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Abstract

The purpose of this chapter is to consider some applications of Bayesian decision

theory to intelligent tutoring systems. In particular, it will be indicated how the
= problem of adapting the appropriate amount of instruction to the changing nature
_ of student’s capabilities during the learning process can be situated within the
: general franework of Bayesian decision theory. Two basic elements of this
approach will be used to improve instructional decision making in intelligent
tutoring systems. First, it is argued that in many decision-making situtions the
linear loss model is a realistic representation of the losses actually incurred.
Second, it is shown that the psychometric model relating observed test scores to
the true level of functioning can be represented by Kelley’'s regression line from
classical test theory. Optimal decision rules will be derived using these two

features.
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Introduction

During the last two decades, adaptive instructional systems have been studied by
many researchers (e.g., Atkinson, 1976; De Diana & Vos, 1988; Gegg-Harrison,
1992; Hambleton, 1974; Hansen, Ross & Rakow, 1977; Holland, 1977; van der
Linden & Vos, 1994; Vos, 1990, 1991, 1992, 1993, 1994a, 1994c, 1995; Vos &
De Diana, 1987). Although different authors have defined the term “"adaptive

instruction” in a different way, most agree that it denotes the use of strategies to

adapt instructional trcaunents to the changing nature of student abilities and

characteristics during the learning process (see, e.g., Landa, 1976).

In the context of computer-based instruction (CBI), adaptive instructional
programs are often qualified as intelligent tutoring systems (ITSs). Examples of
such systems can be found in Capell and Dannenberg (1993) and De Haan and
Oppenhuizen (1994). Tennyson, Christensen, and Park (1984) have described a
computer-based adaptive instructional system denoted as the Minnesota Adaptive
Instructional System (MAIS). The authors consider MAIS as an ITS, because it
exhibits some machine intelligence, as demonstrated by its ability to improve
decision making over the history of the system as a function of accumulated
information about previous students. In the literature, successful research projects
on MAIS have been reported (e.g., Park & Tennyson, 1980; Tennyson, Tennyson
& Rothen, 1980).

Initial work on MAIS began as an attempt to design an adaptive
instructional strategy for concept-leaming (Tennyson, 1975). Concept-learning is

the process in w'uch subjects learn to categorize objects, processes or events. A
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model for the instruction for the leaming of concepts is described by Merrill and
Tennyson (1977). These a:uthors suppose that the leaming of concepts consists of
two phases. The first one .s the formation of a prototype (i.c., formation of
conceptual knowledge) and the second is the acquisition of classificatory skills
(i.e, development of procedural knowledge). From this assumption, an
instructional design model for the learning of concepts has been developed. This
model has two basic components: content structure variables and instructional
design variables. Furthenmore, an important role in the model is played by
expository examples (statement form), i.e. (non)examples, which organize the
content in propositional format and interrogatory examples (question form), i.e.
(non) examples, which organize the coutent in interrogatory format (see
Tennyson and Cocchiarella, 1986, for a complete review of the theory of
concept-leaming).

In MAIS, eight basic instructional design variables directly related to

specific learming processes are distinguished. In order to adapt instruction to

individual leamer differences (abtitudes. prior knowledge) and leamning needs

(amount and sequence of instruction), these variables are controlled by an ITS.
Three out of these eight variables are directly managed by a computer-based
decision strategy, namely, amount of instruction, instructional time control, and
advisement on learning need. Thic functional operation of this strategy was related
to guidelines described by Novick and Lewis (1974).

Four empirically based adaptive instructional models have been reviewed
by Tennyson and Park (1984). The four models are Atkinson's mathematical
model, Ross's trajectory model, Ferguson’s testing and branching model, and the
MAIS model. These four models vary in degree to which they use six

characteristics  (initial diagnosis, sequential character, amount of instruction,
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sequence of instruction, instructional display time, and advisement on leaming
need) identified as essential in an effective adaptive instructional system. The
authors conclude that MAIS provides for a complete adaptive instructional model,
because all six defined characteristics of effective adaptive instruction are
integrated into this model.

