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Abstract

A model is proposed for optimizing simultaneously combinations of test-based
decisions using Bayesian theory. The decision problem addressed consists of a
selection, a placement, and a mastery decision. Combinations of such decisions
can be found, for instance, in computerized adaptive instruction networks.
Compared with separate optimization, a simultaneous approach has two
advantages. First, test scores used in previous decisions can be used as “prior

data" in later decisions and the éfficiency or the decisions can be increased.

Second, more realistic utility structures can be defined using final success criteria

in utility functions for earlier decisions. An important distinction is made between
weak and strong decision rules. As opposed to strong rules, weak rules are
allowed to be a function of prior test scores. Conditions for optimal rules to be
monotone are presented. Also, it will be shown that the optilnal weak monotone
rules are compensatory by nature. Results from an ‘empirical example of
instructional decision making will be presented to illustrate the differences

between a simultaneous and a separate approach.
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Introduction

Decision problems in educational and psychological testing can be classified in
many ways. In van der Linden (1990) the following four types of test-based
decisions are distinguished: selection, mastery, placement, and classification.
Typically, modemn instructionai systems as individualized study systems (ISS’s),
mastery learning, and computer-aided instruction (CAI) do not involve one single
decision but can be conceived of as networks of nodes at which one of the types
of decisions above has to be made (van der Linden, 1990; Vos, 1990, 1991,
1993, 1994a; Vos & van der Linden, 1987).

The question is raised how such networks of decisions should be

optimized. An obvious approach is to address each decision separately,

optimizing its decision rule on the basis of test data exclusively gathered for this
individual decision. This approach is common in current design of instructional
systems. The purpose of this paper is to show that multiple decisions in networks
can also be optimized simultaneously using Bayesian theory (e.g., DeGroot, 1970;
Ferguson, 1967; Lindgren, 1976). The advantages of a simultaneous approach are
twofold. First, data gathered earlier in the network can be used to optimize later
decisions. The use of such prior information can be expected to enhance the
quality of the decisions - in particular if only small tests or sets of
multiple-choice items are administered at the individual decision points. As a
result of the morc efficient use of all data available in the network of
simultaneous decisions, one might expect that the expected utility for a

simultancous approach is larger than for a separate approach. Second, a more
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realistic definition of utility or loss functions is possible, since these functions

can now be defined on e ultimate success criterion instead of on intermediate

criteria measuring the success on individual treatments.

In this paper, a decision network consisting of a selection, a placement
(with two treatments), and a mastery decision will be used to make our point.
First, the selection-placement-mastery problem will be formalized. Then
important distictions will be made between weak and strong as well as monotone
and nonmonotone decision rules. Next, it will be indicated under which
conditions optimal rules take a monotone fonn. Finally, results from an empirical
example of instructional decision making will be presented to illustrate the

differences betwecn a simultancous and a separate approach.

The Selection-Placement-Mastery Problem

A flowchart of the selection-placement-mastery problem is given in Figure 1.

Real-life systems usually have more decision points.

Inscit Figure 1 about here

The first decision to be made is a selection decision. A selection decision is made
when a test is administered before a treaunent takes place, and only students
promising satisfactory results on the criterion are accepted for the wreatment, For

instance, the treatment may be a remedial module in which some prerequisite
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knowledge is offered in preparation of the treatments to come later in the
instructional program. After the initial treatment a placement decision follows,
- where s.dents are assigned to one of two possible treatments based on their
placement scores. With placement decisions the success of each of the treatments
is measured by the same criterion. The paradigin underlying placement decisions
is the Aptitude Treatment Interaction (ATI) hypothesis from instructional

psychology, which assumes that students may react differentially to instructional

Al

treatinents, and, therefore, that different treatmemts may be best for different

L

students. In general, students with high test scores on the placement test will be

assigned to treatment 1. Therefore we will sometimes refer to treatment 1 and 0
as the ’higher’ and ’lower’ treatment, respectively. Finally, on the basis of the
mastery test, it is decided whether the student has mastered the subject matter in
_ the treatment sutficiently and may proceed with the next treaunent. Students who
- fail, however, have to relearn the material offered in the treatment and prepare
: themselves for a new mastery test.

Itis i:ﬁponam to realize that, although the nature of the decisions shown
in Figure 1 is sequential, the decision rules are optimized simultaneously. Also,
the data used to optimize the rules is supposed to come from the following

statistical experiment: First, students exposed to thc same selection test are

randomly drawn without reference to the score on the selection test in question
and accepted for the initial treaunent. Next, the accepled students are randomly
assigned to either treaunent 0 or 1, after which their performances on the mastery
test are measured.

