of written group projects.

Two groups of subjects participated in the study. One group consisted of
students enrolled in the reform and traditional calculus classes. The student
subjects for the study were 28 volunteers enrolled in the third quarter of calculus

at the large state university. Fourteen came from two reform sections; fourteen
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came from a single traditional section. Each group (traditional and reform) had
seven women and seven men. Each student completed two tasks: 1) drawing a
concept map for the topic of function and 2) completing an example-nonexample
questionnaire about function in an audio-taped interview.

Each student attended a session in which | presented instruction on
concept maps. Some sessions invoived a small group of students, while other
times | met with a single student, depending on the students' availability. |
explained concept maps in each session, showing them examples and stressing
the importance of linking words on the lines. The examples included hierarchical
maps, web or spider maps, and non-hierarchical maps. : told the students they
could draw their maps however they wished. After the brief instruction, the
students each drew practice maps using some concepts | gave them about
fractions. When | was sure they co.! i draw concept maps, | asked each student
to bi 1instorm and come up with a list of terms reiated to function. Aftef several
minutes, | instructed them to draw a concept map for function using the terms
they had generated as well as any others that might occur to them. No student
interaction occurred in any group sessions. The subjects were abie to work on
the maps as long as they desired. All the students took less than an hour to
complete the maps.

The other group of subjects inciuded eight professors (PhD's in
mathematics) at two different universities. Four taught at the large state
research university the student subjects attended. The other four taught at a
small, private, west-coast university. Two professors at each school taught the
reform text and used graphing technology the year of the study. The other two

professors at each school have taught calcuius at this level, but only from

traditional texts.

14
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I gave the experts two concept map tasks. The "unrestricted” task was to
draw a concept map for function from their perspective as a mathematician. The
"restricted" task was to draw a concept map of function that represented what
they would expect students completing the first-year caiculus sequence to know.
| met with each expert and explained concept maps to them in the same manner
| did the students, showing them the same examples. | asked them to
brainstorm to get their starting terms. | aiso gave the experts a 45-minute time
limit to complete each map, as | feit this would heip them focus on what could
otherwise be considered an uniimited task. | did not stay with the experts while
they worked on the tasks. Rather, | let them complete and return the maps at

their convenience. They did not know what the second task was until after they

had completed the first. Half of the experts did the restricted task first (one
professor from the reform, one protessor from the traditional at each school),

while the other haif completed the unrestricted task first.

Results and Analysis Using Concept Maps

Much of the anaiysis in this study focused on differences between groups
of subjects, students as weil as experts. Did concept maps reveal differences
about the concept of function held by students in reform sections of calculus and
in traditional sections of caiculus? (For brevity and clarity, | will call these
groups of students the "reform students" and the "traditional students.”) |
particularly looked for differences that might be attributabie to different curricula

that are clearly shown by concept maps. | also compared the concept maps of

the two groups of experts. | looked to see if their knowledge about function. as
exhibited in their concept maps, transcended any curricular differences or if they.

too, may have been influenced by the curriculum they used.
13
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Most researchers using concept maps have devised a scoring scheme to
assign a numerical value to each map. The categories used for scoring often
include valid propositions, levels of hierarchy, and cross-links. Trey
occasionally include examples. After studying this set of data. | concluded it did
not lend itself to a valid method of scoring. Several reasons support this
conclusion.

First, the task | assigned--to create a concept map about function--was
purposely unstructured for both the students and experts. | did not ask them to
make a hierarchical map, nor did | tell them to organize related concepts
together. | did not give them any concepts as examples, nor any hints as to
what type of concepts | might expect. None of the students had any prior
experience with concept mans, and only one expert said he had done concept
maps. Consequently, while the maps reflect only the students' or experts' work
and only their personal notions about functions, the maps proved to be widely
divergent and complex and did not lend themselves to a numerical scoring
scheme. For instance, the experts generated 197 different concepts on their
unrestricted maps of function and 133 different concepts on their restricted
maps. The students' maps produced just over 300 different terms. Figure 1 and
Figure 2 show reduced copies of experts' maps. While the concepts and links
are difficult to read, the overall complexity of the maps' structure is clearly
visible. Figure 3, Figure 4, and Figure 5 are reduced copies of the maps for
three students. These maps once again illustrate the diversity and complexity of
some of the maps.

Some might argue that the diversity in the students' maps resuited
because they did not understand the construction of concept maps. However.
each student constructed a practice map, and | checked each one personally to

be sure the student understood the basic procedure. All the student maps show
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that the studenis understood that concepts about functions went in the ovals
while linking words denoting relationships went on the lines. Lacking any
evidence of misunderstanding, one logically concludes that the wide diversity of
the maps derives mainly from students’ different conceptions about function,
rather than from any difficulties they had with concept mapping.

Thus for this particular set of data, the numerical scoring schemes
typically used do not appear to be valid. (For further discussion, see Williams,
in press.) By developing lists of concepts most frequently used by the various
groups of subjects, however, one can use the maps to make some valid
quantitative comparisons.

Since the concept map task in this study was unstructured, many
concepts emerged. in order to compare the students' concepts with those of the
experts and to compare those of the student and expert subgroups with each
other. | generated several "core" lists of concepts. Core lists consist of the
concepts most frequently found on the concept maps of a given subject group. |
detail the process below.

As mentioned, the experts each created two concept maps. For the
restricted task, they constructed a map of what they felt students completing
first-year calculus should know about function. For the unrestricted task, their
map was to depitt their view of function as a mathematician. | categorized the
experts into three groups--reform experts. traditiona! experts, and combined
experts. Since the three expert groups completed two concept maps, they
generated six lists of concepts. | generated a core concept list under each of
these conditions. The following sequence shows how | created three core lists
for the restricted concept mapping tas!

To form a core list, | first compiled a list of the concepts used in the

Individual maps by each expert. Next | combined the reform experts' concepts to

17
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Figure 6: Formation of Core Lists

form a list--"reform experts' complete list" and the traditional experts’' ccncepts to
form “traditional experts' complete list" (see Figure 6). Putting these two lists
together yielded the "combined experts' complete list'--a list of all terms used by
the eight experts. If two or more reform experts (50%) used a concept on the
reform experts' complete list, | put it on the "reform experts' core list.” | used the
same criterion for compiling the "traditional experts' core list." To form the
"combined experts' core list," | chose all concepts that appeared on three of the
eight experts' (38%) lists. (A natural break occurred at the 3-expert criterion with
25 out of 197 concepts used by a least three experts, 21 concepts used by

exactly two, and 151 used by only one.) Using the same procedure and same

18
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criteria. | generated the three core lists for the unrestricted task. The six core
lists, along with the number of experts naming each concept, appear in Table 1.