The purpose of this paper is to review the application of the MAIS
decision procedure by Tennyson and his associates. First, it will be indicated how
this proce Jure can be situated within the general framework of Bayesian decision
theory (e.g., Ferguson, 1976; Lindgren, 1976), and what implicit assumptions
have to be made in doing so. Next, it will be demonstrated how the decision
component in MAIS can be improved by using other results from this
decision-theoretic approach. In particular, it will be indicated how two features of
the MAIS decision procedure can be improved by using other results from
decision theory. The first feature is to replace the assumed threshold loss function
in MAIS by a linear loss function. The second feature is Kelley’s regression line
of classical test theory as the psychometric model relating observed test scores to
the true level of functioning instead of the binomial model assumed in MAIS.

We shall confine ourselves in this paper only to one of the three

instructional design variables directly managed by the decision component in

MAIS, namely selecting the appropriate amount of instruction in concept or

rule-leamming situations. In MAIS, selecting the appropriate amount of instruction
can be interpreted as determining the optimal number of interrogatory examples.
Although the procedures advocated in this paper are demonstrated for
instructional decision making in MAIS, it should be emphasized that these
procedures are not limited to MAIS but, in principle, can be applied to decision

components in any arbitrary ITS. In the next section, it will be indicated how the
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problem of selecting the appropriate amount of instruction in MAIS can be

situated within the general framework of Bayesia'. decision theory.
Adapting the Amount of Instruction

The derivation of an optimal strategy with respect to the number of interrogatory
examples requires an instructional problem be stated in a form amenable to a
Bayesian decision-theoretic analysis. In a Bayesian view of decision making,
there are two basic elements to any decision problem: a loss function describing
the loss I(a;,t) incurred when action g is taken for the student whose true level of
functioning is t (0 < t £ 1), and a probability function or psychometric model,
f(xit), relating observed test scores X to student’s true level of functioning t.

These basic elements have been related to decision problems in
educational testing by many authors (e.g., Atkinson, 1976; Huynh, 1980;
Swaminathan, Hambleton, & Algina, 1975; van der Linden, 1990). As the use of
the decision component in MAIS refers to mastery testing, we shall discuss here
- only the application of the basic elements to this problem.

It is assumed that, due to measurement and sampling errors, the true
level of functioning t is unknown. All that is known is the student’s observed test
score X from a small sample of n interrogatory examples (x = 0,1,..,n).
Furthermore, the following two actions are available to the decision-maker:
advance a student (aj) to the next concept if his/her test score x exceeds a certain
cutting score xc on the observed test score scale X, and retain (ag) him/her

otherwise. Students with test scores x below the cutting score x, are provided

c
with additional cxpository cxamples. A new interrogatory example is then

generated. This procedure is applied sequentially until cither mastery is attained

B 9
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or the pool of test items is exhausted.

The mastery decision problem can now be stated as choosing a value of
X, that, given the value of the criterion level t, is optimal in some sense. The
criterion level t, € [0,1] - the minimum degree of student’s true level of
functioning required - is set in advance by the decision maker. It is the
unreliability of the test that opens the possibility of the mastery decision problem
(Hambleton & Novick, 1973).

Generally speaking, a loss function specifies the total costs of all
possibie decision outcomes. These costs concemn all relevant psychological,
social, and economic consequences that the decision brings along. An example of
economic consequences is extra computer time associated with presenting
additional instructional materials. In MAIS, the loss function is supposed to be a
threshold function. The implicit choice of this function implies that the
"seriousness” of all possible consequences of the two available actions can be
summarized by four constants, one for each of the four possible decision

outcomes (see Table 1).

Insert Table 1 about here

For convenience, and without loss of generality (e.g., Davis, Hicknan & Novick,
1973), it is assumed in Table 1 that no losses occur for correct decisions.
Therefore, the losses for correct advance and retain decisions, i.e., 17, and 100.
can be set equal to zero.

In the decision component of MAIS, a loss ratio R nust be specified. R
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refers 10 the relative losses for advancing a leamer whose true level of
functioning is below t. and retaining one whose true level exceeds t., or,
equivalently, the losses associated with a false advance compared to a false retain
decision. From Table 1 it can be secn that the loss ratio R equals 1;¢/lg; for all
values of t.

