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Discussion (research) 197

"TO BLOCK OR COVARY A CONCOMITANT VARIABLE:
WHICH IS MORE POWERFUL?"

The most widely used procedures to harness the power of
a concomitant variable are block designs and ANCOVA. The
decisions on whether to block or covary and how many blocks to be
used if blocking is selected are often based on rules of thumb
with little empirical support. The purpcse of this study is to
provide a scientific foundation on which to base such decisions.

Monte Carloc generated data were analyzed using cne-way
ANOVA; two-block, four-block, and eight-block block designs; and
ANCOVA. Resulting empirical powers were entered into a repeated
measures four-way factorial design with three factors
representing different experimental conditions and one factor
representing the five procedures being compared.

The results indicated that the correlation coefficient
between the concomitant and dependent variables was the critical
factor to influence the choice. One-way ANOVA was the best
choice when there was no relationship, blocking was preferred
when the correlation was low, and ANCOVA achieved the highest
power when the correlation was high. Block designs and ANCOVA
became more powerful and the optimal number of blocks increased
as the correlation coefficient, the number of treatments, and the
number of subjects per treatment increased.
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TO BLOCKX OR COVARY A CONCOMITANT VARIABLE:

WHICH IS MORE POWERFUL?

INTRODUCTION

Educational experiments often involve assigning students to treatments. Traditional one-way analysis
of variance can be used to analyze the differences among treatments. However, differences among
students, such as, gender, socio-economic status, and level of ability, often mask or obscure the effects of
a treatment (Kennedy & Bush, 1985; Kirk,"1982). Nuisance variation due to such differences can be
extracted from the error variance. By controlling the concomitant (nuisance) variable, researchers often
reduce the background noise, increase the precision, and enhance the statistical power of a design (Bonett,
.1982; Keppel, 1991; Maxwell & Deianey, 1984). The most widely used procedures to hamess the power of
a concomitant variable are block designs and the analysis of covariance.

Statement of the Problem

Evidence suggests that approximately 70% of published research in the behavioral sciences uses
analysis of variance techniques (Glass & Hopkins, 1984). Many of these studies are analyses of either block
or covariance designs. Whether to block or covary and how many blacks to be used if a block design is
chosen become important questlon§ and the answers may differ according to the experimental conditlons.
The purpose of this study is to determine which procedure should be used given a set of experimental
conditions.

Significance of the Study

The decisions on whether to block or covary and how many blocks to be used if a biock design is
selected are often based on rules of thumb with littte empirical support. An empirical study that can offer
the scientific foundation on which to base such decisions is desirable. The resuits of this study should

provide guidelines to help vesearchers decide the appropriate procedures to be used.

‘t




REVIEW OF THE RELATED UTERATURE

Historical Review of the Problem

By employing a concomitant variable, researchers c..in control the nuisance variance, reduce the error,
increase the precision, and enhance the efficiency of an experimental design (Cochran & Cox, 1950:
Cochran & Cox, 1957; Federer & Schiottfeldt, 1954; Fisner, 1937, Fisher, 1973a; Fisher, 1973b; Kennedy
anu Bush 1985; Keppel, 1973; Keppel, 1991, Kirk, 1982; Lindquist, 1953; Maxwell & Delaney, 1950; Myers,

1979). In the two classic books, The Design of Experiments and Statistical Methods for Research Warkers

Fisher (1937; 1973a) developed the analysis of variance of block designs and the analysis of covariance.
He demonstrated that the precisior;l of an experimental design could be improved by controlling a
concomitant variable using the two analysis techniques.

Lindquist (1953) used the term, treatments-by-levels design, which consists of more than one subject
in a cell, to differentiate it from the randomized complete block design, which consists of only one subject
in a cell. The treatm nts-by-levels design is also called the treatments-by-blocks design (Kennedy & Bush
1985). Lindquist recommended that the treatments-by-blocks design be used in preference to the analysis
of covariance because (1) the treatments-by-blocks design required much less restrictive assumptions than
the analysis of covariance, (2) the computational procedures were considerably simpler with the treatments-
by-biocks design, and (3) the use of treatments-by-blocks design permitted a study on the simple effects
of the treatments at any given biock.

Gourlay (1953) compared the analysis of covariance with the randomized complete block design in
which blocks were formed by matching subjects on the concomitant variable. He recommended that the
analysis of covariance be used in preference to the matching block technique; this view was shared by
Greenberg (1953) in 3 similar study.

Federer (1955) favored the block design over the analysis of covariance. He offered the following rule
of thumb: "if the experimental variation cannot be controfled by stratification (blocking), then measure related
variates and use covariance” (p. 483-484). However, he also pointed out that "it may be more advantageous
to use covariance than to use stratifization, since fewer degrees of freedom are usually required to control

the variation® (p. 484).
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Cox (1957) developed the Apparent Imprecision measure and used it to compare the analysis of
covariance with the randomized comgpiete block design in which blocks were formed by ranking subjects
on the concomitant variable. He found that the randomized complete block design was somewhat better
than the analysis of covariance if the correlation coefficient was less than 6 while the analysis of covariance
became appreciably better than the randomized complete block design when the correlation coefficient was
.8 or more. He suggested that the analysis of covariance was preferabie to the randomized complete block
design only if the correlation coefficient between the concomitant and the dependent variable was at least
8.

The most rigorous research on this topic was conducted by Feldt (1958). He used Cox’s Apparent
Imprecision measure to compare three experimental designs. The three experimental designs being
compared were (1) stratification (blocking), (2) the analysis of covariance, and (3) the analysis of variance
of difference scores. Feldt found the analysis of variance of difference scores was the least precise
procedure; for p [correlation] < .4 block designs results in approximately equal or greater precision than
the analysis of covariance; for p = .6 the advantags is in favor of the analysis of covariance; and for p <
.2 and small values of the number of subjects neither the analysis of covariance nor block designs yields
appreciably greater precision than the one-way analysis of variance. Feldt aiso provided a table for the
optimal number of blocks to be used if block designs were selected. He concluded that the optimal number
of blocks tended to be larger for (1) larger values of correlation coefficients, (2) larger numbers of subjects,
and (3) smaller numbers of treatments. This study shouid be considered the classic study comparing block
designs with the analysis of covariance; its findings have been most often quoted by textbooks in the area
of experimental designs (e.g., Cook & Campbell, 1979; Dayton, 1970; Kennedy and Bush, 1885; Keppel,
1991; Kirk, 1982; Myers, 1979). However, Feldt's concept of optimal blocking was not supported by
Chuang's (1978) study, which found that block designs would become more powerful as the number of
blocks increased and “the power of BLOCKING even at its maximum was slightly smailer than that of

COVARIANCE" (p. 37).
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In a biock design. subjects are usually grouped into blocks before the experiment according to the value
of the concomitant variable. However, there are times that the value of the concomitant variable is not
available before the experiment. When blocks are formed after the experiment, the block design is defined
as a post-hoc tlock design. Keppel (1973) gave the following advantages of post-noc block designs over
the analysis of covariance: (1) reduction in computational effort, (2) free from the stricter assumptions of the
analysis of covariance, and (3) possibility of testing the treatments-by-blocks interaction. However, he also
pointed out two disadvantages of post-hoc blocking: (1) the inability to calculate the within-groups mean
square when cells have fewer than 2 subjects, and (2) the inability to adjust the treatment means for
differences on the concomitant variable.

Post-hoc blocking is popular because the value of the concomitant variable can be unknown before the
experiment. Nevertheless, Myers (1979) pointed out the danger of abusing post-hoc block designs by
demonstrating that reordering scores within each treatment does not change the treatment means but
generally reduces the error variance, resulting in significant Fs which "merely refiect the reduction in error
variance due to blocking rather than any variability due to treatments" (p. 155). However, he did not
consider the loss of degrees of freedom with the block design.

