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A Compensatory Approach

Abstract

This paper presents some Bayesian theory for simultaneous optimization of decision

rules for test-based decisions. Simultaneous decision making arises when an

institution has to make a series of selection, placements, or mastery decisions with

respect to subjects from a population. An obvious example is the use of

individualized instruction in education. Compared with separate optimization, a

simultaneous approach has two advantages. First, test scores used in previous

decisions can be used as "prior data" in later decisions, and the efficiency of the

decisions can be increased. Second, more realistic utility structures can be obtained

defining utility functions for earlier decisions on later criteria. An important

distinction is made between weak and strong decision rules. As opposed to strong

rules, weak rules are allowed to be a function of prior test scores. Conditions for

monotonicity of optimal weak and strong rules will be presented. Also, it will be

shown that under mild conditions on the test score distributions and utility functions,

weak rules are always compensatory by nature. To illustrate the approach, a

common decision problem in education and psychology, consisting of a selection

decision for a treatment followed by a mastery decision, is analyzed.
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Introduction

Over the past two decades, Bayesian decision theory has proven to be very

useful in solving problems of test-based decision making. Historically, the first

decision making problem to draw the interest of psychometricians was the selection

problem in education and personnel management. Important milestones in the history

of the treatment of selection decisions were the publication of the Taylor-Russell

(1939) tables and Gronbach and Gleser's (1956) Psychological tests and personnel

decisions. However, in spite of some of the theoretical notions in the latter, it was

not after an extensive discussion on "culture-fair" selection (Gross & Su, 1975) that

selection decisions were fully treated as an instance of Bayesian decision theory

(Novick & Petersen, 1976).

With the advance of such modern instructional systems as individualized

study systems, mastery learning, and computer-aided instruction (CAI), interest was

generated in the possibility to put the problem of mastery testing on sound decision-

theoretic footing. In mastery testing, the intent is to classify examinees as "masters"

or "nonmasters" on the basis of their test scores, using some standard of mastery set

on the true-score scale underlying the test scores. Hambleton and Novick (1973)

were the first to point at the possibility of applying Bayesian decision theory to

mastery testing. Optimal mastery rules for various utility or loss functions are

derived in Davis, Hickman and Novick (1973), Huynh (1976, 1977, 1980) and van

der Linden and Mellenbergh (1977).

Interest in decision making problems in modern instructional systems has

also led to the (_onsideration of two other 'ypes of decision making: placement and
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classification decisions. In either type of decision making, test scores are used to

assign examinees to one of the instructional treatments available. However, with

placement decisions the succoss of each of the treatments is measured by the same

criterion whereas in classifit ation decisions each treatment involves a different

criterion. The paradigm underlying placement decisions is the Aptitude-Treatment

Interaction (ATI) hypothesis, which assumes that students may react differentially

to instructional treatments, and, therefore, that different treatments may be best for

different students. Classifications decisions are made if an instructional program has

different tracks each characterized by different instructional objectives. Such tracking

can be found in systems of comprehensive secondary education or vocational

education. Bayesian decision theory for placement and classification decisions is

given in Saywer (1993) and van der Linden (1981, 1987).

Typically, instructional systems as CAI do not involve one single decision

but can be conceived of as networks of nodes at which one of the types of decisions

above has to be made (van der Linden, 1990; Vos, 1990, 1991, 1993). An example

is an instructional network starting with a selection decision, followed by several

alternative instructional modules through which studettts are guided making

placement and mastery decisions, and which ends with a summative mastery test.

Decisions in CAI networks are usually based on small tests (which often consist of

only a few multiple-choice iteuis).

The question is raised how such networks of decisions should be optimized.

An obvious approach is to address each decision separately, optimizing its decision

rule on the basis of test data exclusively gathered for this individual decision. This

approach is COM1110111 in current design of instructional systems. The purpose of the

present paper is to show that multiple decisions in networks can also be optimized

simultaneously. The advantages of a simultaneous approach are twofold. First, data
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gathered earlier in the network can be used to optimize later decisions. The use of

such prior information can be expected to enhance the quality of the decisionsin

particular if only small tests or sets of multiple-choice items are administered at the

individual decision points. Second, a more realistic definition of utility or loss

functions is possible, since these functions can now be defined on the ultimate

success criterion in the complete network instead of on intermediate criteria

measuring the success on individual treatments. In this paper, a simple decision

network of a selection decision followed by one treatment and a mastery decision

will be used to make our point. First the selection-mastery problem will be

formalized. Then important distinctions will be made between weak and strong as

well as monotone and nonmonotone decision rules. Next, a theorem will be given

showing under what conditions optimal rules will be monotone. Finally, results from

an empirical example will be presented to illustrate the differences between a

simultaneous and a separate approach.

