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Abstract

A Monte Carlo study was used to examine the Type I error rates of five multivariate tests for the single-

factor repeated measures model. The performance of Hotel ling's T2 and four nonparametric tests, including a chi-

square and an F test version of a rank-transform procedure, was investigated for different distributions, sample

sizes, and numbers of repeated measures. The results indicated that both Hotellings TZ and the F test version of

the rank- transform performed well, producing Type I error rates which were close to the nominal value. The chi-

square version of the rank-transform test, on the other hand, performed poorly for virtually all conditions studied.

The performance of the other nonparametric tests depended heavily on sample size. Based on these results,

Hotel ling's T2 is recommended for the single-factor repeated measures model.



An Empirical Study of the Type I Error Rates of Five Multivariate Tests for the

Single-Factor Repeated Measures Model

Experimental settings in which i = 1, 2, ..., N subjects (blocks) are measured on P occasions with the same

variable are often referred to as repeated measures designs. We consider the unreplicated design in which subjects

are treated as a random effect and the repeated factor as a fixed effect. It is well known that both univariate and

multivariate normal-theory tests of the (main) effect associated with the repeated factor can be performed, and

that both procedures require that the N vectors of errors be independently and (multivariate)-normally distributed

(Bock, 1975).

The univariate approach also requires that the covariance matrix of the repeated measures possess

sphericity, which exists in the sample if the statistic

z = (trC'EC)2 (1)
(P-1)tr(C'EC)2

equals one; otherwise, the data show some degree of nonsphericity. (The lower bound of e indicating maximum

lack of sphericity is (P-1)-'). In equation (1), C is a (P-1) x P matrix of coefficients defining a collection of

orthonormalized contrasts and tr is the trace operator (Box, 1954). If s = 1, or, in practice, is quite close to 1, the

univariate F test is often recommended because of its greater power relative to the multivariate approach (Huynh

& Fe 1dt, 1970; Rouanet & Lepine, 1970) However, use of the univariate F when sphericity is violated is known

to effect the Type 't error rate of F, typically producing inflated error rates (Boik, 1981; Collier, Baker, Mandeville,

& Hayes, 1967; Huynh & Fe 1dt, 1980; Mendoza, Toothaker, & Nicewander, 1974). Complicating matters is the

problem that repeated measures data can be expected to be nonspherical (Greenwald, 1976; O'Brien & Kaiser, 1985;

Rornaniuk, Levin, & Hubert, 1977; Wilson, 1975), with e values often between .75 and .85 (Huynh & Fe 1dt, 1976).

One alternative in the face of nonspherical data is to use an adjusted univariate F test (c.f., Huynh, 1978;

Quintanna & Maxwell, 1994; Rogan, Keselman, & Mendoza, 1979); another is to use a multivariate test which

makes no assumption about the structure of L Indeed, several authors (e.g., Cole & Grizzle, 1966; Lewis, 1993;

Marascuilo & Levin, 1983, p. 381; Maxwell & Delaney, 1990, p. 591; Peng, 1975) have expressed a preference for

the multivariate approach, a preference with which we concur. Still, opting for a multivariate test does not settle
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things because several such tests are available, including the normal-theory Hotel ling's T2 and various

nonparametric tests which do not require normality of the distribution of °errors.

Description of the Problem

Akritas and Arnold (1994) provided a theoretical justification for (nonparametric) rank-transform (RT) tests

for several designs, including the single-factor repeated measures design. Rank-transform tests rank the raw

scores and perform normal-theory tests on the ranks with no assumption that the data are normally distributed.

The Akritas and Arnold test uses Hotel ling's T2, computed for ranked data. Interestingly, they made no mention

of the fact that their form of T2 is the same as that proposed by Agresti and Pendergast (1986).