Bonett (1982) compared post-hoc biock designs with the analysis of covariance and offered the following
rule:

If the assumptions for each method can be satisfied and if the probability of a Type Il error
is of concern, the analysis of covariance will be preferred when the form of the regression
equetion is known but the magnitude of the correlation is known. Post-hoc blocking, on
the other hand, will be preferred when the magnitude of the correlatfon is known. (p. 38)

A study employing the Monte Carlo method and using statistical power as the criterion variable to
compare block designs and the analysis of covariance was performed by Maxwell and Delaney (1984). Their
study was limited to two treatments. The procedures they compared were based on the following two
dimensions: (1) the method of assignment and (2) the method of data analysis. Each of the two dimensions
had three levels: the concornitant variable was (1) ignored, (2) categorized, and (3) continuous. This
resulted in nine procedures being compared. Maxwell and Delaney (1984) favored the analysis of

covariance over block designs. They argued that




the recommendation of most experimental design texts to consider the correlation between

the dependent and concomitant variables in choosing the best technique for utilizing a

concomitant variable is incorrect. Instead, the two factors that should be considered are

whether scores on the concomitant variable are available for all subjects prior to assigning

any subjects o treatment conditions and whether the relationship of the dependent and

concomitant variables is linear. (p. 136)
They also illustrated that the Apparent Imprecision measure, which was used in the Cox (1857) and Feldt
(1958) studies, might provide a different perspective from statistical power, but, the Apparent Imprecision
measure and statistical power are not independent.

Summary

While some research favored block designs, others preferred the analysis of covariance. Based on the
historical review of the problem, it is summarized that “the relative merits of blocking and ANCOVA are more
complicated, because neither is uniformly superior to the other* (Maxwell & Delaney, 1984, p. 136). It is
likely that different procedures may be preferable to the others depending on the sets of experimental
conditions. One consequence of applying block designs and the analysis of covariance, which has been
often neglected in early research but frequertly stressed in recent research, is the decrease of the probability
of the Type Il error, i.e., the increase in statistical power.

Based on the review of the related literature, it is suggested that future research shou!d examine the
problem based on three dimensions: (1) how subjects are assigned, (2) how data areﬂanalyzed. ani (3) the
distributions of and the relationship between the concomitant and the dependent variables (i.e., considering
the assumptions of block designs and the analysis of covariance). The experimental conditions should
include three factors: (1) the number of treatmernts, (2) the number of subjects per treatment, and (3} the
magnitude of the relationship between the concomitant and the dependent variables. The criterion variables
on which to hase the comparison should be the statistical power, the Type | error (g}, and the Apparent

Imprecision measure.

Justification of the Study

This section provides the rationale for selecting statistical power as the criterion variable and using

computer generated data to simulate the experiment.




Statistical Power as the Criterion Variable

The expressions; “reduce error”, *increase precision”, “enhance efficiency’, and "maximize statlstical
power;" have frequently been used interchangeably to describe the objective of employing a concomitant
variable in block designs and the analysis of variance (e.g., Bonett, 1982; Kennedy & Bush, 1985; Maxwell
& Delaney, 1984). Among thess expressions, the term “statistical power® is the most unambiguously
understcod one and is operationally defined in most statistical texts.

The neglect of statisticai power in research, textbooks, and curricula has been brought to the attention
of the research community. As Cohen (1962; 1977; 1988; 1992) has stressed, one of the most pervasive
threats to the validity of the statistical conclusions reached by behavioral research is low statistical power.
The investigation of statistical power in experiment designs has gained more and more popularity (Chase
& Tucker, 1976; Sedimeier & Gigerenzer, 1988).

Computer Simulation

This is an empirical study using the Monte Carlo method to simulate the experimeht. The Monte Carlo
method has been used effectively in examining many prcperties of statistics (Harwell, Rubinstein, Hayes,
& Olds, 1992; Shapiro, Wilk, & Chen, 1968; Wilcox, Charlin, & Thompson, 1986). Computer simulations have
many advantages. "We can often simulate situations more readily on the computer than perform the
corresponding experiments in real lifa”; "one can also easily vary parameters in computer experiments”; and
“furthermore, the simulations tend to be very flexible in that a whole muititude of differing models can be
simulated with relative ease with essentially the same computer code® (Jain, 1992, p. 2). Therefore, using
a high speed computer to caiculate statistical power based on empirical sampling is the most direct and
effective way to answer the research questions of this study.

PROCEDURES

This study compared five analysis procedures under 48 sets of experimental conditions using empirical
power as the criterion (dependent) variable. The five analysis procedures were the one-way analysis of
variance; two-block, four-block, and eight-block block designs; and the analysis of covariarice. The 48 sets

of experimental conditions were the combinations of four levels of the number of treatments (T; 2, 3, 4, 5),
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three levels of the number of subjects per treatment (N; 8, 40, 72), and four levels of the correlation
coefficient between the concomitant and the dgpendent variable (C; .00. .28, .56, .84). For each
experimental condition, 1,000 sets of data were generated by the computer. Each set of data was analyzed
by all five analysis procedures with the significance level (a) set at .05. The proportion of significant
analyses was the empirical power; for example, if 600 out of the 1,000 analyses were signiﬁce'mt. the
empirical power would be .6. Each resuiting empirical power was entered as one observation in each cell.
The procedure to generate and analyze the 1,000 sets of data was repeated two more times for each of the
48 experimental conditions. This resulted in a repeated measure four-way factorial design with three
observations (i.e,. three empirical powers) in each of the 240 (5 X 48) cells.

Calculation of the Efect Size

Statistical power is determined by three major factors: (1) the significance level, (2) the sample size, and
(3) the effect size (Dayton, Schafer, & Rogers 1973; Hinkle, Wiersma, & Jurs, 1988; Lipsey, 1980; Sawyer
& Ball, 1981). Statistical power increases as the significance levei, the sample size, and the effect size
increases. In order to make the comparison of the five analysis procedures inore meaningful, the one-way
analysis of variance was treated as the control group by setting its power at .50. This also would allow the
powers of the other procedures to increase or decrease as a function of the conditions. Therefore, the effect
sizes which would achieve a .50 power for the one-way analysis of variance under given experimental
sonditions needed to be calculated before the experiment. Calculation of effect sizes was based on tables
and formuiae in Cohen's (1988) book. The effect size index is defined as

]

f=_3=
g

[4

where ¢ is the population standard deviation and

i=1

& (m-m)?
Om - Z T !
where m, is the population mean of the ith treatment, m is the grand population mean, and K is the number

of treatments. The effect size index was calculated by the following formuia;
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where n is the number of subjects per treatment, and n is the required number of subjects per treatment
to achieve a desired power when f is equal to .05. The value of ny can be obtained from Cohen’s tables
(p. 381-389). For example, for three treatments with ¢ = .05, the table shows that n is 662. If the number

of subjects per treatment is 8, then

l 662
=\ ——————— =0.48623%2.
d 400(8-1)

When the means are equally spaced, the distance between the largest and the smallest mean can be

calculated by the following formula:
3 (k-1)
k+*1

In'this case,

d=2(0.4862392), ‘3(33«»——11) =1.1910379 .

in order to equally space the means, this number should be divided by two:

1.1910379
2

=0.5955189

Thus, to achieve a .5 statistical poWer for one-way analysis of variance when @ =.05, n = 8, and k = 3, the
population mean of the first treatment should be set at m,, the second at m, + 0.5955, and the third at m,
+ 1.1910. Since the results of the analyses would be the same for any value of m,, the population mean
of the first treatment was always set at 0 in this experiment. The following is the table of the calculated

effect sizes to achieve a statistical power of .50 for the one-way analyses of variance under given

experimental conditions.

I,




Table 1

Calculated Effect Size

Effect gizes for N=8 Effect sizes for N=40 Effect sizes for N=72
T=2 1.0481 0.4440 0.3291
T=3 0.5955, 1.1910 0.2523, 0.5046 0.1870, 0.3740
T=4 0.4060, 0.8121, 1.2181 0.1720, 0.3440, 0.5161 0.1275, 0.2550, 0.382%
T=5 0.3030, 0.6059, 0.9089, 1.2118 | 0.1284, 0.2567, 0.3851, 0.5134 0.09%1, 0.1903, 0.2854. 9.3805

Generation and Analyses of the Data

The generation and the analyses of the data were accomplished using a computer simuiaticn system
running on an IBM 3090/400E mainframe computer. Bivariate correlated data were generated using the SAS
commands nrovided by Clark and Wocdward (1992). These commands generated random data from a
bivariate (the concomitant and the dependent variables) normal distribution with means of 0, variances of
1, and a user-specified correlatiorn coefficient. Random samples were generated separately f{or each
treatment. Only the means of the dependent variable were transformed based on the calculated effect sizes
in Tabie 1, while the other parameters remained unchanged. Data in each treatment were grouped into 2,
4, and 8 biocks by their ranks on the concomitant variable. For example, to group 40 subjects into 4 biocks,
the top 10 ranked subjects would be in the first block, the 11-20 ranked subjects would be in the second
block, the 21-30 ranked subjects would be in the third block, and the 31-40 ranked subjects would be in the
fourth biock.