The Selection-Mastery Problem

A flowchart of the selection-mastery problem is given in Figure 1. An

example of the problem is an instructional module with a pretest and a posttest.

Figure 1 about here

The pretest is administered to select students for the module. It is assumed that the

possible actions are to admit or to reject the student tor the module. The posttest is
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used to decide whether or not the students have mastered the objectives of the

module. Typically, the posttest is an unreliable zpresentation of the objectives, and

the criterion is supposed to be a threshold on the true score underlying the test The

possible actions are to classify a student as a master or a nonmaster.

For a randomly sampled student, let the observed scores on the selection

and mastery tests be continuous random variables denoted by X and Y, with

realizations x and y, respectively. Also, it is assumed that, due to measurement error

in the mastery test, the criterion to be considered is the classical test theory true

score underlying the mastery test. Let the true score for a randomly sampled

individual be denoted by a continuous random variable T with realization I

Further, it will be assumed that the relation between X, Y, and T can be

represented by a joint density function f(x,y,t). It is important to note that the best

experiment to estimate the parameters in this density function is the one in which

a sample of examinees from the full marginal distribution of X is admitted to the

treatment and the performances of these students on the mastery test Y are

measured. Though it is possible to estimate the parameters from a distribution of X

truncated by the fact that low performing students are not admitted to the treatment,

such estimates need a parametric model for the density, which might be wrong

and/or poorly estimated.

Finally, it is assumed that the standard denoting true mastery is a threshold

value tc on T.
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Simultaneous Decision Rules

Let each of the possible actions be denoted by aii (i,j43:.1), where 1=0,1

stand for the actions of rejecting and accepting a student and j0,1 for the actions

of retaining and advancing an accepted student. Since for a rejected student no

further mastery decisions are made, the index j will be dropped for i=0.

Generally, a decision rule specifies for each possible realization (x,y) of

(X,Y) which action af is to be taken.

Weak and Strong Rules

The decision rule for the mastery decision may or may not depend on the

score X on the selection test. Intuitively, one Can imagine that the fact that a student

has delivered a high performance on the selection test leads to a more lenient rule

for the mastery decision because this prior information implies that a possible low

score on the mastery test is more likely due to measurement error than to a true low

performance. Simultaneous rules in which decisions are a function both of the

current test score and previous test scores test will be called weak rules in this

paper. As a general result, it will be proven that under obvious conditions weak rules

will necessarily have a compensatory nature. The title of the paper already alludes

to this result.

If decisions are only a function of current test scores, the rules will be

called strong (simultaneous) rules.

For the decision network of Figure 1 a weak simultaneous rule 8, can be

defined as:



{(x,y) : 8(x,y) = ao)=AxR

{(x,y) 8(x,y) = am} = Ac x B(x)

{(x,y) 8(x.y) = = AC x Bc(x),
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(1)

where A, Ac, B(x). and Bc(x) stand for, respectively, the sets of x and y values for

which a random student is rejected or admitted for a treatment and failed or passed

the mastery test. R represents the set of real numbers.

With strong rules, the sets B(x) and Bc(x) are independent of x. Strong

simultaneous rules can only be optimal if certain conditions are met. These

conditions will be given below.

Monotone and Nolunonotone Rules

Decision rules can take a monotk,;-: cr a nonmonotone form. A decision

rule is monotone if cutting scores are used to partition the sample space into regions

for which different actions are taken. For example, a (separate) rule for the selection

decision is monotone if there exists a cutting score xc such that all examinees with

are admitted and those with X<xc are rejected. All other possible rules are

onmonotone.