: In the following, we shall assume that for a randomly sampled
e individual the obscrved-score selection test variable X, the observed-score

placemnent test variable Y, the observed-score mastery test variable Z, and the

Q
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classical test theory true score variable T underlying Z, i.e., the criterion common
to the treatments j (j = 0,1), are continuous rasidom variables. Furthermore, it will
be assumed that the relation between X, Y, Z, and T can be represented by a
density function fj(x,y,z,t). Since the treatments take place between the placement
and the mastery test, this relation may entail different density functions for each
treatment. Therefore, f:(x,y,z,0) is indexed by j. However, since both the selection
and placement test are administered prior to the treaunent j, the density functions

q(x), s(y), and h(ylx) of respectively X, Y, and Y given X = x will not be
indexed by j.

Treaunent-dependent Mastery Rules in a Simultaneous Approach

In the case of a simultaneous approach to optimizing decision networks, an
important distinction is made with respect to decision rules on the mastery test
for students assigned to treaunents 0 and 1. These rules will be different to allow
for the “collateral information” present in the fact that examinees have followed

different previous treaunents before they take the mastery test.

Weak Monotone and Strong Monotone Rules

A decision rule specifies for each possible realization (x,y,z) of the sample space
XxYxZ which action has to be taken. Here, we only consider monotone rules;
that is, rules using cutting scores. Let X, y.. Zgjp and (. denote the cutting scores
on X, Y, Z for students assigned to treatment j, and T, respectively, where t is
set in advance by the decision-maker (G = O.D. Clearly, the
selecion-placement-mastery  problem  now consists of simultancously setting

culling scores X, Y, and Z¢j that, given the value of t., maximize the expected

utility.
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In general, when setting y. as well as Z¢j prior achievement on the
selection test can or can not be taken into account. In addition, the observed
scores on the placement test may or may not influence the cutting scores to be
set on the mastery test. Intuitively, students with selection scores equal to or just
above x. must compensate their relatively low selection scores with higher scores
on both the placement and mastery test. Reversely, it seems reasonablé that
students with placement scores far above y. should be advanced earlier than
students with placement scores equal to or just above y...

To distinguish between cases where prior achievement has or has not to
be taken into account, those rules will be called weak monotone and strong
monotone rules, respectively. For each x 2 x, the weak cutting score on the
placement test is defined as a function yc(x). Similarly, for each x 2 X, and y,
the weak cutting score on the mastery test under treatment j is given as a
function zcj(x,y). For strong monotone rules, however, both strong cutling scores
Yo and Zg; are set independently of ooserved test scores on prior tests. Since the
most general form of the decision rule is a weak simultaneous rule, this type of
rule will be treated first. Later on, strong simultaneous rules will be considered as

a special form of weak simultaneous rules.

Each action will be denoted by Ak (ij,k = 0,1), where i = 0 or 1 stands

for rejecting or accepling a student, j = 0 or 1 stands for assigning an accepted
student to treatment 0 or 1, and k = 0 or 1 stands for retaining or advancing an
accepted student. Since for a rejected student no further placement and mastery
decisions are made, the indices j and k will be dropped for i = 0.

For the decision network of Figure 1 a weak simultaneous rule 3 can be

defined as:




Selection-Placement-Mastery Decisions
7

{(x.y,2) : 8(x,y,2) =ag} = A x Rx R

{(x,y,2) : 8(x,y,2) = alOO} = AC x B(x) x Dyy(x.y)
((xy,2) : d(x,y.2) = a1} = AC x B(x) x Doc(x,y)
{(x.y,2) : 8(x,y,2) = 3 10} = AC b BC(x) x Dy(x,y)
{(xy.2) : &(x,y.2) =aq1q) = AC x BC(x) X ch(x,y),

where A, AC, B(x), Bc(x), Dj(x,y), and ch(x,y) stand, respectively, for the sets

of x, y, and z values for which a student is rejected or admitted for the initial
treatment, an accepted student is assigned to treatment 0 or 1, and an accepted
student is retained or advanced under treatment j (j = 0,1). R stands for the set of

real numbers. Thus, a weak monotone rule 8 can be defined for our example as

follows:

g ifX<x,ye R,andZe R

ajgp X 2x, Y < y.(x), and Z < z((x.y)
8(X,Y.2) = ﬁ ajopr i X 2%, Y <y(x), and Z 2 z4(xy)
ajyr If X2x.,Y2 y(x), and Z <z (xy)

a if X 2 x, Y 2y (x), and Z 2 zcl(x,y).