The core lists for the restricted tasks were much longer than those for the
unrestricted tasks, indicating the experts were in better agreement abouit the
function concept as taught in first-year calculus than about function in general.
The reform experts' core list for the restricted task contains 25 concepts. while
for the unrestricted task the list has only 14. The traditional experts' core list for
the restricted task has 23 concepts, while for the unrestricted task the list
contains 8. Using the 3-out-of-8 criterion. the ccmbined  :perts' core list on the
restricted task includes 25 terms, while its corresponding core list on the
unrestricted has 10. These core lists served as benchmarks to which |
compared the students' concepts.

| created core lists for the two groups of students in the same manner |
had the expert core lists. | used a criterion of 7 out of 14 (50%) for the individual
groups, reform and traditional, and a criterion of 10 out of 28 (36%) for the
combined group. This process yielded three core lists: "reform students' core

list", "traditional students' core list", and "combined student's core list" (see

Table 2). They include 9, 8, and 10 concepts, respectively.

Analysis Using the Core Lists

Having compiled these lists, | was able to compare the various groups in
several ways. The quantitative analysis primarily looked for agreement between
the stucrnt groups' lists and the expert groups' lists and forms the first part of
this analysis. The next part of the analysis details the qualitative differences
between the two student groups and then between the students and experts

The analysis section concludes with a qualitative comparison of the concept lists

of the two expert groups.

1927




Concept Maps as Research Tools in Mathemar:cs

Carol G Willhams

pjiom jeas

|euctjel

abueysssbueyd jo ajel

satpadosd

iy

uonesBajuyajesBaju

aouapuodsaliod

suonesado onawyiie

oAfjeAuBpliue/BIBolU|

ajelualajjip/uoyeriualajjip

sadAyuowwoo/sasse|o

-1

uoljenbaijoquiAs

aiwyyuedoy

aalleAusp

snonuiuLo

oujawocuobuy

jenwouAjod

aslaaul

jeniuauodxa

uonisodutod

abue.

jeoydesBydesh

ulewop

o~~~ loloIv DoV viviv|T|T (e INIOOIND IO NN

uonoun)

18171 8100 ,spadx 3 pauiquo)

€e

Ajjeouawnuyaiqe)

a|qeuea

suolejuasaldal

JuawouoBu

ebusyo jo ajes

sajpadoud

[euorei

suoneiado

oo

jenuoukjod

iy

{BWIIXBLW/UIW/XEW

Bu) asiaaul

ojwyuedo)

nondun

aslaaul

uoldxe

2jqeiBajuijuoneiBajul

SNoNUIjuod

Bujseasoul

sadAyuowwod

{enuauodxa

-1

UaA3

uoijsnba/ijoqLuAs

uonienbasoijoquuAs

alwyeboy

aAllBAUBD

aalleauspueseibajui

aouapuodsaniod

aAljeAUap

uotjisoduwoo

atawouobBiny

-1

abuel

abuel

jenwouijod

uiewop

asIaAUI

uoljeRualajjip

eoydesBydesb

3NONHU0D

uofjour,

ydeib .

|etjuauodxa

sl NIN|N|N N NN [N NN NN [N N O N

uotouny

ulewop

1817 800 spadx3 jeuonipel]

diwiwiwiwiv|wiwrnmio|(oianinicn|NN N NN NN N

uoiisodwo?

1si 8109 spadxg wiojey

YSB [ PajoISaY UsSOYD 818AA S1deou0y) Aousnbaiy pue S)si7 Jdaouo?) 8107 ,Suadx3

l |lqel

20

Q

IC

Aruitoxt provided by Eic:

E




€730 Cs

Concept Maps as Research Toois i~ Mat~

Carol G Wiinams

sa|puadousd

. wisiydsowos:

aoceds uoyoun;

9|genualajjip

snonunuos

ydesb

L1

abues

uigLIoOp

VWiV D (LTI MO DO

uorouny

1817 @509 ,spadx3 pauiquo?)

saipadold

ydesH

alqenualayip

snonujjuoo

oBues

ulBWop

-1

IO IMIN{NIN|N

uonouny

1817 8100 ;spedx3 [euonipel

(penunuoo) | sjqe}

9|qe)

aAIsIndal

ebues

Jojesado

Jeau|

wsiydiowos!

wsiydowowoy

ydess

Jojouny

aoeds uo|uny

ulewop

snonunyuoo

oljoeyd

FIN|N (N[NNI NN N[N [N NN

uoluny

1s17 8Jo) spedx3 wiojay
ASEL P3JoIISaIUN [uasOoy) 819 SIdasuo) Aousnbai4 pue sjsr] Jdeouoy 8109 ,spadxy

*

21

Q

Aruitoxt provided by Eic:

E




Carol G Wilhams Concept Maps as Research Tools in Mathematics

Table 2

Student Groups' Core Concept Lists and
Number of Students Choosing Each Concept

Reform Students' Traditional Students' Combined Students'
Core List Core List Core List
function 14 |function 14 |function 28
derivative 13 |variables 11 |derivative 22
graph 12 [derivative 9 |variables 21
slope 11 |graph 9 |graph 20
variables 10 |integral 9 |equation/ 15

symbolically
equation/ 9 |limit 7 lintegral/ 15
symbolically integration
input 7 | max/min 7 | max/min 13
integral 7 |slope 7 |slope 13
line/linear 7 line/linear 10
polynomial 10

| compared the students' core concept lists to the experts' core concept
lists in two wayé. First, | took each of the three student core lists and computed
a ratio to reflect the number of students' concepts matching the experts'
concepts to the total number of concepts on the expert list (see Table 3). For
example. of the nine concepts on the reform students' core list, five of them are
on the reform experts' core list (restricted task) that has 25 concepts, giving a

ratio of 5 to 25 or 20%. (On Figure 7, this is the ratio of c to b.) Thus the
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Carol G Williams Concept Maps as Research Tools in Mathema::cs

N
,/\c = Number of concepts that match / :

/ & A
// 3 a v
! 7 ——— \
| l

" Student | Expert
List \ List
A v B
L N
a = Number of concepts b = Number of concepts
on student list on expert list

Figure 7: General Relationship of Lists and Number Concepts Used to Compute
Comparison Percentages

percentages in Table 3 represent the portion of the experts' lists which the
students also used.

