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Abstract

It is sometimes sensible to think of the fundamental unit of test construction as being

larger than an individual item. This unit, dubbed the testlet, must pass muster in the same way

that items do. One criterion of a good item is the absence of DIFthe item must function in the

same way in all important subpopulations of exarninees. In this paper we define what we mean

by testlet DIF and provide a statistical methodology to detect it. This methodolo2y parallels the

1RT-based likelihood ratio procedures explored previously by Thissen, Steinberg & Wainer

(1988, in press). We illustrate this methodology with analyses of data from a testlet-based

experimental version of the Scholastic Aptitude Test.
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DiFferential Test let Functioning
Definitions and Detection

It is often natural to think of the fungible unit of a test as a testlet: an interrelated and

integrated group of items, always presented as a single unit (Wainer & Kiely, 1987). Historically

tests of skills such as reading comprehension have been constructed of testlets: a passage

followed by a number of interrelated questions (Thissen, Steinberg & Mooney, 1989). Recent

trends in test construction (Resnick, 1987; National Council of Teachers of Mathematics, 1989)

emphasize a global view in the assessment of proficiency. This trend toward focusing tests on a

less microscopic level than the itcm indicates a rich future for the use of testlets.

In parallel with this call for tests with greater construct validity has been a renewed

emphasis on issues of test fairness. One aspect of fairness is the insistence that test items not

function differentially for individuals of the same proficiency, regardless of their group

membership. "No DIFferential item functioning" is now a general desideratum; the area of study

surrounding this has been defined formally and dubbed DIP. A set of statistically rigorous and

efficient procedures have been developed to detect and measure DM. These generally fall into

one of two classes; they are either based on latent variables (Thissen, Steinhe!; & Wainer, 1988,

in press) or observed score (Holland & Thayer, 1988; Dorans & Holland, in press).

Procedures for D1F studies have traditionally focused on the item; indeed "item" is

sometimes thought of as D1F's middle name! Yet, if future tests will be based on testlets ought

we not generalize DIF procedures to suit this broader construct? The point of this paper is to

argue for precisely such a generalization and to provide two allied methods for accomplishing it.

Because this article is statistical we will not address the issues surrounding what one does with a

testlet that is found to contain D1F. These issues arc typically nonstatistical in nature involving

decisions made on the basis of content and practicality. We leave such a discussion to other

accounts.
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Test let DIFAn Inevitable Concept

The determination of DM at the testlet level has three advantages over confining the

investigation to the item. It allows:

1. the analysis model to match the test construction,

2. DIF cancellation through balancing,

3. the uncovering of DIF that, because of its size, evades detection at thc item level

but can become visible with some aggregation.

Matching the Model to the Test

If a set of items were built to be administered as a unit, it is important that they be

analyzed that way. There are a variety of reasons for analyzing them as a unit, but underlying

them all is that if one does not, one is likely to get the wrong answer. In the example described in

a subsequent section, a four testlet test consisting of 45 separate items yields a reliability of .87 if

calculated using traditional methods assuming 45 independent items. If one calculates reliability

taking the within-testlet dependencies into account, the test's reliability is shown to be .76. These

are quite differentnote that Spearman-Brown (Gulliksen, 1950, p. 78) indicates that we would

need to double the test length to yield such a gain in reliability [see Sireci, Thissen & Wainer

(1990) for more details or) this aspect]. Other calculations (i.e., validity and information) are

affected as well.

DIF Cancellation

Roznowski (1988), among others, has pointed out that because decisions are made at the

scale or test level, D1F at the item level may have only limited importance. Therefore it it

sensible to consider an aggregate measure of DIF. Small amounts of item DIF that cancel within

thc testlet would seem, under this argument, to yield a perfectly acceptable test construction unit.

This is of critical importance in adaptive testing, less so with fixed format tests.

Humphreys (1962, 1970, 1981, 1986) has long argued that it is both inadvisable and

difficultvery likely impossibleto try to construct a test of strictly unidimensional items. He

suggests that to do so would be to construct a test that is sten and too far abstracted from what
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would be commonly encountered to he worthwhile. He recommends the use of content'. rich (i.e.,

possibly multidimensional) items, and since multidimensionality is what causes DIF, we ought to

control it by balancing across items. We agree with this. But balancing is not a trivial task.

Surely such balancing needs to be done within content arca and across the entire test. For

example, it would be unfortunate if the items that favored one group were all at the end of the

test. The concept of a testlet suggests itself naturally. Build the test out of testlets and ensure that

there is no DIF at the testlet level. Lewis & Sheehan (1990) have shown that building a mastery

test of parallel-form testlets provides a graceful solution to a set of thorny problems.

Cancellation of DIF could be accomplished in an adaptive testing situation without using

testlets. However, it would involve accumulating DIF statistics of the items as they arc to he

administered and ensuring that the accumulation was zero when the test halted. This is almost

surely possible without testlets, but it would certainly add a further burden to the item selection

algorithm and item pool. Providing DIP-balanced testlets as the unit of test construction seems a

much simpler strategy.

A final argument in support of examining DIP at the testlet level derives from the

consideration of testlets that cannot easily be decomposed into items. For example, consider a

multistep mathematics problem in which students get credit for each part successfully completed.