The computer simulation system inciuded one executable file and two SAS programs (International
Business Machines. 1988a; International Business Machines, 1988b; SAS Institute Inc., 1990a; SAS Institute
Inc., 1990b). For each of the 48 experimental conditions, the executable file ran the first SAS program 1,000
times, then ran the second SAS program. The computer ccde for the condition of the number of treatments
(T) equal to 5, the number of subjects per treatment (N) equal to 72, and the correlation coefficient (C) equal
to .84 are listed in Appendix A, The first SAS program generated a set of data. analyzed that set of data
with the five analysis procedures being compared, and output the results of the analyses to a data file. After

the first SAS prog]’am ran 1,000 times, the data file contained 1,000 records of the results of the analyses.
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The second SAS program calculated the empirical power based on the 1,000 records. In order to obtain
three observations per cell, the executable file ran three times for each of the 48 experimental conditions.
Totally, there were 144,000 (1,000 X 3 X 48) sets of data generated and 720,000 (5 X 144,000) analycas
conducted.

A seed must be provided to generate random data using SAS random functions. The values of seeds
can be any integer ranging from 1 to 2*' - 2 (i.e., 2,147,483,646). Users can let the computer clock set an
inttial seed by specifying a value of 0. Using the computer clock to generate random data was tested and
found to have three problems: (1) The computer clock may not increment enough to generate different data;
{2) The computer clock may generate repeated or patterned data; and (3) the program may not be executed
because the computer clock generates invalid seeds. Therefore, positive seeds were used instead of the
computer clock. Using positive seeds also makes the experiment replicable. in order to systematically and
representatively employ the seeds, the minimum seed value, 1, was useu as the first initial seed; it was
incremented by 2,147,483 for each run of the first. SAS program, and by 14,913 for each run of the
executable file. The two incremented values were obtained by dividing the maximum seed value by 1,000
and 144,000. Thus, all seeds wera equally spaced in the range between the minimum and maximum seed
values. The initial seeds used for each executable file are listed in Appendix B.

~ Hypotheses

This study tested the following rull hypotheses using empirical power as the dependent variable. If a

null hypothesis was rejected, its follow-ups were conducted, and the null hypotheses following it was

ignored.

HO,: There will be no significant differences at the .05 level for the four-way interaction.
HO,: There will be no significant differences at the .05 level for the three-way interaction.
HO, There will be no significant differences at the .05 leve! for the two-way interaction.
HO,: There will be no significant differences at the .05 level for the main effect.

RESULTS
The resulting power values are listed in Appendix C. The raw data were analyzed to test the null

hypotheses. The results of the analyses are summarized in Table 2.
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Table 2

ANOVA Summary

Tests of hypotheses using S(T*N*C) as the error term Tests of hypotheses using P*S(T*N*C) as the error term

Source DF SS Mean Square F Yalue Pr > F Source DF Ss Mesan Square F Value Pr > F
T 3 0.167672 0.05589083 116.31 0.000% P 4 2.226488 0.55667191 12117.48 0.0001
N 2 0.050754 0.02537705 52.81 0.000% T*P 12 0.073253 0.00610521 132.50 0.0001?
c 3 8.853233 2.95107773 6141.0% 0.0001 N*P 8 0.026325 0.00329048 71.63 0.0001
T*N 6 0.010605 0.00176756 3.68 0.0025 Cc*pP 12 2.820703 0.23505859 5116.69 0.0001
T*C 9 0.103833 0.01153697 24.01 0.0001 T*y*p 26 0.005493 0.00022889 4.98 0.0001
N*C 6 0.002530 0.00042162 0.88 0.5146 T*C* . 36 0.051654 0.00143483 31.23 0.0001
T*N*C 18 0.004716 0.00026198 0.55 0.9285 N*C*p 26 0.004125 0.0001711 3.74 0.0001
S(T*N*C) 96 0.046133 0.00048055 T*N*C*P 72 0.002742 0.00003808 0.83 0.8336
P*S(T*N*C) 384 0.017641 0.00004594

Total 719 14.468110

Note. T: Numoer cf Treatments, N: Number of Subjects per Treatment, C: Correlation Coefficient, P: Procedure,
S: Data Set. :

The four-way interaction (T*N*C*P) was not significant while the three-way interactions of T*N*P, T*C*P,
and N*C*P were significant. The cell means for the significant three-way interactions are listed in Tables
3, 4, and 5 respectively. Simple simple effects were tested at the significance level of .01. Non-significant
simple simple effects are indicated hy "NS” in the last ceils of the corresponding rows and columns. Tukey's
Honest Significant Difference (HSD) values are provided in the table notes for multiple comparisons. The

cell means for the other combinations are listed in Appendix D.

Table 3
Means for the Interaction of the Number of Treatments, the Numbe: of Subjects per Treatment, and the Procedura
ST“NIDz .
IANOVA TWO-8LOCK FOUR-8LOCK EIGHT-8LOCK ANCOVA
NOS .498 .561 .580 546 .628
12 N4O .500 575 .604 | 613 .563
N72 .506 577 .606 .615 .663
NO08 497 .583 .606 .599 646
3 N4 O .501 .593 .627 .639 666
N72 .502 .593 . .628 639 666
NO8 .501 601 .633 .630 .653
14 N&O .502 .609 .645 .657 .568
N72 .501 .613 .650 . 663 -3
NO8 .503 615 L£49 L6438 .666
15 NGO .504 .626 .663 677 674
N72 498 NS .620 .656 .668 671

Note. PAT*N = .008, T*yap =.015, NS: Non-significant.

3FST COPV AVAILABLE



Table 4

Means for the Interaction of *he Number of Treatments, the Corretation Coeffic‘aent, and the Procedure (T*C*p)

j ANQOVA TW0 -8LOCK FOUR-BLQCK ZIGHT-8LOCK ANCOVA
Co0 .504 .502 .498 .681 .490
T2 €28 .502 .518 .523 511 .523
csé .496 .576 .605 .601 645
C84 .503 689 .759 776 947
€90 .505 .505 .501 .495 496
13 C28 697 519 .525 .522 .528
cs6 .502 .501 .636 i 543 .653
C84 .496 735 .821 844 .960
cao .5C3 .503 .504 496 .498 NS
T4 c28 .496 .527 .535 .534 .526
€sé .498 .623 .663 | 676 677
C84 .508 778 .863 I .894 .967
€00 .505 .503 .504 | 499 497 NS
1S c28 .501 .534 .544 .545 .526
cs5é .507 .540 .686 .699 .683
C84 .494 NS .804 .890 .916 .975

Note. HSD: PRT*C=.009, T*CaP=.01%, NS: Non-significant.

Table 5
Means for the Interaction of the Number of Subjects per Treatment, the Correlation Coefficient, and the
Procedure (N*C*P)
S J ANOVA TW0-BLOCK FOUR-BLOCK EIGHT-8LOCK ANCOVA
c00 .502 499 494 .b69 .478
NO8 c28 .500 .521 .525 .306 .512
C56 .498 .602 .634 .626 .653
C84 .499 739 .816 .824 .955
c00 .505 .505 .505 .505 .503 NS
N4O c28 .502 .527 .537 541 .534
c56 .502 614 .652 .667 .670
C84 .458 .759 . 844 .874 .964
o{s[s] .505 .506 .505 .504 .505 NS
N72 c28 .495 .525 .534 .537 .530
C56 .502 .615 .657 673 .670
c84 .503 NS 758 844 .872 .968

Note. HSD: PAN*C=.008, N*CaP=.015, NS: Non-significant

1o
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Comegarison of Analysis Procedures

When the correlation coefficient between the concomitant and dependent variables was equal to .00,
the one-way ANOVA was as powerful as or more pcwerful than Zlocking and covariance. The difference
was significant when the number of treatments and the number of subjects per treatment were small. As
the correlation coefficient increased, the power of employing a concomitant variable became more and more
significant—from 50 to over 90 percent. With the correlation coefficient equal to .28, the optimal blocking
procedure was as powerful as or slightly more powerful than covariance. Covariance was fayored when the
correlation was moderate or high. However, with moderate correlation, blocking could be as powerfui as
or stightly more powerful than covariance when the number of treatments and the number of subjects per
treatment were large.

