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A NEW METHOD OF CONTROLLING ITEM EXPOSURE
IN COMPUTERIZED ADAPTIVE TESTING

Abstract

In the periodic testing environment associated with conventional paper-

and-pencil tests, the frequency with which items are seen by test-takers is

tightly controlled in advance of testing by policies that regulate both the

reuse of test forms and the frequency with which candidates may retake the

test. In the continuous testing environment associated with more novel

testing paradigms such as computerized adaptive testing (CAT), the computer

itself can be used to control the frequency with which items are administered.

This paper discusses previous methods of controlling item security in the

continuous adaptive testing environment and presents a new method that

overcomes some (but not all) of the disadvantages of previous attempts. An

extensive example with this new method and a particular adapttve testing

algorithm illustrates how concerns about test efficiency, parallelism, and

security can be balanced.

Key Words: computerized adaptive testing, item exposure control, test

security, exposure rates.
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A NEW METHOD OF CONTROLLING ITEM EXPOSURE
IN COMPUTERIZED ADAPTIVE TESTING

Introduction

Every year millions of conventional paper-and-pencil tests are

administered by various national testing agencies. These tests are typically

"high stakes" tests in that important decisions about test-takers are based,

in part, on test scores. In secure conventional paper-and-pencil testing,

large numbers of candidates take the same or parallel linear test forms at a

few fixed administration dates scheduled throughout some time period. By

"secure" we mean that a great deal of time and effort is spent by test

agencies to insure that no test-taker has access to test questions in advance

of test administration. In this context, the frequency with which a single

item might be seen by a single test-taker can be tightly controlled in advance

of testing through policies that regulate both the reuse of test forms and the

frequency with which candidates may retake the test. Such a system of test

administration and its associated policies may be called periodic testing.

Adaptive tests are tests in which items are selected from a large pool

of items to be appropriate for a test-taker (the test "adapts" Lo the test-

taker). All but a few proposed designs have assumed that items would be

chosen and administered to test-takers on a computer, hence the term

"computerized adaptive testing" or CAT. (See Lord (1980) or Wainer, Dorans,

Flaugher, Green, Mislevy, Steinberg, & Thissen (1990) for a more detailed

description of adaptive testing.) In an environment where tests are computer

administered, it is a natural extension to utilize the computer for such

administrative activities as scheduY.ng, score reporting, protecting item

security, and so forth. In this environment continuous, as opposed to

periodic, testing becomes possible.

6
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It is, of course, also possible to conceive of conventional paper-and-

pencil testing in a continuous testing environment, although the authors know

of no high stakes paper-and-pencil linear conventional tests administered in

this fashion. It i; quite likely that the security problems of such an

administrative mode are difficult to overcome for reasonable cost. Likewise,

CAT is by no means the only type of test that is convenient to administer via

computers. (See for example, Sheehan & Lewis (1992) on computerized mastery

testing.) It is likely that different types of high-stakes continuous

computer administered tests have different kinds of security problems.

In this paper we discuss issues of item security only in the context of

CAT. In the next section we briefly provide more details about CAT and a

particular adaptive testing algorithm that we will use in a later example.

The following section provides a history of methods, with advantages and

disadvantages, that seek to provide secure testing in the continuous testing

environment of CAT. In the subsequent section, a new method of controlling

item exposure in CAT is presented, followed by an example using this new

method.

The Weighted Deviations Model

As noted by Davey & Parshall (1995) high-stakes adaptive testing has at

least three goals: 1) to maximize test efficiency by selecting the most

appropriate items for a test-taker, 2) to assure that the tests measure the

same composite of multiple traits for each test-taker by controlling the

nonstatistical nature of items included in the test, and 3) to protect the

security of the item pool by controlling the rates at which items can be

administered. These goals often compete with one another.

7
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Different approaches to each of these goals yield different algorithms

for adapttve testing. The particular algorithm used in this paper is the

Weighted Deviations Model (WDM) developed by Stocking & Swanson (1993) and

Swanson & Stocking (1993). This paradigm is characterized by flexible

approaches to all three goals of adaptive testing.