For our decision problem, a weak monotone rule 8 can be defined as:

a0 for X < xc

[6(X,Y) = a10 for X xc, Y < yc(x)

a 1 1
for X ?.. xc, Y _. ye(x),

(2)

with y(x) being the cutting score on Y. The fact that this cutting score is written

as a mathematical function of x will be justified below proving that y(x) is unique
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for each value of x under reasonable assumptions.

In this papet, the interest will mainly be in monotone rules. The reason for

this choice is the fact that the use of cutting scores is common practice in

educational and psychological testing, and that rules with a different form are

frequently not acceptable. However, the restriction to monotone rules is correct only

if it can be proven that for any nonmonotone rule for the problem at hand there is

a monotone rule with at least the same value on the criterion of optimality used; that

is, if the subclass of monotone rules is essentially complete (Ferguson, 1967, P. 55).

Conditions under which the subclass of monotone (simultaneous) rules is essentially

complete for the present problem will aiso be given below.

Strong Monotone Rules with Maximum Expected Utility (SMMEU)

To evaluate the use of cutting scores even if conditions for monotonicity

are not know to hold, the case of Strong Monotone Rules with Maximum Expected

Utility (SMMEU rules) is also considered. A SMMEU rule is a rule with maximum

expected utility in the subclass of strong monotone rules. The attention for SMMEU

ru s is motivated by the fact that educators are familiar with cutting scores as

decision rules and do not have a tradition of bothering about their justification.

Thus, if the sets of conditions for both strong and monotone rules to be

optimal are satisfied, the subclasses of SMMEU and strong monotone Bayes rules

are identical. Otherwise, they differ.
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Utility Structure

Generally, a utility function describes the utility of each possible action for

the possible true states of nature. Here, the utilities involved in the combined

decision problem are defined as the following additive structure

= w lui(s)(t) + w2ui(m)(t), (3)

where u.(s)(t) and
u
.(m)(t) represent the utility functions for the separate selectionl

and mastery decisions and w1 and w2 represent nonnegative weights, respectively.

Since utility is supposed to be measured on an interval scale, the weights of (3) can

always he resealed as follows:

wu.(8)(t) + (1-w)u.(m)(t)
t

(4)

where 0 w 5 L For a rejected student, zero contributions to the utility for the

separate mastery decision are assumed. Hence, it follows from (4) that 41(0 is equal

to wuo(s)(t) for all j.

It should be noted that the int tenn of (3) and (4) is a function of t and

not, for example, of a true score underlying X. This fact illustrates one of the

advantages of a simultaneous approach to decision making, namely, that there is no

need to resort to intermediate criteria of success but that for all decisions utility can

be defined as a function of the ultimate criterion in the network.

4
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Below more specific functions u(t) and ti.(m)(t) will be adopted.

Obviously, these functions will be chosen such that utility will be an increasing

function of t for the admittance and mastery decision but decreasing functions for

the rejectance and nonmastery decision. First, however, more general results will be

presented.

Expected Utility in the Simultaneous Approach

For the decision rules in (1) and the utiliiy sliructure in (4), the expected

utility for the two decision rules is equal to,

sim(A c,I3 c(x))I IN4S)(0f(x,y,Odtdydx +

A R R
fu 10 (t) f (x,y,t) dtdydx +

A c I3(x) R

u11(of(x,y,Odtdydx.

A c B c(x) R

(5)

In a Bayesian fashion, the expected utility in (5) will be taken as the criterion of

optimality in this paper.

Taking expectations, completing integrals, and rearranging terms, (5) can

be written as

Elllsim(A c,B c(x))] = wEfu(T)1 + {Eluio(T)-w4s)(T)Ix] +

A c

Elul 1(T)-u10(T)lx,y111(y Ix Irly}q(x)dx,

B c(x)

(6)
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where q(x) and h(y I x) denote the p.d.f.'s of X and Y given X = x.

It is interesting to note that the critical quantities in (6) are the posterior

expected utilities given X=x and (X=x,Y=y). It is through these quantities that

information from prior tests will play a role in later decisions in the network.

Sufficient Conditions for Monotone Rules

In this section, monotonicity conditions for the simultaneous rules are

derived. First, sufficient and necessary conditions for monotone solutions for the

separate selectiun and mastery decisions will be given. Next, sufficient conditions

for weak monotone solutions will be derived. Finally, monotonicity conditions for

strong simultaneous rules will be derived from the previous case by imposing

additional restrictions on the test-score distributions.