This comparison yielded several chservations. First, in general. the
students’ core lists do not match the experts' lists to a high degree. The
correspondence is less than 40% for all comparisons, with most in the 20%
range. Each of the three groups of students' core concepts matched the
traditional experts' lists a little better than the other expert groups on both the
restricted and unrestricted tasks. This may indicate the students know and use
a higher percentage of concepts similar to those of the traditional experts.
Although several percentages for the unrestricted task are higher than their
corresponding percentages on the restricted task, one cannot conclude that the
students' maps more closely resembie the experts' maps on the unrestricted
task. One must take into account that the number of concepts on the core lists
for the unrestricted task are much smalier. Consequently, a single concept can
represent as much as 12%. Yet another comparison more accurately
determines which expert mapping task that the students' maps most closely

resembple.
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| computed a second ratio: the number of students' concepts matching
the experts’ concepts to the total number of concepts on the student list (see
Table 4). Again, using the same example, 5 of the 9 concepts on the reform
students’ core list match those on the reform experts' core list (restricted task),
but this time the comparison is made to the nine-concept student list fora 5 to 9
or 56% ratio. (In Figure 7 this is the ratio c to a.) Thus Table 4 values show the
percentage of student groups' core concepts that were also on the various
experts' lists.

These figures show that a greater proportion of all the student lists match
the experts’ restricted task lists more closely than they match the experts'
unrestricted task lists. The range for the restricted task comparisons is 43% to
67%, while for the unrestricted task, the range of match is only 21% to 38%.
This result was expected, since the restricted task asked for what experts
thought first-year calculus students should know.

Comparing core lists in this manner provided a quantitative measure by
which to compare the concepts of the various groups. From a broad
perspective, one can see that one-half to two-thirds of the students' core
concepts are on the experts' core lists (restricted task) and yet they account for
no more than 38% of any expert list, indicating disparity between the students
and experts whén it comes to concepts relating to function. Using this
comparison, one also finds little difference between reform and traditional
students’ core concepts in their relation to the experts' core soncepts.

Since creating composite lists such as the core lists may have masked
some differences, | also looked at how the individual students' concepts
compared to the experts' concepts on their core lists and their complete lists. |
limited the comparison tc the experts' restricted task, since it resembles the

students’ maps most closely.
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In the first comparison, | determined for each student the number of
concepts that matched each expert core and complete list. Using t-tests | found
no significant differences between the two student groups in the number of
concepts individuals used that matched concepts on the expert core concept
lists.

In a manner similar to that described above, | found the percentage of
each student's concepts that matched those on the experts' core lists (in Figure

7 this is the ratio c to b) as well as the number matching the experts' complete

list of concepts (see Table 5). Looking at Table 5, one can see that the student
lists corresponded better to the experts' core lists than to the experts' complete
lists. Table 6 summarizes the comparisons using these individual match
percentages. The mean percentage of match to the experts' core concepts
ranged between 23% and 31%. The mean percentage of match to the experts’
compilete list of concepts rangéd between 7.6% and 13.3%. Both the reform and

traditional student groups matched the traditional experts' core and complete

lists slightly better than they did the corresponding reform experts' lists. This
finding is consistent with student core list comparisons reported above.

Another way in which | compared the student groups was to look at what
percentage of each individual student's concepts was also on any of the experts’
core or complete lists (in Figure 7 this is the ratio c to a). Table 7 shows the
percentages for each student as well as the number of concepts each student
map contained. In this comparison, the percentages for the match to the
experts' complete lists are higher than those for the core lists. Since the
combined experts' complete list consists of all terms used by the experts,

Column H of Table 7 is a good indication of how meaningful and relevant the

students' concepts are if one considers all expert concepts to be meaningful and

relevant. ¥
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Table 5

Indivicual Student's Percentage Match to Expert Lists
Restncted Task

A 1 B C D . & F G
No of !
Concepts | og 23 25 Y 75 133

R1 24% 26% 20% 11% 11% | 10%
R2 24% | 26% | 24% 8% 11% | 7%
R3 24% 26% 20% 9% 12% 8%
R4 24% 30% 24% 6% 13% 3%
R5 16% 26% 24% 9% 12% 8%
R6 32% 30% 32% 8% 11% 7%
R7 32% 39% 32% 12% 17% 13%
R8 20% 22% 16% 5% 8% 5%
RS 12% 17% 12% 6% 8% 6%

R10 48% 57% 40% 13% 21% 14%

R11 8% 13% 8% 2'5 5% 3%

R12 20% 26% 20% 7% 11% 7%

R13 16% 22% 16% 7% *1% 7%

R14 28% 30% 28% 8% 13% 8%
T1 24% 30% 24% 7% 11% 6%
T2 28% 35% ' 28% 3% 17% 10%
T3 28% 35% 28% 9% 17% 11%
T4 28% 22% 28% 9% 11% 7%
T5 28% 43% 28% 7% 20% 11%
T6 8% 9% 8% 3% 7% 4%
T7 36% 38% | 40% 12% 16% 11%
T8 40% 43% ' 36% 11% 20% 12%
T9 20% 26% 20% 5% 9% 5%

T10 16% 13% 16% 4% 7% 5%

T11 48% 57% 52% 14% 21% 13%

T12 20% 30% 24% 6% 13% 8%

T13 20% 26% 20% 6% 9% 6%

T14 16% 22% 16% 4% 8% 5%

—_—

Column Codes:

A Student Designation
Match to Reform Experts' Core List
Match to Traditional Experts' Core List
Match to Combined Expenrts' Core List
Match to Reform Experts' Complete List
Match to Traditional Experts' Complete List
Match to Combined Experts' Complete List

GTMMOOD
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Table 6

Comparison of Percent Match of Individual Student's Concepts to
Expert Lists--Restricted Task

Comparison to Reform Experts' Core Concepts

Reform Students Traditional Students
Mean 23.4% 25.7%
Variance 0.9% 1.1%
Range 8%-48% 8%-48%
Comparison to Traditional Experts' Core Concepts
Reform Students Traditional Students
Mean 28.0% 30.7%
Variance 1.0% 1.6%
Range 13%-57% 9%-57%
Comparison to Combined Experts' Core Concepts
Reform Students Traditional Students
Mean 22.6% 26.3%
Variance 0.7% 1.2%
Range 8%-40% 8%-52%
Comparison to Reform Experts' Complete List
Reform Students Traditional Students
Mean 8.3% 7.7%
Variance 0.1% 0.1%
Range 3%-13% 3%-14%
Comparison to Traditional Experts' Complete List
Reform Students Traditional Students
Mean ~ 11.7% 13.3%
Variance 0.2% 0.3%
Range 55-21% 7%-21%
Comparison to Combined Experts’' Complete List
Reform Students Traditional Students
Mean 7.6% 7.9%
Variance 0.1% 0.1%
Range 3%-14% 4%-13%

€O
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Table 7

Percentage of Individual Student's Concepts
That Matched Expert Lists (R.stricted Task)

A B C D E F G H
R1 22 27% 27% 23% 50% 36% 59%
R2 31 19% 19% 19% 26% 26% 28%
R3 21 28% 29% 24% 43% 43% 52%
R4 29 21% 24% 21% 21% 34% 14%
RS 26 158% 23% 23% 35% 35% 42%
R6 21 38% 33% 38% 43% 38% 43%
R7 27 30% 33% 30% 44% 48% 63%
R8 17 29% 29% 24% | -29% 35% 41%
R9 23 13% 17% 13% 26% 26% 35%.