Finally, it is assumed that the psychometric model in MAIS, relating
observed test scores x to the true level of functioning t, can be represented by the

well-known binomial model:

fx]0) = () t X=X, )

In a Bayesian procedure, a decision problem is solved by minimizing the
Bayes risk, which is minimal if for each +.!cC x of X an action with smallest
posterior expected loss is chosen. The posterior expected loss is the expected loss
taken with respect to the posterior distribution of t.

It can be seen from the loss table that a decision rule minimizing

posterior expected loss is to advance a student whose test score x is such that
loj Prob(T 2 t Ix,n) > 1 gProb(t < t Ix.n), V)

and to retain him/her otherwise. Since 1y > 0, this is eqguivalent to advancing a

student if
Prob(t > t Ix.n) 2 R/(1+R), K)]

and retaining him/her otherwise. Prob(t 2 t.Ix.n) denotes the probability of the
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student’s true level of functioning i~ equal to or larger than t. given a test score x
T on a test of length n. In fact, this probability is one minus the cumulative
posterior distribution of t. In MAIS, this quantity is called the "beta value" or
“operating level" (Tennyson, Christensen, & Park, 1984).
" It should be noted that, as can be seen from the optimal decision rule,
the decision maker does not need to specify the values ljp and 1y completely.
_ He needs only assess their ratio 1;/ly;. For assessing loss functions, most texts
on decision theory propose lottery methods (see, for example, Novick & Lindley,
1979; Vos, 1994b). Bat, in principle, any psychological scaling method can be
usced.
In order to initiate the decision component in MAIS, three kinds of
- parameters must be specified in advance. Beside the parameters t. and R, a
probability distribution representing the prior knowledge about t must be
- available. In MAIS, a beta distribution, B(a,B), is used as a prior distribution,
and a pretest score together with infonmation about other students is used to
specify its parameter valucs.
Keats and Lord (1962) have shown that simple moment estimators of o

o and P, respectively, are given as

o= (14 Uy
B=-a+ n/ppre -n, )]

where Hpre and Ppre denote the mean and KR-21 reliability cocfficient of the
test scores from the previous students, respectively, and n represents the nuinber
of test items in the pretest. As an aside, it may be noted that if administering a

pretest is not possible for any reason, the prior distribution of a student can be

12
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characterized by a uniform distribution on the interval from zero to one. In that
case, the parameters of the beta prior should be specified as a ='f = 1. Also, the
prior distribution can be estimated on the initial period of instruction, for
instance, on the first four or six interrogatory examples (Tennyson, Christensen,
& Park, 1984).

From an application of Bayes’ theorem, it follows that the posterior
distribution of t will again be a member of the beta family (the conjugacy
property). In fact, if the prior distribution is B(c,B) and the student’s test score is
X itom a test ot length n, then tne posterior distribution is B(a+x,3+n-x). The
beta distribution has been extensively tabulated (e.g., Pearson, 1930). Tennyson
and Christensen (1986) use a nonlinear regression approach that fits the best
polynomial as an approximation of the beta distribution. Normal approximations
are also available (Johnson & Kotz, 1970, sect. 2.4.6). Using numerical
procedures for computing the incomplete beta function, é computer program
called BETA was developed in PASCAL to calculate the beta values for the
purpose of this paper. The program is avaiiable on request from the author.

The MAIS decision procedure for adapting the number of interrogatory
examples can now be summarized as follows: If a student’s beta value exceeds
the quantity R/(1+R), (s)he is passed to the next concept. However, if his/her beta
value is below this quantity, his/her posterior distribution is used as a prior
distribution in a next cycle. A new interrogatory example is then gencrated. The
procedure is applied iteratively until cither the beta value exceeds the quantity
R/(1+R) or all interrogatory examples have been presented. Notice that the
iterative updating of the beta values takes into account improvements in leaming
while a straight percentage per number of items weights all responses equally.

Consequently, as the student makes increasingly correct answers in the latter part
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of instruction, those answers becoine weighted more than in the initial period of
instruction (Tennyson, Christensen, & Park, 1984).

