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Abstract

A model is proposed for optimizing simultaneously combinations of test-based

decisions using Bayesian theory. The decision problem addressed consists of a

selection, a placement, and a mastery decision. Combinations of such decisions

can be found, for instance, in computerized adaptive instruction networks.

Compared with separate optimization, a simultaneous approach has two

advantages. First, test scores used in previous decisions can be used as "prior

data" in later decisions and the efficiency of the decisions can be increased.

Second, more realistic utility structures can be defined using final success criteria

in utility functions for earlier decisions. An important distinction is made between

weak and strong decision rules. As opposed to strong rules, weak rules are

allowed to be a function of prior test scores. Conditions for optimal rules to be

monotone are presented. Also, it will be shown that the optimal weak monotone

rules are compensatory by nature. Results from an empirical example of

instructional decision making will be presented to illustrate the differences

between a simultaneous and a separate approach.
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Introduction

Decision problems in educational and psychological testing can be classifi& in

many ways. In van der Linden (1990) the following four types of test-based

decisions are distinguished: selection, mastery, placement, and classification.

Typically, modern instructiomi systems as individualized study systems (ISS's),

mastery learning, and computer-aided instruction (CAI) do not involve one single

decision but can be conceived of as networks of nodes at which one of the types

of decisions above has to be made (van der Linden, 1990; Vos, 1990, 1991,

1993, 1994a; Vos & van der Linden, 1987).

The question is raised how such networks of decisions should be

optimized. An obvious approach is to address each decision separately,

optimizing its decision rule on the basis of test dam exclusively gathered for this

individual decision. This approach is common in current design of instructional

systems. The purpose of this paper is to show that multiple decisions in networks

can also be optimized simultaneously using Bayesian theory (e.g., De Groot, 1970;

Ferguson, 1967; Lindgren, 1976). The advantages of a simultaneous approach are

twofold. First, dam gathered earlier in the network can be used to optimize later

decisions. The use of such prior information can be expected to enhance the

quality of the decisions - in particular if only small tests or sets of

multiple-choice items are administered at the individual decision points. As a

result of the more efficient use of all data available in the network of

simultaneous decisions, one might expect that the expected utility for a
simultaneous approach is larger than for a separate approach. Second, a more
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realistic definition of utility or loss functions is possible, since these functions

can now be defined on ihe ultimate success criterion instead of on intermediate

criteria measuring the succc ss on individual treatments.

In this paper, a decision network consisting of a selection, a placement

(with two treatments), and a mastery decision will be used to make our point.

First, the selection-placement-mastery problem will be formalized. Then

important distictions will be made between weak and strong as well as monotone

and nonmonotone decision rules. Next, it will be indicated under which

conditions optimal rules take a monotone form. Finally, results from an empiric:31

example of instructional decision making will be presented to illustrate the

differences between a simultaneous and a separate approach.

The Selection-Placement-Mastery Problem

A flowchart of the selection-placement-mastery problem is given in Figure 1.

Real-life systems usually have more decision points.

Inscit Figure 1 about here

The first decision to be made is a selection decision. A selection decision is made

when a test is administered before a treatment takes place, and only students

promising satisfactory results on the criterion are accepted for the treatment. For

instance, the treatment may be a remedial module in which some prerequisite
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knowledge is offered in preparation of the treatments to come later in the

instructional program. After the initial treatment a placement decision follows,

where st.'elents are assigned to one of two possible treatments based on their

placement scores. With placement decisions the success of each of the treatments

is measured by the same criterion. The paradigm underlying placement decisions

is the Aptitude Treatment Interaction (All) hypothesis from instructional

psychology, which assumes that students may react differentially to instructional

treatments, and, therefore, that different treatments may be best for different

students. In general, students with high test scores on the placement test will be

assigned to treatment 1. Therefore we will sometimes refer to treatment 1 and 0

as the 'higher' and 'lower' treatment, respectively. Finally, on the basis of the

mastery test, it is decided whether the student has mastered the subject matter in

the treatment sufficiently and may proceed with the next treatment. Students who

fail, however, have to relearn the material offered in the treatment and prepare

themselves for a new mastery test.

It is imporumt to realize that, although the nature of the decisions shown

in Figure 1 is sequential, the decision rules are optimized simultaneously. Also,

the data used to optimize the rules is supposed to come from the following

statistical experiment: First, students exposed to the same selection test are

randomly drawn without reference to the score on the selection test in question

and accepted for the initial treaunent. Next, the accepted students are randomly

assigned to either treatment 0 or 1, after which their performances on the mastery

test are measured.