R10 32 38% 41% 31% 41% 50% 59%
R11 29 7% 10% 7% 10% 14% 14%
R12 22 23% 27% 23% 32% 36% 41%
R13 22 18% 23% 18% 32% 36% 41%
R14 36 19% 19% 19% 22% 28% 31%
T1 3 19% 23% 19% 23% 26% 26%
T2 44 16% 18% 16% 18% 30% 30%
T3 41 17% 20% 17% 22% 32% 34%
T4 20 35% 25% 35% 45% 40% 45%
TS 28 25% 36% 25% 25% 54% 54%
T6 19 1% 1% 1% 16% 26% 26%
T7 35 26% 26% 29% 34% 34% 40%
T8 29 34% 34% 1% 38% 52% 55%
T9 17 29% 35% 29% 29% 41% 41%
T10 12 33% 25% 33% 33% 42% 50%
T11 36 33% 36% 36% 39% 44% 47%
T12 45 1% 16% 13% 13% 22% 22%
T13 15 33% 40% 33% 40% 47% 53%
T14 24 17% 21% 17% 17% 25% 25%

Column Codes:

: Student Designation

Number of Concepts Generated by Student

% Student's Concepts on Reform Experts' Core List

% Student's Concepts on Traditional Experts' Core List

% Student's Concepts on Combined Experts' Core List -
% Student's Concepts on Reform Experts' Complete List N
% Student's Concepts on Traditional Experts' Complete List

% Student's Concepts on Combined Experts' Complete List

>

IGMmMoOOw

Comparison of the two student group's number of concepts generated
using a t-test revealed no significant difference. Although the traditional

students generated more concepts on average (28.3 concepts was the mean for

ERIC ® 40
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the traditional students, 25.6 the mean for the reform), this difference was not
significant at the 0.05 level. Table 8 summarizes the data about the percentage
of the students' concepts that matched the experts'. In looking at the proportion
of the students' concepts that were on the experts' complete lists. each group
matched its corresponding expert group to a higher degree than its peers.

This analysis generally agrees with the insights gleaned from the student
core list comparisons. It is usefui, however, because comparing the students’
individual percentages of concepts that are on the expert list approximates
assigning each map a numerical score for number of reievant and meaningful

concepts.

The data presented in Tables 7 and 8 also provides further evidence of

how difficult it would be to score the students' concept maps numerically. If one
assumed that a concept mentioned by any expert was meaningful, the majority of
the students' concepts (which did not match those of experts) would have to be
judged meaningless or irrelevant. Can a proposition be considered meaningful if
it contains one or more concepts that are nct meaningfui? How would one
assign such "partial credit?" How would one judge levels of hierarchy if some of
the propositions in the chain were invalid? Once again, scoring this data
presents serious problems that might be solved arbitrarily but never
satisfactorily.

In summary, one can draw several important conclusions from

quantitative analyses of the concept lists: 1) In general, the core concepts of the

reform students’ lists matched the experts' lists to the same degree that
traditional students' lists did. Stu(;lent lists from both groups matched traditional
experts slightly better than reform experts. 2) Both student groups' core
concepts matched a relatively low percentage of the experts' lists. 3) When
considering the proportion of the individual student's concepts that matched

30 .
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Table 8

Cencept Maps as Research Tools in Mathematics

Comparison of Partion of Individual Student's Concepts That
Matched Expert Lists--Restricted Task

Comparison of Number of Concepts Generated

- Reform Students Traditional Students t-Statistic
Mean 256 28.3 -0.838 |
Variance 281 118.7
Range 17-36 12-45

Comparison to Reform Experts' Core Concepts
Reform Students Traditional Students t-Statistic
Mean 23.3% 24.3% -0.295
Variance 0.8% 0.8%
Range 7%-38% 11%-35%
Comparison to Traditional Experts' Core Concepts
Reform Students Traditional Students t-Statistic
Mean 25.4% 26.0% -0.186
Variance 0.6% 0.8%
Range 10%-33% 11%-40%
Comparison to Combined Experts’ Core Concepts
Reform Students Traditional Students t-Statistic
Mean 22.3% 24.6% -0.738
Variance 0.5% 0.8%
Ran@ 7%-38% 11%-36%
Comparison to Reform Experts' Complete List
Reform Students Traditional Students t-Statistic
Mean 33.2% 28.0% 1.253
Variance 1.2% 1.1%
Range 10%-44% 13%-45%
Comparison to Traditional Experts' Complete List
Reform Students Traditional Students t-Statistic
Mean 33.7% 36.7% -0.539
variance 0.9% 1.1%
Range 14%-50% 22%-54%
Comparison to Combined Experts' Complete List
Reform Students Traditional Students t-Statistic
Mean 40.3% 39.2% 0.212
Variance 2.3% 1.4%
Range 14%-79% 22%-55%
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those on experts' list. the reform students and traditional students performed
about the same. 4) The individual students' proportion of match to the experts'
complete list of concepts is an indicator of the number of meaningful and
relevant concepts the students used. As such it provides a way to numerically

compare a portion of the students’ concept maps.
Qualitative Analysis of Core Concepts

While quantitative comparisons provide information about how many or
what proportion of concepts are the same or different for various groups,
qualitative analysis looks for substantive similarities and differences. |
qualitatively compared the experts' core concept lists with the students' core lists
with interesting results. A similar analysis of the concepts with respect to the

- students' core lists did highlight differences in the two student groups. The final

comparison in this section looks for differences between the reform and

traditional experts.