Conditi;ms for Separate Selection and Mastery Decisions

Conditions necessary and sufficient for selection and mastery rules to 1):.

(strictly) monotone are given in Chuang, Chen and Novick (1981). Two sets of

conditions must be met. First, the families of distributions of the true scores T given

X=x and 1' given Y=y must be stochastic increasing; that is, their cumulative

distribution functions (c.d.f.'s) must be decreasing in x and y for all t. Second, the

utility functions must be monotone. This condition requires the difference between

the utility function for the rejection (nonmastery) and admittance (mastery) decision

to change sign at most once.
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Both conditions immediately follow from the standard decision problem

addressed in statistical decision theory (e.g., Ferguson, 1967; Lindgren, 1976).

Conditions for Weak Simultaneous Rules

Let V(tlx,y) denote the c.d.f. of T given (X=x,Y=x) and H(ylx) the c.d.f. of

Y given X = x. The following theorem gives a set of conditions sufficient for a

weak monotone solution:

Theorem. An optimal simultaneous decision rule for the selection-mastery problem

is (weak) monotone if:

(m)(0 uu(m)(t) is strictly i.-creasing in t, (7)

ulOW wuo(s)(t) is strictly increasing in t, (8)

V(t I x,y) is strictly decreasing in x and y for all t, (9)

1i(y I x) is stricly decreasing in x for all y. (10)

The first condition guarantees monotone utility for the mastery decisions.

The second condition stipulates that the difference between the utility

functions for the actions am (acceptance, nonmastery) and ao (rejection) be an

increasing function of t.

The third condition requires double (strict) stochastic increasingness for

V(tix,y). Loosely speaking, this condition is met if high true scores on the mastery

test coincide with high observed scores on both the selection and mastery tests.
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The last condition also requires (strict) stochastic increasingness, and thus

that .high scores on the mastery and selection test tend to coincide.

Not all conditions in this set are straightforward generalizations of the

conditions for the separate decision problems. In particular, the conditions in (8) and

(10) are new; they are needed to link the two separate decision problems.

It should be noted that there is no condition analogous to (7) for the

selection problem. This is due to the fact that the utility component for this problem

is defined on the true score variable for the mastery test.

In the proof of the theorem, the following lemma's are needed:

Lemma 1: Let f(x) be an arbitrary function with fj f(x) I dx <o, then for any set S

of x values it holds that fsf(x)dx fs,f(x)dx with S' = (x: f(x) 0} (e.g., Ferguson,

1967, p. 201).

Lemma 2: For any increasing function k(t), the expectation E[k(T)14 is an increasing

function of z if and only if the c.d.f. of T given Z=z is stochastic increasing (e.g.,

Lehmann, 1959, p. 74).

Observe that if k(t) is a constant. EII(T)lz)] is a constant too. Hence, the

nondecrea.sing version of the lemma also holds.

Lemma 3: If (9) and (10) hold, then the marginal c.d.f. P(tlx) associated with

V(tlx,y) is stochastic increasing in x.

This lemma is proven as Wows: Let v(tlx,y) be the p.d.f. of T given X =x and

Y = y. By definition, I-P(tN) = ff v(zlx,y)h(y:x)dydi = f [ 1 -V(tlx,y)1!)(y1x)dy.

4 t
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From (9), (10) and Lemma 2, it follows that 1-P(tlx) increases in x for all t, i.e., that

P(tlx) is stochastic increasing in x.

For completeness' sake, it is observed that the c.d.f. of T given Y = y is also

stochastic increasing if (10) is replaced by the stronger condition of monotone

likelihood ratio. However, this result is not needed in the remainder of this paper.

Lemma 4. If a function ic(x,y) is (strictly) increasing in x and y, then the relation

defined by C = ((x,y)Ix(x,y)=c, c c R) is a decreasing function in x.