Does it make sense to say that parts of such a testlet contain "positive subtraction DIP and then

"negative multiplication DIP"? Of course not. Instead we must concentrate on the DIF of the

problem as a whole. In some sense we do this now when we test an item's DIF. We do not record

intermediate results and so do not know to what extent there is D1F on the component tasks

required to complete the item. All we conccrn ourselves with is the final result.

It should be emphasized that by cancel out we mean something quite specific. We mean

that there will be no DIF at every score level within the testlet. Exactly how we operationalize

this goal and what it means will be explicated and illustrated in the next sections.
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Increased Sensitivity of Detection

It is possible (and, as we will demonstrate, even likely) to construct a testlet of items with

no detectable item DIF, yet the testlet in the aggregate does have D1F. The increased statistical

power of dealing with DIF at the testlet evel proviths us with another tool to insure fairness.

This will be especially useful for those focal groups that are relatively rare in the examinee

population and so are not likely to provide large sam Iles during item pretesting.

Testlet DIF detectionOne Model, Two Methods

The polytomous IRT model we used was develor,?.d by Bock (1972). The basic notion is

to fit the model to the data assuming that all testlets have tl.e same parameters (no DIF) in the

two populations of interest (Reference and Focal). We then fit the same model to the data

allowing one testlet to have different parameters in each population (DIF) and compare the

likelihood under each of the two situations. If the more general model does not yield a significant

increase in the quality of the fit we conClude that the extra generality was not needed and that the

testlet in question has no DIF. This procedure was applied in the study of Dill by Thissen et al.

(1988) using a more traditional dichotomous IRT model. Thissen et al. (1989) used Bock's

polytomous model to fit testlets. Our testlet approach to DIF is almost exactly the one reported

by Thissen, et al., (in press) when we used the multiple choice model (Thissen & Steinberg,

1984) to examine differential alternative functioning (DAF). The step from DAF to testlet D1F is

a small one.

Bock's 1972 Model

Suppose wc have J testlets, indexed by j, where j = 1, 2, ..., J. On each testlet there arc mj

questions, so that for the jth testlet there is the possibility for the polytomous response ..rj = 0, 1,

2, ..., mj . The statistical testlet scoring model posits a single underlying (and unobserved)

dimension that we call latent proficiency, ana denote A. The model then represents the

probability of obtaining any particular score as a function of proficiency. For each testlet there is

a set of functions, one for each response category. These functions are sometimes called item
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characteristic curves (Lord & Novick, i 96g), item operating curves (Samejima, 1969) or trace

lines (Thissen et al., 1989). We shall follow Thissen et al.'s (1989) notation and nomenclature.

The trace line for score x = 0, 1, ..., mj , for testlet j is

Tjx(0)
explaix04-cixl

PH

leXpi ajkOi-Cjk
k=0

( 1 )

where the {ak, ck)j, k = 0, 1, ..., are the item category parameters that characterize thc shape

of the individual response trace lines. The op are analogous to discriminations; the cks

analogous to intercepts. The model is not fully identified, and so we need to impose some

additional constraints. It is convenient to insist that the sum of each of the sets of parameters

equal zero, i.e.

171)

yajk = Cjk = ()
k = 0 k = 0

In this context, we reparameterize the model using centered polynomials of the associated

scores to represent the category-to-category change in the aks and the cks:

and

a jk =liajp
P=I

cjk =1;Yjp
p=

2 )

(k"" r2 )

(2)

(3)

where the parameters {ap, yp} j, p= 1, 2, ...P, for P inj arc the free parameters to be estimated

from the data. The polynomial representation has, in the past, saved degrees of freedom with no

significant loss of accuracy. It also provides a check on the fit of the model when the categories

are ordered. Although this model was developed for the nominal case it can he used for ordered

categories. If the categories arc ordereu the a's must he monotonically ordered (see the appendix

Page 6 A U 1/1/91



for proof). As we show in the next section the polynomial representation in this application saves

degrees of freedom and indicates that the model provides a good representation of the data.

This version of Bock's model uses raw score within testlet as the carrier of information.

While it is possible that more information would be obtained by taking into account the pattern

of responses within each testlet we felt that this simplification is appropriate for an initial foray

into testlet D1F. Moreover, basing a test scoring algorithm on number right seems amply

supported by general practice, especially as a first step.

In previous work, this model was fitted to a 4-passage, 22 item test of reading

comprehension by Thissen et al. (1989), with mf.-(7, 4, 3, 8). The analysis followed an item

factor analysis (Bock, Gibbons & Muraki, 1988) that showed that a multifactor structure existed.

The (at least) 4-factor structure found among these 22 items made the unidimensional as-

sumption (conditional independence, traditional IRT models untenable. After considering the

test as four testlets and fitting Bock's nominal response model to thc data generated by the

almost 4,000 examinees, they compared the results obtained with what would have been the case

if they had ignored the lack of conditional independence and merely fit a standard IRT model.

They found two things: First that there seemed to be a slightly greater validity of the testlet de-

rived scores when correlated with an external criterion. Second, the test information function

yielded by the traditional analysis was much too high. This was caused by this model's not being

able to deal with the excess intra-passage correlations among the items (excess after conditioning

on 0 ). The testlet approach thus provided a more accurate estimate of the accuracy of the

assessment. Through an obvious generalization, this same approach can be used to study Test let

DIF.