The guantitative analysis of the concept lists revealed low
correspondence of students' concepts with experts' concepts. Comparing
students' concepts with experts' concepts on a qualitative basis sheds some light
on why this disparity exists. Since earlier analysis showed little difference
between the refqrm and traditional students' agreement with the experts, | used
the combined experts' core concepts and the combined students' core concepts
for the qualitative comparison. As has been stated, the experts produced 25
core concepts, the students only 10 (see Table 9). Six of the 10 student
concepts are on the experts' list. Of particular interest, however, are certain
items on the experts' list that seldom appear on any student's map.

One group of concepts from the experts' list--domain, range, and

correspondence--relates to the definition of a function. None of these terms
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Concept Maps as Research Tools in Mathematics

Table 9

Combined Core Concept List for Experts and Students

Combined Experts' Core

Combined Students' Core

Concepts Concepts
function function
domain derivative
graph/graphical variables
range equation/symbolically
composition integral/integration
exponential max/min
inverse slope
polynomial line/linear
trigonometric polynomial
continuous
derivative
logarithmic
symbolic/equation
1-1

classes/common/types/familiar

differentiation/differentiate

integral/antiderivative

adding/dividing/arithmetic
operations

correspondence

integrate/integration

limit

oroperties

rate of change/change

rational

real world

Concepts given in descending
order by frequency of use

appears on the students' combined core list (nor on ' e other two student core
lists). Seven of the eight experts (88%) listed domain and range, indicating that
these concepts form an integral part of their view of function. This does not hold

true for the students.
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Another group of concepts on the experts' combined list fits together
nicely. Exponential, polynomial, trigonometric, logarithmic, and rational are
all classes or common types of functions. Only polynomial, the simplest and
most pervasive function in high school algebra, made the students’ combined
list, although undoubtedly the students have encountered all these different
types of functions. Trigonometric and rational appeared only on student maps
from the traditional classes (and rational was sometimes used to mean rational
number, not rational function). Only two students (7%) seemed to set up a class
or type grouping of functions on their concept maps. One student had
polynomial and rational as her two branches, another had linear, exponential.
and quadratic as his. Five of the experts (63%) had such a grouping on their
maps.

A third group emerging frbm the experts' core list involves properties of
functions, 1-1, continuous, differentiable, and having an inverse. Thirty-eight
percent of the experts had such a group. Once again, none of these concepts
figured on the students' combined list. Only one student from the traditional
group used 1-1, continuous, and inverse, while four others listed continuous
alone. One student 'isted inverse. No student used differentiable.

The experts' list yielded a fourth cluster of concepts: operations one
performs on functions. These include composition, differentiation,
integration, and combining with arithmetic operations. Determining the
inverse of a functibn might also be considered a part of this group. Only one
student used differentiation or differentiate; four used integrate or
integration; two mentioned composite; and one said functions could be added,
subtracted, mulitiplied, or divided. No student concept map showed any
indication of an operations group, while four of the eight (50%) expert maps

showed a strong operations grouping. To summarize this comparison of the

45
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Table10
Concepts Used Primarily by One Student Group
Concepts Used by Reform Concepts Used by Traditional
Students Students

behavior (3)* absolute (4;
contour lines (2) asymptotes (4)
evaluated (3) defined (6)

lobal (2) rational (5)
implicit (2) real numbers (3)
increasing/decreasing (3) trigonometric (3)
level sets (2) undefined (4,
local linearity (3) volume (4)
numerically (3) domain (6 of 8)
reat life (3) numbers (6 of 8)
slope of tangent (3) shape (3 of 4)
symbolically (4) ) f(x) (3 of 4)
table (5) velocity (4 of 5)
understanding (2) range (5 of 7)
input/output ‘7 of 9)" “3 students from this group are the only
geometrically (2) students who used this concept.
algebraically (1) **7 of the 9 students using the

concept were from this group.

experts and students, one can say that the experts' core lists showed higher-
level groupings that are not present in the students' concepts.

The three student core lists are very similar (see Table 2). The
differences between the two student groups pertain to concepts that did not
make the core lists. Table 10 shows the concepts used only by one group of

students or primarily by one group. The resulting sets of concepts illustrate the
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distinctions in the two teaching methods. For exampie, asymptotes, defined,
rational, real numbers, undefined, and domain--concepts used only by
traditionat students--all relate to graphing by hand. To graph a rational function.
one must determine which real numbers must be excluded from the domain. At
the values for which the denominator is 2ero, the function is undefined, and an
asymptote may exist. Velocity and volume, again terms used by traditional
students, represent typical applications used in traditional texts for derivatives
and integrals. On the other hand, the concepts from the students in the reform
group strongly refiect the emphasis and terminology of the reform text. It
presents topics “geometrically, numerically, and algebraically" (Hughes-
Hallett et al., 1992, p. v). Only the reform students used these terms. Reform
students call the numerical form tables. Instead of being concerned with
graphing by hand, reform students stress with the behavior of the functions--
where they are increasing or decreasing. One can discuss the slope of a
tangent in terms of local linearity. The examples reform students use come
from real life and promote understanding. Input/output terminology in the
reform classes replaces the domain/range language of the traditional classes.
Even though the reform subjects had experienced a traditional approach to
functions in their high school algebra classes, their distinctive terminciogy
indicates that th&y are assimilating, at the very least, the vocabulary used in the
reform caiculus classes and textbook. It may also point to a difference in lthe
content being covered in the two classes.

A comparison of the experts’' core concepts completes this section. For
the restricted task, the combined experts' core list contains 25 terms (see Table
1). Fifteen of the terms (60%) are on both the reform experts' core list and the
traditional experts' core list. | looked at the concepts that were only on the

reform experts' core list to determine any groupings that might distinguish them
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from the concepts only on the traditional experts' core list. No strong differences
emerged. The reform experts’ core list had two terms, representations and
table, that are emphasized more in reform classes. The traditional experts' core
list contained max/min and increasing, concepts used primarily by the
traditional students. Terms from the professors' different curricula do distinguish
the core lists, but only minimally considering the size of the lists.

On the experts' unrestricted concept mapping task, the eight professors
generated 197 different concepts. The combined experts' core list contained
only 10 concepts, showing the great diversity of these maps (see Table 1). All
eight of the traditional experts' core concepts were on the combined experts'
core list. The reform experts' core list had 14 concepts, only 7 of which are on

the combined experts' core list. The other seven concepts relate more to higher

mathematics than to the reform curricuium.

In summary, qualitative analysis of the lists of concepts gleaned from the
concept maps did show distinctions between the two student groups, differences
in terminology that linked each group to its respective curriculum. The
qualitative analysis also reflected differences between the experts and the
combined student group. The experts' combined core of concepts shows at
least four higher-level categories--definition, class or type, properties, and
operations--all of which are virtually non-existent in the students' maps. A

qualitative study of the experts' core lists did not reveal any major differences
along curricular lines.