To proof this lemma, assume that there are two pairs (x1,y1) C and

(x2,y2) e C with x2 > x 1, for which y2 yl. Then, by hypothesis,

x(x2,y2) x(x1,y1), which contradicts the assumption. II

Proof of Theorem

Applying Lemma 1 to the second term in the integral in (6), and using

h(y I x) 0, it follows that for all Bc(X) and an arbitrary but fixed Ac:

E[Usim(A c,B c(x))1 wE4s)(T) + (E[ulo(1)-w4s)(DIx]
A

E[ull(T)-ulOMIx,y1h(yIx)dy} q(x)dx,

B c(x)0

with

130C(x) = (y: E[u11(T)-u10(T) x,y] 0). (12)

1 Li
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Again, applying the theorem to the second term in the right-hand side of (11), and

using q(x) 0, it follows that for all Ac

E[1.1sim(A c.13(;:(x))) wEttlIV(T)1 + {E[u10CD-wuPs)(T)Ixl +

with

Ao

E[u1i(T)-uio(T)Ix,y]h(y lx)dy}q(x)dx,

B c(x)0

(s)Ao = x: E1uio(T)-wuo (T)Ix] +

Null(T)-ulomix,y]h(ylx)dy 0 1.

B c(x)0

(13)

(14)

It is now proven that the left-hand sides of the inequalities in (12) and (14)

increase in y for all x and in x for all y, respectively. If these features hold, then (6)

is maximal for the sets A(Jc=ixc,m) and Boc=lyc(x),00), where xc and y(x) are the

values of x and y for which the inequalities in (12) and (14) become equalities. (The

numbers xc and y(x) may be infinitely small or large implying that the same

decisions have to be made for all examinees.)

(i) Since u11(t)-u10(t) = (1-w)[u1(m),- )(t) uo---(01and 1-w 0, it follows from

the condition in (7) that the difference between these two utilities is increasing too.

Therefore, (9) and Lemma 2 together imply that
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EN11(T)-u10(T)lx,y1 is increasing in y for all x (15)

and in x for all y,

and thus that the sets B0C(x) take the required form tyc(x),c0) for all values of x.

This result will be used in the following part of the proof.

(ii) From (8)-(10), Lemma 2 and Lemma 3, it follows immediately that the first

term in the left-hand side of (14) is increasing in x.

For notational convenience, the term E[u11(T)-u10(T)lx,y1 is denoted as t(x,y).

Note that t(x.y) is an increasing function of y which is nonnegative for y y(x)

for all values of x. Now for any x2 > xl, it follows from Lemma 4 that

(x2,y)h(y x2)dy f (X 1,y)h(y I Ody >

Yc(X2) YC(X1)

T(X2,y)h(y 1)(2)4 (X Or)h(y1x1)dy >

YC(X1) YC(X

T(X1,y)Itl(y I x2) h(YIx1)Idy =

Ye(xl)

411

f v(y)[11(Y I x2) -11(Y

(16)

where 9(y) = Ity.(i)...)(y).r(xj,y). By definition, 9(y) is a nondecreasing function of

y, and it follows from (10) and Lemma 2 that (16) is positive. Hence, it can be
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concluded that the second left-hand term in (14) is increasing in x, and thus that the

set Auc takes the required form [xc,...).

Monotonicity Conditions for Strou_Simultaneous Rules

For strong simultaneous rules, Boc(x) is not allowed to depend on x.

Therefore, as an additional condition, it must hold for v(tlx,y) and the p.d.f. of T

given Y=y that

v(tlx,y)=g(tly). (17)

This condition, which immediately follows from (12), implies that all information

T relevant for the decision is contained in Y=y, and that, once Y=y is given, the

observation X=x does not add any information. If the condition holds, then,

obviously, the use of simultaneous rules will not add any efficiency to the decision

making procedure.

Calculation of Simultaneous Rules

From the theorem it follows that the optimal weak and strong simultaneous

rules can be calculated as the points at which the inequalities in (12) and, (14) turn

into equalities. For the weak rules, it should be noted that the sets Boc(x) and Aoc

are sequentially defined. First, for all values of x, the sets Boc(x) are defined by

(12). Only then the set Aoc is defined by (14). Hence, optimal weak rules have to

be calculated in this sequence.



A Compensatory Approach

18

SMMEU rules can be calculated solving the system of equations consisting

of the partial derivatives of (6) w.r.t. xc and yc equated to zero.