In general, any CAT algorithm implicitly orders the items in the pool in

terms of their desirability for selection as the next item. Differences in

ordering typically reflect particular definitions of item optimality and

particular methods of estimating ability. Any attempt to control the exposure

of items can then be viewed as modifications imposed on this ordering.

In the WDM the item pool is ordered by employing a methodology from the

decision sciences that models the behavior of expert test specialists. The

WDM ordering explicitly takes into account nonstatistical item properties or

features along with the statistical properties of items. This is to insure

that each adaptive test produced from a pool matches a set of test

specifications and is therefore as parallel as possible to any other test in

terms of content and type of items, while being tailored to an individual

test-taker in terms of appropriateness. The desired balance between

measurement and construct concerns is reflected by the weights given to them,

which are chosen by the test designer. The WDM approach also allows

specification of overlapping items that may not be administered in the same

adaptive test. In addition, it is possible to restrict item selection to

blocks of items, either because they are associated with a common stimulus or

common directions or any other feature that test specialists deem important.

Thus at each item selection in the WDM, the pool or an appropriate subset of

the pool is ordered from most desirable (smallest weighted deviations from



6

desirable test properties) to least desirable (largest weighted deviations

from desirable test properties).

In summary, in the WDM, the next item selected for administration is the

item that simultaneously

1) is the most appropriate possible at a test-taker's estimated ability

level, while

2) contributing as much as possible to the satisfaction of all other

constraints.

At the same time, it is required that the item

3) does not appear in an overlap group containi.Ag an item already

administered, and

4) is in the current block (if the previous item was in a block), starts

a new block, or is in no block.

In the particular version of the WDM used in this paper, the measure of

the appropriateness of the item is the Fisher item information function (Lord,

1980, equation 5-9) and the estimate of ability is maximum likelihood (Lord,

1980, equation 4-.31), although other measures of the statistical properties of

items (see for example, Chang, 1995) and other estimates of ability (see for

example, Davey & Parshall, 1995) are possible.

Previous Methods of Controlling Item Exposure

Any scheme that seeks to control the exposure of items employs

mechanisms that override the optimal ordering of items, thus degrading the

quality of the adaptive test. Longer tests are therefore required to achieve

the level of psychometric efficiency obtained when no exposure control is

exercised, but longer tests may be viewed as a reasonable exchange for greater
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item and test security. In this section, we describe a number of exposurt.

control methods that have been tried out in the past. The discussion proceeds

in order of the complexity of the scheme.

Simple Randomization

Early theoretical investigations of CAT ignored the problem of item

exposure (see, for example, Lord, 1970). Procedures that seek to prevent the

overexposure of initial items developed when the prospects of actual

implementation became more certain. Lord (1977), McBride & Martin (1983),

Stocking (1987), and Weiss (1978) implemented strategies typical of these

first attempts. In this approach, the selection of the next item to

administer is no longer based solely on the evaluation of items for optimality

at the current ability estimate, however optimality may be defined in a

particular application. Rather, a group of items is identified that are

roughly equal in optimality and the next item is chosen randomly from this

group.

In the context of the WDM, the first item to be administered would be

chosen randomly from, say, the top five items in the list of items ordered as

described above. The second would be selected randomly from a group of four

most desirable items, the third item from a group of three, the fourth

randomly from a group of two and the fifth and subsequent items chosen to be

optimal. The assumption underlying this approach is that after some number of

initial items, test-takers will be sufficiently differentiated so that

subsequent items will vary a great deal.

Many variations on this theme are possible, including the possibility of

never choosing the next item optimally with certainty, that is, the minimum

group size is always two or greater. This latter approach recognizes that in
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spite of randomization on initial items, test-takers with similar abilities

may receive many of the same items subsequently unless attempts are made to

control the exposure of items later in the test.

The advantage to these kinds of schemes is that they are simple to

implement and easily understood. They can be elaborated to make the random

selection process depend upon the estimated ability of the test-taker by

specifying different group sizes for different levels of estimated ability.