Comparison of Conditions

The ranks of the power values of the 48 sets of conditions for all and each of the analysis procedures
are listed in Appendix E. The pattern of the ranks showed that the three blocking procedures and the
ANCOVA became more powerful as (1) the correlation coefficient, (2) the number of treatments, and (3) the
number of subjects per treatment increased. Among the three factors, the correlation coefficient was

dominant. The ranks for the one-way ANOVA showed a random pattern with all power values being

approximately .50, which provided evidence that the power of the one-way ANOVA had been successfully -

controlied.

Optimal Number of Blocks

The results did not provide the specific optimal number of blocks to be used under each experimental
condition because the experiment did not include all possible numbers of blocks. The results did indicate
that the optimal number of biocks increased as the correlation coefficient, the number of subjects per
treatment, and the number of treatments increased.

SUMMARY
Different procedures should be used depending on the set of experimental conditions. The correlation

coefficient between the concomitant and the dependent variable was the criticai factor that should influence

lo
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the cheoice. The one-way ANOVA was the best choice when the correlation was zero, block designs were
prefenéd when the correlat'ion was low, and the analysis of covariance achieved the highest power when
the correlation was high. With moderate correlation, block designs should be selected only when the
number of treatments and the number of subjects per treatment were large; otherwise, the analysis of
covariance should be used. Block designs and the analysis of covariance became more powerful and the
optimal number of blocks for a block design increased as the correfation coefficient, the number of
treatments, and the number of subjects per treatment incraased.
Discussion

The levels of the experimental conditions were chosen to be equally spaced and to be representative
of real world situations. The four levels of the number of treatments represented the most commonly used
numbers of treatments; the three levels of the number of subjects per treatment represented small, medium,
and large sample sizes; and the four levels of the correlation coefficient represented zero, low, moderate,
and high correlations. The resuits of the study provided a guide to help researchers decide the apprcpriate
procedures to be used under different axperimental conditions.

This study had the following characteristics:
1. It controlled the power of the one-way ANOVA ta prevent ceiling and floor effects; this ailso made the

comparisons mecre meaningful as the one-way ANOVA was treated as the control group.
2. Uniike most of the Monte Carlo studies that had only one observation in each celf and provided only

descriptive statistics, this study had multiple observations in each celi and provided inferentiai in addition

to descriptive results.

(]

Basing the sample size on the number of subjects per treatment inscead of the total number of subjects
made the interpretation of the results more meaningful.

4. The computer simulation system consisted only of SAS programs, which were much shorter and more
understandable than equivalent programs written in Fortran or other programming languages.

One limitation of this study was that it did not include all possible blocking procedures. Since the results

showed that the optimal number of blocks increased as the sample size increased, block designs could

1
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become more powerful if other blacking procedures with more blocks were used. The primary disadvantage
of using SAS rather than a programming language for Monte Carlo simulation is that SAS uses more
computer CPU time. However, this disadvantage can be overcome by using a high speed computer such
as the 1BM 3090/400E& computer used in this study.

Recommendations for Future Research

Several pilot studies which examined the parameters and distributions of the mean,variance, and
corretation coefficient were conducted before the experiment, and the resulting sampling distributions of the
statistics were checked after this experiment. The inspection found that the computer simulation system
generated data that met predetermined specification, Furthermore, before the experiment, the power of the
one-way ANOVA was controlled at .5G. The resulting empirical powers of the one-way ANOVA had a mean
of .50 and a variance of .0001; also the mean squares for S(T*N*C) and P*S(T*N*C) were .00048055 and .
.00004594 respectively and the pooled mean square error was .00013286-all supporting the precision of the
data generation procedures. Since the computer simulation system is able to generate accurate data and
examine the problems effectively, it is recommended that future research adapt the system to examine
related problems.

This study does not include the treatments-by-blocks interaction in the block designs since the
interaction does not exist in the population‘. Future studies can examine the effects of including the
interaction using essentially the same computer codes, or, by varying the parameters of the population,
examine the effects of including and excluding the interaction when the interaction exists in the population.
The optimal number of blocks for a block design could be investigated by including other feasible blocking
schemes such as 5-, 10-, 20-, and 4Q-biock biock designs for the condition of 4Q subjects per treatment.

The greatest contribution of this study may not be the specific resuits reported here, but the potential
for examining many other situations. The computer simulation system developed for this study could be
modified easily for a muititude of other studies. For example, it could be used to investigate other criteria
such as Type | errors, examine other levels of the experimental conditions, or test other blocking methods

in addition to the post-hoc blocking used in this study.

1o
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Appendix A

COMPUTER CODES

Executable File QUTPUT;
[x END;
ADDRESS COMMAND DO I=1 TO 72;
"ERASE PVALUE DATA A" GROUP=3;
NUMERIC DIGITS 10 X=RANNOR ( SEED) ;
TIME =1
DO WHILE TIME < 1001 Y=.84*X+SQRT (1~.84**2) *RANNOR (SEED) ;
SEED = 2132560 + (TIME -1) * 2147483 - ¥=0.1903+Y;
"EXECIO 1 DISKW"™ NEWSEED DATA A OUTPUT;
"(STRING" SEED ' END;
"EXEC SAS TS57284" DO I=1 TO 72;
"ERASE NEWSEED DATA A" GROUP=4;
TIME=TIME+]1 X=RANNOR( SEED) ;
END
"EXEC SAS T57284pP" ¥=.84*X+SQRT (1-.84**2)*RANNOR(SEED) ;
) Y=0.2854+Y;
Firgt SAS Program (TS7284 SAS A) OUTPUT;
CMS FILEDEF INDATA DISK NEWSEED DATA END;
A; DO I=1 TO 72;
CMS FILEDEF PVALUE DISK PVALUE DATA A GROUP=S;
(LRECL 210 BLKSIZE 210 RECFM FBS; X=RANNOR ( SEED) ;
CMS FILEDEF SASLIST DISK T57284
LISTING A; ¥=.84*X+SQRT(1-.84**2) *RANNOR( SEED) ;
DATA BIVNORM (DROP=I); Y=0.3805+Y;
INFILE INDATA:; . OUTPUT;
INPUT SEED; END;
DO I=1 TO 72; PROC SORT;
GROUP=1; BY GROUP X;
X=RANNOR(SEED) ; DATA BIVNORM;
SET BIVNORM;
Y=.84*X+SQRT(1~.84**2) *RANNOR ( SEED) ; BN=MOD(_N_,72); IF BN=OQ THEN
OUTPUT; BN=72;
END; IF BN<=36 THEN B2=1; ELSE B2=2;
DO I=1 TO 72; IF BN<=18 THEN B4=]1; ELSE IF
GROUP=2; BN<=36 THEN B4=2;
X=RANNOR(SEED) ; ELSE IF BN<:'54 THEN B4=3; ELSE
Bd4=4;
Y=.84*X+SQRT(1-.84**2)*RANNOR(SEED); IF BN<=9 THEN B8=1; ELSE IF BN<=1l8
¥Y=0.0951+Y; THEN B8=2;
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ELSE IF BN<=27 THEN B8=3; ELSE IF
BN<=36 THEN B8=4;
ELSE IF BN<=4S THEN B8=5; EZLSE IF
BN<=54 THEN B8=6;
ELSE IF BN<=63 THEN B8=7; ELSE
B8=8;
PROC PRINT;
PROC CORR CATA=BIVNORM;
VAR X Y;
BY GROUF;
PROC GLM;
CLASS GROUP;
MODEL Y=GROUP/SS3;
PROC GLM;
CLASS GROUP 32;
MODEL Y=GRQU? B./SS3;
PROC GLM; ,
CLASS GROUP 34;
MODEL Y=GROUP B34/SS3;
PROC GLM;
CLASS GROUP 38;
MODEL Y=GROUP B8/SS3;
PROC GLM;
CLASS GROUP;
MODEL Y=GROUP X/SS3;
DATA;
INFILE SASLIST;
INPUT WORD] $§ WORD2 § @;
FILE PVALUE MOD;
IF WORD1l = ‘X’ AND WORD2 ='72'
THEN DO;
INFUT MEAN STDDEV;
PUT MEAN 6.4 STDDEV 6.4 @;
INPUT Y § N MEAN STDDEV;
PUT MEAN 6.4 STDDEV 6.4 @;
END;
ELSE IF WORD1="X" AND WORDZ2 =
1.00000’ THEN DO;