In the empirical example below, for the calculation of all cutting scores

Newton's method for solving nonlinear systems was used. The method was

implemented in a computer program called NEWTON. Another program, UTILITY,

was written to analyze differences in expected utility for the various rules. Copies

of the programs are available from the authors of the paper upon request.

Optimal Separate Rules

It is observed that optimal rules for the separate decisions can easily be

found by imposing certain restrictions on E[Usim(Ac. Bc(x))].

First, substituting w = 1 into (6), the expected utility for the separate

selection decision EfU(s)(Ac)], can be written as

ER1 ( (A )] E[uo (T)] + L,148)(T)-u(VM1x1q(x)dx.s) (s)

A c

(18)

Next, substituting w = 0, Ac = R (i.e., accepting all students for the

instructional treatment), and Bc(x) = Bc into (6) gives the following result for the

expected utility of the separate mastery decision:

E[II(m)(B (:)] = E[ur(T)1 + E[u(111.1)M-4111)(T)Iy1s(y)dy, (19)

13 c
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where s(y) denotes the p.d.f. of Y.

Analogous to the si'multaneous approach, it can easily be verified that upper

bounds to Eftl(s)(Ac)] and E[U(m)(Bc)] are obtained for the sets of x and y values

for which E(111(s)(T)-u0(s)(T) I x] and E(u1(m)(T)-1.:0(m)Cf) I y] are nonnegative,

respectively. Assuming dr& the monotonicity conditions for the separate decisions

are satisfied, the optimal cutting scores for the separate selection and mastery

decisions, say ic and 37c, can be obtained by solving Efu j(s)(T)-u0(s)(T) I xl and

Efui(m)(T)-uo(In)(T) I y] for xc and yc, respectively. For further details, see

Mellenbergh and van der Linden (1981) and van der Linden and Mellenbergh

(1977).

An Empirical Example

Optimal rules were calculated for a selection-mastery decision problem

consisting of a CAI module on elementary medical knowledge preceded and

followed by a selection and mastery test, respectively. Both tests consisted of 21

items and had possible test scores ranging from 0-100. Data were available for a

sample of 76 freshmen in a medical program. The instructors in the program

considered student as having mastered the module if their true scores were larger

than 55. Therefore, tc was fixed at this value.

Score Distributions

It was assumed that (X,Y,T) followed a trIvariate normal distribution. Under

this assumption, the bivariate distribution of (X,Y) is also normal. Further, the

regession function E[Y1x1 is linear.
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These two observable consequences were tested against the data using a

chi-square and a t-test. The probabilities of exceedance were 0.219 and 0.034,

showing a satisfactory fit which confirmed our visual inspection of various plots of

the disiributions.

Some descriptive statistics for the two tests are given in Table 1.

Utility Structure

(4):

Table 1 about here

The following choice was made for the functions u(t) and u(t) in

=

u (m)(t) =

bo(s)(tc-t) + do(s)

bi(s)(t-tc) + d1(s)

b0(111)(tc-t) d0(in)

hi(m)(t_tc) d1(m)

for i = 0

for i = 1

for j = 0

for j = 1

(20)

21)

(tn)where bots', > 0 (i,j = 0,1). The parameters di(s) and d(m) can represent, for

example, the fixed amount of costs involved in following an instructional module

and testing the examinees. The condition bo(s), b1(8) > 0 states that utility be a

decreasing function for the rejection decision, hut an increasing function for the
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acceptance decision. Similarly, the condition bo(m), bi(m) > 0 expresses that the

utilities associated with failing and passing the mastery test be decreasing and

increasing functions in t, respectively.

The same utility functions were used in an analysis of separate selection

and mastery decisions in Mellenbergh and van der Linden (1981) and van der

Linden and Mellenbergh (1977). For other possible utility functions, see Novick and

Lindley (.1979).

Monotonicity Conditions

The condition. in (7) is met since Oln) > 0,

It can easily be verified that the condition in (8) is satisfied if the weight

w and the parameters bo(s), b1(s), and bo(m) are chosen such that

w > b0(m)/00(s)+1)1(0+b0(n)). (22)

All numerical values for the utility parameters in the example were chosen to meet

these two requirements.

Under the model of a trivariate normal distribution for (X,Y,T) in this

example, the conditions in (9)-(10) were met by the positive slopes of the regression

lines and planes in this distribution.