Despite the intuitive appeal and ease of use of RT tests, and the fact that the RT procedure has been

embraced in the documentation of the SAS (SAS Inc., 1985, p. 647) statistical analysis program, use of the test

proposed by Akritas and Arnold should not go unchallenged for at least three reasons. First, there is some

evidence that the Hotel ling 12 is robust under certain conditions, and, thus, can be used with some nonnormal

distributions. If competing normal-theory and nonparametric tests show the same statistical behavior for realistic

datasets (e.g., nonnormal data), we would opt for the normal-theory test. Second, the validity of RT tests has been

questioned, with several papers (e.g., Blair, Sawilosky, & Higgins, 1987; Fligner, 1981; Sawilosky, Blair, & Higgins,

1989) providing evidence of the shortcomings of these tests in certain settings. Third, there are other

nonparametric tests which can be used in the single-factor repeated measures design and as such represent

important data-analytic alternatives.

In short, before the Akritas and Arnold RT test can be recommended over its competitors there must be

evidence supporting its superior statistical properties for realistic data conditions. This paper reports the results

of a Monte Carlo study of the Type I error rates (a) of five multivariate tests for the single-factor repeated

measures model: Hotel ling's 12, two versions of Akritas and Arnold's RT test, a test due to Puri and Sen (1969),

and a multivariate Wilcoxon signed-ranks test (Bickel, 1965; Hettmansperger, 1984, pp. 283-285). Univariate RT

tests for the repeated measures model (e.g., Kepner & Robinson, 1988) are not considered.
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Data Model and Statistical Tests

Following Davidson (1980), the linear model assumed to underlie the (continuous) data is

Yip = + tp cif), (2)

where Ep tp = 0; E(E.,p)=0; cov(Everd= 3. app. where 8.=1 if i=i'and 0 otherwise and Cipp. is the covariance. In

equation (2), y is the observed score of the ith subject on the Pth repeated measure, p is a grand mean, Tr, is a

treatment effect defined as pp - p, and sz.,p is an error term. We assume that covariances among the errors are

collected in the matrix E. All of the tests assume that the N vectors of errors are independently distributed.

The hypothesis tested by Hotel ling's T2 is Ho: T1 = T2 = = Tp. The form of the the test statistic is

T2 = N(Cf)'(CSC')1(6) (3)

For convenience this test is often transformed into an F:

F = (N-P+1) (4)
(P-1) (N-1)

Under Ho, the above statistic is distributed as an F with P-1 and N-P+1 degrees of freedom if the N error vectors

are multivariate-normally distributed.

The RT procedure of Akritas and Arnold (1994) tests the hypothesis of homogeneity of the marginal

distribution functions Ho: F,(y)= F2(y)= ...=Fp(y); rejection of this hypothesis implies, but does not guarantee,

differences among loc ation parameters. (All of the nonparametric tests in this paper share this null hypothesis).

To compute the chi-square version of the Akritas and Arnold test (AACHI) the NP raw scores are ranked from

1 to NP, T2KT is computed on the ranks, and

AACHI = (P-1) T2RT (N-P+1) x2p., . (5)

(N-1)

Under k Jo, the resulting test statistic is asymptotically distributed as a chi-square variable with P-1 degrees of

freedom. Agresti and Pendergast (1986) recommended computing AAF = AACHI*(P-1) and comparing this value

against an F critical value based on 1,-1 and N-P+1 degrees of freedom. An advantage of the AACHI and AAF

tests is that standard statistical analysis programs can be used to obtain T2RT; one simply submits the ranks to a

program that computes 1.2 for repeated measures models. (For all of the nonparametric tests, ties among the raw
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scores are handled by assigning midranks, which should not have an adverse effect on these tests unless the

proportion of ties is large (Lehmann, 1975, p. 18)).

The general linear model procedure due to Puri and Sen (1969) suggests another nonparametric test in the

multivariate repeated measures model. Here P-1 differences are created and rankLd from 1 to N(P-1). The

hypothesis of homogenei:; of the F(y) can be tested with

PS = (N-1)0 x2p_I

0 is the eigenvalue obtained from the matrix product of equation (2.26) in Puri and Sen (1969) involving the

between-measure cross-products matrix H and the total cross-products matrix T, and is obtained as the solution

to the Pillai-Bartlett eigenvalue problem Her'. Under the null hypothesis of homogeneity of marginal distribution

functions, PS is asymptotically distributed as a chi-square variable with P-1 degrees of freedom.

