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ABSTRACT

A Monte Carlo study was conducted using SAS-IML to compare the

MANOVA simultaneous test procedures of Roy's Greatest Root, the Pi Ilai-Bartlett

trace, the Hotelling-Lawley trace, and Wilks' lambda, in terms of power and type I

error under various conditions, including violations of MANOVA assumptions.

The type I error rates of moderately-restricted contrasts in simultaneous test

procedures following a significant omnibus MANOVA were robust to violations

of MANOVA assumptions, such that the actual alpha remained below the nominal

alpha. However, the power of even Roy's Greatest Root is unacceptably low in

moderately-restricted contrasts under most conditions. Therefore, the results of

this study do not generally support using moderately-restricted contrasts to follow-

up significant MANOVA tests, unless the number of dependent variables is

limited to two, or the noncentrality structure is known to be concentrated in one

group and one variable.

t.)
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A Comparison of the Type I Error and Power of Selected
MANOVA Simultaneous Test Procedures

Multivariate analyses in educational and psychological research have

become much more prevalent since the 1970s (Maxwell, 1992). Emmons,

Stallings, & Layne (1990) surveyed sixteen years of research and determined that

"The multivariate characteristic of the social science research environment with its

many confounding or intervening variables has been addressed through the trend

toward increased use of multivariate analysis of variance and covariance, multiple

regression, and multiple correlation." (p.14).

Multivariate analysis of variance (MANOVA) is generally used to

determine if there are group differences on a set of p variables. Post-hoc follow-up

procedures are arguably more critical in the multivariate case than the univariate

case. The omnibus MANOVA not only fails to delineate where the group

differences occur, but also fails to describe on which variables these differences

lie.

MANOVA Test Statistics

The four MANOVA test statistics: W, V, T, and R, combine the

information from the s eigenvalues of the 11E4 matrix in different ways to test

the multivariate hypothesis (Bray & Maxwell, 1985; Olson, 1976). Other test

statistics based on these eigenvalues are inferior to at least one of these four

statistics (Olson, 1976).

Wilks' lambda is the oldest multivariate test statistic, and is the most widely

used (Tatsuoka, 1988). W is a function of the product of the s roots, or

alternatively can be expressed as a ratio of determinants (Wilks, 1932).

1 1E1w (1)
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Wilks' lambda is often recommended, because of its computational ease

(Schatzoff, 1960. Moreover, W is conceptually easy to understand , because it is

a ratio of determinants. Hence, W is a ratio of the generalized variance of the E

matrix to the T matrix (T = total sum of squares and cross-products). Therefore,

W decreases as the multivariate effect size increases.

Both the T and V multivariate test criteria are based on the trace of a

matrix. T is the trace of the HO matrix (Hotel ling, 1931; Law ley, 1939).

(2)

V is the trace of the lirit matrix or is equivalent to the following function of the

110 matrix (Bartlett, 1939; Pillai, 1955) .

s

= .

1+71,
(3)

Hence, V and T increase in size as the multivariate effect size increases. Further,

it is known that W, V, and T are asymptotically equivalent in very large samples.

Empirical results suggest that they may be considered equivalent when dfe is at

least 10p times larger than dfh (Olson, 1976).

In contrast, R is simply a function of the largest root. R is the largest

eigenvalue of the HT-1 matrix (Roy, 1945). R is a function of the HO matrix

as follows:

R. .

1+A.,

R also increases as the multivariate effect size increases.

(4)
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When dfh=1, all of these test statistics become a function of the first

eigenvalue, and hence are all proportional:

1

T=2 R=V \V=
-1, 1+21' 1+21. (5)

When df1.1>1, the test criteria values diverge and conclusions based on them may

differ. T, V, and W are more useful for detecting a noncentrality structure that is

divided among the s roots; a diffuse structure. By comparison, R is the best choice

for isolating a noncentrality structure that is located in one root; a concentrated

structure. Empirical studies have supported this inferred relationship between the

test statistics and the noncentrality structure. Schatzoff (1966) compared the

relative sensitivities of six multivariate test criteria, including V. T, W, and R,

under a vafiety of population structures. The population structures did not violate

any of the multivariate assumptions. When the noncentrality structure was very

diffuse, the sensitivity for detecting the population structure was ordered

V>W>T>R. When the noncentrality structure was concentrated in one root, the

sensitivity was reversed. R had the greatest ability to detect the population

structure, and V had die worst ability to do so.