In the following, we shall assume that for a randomly sampled

individual the observed-score selection test variable X, the observed-score

placement test variable Y, the observed-score mastery test variable Z, and the
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classical test theory true score variable T underlying Z, i.e., the criterion common

to the treatments j (j = 0,1), are continuous raticlom variables. Furthermore, it will

be assumed that the relation between X, Y, Z, and T can be represented by a

density function fj(x,y,z,t). Since the treatments Lake place between the placement

and the mastery test, this relation may entail different density functions for each

treatment. Therefore, fi(x,y,z,t) is indexed by j. However, since both the selection

and placement test are administered prior to the treatment j, the density functions

q(x), s(y), and h(ylx) of respectively X, Y, and Y given X = x will not be

indexed by j.

Treatment-dependent Mastery Rules in a Simultaneous Approach

In the case of a simultaneous approach to optimizing decision networks, an

important distinction is made with respect to decision rules on the mastery test

for students assigned to treatments 0 and 1. These rules will be different to allow

for the "collateral information" present in the fact that examinees have followed

different previous treatments before they Lake the mastery test.

Weak Monotone and Strong Monotone Rules

A decision rule specifies for each possible realization (x,y,z) of the sample space

XxYxZ which action has to be Laken. Here, we only consider monotone rules;

that is, rules using cutting scores. Let xc, yc, zci, and tc denote the cutting scores

on X, Y, Z for students assigned to treatment j, and T, respectively, where tc is

set in advance by the decision-maker (j = 0,1). Clearly, the

selection-placement-mastery problem now consists of simultaneously setting

cutting scores xc, yc, and zci that, given the value of tc, maximize the expected

utility.
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In general, when setting yc as well as zci, prior achievement on the

selection test can or can not be taken into account. In addition, the observed

scores on the placement test may or may not influence the cutting scores to be

set on the mastery test. Intuitively, students with selection scores equal to or just

above xc must compensate their relatively low selection scores with higher scores

on both the placement and mastery test. Reversely, it seems reasonable that

students with placement scores far above yc should be advanced earlier than

students with placement scores equal to or just above yc.

To distinguish between cases where prior achievement has or has not to

be taken into account, those rules will be called weak monotone and strong

monotone rules, respectively. For each x xc, the weak cutting score on the

placement test is defined as a function yc(x). Similarly, for each x xc and y,

the weak cutting score on the mastery test under treatment j is given as a

function zej(x,y). For strong monotone rules, however, both strong cutting scores

yc and zci are set independently of observed test scores on prior tests. Since the

most general form of the decision rule is a weak simulmneous rule, this type of

rule will be treated first. Later on, strong simultaneous rules will be considered as

a special fonn of weak simulmneous rules.

Each action will be denoted by NI( (i,j,k = 0,1), where i = 0 or I stands

for rejecting or accepting a student, j = 0 or 1 stands for assigning an accepted

student to treatment 0 or 1, and k = 0 or 1 stands for retaining or advancing an

accepted student. Since for a rejected student no further placement and mastery

decisions are made, the indices j and k will be dropped for i = 0.

For the decision network of Figure 1 a weak simultaneous rule 8 can be

defined as:



{(x,y,z) : 8(x,y,z) = ao} =

{(x,y,z) : S(x,y,z) = a100)

{(x,y,z) : 8(x,y,z) = a101)

{(x,y,z) 8(x,y,z) = a110)

{(x,y,z) 8(x,y,z) = a111)
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AxRxR
= AC x B(x) x Do(x,Y)

= AC x B(x) x D0C(x,y)

= AC x BC(x) x D1(x,Y)

= AC x BC(x) x

(1)

where A, AC, B(x), B (x), D.(x,y), and D. (x,y) stand, respectively, for the sets

of x, y, and z values for which a student is rejected or admitted for the initial

treatment, an accepted student is assigned to treatment 0 or 1, and an accepted

student is retained or advanced under treatment j (j = 0,1). R stands for the set of

real nwnbers. Thus, a weak monotone rule 8 can be defined for our example as

follows:

8(X,Y,Z) =

a(),
if X < xe, y E R, and Z E R

am, if X xc, Y < yc(x), and Z < zo(x,y)

a101, if X xc, Y < yc(x), and Z zdx,y)

a 1 10. if X xc, Y ye(x), and Z < zci(x,y)

a 111, if X xe, Y yc(x), and Z zci(x,y).