Since we confine ourselves to monotone rules in this paper, following
common practice in criterion-referenced testing, we are to show that there are no
nonmonotone rules with larger expected utility, or, equivalently, that the subclass
of monotone rules constitutes an essentially complete class (e.g., Ferguson, 1967,
Karlin & Rubin, 1956). Conditions under which the subclass of monotone rules is
essentially complete will be given later on. If these conditions are satisfied, a

monotone solution is said to exist.
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Other Types of Rules for the Combired Decision Problem

The introduction of weak monotone and strong monotone rules implies that
optimal rules can be considered which take both a weak monotone and strong
monotone form. Since strong monotone rules are special cases of weak monotone
rules, this type of rules can only be optimal if along with the conditions under
which weak monotone rules are optimal certain additional restrictions are met.
Furthermore, since in educational testing one is accustomed o using
strong cutting scores, rules with maximum expected utility in the subclass of
strong monotone rules can also be calculated without bothering about
monotonicity conditions. To stipulate the difference with the optimal (strong
monotone) rules, this type of rules will be termed Strong Monotone Rules with
Maximwn Expected Utility (SMMEU) rules. It should be emphasized that an
optimal rule from the set of all possible simultaneous rules only takes a strong

monotone form if the additional (rather strict) restrictions are met.

An Additive Uility Structure for the Combined Decision Problem

Th utility structure of the combined decision problem, uijk(t). is supposed to be

an additive function of the following form:

ul_]k(() = Wlul(g)(t) + quj(p)(() + W3Uk(ln)(l). (3)

where ui(s)(t). uj(p)(t). and uk("‘)(t) represent, respectively, the utility functions

for the separate selection, placement, and mastery decisions, and wy, Wo, and wq
are nonnegative weights. For a rejected student, zero utilities for the separate
placement and mastery decisions are assumed. Hence, it follows from (3) that

"()jk(‘) is equal to wluo(s)(t) for all j and k.
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Since the utility functions ui(s)(l). uj(p)(l). and uk(m)(t) are allowed to
assume different forms, Equation 3 offers us a great deal of flexibility to describe
utility strectures in practical applications. Furthenmore, since utility is supposed o

be measured on an interval scale, the weights in (3) can be rescaled as follows:

uijk(l) = wlui(s)(t) = wzuj(p)(t) + (l-wl-w?_)uk(m)(t). @

with 0 < wy, wo, (1-w-wpd < 1.

As menticned easlier in the Introduction, one of the main advantages of
a simultaneous approach is that more realistic utility structures can be defined.
Equations 3-4 demonstrate this fact nicely, since a utility function defined on the
ultimate criterion of the decision network is fonmmulated not only for the mastery
decision but alsu both for the selection and placemcnt decision. This choice is in

line with the philosophy underlying ISS’s.

Expected Ultility in a Simultaneous Approach

It is important to realize that thc expected utility in a simultaneous approach
according to the statistical experiment described earlier is composed of eight
terms, whereas according to (1) only five possible actions can be identified. The
reason is that action ag contributes four terins to the expected utility, namely one
tfor each possible combination of outcomes of the decisions that follow. The
placement rules in the calculation of this part of the expected utility are different
for students reiected or accepted for the initial treatment to allow for this
"collateral information”. The mastery rules are not only treatinent-dependent but
also depend on the infonnation if students are rejected or accepted for the initial

treatinent.

PAFullToxt Provided by ERIC
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For the most general form of the decision rules according to (1), the

expected utility in a simultaneous approach can be caiculated as follows:

EfUggyn(ACBC0.BRE), DyCxy), Dy C), DpCxy Dy Cexyn) =

J-A J;} x) ‘ﬂ) 0%y fR ugoo(fg(x.y,z.dtdzdydx +

r ’

(Ofg(x,y,z,t)dtdzdydx

JA fBr(x) ,g)rg(x’y) fR upo1Wigix,y ydx +
JA J;B C( )j:\ 1%) fR ug1o(Dfy(x,y.2,0)dtdzdydx +

p X

C, .. J;)C ug11(0f ) (x,y,z,)dtdzdydx +
J‘A‘I;Br x) rl(x'y) fR
JA C fB(x) fD()(X.y) fR uj00fp(x,y.z.)dtdzdydx + 5)

uy01(0fp(x,y,z,Ddtdzdydx +

fA C J;}(x) L)OC(X’Y) fR 101N
fA C -I;B C(x) ﬁ’l(x.-y) JR upoMOf(xy.z.0dtdzdydx +,

) uy 1 (Of(x.y,z,t)dtdzdydx .
fACfBC(x) -I;')l('(x.y) Jrmimoney g

where B(x), BrC(x), D'j(x,y). and Der(x,y) represent, respectively, the sets of y
and z values for which a rejected student is assigned to treatment 0 or 1 and
failed or passed the mastery test under treatment j (j = 0,1).