Another alternative is the multivariate Wilcoxon signed-rank (MWSR) test due to Bickel (1965). Although

numerous variations of this procedure have been suggested (e.g., Police llo & Hettmansperger, 1976; Utts &

Hettmansperger, 1980), we study the traditional form of the MWSR test in which P-1 Wilcoxon signed-rank

statistics are computed and a test statistic is formed from this vector and the covariances among the signed-rank

statistics. The test statistic is compared to a chi-square variable with P-1 degrees of freedom.

Akritas and Arnold (1994) used data from Johnson and Wichern (1988, p. 219) to illustrate the computations

for the AACHI test. We use the same data to illustrate the computations for each of the tests in Appendix A.

Review of the Literature

Surprisingly few studies of multivariate tests for the single-factor repeated measures model have been

reported. As might be expected, most of these have investigated Hotelling's

Jen-ien (1982) used analytic methods to show that T2 maintains it Type I error rate for a variety of nonnormal

distributions (e.g., t, Cauchy) if some general criteria involving the shape of the distribution are satisfied. Jensen's

results help to explain Monte Carlo findings indicating that the Type I error rate of r is robust to symmetric but

nonnormal distributions (e.g., Chase & Bulgren, 1971; Serlin & Harwell, 1989; Utts & Hettsmanperger, 1980) and

to mild skewing (e.g., Everitt, 1979). Increasingly asymmetric distributions, on the other hand, ha 'e sometimes
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produced inflated error rates, even as sam?le size inc ,ses (Chase & Bulgren, 1971; Everitt, 1979). For example,

Everitt (1979) reported error rates of .14 for a = .05 for an exponential distribution, and .30 for a log *nal.

Everitt also reported that increasing sample sizes (5, 10, 15, 20) had a limited effect on error rates. Chase ana

Bulgren's (1971) results for P = 3 showed a similar pattern for T2 for sample sizes of 5, 10, and 20. However,

Serlin and Harwell (1989) found that T2 was robust for exponential data and a sample size of 30, and concluded

"Unlike many simulation experiments, the Type.I error results were quite unambiguous, and, for the conditions

of this study, provide a textbook example of a robust test." (p. 13) This discrepancy among studies of the

robustness of T2 distributions persists for both equal and unequal between-measure correlations.

Few Monte Carlo studies of nonparametric tests for the repeated measures model have been reported.

Agresti and Pendergast (1986) found that the AAF test maintained its Type I error rate for a multivariate-normal

distribution for sample sizes of 10, 30 and 50 and P = 2 versus 5 repeated measures. Serlin and Harwell (1989)

reported similar findings for the AAF test for N = 30, 100 and P = 3, 4 for a normal, double-exponential, and

exponential distributions. Serlin and Harwell also reported that the error rates of the PS test under these

conditions were quite conservative.

Design of the Monte Carlo Study

Ideally, the Type I error behavior of the various tests would be investigated analytically. However, such

solutions are difficult because they almost always require multivariate-normality, the very assumption that

empirical data can be expected to violate. In addition, the nonparametric procedures are large sample tests, and

their behavior for small samples must be investigated empirically. We settled for a Monte Carlo study comparing

the Type I error rates of the five tests.

Hoag lin and Andrews (1975), Lewis and Orav (1989), and others have argued that Monte Carlo studies

should be subject to the same principles of experimental design and data analysis as empirical studies.

Accordingly, the design of our simulation study was an unreplicated 5 (type of distribution) x 3 (sample size) x

2 (number of repeated measures) fixed effects, fully-crossed factorial. Type of distribution, sample size, and

number of repeated measures served as independent variables and the empirical Type I error rates as the

7



dependent variable. This design made it possible to examine the empirical error rates for evidence of interactions

among the simulation factors and to estimate the magnitude of significant effects.

The simulation factors and factor levels were selected because of their known (or suspected) effects on the

Type I error rates of one or more of the tests, and because these factors have been used in previous Monte Carlo

studies of the repeated measures model. Table 1 outlines the factors and their levels which were manipulated.