INPUT CORR;
PUT CORR 6.4 @;
END; :
ELSE IF WORD1="GROUP" AND WORD2 =
‘4’ THEN DO;

INPUT SS MS F PR;

PUT PR 6.4 @;

INPUT BLOCX § DF SS MS F PR;
PUT PR 6.4 @;

END;

Seccnd SAS Program (TS57284P SAS A)

CMS FILEDEF INDATA DISK PVALUE DATA

A;

DATA PVALUE;

INFILE INDATA;

INPUT (GLlXMEAN G1XSD GlYMEAN G1YSD
G1CORR
G2XMEAN G2XSD G2YMEAN G2YSD
G2CORR
G3XAMEAN G3XSD G3IYMEAN G3YSD
G3ICORR
G4XMEAN G4XSD G4YMEAN G4YSD
G4CORR

18

GSXMEAN GSXSD GSYMEAN GSYSD
GSCORR
GROUP13 BLOCX1B GROUP238
BLOCX2B GROUP4B BLOCX4B
GROUPSB BLOCKS8B GROUPANC
BLOCKANC) (35* 6.4);
TOTAL=0;
G1BSG=0;
B1BSG=0;
G2BSG=0;
B28SG=0;
G4RBSG=0;
B4BSG=0;
G8BSG=0;
B8BSG=0;
GANCSG=0;
BANCSG=0;
TOTAL=1;
IF GROUP1B <= 0.05 THEN G13SG=1;
I7 BLOCK1B <= 0.05 THEN B1BSG=1;
IF GROUP2B <= 0.05 THEN G2BSG=1;
I BLOCKRZB <= 0.05 THEN B28SG=1l;
IF GROUP4B <= 0.0% THEN G4BSG=1;
IF BLOCK4B <= 0.05 THEN B4BSG=1l; -
IF GROUPSB <= 0.05 THEN G8BSG=1;
IF BLOCK8B <= 0.05 THEN B8BSG=1;
iF GROUPANC <= 0.05 THEN
GANCSG=1l;
IF BLOCXANC <= 0.05 THEN
BANCSG=1;
PROC FREQ;
TABLE G1BSG -—--— BANCSG;
PROC SUMMARY DATA=PVALUE;
VAR GlXMEAN -- BANCSG;
. OUTPUT OUT = DESCRIPT;
PROC PRINT DATA=DESCRIPT;
PROC UNIVARIATE DATA=PVALUE PLOT
NORMAL; )
VAR G1lXMEAN -- BLOCKANC;
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Appendix B

INITIAL SEEDS

SEED CONDITION® SEED CONDITION SEED CONDITION"

1 T2N08C20Ds1 715825 T2NO8CCODSs2 1431649 T2NO8COODsS3

14914 T2NO8C28Ds4 730738 T2N08C28DSS 1446562 T2NO8C28DS6

29827 T2NO8CS8DS7 745651 T2NQ8CS56Ds8 1461475 T2NO8CS56DSS

47 740 T2N08C384Ds10 760564 T2N08C84Ds1l 1476388 T2N08C84Ds12
59653 T2N40C00DS13 775477 T2N40C0O0DS14 1491301 T2N40C00DS1S
74566 £2N4CC28DS16 790390 T2N40C28Ds17 1506214 T2N40C28DsS18
89479 T2N40CS56DsS19 805303 T2N40CS6Ds20 1521127 T2N40CS6DS21
104392 T2N40C84Ds22 820216 T2N40C84Ds23 1536040 T2N40C84Ds24
119305 T2N72C00DS25 835129 T2N72COCDS26 1550953 T2N72C00DS27
134218 T2N72C28Ds28 850042 T2N72C28Ds29 1565866 T2N72C28Ds30
149131 T2N72C56DS31 864955 T2N72C56DS832 1580779 T2N72C56DS33
164044 T2N72C84Ds34 879868 T2N72C84DsS35 1595692 T2N72C84Ds36
178957 T3NO8COODS37 894781 T3NO8CCODS38 1610605 T3NO8S8COODS39
133870 T3N08C28DS40 909694 T3NC8C28Ds41 1625518 T3N0O8C28Ds42
208783 T3NO8CS56DS43 924607 T3NO8CS56Ds44 1640431 T3NO8CS6DS4S
223696 T3N08C84Ds46 939520 T3NO8C84Ds47 1655344 T3NO8C84Ds48
238609 T3N40COODS4S 954433 T3N40COO0DSS50 1670257 T3N40CO0DSS1
253522 T3N40CZ8DsS2 969346 T3N40C28DSsS3 1685170 T3N40C28DS54
26E435 T3N40C56DSSS 984259 T3N40C58DS56 1700083 T3N40CS6DSS57
283348 T3N40C84DsSS8 999172 T3N40C84DsS59 1714596 T3N40C84DS60
298261 T3N72C00Ds6l 1014085 T3N72C00Ds62 1729909 T3N72C00DS63
313174 T3N72C28Dsé4 1028998 TIN72C28DS65 1744822 T3N72C28Ds66
328087 T3N72CS56DS67 1043911 T3N72C56DsS68 1759735 T3N72CS6DS69
343000 T3N72C84Ds70 1058824 T3N72C84Ds71 1774648 T3N72C84Ds72
357913 T4NO8COODS73 1073737 T4N0O3COODS74 1789561 T4NO8COQDS7S
372826 T4NOBC28DS76 1088650 T4NQ8C28DS77 1804474 T4NO8C28DS78
387739 T4NO8BCS6DS79 1103563 T4NO8CS6DS80 1819387 T4N08CS6éDS81
402652 T4NO8C84Ds82 1118476 T4N0O8C84Ds83 1834300 T4N0O8C84DS84
417565 T4N40CQO0Ds85 1133389 T4N4JCO0Ds86 1849213 T4N40CO0DS87
432478 7 iN40Cc28Ds88 1148302 T4N40C28Ds8% 1864126 T4N40C28DSS0
447391 T4N40CS56DSs91 1163215 T4N40C56DSs92 1879039 T4N40CS56DS93
462304 T4N40C84Ds94 1178128 T4N40C84Ds95 1893952 T4N40C84DsS96
477217 T4N72C00DS97 1193041 T4N72C00DS98 1908865 T4N72C00DS99

492130 T4N72C28Ds100 1207954 T4N72C28Ds101 1923778 T4N72C28DS102
507043 T4N72C56Ds103 1222867 T4N72C56Ds104 1938691 T4N72CS6DS108
521956 T4N72C8.1Ds106 1237780 T4N72C84DsS107 1953604 T4N72C84Ds108
§36869 TESNO8COODS10% 1252693 TSNO8COODS110 1968517 TSNO8COODS11l1
551782 TSNO8C28Ds112 1267606 TS5N08C28DsS113 1983430 TSNO8C28DS114
566695 TSNO8CS6DS11S 1282519 TSNO8CS6DS11s 1998343 TSNO8CS6DS117
581608 TSNO8C84Ds118 1297432 TSNO8C84Ds119 2013256 TSN0O8C84Ds120
596521 TSN40COODs121 1312345 TSN40C00Ds122 2028169 TSN40CO0DS123
611434 TSN40C28DS124 1327258 1TSN4CC28Ds125 2043082 TSN40C28DSs126
626347 TEN4QCS6DS127 1342171 TSN40OCSéeDs128 2057995 TSN40CS6EDS129
641260 TSN40C84Ds130 1357084 TS5N40C84Ds131 2072908 T5N40C84DS132
656173 TSN72C00DsS133 1371997 TSN72C00DsS134 2087821 TSN72C00Ds13S
671086 TSN72C28DS136 1386910 TSN72C28Ds137 2102734 TSN72C28Ds138
685999 TSN72C56DS139 1401823 TSN72Cs56DS140 2117647 TS5N72CS56DS141
700912 TSN72C84DsSl142 1416736 TSN72C84DsS143 2132560 TS5N72C84DS144