However, the success of such schemes is difficult to predict with complex but

realistic item pool structures and test specifications, and may not prevent

overuse of some items (for an example of this, see Stocking (1993), Figure 1).

Moreover, it is difficult to determine the best sequence of group sizes from

which the random selection is maae by anything other than time-consuming trial

and error with no certainty of success and with no easy generalizability to

different item pool and test structures.

Thomasson & Drasgow (1990)

This procedure, called the "INF04" procedure, is described in Segall

(1994). In the application described, at every item selection the items in

the entire pool are ordered from highest to lowest based on their Fisher

information at the current level of estimated ability. These values are then

raised to the fourth power, an ad hoc decision made in order to emphasize

differences in information (Drasgow, personal communication, January 11, 1995)

according to Tukey's ladder of re-expressions (Mosteller & Tukey, 1977). A

maximum is placed on these values, the values are then normed to sum to one

and a cumulative function is formed. A random number is generated and the

location of the corresponding item is found for the value of the random

number, interpreted as a cumulative probability. This item then becomes the

4
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next item to be administered. If such a method were used with the WDM, the

pool would be ordered not by information, but rather by the desirability

criteria incorporating both statistical and nonstatistical item features as

described previously.

The INFO4 procedure avoids the problem of determining the best sequence

of group sizes that characterizes the simple randomization method. It is

similar to the simple randomization approach with randomization at every item

selection. Also, intrinsic to the INFO4 method is the implicit dependence of

the randomization on the current estimated ability level. However, this

scheme does not prevent high exposure rates for some items, as reported in

Segall (1994, Table 2.1). In addition, no investigations have been conducted

of different transformations of the information function, and it is likely

that this procedure depends on the nature of the particular item pool for

which it was developed (Drasgow, personal communication, January 11, 1995)

It may be difficult or impossible to generalize to other pools.

Umpson & Hetter (1985)

The two procedures described above attempt to increase item security by

indirectly reducing item exposure. Sympson & Hetter (1985) tackle the issue

of controlling item exposure directly in a probabilistic fashion.

This procedure considers a test-taker randomly sampled from a typical

group of test-takers and distinguishes between the probability P(S) that an

items is selected as the best next item by some CAT algorithm and P(A1S), the

probability that an item is administered, given that it has been selected.

The procedure seeks to control the overall probability that an item is

administered, P(A), where P(A) P(AIS) * P(S), and to insure that the maximum

value over all P(A)s is less than some value r. This r is the desired (not
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observed) maximum rate of item usage.

The 'exposure control parameters', P(AIS), one for each item, are

determined through a series of simulations (iterative adjustment simulations)

using an already established adaptive test design and simulees drawn from a

typical distribution of ability. Following each simulation, the proportion of

times each item is selected as the best item, P(S), and the proportion of

times each item is administered, P(A), are separately tallied. If P(S) is

less than cr equal to r, then P(A1S) is set to one for the next iteration,

insuring that P(A) P(A1S)*P(S) r. If P(S) is greater than r, then P(A1S)

is set to r/P(s) for the next iteration, again insuring that P(A) r. The

simulations continue until the P(A1S) have stabilized and the maximum observed

P(A) for all items is approximately equal to the desired value of r. Note

that there is no guarantee that this procedure will eventually stabilize, and

indeed, it may not (see below).

Once the exposure control parameters have been established (as well as

during the iterative adjustment simulations), they are used in item selection

as follows:

1) Select the next item for administration.

2) Generate a random number uniformly distributed between zero and

one.

3) If the random number is less than or equal to the exposure control

parameter for the selected item, administer the item.

4) If the random number is greater than the exposure control parameter

for the optimal item, do not administer the item and remove it

form the pool of remaining items for this test-taker. Repeat this

procedure for the next-most-optimal item. Continue until an item
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is administered.

If the adaptive test is of length n, then there must be at least n

items in the pool with exposure control parameters of one. If there were not,

then for some test-takers there might not be enough items in the pool to

administer a complete adaptive test. In the case where there are not n such

items, Sympson & Hetter suggest the reasonable procedure of sorting the values

of the exposure control parameters and setting the ri largest to one. This

has the effect of increasing the exposure rate for the items that are least

popular -- a conservative approach.