(2)

Since we confine ourselves to monotone rules in this paper, following

common practice in criterion-referenced testing, we are to show that there are no

nonmonotone rules with larger expected utility, or, equivalently, that the subclass

of monotone rules constitutes an essentially complete class (e.g., Ferguson, 1967;

Karlin & Rubin, 1956). Conditions under which the subclass of monotone rules is

essentially complete will be given later on. If these conditions are satisfied, a

monotone solution is said to exist,

11
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Other Types of Rules for the Combired Decision Problem

The introduction of weak monotone and strong monotone rules implies that

optimal rules can be considered which take both a weak monotone and strong

monotone form. Since strong monotone rules are special cases of weak monotone

rules, this type of rules can only be optimal if along with the conditions under

which weak monotone rules are optimal certain additional restrictions are met.

Furthermore, since in educational testing one is accustomed to using

strong cutting scores, rules with tnaximum expected utility in the subclass of

strong monotone rules can also be calculated without bothering about

monotonicity conditions. To stipulate the difference with the optimal (strong

monotone) rules, this type of rules will be termed Strong Monotone Rules with

Maximum Expected Utility (SMMEU) rules. It should be emphasized that an

optimal rule from the set of all possible simultaneous rules only takes a strong

monotone fonn if the additional (rather strict) restrictions are met.

An Additive I itility Structure for the Combined Decision Problem

Th utility structure of the combined decision problem, ukik(t), is supposed to be

an additive function of the following form:

kik (t) = w
1
u.(s)(t) + w 2u.(0(t) + w3u k(m)(0,j (3)

where tii(s)(t), uj(0(t), and uk(In)(t) represent, respectively, the utility functions

for the separate selection, placement. and mastery decisions, and w1, w2, and w3

are nonnegative weights. For a rejected student, zero utilities for the separate

placement and mastery decisions are assumed. Hence, it follows from (3) that

uoik(t) is equal to w1u0(s)(t) for all j and k.

12
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Since the utility functions ui(s)(0, ui(P)(t), and uk(n)(t) are allowed to

assume different forms, Equation 3 offers us a great deal of flexibility to describe

utility stri,ctures in practical applications. Furthermore, since utility is supposed to

be treasured on an interval scale, the weights in (3) Can be resealed as follows:

(s) (p) (in)
11.1(° (° w2u. (0 4' (4)

with 0 w1, w2, (1-w1-w2),5 1.

As mentioned earlier in the Introduction, one of the main advantages of

a simultaneous approach is that more realistic utility structures can be defined.

Equations 3-4 demonstrate this fact nicely, since a utility function defined on the

ultimate criterion of the decision network is fonnulated not only for the mastery

decision but also both for the selection and placement decision. This choice is in

line with the philosophy underlying ISS's.

Expected Utility in a Simultaneous Approach

It is important to realize that the expected utility in a simultaneous approach

according to the statistical experiment described earlier is composed of eight

tenns, whereas according to (1) only five possible actions can be identified. The

reason is that action ao contributes four terms to the expected utility, namely one

for each possible combination of outcomes of the decisions that follow. The

placement rules in the calculation of this part of the expected utility are different

for students rejected or accepted for the initial treatment to allow for this

"collateral information". The mastery rules are not only treatment-dependent but

also depend on the information if students are rejected or accepted for the initial

treatment.

13
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For the most general form of the decision rules according to (1), the

expected utility in a simultaneous approach can be calculated as follows:

E[Usim(AC,BC(x),BRCox), D0C(x,y), 1)1C(x)' DrOC(x,y),Dr1C(x,y))1

SA 513r(x) .fDro(x,y) SR
(t)f0(x,y,z,t)dtdzdydx +

iBroo icoloc(x,y) SR u00100(x,y,z,t)dtdzdydx +

fi3rC(x) Sprj(x,y) SR 1.1010(t)f1(x,y,z,t)dtdzdydx +

SA IR rC(x) fDrC SR u011(0f1(x,y,z,t)dtdzdydx +

5A C .fB(x) L0(x,y) SR u10000(x,y.z,t)dtdzdydx +

SA C .L(X) *LC SR ulln(t)fo(x,y,z,t)dtdzdydx +
0 (x,y)

SA C Coo SD1(x.y) SR u110(01-1(x,y,z.t)cltdzdydx +.