MANOVA Test Statistics and Violations of Multivariate Assumptions

Olson (1974) investigated the presence of kurtosis and variance-covariance

heterogeneity on the power and robustness of six MANOVA test statistics,

including R, T, W, and V. Olson confirmed the patterns Schatzoff found when

the multivariate assumptions were upheld. However, Olson found that when the

population structures had violations of these assumptions, the sensitivity patterns

changed. Moreover, these four test statistics differed in robustness to violations of

multivariate assumptions.
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The ordering of empirical power remained R>T>W>V when the

noncentrality structure was concentrated, whether or not multivariate assumptions

were violated. However, the relationship of the power of the different test criteria

observed by Schatzoff (1966) for diffuse noncentrality structures did not hold for

some situations with violations of multivariate assumptions in one-way

MANOVAs with equal n's. When multivariate normality was violated due to

kurtosis, the difference in the power between V. T, and W was very small, and R

was less powerful than all three (Olson, 1974). The power of W, V, T, and R

usually decreased when the assumption of homogeneity of variance-covariance

matrices was violated. The power for V was considerably lower than the other

three statistics under some conditions when the assumption of homogeneity of

variance-covariance matrices was violated (Olson).

In large samples with equal n's T and W have been shown to be robust to

violations of variance-covariance homogeneity, however, samples with unequal n's

were severely affected by variance-covariance heterogeneity, even in very large

samples (Ito, 1969; Ito & Schull, 1964). In small samples the T, W, and R

statistics were not robust to violations of the homogeneity of variance-covariance

assumption, even with equal n's (Korin, 1972) (see Table 3). However, violations

of the multivariate assumptions often had varying effects on the exceedance rates

of the four test criteria. An important factor that affected exceedance rates was

whether the contamination of the assumption violation occurred equally in all

dimensions of the dependent variable set (low concentration of contamination), or

whether the contamination occurred in one dimension of the dependent variable

set (high concentration of contamination). A low concentration of contamination

had more impact on exceedance rates than a high concentration of contamination.

When positive kurtosis was present, all four of the test statistics were conservative;

the ordering of exceedance rates among the test criteria was V>W>T>R.
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Heterogeneity of variance-covariance had a liberal effect on the exceedance rates.

In this case, R was the most liberal and the ordering of exceedance rates among the

test criteria was R>T>W>V.

Olson (1974, 1976) recommended V for general use, because V was the

least conservative in the presence of kurtosis, and the least liberal in the presence

of variance-covariance heterogeneity. Although V tended to be least powerful

when variance-covariance heterogeneity was present, Olson believed it had

adequate power in most situations. Stevens (1979) disagreed with Olson's (1974,

1976) unilateral endorsement of the V statistic when violations of assumptions

occur. Stevens recommended using T, W, or V for concentrated structures when

variance-covariance heterogeneity is present.

All of these studies compared the power or robustness of multivariate test

statistics for the omnibus test. Therefore, these recommendations are reasonable

only if the prime concern is to detect an overall effect. However, there has been

considerable interest in the multivariate literature in attempting to discern what

variables and/or which groups contribute most to the multivariate significance.

7nterpreting the Multivariate Effect

There are five general procedures that are used to further investigate a

significant omnibus test in MANOVA: selecting subsets of variables through

discriminant analysis, step-down analysis, two group comparisons, planned

contrasts, and simultaneous confidence intervals (SCI's) or simultaneous test

procedures (STP's). The first two of these are concerned with determining which

criterion variables contribute most to the overall group differences. Either the

structure coefficients or the discriminant function coefficients generated front the

discriminant analys,s can be used to aid in interpreting the combination of

dependent variables that contribUte to each discriminant function variate.

However, as McKay and Campbell (1982) observe, selection methods based on

6
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discriminant analysis are arbitrary. If discriminant function weights are used, they

must be recalculated after every step of variable deletion to base further decisions

on. Highly multicollinear variables can produce very unstable discriminant

function coefficients and muddle the interpretability of the discriminant function

variate. McKay and Campbell also point out that basing variable-deletion

decisions on the values of the structure coefficients is not theoretically sound.

Consequently, selecting variables by these methods often renders misleading

information and may result in loss of ability to separate groups.

Another technique for determining the variables that contribute most to

multivariate significance is step-down analysis (Bock, 1963; Roy, 1958). The

dependent variables are first ordered according to theoretical importance. The

highest priority variable is tested with a univariate ANOVA. The analysis then

proceeds as an analysis of covariance. In each step the next highest-priority

variable is tested with the higher-priority variables as covariates. When an

insignificant F-statistic is generated, the analysis stops. The final subset of

variables are all of the higher-priority variables that reached significance. This

method is not feasible if the variables in the dependent set cannot be ordered a

priori. A further consideration is that this method does not directly capture the

root which may be of primary theoretical interest.

Another multivariate post-hoc technique compares pairs of groups on the

set of variables using Hotelling's T2 (Stevens, 1986). The significant multivariate

test can subsequently be followed with univariate t-tests to determine which

variables significantly contribute to the group separation (Stevens). This method

has the advantage over previous methods that it examines both the independent

and dependent variable set to tease out the significant multivariate effects.

However, this method yet fails to fully address the multivariate question, because
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it ultimately reduces to univariate tests and ignores the correlations among the

dependent variables.