General Analysis of the Concept Maps

Since this set of data did not lend itself to further quantitative analysis, the
qualitative study of the concept maps took on added importance. Once again. |
looked for differences between the two students groups that would correlate to

the differences in their curricula or to their respective experts. A study of the
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maps general appearance and structure did yield insights about the two student
groups and about the experts. This sections details those findings.

The most striking observation about the students' maps, and this holds for
both reform and traditional groups, is that many of their concepts and
propositions were trivial or irrelevant. For example, many of the maps showed
an emphasis on variables, even listing x, y, and z as concepts. Another student

termed them "letters" and has three concepts under letters: a-z, Greek. and x's

and y's. Thirteen of the 14 students from thé traditional group have-some
reference to variables on their maps, as do 12 of the 14 students from the
reform classes. Two students from each group also connected slope to rise
over run, a concept taught in first-year algebra and far from the topic of function.
Often the students list concepts closely tied to the types of exercises they did in
class, such as finding maxima and minima and classifying them as "absolute”
("global" for the reform classes) or "local." One could say their preoccupation is
with the “trees" and not the “forest.”

Some maps had sections that completely veered from the topic. One
might hypothesize the students were simply trying to fill up the page or use up
the time. Figure 8 shows half of a map on which there are no actual
mathematical terms (the other half was little better). Another map contains the
propositional chain "solutions help to get good grade may produce job lead $

pursue happiness." Figure 9 shows one student's complete map. Were it not

for the concepts integrais and derivatives, one would not know this student had
been in a calculus course.

The second most noticeable characteristic of the students' maps was their
algorithmic nature, particularly among the students from traditional classes. By
algorithmic nature, | mean that instead of giving concepts and the refationships

among them, the students gave steps in a procedure. For example, one student
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has the chain: “function can be continuous If you can draw without lifting
your pencil or they have no undefined points such as f(x)=1/x at x=0is a
hole at x = 0 which is incontinuous.” She starts out with the concepts of
function and continuous but then drifts into procedural steps. The algorithmic
portions of the maps can usually be identified by the nature of the linking words,
such as "by plotting" or "by locating,” or by long phrases in the concept ovals,
such as "it passes the vertical line test if £ '(y) =x~'"

Seven of the traditional students (50%) had groupings where algorithms
or processes are evident, while only four (29%) from the reform classes did. The
two most extensive maps from the traditional group show heavy algorithmic
influence and could almost serve as procedural outlines of chapters in a
traditional text. No map from the reform group showed extensive algorithmic
groupings.

The reform text regularly presented functions in different representations
| studied the student maps to determine, if possible, a student's predominant
view of function--whether it was an equation, a graph, a set of ordered pairs, or
perhaps something else. The linking words played an important part in this
analysis. For instance, one student's map has these propositions: “function

consists of variables,” "function can be graphed," "function can be

polynomial.” Using the same link for graphed and polynomial indicates the
same connection: possibility, not necessity. These propositions, along with
heavily algorithmic portions of her map, indicate an equation view of function.
Other maps | judged to have an equation perspective had graph separated from
function by other propositions. Some students said straightforwardly, "function
(sic) are equations.”

Three students from the traditional group (21%) and four from the reform

group (29%) made a connection between function and real life situations, but
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from the two groups one gets a different sense of the relationship. The three
students from the traditional group had these proposifional chains: “functions
serve to represent complex probiems, e.g. velocity," "function uses
mathematical interpretation of real life situations,” "equations discover
natural phenomena links velocity and acceleration example balls falling in
air." Velocity and acceleration are the typical examples in a traditional text. The
least extensive example from the reform group contained the chain "“function is
found in the real world like economics and engineering and medical field."
Another reform student connects three chains and conveys the important
concept of using functions to make predictions from collected data. A third
student from the reform group shows that functions serve as approximations to
real-life situations. A fourth map from the reform group has these propositional
chains: "functions don't always involve equations some are about real life
situations an example death rate of a population as a function of t‘me," and
"functions involve modeling an example exponential decay--an example
interest rate for a savings account.” While the evidence is not conclusive, the
concept maps indicated that students from the reform group had a better
understanding that functions may be used to model actual, real-life situations.

| also examined the maps to see if they reflected knowledge about the
definition of function. In the group from the reform classes, one student has
domain and range as concepts. Four others have input and output. None of
the reform students indicated that each element of the domain can be paired
with only a single range element, an essential part of the function definition. In
the group from the traditional classes, four simply listed domain and range as
concepts. Three others used domain and range and included the requirement

about unique values for the range elements on their maps.
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Did the maps reveal any differences in hierarchy and integration of
concepts between the two groups? In a word, no. Few maps showed any
significant hierarchical structuring, although | did show them examples of
hierarchical maps. The number of concepts emanating directly from function
ranged from 1 to 13, with an average of 7 for both groups. The branches that
did have several ievels generally delineated procedures rather than iinked
coivepid. Integration of concepts, as shown by number of cross links, virtually
did not exist. | found only two instances of cross links that showed an important
connection, such as the inverse relationship of differentiation and integration. |
had shown the students examples of cross links and had stressed their
importance as part of the instruction on concept maps. While several students
drew cross links, most were trivial, for example, "variables can be letters.”

Complete analysis of the students maps required comparison with the
experts’' maps. Again, | have chose to use the experts' restricted maps, since
they are much closer to the students' maps in content. Inasmuch as the experts
are all PhD's in mathematics, | assumed all their concepts and propositions to be
valid and relevant.

Unlike many of the students' maps, the experts' maps showed no hint of
algorithms. Instead, they reflected many categorical groupings, several of which
| discussed in detail in the section above on core lists. None of the experts

demonstrates the students' propensity to think of a function as an equation.

Instead, they define it as a correspondence, a map, a pairing, or a rule. All
incorporate a definition in their map. Five experts (3 traditional, 2 reform) give
real-world examples or aliude to them. Looking at the overall content and

complexity, the experts' maps as a group show much more homogeneity than the

students’.
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Distinguishing between the two expert groups' concept maps is difficult.
As | have noted, all experts referenced the definition and none gave algorithmic
groupings, which points to homogeneity rather than divergence. In looking at
the structure of the maps, one notes that two experts from each group drew
hierarchical maps. One expert from each group drew a spider map, one expert
from the traditional group used an unstructured web, and one expert from the
reform group used a narrative style. (The expert who used the narrative style
toild me when | gave him his concept map instruction that he had done concept
maps before in a curriculum development setting. His map more closely reflects
that setting than the example maps | showed him.) | redrew all but the narrative
map in a hierarchical style, realizing | might well be making inferences the
experts never intended. The redrawn maps showed three to five levels of
hierarchy with no distinctions between the two expert groups. They also showed
that two of the reform experts' maps had a large number of cross links, 14 and
17, while the three traditional experts' maps with cross links had a total of 11
between them (5, 5, and 1).