In the MAIS decision procedure, it is assumed that the form of the loss
structure involved is a threshold function. Therefore, only the loss ratio R has to
be assessed empirically. In addition to the threshold loss function, however, more
realistic functions have been adopted in decision theory. One such function will
be considered below.

The Linear Loss Model

An obvious disadvantage of the threshold loss function is that it assumes constant
loss for students to the left or to the right of te» no matter how large their
distance from f.. For instance, a misclassified "true master” (see Table 1) with a
true level of functioning just above t. gives the same loss as a misclassified "true
master” with a true level far above t.. It seems more realistic to suppose that for
misciassified "true masters” the loss is a monotonically decreasing function of t.
Moreover, as can be secn in Table 1, the threshold loss function shows a

"threshold” at the point t., and this also seems unrcalistic in many cases. In the

c ¢
neighborhood of this poiat, the losses for comrect and incorrect decisions
frequently change smoothly rather than abruptly.

In view of this, Mellenbergh and van der Linden (1981) proposed the

following linear loss function:

bot-te) + dg for i = 0 (retain)
bite- + dg for i = 1 (advance),

l(ﬂi,() = {
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where by, by > 0. The above defined function consists of a constant term and a
term proportional to the difference between the true level of functioning t and the
specified criterion level t.. The constant amount of loss, d; (i = 0,1), can, for
example, represent the costs of testing. The condition by, by > 0 is equivalent to
the statement that for actions ay and a;, loss is a strictly increasing and
decreasing function of the variable t, respectively. The parameters b; and d; have
to be assessed empirically (e.g., Novick & Lindley, 1979; Vos, 1994b). Figure 1

displays an example of this function.

Insert Figure 1 about here

The lincar loss function seems to be a realistic representation of the losses
actually incurred in many decision making situations. In a recent study, for
example, it was shown by van der Gaag, Mellenbergh, and van den Brink (1988)
that many empirical loss structures could be approximated satisfactory by linear
functions.

Since this paper is only lpcmlt to give a flavor of the possible
applications of Bayesian decision theory to ITSs, only the case dg = dp will be
considered in the linear loss function of (5). In other words, it will be assumed
that the amounts of constant loss, d;, for both actions are equal, or there are no
constant losses at all (i.e., no costs of testing are involved). Confining ourselves
to this special case, the mathematical derivations given below will remain rather
simple. For the more general and a bit more complicated case of dy # dy, we

refer to Vos (1994b), It should be noted, however, that no fundamentally new
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ideas are encountered in this more general case.
For the case of do = dl' it can easily be verified from (5) that the
decision rule that minimizes the posterior expected loss in case of a linear loss

function is to advance a student with test score x for which

Eltix,n] 2 t, )

and to retain him/her otherwise. As can be seen from (6), under the assumption

of dy = dy, there is no need to assess the parameters d; and b; in adapting the
number of interrogatory examples. In this case, the optimal decision rule takes
the rather simple form of advancing a student if his/her expectation of the
posterior distribution of t is equ>1 to or larger than the specified criterion level t .,
and to retain him/her otherwise. Following the same terminology as in the
threshold loss model, the expectation of the posterior distribution of t will be
denoted as the "linear value". So, a student is advanced in the threshold loss
model if his/her beta value exceeds the quantity R/A1+R) and is advanced in the
linear loss model if his/her lincar value exceeds the criterion level t..

Using the fact that the expectation of a beta distribution B(a,B) is equal
to o/(o+p), and thus, the posterior expectation equals (o+x)/(a+B+n), it follows

from (6) that a student is advanced if his/her test score x is such that
x 2 t(a+B+n) - o,
and retained otherwise.

In MALS, it is assumed that the fonm of the psychometric model relating

obscrved test scores to student’s true level of functioning can be represented by
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the binomial model (Equation 1). In the next section, another psychometric model

frequently used in criterion-referenced testing will be considered.