Method 1: Internal Criterion

The basic data matrix of score patterns is shown in Table I. In this example, there are four

testlets with 10 possible scores levels each [mj=(10, 10, 10, 10)1; there arc a maximum of 104

rows. In practice there will be far fewer rows since many possible response patterns will not

appear. The analysis follows what is done in item DIP situations: fitting one model allowing
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different values for the parameters of the studied testlet for the two groups and then comparing

the -21oglikelihoods of that model with others that restrict the two groups' estimates in a variety

of ways. Stratification/conditioning is done on 0 estimated for both groups simultaneously.

Insert Table 1 About Here

This method uses the test itself, including the studied testlet, to calculate the matching

criterion. The question about whether or not to include the studied item has been carefully

explored (Holland & Thayer, 198g) who showed for the Rasch model (the binary analog of this

model) that not including the studied item in the criterion yields statistical bias under the null

hypothesis. This was explored further by Zwick (1990) who confirmed this result for the Rasch

model, but not generally for other 1RT models.

Using this method requires first fitting .a completely unrestricted modelestimating all

of the s and cks separately for both the reference and the focal groups. Next restricted versions

of this model are estimated by approximating the values of the parameters as polynomial

functions of score category (equations 2 and 3). When an acceptably fitting parsimonious model

is derived we note the value of -21oglikelihood (asymptotically x2) for that model and thcn

sequentially restrict the parameters for one testlet at a time to he equal across the two groups. We

subtract the -21oglikelihood from the restricted model from the unrestricted and, remembering

that the difference between two x2 statistics is also X.2, we test that difference for significance: the

number of degrees of freedom of the statistical test is equal to the number of parameters

restricted. If it is not significant we conclude that the extra flexibility gained by allowing

different parameters for the focal and reference groups is not required--there is no DIE If it is

significant we can further isolate where the DIP is located.

Eventually one arrives at a determination of the most parsimonious representation.

Interpreting the character of this representation allows us to detect testict DIP. This is com-

putationally expensive, with the cost of each run essentially linear in the number of response
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patterns observed. Of course this cost is small relative to the cost of not detecting testlet DIF

when it is there. The cost can he controlled substantially by reducing the number of possible re-

sponse patterns. One way to do this is explored in the next section.

Method 2: External Criterion

The basic data matrix of score patterns is shown in Table 2. There is a matrix like this for

both thc Reference group (G=R) and thc Focal gmup (G-,F). For convenience this exaMple uses

a six item anchor yielding 26 or N = 64 possible matching levels.

Insert Table 2 About Here

This method uses an external criterion as the matching variable. This has been rec-

ommended as the practice of choice when a suitable external measure is available (Angoff, 1982,

pp. 112-113; Thissen et al., in press). It cleanly avoids the issues surrounding what to do with the

studied item when the matching criterion is internal, as well as arguments of circularity. Of

practical importance, the analysis focuses on a matrix 640 x 2: only 1,280 cells. This allows

many items to be examined at only a modest cost in computer time. Contrast this with the

parallel task utilizing an internal anchor that has 2-by- 104 or 20,000 cells. The former analyses

can be easily accommodated on a microcomputer; the latter is more comfortable on something

larger, faster and more expensive.

The strategy for accomplishing this analysis is quite similar to that described in the

previous section. But there is one important extra stepthe choice of the criterion items. We will

not deal with the substantive aspects of that choice in this section; instead we focus on the

psychometric characteristics used in the choice. The criterion items should: a. he, strongly related

to the same underlying characteristic that is being measured by the testlets, b. have steep slopes,

c. have their difficulties span the range of proficiency of the individuals taking the test, and d.

have no D1F. How many items are required'? We have been successful with as few as three, but a

1
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more conservative stance (yielding protection against one of these items behaving poorly) would

use five or six or seven. We chose six in the example reported hereit worked very well indeed.

After choosing these special items IThissen et al. (in press) called these the designated

anchor], each testlet takes its turn as the "studied testlet." A saturated model is fitted, followed by

suitably restricted ones. When the likelihood ratio indicates that restricting the testlet's

parameters to be equal across the two groups does not worsen the fit we conclude no DIF and

move on to the next testlet. If it is significant we continue our explorations to try to isolate the

specific parameters that characterize the D1F.

Our experience with this methodology indicates that wc obtain essentially the same

results as with the more costly internal method. In the example described here the computing

time was about one third that used with thc internal method. This is as expected since the size of

the matrices used with the external criterion arc about one-third that using the internal criterion.

With a larger sample of individuals, and hence more different response patterns, the difference

would be more dramatic still.