Taking expectations, completing integrals, rearranging tenns, and using

i -
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uojk(t) = wluo(s)(l) for all j and k, (§) can be written in posterior form as

ElUgim(A €8 €08 S0.Dy (D “(xy)) = wiBqlu$ () +

Jl; I;a C(x)wl{El[u(()s)(T)}x,y]-E()[u(()S)(T)lx,y]}h(yIx)q(x)dydx +
r

fic {Eolu 100D -wu$(Dx +
¢ Eplujo(D-uyop(D |x.y.zling(z [x,y)h(y |x)dzdy +
R 0 (X,)’)

1
¥ @D ﬁ} C o EilutjoDlxsl +

Al

J
l
L‘C(x y\Ej[“lj 1(T)~ule(T)|x,y.z]mj(z|x.y)dz}h(y |x)dy[q(x)dx.
j %y

with mj(zlx,y) being the p.d.f. of Z given X = x and Y = y under treaunent j and
where Ej[.] indicates that thc expectation has been taken over a distribution

indexed by j.

Sufficient Conditions for Monotone Solutions

In this section, sutlicient conditions for optimal simultaneous rules to be
monotone will be derived. First, conditions under which optimal rules take a
weak monotone form will be derived. Next, it will be indicatcd how sufticient
conditions for strong monotone solutions can be obtained from the previous case

by imposing certain additional restrictions on fj(x.y,z.t).
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Sufficient Conditions for Weak Monotonicity

To derive the conditions under which optinal rules take a weak monotone form
for our example, the following well-known thcorem (e.g., Ferguson, 1967, p.
201) is needed:

For every function f(x) with f|f(x)|dx < o
and any set S of x values,

it holds that. [ f(0dx < Lof(x)dx with Sg = (x: f(x) 2 0. )
Applying this theorem furst to the inside integrals w.r.t. z, next to the
middle integrals w.r.t. y, and tinally to the outside integral w.r.t. x in (6), it can

be verified that an upper bouno o the expected utility is obtained for:

D 'g(x,y)s{z: Egluyo1(M-ugo(Mix.y.z} 2 0,

D‘Ic(x,y)s{z: Eqluy1(M-upp(Mix.y.z] 20}

1
B*Cx) = fy: z(:) (2 -DEEjlugzo(Mixyl +

L ‘j C(x'y)Ej[UIj l(T)'“le(T) |x,y,z]mj(z|x,y)dz) > 0},

B* S’(x) = {y: Ellu(()s)('r)lx,y] - E()lu(()s)(T)lx,yl > 0},




Sclection-Placement-Mastery Decisions

13
A*C = {x: Eglujgo(D-W1u{ M x1
fRJ;)‘C Eglu101(T)-u30o(T)[%y,2Img(z |x.y)h(y [x)dzdy +
0
(12)

1

¥, Q-1 j;a,,c(x){Ej[ul,-omlx.yl .

J:

fD +Copy Ui D-UjoDxy.zim j(zl%.y)dzin(y|x)dy = O}
C(xy
j

We are now able to specify conditions for weak monotonicity. For weak
monotone ruies, the sets D*jC(x.y). B*C(x), and A*C take the form [zcj(x,y),oo),
[y(x),2), and (e respectively. As opposed o these sets, however, it is
assumed that the sets B*rc(x) take the form (-<,y.(x)]. The reason for assuming
a somewhat different form for the sets B*rC(x) is that under quite realistic
conditions on the test score distributions and utility functions (Vos, 1994b), a
weak monotone solution can be guaranteed. The form of B*rC(x) stated above
implies that rejected students, unlike accepted students, with low scores on the
placement test will generally be assigned to the "higher’ treatment.

It follows that the optimal weak rules take a monotone form if the
left-hand sides of the inequalities in (8)-(9), (10), and (12) are increasing
functions in z for all x and y, in y for all x and z, and in x for all y and z,
respectively, whereas the left-hand side of the inequality in (11) is required to be
decreasing in y for all x. In the empirical example below it will be examined if
these conditions hold.