A C C"(x) SD (x y) R
u111(01-1(x,y,z,t)dtdzdydxSR C

1

(5)

where Br(x), BrC(x), Drj(x,y), and DrjC(x,y) represent, respectively, the sets of y

and z values for which a rejected student is assigned to treatment 0 or 1 and

failed or passed the mastery test under treatment j (j = 0,1).

Taking expectations, completing integrals, rearranging tenns, and using

14
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uojk(t) = wiu0(8)(t) for all j and k, (5) can be written in posterior form as

ERIsim(A C,B (x),D0 (x,y),Dic(x,y))] = w1Eo[u0 (T)] +C C C (s)

SR .3 rC(ow ltEl[4(T) 1 x,y] -E13[4)(T) 1 x,y1}h(y I x)q(x)dydx +

fA C 'I Eolui00(T)-w14)(T) I x] +

I, fr) c Eo[u101(T)-uloo(T) I x,y,z1m0(z Ix,y)h(y Ix)dzdy +
' 0 (x,y)

1

E (2j-1) fB Coo(Ei[u 1 jo(T) lx,y] +

j=0

(6)

I

So C
(

F, if u ii 1(T) -u ljo(T) I x,y,z]mi(z I x,y)dz}h(y I x)dy
x,y) '

with mi(zIx,y) being the p.d.f. of Z given X = x and Y = y under treatment j and

where E. indicates that the expectation has been taken over a distribution
.11.1

indexed by j.

Sufficient Conditions for Monotone Solutions

In this section, sufficient conditions for optimal simultaneous rules to be

monotone will be derived. First, conditions under which optimal rules take a

weak monotone form will be derived. Next, it will be indicated how sufficient

conditions for strong monotone solutions can be obtained from the previous case

by imposing certain additional restrictions on fii(x,y,z,t).

15
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Sufficient Conditions for Weak Monntonicity

To derive the conditions under which optimal rules take a weak monotone form

for our example, the following well-known theorem (e.g., Ferguson, 1967, p.

201) is needed:

For every function f(x) with f If(x)Idx <oo

and any set S of x values,

it holds that f f(x)dx f(x)dx with So = (x: f(x) 0). (7)
0

Applying this theorem first to the inside integrals w.r.t. z, next to the

middle integrals w.r.t. y, and finally to the outside integral w.r.t. x in (6), it can

be verified that an upper bouno :o the expected utility is obtained for:

*C
D (x EOlt1101(Thu 100(T) x,y,z) 01,

0 '

D*
'

(-7(x v) 110(T)={z: E1[u111(T)-u Ix,y,z] 0),
1

1

*C v-B (x) (2j-1)(Ei[u1io(T)Ix,y] +
j=0

C EjEur1M-uljOM lx,y)dz) 0),
j (x,y) Ix'y'zImJ(z

C (s) (s)
B

* (x) (y. 1-7-1[uo (r)Ix,y1 Eoluo (T)Ix,y1 0),

I_ 6

(8)

(9)

(10)
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(sA*C Ix: Eo[uloo(T)-Wiu) (T)Ix] +

fRio*C E0[u101(1.)-u 100M1x,y,z1m0(z I x,y)h(y I x)dzdy +
0

E (2j-1) *c (x){Ei[tilio(T)Ix,y] +
j=0

* C(x,y) Ej[uj jj(T) ii0(T) I x,y,z1mi(z x,y)dz}h(y x)dy 0).

We are now able to specify conditions for weak monotonicity. For weak

monotone rules, the sets D*.C(x,y), B *C (x), and A *C take the form [zcj

and [xc,00), respectively. As opposed to these sets, however, it is

(12)

assumed that the sets B * C(x) take the form (-00,ycr(x)]. The reason for assuming

a somewhat different form for the sets B*rC(x) is that under quite realistic

conditions on the test score distributions and utility functions (Vos, 1994b), a

weak monotone solution can be guaranteed. The fonn of B*rC(x) stated above

implies that rejected students, unlike accepted students, with low scores on the

placement test will generally be assigned to the 'higher' treatment.

It follows that the optimal weak rules take a monotone form if the

left-hand sides of the inequalities in (8)-(9), (10), and (12) are increasing

functions in z for all x and y, in y for all x and z, and in x for all y and z,

respectively, whereas the left-hand side of the inequality in (11) is required to be

decreasing in y for all x. In the empirical example below it will be examined if

these conditions hold.