Test let DIF AppliedThe NPP-V

The data analyzed here were part of the Spring, 1989 field testing of the Ncw Possibilities

Prototype test (NPP), an experimental version of the Scholastic Aptitude Test (SAT). This field

testing represents an ongoing collaborative effort of the College Board and ETS designed to

investigate possible enhancements to the current SAT. The verbal section of the NPP, the

NPP-V, includes longer reading passages than the SAT, and has more items associated with each

passage. The form of the NPP-V analyzed here consists of 75 multiple-choice items, 45 of which

correspond to four long reading passages. These reading passages have 12, 13, 10 and 10

corresponding items respectively. We shall henceforth refer to these four passages as Test lets I,

HI, and IV. A more complete description of thc NPP is not currently available, but will be

within the year. The analyses were based 4,028 high school students: 2,216 females and 1,812

males.
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Analysis Preliminaries

All analyses were done using MULTILOG Version 6.0 (Thissen, 1990); it allows the

mixing of item types within the same analysis; that is crucial for the use of an external anchor of

dichotomous items. It also allows the imposition of equality constraints; that is necessary to

obtain the likelihood of restricted (no DIF) models.

The maximum number of categories that the current version of MULTILOG allows for

any polytomous model is ten. This limit required that we collapse some of the response

categories in Test lets I and II. Since categories with very few entries provides poor parameter

estimates we found that little power was lost and, indeed some stability was gained,2 by

combining some extreme score categories. Test let I's 12 categories were reduced to 10 by

combining score groups 0 and 1 into a new group labeled '0' and categories 11 and 12 into a

single category labeled '9.' Test let 11's 13 score categories were similarly reduced by combining

the three lowest (0, 1, 2) into category '0' and two highest into category '9.'

Previous experience (Thissen et al., 1989) has shown that trace lines for essentially

chance scores are sufficiently similar to one another so that they can be combined with no loss of

information. These are all five choice items and so we would expect chance performance on such

testlets to yield scores around 2. The number of individuals in the highest categories were

sufficiently small so that the judicious melding of those score categories would yield nothing but

statistical stability. Thus we felt that this accommodation to the limits of the current version of

MULTILOG would not influence our results.

Results o f Method l : Internal Anchor

The analysis began by fitting a completely unconstrained model to the data. This allowed

each testlet to be fitted separately by sex and the polynomials described in equations (2) and (3)

were of ninth degree. We subsequently found that for the four testlets fitted we never needed

greater than third degree polynomials, and that often linear or quadratic functions gave wonderful

fits.

rJ
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Shown in Figure I are the the fitted (line) and actual (points) values for the ak values for

Test let 1 for males. We reproduce these here to show the closeness that (in this case) a quadratic

approximation has to the actual data (this is the worst fitting set of parameters in this study). In

Figure 2 are shown the fitted and actual values for the cks for Test let I obtained from the male

examinees. Once again this is the worst fitting polynomial that we found. Once again the

constrained values are depicted with the fitted line, the unconstrained by the plotted points.

Insert Figures 1 & 2 About Here

After determining the proper level of generality for the polynomial representation for the

parameters of each of the testlets (examined separately for men and women) we began fitting a

sequence of hierarchically nested models. We started with a completely unconstrained model

(commonly termed fully saturated) in which each testlet had different parameters for males and

females. Next we fit a completely constrained model in which the parameters for each testlet ad-

ministered to males were constrained to he equal to the corresponding parameters of that testlet

administered to females. We then moved from the constrained to the unconstrained model in di-

rected steps. The results are shown in Tahle 3 and summarized graphically in Figure 3.

Insert Figure 3 & Table 3 About Here

We can quickly see that the No D1F model can be rejected out of hand. The next

sequence of four models tests whether the DIF can be isolated within a single testlet. The answer

is no, but we get some useful information about what is going on. There are major decreases in

misfit when Test lets I and H are allowed to show DM, but the allowing Test lets III and IV to

have separately estimated parameters by sex yields no increase in the quality of the fit. It appears

that it is likely that the DIF is located in Test lets I and II. The next row of Table 3 shows that

when we fit a model that restrictc, Test lets III and IV to he equal in both groups but allows
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separate estimation in I and II the fit is not significantly different than the unconstrained model.

Plotting the parameters separately estimated for Testlets I and II suggested that both the

discriminations and thresholds for Testlet II were quite different for the two sexes, but for Testlet

I only the cks seemed to he different. Figures 4 and 5 show these plots for Testlet I.

Insert Figures 4 and 5 About Here

The information in Figure 4 led us to constrain the aks in Testlet I and thus we arrive at

the final model that indicates DU' in Testlet II in both discrimination and location paraMeters, in

Testlet I in only location, and no DIF in either Testlet ill or IV. Now that we have located the

DIF, it remains that we try to understand it. Plots of parameters of a polytomous IRT model are

not always easy to figure out. The next step is to examine the trace lines associated with these

parameters.

In the interests of parsimonious presentation we will not reproduce here the trace lines for

all of the testlets; instead we will focus on Testlet I. We do this to illustrate a variety of points;

key among them is the size of D1F detectable with this methodology and this sample size. In the

upper and lower panels of Figure 6 are the trace lines for Testlet I for males and females re-

spectively. They look remarkably similar; however, the trace lines for the males are shifted to the

left, relative to the female trace lines, for the higher testlet scores. The location of the shift in the

trace lines shows where there is DIF and the amount of shift indicates the amount of DIF.

Evaluating the size of the DIF requires weighting the differences by the proficiency distribution

of the focal group (Wainer, in press). The DIF is difficult to see in Figure 6; fortunately there is

another way to examine the result.