The sets D" ). D* 0y, BY Coo. BCn. and A™C can be
obtained in the following way: For each x and y, first the sets D*Oc(x,y) and

D*l(ﬂ(x,y) can be computed from (8) and (9), respectively, whereas for cach x
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|1

the sets B*rC(x) can be computed from (11). Then, for each x, inserting
D*jc(x,y) into (10), the sets B*C(x) can be computed. Finally, inserting
D*jC(x,y) and B*C(x) into (12), the set A*C can be computed.

— Manotonicity Conditions for Strong Simultaneous Rules

For strong simultaneous rules, Bc(x) and BrC(x) are not allowed to depend on x
and DjC(x,y) not on x and y. Let vj(t | x,y,2) and rj(tlx,y) denote the p.d.f’s of
i Tgiven X=x,Y=y,andZ=zand T given X = x and Y = y under treatment
- Jr respeétively (G = 0,1). In addition to thie monotonicity conditions for weak
. simultancous rules, it then follows from (8)-(11) that an upper bound to the
,_i_‘-_\.- expected utility is reached for a strong monotone rule if vj(tl x,y,z) does not
- depend on X = x and Y = y, whereas rj(tl x,y) and mj(z | x,y) do not depend on
T X=x{=n0.

- Calculation of Simultaneous Rules
In this section, it will be indicated how the different wypes of rules discussed

earliecr can be calculated. First, it will be shown how optimal rules can be

. obtained being both of a weak monotone and strong monotone form. Next, it will

be indicated how SMMEU rules can be derived by maximizing the expected

utility over the subclass of strong monotone rules.

. Optimal Simultancous_Rules

Assuming the conditions for weak monotonicity are satisficd, optimal weak

cutting scores can how be obtained for those values of zcj(x,y). ¥c(X), ¥er(%), and
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X for which the inequalities in (8)-(12) turn into equalities. The optimal weak
monotone rule is then given by x., {y (x)ix 2 x.}, {y(x)ix < Xchs {zco(x,y)lx P4
Xo ¥ < ¥}, and {z 1(x,y)ix 2 x, ¥ 2 y.(x)}. Assuming the additional
restrictions on fj(x,y,z,t) are also satisfied, optimal strong cutting scores can be
obtained by solving the resulting system of equations simultaneously for X, y.
Yer Zeor and Zy-

SMMELU Rules

The set of SMMEU cutting scores, say x*c, y*c, y*cr' Z*CO‘ and Z*cl' can be

computed straightforward by inserting AC = [x o), BC(x) = [y ), BC(x) =

(Yopoo)» and ch(x,y) = {zcj.oo) into (6), differentiating w.rt. X, Yo, Yop Zcgr and

z.|» setting the resulting expressions equal to zero, and solving simultaneously
for .. Yoo Yop Zeor A 21

Since no analytical solutions for these systemns of equations could be
found, the cutting scores can be calculated via a numerical approximation
procedure such as Newton’s iterative algorithin for solving nonlinear equations.
For the present systems of equations, this algorithm was implemented in a
computer program called NEWTON. Another program, UTILITY, was written to
analyze differences in expected utility for the various rules. Copies of the

programs are available from the author of the paper upon request.

Optimal Separate Rules

1t is observed that optitnal rules for the separate decisions can casily be found by

imposing certain restrictions on the expected utility in a simultancous approach.
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First, for the separate selection decision it holds that mo(zlx.y) =
m(zlx,y) = m(zlx,y) and wy = (1-w-w5) = 0, since both weatments coincide and
there are zero placement and mastery utilities in this case, respectively.
Substituting these restrictions into (6), the expected utility for the separate
selection decision, E[Usep(S)(AC)]. becomes

). SYNE
EUS (A O = B ()] « N BT -udMxigmax. a3

Next, for the separate placement decision it holds that AC =R and w| =
(1-w-wy) = 0, since all students are accepted for the initial weatment and there
are zero selection and mastery utilities in this case, respectively. Substitution of
these restrictions as well as Bc(x) = BC into (6) results for the expected utility

of the separate placement decision, Estep(p)(BC)]. in
MR Gy
E[Use p(B )] =
Eglud™(T)] 1P 1y1-EgluM (D) ylsiy)e (14)
*olug *ch 1luy " (Diyl-Egluy (D) ylisy)dy.