* T: the number of treatments, N: the number of subjects per treatment,
C: the correlation coefficient, DS: the data set.
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Accencik

LAYCUT IF THE JESIIN ANC RAMW DATA

For Two Treatments {72} | For Three Treatment (73) {
" R o |28 |8 38 Jcov s o 23 |4 Jam  Jzov |
w08 |coo |ost | 489 |.483 | .465 |.a36 |.449 3s37 | .s25 |.s21 |.s10 |.s58 | .304 |
0s2 | 505 |.495 | .484 |.428 | .44% 02538 | .689 |.350 | .e66 ! .i50 | .u65 |
0s3 {256 |.495 | .453 |.e27 | .473 ifos39 | .511 | .513 | 509 |.s56 | ..86 |
28 |ose  1.s05 1.505 |.513 |.:69 |.s11 Wosca |.a92 |.511 |.517 |.497 | .317 |
0S5 | 521 | .25 | .533 |.s80 |.s02 Ifosar | .a99 |.5t9 | .528 |.517 |.517
0s6  1..38 |.500 |.s86 | .62 |.s89 |fsse2 | .487 |.s12 | .505 |.488 | .303
cse | os7 | .a97 | .s583 | .s02 369 | .532 Yosa3 | 499 [ .s82 | .605 |.392 | .34
9S8 | .39 | .362 551 557 | .529 if 0S4é 501 | .389 | .17 | .60% | .533
0s9 473 | .55t | .57 |.337 | .s07 I osas 495 |.s503 | .630 | .s20 | .s36 |
c8s |osi0 s11 | .67 | .7t | .7en | 935 ] osaé 497 | . 720 | .305 | .320 | .%66 |
0S41 135 | .559 |.7<a | .700 |.941 |l osa? | .483 715 | .737 | .302 | .95%
osiz | .s507 |.70n |.7s3 | .m0 {.925 Il ossa | .as0 | .7z6 | .798 | .304 | .954
%0 |coo |osi3 | .500 |.s99 |.495 |.ss8 |.503 llosay | .517 | .515 |.315 |.511 513
0si6 | .508 |.510 |.s12 |.s506 |.513 |{osso |.499 [ .as4 | .495 | .496 491
0sis | .s00 |.s00 |.s03 |.502 |.503 [|osst j.e9s {.e9s | 493 | 492 | .491
c28 |osis | .502 |.522 |.s30 |.533 |.s36 |loss2 |.ss9 |.s12 |.s24 | .52z | .s29
0s17 | .497 |.516 | .s19 |.s529 |.532 |fossz |.sov |.s30 |.537 | .545 535
0518 503 |.528 | .537 |.53& | .s32 i[oss4 |.s17 |.s35 |.s38 | .s43 | .557
csé | o0s19 %38 |.573 | .s02 |.611 |.s51 |osss | .s00 |.386 | .622 |.635 | .646
0s20 | .514 |.s88 | .617 |.628 | .666 flosss |.s12 |.609 | .e48 |.662 | .587
0s21 496 ).588 | .s21 | .28 | .s55 |loss7 | .«88 |.e10 | .654 |.672 | .56a
c84 | 0s22 514 |.700 |.775 | .795 |.954 | ossa | .s&r | .7e7 | .833 |.879 | .958
0523 487 | .686 |.733 | .90 |.9s50 |[osse |.s10 |.74 | .s29 | .852 | .97
0524 693 | .696 | .780 |.806 | .959 Jlosso |.482 |.742 | .831 |.362 | .965
N72 | coo |oses s26 | .522 }.s21 |.s520 |.s21 ljossr |.s13 |.s11 | .s13 | .s14 | .513
0526 496 | .495 | .496 | .496 | .491 lfossz |.soo |.so5 |.s03 |.s01 | .s03
0527 518 | .517 |.515 |.512 |.s10 | ose3 |.soo |.soo |.soz |.a98 | .s01
cz8 |os28 499 | .s20 |.52¢ |.527 |.se8 || osss a9 | .s12 | .s21 | .523 | .331
0529 494 |.511 |.526 |.523 |.s25 | oses | .«83 |.s13 }.s25 |.s531 | .s30
0s30 510 !.536 |.538 | .543 |.532 losse | .497 ].523 | .s29 | .s34 | .529
cs6 |os3t | .s01 |.573 |.s10 |.s22 |.655 iloser |.se2 |.e30 | .s65 | .e80 | .s56 |
os32 | .42 |.se3 |.s01 |.s12 | .s52 lfoses | .s04 | .s11 | .45 | .665 | .556
0s33 | .513 | .602 |.s30 | .667 |.s57 lloses | .98 |.se0 |.s35 | .s51 | .563
css |o0s3e | .s20 1.711 |.781 | .s06 | .952 Yosto |.492 |.737 | .822 | .37 | .968
0s35 | .49 | .s82 | .757 | .785 | .962 ilasm | .s16 |.758 | .s45 | .863 | .568
0s36 |.519 |.s00 |.768 |.792 |.948 ijos7T2 | .sos |.731 |.s40 |.s64 | .968
Note, T: the nunoer of treatments, H: the numoer of suDjects Jer treatment,
C: the correlation coefficient, 0S: the data set.
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for Four Treatments "< | for Five Treatments (T5)
N ¢ s vanc |28 .3 |2 cov l s lano | 2g 43 88 cov
w08 |coo |osm3 1.s02 |.s01 | .sct |.a76 | .a89 fost09 |.510 |.s00 |.:91 | .47 | .476
0s76 | .33 |.592 |.287 | .e77 | .486 || 35110 |.506 | .so7 | .so7 |.s00 | .493
0s7s | .e57 | .496 | .502 |.s79 | .«381 lfos111 | .s07 | .s02 {.s08 |.487 | .4%0
c28 los7e ; ..81 |.515 |.516 | .s10 | .sz5 || 2s112 | .496 | .525 | .536 |.531 | .513
os77  +.510 | .s38 | .37 | .527 | .s27 || os113 | .s22 | .s548 | .s54 |.s4a3 | .s28
0s78 | .513 |[.536¢ | .334 | .530 s02 ffos114 | .488 | .s22 |.s30 |.519 | .313
csé los7o  : .503 |.s28 | .s55 | .s61 | .559 (fos1is | .st4 | 629 | .e67 | .680 | .593
0s80 | .505 |.519 | .462 |.67¢ |.563 |l os116 | .s06 | .s35 | .s82 | .s80 | .696
0s81 ' .a76 | .503 | .537 {.s38 | .s76 |[0s117 | .509 | .632 | .685 |.s79 | .s79
c3. |os82 +.319 |.768 |.253 | .36a | .364 Il oas118 | .487 | .75¢ | .877 |.892 | .97
0sa3 | .s19 |.758 | .as0 | .365 | .96 [ o9s119 | .499 | .788 | .872 | .886 | .7e3
os86 | .452 |.765 | .2s3 | .267 | .96 i{ns120 |.496 | .789 | .875 |.900 | .969
w60 |coo {os85 !.is8 |.a99 | .sc2 | .s58 | .492 || os121 | .s07 | .s08 | .s06 |.s511 | .s03
0s86 | .501 |.501 |.s59 | .496 | .493 ||osi22 | .s516 | .515 |.s518 |.520 | .313
0s87 | .517 |.s20 | .s:8 |.518 | .s16 lfosi23 | .s03 |.sos |.s07 |.s09 |.s502
c28 |os8s | .495 |.s21 | .sat |.545 | .s44 [fos124 | .502 | .s43 | .s53 |.559 | .53%
0s89 | .497 | .530 538 | .542 | .530 |l os125 | .s09 | .537 | .548 | .55 | .523
0s90 | .a50 |.519 |.530 |.s33 | .s23 |[os126 |.s500 |.531 | .s547 |.551 | .534
cs6 |os91 | .509 |.s20 | .e50 .s68 | .670 |Jos127 | .523 | .44% | .690 |.713 | .489
0s92 | .503 |.s25 | .s69 |.688 | .s73 l{os128 | .501 | .s46 | .899 |.717 | .690
0593 | .493 |.631 | .s67 | .s82 | .s7¢ llos129 |.s01 | .639 |.s80 |.700 | .67
cas |os9s | .s21 |.z05 | .892 |.917 | .974 {Jos130 | .485 | .815 | .910 |.935 | .97
0s95 | .97 |.769 | .856 | .91 | .963 l[os131 |.482 |.797 |.sa3 |.917 | .969
os96 | .497 | .772 | .878 | .07 | .967 [fos132 | .s19 | .831 | .911 |.%e1 | .97
N72 |coo |ose7 | .sos |.s08 | .s07 | .s10 | .s12 |jos133 |.491 | .490 | .488 |.487 | .498
0s98 | .516 |.517 | .516 |.51¢ |.s14 {[os136 |.497 | .497 | .a08 | .4964 | .495
0s99 | .498 | .499 | .500 |.500 | .498 |fos135s |.s05 |.sos |.s06 |.503 |.S507
c28 losto0 | .s11 |.sa3 | .s50 |.ss1 | .sé2 |Jos136 | .48 | .517 | .533 | .53 | .513
0s101 | .489 |.527 |.533 |.536 | .529 |l os137 |.s01 | .535 |.s43 |.546 | .531
0s102 | .478 |.518 |.529 |.s30 |.s10 lfos13s | .s15 | .s4s | .556 |.s62 | .539
cs6 |os103 | .510 |.638 | .s92 |.702 | .700 l os139 | .4a94 | .621 | .s63 | .688 | .569
05106 | .501 |.s526 | .56 | .486 | .596 Ilos140 | .500 | .s58 |.705 |.718 | .484
0s105 | .48 |.s15 | .s73 | .696 | .680 llos1e1r |.518 |.647 |.701 | .73 | .s72
c86 |os106 | .49 |.792 | .87 |.911 | .960 llosw2 | .494 | .805 | .894 |.919 | .982
0s107 | .521 |.794 | .387 | .919 | .97 1l 0s143 | 487 | .808 |.900 | .926 | .980
os108 | .508 |.779 | .37¢ 1.3507 | 972 |fos144 | .496 | .07 | .891 |.925 | .982
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Aruitoxt provided by Eic:

i

Note, T: the numder of Irsatments, N:
C: the carrelaticn ccefficient,

the nuroer of subjects per reatment,

3S:

the data set.
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Acpendix 2

Mean Taoles

Zar Two Treatments {72) l For Three Treatments (73) i
« |c |wo |m e e [z fao |28 |w |23 Jeov |
wos | coo | 497 | a9 |ear | as0 |57 | sos | sos | s | s | <a5 |
cas | 505 | .si0 |11 | ezo [ sor |ees | sw [ sie | ser | s |
cse |0 | ses | .sme | .sse |.eax | ss | sor a7 |07 | Lsme |
cae | .sor | ;a0 | .o | 730 |93 |aso |20 |7 | aoe |95z |
wd |cco | 503 | .so3 | .03 | .s02 | sos | sos | .sor |sor | .seo | .ees |
cas | s | sar |29 | sse |33 || .sos | sas | sss | sa7 | sw |
cse | .e99 | a3 | .13 | e22 |57 | so0 | Leoe |Lewt | lsse | .se7 |
cs6 | .u98 | 593 | .769 | .797 | 956 || 493 | .7es | 831 | .8se | .9e0 |
w72 | coo | 513 | .sn | .sn | .so9 | .s07 || Lsoe | sos | .s0s | .s0s | .s06 |
cz8 | .501 | 522 | 529 | .53 | 535 | 490 | .s16 | 525 | .s29 | szo |
es6 | w99 | 579 | .616 | .627 | 655 | .s08 | .s10 | .es8 | .s65 | .es8 |
csh | 510 | .69 | .769 | .796 | .95 | 504 | .72 | .e36 | .858 | .98 |
For Four Treatments (T4) For Five Treatments (T5)
no8 | coo | 497 | 496 | .97 | 477 | a8 | .so8 | .s03 | .s02 | .ca8 | .486
c28 | .s01 | .s29 | .532 | .52 | .518 || 502 | .s32 | .40 | .533 | .518
cs6 | 495 | 516 | .651 | .657 | .66 | 510 | 633 | .678 | .680 | .689
8 | .510 | 764 | .853 | 865" | 964 || .96 | 791 |.875 | .8935 | .970
v%0 | coo | .s05 | .sor | .s06 | .s06 |.s00 || .se9 | .s09 |.s11 | .sts | Lso
28 | .96 | 523 | .536 | .5e0 | .s32 || 504 | .s37 | .59 | .ss5 | .s32
cs6 | 502 | .s25 | 662 | .679 | 672 | .s08 | .ses | .es0 | .710 | .c8s
csu | 505 | .7e2 | .a7s | .o0s | .9ea || ees | 816 |Leor | s31 | Lems |
w72 |coo | 506 | .508 | .508 | .508 |.s08 || .98 | .e98 | .7 | .95 | .00 |
28 | 493 | 529 | .537 | .539 | .27 || 498 | .s32 | .ses | .se7 | .s28 |
l_ cse | .u98 | .a26 |.677 | .93 | .e92 || 54 |.e2 |.s90 | .70 | o7 |
i cs | .08 | .7es | .87 | 912 | .9e9 || 492 | .07 | .89 | 923 | 981 |
Note. T: the num.er of <reatments, N: the numoer af supjecsts per treatient,

C: the correlation coefficient,
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0 |czs |cse c84 I| awova | 280cx | satocx | s8Locx | ancov
2 8 [3.47t 0.599 |0.564 |0.77 i vos [0.500 |o0.560 [0.617 |o0.506 |o0.650
w0 3,303 }0.523 10.595 [0.762 L) 0.502 [0.601 |0.835 |0.647 | 0.668
w72 13.310 |0.526 |0.595 |0.744 N72 0.502 | 0.501 |0.635 | 0.646 | 0.668
°3 w08 | 0.:%6 |0.507 ]o0.590 {0.753
; wd | 9.301 |0.529 |o0.513 |o0.779
j 77 Tos0s losie losie |o.7e1 . ANOVA | 28LOCK | 4BLOCK | 8BLOCX | ANCOV |
I~ W8 12.230 |0.521 l0.617 |o.791 1250 |0.506 |0.503 0.501 |0.493 | 0.495
; ¥a0 lo.s05 {o.525 |0.528 |o0.807 T8 0.4%9 0.526 |0.532 |0.528 | 0.526
} w72 |2.508 10325 lo.537 1o.811 csé  |0.501 |9.610 [0.58 |0.555 | 0.664
i - \C8 [ 3..97 9.525% 3.538 0.805 23 0.500 0.752 }0.835 |0.357 0.962
460 [2.310 |0.535 |0.543 {0.823
§ w72 | 0.:97 [0.330 |0.643 |o0.820 = - ” =
3.382 |0.599 |[0.614 {0.523
’ v08 | wed NT2
2 9.563 |6.591 |0.393 408 | o N72
73 0.586 |0.505 |0.506 0.593 |0.610 |0.610
T4 0.505 |0.516 |o.s20
15 0.516 |0.529 |0.623 20 o e -~
0.499 |0.522 |0.616 |o0.781
il coo c28 cs6 .74
2 0.495 10.515 [0.585 |0.735 Il anova | 28Lock | ssrock | ssLocx | ancav
3 0.500 |0.518 |0.607 {0.771 [o-501 [0.597 [0.629 |o.63 |o.c62
N 0.501 0.526 |0.627 |0.803
15 0.502 |0.530 |0.63 |0.816
| awova | 28Lock | sBLock | 8BLock | ancov
12 0.501 |0.571 }0.596 |0.592 |0.651
“3 0.500 |0.590 |0.520 |0.628 |0.459
4 |0.501 |o0.508 |0.53 |0.650 |0.667
15 [0.502 |0.520 |0.56 |0.665 |0.670
fcoc [ces [cse [csa
08 0..39 |0.51% [0.602 |0.766
w3  [0.3505 |o0.s28 lo.e21 |o.788
72 |0.505 |o0.52¢ [0.623 |0.789
Note. T: the number of troatments, N: the number of subjects per treatment,

c:
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<he cor~2tation coefficient.
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Appergix £