Planned multivariate contrasts are truly multivariate procedures that

examine contrasts of the groups across composites of the dependent variables. A

multivariate contrast, q), is equal to c'jia. c is a k-element vector of contrast

coefficients for the k groups; ji is the k. p matrix of population means; and a is

equal to a p-element vector of variate coefficients (Bird, 1975; Bird & Hadzi-

Pavlovic, 1983). If the group contrast coefficients and variate coefficients can be

specified before the analysis is conducted, then this is an a priori multivariate test

procedure. Planned comparisons of this type can be tested as single degree of

freedom F-tests (Harris, 1985, p. 103-105). Planned multivariate comparisons are

preferred over multivariate post-hoc comparisons because of their greater power.

However, their usefulness is limited to situations in which the researcher has a

theoretical basis for a particular comparison on both the independent and the

dependent variable set.

Multivariate Simultaneous Test Procedures

When it is desired to follow-up an omnibus MANOVA with post-hoc

comparisons of a truly multivariate nature, simultaneous confidence intervals

(SCI's) (Roy & Bose, 1953) or simultaneous test procedures (STP's) (Bird &

Hadzi-Pavlovic, 1983; Gabriel, 1968; McKay & Campbell, 1982) can be used.

Roy and Bose first described a multivariate SCI using Roy's Greatest Root. The

multivariate contrast, c'pa, is estimated at the 1 - a confidence level by the

interval:

crga c'c(a'Ea)R,.,
c +

c'c ( a'Ea)ki, (6)
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_
where c, p., and a are as previously defined. X is a k xp matrix of sample means, n

is the number of subjects per group, and Rcri't is the a-level critical constant for

the R statistic of 11E-1 (Harris, 1985). In this way, all possible contrasts of the

type, c' X a , can be used to construct intervals, of which 1-a of these intervals

will include the population multivariate contrast, c'pta.

Gabriel (1968) extended the multivariate STP's to the other multivariate test

statistics: W, V, and T. Gabriel (1968) also determined the critical constants for

simultaneous tests' made of minimal hypotheses; single linear parametric functions

or univariate contrasts. Gabriel defined the critical constants for minimal

hypotheses on the R, V, W, and T STP's as:

2

R ; T2 . T
; V= va ; W= 1.1 Ra 1 Va

(8)

When p = 1, each is equivalent to the Scheffe critical constant; LI) Fal

(Bird & Hadzi-Pavlovic, 1983). When s > 1 the MANOVA STP critical constants

vaiy, and the R critical constant will be less than the others. Hence, Gabriel

concluded that the R STP is the most resolvent STP; it will reject more hypotheses

than the other STP's. All of these STP's are coherent with the corresponding

omnibus test, but only the R STP is also consonant with the corresponding

omnibus test. This follows from the observation that the R statistic tests the

population of contrasts of the greatest root. Whereas the W, V, and T statistics

test the population contrasts on the combined s roots. Therefore, when discussion

of STP's is restricted to follow-up tests of the greatest root, only the R STP sample

space is being tested. If contrasts on the remaining s - 1 roots were considered, all

of the sample space of the V, W, or T statistics would be included, lit this case,

the V. W, and 1' statistics would have both the properties of coherence and
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consonance. Most comparisons of the R, V, W, and T STP's have only been

concerned with follow-up tests on the greatest root (Bird & Hadzi-Pavlovic;

Gabriel). The greatest root often has the most practical significance and is

generally of most concern to researchers. Therefore, the R STP can be expected to

provide the greatest power for the most relevant follow-up questions. However, to

ensure the property of co;:erence, the STP must be conducted with the same test

statistic as for the overall test. Olson (1974, 1976) recommended the V statistic

for general use due to its robustness to different assumption violations.

Additionally, the W and the T test statistics are still widely used. Therefore, the R

STP is not always the most appropriate STP, even though it is the most resolvent

on follow-up tests of the first discriminant function.

Although, multivariate simultaneous test procedures have been criticized for

lacking sufficient power, Barcikowski and Elliott (1991) have shown that this is

due to the limited circumstances under which they have been used. It has been

demonstrated that the power of SCI's/STP's can increase dramatically when few

restrictions are placed on the dependent variable set (Bird & Hadzi-Pavlovic,

1983). Elliott (1993) also found that R SCI's had power close to the omnibus

MANOVA test under certain circumstances.

Moderately-restricted contrasts

Multivariate contrasts can be completely unrestricted, in which the linear

combination of the dependent variable set that maximally separates some linear

combination of the groups is identified. For instance, using data from Wilkonson

(1975), Barcikowski and Elliott (1991) determined that the composite variate of

the three dependent variables which maximally separated the groups was equal to

V1 = .44Y1 -.79Y2- Y3.43. Therefore the a vector for this composite was
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a = { .44, -.79, -.43}. The linear combination of groups that the a vector

maximally separated can also be determined. The contrast coefficients for the

groups are contained in the c vector. In this instance, they were

-.741 + .70112 + .021.13, therefore the c vector was c = {-.72, .70, .02}

(Barcikowski & Elliott, 1991). If this a vector and c vector were used to create a

Roy-Bose interval, the interval would be consonant with the omnibus test; the

unrestricted Roy-Bose contrast would not contain the hypothesized population

parameter if the omnibus test was significant.