The focus on the effects of increasing asymmetry arose from the effect of this factor in previous Monte Carlo

studies of the T2 test. The y, (skewness) = y, (kurtosis) = 0 case produced normally distributed data which acted

as a baseline against which other results could be compared, whereas increments of .5 for 11 permitted the

detection of trends in the empirical error rates for increasingly skewed data (72 was not a focus of the simulation

study because there is little evidence that it affects tests of location). A y, = .5, y, = 1.5 pairing produced a mildly

skewed and somewhat leptokurtic distribution, y, = 1, y, = 3 a moderately skewed and leptokurtic distribution

which is equal to a chi-square with v = 8 degrees of freedom, y, = 1.5, y, = 4.5 a skewed and leptokurtic

distribution, and 71 = 2, y, = 6 a badly skewed and peaked distribution which is equal to a chi-square with v =

2, or, equivalently, an exponential distribution. The chosen sample sizes of 9, 15, and 30 were intended to reflect

quite small to moderate sample sizes that have been used in previous Monte Carlo studies of this model (Chase

& Bulgren, 1971; Everitt, 1979; Serlin & Harwell, 1989). The same resoning led to the selection of the P = 3, 4

numbers of repeated measures.

Data Generation

A Gateway DX2/50 microcomputer was used to generate data. All programming was done in FORTRAN

IV and was supplemented by subroutines written by the second author. The random number generator was taken

from Numerical Recipes (Press, Flannery, Teukolsky, & Vetterling, 1986), with model (1) serving as the underlying

data generation model. The following steps were followed to generate data: (a) NP scores representing

multivariate-normal data were simulated using the Kaiser and Dickman (1962) procedure and, when appropriate,

were transformed to nonnormal data using the method of Vale and Maurelli (1983). Habib and Harwell (1989)

provide details on using the Vale and Maurelli procedure, which combines the Kaiser and Dickman approach with
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Fleishman's (1978) procedure for generating nonnormal data through skewness and kurtosis parameters. In all

cases, the between-measure correlations equaled .5 and Ti equaled 0. (b) Step (a) was repeated 10,000 times and

for each replication the T2, AACHI, AAF, PS and MWSa tests were con- puted and the test statistics compared to

the appropriate critical value for the .05 and .01 levels of significance.

Results

Adequacy of the Data Generation

The adequacy of the data generation was judged by examining the average skewness, kurtosis, and

correlation values computed for the simulated data for each combination of conditions, as well as across all

conditions. Results for the N = 9, P := 3 case for the various distributions are reported in Table 2, alone with

overall summary statistics. We report the N = 9, P = 3 case because problems in producing data with the desired

properties are likely to be most acute for smaller sample sizes. The results in Table 2 suggest that the simulated

data possessed (approximately) the desired marginal skewness, kurtosis, and correlation values. A similar pattern

was observed for the larger sample size conditions.

Analysis of the Empirical Type I Error Rates

The empirical Type I error rates are reported in Table 3. Because of the similarity of the results for the .01

and .05 levels, only the latter are reported. The expression .05 ±1.96[(.05(1-.05))/10,000r was used to establish

a sampling error range for the empirical proportions of rejections. Error rates exceeding the upper limit of .054

were considered to be inflated and are indicated in Table 3 by a *, and error rates below the lower limit of 046

were considered to be conservative and are indicated by a **.

The results in Table 3 suggests the following conclusions: (a) Hotelling's 1.2 and the AAF test did the best

job of controlling Type I error rates near the nominal value, (b) The AACHI test performed particularly poorly,

(c) The PS test was extremely conservative and the MWSR test somewhat less so for larger samples.

It is possible that simple descriptive analyses of the empirical error rates may conceal important information

such as the presence of interactions among simulation factors with respect to the empirical Type I errors.
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Accordingly, the error rates were analyzed for each test using an unreplicated, three-factor, completely between-

subjects ANOVA. The three-way interaction variation was used as an estimate of error. There is some evidence

that using the highest-order interaction term in this fashion in the analysis of Monte Carlo results has little effect

on the results (Alaysin, 1991). Those results which were significant at the .05 level and whose estimate of effect

size exceeded .10 are reported in Table 4. Effect sizes were estimated using Fisher's correlation ratio (sum of

squares for that effect divided by the sum of squares total) and the c02 statistic (Hays, 1973, p. 485). Because the

12 and c02 indices did not differ by more than .02 on any effect, only 12 is reported in Table 4. The two effects

whose .112 was 5_ .10 (.03 and .07) were deemed too small to pursue further.