Insert Figure 6 About Here
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Each of the trace lines in Figure 6 indicates the conditional probability of an individual

being in that score group [P(x = k I 8) for k = 0, 1, ..., 91. Plotting thc expected conditional score

group [E( x I 0) = E [x P (x I 8)1 reduces the sheaf of ten curves for each sex to a single function.

The expected score group is very close in both form and spirit to Lord's (1980) recommendation

regarding the use of expected true score. Shown in Figure 7 is a plot of the expected score groups

for males and females. The direction of the advantage is clear. If we subtract the females' curve

from the males' we obtain a clear depiction of the size of the INF (see Figure 8). From this plot

we see that the maximum advantage is about a half point on a ten point scale (about 5%).

Insert Figures 7 and 8 About Here

Before concluding this section let us examine the size and direction of the DIF found in

Testlet H using plots of expected score category. The difference plot for Testlet II is shown in

Figure 9. We see immediately that this time the DM is in favor of females with the advantage

disappearing at higher proficiency levels. The effect of unequal discriminations (aks) is apparent.

We also note (in Figure 9) that the maximal advantage to females is about one point (out of ten),

and it is centered at about the center of the proficiency distribution. This is roughly twice the D1F

seen in Testlet I.

Insert Figure 9 About Here

The size and direction of the testlet INF detected provides a sense of the statistical power

of this methodology. Testlets III and IV had no detectable DIE By that we mean any DIF that

might exist within those two testlets was smaller than that shown here. it should be emphasized

that there were only a few items in any of the testlets that showed significant DIF when screened

individually 3. Thus, examining entire testlets for DIF as a whole has provided us with a tool

with increased sensitivity. However the cost of this increased statistical power has been a
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substantial increase in the conceptual and computational complexity. In the next section we show

how a much simpler methodology gets us essentially identical results.

Results of Method 2: External Anchor

When we use an internal anchor the basic data matrix is potentially very large indeed;

104x 2 for 4 testlets with ten score categories. The size of the analysis problem goes up

exponentially with the number of testlets-105 for five testicts, 106 for six, etc. This can be

controlled and sharply reduced through the use of a fixed external anchor. In this case we chose

six dichotomous items from among the 30 multiple choice items that were also on the NPP-V.

We chose these items very carefully indeed. Thcy were the items with the lowest D1F (measured

using the Mantel-Haenszel statistic) that spanned the range of the proficiency distribution. We

also tried to choose items that had good discrimination.

These six anchor items were fitted with the three parameter logistic IRT model (3-PL) in

the course of the DU, analyses. In Figure 10 arc the estimated parameters for these items and

plots of their trace lines.

Insert Figure 10 About Here

Once the anchor items were chosen we followed the procedure described earlier. This

required appending each testlet in turn as the "studied testlet" to the six-item anchor. Then we

fitted an unconstrained model allowing the testlet to have different parameters for the focal and

reference group, and a model in which the testlet's parameters were constrained to he equal in

the two groups. Once again we looked at thc likelihood ratio and if there was no significant

increase in fit with the relaxation of the equality constraints we concluded that there was no DIF.

The results of these analyses arc summarized in Table 4.

Insert Table 4 About Here
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It is clear that the conclusions we would draw from the results shown in Table 4 are the

same as those drawn from the internal analyses; this adds empirical support to the practical

reasons for using a short external anchor of multiple choice items to stratify the examinee

population. Test let I Shows DIF only in the threshold parameters (the cks)tiote that the

likelihood ratio X2 comparing a model restricting just aks with one with no restrictions is 2 on 2

degrees of freedom. Test let II shows DIF; Test lets III and IV show no DIE Plots of the trace

lines for the testlets estimated within the context of an external anchor are virtually identical to

those obtained with the far more computationally intensive internal anchoringprocedures. Each

estimation run here requires analysis of a 64 x 10 x 2 table (1,280 cells). Two runs are required

for each testlet. The internal anchor is far more complex. As the number of testlets increases

computing time using an external anchor increases linearly, whereas using an internal anchor it

increases exponentially. Our experience so far suggests that if a good anchor can be constructed

one would be foolish not to use it.

Restrictions surrounding security of operational test forms precludes us from any

extensive discussion of the content of the testlets analyzed in this paper, however the passage

associated with testlet II (DIF favoring women) was an extended description of someone's visit

to their grandmother. Test let IV involved excerpts from speeches by Pericles and Abraham

Lincoln.

Test let D1F whitherA discussion of what's next

It is to the benefit of large testing organizations to look for DIP and not find any. In

statistical terminology not finding DIF means being unable to reject the null hypothesis. That is

we assume that there is no DIF, and after considering the evidence decide that we cannot reject

that hypothesis. It is easy to accept the hypothesis that there is no D1F. To accomplish this one

merely has to run poor studies with smallish sample sizes and use weak statistical models. Thus

to be credible, a finding of no DIF must be accompanied by a careful study with as large a
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sample size as could be found. It must also use the strongest statistical model avai!able to analyze

these data; where by strongest we mean most efficient.