Finally, for the separate mastery decision it holds that AC = R,
my(zix,y) = mj(zix,y) = m(zlx,y), and w = wy = 0, since all students are
accepted for the initital treatinent, both treatments coincide, and there are zero
selection and placement utilities in this case, respectively. Inserting these
restrictions as well as l).c(x,y) = DC into (6), the expected utility for the

(m)(D C)], becoines

separate mastery decision. I:‘[U's_Cp

Loy (M)
E[Uscp

(m) (m)

® O = E™e) « §, oV m-wg P eipedz, s
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where p(z) denotes the marginal distribution of Z.

Analogous to a simultaneous approach, it can easily be verified that
upper bounds to E[USL(A Gy, E[Ug!))(B Cy), and E[llg;’)(D C)] are obtained
for the sets of x, y and z values for which the integrands in (13), (14), and (15)
are nonnegative, respectively. For monotone rules, these sets take the form
(X2 [yeioo), and [zc,oo), respectively. Assuming the monotonicity conditions
for the separate decisions are satisfied, it follows that optimal cutting scores for

the separate selection, placement, and mastery decisions, say X, ¥, and Z,

can be obtained by solving the integrands in (i3), (14). and (15) for x.. y,, and

z., respectively. For further details, see Mellenbergh and van der Linden (1981),
van der Linden (1981), and van der Linden and Mcllenbergh (1977).

An Empirical Example

The procedures for computing the optimal rules were applied to a sample of 71
freshmen studying medicine. Treaunents 0 and 1 consisted of an interactive video
(IV) and a computer-aided instructional (CAI) program. Ordering the treatments
in this way was motivated by the fact that the IV-program contained more
examples and exercises than the CAl-program, iinplying that students with high
scores on the placcment test were generally assigned to treatment 1.

The selection, placement, and mastery tests consisted each of 25
frec-response items with test scores ranging from O to 100. It should be
cmphasized that the example given in this paper was used only to illustrate the
models. The use of small samnples is generally not recommended, because the

estimated model parauneters may have large errors which tend to propagate when
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computing optimal rules.
The teachers of the course considered a student as having mastered the
subject matter if he/she could answer correctly at least 60% of the total domain

of items. Therefore, to was fixed at 60.

Multivariate Normal Distribution

It was assumed that the variables X, Y, Z, and T followed (possibly) different
multivariate normal distributions under both treatments. Under this assumption,
the means, variances, correlations, and reliability coefficients of the mastery test
scores were estimated using maximum likelihood estimates and coefficient alpha,

respectively. Table 1 shows the results of the computations.

Insert Table 1 about here

When applying the procedures in this paper, it should always be checked
whether the assumed multivariate nornal distribution for fj(x,y,z.t) holds. This
assumnption was tested by exawnining whether a trivariate normal distribution for
(X,Y,Z) under both treatinents as well as the lincarity of the regression functions
Ej(TIx), Ej(le), and Ej(TIx,y) did hold against the data. The trivariate nornal
distribution for (X,Y,Z) under treaunent j was tested using a Chi-square test by
partitioning the sample space into 20 intervals of (x,y,z) observations (df =
20-9-1). Furthennose, the null hypotheses of "no linear relation” for the

regression functions Ej(le) = Ej(TIx) and Ej(ZIy) = Ej(TIy) were tested for a

usual t-test (df = nj-2). with n; denoting the number of students in the sample
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assigned to treaument j. Finally, the null hypotheses of "no linear relation™ for the
regression functions Ej(ZIx.y) = Ej(TIx.y) were tested using the standard F-test
(df = [m,n;-m-1]), with m = 2 denoting the number of explanatory variables. All

J
p-values showed a satisfactory fit (o = 0.05).

Ultility Functions for the Separate Decisions

For the separate selection and placement decisions, it will be assumed that the
utility functions can be represented as linear functions of the criterion variable T
(Mellenberg & van der Linden, 1981; van der Linden & Mellenbergh, 1977):

(s) (s)

© bO (te-t) + d0 for i=0

e u; (0= (16)
RS b (t-to) + af for i=1,
bt -0 + dF for j =0

A P a7
- b\P(t-te) + o for j=1,

where b(®), 6P > 0 and (b, M-y > 0 (i,j = 0,1). The condition by (), by'®
> 0 states that utility must be an increasing function of the criterion for the
acceptance decision. but a decreasing function for the rejection decision.