Classical Test Model

The expectation of the posterior distribution, E[tlx,n}], represents the regression of
t on x. A possible regression function is the linear regression function of classical
test theory (Lord & Novick, 1968):

E[tlx,n] = [pXX'X + (l'pXX') px]/n. (8)

with py and pyy- being the mean and KR-21 reliability coefficient of X (i.e,,
the group to which the student belongs), respectively. Equation 8 is known as
Keliey’s regression line. According to Lord and Novick (1963), Equation 8 is "an
interesting equation in that it expresses the estimate of the true level of
functioning as a weighted sum of two separate estimates - one based upon the
student’s observed score, x, and, the other based upon the mean, py- of the
group to which s(he) belongs. If the test is highly reliable, much weight is given
to the test score and little to the group mean, and vice versa." (p.65)

Substituting (8) into (6), and solving for x gives the following optimal

decision rule

X 2 []Jx(pxxﬂl)'ﬂl(c]/pxx‘ (())

Since 0 < pyyr € 1, and, thus -1 < pyy:-1 < 0, it follows from (9)
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that py and the optimal cutting score are related negatively. The higher the
average perforance, the lower the optimal cutting score. Hard-working students
are rewarded by low cutting scores, while less hard-working students will just be
penalyzed and confronted with high cutting scores. This effect is the opposite of
what happens when norm-referenced standards are used (van der Linden, 1980).
They vary up and down with the performances of the examinees. Van der Linden
(1980) calls this effect a "regression from the mean”.

It should be stressed that, as can be seen from (9), the optimal cutling
score, i.e., the number of interrogatory examples to be administered to the
student, depends upon py and pyy-. Hence, it follows that the decision
component in MAIS allows for an updating after each response to an
interrogatory example. This explains why, though the decisions for determining
the optimal number of interrogatory examples arc made with respect to an
individual swdent, the rules for the decisons are based on data from all students
taught by tae system in the past and, in doing so, are improved continuously. In
other words. instructional decision-making procedures for ITSs can be designed
in this way; that is, a system of rules improving itself over the history of the

system as a result of systematically using accumulated data from previous

students. The parameters of the model, py and pyy-, are updated each time a

student has finished his/her dialogue with the system.

Comparison of the Models

In this scction, the threshold loss, lincar loss, and classical test model wili be

compared with each other. First, both the threshold and linear loss model will be
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compared with the classical test model. Next, the threshold and linear loss model
will be compared with each other.

As noted earlier, both the threshold and linear loss model do not take
test scores into account of the group to which the student belongs. Both models
were primarily designed for instructional decision making on the level of the
individual student. The classical test model, however, explicitly takes into account
both the studenit’s observed test score and the mean of the group to which s(ue)
belongs, which is illustrated by the "regression from the mean" effect.

The “individual” models (i.e., the threshold and linear loss model),
however, explicitdy take into account information about other students (so-called
"collateral” information) to specify the parameter values of a distribution function
representing the prior knowledge about the true level of functioning. In the case
of a beta distribution, as shown by Keats and Lord (1962), the estimates o and §

of the prior distribution are given by (4). Inserting (4) into (7) results into

% 2 [re(Pppe DHICYP e (10)

Comparing (9) and (10) with exach other, it follows immediately that the
lincar loss model and classical test model yield the same optimal cutting score if
Hpre = MX and pprc = pyxs that is, if the means and KR-21 reliability
coefficients of the pretest scores and scores of the group to which the student
belongs are the same. Under the (realistic) assumnption Ppre = PXX' = P» and
using -1 < p-1 £ 0, it follows from (9) and (10) that the optimnal cutting score in
the classical test model can be set lower than in the linear loss model if

HX > Hpre and vice versa. This makes sense, because this implies that the

student is rewarded for performing better than the average student from the
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‘ “collateral” group. Using a nonnal approximation for the beta distribution and
1 applying a logistic transformation with scale parameter equal to 1.7 (e.g., Lord &
Novick, 1968, sect. 17.2), the same conclusion can easily be derived for the
lhresholél loss and classical test model (Vos, 1994b).
After having compared the threshold loss and linear loss model with the
‘ classical test model, these two “individual” models will now be compared with
‘ each other. Setting t. equal 10 0.7, the beta values (left-hand side of Expression
3) and linear values (left-hand side of Expression 6) were computed using the
program BETA. Since pretest information was available, o, and B were estimated
from (4) with n = 10, Hpre = 8, and ppre = ().8. The results of the computations
for the threshold and lincar loss model are given in Tables 2 and 3, respectively,

for 10 test items and different number correct scores.