To summarize, a qualitative analy . 5 of the maps as a whole did indicate
two differences between the reform and traditional student groups. The
traditional group's maps displayed more and larger algorithmic portions. The
traditional studefits' maps virtually all pointed to an equation view of function.
while a good number of the reform students aliowed other viewpoints. The
reform students may also have a different, broader view of function in real life
The differences between the students' maps taken altogether and the experts'’
maps altogether were much more striking. The reform experts were unanimous
in their tack of algorithmic portions while 39% of the student maps included
algorithmic groupings. All the expert maps referenced the definition, but only

43% of the students gave terms that could be loosely considered as referring to

44 ol




Carol G Williams Concept Maps as Research Tools in Mathematics

the definition. The expert maps contained higher-level categories and were
more homogeneous than the students maps, which contained trivial and widely

varied groupings. Comparing the reform experts' maps to the traditional experts'

maps yielded no major differences.

Implications for concept maps as research tools

A major purpose of this study was to explore the use of the concept map
as a research tool in the area of mathematics, particularly as it reflects
conceptual understanding. The degree to which concept maps describe a
person's actual mental representation is, of course, impossible to know.
Nevertheless, the general homogeneity of the experts' maps and their distinct
variance from the students' maps lend credibility to the conclusion that concept
maps do capture a representative sample of one's conceptual knowledge.

The concept maps in this study shed some light on the issue of hierarchy
in knowledge representation. As mentioned in the literature review, Novak and
Gowin (1984) require hierarchical maps, since they base their maps on
Ausubel's (1968) hierarchical view of knowledge. Other researchers (Hiebert &
Lefevre, 1986; White & Gunstone, 1992) allow for hierarchy. For White and
Gunstone, certain knowledge domains are hierarchical while others are not. In
this study | gave no hierarchical restraint. Consequently, four of the eight
experts did not create a hierarchical map but rather made a web or spider map.
Since the experts did not all draw hierarchical maps, it appears function is not
inevitably a hierarchical domain. Yes, one can redraw the web maps in a
hierarchical fashion, but such a process necessarily requires the researcher to
make her own assumptions about the relative levels of hierarchy. These
second-party assumptions rnay not be consistent with intentions or perceptions

of the original map maker.
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Some might argue that the diversity in the experts' maps resuited from
inadequate instruction on how to draw concept maps. Rogers' (in press) study
speaks to this point. Despite detailed instruction on hierarchical maps to
students who had drawn 20 concept maps prior to the study, Rogers reports the
students’ maps showed three patterns of conceptual organization: hierarchical,
spider (she terms them "branching”), and random. It appears the students'
personal organization of knowiedge took precedence over the researcher's
prolonged, explicit instruction. | would argue the subjects in my study received
adequate instruction for their level of expertise and that differences in the maps’
organization reflect their personal views.

Before concept maps become an accepted research tool in mathematics,
researchers must resolve issues concerning numerical scoring schemes.
Judging from the data | coilected and from other studies that have used concept
maps, the hierarchical constraint provides one important key to creating a valid
scoring scheme for concept maps. Another key is whether one gives the
subjects several concepts to use in the maps or merely supplies one main topic.
Stuart (1985) describes this process cf creating a map from a single given topic
as "constructing maps de nove " The six studies (Beyerbach, 1986; Coleman,
1993: Laturno, 1994; Markham et al., 1994; Park, 1993; & Wallace & Mintzes
(1990)) most relévant to this study all worked in the Novak and Gowin tradition.
required hierarchical maps, and gave the maps a numerical score. Beyerbach
(1986) is the only one who used concept mapping de novo, and her scoring
scheme is different from most research in the Novak and Gowin tradition. | did
not find her scoring scheme to be valid for measuring the degree of knowledge
differentiation. (For more details, see Williams, in press.)

None of the studies convinced me that valid and reliable scoring schemes

are currently available for concept maps constructed de novo. it does appear
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that training students on hierarchical maps, giving them core concepts with
which to build their maps, and limiting the subject domain can create a setting in
which numerical schemes are vaiid. Yet in my view, each of these practices
reduces the usefulness of concept mapping as a representation of a subject's
own personal knowledge structure.

As with all research tools, the concept map has limitations. Concept
maps created de novo display so much diversity that they are difficuit to score
numerically, particularly if they do not exhibit a hierarchical structure. White and
Gunstone (1992) liken scoring non-hierarchical maps to scoring an essay--one
looks for the overall point of view rather than specific knowiedge content. If a
researcher's aim is primarily to gather quantitative evidence to support an
hypothesis, a more structured concept map task can be appropriate. For
example, a task where one gives subjects terms to interrelate is better if the
researcher is particularly interested in how subjects see the connections
between those particular terms. However, if one is looking for an individual's
knowledge structure in its "purest” most personal form, the unstructured mapping
task is better because it does not put concepts into the subjects' heads. In this
study, where concept maps on function were used for the first time, the

unstructured task proved appropriate and provided useful information about the

-

broad topic.
The results of this study suggest several areas relating to concept maps
where further research is needed. One is the area of knowledge hierarchy. A
second is numerical scoring schemes. Would training the experts and students
to draw hierarchical maps substantially aiter the findings? The researcher could
teach the experts to perform the restricted task (relating to first year calculus
concepts) by drawing hierarchicai maps. One couid then compare those

hierarchical maps to the ones drawn for this study without the hierarchical
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stipulation. A variation on the same study would give the experts the 25

concepts on the combined experts' core list and ask them to draw a concept map
limited to these concepts. This could be done with or without the hierarchical
constraint. One could study how the maps differed from the de novo expert
maps drawn for this study, determining if the experts organized their concepts
differently or if they added or deleted categories. One could ascertain whether
these maps lend themselves to a scoring scheme. And would experts draw
hierarchical maps as instructed or would they choose to ignore that instruction
as the subjects in Rogers' (in press) study did?