Conversely, strong restrictions could be placed on the contrast coefficients

such that only univariate comparisons of pairs of groups are tested. By

simplifying the a and c vectors above, a strongly-restricted rs,ontrast could be

formulated, such as a = { 0, 1, 0} and c = { 1, -1, 0}. This would be a contrast of

the first and second group on the second dependent variable. This type of

restriction simplifies the contrast to a very interpretable univariate analysis.

However, strongly-restricted contrasts have very low power (Barcikowski &

Elliott, 1991).

Moderately-restricted contrasts are a compromise between interpretability

and power. The unrestricted vectors above suggest the contrast, a = { 1, - 1, 1 ) and

c = {-1, 1, 0}. This would be a contrast of the difference of the combination of

variables one and three with variable two between the first and second groups.

This contrast has more power than the strongly-restricted contrast and is still

reasonably interpretible.

Power and Robustness of Moderately-restricted Contrasts

The power and robustness of multivariate simultaneous test procedures

involving moderately-restricted contrasts has only been investigated in two studies.

Bird and Hadzi-Pavlovic (1983) compared the V and R STP's for a one-factor
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MANOVA with 36/k subjects in each group, a = .05, and a noncentrality structure

that was diffuse across the s roots. They varied group size, the number of

dependent variables, inter-variable correlations, and level of contamination of

heterogeneity of variance-covariance heterogeneity. They studied unrestricted

contrasts, moderately-restricted contrasts, and strongly-restricted contrasts.

Elliott (1993) investigated the R SCI under various conditions, with and without

assumption violations, when contrasts were moderately-restricted. Elliott's study

investigated whether the conservative effect of moderately restricting contrast

coefficients balanced out the liberal effect of the violation of variance-covariance

heterogeneity, and was adequate to ensure robustness in most situations. Elliott

investigated the power and robustness of the R SCI following a significant

omnibus test in one-way MANOVA with equal n's with varying numbers of

dependent variables, numbers of groups, a-levels, three types of noncentrality

structures, with violations of the normality assumption and the homogeneity of

variance-covariance assumption. Fixed conditions of the study i7icluded: effect

size (ES) = .5; power = .8 or .9; and moderate restrictions of the type of contrasts

made.

These two simulation studies that investigated the power and robustness of

MANOVA STP's/SCI's found patterns similar to what Olson

(1974, 1976) found for omnibus tests (Bird & Hadzi-Pavlovic, 1983; Elliott,

1993). Kurtosis usually had a conservative effect on the R SCl/STP; reducing

actual a below that of nominal a, and reducing the empirical power of the R

SCl/STP relative to the omnibus test. Heterogeneity of variance-covariance

matrices had a liberal effect on the Type I error rates of the V STP and R STP/SCI.

In some cases, the exceedance rates reached unacceptable levels. Differing effects

of heterogeneity of variance-covariance matrices on power were found. Bird and

Hadzi-Pavlovic demonstrated that increasing restrictions on the contrast
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coefficients had a conservative effect on the STP's. However, Elliott generally

found that the increased conservativeness on the Type I error rates of the R SCI

due to imposing moderate restrictions on the contrasts was not enough to

counterbalance the liberal effect of introducing heterogeneity of variance-

covariance.

These findings fail to identify an optimal STP to use for coherent

MANOVA follow-up tests, when violations of multivariate assumptions might be

suspected. The V STP is too conservative to be of any practical use when one,

wishes to make easily interpretable contrasts. The robustness of the R STP/SCI to

heterogeneity of variance-covar:_fice has not been resolved. Although Bird and

Hadzi-Pavlovic's (1983) findings appeared to indicate that imposing moderate

restrictions on the types of contrasts made might negate the liberal effect of

violating the assumption of heterogeneity of variance-covariance matrices, Elliott's

(1993) study did not confirm this. Elliott's results also suggested that the power

may be reduced to inadequate levels by violating this assumption. Based on

Olson's (1974, 1976) findings comparing the robustness and power of all four of

the omnibus test statistics; V, W, T, and R, it can be inferred that the power and

robustness of the W and T STP's are probably intermediate between the V and R

STP's.

Therefore, the purpose of this study is to compare the power and robustness

of V, W, T, and R STP's using moderately-restricted contrasts with and without

violations of multivariate assumptions. By doing so, this study should help to

determine which multivariate test statistic would yield the best compromise of

power and robustness in STP's, under different conditions.
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Methodology

Monte Carlo simulation methods were used to compare the robustness and

power of the STP's of the four commonly used MANOVA test statistics: W, V. T,

and R. This comparison among the four STP's was made with and without

violations of MANOVA assumptions. The power and robustness of all four of the

STP's was compared on the first discriminant function variate.

Simulation Design

Monte Carlo Technique

Monte Carlo simulation was used to generate multiple samples from a

population with a known covariance structure and centrality or noncentrality

structure. A SAS-IML program was created to set the population parameters and

randomly generate the sample data.