Insert Table 2 about here

Insert Table 3 about here

- As can be seen from (6), a student is advanced in the linear loss model
— if the number correct score of his/her linear value cxceeds = 0.7. In Table 3,
~- these values are indicated by an asteriks. Similarly, as can be seen from (3), a

student is advanced in the threshold loss model if his/her beta valug exceeds the

guantity R/(1+R). Let vus suppose that the relative losses associated with a false
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advance compared to a false retain decision are considered equally worse (i.e.,
1o = 157)- This implies that R = 11¢/ly) = 1, and, thus, R/(14R) equals 0.5. In
Table 2, the values for which the number coriect score exceeds the quantity
R/(14R) = 0.5 are also indicated by an asteriks. Using the program BETA, in
Table 2 it is also indicated for which value of the loss ratio R, say R (0.7), both
models yield the same optimal cutting score X if t. is set equal to 0.7. The
optimal cutting score X, for the linear loss model was derived from (7) for
t. = 0.7 and is depicted in Table 3.

Tables 2 and 3 indicate that with this choice of the loss ratio R, the
number correct score for which a student is granted mastery status does not differ
much in both models. Only if the number of items is equal to 9 a student needs
one more item correct in the linear loss model than in the threshold loss model
for heing advanced. So, the linear loss model is somewhat more severe than the
threshold loss model in the case of R = 1.

This can also be concluded from examining the values of R.(0.7),
because all these values are larger than 1. l'lenc‘c. if it is required that a student is
advanced in both models with the same number correct score, then, the losses
associated with a false advance decision should be considered more worse than
the losses associated with a false retain decision. Since Table 2 shows that
R.(0.7) can be lowered with increasing number of items, however, both false
decisions become more and more equally worse with increasing values of n.

Of course, the values of R for which studcnts are advanced with the
same number of correct score in both models depend upon the value of t..
Thercfore, in Table 2, these values of R are also displayed for t. = 0.6 and
t. = 0.8 denoted as R (0.6) and R (0.8), respectively. As can be concluded from

Table 2, the lincar loss model becomes more and more severe than the threshold

<1
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loss model for increasing values of t., whereas for decreasing values of t. the

opposite happens.

Finally, it should be noted that for any choice of the loss ratio R and
criterion level t., always a linear loss model can be found yielding the same
optimal cutting score by choosing appropriate values for the linear loss
parameters b; and d;. Hence, the threshold loss model can be considered as a
special case of the linear loss model. In other words, the linear loss model offers
us a great deal of flexibility in designing the adaptive decision making procedure
in MAIS. In the program BETA, the optimal cutting scores x in the linear loss
model and its associated R values can also be computed for the general case of
dp # d;. For this general case of the linear loss model, it is shown in Vos
(1994b) that a student is advanced to the next concept if his/her linear value
exceeds the t-coordinate of the intersection point of both loss lines from (5),
which is equal to [t +(d-dg)/(bg+bp)]. All results reported in this paper,
however, can be obtained by setting, in addition to by, by > 0, dg and d equal

to each other in the computer program BETA.

Concluding Remarks

In this paper it was indicated how the MAIS decision procedure could be
fornalized within a Bayesian decision-theoretic framework. In fact, it turned out
that this decision procedure could be considered as a sequential mastery decision.

Morcover, it was argued that in many situations the assumed threshold
loss function in MAIS is an unrealistic representation of the losses actually

incurred. Instead, a lincar loss function was proposed to mect the objections to
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threshold loss.

Further, Kelley's regression line of classical test theory was proposed as
the psychometric model relating observed test scores to the true level of
functioning. Using this psychometric model instead of the binomijal model
assumed in MAIS, ISSs can be designed in whick the determination of the
optimal number of interrogatory examples for an individual student is based on
data from all students taught by the system in the past.