RANKS OF THE "ORYY-£:5i47 EXPERIMENTAL CONDITIONS

Atl Proceaures Cne-way AHOVA Two-0tocx Four-block Eignt-olock ANCOVA

Congition’ Power Zergition” Power Condition” Power Conaition” Power Condition’ Power Zongition
TZNO8CO0 0.471 TZNCS8CS6  9.490 T2NOBCOG 0.4%1 TZNOBCOQ 0.481 T2NOBCJ0 0.430C T2N08C20
T4NOBCCO 0.490 ~3508C84 0.490 ToNO8COU 0.496 TINOBCO0 0.495 T2N08C28 0.470 T3NC8CCO
T3INOBCOD 0.496 TINT2C28 0.490 TSN72C00 0.498 T4H08CI0 0.497 T4NOBCI0 0.477 T4NO8CO0
TSNOBCO0 0.497 TENT2C84  0.492 TINGOCD0 0.501 TSN72C00 0.497 T3INOBC3U 0.481 7SNO8CO0
TENT2C00 0.4%7 T3NOBC28 0.493 T2N40CO0 0.503 T3R4OCOG  0.501 TSN08CI0 3.488 T3N40CO0
T2N08CZ8  0.499 TINLOCR% 0.493 TSNOBCOO 0.5C3 TSNO8CO0 0.502 TSN72C00 0.45% TANGJICO0
T3N40CO0  0.501 T4NT2C28 0.493 T3NT2C00 0.505 T2X40C00 0.503 T3N4DOCO0 0.500 TSNT2200
T2N4OCCO  0.503 TLNGOCZE  0.494 T4NLOCO0  0.597 T3N72C00 0.506 T3N08C28 0.501 T2N08C28
TINT2C20 0.505 TSNOECB4 0.494 T3N08C00 0.508 T4LHLOCO0 0.506 TSN40C0 0.502 T2R40C00
T4N4OCZOO0 0.505 T4NO8CS6 0.495 TGLHT2200  0.508 T4N72C00 0.508 T3N72C00 0.504 TIN72200
T3N08C28 0.507 TENGLOC84 0.495 TSN4OCO0  9.509 T2H08C28 0.511 T4N4OCO0 0.504 TSN40CS0
T&N72C00 0.508 T2N08CO0 0.497 T2N08C28 3.510 T2N72C0C 0.511 T4LN72C00 0.508 Y 2R72690
T2N72C00 0.510 T4LNOBCDO  0.497 T2N72C00 0.511 TSN40C00 0.511 T2N72C00 0.509 T4N72C00
T5N40C00 0.510 72840084 (.498 731108C28 0.514 T3NO8C28 0.516 TSNLOCOO 0.513 T3H08C28
T3N72C28 0.518 T3N08CS6 0.498 T3N72C28 0.516 . T3N72C28 0.525 T4NCBC28 0.522 T4M08C28
T4NO8BCZB 0.521 TLNT2C56  0.498 T2N40028  0.521 TZN4LOC28 0.529 T3N72C28 0.529 TS5N08C28
T2N40C28 0.523 TSN7zC00 0.498 TZN72C28 0.522 T2N72C28 0.529 T2N72C28 9.531 T4NT2C28
T2N72C28 0.524 T3N72C28 0.498 T4LNLDC28  0.523 T4NOBC28 0.532 T2N40C23 0.532 TSN72C28
T4NGLOC28 0,525 T2NL0CS6  0.499% T3INLOC28 0.526 TINLOC2B  (.533 TSNO8C28 0.533 T3IK72C28
T4NT2C28 0.525 TEN72CS6  0.4%99 T4LNOBC28  0.529 T4NGOC28  0.536 T3N4DC28 0.537 T4NL0C28
TSNO8C28 0.525 T3NL0NS6  0.500 T4LN72C28 0.529 T4NT2L28 0.537 T4N72C28 0.539 TSN40C28
TANLOC28 0.529 T2808C84 0.501 TSNOBC28 0.532 TSNOBC28 0.540 T4NLOC28  0.540 T2N40C28
TSN72C28 0.530 7254028 0.501 TSN72C28 0.532 TSN72C28 0.344 TSN72028 0.547 TENT2¢28
TSN4OC28 0.53% T2N72C28 0.5 TSN4LOC28 0.537 TSN4OC28  0.549 TZH08CS6 0.554 T3NLDC28
T2NOBCS& 0.564 T4NO8C28 0.501 TZNOBCS6 0.565 T2X08C56 0.589 TSN4OC2B 0.555 T2X08C56
T3NO8CS6 0.5%0 T4NLOCS6  0.502 Y2H7277" 0.579 T2N40CSS  0.613 T3NOBCS6 0.607 T3N08C56
T2N4OCS6  0.595 TS408C28 0.502 T2K40Luo  0.583 T2N72C56 0.614 T2N4LOCS6 0.822 T2NT2C56
T2H72CS6 0.595 T2840C00 0.503 T3NOBCSS 0.591 T3N08CSS  0.617 T2N72C56 0.627 T2N40C56
T3NGOC56  C.613 T3N4OCOO 0.503 T3NLOC56 0.6G2 TINLOCSE  0.641 T3NLOCS6 0.856 TIN72C56
TLN0BCSS 0.617 T3N72000 0.504 T3N72C56 0.410 TIN72C56 0.648 T4NOBCSé  0.657 T4NOBC56
TIN72C55 (.518 T3INT2C84  0.504 TLNOBC56  0.616 T4N08CS6  0.651 T3N72C56 0.665 TINLOCS6
T4NLOCS6  0.628 TSN4DC28 0.504 T4N4LOC56  0.625 T4NLOC56  0.662 T4N4LOCS6  0.679 T4NGLJCSH
TGNT2CS6  0.637 TSN7T2C56 0.504 T4NT2CS6  0.626 TLH72C56 0.677 TSNO8CSS 0.480 TSN72C56
TSNO8CS6 0.438 T2N08C28 0.50% T5N08CS6  0.433 TSNOBCSS 0.678 T4NT2C56 0.693 TSNLOCS6
TSN72C56 0.643 T4H40C00 0.505 TSN72C56 §.642 TSN4LOCSS  0.690 TSN72C56 0.706 TSNOSCS6
TSNLOCSE  0.648 T4NGOC84  0.505 TINGLOCS6  (.645 TSN72C56  0.690 TSN4DOC56 0.710 TONT2C56
T2N08C84 0.717 T4NT2C00 0.506 T2NOBC84 0.480 T2N08C84 0.740 T2N08C84 0.730 T2H08CBS
T2N40C34  0.742 TINOBCO0 0.508 T2N40CB4  0.693 T2N40CB4  0.769 T2N72C84 0.794 T3NOBCB4
T2N72C84 0.764 T3INLCC28 0.508 T2N72C84 0.694 T2H72C84 0.769 T2N40CB4 0.797 T2N4L0C84
T3108C34 0.753 TINT2C56 0.508 T3INOBCB4 0.720 T3NOBCB4 0.797 T3N08C8« 0.809 T2N72C8%
T3IN40C34 J3./79 TLNT2C8,  0.5C8 TIN72C86 0.742 TINLOCB4 0.831 TINT2C84 0.358 TIN4OCB4
TIN72C34  0.781 TSNOBCO0 0.508 TINGQCEA 0,744 T3N72C84 0.834 TINGOC34 0.364 T4NOBCES
T4NOBCZE4  0.791 TSNLGCS6  0.508 T4NOBC34  0.764 T4NOBCB4  0.853 T4NOBCB4  (.865 T3NT2C84
TSNNBCZ4 0.805 TSN40CC0 0.509 T4NLOCSL  0.782 T4NLOCBA  Q.875 T5N08C36 0.893 T4NGLJC34
TwNGCCS4 0,807 T2NT2C84 0.510 T4N72C84 0.788 TSNO8C84 0.875 T4A440C84  0.905 TLNT2C34
T4NT72084  0.811 TLNC8BC84 0.510 TSNOBC34 3.791 T4NTSCB4  0.877 TLNT2C84 0.912 TSNO2CB4
TSN72C84  0.82 TSNNBC36 0.510 TSN72C84 C.807 TSN72C84 0.895 TSN72CB4 0.923 TSMLOCS4
TSN4QC34  0.823 TENT2C00 0.513 T5N(0C84 0.814 TSN4OCB4  (.901 TSNGOCSL  0.931 TSNT2C84

* T: the number of treatments, H: the numoer of subjects per treatment, C: the corre’' .jon coefficient,
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