The number of replications was determined from Barcikowski and Robey's

(1988) table of iterations needed for Monte Carlo studies. Liberal estimates of the

number of iterations necessary to maintain the actual a-level within .25 of the

nominal a-level of .05 is 5042 replications. Accordingly, 6000 replications of

each combination of conditions were simulated.

Conditions Modeled

Population structure.

If F is the parametric analog of the H matrix (2), and V is the parametric

analog of the E matrix (3), then G = FV-1 is the parameter estimated by the HE-1

matrix. Hence, HE-1 is a statistic estimating the parameter G. The F matrix can

take on an infinite number of forms in the noncentral case. The specific

noncentrality structures used in this study are described in the "noncentrality

structure" section. The covariance matrix, V, can also take on an infinite number

of forms. However, V can be simplified, because it is a positive definite matrix; a

symmetric matrix with positive eigenvalues. For every positive definite matrix
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there exists an orthogonal matrix, C, such that C'VC = I. Further, the test criteria

are functions of the eigenvalues, and are not affected by translations, rotations, or

scale changes of the axes (Anderson, 1958, p. 221-224). Hence irrespective of the

correlation structure among the dependent set of variables, the covariance matrix

can be reduced to the identity matrix. Therefore, I was used as the covariance

matrix when MANOVA assumptions were met.

Noncentrality structure.

Noncentrality was introduced in four ways. The noncentrality structure

was either concentrated in one characteristic root or diffused across the s roots.

Two types of concentrated structures, C I and C2, and one type of diffuse

structures, DI, were created. The CI, C2, and D1 structures were equivalent to

the noncentrality structures termed Type 1, Type 2, and diffuse, respectively, in

previous research (Elliott, 1993; Olson, 1974).

The three types of noncentrality structures were constructed as follows.

(1) C I was constructed with the population mean vector of group 1

= {kci, kc2, . . . kcp} and with the null vector for all other groups.

Hence, group 1 differed from all other groups on all p variables. The

constant, c, is a constant chosen to produce a specified noncentrality

parameter. The resulting eigenvalues of the population G matrix are:

(pnk(k - 1)c2, 0, . . . ), where p is the number of ritependent variables, k is

the number of groups, and n is group size (Olson, 1974).

Cl

kc11 kc12 ." kcip

0 0 0
(8)



MANOVA Simultaneous Test Procedures 17

(2) The population mean vector of group 1 in the C2 structure was

= {kci, 0, . . . Op} , while the null vector was used for all other groups.

Therefore group 1 differed from all other groups only on variable 1. The

resulting eigenvalues of the population G matrix are:

(nk(k 1)c2, 0, . . . ) (Olson).

C2

kc11 0 0

0 0 0

0 0 0 (9)

(3) In diffuse structure. Dl, there are group mean differences in all dimensions

of the s-space. All elements of each group vector are set equal to zero,

except the ith element of the ith group mean, which was set equal to kc for

all i < s. Therefore, group I differed from all other groups on variable 1,

and group two differed from all others on variable 2, and so on. The

resulting eigenvalues of the G matrix depend on whether s = p or k 1.

When

s = p, there are p - 1 roots equal to nk2c2 and one root equal to

nk(k - p)c2. When s = k - I, there are k - 1 roots equal to nk2c2 and the

remaining p - s roots are necessarily equal to zero (Olson).

DI

kc11 0 0

0 kc22 0

0 0 0 1;ck

ICJ

(10)

`MN

a.J./2VGYIVI
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Noncentrality parameter and effect size.

The noncentrality parameter, NCP, was measured as the sum of the

eigenvalues of the G matrix when MANOVA assumptions were met. The

noncentrality parameter was varied to maintain a moderate effect size; f2 = .15

(Cohen, 1988, p.480). The noncentrality parameter was related to the effect size

by the equivalency: NCP = f2(u + v + 1) (Cohen, p.481), where u = numerator df

and v = denominator df (Cohen, p.471). The values of the noncentrality

parameters used for each combination of p and k, to maintain effect size at .15, are

given in Table 3. For example, when p=2, k=3, and noncentrality structure=C7,

group 1 would need to be 1.16 standard deviations greater than the other two

groups on variable 1 to generate this level of effect size.

Power and n-size.

The power of the omnibus test was maintained at .8. Cohen's (1988) power

calculations were based on Wilks' lambda. However, Olson's (1974) results

suggested that the power levels of the W, V, 1', and R test statistics are close,

when MANOVA assumptions are met. This power level was fixed high enough to

allow for the reduction of power that occurs when STP's of restricted contTasts

were formulated. Yet, this power level still allows for some fluctuation among the

test criteria. Sample size, n, was determined by the procedure given by Cohen

(1988, p. 515) for calculating n-size of set correlations/- All groups had equal n-

size. The sample sizes used for each level of k and p, to maintain power at .8, are

given in Table 3. The power charts were not given for a = .10, therefore the same

values derived for a = .05 were used for a = .10.

Number of dependent variables.