Furthermore, the condition b, b, (P > 0 implies that both for assigning
0 1

students to treatment 0 and 1, utility is an increasing function of t. Finally, the

condition [bl(P)-bO(p)J > 0 implies that uo(p)(t) must be a more slowly

increasing function in t than ul(P)((). This condition is nceded to guarantee a

monotone solution for the separate placement decision (cf. van der Linden, 1981).
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For the separate mastery decision the well-known threshold utility
function is assumed (e.g., Hambleton & Novick, 1973; Huynh, 1976; Novick &
Lindiey, 1978), which is defined by the following four constants:

fort<t.andk=0
dop fort<t andk =1
dio fortzt . andk =0
dyg fort=t . andk = 1,

where dqg < dgg and dgy < dyj. The condions djq < dgg and dg; < dy
express the assumptions that incorrect decisions represent a smaller utility than

correct decisions.

Monotonicity Conditions

It should always be c¢hecked whether the conditions for weak monotonicity are
satisfied. Doing so, it turned out that the left-hand sides of the inequalilies in
(8)-(9), (10), (11), and (12) were increasing in z for all x and y, increasing in y
for all x and z, decreasing in y for all x, and increasing in x for all y and z,
respectively, with some minor exceptions at the lower ends of the range of test
scores (0 £ x,y,2 < 100).

Finally, it remained still to be tested if the additional conditions on

fj(x.y.z,t) for strong monotone solutions were met. First, the conditions of rj(tlx.y)

and mj(zlx.y) being independent of X = x were tested comparing the linear
regression functions Ej(Tlx.y) and Ej(le). The null hypothesis "the variable X
does not deliver a significant contribution to the explanation of T" was tested

with an F-test (df = [l.nj~3]). Sccond, the condition of vj(tlx.y.z) being
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independent of X = x and Y = y ws tested comparing the lincar regression
functions Ej(T | x,y,2) and Ej(TI z). The null hypothesis "the variables X and Y
do not deliver a significant contribution to the explanation of T" was tested using
~an F-test with df = [2,nj-4]. All p-values did not show a satisfactory fit to the test
dawa, however, implying that the optimal rules did not take a strong monotone
form (o = 0.05). Therefore, only SMMEU rules and no optimal strong rules were
considered.
An absolute maximuimn appeared to exist for the expected utility in the
subcla#s of strong monotone rules, because the Hessian matrix was negative

definite for all nonnegative test scores.

Results for both Simultaneous and Separate Rules

To illustrate the dependence of the resulis on the chosen utility structures, the

SMMEU and the set of weak cutting scores (x., Y.(X.), Z.:(X.Y(X.)) were
¢ Yc\te” “cj\terlc\e

computed for three different values of the utility parameters as well as for wy =
0.6 and wy = 0.2, wy = 0.1 and wy = 08, and w; = wy = 0.333 using the
program NEWTON. The results are displayed in Table 2. The optimal cutting
scores X, ¥, and Z. for the separate sclection, placement, and mastery
decisions are also reported in Table 2. It should be noted that the weak and
SMMEU cutting scores y.(x.) and y*cr stayed nearly constant at approximately
39.48 and 39.89, respectively. These cutting scores are not displayed in Table 2,
however, because they were only used to compute the optimal rules but are not

used for taking decisions in an existing ISS.
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Insert Table 2 about here

Since (a/ax)zcj(x.y) = 'BTXj.YZ/BTZj.XY' it followed that zco(i.y),
and z_(x,y) decreased by 1.85 and 1.05 per unit increase in x for y < y.(x) and
y 2 y(x), respectively. Similarly, (a/ay)zcj(x.y) = 'BTYj.XZ/BI'Zj.XY implied
that z (x,y) and z;(x,y) decreased by 2.05 and 1.32 per unit increase in y for y
<yfx)and y = yc(x), respectively. The behavior of y.(x) was examined using
the program NEWTON. The results of the computations indicated that y(x) was
decreasing in x for x 2 x.. Hence, our expectations of the functions y (x) and
zcj(x,y) being decreasing in x and in both x and y for x 2 x. could be confirned
(j = 0,1). Furthermore, to illustrate the combined effect of both x and y.(x) on
7--;)'(" Jc(x)), the graphical displays of y.(x), z.g(x.yo(x)), and Zo 1%y (X)) for x

2 x are shown in Figure 2 for utility structure (2).