The sets D os D* C(x,y), B * 7(x), B*C(x). and AsC can be
*

obtained in the following way: For each x and y, first the sets D*0C(x,y) and

D (x,y) can be computed from (8) and (9), respectively, whereas for each x



the sets B *
r x) can be

D*j
((x

,-v) into (10), the

D*iC(x,y) and B*C(x) into

Selection-Placement-Mastery Decisions
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computed from (11). Then, for each x, inserting

sets B*C(x) can be computed. Finally, inserting

(12), the set A*C can be computed.

Monotonicity Conditions for Strong Simultaneous Rules

For strong simultaneous rules, BC(x) and Br (x) are not allowed to depend on x

and D-C(x,y) not on x and y. Let
(t

v.
J

x,y,z) and r.(t I x,y) denote the p.d.f.'s of

T given .X = x, Y = y, and Z = z and T given X = x and Y = y under treatment

j, respectively (j = 0,1). In addition to the monotonicity conditions for weak

simultaneous rules, it then follows from (8)-(11) that an upper bound to the

expected utility is reached for a strong monotone rule if vi(t I x,y,z) does not

depend on X = x and Y = y, whereas ri(t I x,y) and mi(z j x,y) do not depend on

X = x = 0,1).

Calculation of Simultaneous Rules

In this section, it will be indicated how the difkrent types of rules discussed

earlier can be calculated. First, it will be shown how optimal rules can be

obtained being both of a weak monotone and strong monotone form. Next, it will

be indicated how SMMEU rules can be derived by maximizing the expected

utility over the subclass of strong monotone rules.

Optimal Simultaneous Rules

Assuming the conditions for weak monotonicity are satisfied, optimal weak

cutting scores can now be obtained for those values of zci(x,y), yc(x), Ycr(x)' and
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xc for which the inequalities in (8)-(12) turn into equalities. The optimal weak

monotone rule is then given by ice, {yc(x)lx xc}, {ycr(x)Ix < xc), {zco(x,y)lx

xc, y < yc(x)), and {k1(x,y)lx xc, y yc(x)}. Assuming the additional

restrictions on I (xYz't ) are also satisfied, optimal strong cutting scores can be

obtained by solving the resulting system of equations simultaneously for xc, yc,

Yet"' zcO, and zcl.

SMMEI I Rules

The set of SMMELI cutting scores, say x*c, Y*Lr Y*cr z*co, and z*c1, can be

computed straightforward by inserting AC = Exc,00), BC(x) = Br (x) =

and DiC(x,y) = Ezcj,..) into (6), differentiating w.r.t. xc, Yc' Ycr k(:), and

zcl, setting the resulting expressions equal to zero, and solving simultaneously

cr zco, and zcl.for xc, Yc
Since no analytical solutions for these systems of equations could be

found, the cutting scores can be calculated via a numerical approximation

procedure such as Newton's iterative algorithm for solving nonlinear equations.

For the present systems of equations, this algorithm was implemented in a

computer program called NEWTON. Another prograin, ITTILITY, was written to

analyze differences in expected utility tbr the various rules. Copies of the

programs are available from the author of the paper upon request.

Optimal Separate Rules

It is observed that optimal rules for the separate decisions can easily be found by

imposing certain restrictions on the expected utility in a simulmneous approach.

iJ
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First, for the separate selection decision it holds that m0(z1x,y) =

m1(z1x,y) = m(z1x,y) and w2 = (1-w1-w2) = 0, since both treatments coincide and

there are zero placement and mastery utilities in this case, respectively.

SUbstituting these restrictions into (6), the expected utility for the separate

selection decision, EILIsep(s)(AC)1, becomes

ERIse(s)p(A = Efuo(s)(TA + fA cE[4s)(T)-uo(s)(T) I x]q(x)dx. (13)

Next, for the separate placement decision it holds that AC = R and wi =

(1-w 1-w2) = 0, since all students are accepted for the initial treatment and there

are zero selection and mastery utilities in this case, respectively. Substitution of

these restrictions as well as BC(x) = BC into (6) results for the expected utility

of the separate placement decision, EfUsep(P)(BC)], in

ERI(p)(B =sep

Eo[uoper)]() (p) (CIE Ilui (Thyl-Eolup)o (T) I yPs(y)dy. (14)

Finally, for the separate mastery decision it holds that AC = R,

in0(z1x,y) = m1(z1x,y) = m(z1x,y), and w1 = w2 = 0, since all students are

accepted for the initital treatment, both treatments coincide, and there are zero

selection and placement utilities in this case, respectively. Inserting these

restrictions as well as D. (x,y) = D into (6), the expected utility for the

separate mastery decision. EEll(m)(D C)] , becomessep

On) (in)ERisep(m)
(D (' )1 = Flu (()m)(T)1 + (-T1 u 1 (T)-uo (TA zip(z)dz , (15)

irwor4
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where p(z) denotes the marginal distribution of Z.