Integrating these two features into MAIS, it might be expected that the
computer-based decision strategy in MAIS can be improved. Using computer
simulation and deriving theoretical implications, a critical comparison of the
models was carried out in order to validate these two extensions of MAIS. The
results of the computer simulations and theoretical implications indicated that
both extensions were realistic. That is, both extensions of MAIS are potentially
‘valuable and feasible for current ITS applications. Whether or not the proposed
linear loss model and the classical test model are, however, real improvements of
the present decision component in MAIS (in terms of student performance on
posttests, learning time. and amount of instruction) must be decided on the basis

of empirical data.
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Table 1

Twofold Table for Threshold Loss Function

True level

t2 tc i<t
(true naster) (true nonmaster)

Advance 110

Decision

Retain




Applications of Bayesian Decision Theory

26

378V TIVAY Ad0J L5349

116z 1208017

tZHTT=(L1 007y

1990°1=(9°0)°Y

66°0 56°0 28°0 L09°0 S€°0 910 90°0 10°0 10°0>  T10°0> anjea viog
o1

0Lz 1=18'0)7y tep1 T=(L 0y 11901219017y

66°0 v6°0 LLo 750 L0 11°0 £0°0 10°0>  T10°0> anfea wieg
6

fpgT 1=(8 07y 1351 T=4L" 027y 10L0°T1=1970)7Y

660 16°0 .70 PEo 0Z2°0 L0°0 z0°0 10°0> antea vied

8

'10¢71=08"0)7Y 1691 T=(L°0)°7Y 'PLGT=(9°0)7Y

66°0 88°0  ,¥9°0 $€°0 P10 ¥0°0 10°0 antea viag

L

1228 1=(8' 014 9 T T=(L"0) 7y T6L0T7(9° 017y

86°0 P80 9570 9270 60°0 20°0 an{ea vieg

9

topsT=(8' 01"y 18T T=(L 017y ‘+80°1=(9°0)°4

50 ,8L°D 5t 0 810 S6°0 antea eaeg

s

toogcr=igr 0y pOT T=(L7007Y T150°T1-19° 0174

969 wo St 0 1o antes eiag

t

Lo 1=(87 0174 Tz T=L 0 2d TRen Tt 01y

£6°0 L1570 vZ°0 anyes eiog

£

Terr=(810)7y ST T=1L0 7Y THTT 12190174

L0670 60 anyes eiag

z

fors 1=(8"0)Y 1062 T=12°0)°Y 12T T=t9 012y

EN enfea eieg

1

01 5 8 L 9 S b £ z 1 Taquny] wea]

308130) asquni

sonfea 24 puR (9437 UOTJISITID (L°( © 3P ID2IIC) I3qUNN pue Iaquny wall

Aq paieInore) santea weieg

*Z e1qey




f Bayesian Decision Theory

ications O

Appl

27

TIYIVAY AdOO 1538

- . . . " mh.wnlvx
9670 88°0 08'0  ,ZL70 v9°0 95°0 8y 0 00 Ze'o vz o entea esut
o1

. . . mﬂ..n“n.r‘x

96°0 L8°0  ,BL'O 69°0 15°0 41 €0 S€°0 920 enfwa 1vsut

6

- . . mﬂ.AUHle

5670 9870 9L 0 L570 L0 LA 8€°0 6270 anfua 1wourn]

8

B 99 FTTX

5670 v8 0 bL0 £9°0 €570 Zr-o zeoo entEa dvoutn

So =X

L) Zero ILo 6570 LE 0 $g70 antes Ieoutn

3

AT

€60 L0870 LG £Q ob o enyes e-ur

..._

33 T

2670 Lo 290 P anten 1eAUL]

h

1670 €70 5670 ANTRL aREIL

51 T=7%

080 Le o en{vs avaeut]

5bo=7x

$8°0 an{LA IRwUT]

1

ot 6 8 L 9 5 v £ 4 1 1equny wel]

1091100 Jequiniy

12A87 UOTISITID ("0 ® 3I° 3AD2.010) laqunyl pue requnt] weil AQ peie(noled saniea 2X pup sanfea ieaurr] Tf oe1qel

[T




Applications of Bayesian Decision Theory
‘ 28

Figure Caption

Figure 1. Example of a Linear Loss Function.
(bg# by, dy=dp
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