Finally, the additional condition for solutions to be strong monotone in (17)

was tested comparing the two regression lines EITlx,y1 and E[Tlyl using an F-test.

The probability of exceedance was 0.038, indicating that the result was just

significant for cc,-.05. Therefore, only SMMEU rules and no optimal strong rules

were considered.
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Results for the Simultaneous Rules

For several values of the utility parameters, weak monotone and SMMEU

!tiles were calculated. The results are reported in Table 2, where the cutting scores

tbr the SMMEU rules are denoted as x and y

Table 2 about here

As is clear from the results, the consequences of increasing the values of

the parameters b(s) and b(m) were decreases of the optimal weak and SMMEU

cutting scores on the selection test. On the other hand, a decrease of the amount of

constant utility, di(s) and di(m), resulted in increases of the optimal weak and

SMMEU cutting scores on the selection test. Furthermore, Table 2 indicates that the

optimal weak and SMMEU cutting scores on the selection test increase in w for

utility structures (1)-(3) and (4)-(6) in Table 2, whereas the opposite holds for utility

structures (7)-(9) in the table.

Results for the Separate Approach

The optimal cutting scores 5ic and Yc for the separate selection and mastery

decisions are also reported in Table 2. In particular for w = 0.3, the weak cutting

scores y(x) on the mastery test generally were high compared with Ye.

The results did not differ much from those obtained for the weak monotone

rules. This fact can be explained as follows: Students who were just accepted in the

case of a weak monotone rule had to compensate their rather low cutting scores on

the selection test with relatively high scores on the mastery test compared with

students accepted in the case of semrate rules. However, the decreasing character
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of yc(x) in x implied that only students accepted with selection scores equal to or

just above xc did need these rather high scores on the mastery test to reach the

mastery status.

Comparison of the Expected Utilities

For the simultaneous approach a gain in expected utility relative to the

separate approach was expected. To see whether this expectation could be

confirmed, the weighted sum of the expected utilities for the optimal separate rules

was compared with the expected utilities for the optimal weak monotone rules. The

results are also displayed in Table 2.

It can be seen that the expected utilities for the optimal weak monotone

rules yielded the largest values for all uti;ity structures. This result was in

accordance with our expectations. Furthermore, Table 2 indicates that the expected

utilities for the optimal weak monotone rules were only slightly larger than for the

SMMEU rules. Finally, the table shows that for all three approaches, the expected

utility yielded the largest value for w = 0.9. In other words, the utility for the

selection decision contributed most to the expected utility for the optimal

simultaneous rules in this study.

Concluding Remarks

For a monotone utility structure, Lemma 4 shows that under the natural

condition of the selection and mastery test scores being stochastic increasing in the

true score on the mastery test, weak cutting scores for mastery decisions are a

decreasing function of the scores on the selection test. As already explained, this
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feature introduces an element of compensation in the decision procedure: It is

possible to compensate low scores on the mastery test by high scores on the

selection test. A quantitative estimate of this effect can be calculated for the data set

in the empirical example above. Substituting the estimated regression plane

E[Tlx,y] = a + Bx +yy into the left-hand-side in (12) and solving for y(x) yields

y(x) = [(d,(:*-dr)/(br+br) +, _a -Mil,.

The derivative of this equation w.r.t. x is equal to -3Iy, which for the data set was

estimated as -.675. It follows for all utility structures in this example that the cutting

score y(x) on the mastery test has to be lowered by .675 for each score point above

xc on the selection test.

Although the area of individualized instruction is a useful application of

simultaneous decision making, it should be emphasized that the optimization models

advocated in this paper have a larger scope of application. For any situation in

which subjects are accepted for a certain treaunent on the basis of their scores on

a selection test with attainments evaluated by a mastery test, the optimal rules

presented in this paper can improve the decisions. An example is psychotherapy

where clients accepted have to pass a success criterion before being dismissed from

the therapy.
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Table 1

Statistics Selection and Mastery Tests (X and Y)

Statistics X

Mean 50.679 62.436

Standard Deviation 8.781 9.456

Reliability 0.773 0.802

Correlation 0.751
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Figure Caption

Figure 1. A system of one selection and one mastery decision.
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