Analogous to a simultaneous approach, it can easily be verified that

upper bounds to E[U(s)p (A E[U(p)(B C )] , and E[t' (tn)(D C)]
are obtained

se sep sep
for the sets of x, y and z values for which the integrands in (13), (14), and (15)

are nonnegative, respectively. For monotone rules, these sets take the form

[ye,00), and [zc,00), respectively. Assuming the monotonicity conditions

for the separate decisions are satisfied, it follows that optimal cutting scores for

the separate selection, placement, and mastery decisions, say Re, Y. and 2c,

can be obtained by solving the integrands in (13), (14), and (15) for xc, ye, and

ze respectively. For further details, see Mellenbergh and van der Linden (1981),

van der Linden (1981), and van der Linden and Mellenbergh (1977).

An Empirical Example

The procedures for computing the optimal rules were applied to a sample of 71

freshmen studying medicine. Treatments 0 and I consisted of an interactive video

(IV) and a computer-aided instructional (CAI) program. Ordering the treatments

in this way was motivated by the fact that the 1V-program contained more

examples and exercises than the CAI-program, implying that students with high

scores on the placement test were generally assigned to treatment 1.

The selection, placement, and mastery tests consisted each of 25

free-response items with test scores ranging from 0 to 100. It should be

emphasized that the example given in this paper was used only to illustrate the

models. The use of small samples is generally not recommended, because the

estimated model parameters may have large errors which tend to propagate when

2 1



Selection-Placement-Mastery Decisions

18

computing optimal rules.

The teachers of the course considered a student as having mastered the

subject matter if he/she could answer correctly at least 60% of the total domain

of items. Therefore, tc was fixed at 60.

Multivariate Normal Distribution

It was assumed that the variables X, Y, Z, and T followed (possibly) different

multivariate normal distributions under both treatments. Under this assumption,

the means, variances, correlations, and reliability coefficients of the mastery test

scores were estimated using maximum likelihood estimates and coefficient alpha,

respectively. Table 1 shows the results of the computations.

Insert Table 1 about here

When applying the procedures in this paper, it should always be checked

whether the assumed multivariate normal distribution for f J'x'y'z't) holds. This

assumption was tested by examining whether a trivariate normal distribution for

(X,Y,Z) under both treatments as well as the linearity of the regression functions

Ej(Tlx). Ej(Tly), and Ej(Tlx,y) did hold against the data. The trivariate normal

distribution for (X,Y,Z) under treaunent j was tested using a Chi-square test by

partitioning the sample space into 20 intervals of (x,y,z) observations (df =

20-9-1). Furthermore, the null hypotheses of "no linear relation" for the

regression functions Ei(Z1x) = Ei(Tlx) and Ei(Z1y) = Ei(Tly) were tested for a

usual t-test (df = n.J -2) with denoting the number of students in the sample
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assigned to treatment j. Finally, the null hypotheses of "no linear relation" for the

regression functions 5(Zlx,y) = Ei(Tlx,y) were tested using the standard F-test

(df = [In,hi-m-1]), with m = 2 denoting the number of explanatory variables. All

p-values showed a satisfactory fit (a = 0.05).

Utility Functions for the Separate Decisions

For the separate selection and placement decisions, it will be assumed that the

utility functions can be represented as linear functions of the criterion variable T

(Mellenberg & van der Linden, 1981; van der Linden & Mellenbergh, 1977):

(s)

(s) (s)0 (tc-t) + d0

(s) (s)b(s)(t-tc) + di

(p) (p)bo (tc-t) + do

b(111)(t-tc) 4 d(iP)

for i = 0

for i = 1 ,

for j = 0

for j = 1 ,

(16)

(17)

where bi(s), bi(P) > 0 and [bi(P)-b00)1 > 0 (i,j = 0,1). The condition bi(s), b0(s)

> 0 states that utility must be an increasing function of the criterion for the

acceptance decision, but a decreasing function for the rejection decision.