Stocking (1993) extended the Sympson & Hetter approach to item pools

with complex structures and adaptive tests with complex test specifications.

In these extensions, the basic procedure is applied to blocks of items as well

as to stimulus material, which, in general, will have different exposure rates

than items associated with stimulus material.

The advantage of the extended Sympson & Hetter approach is that one

obtains direct control of the probability that an item is administered, P(A),

in a typical population of test-takers. However, the simulations required to

obtain estimates of the P(A1S) for each item are time-consuming for pools and

test specifications with complex structures. If an item pool is changed, even

by the addition or deletion of a single item, or if the target population

changes significantly, the adjustment simulations must be repeated.

Moreover, if the structure of the item pool is not a good match with the

structure of the test specifications, it is possible for the extended Sympson

& Hetter procedure to diverge, that is, it may not be possible to obtain

stable estimates of the P(A1S) for each element in the pool (see Stocking,

1993, Figure 4, for an example). This happens because of the 'fixup' to

BEST COPY AVAILABLE
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insure complete adaptive tests -- setting the n highest P(A1S) to one. This

fixup seems to work well if all n of the high P(A1S)s are not too different

from one. However, if some are very different, this fixup can cause thrashing

by repeatedly setting low P(A1S)s back to one or alternating among several

items with low P(A1S)s. This prevents smooth convergence of the procedure. A

solution to this problem is to construct a context in which there is a better

match between pool structure and test specifications, either by enriching the

pool or by simplifying test structure. Either of these may be difficult to

accomplish.

A New Method of Controlling Item Exposure

The new method of controlling item exposure seeks to overcome the lack

of robustness of the extended Sympson & Hetter procedure by rethinking the use

of the exposure control parameters P(A1S) in selecting each item to be

administered. It can also be viewed'as a cousin of the INFO4 method of

Thomasson & Drasgow in that some function is formed and treated as a

cumulative probability for the purpose of selecting an item.

A helpful way of viewing this new procedure is that it formally models

the Sympson & Hetter procedure, in the following fashion: Consider the list

of items ordered by the WDM model from most desirable to least desirable, and

the associated P,(A1S). (In what follows, we will abbreviate this notation to

Pi for convenience.) The operant conditional probabilities of administration

for each item, ki, are not the simple Pi but rather as follows:

- PI, the probability that item 1 is administered given that it is

selected,

k2 (1-P1) * P2, the probability that item 1 is rejected given that it

10



13

is selected and the probability that item 2 is administered

given that it is selected,

k3 (1-P1) * (1-P2) * P3, the probability that the first two items are

rejected given selection and that item 3 is administered

given that it is selected,

and so forth.

The sum S of these probabilities must equal one for some event to occur, that

is, some item to be administered. If they do not sum to one, it may occur

that no item will be administered. If S is not one, we can define adjusted

probabilities whose sum is guaranteed to equal one by dividing each ki by

the sum S. This adjutment of probabilities is the analog of the fixup

recommended in the extended Sympson & Hetter procedure in that it guarantees

that an item (and therefore a complete adaptive test) can always be found for

administration. However, if the list of items is long the adjustment to

individual operant probabilities may be quite small, thus increasing the

chance for smooth convergence of the procedure.

The distribution of adjusted probabilities is not.; a multinomial

distribution and we want to sample one event from it, that is, we want to

administer an item. To do this, we form the cumulative distribution, generate

a random number between zero and one, and locate the item to be administered.

We eliminate all ttems appearing in the ordering before the item to be

administered from further consideration for this adaptive test. This

elimination of items accords with the definition of the operant probabilities

given above in that the operant probability of selecting item i includes the

probabilities of rejecting all items before item i in the ordered list.