The history of DM procedures, described by Angoff (in press), illustrates how statistical

methods were initially developed to match heuristic ideas about what ought to he measured. This

was, properly, the most important initial concern, with niceties such as statistical power being

left for later. In the past few years two classes of powerful models for detecting and measuring

DIF became available. Dorans & Holland (in press) provide a thorough description of two quite

similar procedures (one based on standardization and the other on the Mantel-Haenszel statistic).

These methods arc nonparametric in that thcy do not attempt to model response likelihoods. Both

methods are statistically efficient and inexpensive to compute.

Thissen et al. (in press) describe methods that utilize a likelihood ratio of two models to

detect DIF. Statistical theory predicts that these methods are asymptotically optimal when the

IRT model that is assumed to underlie the individual item responses is appropriate. In this

chapter the authors demonstrate how the methodology generalizes easily to study patterns of

differential response among the item's distractors. This generalization is achieved through the

use of a polytomous IRT model and results in what the authors call a methodology for studying

DAF. This powerful new tool is shown to be helpful in diagnosing the misfunctioning of an item

after D1F has been detected.

In the current presentation we have generalized DAF procedures to allow the detection of

Test let DIE We have shown that this generalization accomplishes a variety of worthy goals. We

showed that:

I. It characterizes the statistical character of the test more accurately than is the case with

any model that does not acknowledge the clustered structure of the test's items. We illustrated

this when we pointed out that by not modeling the testlet structure the reliability of the test was

overestimated by an amount equivalent to a test of doubled length.

2. Test lets made up of what appeared to be exemplary items (both Test lets I and IT),

exhibited significant sex DIF when the testlets were considered in toto. This increased statistical

Page 17 4, A. 1/1/91



power is especially important when we study the suitability of newly developed items for

subpopulations of examinees who show up only seldom in test samples.

3. Test lets constituted of items with modest DIF in both directions can still be fair at all

score and proficiency levels (Test let IV).

We believe that since the current weltanschauung points test development toward tests

composed of larger tasks it is well that we have the statistical tools to properly deal with such

tests. The concept of the testlet and the associated psychometrics is a big step in that direction.

We recognize that procedures based upon the fitting of hierarchical IRT models and the

examination of likelihood ratios does not meld well with the economic stringencies of mass

testing. Imagine the resources required for a detailed examination of thc thousands of items

required for an adaptive item pool! It would surely be better if something more computationally

parsimonious could be found. Paul Holland often promoted the Mantel-Haenszel by exclaiming

"100 an item!" Perhaps for a 13 item testlet he would be content with achieving the goal of

"$1.30 a testlet." Using an internal anchor does not approach this goal, although it does allow a

level of detail in the investigation that has not been approached yet with other methods. The

external anchor methodology is much more practical while sacrificing little or none of the power

of the internal method. It also illustrates the single greatest strength of IRT-based methods--it

can stratify individuals on a short anchor (Bock, in press). Nonmodel-based methods like those

utilizing the Mantel-Haenszel or standardization stratify examinees on their raw score. This

works fine when a test is long enough to do this reliably. But on short tests reliable stratification

requires utilizing information from response patterns. Some IRT models do this and so yield the

accuracy of result we illustrate here.

We believe that testlet-based generalizations of Mantel-Haenszel can be usefully applied.

For example one obvious generalization would stratify individuals by score and thcn within score

stratum calculate the contingency table of testlet score-by-group membership. Current usage

with dichotomous items yields a 2 x 2 matrix (correct-incorrect x Focal-Reference); this

generalization would yield an mj x 2 matrix. The statistic would then (as now) he calculated
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under the hypothesis of no interaction. Of course this sort of generalization could he used with

dichotomous items but with several groupstest for DIF in all (say /7) focal groups at once! Why

hasn't it been used this way? The answer relates to the statistical fact that one degree of freedom

tests are the most powerful. Thus we achieve a more sensitive detection instrument if we do a

series of one degree of freedom tests rather than a single (n - 1) degree of freedom test. To match

this attitude in using the Mantel-Haenszel to detect testlet DIF one might want to collapse score

categories to just two (perhaps above and below average). Then grind on with the usual Mantel-

Haenszel procedure. Contrast this more extreme approach with our practice of collapsing to ten

categories. We suspect that we could obtain somewhat more power but at a cost of understanding

exactly where the problem lies.

We considered these arguments in our development of the methodology presented here.

We believe that we have arrived at a sensible compromise between power and delicacy. Anyone

doubting this should consider thc size of the differences that were uncovered as being statistically

significant (see Figure 7). The samples we have used are realistic for most practical situations to

reliably detect rather small amounts of DIF using an anchor of only six items. We believe that

this represents a method of sufficient power for most applications.

Page - 19 1 /1 /9 1



References

Angoff, W. H. (1982). Use of difficulty and discrimination indices for detecting item bias. In

R.A. Berk (Eds.) Handbook of methods for detecting item bias (pp. 96-116) Baltimore, MD:

Johns Hopkins University Press.

Angoff, W. H. (in press). Perspectives on the theory and application of differential item func-

tioning methodology. In P. W. Holland & H. Wainer (Eds.) Differential Item Functioning:

Theory and Practice. Hillsdale, NJ: Lawrence Erlbaum Associates.

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of

covariance structures. Psychological Bulletin, 88, 588-606.