Furthermore, the condition b0(0, bi(P) > 0 implies that both for assigning

students to treatment 0 and 1, utility is an increasing function of t. Finally, the

condition [bi(P)-b0(0] > 0 implies that u(t) must be a more slowly
increasing function in t than u1(0(t). This condition is needed to guarantee a

monotone solution for the separate placement decision (cf. van der Linden, 1981).

23
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For the separate mastery decision the well-known threshold utility

function is assumed (e.g., Hambleton & Novick, 1973; lluynh, 1976; Novick &

Lindley, 1978), which is defined by the following four constants:

u 011)(0

doo

d01

d I 0

dll

for t < tc and k = 0

for t < tc and k = 1

for t tc and k = 0

for t tc and k = 1,

(18)

where d10 < doo and doi < d11. The condtions d10 < doo and doi <

express the assumptions that incorrect decisions represent a smaller utility than

correct decisions.

Monoton i ci ty Condit ions

It should always he thecked whether the conditions for weak monotonicity are

satisfied. Doing so, it turned out that the left-hand sides of the inequalities in

(8)-(9), (10), (11), and (12) were increasing in z for all x and y, increasing in y

for all x and z, decreasing in y for all x, and increasing in x for all y and z,

respectively, with some minor exceptions at the lower ends of the range of test

scores (0 5_ x,y,L 5_ 100).

Finally, it remained still to be tested if the additional conditions on

fj(x,y,z,t) for strong monotone solutions were met. First, the conditions of ri(tlx,y)

and m(zi"). being independent of X = x were tested comparing the linear
J

regression functions Ej(Tlx,y) and Ei(Tly). The null hypothesis "the variable X

does not deliver a significant contribution to the explanation of T" was tested

itliw an F-test (df = [1 3]). Second, the condition of v.(tlx,y,z) being

24
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independent of X = x and Y = y ws tested comparing the linear regression

functions E.(TI x y z) and E.(T Th1z). e null hypothesis "the variables X and Y
J J

do not deliver a significant contribution to the explanation of T" was tested using

an F-test with df = [2,ni-4]. All p-values did not show a satisfactory fit to the test

data, however, implying that the optimal rules did not take a strong monotone

form (a = 0.05). Therefore, only SMMEU rules and no optimal strong rules were

considered.

An absolute maximum appeared to exist for the expected utility in the

subclass of strong monotone rules, because the Hessian matrix was negative

definite for all nonnegative test scores.

Results for both Simultaneous and Separate Rules

To illustrate the dependence of the results on the chosen utility structures, the

SMMEU and the set Of weak cutting scores (xe, yc(xd, zcj(xc,yc(xc))) were

computed for three different values of the utility parameters as well as for w1 =

0.6 and w2 = 0.2, w1 = 0.1 and w2 = 0.8, and w1 = w2 = 0.333 using the

progmm NEWTON. The results are displayed in Table 2. The optimal cutting

scores itc, yc, and lc for the separate selection, placement, and mastery

decisions are also reported in Table 2. It should be noted that the weak and

SMMEU cutting scores y(x) and v-*cr stayed nearly constant at approximately

39.48 and 39.89, respectively. These cutting scores are not displayed in Table 2,

however, because they were only used to compute the optimal rules but are not

used for taking decisions in an existing ISS.

4 v
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Insert Table 2 about here

Since (a/ax)zci(x,y) = -B-TXj.YZ/EITZj.XY' it followed that zdx,y),

and zcl(x,y) decreased by 1.85 and 1.05 per unit increase in x for y < y(x) and

y ye(x), respectively. Similarly, (a/ay)zcj(x,y) = implied

that zdx,y) and zci(x,y) decreased by 2.05 and 1.32 per unit increase in y for y

< yrc(x) and y yc(x), respectively. The behavior of y(x) was examined using

the program NEWTON. The results of the computations indicated that yc(x) was

decreasing in x for x xc. Hence, our expectations of the functions y(x) and

z .(x,y) being decreasing in x and in both x and y for x xc could be confirmed
ci

= 0,1). Furthennore, to illustrate the combined effect of both x and y(x) on

zci(Y jc(x)), the graphical displays of yc(x), zco(x,yc(x)), and zci(x,yc(x)) for x

xc are shown in Figure 2 for utility structure (2).

Insert Figure 2 about here

As Figure 2 shows, yc(x), ze0(x,ye(x)), and zc1(x,yc(x)) decreased with

approximately 0.5, 0.8, and 0.36 per unit increase in x for x xc. Apparently, the

decreasing character of zei(x,y) in x does have a stronger influence on

zci(x,yc(x)) than the combined effect of the decreasing character of both zci(x,y)

in y and y(x) in x for utility structure (2). For all other utility structures, the

mune pattern could be observed in this study.