The number of dependent variables, p, simulated in this study was two,

four, and six. Belli (1989) found that 70% of the one-way MANOVA analyses

recently published in American Educational Research Journal (AERJ) during a
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five-year period used p = 4. Hence, the number of dependent variables simulated

in this study bracketed p = 4.

Number of groups.

This study investigated group sizes, k, of three and four. Bird and Hadzi-

Pavlovic (1983) recommended that the results for both k = 4 and k = 6 not be

examined in detail, presumably because the patterns of difference between R and

V STP's were similar for both. Belli (1989) found that the most common number

of groups investigated in recent studies published in AERJ was two. The next

most common group size was four, and the largest number of groups studied was

five. This study did not simulate groups as small as 2, because it is not necessary

to make contrasts across 2 groups. However, the group sizes simulated in this

study were feasible values according to recent research.

Alpha level.

The a-level used for significance criteria for the four STP's was .05.

Violations of Distributional Assumptions Modeled

Introducing contamination.

To introduce contamination into the covariance structure in order to model

violations of MANOVA assumptions, the contaminated normal distribution was

used (Andrews, 1972, p.57-61). Olson (1974) generalized this procedure of

adding contamination to multivariate applications. Olson demonstrated:

if Q (p x p) equals V1112 with probability (1 - t), and equals V2-1/2 with

probability t, then the random vector Y (p x 1) = Q4Z has a contaminated

normal distribution such as would result from sampling with probability

(1 - t) from the p-variate population N(0, V1) and with probability t from

N(0, V2) for any population covariance matrices V1 and V2, where Z

(p x 1) is a vector of independent standard normal deviates. (13'. 895).

Therefore, a mixture of N(0, V1) and N(0, V2) can be reduced to a mixture of
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N(0, I) and N(0, D). An analogous situation exists for the noncentral case (Olson).

In this study, the uncontaminated population was distributed as N(0, I) and the

contaminated population was distributed as N(0, D) in the null case.

Type of violation.

Two types of violations of distributional assumptions were modeled in this

study: violation of the assumption of multivariate normality in the form of kurtosis

and heterogeneity of variance-covariance matrices.

Kurtosis was introduced mainly to investigate whether the power of the W,

V, T, and R STP's was still adequate, under varying conditions, when kurtosis was

present. Of particular interest was "thick-tailed" distributions (platykurtic), in

which there were many observations widi extreme scores from the mean. These

distributions commonly cause inflated estimates of error variance and inaccurate

parameter estimates (Judd & McClelland, 1989, p. 210). "Thin-tailed"

distributions (leptokurtic) cause very little data-analytic problems

(Judd & McClelland, p. 499). Therefore, only kurtosis in the form of platykurtic

distributions was addressed in this study. The method of adding kurtosis was the

same as was used by Olson (1974) and Elliott (1993). Using Olson's notation

kurtosis was introduced in the form of (a1, a2, . . . , ak), where al wa :. the

proportion of observations in group 1 drawn from a distribution with higher

variability. Therefore, all groups were equally affected. In this way, only kurtOsis

and not heterogeneity of variance-covariance matrices was introduced. In this

study, each ai was set equal to .20. Olson found that consequences of kurtosis

were.most serious when ai was equal to .10 or .20 as opposed to values of ai equal

to .02 or .40.

Heterogeneity of variance-covariance matrices was introduced primarily to

study its effect on the Type I error rates of the W, V, T, and R STP's. The current

study was designed to determine if any of the STP's produced acceptable Type I

2 i
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error rates in the presence of heterogeneity of variance-coNariance matrices when

contrasts were slightly or moderately restricted. Heterogeneity of variance-

covariance matrices was added by the method used by Olson (1974) and Elliott

(1993). As previously stated, heterogeneity of variance-covariance matrices can

arise from differing intervariable correlations among the k groups, or from

heterogeneity of variance for any of the dependent variables. The method used in

this study introduced heterogeneity of variance-covariance matrices with violations

of homogeneity of variance. Using Olson's notation, heterogeneity of variance-

covariance matrices of the form (a1, 0, 0, . . . ) was introduced, where ai was equal

to one. Therefore, the heterogeneity of variance-covariance matrices was

concentrated in one group, in which 100% of its observations came from a

distribution of higher variability. Olson found that patterns that included both

kurtosis and heterogeneity of variance-covariance matrices produced effects

intermediate between these two extremes. An example of this intermediate

pattern would be when 40% of the observations in group 1 only came from a

distribution with larger variance, Consequently, only the extreme situations were

modeled in this study.

Concentration of contamination.

This factor refers to how the contamination was introduced relative to the

dependent variable set. Following the method of Olson (1974), two levels of

concentration of contamination were used. In the low-level of concentration of

contamination, all dimensions of the p-space were equally contaminated, such that

the contaminating covariance matrix was D = dl, where d was the degree of

contamination. In the high concentration of contamination condition,

contamination only occurred in one dimension of p-space. The contaminating

covariance matrix was D = diag(pd - p + 1, 1, 1, . . .). This covariance matrix was
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chosen in order to maintain the same total variability in the low-concentrated and

high-concentrated conditions.