If the list of elements ordered by the WDM model contains both discrete
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items and stimuli with associated items, then the process of selecting an

event from the ordered list is modified slightly. The Pi for a set of items

is considered to be the Pi for the stimulus of the set, and the computation of

the ki for all possible events, now a mixture of discrete items and stimuli,

proceeds as before. If a stimulus is the element sampled from the cumulative

multinomial distribution, all elements preceding the sampled stimulus are

eliminated from further consideration, and a new ordered list is then prepared

containing only items associated with the stimulus. The sampling from this

second multinomial distribution proceeds as with discrete items, but is

restricted to items within the set.

The most desirable items in any selection of an item tend to have not

only low deviations, but also low P(A(S) since items with low deviations tend

to be popular items. In some circumstances it may be desirable to move

towards using these items with low 'deviations, even at the expense of their

over exposure. This type of control can be provided to the test designer by

the use of an exponent on the probabilities of rejection of items that

reflects the magnitude of the weighted deviation relative to the previous

element in the ordered list. That is, each (1-Pi) can be raised to the power

(li-C*Ai) when forming the operant probabilities ki, where C is some constant

set by the test designer and Ai is the weighted deviation of the item relative

to the previous item in the list.

Table 1 gives an example that shows the effect of this procedure. The

top part of the table gives information about five hypothetical items. The

weighted deviations and the relative weighted deviations are listed in the

second and third columns, respectively. The probabilities of administration

and rejection of each item, given the item is selected are in the remaining

I /
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two columns. The next three parts of Table 1 show the effect on the

cumulative multinomial distribution when the coefficients used in the

exponents of the probabilities of rejection are 0, .5, and 1.0 respectively.

The entries'for C - 1, for example, are computed as follows:

ki - .10

k2 - (.9(11'6)) (.14) - .07

k2 - (.9(1'6)) (.86(1'1)) (.14) - .05

k4 (9(1'6)) (.86(1'1)) (. 86(1'6)) ( 16) - .05

k5 - (.9(1'6)) (.86(1'1)) (.86(131) (.84(1'1)) (.22) - .05.

The sum of these five operant probabilities is .32. The adjusted

probabilities are obtained by dividing each operant probability by this sum,

that is, .101.32, .07/.32, .05/.32, and so forth. The cumulative

probabi:Aties are obtained by successive addition from the adjusted operant

probabilities.

The probability of selecting the most desirable item, which also has the

lowest exposure control parameter, rises from .18 when relative weighted

deviations are not emphasized further (C = 0), to .24 when they are emphasized

a moderate amount (C .5), to .31 when they are emphasized more heavily (C

1). By increasing the coefficient C, the test designer can increase the

influence of the weighted deviations on the selection of each item at the

expense of increasing the exposure of desirable items.



Table 1: The Effect of the Exponent on Probabilities of Rejection
in the Computation of Operant Probabilities

Item Weighted
Deviations

Relative
Deviations (A)

P(A1S) 1 - P(AIS)

1 0 .10 .90

2 6 6 .14 .86

3 7 1 .14 .86

7 0 .16 .84

5 8 1 .22 .78
rowimmv

Item lc, Adjusted Cumulative

1 .10 .18 .18

2 .13 .23 .41

3 .11 .19 .60

4 .11 .19 .79

5 .12 .21 1.00

C - .5

Item lc, Adjusted Cumulative

1 .10 .24 .24

2 .09 .22 .46

.07 .17 .63

4 .07 .17 .80

5 .08 .20 1.00

C - 1

Item k, Adjusted Cumulative

1 .10 .31 .31

9 .07 .22 .53

3 .05 .16 .69

4 .05 .16 .84

5 .05 .16 1.00

The adjustment of the sum of the operant probabilities to one, as well

as the addition of the exponent on the probabilities of rejection, move the

new procedure away from a strict modeling of the Sympson & Hatter procedure.

That is, nominal operant probabilities, k,, are no longer equal to actual
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operant probabilities because of these modifications.

In summary, the new procedure consists of the following steps:

1) Choose a value of C. to reflect the relative importance of the

deviations from desirable measurement and construct properties of

the adaptive test when compared to item security.

2) Establish the exposure control parameters for each item in the same

manner as done in Sympson & Hetter iterative adjustment

simulations.