Bock, R. D. (in press). Different DIFs: Comment on the papers read by Neil Dorans and David

Thissen. In P. W. Holland & H. Wainer (Eds.) Differential Item Functioning: Theory and

Practice. Hillsdale, NJ: Lawrence Erlhaum Associates.

Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in

two or more latent categories. Psychometrika, 37, 29-51.

Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full information item factor analysis. Applied

Psychological Measurement, 12, 261-280.

Dorans, N. J., & Holland, P. W. (in press). DIP detection and description: Mantel-Haenszel and

Standardization. In P. W. Holland & II. Wainer (Eds.) Differential item Functioning: Theory

and Practice . Hillsdale, NJ: Lawrence Erlbaum Associates.

Holland, P.W., & Thayer, D. T. (1988). Differential item performance and the Mantel-Haenszel

procedure. In H. Wainer & H. Braun (Eds.), Test validity (Pps. 129-145). Hillsdale, NJ:

Lawrence Erlbaum Associates.

Humphreys, L. G. (1962). The organization of human abilities. American Psychologist, 17,

475-483.

Page - 20 1/1/91



Humphreys, L. G. (1970). A skeptical look at the factor pure test. In C. E. Lunneborg (Ed.)

Current problems and techniques in multivariute psychology: Proceedings of a conference

honoring Professor Paul Horst (pp. 23-32). Seattle: University of Washington.

Humphreys, L. G. (1981). The primary mental ability. In M. P. Friedman, J. P. Das, & N.

O'Connor (Eds:) Intelligence and Learning (pp. 87-102). New York: Plenum Press.

Humphreys, L. G. (1986). An analysis and evaluation of test and item bias in the prediction

context. Journal of Applied Psychology, 71, 327-333.

Lewis, C., & Sheehan, K. (1990). Using Bayesian decision theory to design a computerized

mastery test. Applied Psychological Measurement, 14, xxx-xxx.

Lord, F. M. (1980). Applications of item response theory to practical testing problems.

Hillsdale, NJ: Lawrence Erlbaum Associates.

National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for

school mathematics. Reston, VA: Author.

Resnick, L.B. (1987). Education and learning to think. Committee on Mathematics, Science,

and Technology Education, Commission on Behavioral and Social Sciences and Education,

National Research Council. Washington, DC: National Academy Press.

Roznowski, M. (1988). Review of Test Validity. Journal of Educational Measurement, 25,

357-361.

Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores.

Psychometric Monograph Supplement, 4, Part 2, No. 17.

Sireci, S. 0., Thissen, D., & Wainer, H. (1990). On thc reliability of testlet-based tests.

Manuscript submitted for publication.

Thissen, D. (1990). MULTILOG (version 6.0) user's guide. Mooresville, IN: Scientific Software.

Thissen, D., & Steinberg, L. (1984). A response model for multiple choice items, Psychometrika,

49, 501-519.

Thissen, D., Steinberg, L., & Moohey, J. (1989). Trace lines for testlets: A use of multiple-

categorical response models. Journal of Educational Measurement, 26, 247-260.

Page - 21 - 1/1/91



Thissen, D., Steinberg, L., & Wainer, H. (1988). Use of item response theory in the study of

group differences in trace lines. In H. Wainer & H. Braun (Eds.), Test validity (Pps.

147-169). Hillsdale, NJ: Lawrence Erlbaum Associates.

Thissen, D., Steinberg, L., & Wainer, H. (in press). Detection of Differential Item Functioning

using the Parameters of Item Response Models. In P. W. Holland & H. Wainer (Eds.)

Differential Item Functioning: Theory and Practice . Hillsdale, NJ: Lawrence Erlbaum

Associates.

Wainer, H. (in press). Model-based standardized measurement of an item's differential impact. In

P. W. Holland & H. Wainer (Eds.) Differential Item Functioning: Themy and Practice .

Hillsdale, NJ: Lawrence Erlbaum Associates.

Wainer, H., & Kiely, G. L. (1987). Item clusters and computerized adaptive testing: A case for

testlets. Journal of Educational Measurement, 24, 185-201.

Zwick, R. (1990). When do itcm response function and Mantel-Haenszel definitions of

differential item functioning coincide? Journal Qf Educational Statistics, 15, 185-198.

Page 22 1/1/91



Technical Appendix4

On an item that is scored in an ordered scale, 1, 2, ..., m , we would like the odds of being in a

higher score category to be greater for an examinee of greater proficiency than for one with less.

Stated symbolically,

P(x=j10 = 01) >P(x=j10 = 02)
P(x = kl0 = 01) P(A- = k I 0 = 02) (Al)

where x is the observed score, j > k, 0 is proficiency and 01 > 02.

Using shorthand notation P(Aii I 01) to mean P(x =j10 = 01) and rearranging allows us to

rewrite inequality (Al ) as

Nxj1 01) P(xi 1 02)

Krk 1 01) P(xk 1 02)

Taking logs yields

(A2)

ln P(xil 01)1 +ln INxkl02)1 ln (1)(x11 02)1 In W(Xk1 01)1 > 0. (A3)

If we model the probabilities with Rock's (1972) formulation for a categorical model

(Equations 1 and 2) we find that

In [13(xj101)1 = aj 0+ c j ln Idenaminatod .