4 6
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Inspection of Table 2 shows that zco(xc,yc(x)) is larger than

zc1(xc,yc(xc)). Combined with the fact that both zdx,y) (when y < yc(x)) and

zc 1(x,y) (when y y,(1.)) are decreasing functions in y, it follows that students

just accepted for the initial treatment and assigned to treatment 0 are always

confronted with higher weak cutting scores on the mastery test than students just

accepted for the initial treatment and assigned to treatment 1.

As can be seen from Table 2, Ic did not show large differences

compared to xc. However, in particular for w 1 = 0.6 and w2 = 0.2, yc andic

were substantially higher and lower compared to yc(xc) and zcj(xc,yc(xc)),

respectively (j = 0,1).

Obviously, students with selection scores X = xc were sooner assigned

to thc 'higher' treatment in the case of a weak monotone approach but had to

compensate their relatively low weak cutting scores on the placement test with

higher optimal weak cutting scores on the mastery test. However, the decreasing

character of zci(x,yc(x)) in x for x xe implies that for students with selection

scores far above xc these rather high weak cutting scores on the mastery test

under treatment j decreased. Also, students assigned to the 'higher' treatment

with selection and placement scores far above xc and y(x) needed only low

scores on the mastery test.

Comparison of the Expected I Itilities

As earlier noted, one might expect that in a case with empirical data the expected

utility for a simultaneous approach will be larger than tbr a separate approach.

This expectation will now be examined comparing the expected utilities for tilt::

optimal weak monotone and SMMEU rules with the weighted sum of the

expected utilities for the optimal separate rules using the program UTILITY. The
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results are also reported in Table 2.

As can be seen from Table 2, the expected utilities for both the optimal

weak monotone and SMMEU rules yielded larger values than for the weighted

sum of the expected utilities for the optimal separate rules for all nine utility

structures. Some utility structures, such as, for instance, utility structures (3), (6),

and (9), even showed substantial gains in expected utility for a simultaneous

approach.

Furthermore, inspection of Table 2 shows that for all three approaches,

the expected utility yielded the largest value for w2 = 0.8 in this study. In other

%VORIS, the utility for the placement decision contributed most to the expected

utility in our example.

Also, comparing utility structures (1)-(3) with (4)-(6), it can be

concluded from Table 2 that raising the utilities for the correct mastery decisions

resulted in an increase of the expected utilities for all three approaches.

Obviously, correct mastery decisions have a relatively strong positive influence

on the specification of the utility structure.

Finally, the expected utilities for the optimal weak monotone and

SMMEU rules were compared to each other. As Table 2 shows, the expected

utilities for the optimal wak monotone rules were larger than for the SMMEU

rules. This result does not contradict our predictions, because the expected utility

for an optimal weak monotone rule must yield the largest expected utility of all

simultaneous rules if the conditions for weak monotonicity are met.

4 8
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Discussion

In this paper, cutting scores for a selection-placement-mastery problem were

optimized simultaneously using Bayesian decision theory. The optimal decision

procedures were illustrated empirically using data from the area of instructional

decision making. It turned out that in some cases considerable gains in expected

utility could be achieved by the optimal weak monotone rules compared to the

weighted sum of the expected utilities for the optimal separate rules.

The results indicated that the optimal weak monotone rules y(x) and

zci(x,y) were decreasing in x and both in x and y. In Vos (1994b) it is shown

that under the same rather mild conditions on the test score distributions and

utility functions which guarantee a weak monotone solution, optimal weak

monotone rules are always compensatory by nature. The title of the paper already

alludes to this result. As already explained, this feature introduCes an element of

compensation in the decision procedure: It is possible, for instance, to

compensate low scores on the placement test by high scores on the selection test.

A final note is appropriate. Although instructional decision making is a

useful application of simultaneous decision making, the models advocated in this

paper, however, are not limited to this area. Other useful applications may be

found in such areas as psychotherapy in which it can be expected that accepted

patients for the program react differentially to a certain kind of therapy followed

by a success criterion, which has to be passed before being dismissed from the

therapy.
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Figure Caption

Figure 1. A system of a selection, a placement, and a mastery decision

(Case of two treatments).

Fioure 2. Graphical displays of yc(x), ac0(x,yc(x)), and zcl(x,yc(x)) for

x xc in utility structure (2).
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