3) When selecting the next item in each simulation (and with the final

exposure control parameters once they have been established):

a) Form a list of items ordered by their desirability.

b) For each element i in the list, form the operant

probabilities ki, where

.4ki=1-1 (1p(1.0 ) )}.pi .

-1

c) If necessary, adjust the operant probabilities so that they

sum to one by dividing each value by their sum.

d) Form the cumulative distribution. Generate a random number

uniformly distributed between zero and one.

e) Find the corresponding element in the cumulative distribution.

f) Remove all elements preceding the one selected from further

consideration in this adaptive test.

g) If the element selected is a stimulus for a set of items,

repeat steps a) through e) for items belonging to this set.
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This procedure provides a smaller adjustment to the P(A1S) than the

Sympson & Hetter procedure in order to guarantee that a complete adaptive test

can always be found. The iterative adjustment simulations to determine the

P(A1S) are therefore more likely to converge smoothly to values that

appropriately reflect the intended population of test-takers. At the same

time this new procedure retains the advantage of the Sympson & Hetter

procedure in that it provides direct control over P(A) for each item when

adaptive tests are drawn for administration to the intended population.

While offering these advantages over the Sympson & Hetter procedure,

this new procedure retains the major disadvantages of Sympson & Hetter.

The iterative adjustment simulations are time-consuming for pools and test

specifications with complex structures. And if an item pool is changed or if

the target population changes significantly, the iterative tdjustment

simulations must be repeated.

An Example

In this section we present an extensive examination of the trade-offs

that can be made between the measurement, content, and security properties of

adaptive tests drawn from a particular item pool for a particular target

population. The target population was estimated using the method of Mislevy

(1984) and a sample of over 5000 real test-takers who took a linear 50-item

paper-and-pencil analytical reasoning test to which the adaptive tests are

designed to be parallel.

The Item Pool

Available to the authors was a latge pool of items and sets of items

measuring various aspects of Analytical Reasoning. There were a total of 660
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elements in this pool -- 578 items and 82 stimuli. Of the 578 items, 491 were

associated with the 82 stimuli and the remaining 87 items were discrete items.

The items were calibrated on large samples (2000+) of test-takers using the 3-

parameter logist item response model and the computer program LOGIST

(Wingersky, 1983), and placed on the same IRT metric using the transformation

methodology of Stocking & Lord (1983). The mean item discrimination was .75

with a standard deviation of .25; the mean item difficulty was .06 with a

standard deviation of 1.39; and the mean pseudo-guessing parameter was .16

with a standard deviation of .10.

The Adaptive Tests

Items were drawn from this pool using the WDM to form (fixed length)

adaptive tests of 35 items, subject to 34 constraints on their content.

Stimuli were drawn subject to 9 constraints on the nature of the stimuli.

Thus a total of 43 constraints controlled the nonstatistical features of items

and stimuli appearing in an adaptive test. These constraints had relative

weights that varied from 20.0, indicating that it was very important for an

adaptive test to have items and/or stimuli with these features, to 1.0,

indicating that it was substantially less important for an adaptive test have

these features. The importance of measurement appropriate for a test-taker

was reflected in the weighting of item information (Lord, 1980, equation 5-9)

at 20.0.

In addition to this relatively complex test structure, item selection

was further restricted by the specification of 75 overlap groups. Items and

stimuli belonging to an overlap group may not appear in the same adaptive test

with other items and stimuli appearing in the same overlap group. When a

stimulus appears in an overlap group, all items associated with that stimulus

BEST COPY AVAILABLE
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are included by implication. There were a total of 312 entries in the 75

overlap groups.