After substituting this in inequality (3), we find that the denominators cancel out and we are left with

(aj 0i+ cj ) + (ak 02+ (k ) (aj 02+ ('j) (ak Ot + ck>> 0

Rearranging and cancelling yields

aj - ak > 0

or

(A4)

aj> ak for j > k. (A5)

This tells us that to accomplish our goal requires an ordering of the a parameters.

Thus, the practice of fitting a monotone function to initially estimated a's not only

provides a more parsimonious model, but insures that Bock's nominal model yields satisfactory

results for ordered categories of scoring.
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Footnotes

1This work was supported by thc Educational Testing Service through funding from the Program

Research Planning Council and the New Possibilities Project. We would like to express our

gratitude for this help. The work of the second author was done while he was an ETS Summer

Predoctoral Fellow. The data reported on were made available to us by Nancy Feryok, John

Fremer and Ida Lawrence. We would like to express our gratitude to them as well as to: Bill

Angoff, Neil Dorans, Paul Holland, Charles Lewis, Robert Mislevy, Alicia Schmitt, William

Stout and Michael Zieky for their advice and comments on the work as it progressed. The

responsibility for any errors that remain is ours.

2Coefficient cc was higher for summed scores with the extreme score categories collapsed than it

was with the original data.

3 Actually there were a couple of items in Test let IV that demonstrated a modest amount of DIF.

However these items were counterbalanced by others that showed small DM* in the other

direction. As we have shown, this counterbalancing, whether intentional or not, was effective in

yielding a testlet that has no significant DIE; in any score category at any value of proficiency.

4Our thanks to Paul Holland and Charles Lewis who, respectively, pointed out the mathematical

relationship described here and its importance.
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TABLE I
Arrangement of the Data for the Internal Analyses

Test let Score Pattern
I II III IV

Total
Score

Frequencies
Reference Focal

0 0 0 0 0 fRi .fri
0 0 0 1 i fR 2 fF2
0 0 0 2 2 fR3 l'H

si sll sm sw eSj

36

fRi

fRN

fn

fEN

4. 0
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TABLE 2
Arrangement of the Data for the External Analyses

Criterion items Testiet score

1 2 3 4 5 6 0 ! 2 3 4 5 6 7 8 9

0 0 0 0 0 0 fmo AI I IG12 Im 3 .fm4 IG ri fG16.

0 0 0 0 0 1 fmn fG2 I fG22 fG23 IG24 IG2i IG24.

xi x2 x3 x4 x5 x6 fGi3 fGi4 fGti JGi

1 1 1 1 1 1 IGO IGNI IGN2 IGN3 IGN4 IGNS IGN6
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TABLE 3
Summary of Search for Test let DIP with an Internal Anchor

Model 2Loglike1i1mod

# of Free

Parameters

1)ifference

X2 df P

Unconstrained 8412 35

No DIF 8620 18 208 17 <.001

Just 1 IMF 8511 22 99 13 <.001

Just II IMF 8466 23 54 12 <.001

Just III IMF 8616 21 204 14 <.001

Just IV IMF 8617 23 205 12 <.001

I & II IMF 8421 27 9 8 0.4

I (C) & II DIP 8425 25 13 10 0.2

3i
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TABLE 4
Summary of Search for Test let DIE with an External Anchor

Model -21.oglikelihood

# of Free

Parameters

Difference

X2 df P

Test let I

No Dm 1256 23

DM' in c's only 1236 25 20 2 <.0()01

DIF in c's and a' s 1234 27 22 4 <.(X)01

Test let II

No DIF 1396 24

DI}, 1312 29 84 5 <.0001

Testlet HI

No DIP 1206 22

DIP 1204 25 2 3 0.68

Testlet IV

No DIF 1239 24

DIF 1231 29 8 5 0.12

3
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Figure Captions

Figure 1. The values of ak for Test let 1 for males, plotted against score-category.

Figure 2 The values of ck for Test let I for males, plotted against score-category.

Figure 3. Summary of the search for testlet D1F using an internal anchor. Each model

(described in the text) is plotted at its level on an index of model rit (after Bender & Bonett,

1980), ranging from 0 for the model with no D1F to 100 for thc model with DIF for all

testlets.

Figure 4. The values of ak for Test let I for males and females compared, plotted against score-

category.

Figure 5 The values of ck for Test let 1 for males and females compared, plotted against score-

category.

Figure 6. Trace lines for the ten response categories for Test let 1; those for the males arc in the

upper panel and those for the females are in thc lower panel. The modes of the trace lines are

in the order of the score-group categories 0-9.

Figure 7. Expected score category on Test let I plotted against proficiency for males and females.

Figure 8. The difference between males and females in expected score category on Test let

plotted against proficiency.

Figure 9 The difference between males and females in expected score category on Test let H

plotted against proficiency.

Figure 10. Trace lines and parameters for the six external anchor items.
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Parameters of
External Anchor Items

Item a b c

1 1.4 1.7 0.1
2 1.4 1.3 0.1
3 0.8 0.6 0.2
4 1.0 -0.5 0.1
5 0.8 -0.4 0.2
6 0.7 -1.4 0.2

3 2 1 0 +1

Proficiency (0)

+2