Stuart (1985) states the need for a more holistic and qualitative scoring
technique in order to make maps created de novo more useful in research. |
think concept maps created de novo can be useful in research without a
numerical scoring technique. While numerical scoring helps compare different
groups, de novo concept maps as drawn also show major differences between
groups. Numerical scoring may conceal the idiosyncratic nature of the maps.
Often, researchers find new ideas and relationships in these idiosyncratic maps.
As the mathematics community continues to promote meaningful learning and to

look for conceptual links, the concept map places an appropriate tool at the

researcher's disposal.

-

(g
Pt




Carol G. Williams Concept Maps as Research Tools in Mathematics

REFERENCES

Ausubel, D. (1968). Educational Psychology: A Cognitive View. New York:
Holt, Rinehart and Winston.

Beyerbach, B. (1986). Concept mapping in assessing prospective teachers’
concept development. (ERIC Document Reproquction Service No. ED
291 800)

Chi, M., & Koeske, R. (1983). Network representation of a child's dinosaur
knowledge. Developmental Psychology, 19(1), 29-39.

Coleman, E. (1993). Inducing a shift from intuitive to scientific knowledge with
inquiry training. In Proceedings of the Fifteenth Annual Conference of the
Cognitive Science Society (pp. 347-352). Boulder, Colorado.

Deese, J. (1965). The structure of associations in language and thought.
Baitimore: Johns Hopkins Press.

Doyle, W. (1983). Academic work. Review of Educational Research, 53(2).
159-199.

Fisher. K. (1990). Semantic networking: The new kid on the block. Journal of
Research in Science Teaching, 27(10), 1001-1018.

Fisher, K., & Lipson, J. (1985). Information processing interpretation of errors in
college science learning. Instructional Science, 14(1), 49-74.

Greeno, J. (1978). Understanding and procedural knowledge in mathematics
instruction. Educational Psychologist, 12(3), 262-283.

Harnisch, D. L., Sato, T., Zheng, P., Yamagi, S., & Connell, M. (April, 1994).
Paper presented at the annual meeting of the American Educational

Research Association, New Orleans.

49

o)
oo




Carol G. Williams Concept Maps as Research Tools in Mathematics

Hiebert, J.. & Carpenter, T. (1992). Learning and teaching with understanding.
in D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and
Learning (pp. 65-97). New York: Macmillan.

Hiebert, J., & Lefevre, S. (1986). Conceptual and procedural knowledge in
mathematics: An introductory analysis. in J. Hiebert (Ed.), Conceptual
and Procedural Knowledge: the Case of Mathematics (pp. 1-28).
Hillsdale, NJ: Erlbaum.

Hughes-Hallett, D., Gleason, A., Gordon, S., Lomen, D., Lovelock, D. McCallum,
W., Osgood, B., Pasquale, A., Tecosky-Feldman, J., Thrash, J., Thrash,
K., & Tucker, T. (1992). Calculus. Preliminary Edition. New York: Wiley
and Sons. '

Janvier, C. (1987). Representation and understanding: The notion of function
as an example. In C. Janvier (Ed.), Problems of Representation in the
Teaching and Learning of Mathematics (pp. 67-71). Hillsdale, NJ:
Eribaum.

Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard
University Press.

Laturno, J. (1994). The validity of concept maps as a research tool in remedial
college mathematics. Proceedings of the 16th Annual Meeting of the
Group for'the Psychology of Mathematics Education, North American
Chapter, (pp. 60-66). Baton Rouge, LA.

Markham, K. M., Mintzes, J. J., & Jones, M. G. (1994). The concept map as a
research and evaluation tool: Further evidence of valigity. Journal of

Research in Science Teaching, 31(1), 91-101.

50

o
o




Carol G Williams Concept Maps as Research Tools in Mathematics

Micnener, E. (1978). Understanding Understanding Mathematics. Cognitive
Science, 2, 361-383.

National Council of Teachers of Mathematics. (1989). Curriculum and
Evaluation Standards for School Mathematics. Reston, VA: Author.

National Research Council. (1989). Everybody Counts. Washington, DC:
National Academy Press.

Nickersan, R. S. (1985). Understanding understanding. American Journal of
Education, 93, 201-239.

Novak, J. (1977). An alternative to Piagetian psychology for science and
mathematics education. Science Education, 61(4), 453-477.

Novak, J., & Gowin, D. B. (1984). Learning How to Learn. New York:
Cambridge University Press.

Park, K. (1993). A comparative study of the traditional calculus course vs. the
calculus & Mathematica course. (Doctoral dissertation, University of
lllinois at Urbana-Champaign, 1993). Dissertation Abstracts International.
54,119B.

Pintrich, P., Marx, R., & Boyle, R. (1993). Beyond cold conceptual change: The
role of motivational beliefs and classroom contextuai factors in the
process of conceptual change. Review of Educational Research, 63(2),
167-199. ~

Prawat, R. (1989). Promoting access to knowledge, strategy, and disposition in

students: A research synthesis. Review of Educational Research, 59(1).
1-41.

v P icie B P T S P TV LTI Sy S TP, VAR SISy Bt T N YAREATT Rt Sy a oy Al C an AT et SN A AL L o - A YLy 82

g P T P T skl




Carol G Williams Concept Maps as Research Tools in Mathematics

Resnick. L. B., & Ford, W. W. (1981). Teaching the structures of mathematics.
Psychology of Mathematics for Instruction (pp. 101-127). Hillsdale, NJ:
Erlbaum.

Rogers, L. N. (in press). Using concept mapping to examine conceptual
organization in a learning cycle classroom. Journal of Research in
Science Teaching.

Royer, J., Cisero, C., & Carlo, M. (1993). Techniques and procedures for
assessing cognitive skills. Review of Educational Research, 63(2), 201-

243.

Schoenfeld, A., Dubinsky, E., Gleason, A, Harnisch, D., Kaput, J., Kifer, S.,
Moore, L., Newman, R., & Swafford, J. (1993). Student assessment in
calculus. Final draft of the NSF Working Group.

Shaveison, R. J., Ruiz-Primo, M. A, Lang, H., & Lewin, B. {in press). The
Potential of Concept Maps as Assessments in Science.

Stuart, H. (1985). Should concept maps be scored numerically? European
Journal of Science Education. 7(1). 73-81.

Wallace, J., & Mintzes, J. (1990). The concept map as a research tool:
Exploring conceptual change in biology. Journal of Research in Science
Teaching, 27(10), 1033-1052.

White, R., & Guristone, R. (1992). Probing Understanding. Bristol, PA: Falmer
Press.

Williams, C. (in press). Using concept maps to determine differences in the
concept image of function held by students in reform and traditionai
calculus classes. Doctoral dissertation, University of California at Santa

Barbara. (To appear in Dissertation Abstracts.)

52