Degree of contamination.

The degree of contamination, d, indicates how much more variable the

contaminating distribution was relative to the uncontaminated distribution. Olson

(1974) used levels of d = 4, 9, and 36, and was subsequently criticized for using

levels of contamination unrealistically high (Stevens, 1979). In this study, the

degree of contamination modeled was d = 4 and d = 9.

Procedures

The general procedure followed in this study was as follows. First

situations were simulated using all combinations of the conditions and assumption

violations previously mentioned. The procedures to be described are given in

Table 1. For each situation, omnibus tests were conducted for each of the four

MANOVA test statistics, W, V, T, and R. If the omnibus test was not statistically

significant, no further investigation was made of that situation with that particular

test statistic. When a significant omnibus test was detected, the maximized STP

contrast was generated. From this maximized contrast, further restricted contrasts

were made. The type I error and power of the SIP'S was determined by the

method described in "Power and Robustness of the STP's".

Insert Table 1 here

Restrictions Imposed on Contrast Coefficients

The contrast coefficients used in the moderately-restricted condition 1, ere

derived from the unrestricted, maximized contrasts. The unrestricted contrast was

generated by calculating the eigenvector associated with the particular root of

interest. Normalizing this eigenvector produced a, the vector of contrast

2 a
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coefficients for the dependent set. Ma is equal to c, the vector of contrast

coefficients for the groups. M is a matrix of deviation means, standardized with

respect to within-group variance (Bird & Hadzi-Pavlovic, 1983).

The contrast coefficients of the dependent set used in the moderately-

restricted condition were limited to values of -1, 0, and 1. To generate these

coefficients the method of Bird and Hadzi-Pavlovic (1983) and Elliott (1993) was

used. Each element of the a vector was divided by the largest value of the a

vector, and then the fractions were rounded off to the nearest + 1 or 0. The group

contrast coefficients in the moderately-restricted condition were all (n1, n2)

contrasts of the groups. This amounted to six contrasts for the three-group

condition and 25 contrasts for the four-group situation.

Power and Robustness of the STP's

When the population had a central structure, any significant (nj, n2)

contrasts were counted toward type I error for that STP. For instance, if two of the

six possible contrasts for Roy's STP were significant in a particular replication,

then the type I error for Roy's STP in that example would be .167. Type I error

was then averaged over all replications for a particular simulation. Elliott (1993)

determined that his simulations had poor matches of the c vector of the significant

STP to the population structure when the population structure was noncentral.

Therefore, in this study power was determined by analyzing the proportion of

times the particular (n1, n2) contrast that fully represented the induced

noncentrality structure was found to be significant. For instance, if a simulation of

the C2 noncentrality structure (group one differs from all other groups on the first

dependent variable) produced a significant contrast between group one and wroups

two and ihree, this would be counted toward the power of that contrast. However,

if a simulation of the C2 noncentrality structure produced a significant contrast

2
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between groups two and three, this would not be counted toward the power of the

contrast.

Quality Control

To determine whether the SAS-IML program was correctly calculating the

test statistics and discriminant function weights, the simulation runs were

periodically selected and run on the SAS (version 6.07) PROC CANDISC.

Additionally, the calculation of Type I and Type II errors of individual

contrasts allowed for comparison of the specific significant contrasts with the

population structure. If the contrasts declared significant were not those imposed

in the population structure, then the usefulness of the STP procedure to follow-up

significant omnibus MANOVA's was questioned.

Results

Type I Error Rates

The type I error rates of moderately-restricted contrasts of the first root

were conservative under all conditions investigated. The type I error rates of all

the test criteria were the most inflated in the presence of a low concentration of

heterogeneity cf variance-covariance (see figure 2.). In this case, the STP of Roy's

Greatest Root had higher type I error rates than the STP's of the other test criteria.

This distinction became greater as the number of variables increased. The most

conservative test statistic was the Pillai-Bartlett STP.

Insert Figures 1-3 here

2 0
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Power

The pattern of power values of moderately-restricted contrasts of the three

noncentrality structures often differed. However, there were some robust trends in

power which were exhibited in all noncentral population structures. First, under

conditions in which the test criteria diverged, Roy's STP had the greatest power,

followed by the Hotelling-Lawley STP, then Wilks' STP, and lastly the Pillai-

Bartlett STP. Second, power increased in the presence of heterogeneity of

variance-covariance and decreased in the presence of kurtosis. Third, the power

was highest when the number of variables was equal to two.

The two concentrated noncentrality structures generally had higher power

values than the diffuse structure (see figures 4-12). Power levels were acceptably

high when the number of variables was equal to two without assumption violations

or in the presence of heterogeneity of variance-covariance (see figures 4, 5, 7, 8,

10, & 11). The test criteria diverged most when the number of variables was equal

to two, assumption violations were met or kurtosis was present, and tht

noncentrality structure was concentrated (see figures 4, 6, 7, & 9). In these

instances, Roy's STP had the largest difference in power from the other STP's.