The Simulations

Ten iterative simulations were performed for each of four target maximum

desired exposure rates ( r .1, .2, .3, and .4) combined with each of three

values of C in the exponent of the conditional probabilities of rejection (.0,

.5, and 1.0) for a total of 120 (4 x 3 x 10) iterative simulations. Each

simulation was performed with 1170 simulated examinees (simulees); Sympson &

Hetter recommend sample sizes of at least 1000. Within each of the 12

sequences of ten iterative simulations, exposure control parameters started

with values of 1.0, as recommended by Sympson & Hetter, and were adjusted

between simulations as suggested by Sympson & Hetter. Within each of the 120

simulations, item selection was performed using the new (multinomial)

procedure described above. All 12 sequences of iterative simulations

converged to stable estimates of the exposure control parameters and maximum

probabilities of administration.

The Results

The results of each of the 12 final iterative simulations were

incorporated into single number summaries for convenience (in displaying the

results) as follows:

1) Measurement efficiency

Although complete conditional standard error of measurement curves

were available, in the context of this study it was easier to

interpret the results for the target population of interest by

incorporating this information into an estimate of adapt've test

reliability as suggested by Green, Bock, Humphreys, Linn, kg
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Reckase (1984, equation 6).

2) Measurement of the intended construct

Information was available concerning the extent of violations for

each nonstatistical constraint on item selection (that is, we

exclude the information constraint). These data were weighted by

the relative weight assigned to each constraint and them summed

over the 1170 simulees to give the total weighted deviations for a

typical group of size 1170 drawn from the target population.

3) Item security

The largest observed probability of administration for any element

in the pool for a sample of size 1170 drawn from the target

population was used as a single number summary of item security.

To the extent that the estimate of the target population matches

the true population of test-takers, this maximum observed

probability from the simulations should agree with data from real

test-takers.

Figure 1 displays one method of analyzing the results of this

experiment. In this figure, the horizontal axis is the targeted (not

observed) value of the maximum exposure rate, r, of any element in the pool,

and has values of .1, .2, .3, and .4. The vertical axis is the logn (chosen

to improve the readability of the Figure) of the total weighted deviations for

a sample of size 1170. Lines are drawn connecting the values of the total

weighted deviations for a particular value of C (0, .5, or 1.0) at the

different values of target maximum exposure rate. The numbers appearing

beside each point indicate the resultant adaptive test reliability.

A single square point is also drawn on the figure, at r .4. This

r



22

represents the total weighted deviations obtained if there were no control on

the exposure of items (target maximum r of 1.0). In this case, the value of

C can be anything because the most desirable item is always picked. This

represents a lower bound on how much the total weighted deviations can be

reduced for this pool.

At each level of target maximum exposure, increasing C reduces the

total weighted deviations, although the difference when item security is less

of a concern (r of .3 and .4) is small. When item security is more of a

concern (r of .1 or .2) the largest effect is gained by moving C from 0. to

.5, with less of an effect when moving from .5 to 1.0. Increasing C also

increases test reliability, as expected, since it improves the selection of

items statistically appropriate for simulees. However, this difference

appears quite small.

Figure 1 tells only two-thirds of the story when considering trade-offs

between efficiency, content, and security. What is absent is information

about the observed (not targeted) level of security actually obtained. This

information is shown is Figure 2, which is more difficult to interpret, but

also more informative.

In Figure 2, the horizontal axis is the observed maximum probability of

administration across the entire item pool from the final iterative simulation

for each condition. This horizontal axis now goes from zero to one. The

three lines plotted are for different values of C, as in Figure 1, and are

plotted with the same plotting symbols in both figures. The numbers next to

each plotted point are now the targeted maximum probability of administration.

If the targeted maximum probability of administration is .1, increasing

reduces the total weighted deviations, but at the expense of increasing the
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observed maximum exposure rate from close to .1 to over .2. If the targeted

maximum probability of administration is .2, increasing C reduces the total

weighted deviations substantially, but at the expense of increasing the

observed maximum exposure rate from close to .2 to over .5. If the targeted

maximum exposure rate is higher than .2, increasing C does not lower the

total weighted deviations very much, but increases the observed maximum

exposure rate substantially.