Interestingly, all of the significant effects reported in Thole 4 are main effects, and all produced at least

moderate and occasionally quite large re values. Only Hotel ling's T2 was sensitive to type of distribution, a result

which is consistent with the Monte Carlo results of Chase and Bulgren (1971) and Everitt (1979); however, the

marginal mean error rates for T- of Y = .049, Yy15,y2.15 = .048, Yy1=1,y2=3 = 046, Yy1=1.5,y2=4.5 = 047, and Yy1=2,y2=6

= .041 suggests that re depended heavily on error rates associated with an exponential distribution. In fact, the

distribution effect is not significant if error rates for the exponential distribution are deleted. The Type I error

rates of the AACHI, PS, and MWSR tests proved to be sensitive to sample size, producing marginal means of

= 127, CiN=15 = .092, and -1-/N,_30 = .069 for the AACHI test, CiN9 = .001, :C/N=15 = 006, and .(..N.,30 = .012 for the PS

test, and YN_9 = .019, YN=15 = '035, and YN,30 = .044 for the MWSR test. Similarly, the error rates of the AAF and

MWSR tests proved to be sensitive to P, producing marginal means of Yp, = .051 and -C/p=4 = .047 for the AAF test

and Cit.p=3 = .040 and "21,, = .026 for the MWSR test.

Conclusions

The results of this study suggest that, for the conditions studied, researchers concerned with controlling Type

I error rates can use either Hotelling's T2 or the F test version of the Akritas and Arnold (1994) rank-transform

statistic in testing for a main effect in the single-factor repeated measures model. Although the F test version of

the rank-transform statistic performed well, our preference is for Hotelling's T2 test because of its use of raw scores

as opposed to ranks and because of its membership in the general linear model family of statistical procedures.
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The performances of the multivariate Wilcoxon signed-ranks test and the Puri and Sen test were far less

impressive. Both of these tests produced quite conservative error rates for smaller sample sizes (especially the

Puri and Sen test) which, other Illings being equal, would be expected to be associated with depressed power

values. The chi-square statistic presented in Akritas and Amo ld (1994) performed poorly for all ccnditions and

is not recommended.
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Table r
Outline of the Simulation Study

Independent

Type of Distribution

Variables

Normal 9 3,4
(y=0, y2=0) 15 3,4

30 3,4

Slightly skewed and leptokurtic 9 3,4
(Y1=5, y2=1.5) 15 3,4

30 3,4

Moderately skewed and leptokurtic 9 3,4

(y1=1, y2=3) 15 3,4
30 3,4

Skewed and leptokurtic 9 3,4
(Y1=15, y2=4.5) 15 3,4

30 3,4

Strongly skewed and leptokurtic 9 3,4
(y,=2, y2=6) 15 3,4

30 3,4

+Note. y, = skewness, y, = kurtosis, N = sample size, P = number
of repeated measures.

15

ti



Appendix A
Computing the Tests

Johnson & Wichem (1988, p. 219) used a dataset involvirv: measurements of time (in milliseconds) between
heartbeats, which was measured 4 times for 19 dogs. The raw data were:

Repeated Measures
Dog 1 2 3 4

1 426 609 556 600
2 253 236 392 395
3 359 433 349 357
4 432 431 522 600

405 426 513 513
6 324 438 507 539
7 310 312 410 456
8 326 326 350 504
9 375 447 547 548
10 286 286 403 422
11 349 382 473 497
12 429 410 488 547
13 348 377 447 514
14 412 473 472 446
15 347 326 455 468
16 434 458 637 524
17 364 367 432 469
18 420 395 508 531
19 397 556 645 625

Hotel ling's T2 Test

368.21
404.63
479.26
502.89

2819.29
3568.42 7963.14
2943.49 5303.98 6851.32
927.62 914.54 7557.44

is a P x 1 vector of .ample means and SaPxP covariance matrix. The hypothesis to be tested is Ho: T1 = T2
= T3 = T4 = 0, with N = 19 and P = 4. Johnson and Wichern transformed the P repeated measures into P-1 new
variables that contained all the between-measure information in the origir 11 variables. Any number of
transformations will do; we follow Johnson and Wichern and use:

-1 -1 1 1

C = 1 -1 1-1
1 -1 -1 1

The sample means are transformed directly:

209.31
CY = -60.05

-12.79
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For the covariance matrix S,

9432.32
1098.92 5195.84
927.62 914.54 7557.44

Then

= N(Ci)'(CSC')-'(Ci) = 19(6.11) = 116.

As an F,

F = (N-P+1) T2 = (.2963)(116) = 34.37.
(P-1) (N-1)

Akritas and Arnold Rank-Transform Test (AACHI)

Ranked data

34.5 73 69.5 71.5
2 1 23 24.5
17 40 13.5 16

38.5 37 62 71.5
78 34.5 59.5 59.5
7 42 57 65
5 6 29.5 47
9 9 15 56

20 44.5 66.5 68
3.5 3.5 27 33
13.5 22 52.5 55

36 29.5 54 66.5
12 21 44.5 61
31 52.5 51 43
11 9 46 49
41 48 75 63
18 19 38.5 50
32 24.5 58 64
26 69.5 76 74

The vector of rank means and the covariance matrix of the rank variables are:

20.26
R = 30.82

48.32
54.61

Srank

First compute

T2 N(Cli.)'(CS,AC')1(CII) = 119.323,

162.253
182.022
172.476
113.875

447.323
292.628
172.472

371.333
253.796 261.792
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AACHI = (T2RT (N-P-F1)/(N-1)1/(P-1) = 1(119.323)(.0889)1/(3) = 35.35.

A',; an F,

AAF = AACHI*(P-1) = 35.35*3 = 106.05

Puri and Sen Test (PS)

Create P-1 difference variables via the transformation CY', where Y is an N x P matrix of the raw scores. The
resulting difference variable scores are:

Subject d,
Difference Variables

d2 d3

1 121 (40) -227 (1) -139 (5.5)
2 298 (56) 14 (28) 20 (30)
3 -86 (10) -82 (11.5) -66 (16)
4 259 (52) -77 (13) 79 (38)
5 195 (43) -21 (22.5) -21 (22.5)
6 284 (55) -146 (4) -82 (11.5)
7 244 (49) -48 (18) 44 (35)
8 202 (45) -154 (3) 154 (41)
9 273 (54) -73 (14) -71 (15)
10 253 (51) -19 (24) 19 (29)
11 239 (48) -57 (17) -9 (25)
12 196 (44) -40 (19.5) 78 (37)
13 236 (47) -96 (8) 38 (34)
14 33 (31) -35 (21) -87 (9)
15 250 (50) 8 (27) 34 (32.5)
16 269 (53) 89 (39) -137 (7)
17 170 (42) -40 (19.5) 34 (32.5)
18 224 (46) 2 (26) 48 (36)
19 317 (57) -139 (5.5) -179 (2)

The value in parentheses are ranks. The vector of rank means is

45.95 116.208

d = 16.92 Ed = 14.28 99.202
24.13 14.149 17.472 159.264

Solving the Pillai-Bartlett eigenvalue problem produces 0 = .96, so

PS = (N-1)0 = (18)(.96) = 17.23
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Multivariate Signed-Ranks Wilcoxon Test (MWSR)

The test statistic is MWSR = TIVY'T, where T is a P-1 vector of Wilcoxo ;signed-rank statistics divided by (N+1)
and V is the covariance matrix among these statistics. First the univ&ate Wilcoxon signed-rank statistic is
computed for each of the P-1 difference variables, divided by (N+1), and stored in T:

9.4
T = 1

4.15

To compute V we first compute the main diagonal elements, which are simply v = N(2N+1)/(6(N+1)) = 6.175.
The covariances are computed by adding the cross-product of the signed-ranks and dividing by (N+1)2. Here

6.175 -.354 -.323
V = -.354 6.175 .618

-.323 .618 6.175

Then MWSR = 18.
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