The C2 noncentrality structure had different power patterns from the other two

noncentral structures under most conditions (see figures 4-12). The test criteria in

this noncentrality structure did not have such a dramatic drop in power as the

number of variables increased.

Insert Figures 4-12 here

2
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Conclusions

The test properties of the moderately-restricted STP was investigated in this

study, because it has been suggested that the moderately-restricted STP is a good

compromise between interpretability and power (Barcikowski & Elliott, 1991;

Elliott, 1993). Although, the results of this study did not support that hypothesis,

some general conclusions can be made about the choice of MANOVA test

statistics based on test properties of the STP. If one adopts Olson's view of type I

and type II errors, high type I error rates make the test more dangerous and high

type II error rates make it less useful. If the choice of the test statistic was based on

test properties of the STP's, then Roy's Greatest Root would be recommended in

the presence of heterogeneity of variance-covariance. All the STP's had

conservative type I error rates, even in the presence of heterogeneity of variance-

covariance, but Roy's STP had the least conservative type I error rates and the

greatest power of all the STP's in a concentrated noncentrality structure.

Kurtosis has a conservative effect on both type I error and power. If one

suspected kurtosis or wanted to protect against it, the choice of the test statistic

would probably be based on power, since all the test criteria have conservative

type I error rates in follow-up STP's. The results of this study suggest Roy's

Greatest Root would also be the recommended test statistic any in the presence of

kurtosis, even in a diffuse noncentrality structure.

The moderately-restricted contrast proved to be too conservative to be very

useful unless the noncentrality was concentrated in one group and one variable or

the number of variables was limited to two. Therefore, the moderately-restricted

contrast is not an optimum middle-ground in the sequence from the totally

unrestricted contrast, which is consonant with the omnibus test for Roy's Greatest

Root, to contrasts among the groups on one variable, which is very conservative

relative to the omnibus test. The results of this study indicate that although the

2 11
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moderately-restricted contrast is robust in terms of type I error, it lacks sufficient

power in most situations.

2 0
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Table 1

Conditions Simulated

Condition Levels Investigated

MANOVA test criteria W, V. T, and R

noncentrality structure central distribution and Cl, C2,

and D1 noncentral structures

effect size f2= .15

power .80 (for omnibus test)

number of dependent variables 2, 4, and 6

number of groups 3 and 4

alpha level .05

type of contamination kurtosis and heterogeneity of

variance-covariance matrices

concentration of contamination low and high

degree of contamination d=1, d=4, and d=9
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Figure 1. Proportion exceedance as a function of the number of variables for the

moderately-restricted contrast of the first root with a central structure without

assumption violations; nominal a = .05.
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Figure 2. Proportion exceedance as a function of the number of variables for the

moderately-restricted contrast of the first root with a central structure in the

presence of heterogeneity of variance-covariance when d=9 and the concentration

of contamination is low; nominal a = .05.
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Figure 3. Proportion exceedance as a function of the number of variables for the

moderately-restricted contrast of the first root with a central structure in the

presence of kurtosis when d=9 and the concentration of contamination is low;

nominal a = .05.
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Figure 4. Proportion exceedance as a function of the number of variables for the

moderately-restricted contrast of the first root for concentrated noncentrality

structure, CI, without assumption violations; nominal cc = .05.
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Figure 5. Proportion exceedance as a function of the number of variables for the

moderately-restricted contrast of the first root for concentrated noncentrality

structure, Cl, in the presence of heterogeneity of variance-covariance when d=9

and the concentration of contamination is low; nominal a = .05.
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Figure 6. Proportion exceedance as a ftmction of the number of variables for the

moderately-restricted contrast of the first root for concentrated noncentrality

structure, CI, in the presence of kurtosis when d=9 and the concentration of

contamination is low; nominal a = .05.
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Figure 7. Proportion exceedance as a fwiction of the number of variables for the

moderately-restricted contrast of the first root for concentrated noncentrality

structure, C2, without assumption violations; nominal a = .05.
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EIr8. Proportion exceedance as a function of the number of variables for the

moderately-restricted contrast of the first. root for concentrated noncentrality

structure, C2, in the presence of heterogeneity of variance-covariance when d-9

and the concentration of contamination is low; nominal a = .05.
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Figure 9. Proportion exceedance as a function of the number of variables for the

moderately-restricted contrast of the first root for concentrated noncentrality

structure, C2, in the presence of kurtosis when d-9 and the concentration of

contamination is low; nominal a = .05.
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Figure 10. Proportion exceedance as a function of the number of variables for the

moderately-restricted contrast of the first root for diffuse noncentrality structure,

D1, without assumption violations; nominal cc = .05.
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Figure 12. Proportion exceedance as a function of the number of variables for the

moderately-restricted contrast of the first root for diffuse noneentrality structure,

D1, in the presence of kurtosis when d---9 and the concentration of contamination

is low; nominal a = .05.
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