Insert Figure 2 about here

As Figure 2 shows, y.(x), zco(x.yc(x)). and zcl(x.yc(x)) decreased with
approximately 0.5, 0.8, and 0.36 per unit increase in x for x 2 x.. Apparently, the
decreasing  character  of zcj(x.y) in x does have a stronger influence on
zcj(x.yc(x)) than the combined effect of the decreasing character of both zcj(x,y)
in y and yc(x) in x for utility structure (2). For all other utility structures, the

sune pattern could be observed in this study.,
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Inspection of Table 2 shows that z g(x.y.(xo) is larger than
2.1 (XY (%)) Combined with the fact that both zco(x,y) (when y < y.(x)) and
zcl(x,y) (when y 2 y‘(\')) are decreasing functions in y, it follows that students
just accepted for the initial treatment and assigned to treatment O are always
confronted with higher weak cutting scores on the mastery test than students just
accepted for the initial reatment and assigned to treaunent 1.

As can be seen from Table 2, X, did not show large differences
compared to x.. However, in particular for wy = 0.6 and wy = 0.2, §. andZ.
were substantially higher and lower compared to yc(xc) and zcj(xc'yc(xc))’
respectively (G = 0,1).

Obviously, students with selection scores X = x. were sooner assigned
to the 'higher’ treatment in the case of a weax monotone approach but had to
compensate their relatively low weak cutting scores on the placement test with
higher optisznal weak cutting scores on the mastery test. However, the decreasing
character of zcj(x,yc(x)) in x for x 2 x, implies that for students with selection
scores far above x. these rather high weak culling scores on the mastery test
under treatment j decreased. Also, students assigned to the ‘higher’ treatinent
with selection and placement scores far above x. and y.(x) needed only low

scores on the mastery test.

Comparison of the Expected Utilities

As earlier noted, one might expect that in a case with empirical data the expected
utility for a simultaneous approach will be larger than for a separate approach.
This expectation will now be examnincd comparing the expected utilities for the
optimal weak monotone and SMMEU rules with the weightcd sum of the

cxpected utilitics for the optimal separate rules using the program UTILITY. The

<7
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results are also reported in Table 2.

As can be seen from Table 2, the expected utilities for both the optimal
weak monotone and SMMEU rules yielded larger values than for the weighted
sum of the expected utilities for the optimal separate rules for all nine utility
structures. Some utility structures, such as, for instance, utility structures (3), (6),
and (9), even showed substantial gains in expected utility for a simultaneous
approach.

Furthenmore, inspection of Table 2 shows that for all three approaches,
the expected utility yielded the largest value for w, = 0.8 in this study. In other
wouds, the utility for the placement decision contributed most to the expected
utility in our example.

Also, comparing utility structures (1)-(3) with (4)-(6), it can be
concluded from Table 2 that raising the utilitics for the correct mastery decisions
resulted in an increase of the expected utiliies for all three approaches.
“Obviously, correct mastery decisions have a relatively strong positive influence
on the specitication of the utility structure.

Finally, the expected utilities for the optimal weak monotone and
SMMEU nmules were compared to each other. As Table 2 shows, the expected
utilities for the optimal weak monotone rules were larger than for the SMMEU
rules. This result does not contradict our predictions, because the expected utility
for an optimal weak monotone rule must yield the largest expected utility of all

simultaneous rules if the conditions for weak monotonicity are met.

<8
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Discussion

In this paper, cutting scores for a selection-placement-mastery problem were
optimized simultaneously using Bayesian decision theory. The optimal decision
procedures were illustrated empirically using data from the area of instructional
decision making. It turned out that in some cases considerable gains in expected
utility could be achieved by the optimal weak monotone rules compared to the
weighted sum of the expected utilities for the optimal separate rules.

The results indicated that the optimal weak monotone rules y.(x) and

zcj(x.y) were decreasing in x and both in x and y. In Vos (1994b) it is shown

that under the same rather mild conditiors on the test score distributions and
utility functions which guarantee a weak monotone solution, optimal weak
monotone rules are always compensatory by nature. The title of the paper already
alludes to this result. As already explained, this feature introduces an element of
compensation in the decision procedure: It is possible, for instance, to

compensate low scores on the placement test by high scores on the selection test.

A final note is appropriate. Although instructional decision making is a
useful application of simultancous decision making, the modcls advocated in this
paper, however, are not limited to this area, Other useful applications may be
found in such areas as psychotherapy in which it can be expected that accepted
patients for the program react differentially to a certain kind of therapy followed
by a success criterion, which has to be passed before being dismissed from the

therapy.
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Figure 1.

Figure 2.
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Figure Caption

A system of a selection, a placement, and a mastery decision

(Case of two treatinents).

Graphical displays of y.(x), z.o(x.y.(x)), and z.1(x.y(x)) for

X 2 x in utility structure (2).
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