For this pool, for this population, for the WDM item selection method,

and for the multinomial method of exposure control, C - 0 gives observed

maximum exposure rates closest to target maximum exposure rates. In this

condition, substantial reduction in total weighted deviations can be obtained

simply by increasing the targeted maximum exposure rate. These reductions are

most striking when the target is increased from .1 to .2 and .2 to .3. If

reducing the total weighted deviations is very important, then a target

maximum exposure rate of .3 appears satisfactory. However, if item and pool

security is of primary importance, and the difference in total weighted

deviations does not represent the measurement of substantially different

constructs, a target maximum exposure rate of .2 may offer a good compromise.

Discussion

The continuous testing environment requires renewed attention to item

and test security concerns that have previously been resolved through

administrative procedures. Because of the size and cost of adaptive test item

pools, it is unlikely that it will be possible to have mere than a few item

pools in operational use at the same time. In a more realistic approach, the

protection of item security assumes the form of suboptimal item selection
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within a single item pool to decrease the frequency of use of the best items

in the pool.

One simple previously published method for controlling the frequency of

item administration sought to accomplish this by randomly selecting an item

for administration from a group of items of approximate equivalent optimality.

In order to avoid issues of optimum group sizes, a second previously published

method formed a function of item parameters, treated this function as a

cumulative probability, and selected from this cumulative probability at each

item selection. These methods controlled exposure rates only indirectly and

did not solve the problem of high exposure rates for some items.

The Sympson & Hetter approach develops an exposure control parameter for

each item that directly controls the frequency of administration for that item

in reference to a particular distribution of test-taker ability. This

approach, however, is not adequate for item pools with complex structures and

adaptive tests with complex specifications, particularly when specifications

do not conform well with the structure of the pool. In some cases, the

Sympson & Hetter approach can fail to converge entirely (see Stocking, 1993,

for examples).

In this paper we propose a new method of imposing exposure control on

the selection of the next item. In many respects this new method can be

viewed as modeling the Sympson & Hetter procedure by forming a cumulative

multinomial distribution from the true operant probabilities of administration

given selection for each element in a list of elements ordered by

desirability. In the particular example, the WDM model was used to form the

ordered list, but in theory, any method of ordering items can be used. This

cumulative multinomial distribution may need to be adjusted so that the

C141
4. I
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sampling of one event (the selection of an item) is guaranteed, but this

adjustment is apt to be smaller than that used in the Sympson & Hetter

procedure and is therefore less likely to cause convergence problems. The

method can be easily extended to include sets of items as well as discrete

items. The method also allows test designers to specifically control the

trade-offs between the efficiency and parallelism of adaptive tests and the

need for security, as shown in the example.

However, this new method retains three of the major disadvantages of the

Sympson & Hetter procedure. First, the process of iterative simulations with

adjustments can be tedious and time-consuming. Second, the exposure control

parameters computed by the procedure are dependent upon a specific pool of

items'and test structure. If the pool is augmented or reduced, or the test

structure changed significantly, then exposure control parameters must be

redeveloped. Finally, the exposure control parameters are in reference to a

specific target estimated distribution of true ability. To the extent that

this distribution does not accurately reflect the true distribution, or if the

reflection is accurate but the distribution changes over time, for example,

exposure control parameters must be redeveloped:

It seems clear that the new multinomial exposure control procedure as

well as the Sympson & Hetter procedure from which it is derived do not have

all the features one might eventually require in operational secure continuous

adaptive testing. For example, although the overall exposure rate of an item

is controlled, its exposure conditional on ability is not. Thus an item may

be exposed to nearly all test-takers at a particular ability, even though its

overall exposure rate is low. If this is identified as a problem, it may be

necessary to develop new methods that control conditional exposure. Moreover,

Q
wU
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although exposure rate is controlled across a distribution of ability, it is

not controlled across candidate volume. An item with an exposure rate of .1

will only be seen by approximately 10% of test-takers, but if there are a

million test-takers, the absolute exposure will be quite high. Further

research clearly remains to be done in this area if continuous adaptive

testing is to become a secure alternative to periodic conventional paper-and-

pencil testing.
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Figure 1: The effect of different values of C on total weighted deviations

and reliability.
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Figure 2: The effect of different values of C on total weighted deviations

and observed maximum exposure rates.
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