
DOCUMENT RESUME

ED 388 274 IR 017 423

AUTHOR Matthews, James W.; And Others
TITLE VideoScheme: A Research, Authoring, and Teaching Tool

for Multimedia.
PUB DATE 94
NOTE 7p.; In: Educational Multimedia and Hypermedia, 1994.

Proceedings of ED-MEDIA 94--World Conference on
Educational Multimedia and Hypermedia (Vancouver,
British Columbia, Canada, June 25-30, 1994); see IR
017 359.

PUB TYPE Reports Descriptive (141) Speeches/Conference
Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Authoring Aids (Programming) ; Computer Software

Development; Educational Technology; *Interactive
Video; Multimedia Materials; Programming Languages;
*Research Tools

IDENTIFIERS Digital Data; *Multimedia Technology; Prototypes

ABSTRACT
The availability of digital multimedia technology

poses new challenges to researchers, authors, and educators, even as
it creates new opportunities for communication. VideoScheme, a
prototype video programming environment is described, along with its
applications in research, authoring and education. In terms of
research, VideoScheme can help eliminate information redundancy by
detecting "cuts" between segments; in addition, VideoScheme's monitor
object enables automatic video analysis to be applied to interactive
multimedia. As an authoring tool, VideoScheme makes it possible to
write applications in minutes or hours because of its
rapid-turnaround interpreted language. In terms of education, the
prog,ammable multimedia environment of VideoScheme makes it a useful
tool for exposing computer science students to digital media in a way
that is concrete but one that does not restrict experimentation.
(Contains 12 references.) (AEF)

* Reproductions supplied by EDRS are the best that can be made

from the original document.
**u*

*

Video Scheme: A Research, Authoring,
and Teaching Tool for Multimedia

J. MATTHEWS, F. MAKEDON, AND P. GLOOR
Department of Mathematics and Computer Science

Dartmouth College, Hanover, NH, 03755, USA
E-Mail: James.W.Matthews@dartmouth.edu

U.S DEPARTMENT OF EDUCATION
Office ol Educalfonal Research and Impcovement
E DUCA PONAL RESOURCES INFORMATION

CENTER (ERIC)

Infs document hay been reproduced as
fecefved from the person or organaatfon
onrpnafing

Mato, changes have been made 10 unprOve
reproduclfon Quality

Pomis of vfew or opmfons slated In thisdOCu
ment do not necessanly represent offic.al
OE Rt oosffion poficy

Abstract: The availability of digital multimedia technology poses new challenges
to researchers, authors, and educators, even as it creates new opportunities for rich
communication. This paper suggests interactive computer programming as a fruitful
approach to these challenges. VideoScheme, a prototype video programming
environment, is described along with promising applications.

Introduction

The advent of affordable digital audio and video has unleashed new possibilities for interactive multimedia.[3]But it has also raised a host of questions, of how best to acquire, analyze, edit, and deliver digital media
products. To answer these questions researchers and practitioners need new tools, tools with enough flexibility
to accommodate new demands, explore original hypotheses, and prototype novel applications. We believe that
VideoScheme, a programming environment for digital media, offers a valuable example of such a tool.[4]

System Description

VideoScheme is implemented as an application for the Apple Macintosh, written in C and totaling
approximately 100KB of executable code. It provides a visual browser for viewing and listening to digital
movies, using Apple's QuickTime system software for movie storage and decompression.(9) The browser
displays video and audio tracks in a time-line fashion, at various levels of temporal detail. Clicking dn the
video tracks displays individual frames in a "flip book" fashion, while clicking on the audio track plays it back;
clicking twice in rapid succession plays back both audio and video.

As a visual interface to digital media VideoScheme is nothing out of the ordinary; what separates it from
conventional computer-based video editors is its programming environment. VideoScheme includes aninterpreter for the LISP-dialect Scheme, built on the SIOD (Scheme-in-one-Defun) implementation, along withtext windows for editing and executing Scheme functions.fl 0) Functions typed into the text windows can be
immediately selected and evaluated. The environment, while deficient in debugging facilities, offers such
standard LISP/Scheme programming features as garbage collection and a context-sensitive editor (for parenthesesmatching). In addition it offers a full complement of arithmetic functions for dynamically-sized arrays, animportant feature for handling digital video and audio.

Scheme was chosen over other alternatives (such as Tcl, Pascal, and HyperTalk) for a number of reasons.Scheme treats functions as first class objects, so they can be passed as arguments to other functions. Thismakes it easier to compose new functions out of existing ones, and adds greatly to the expressive power of thelanguage. Scheme is also easily interpreted, a benefit for rapid prototyping. Scheme includes vector data types,which map very naturally to the basic data types of digital multimedia, namely pixel maps and audio samples.Finally, Scheme is easily implemented in a small amount of portable code, an advantage for research use. Themost significant drawback to using Scheme is the programming syntax, which non-programmers (and even
some programmers) find difficult to use. If we were to start again we might consider Logo or Dylan, languageswith the positive properties of Scheme hut with more attractive syntax.

385

BEST COPY AVAILABLE 2

'PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Gary H. Marks

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"

Fast News 80 H 60

0:07.00 0:08.00 0:09.00 0:10.00 0:11.00 0:12.00 0:13.00

Video
,-

....,,s-t-..-. .
litz;:i:61,;):....t

/t,e.. . .-t i
....,.5'.t4,-ts:.;.*\,-.Z:.- -

,,,,,,,,,,,--.4-4s1..:

Sound

,

,
.

;-., ..
.-. -. .

?
e .
-11

..
..- -. . ---. :. ' 0.1

.' .

,-
.

T r '0'
60 'ixels/sec Iv

Untitled-1
(set! mon (open-monitor 1))

(lob-monitor mon "lab.movie")

Monitor-1 Er_E1

v*tw4"itgov---7 ;.

,

Figure 1 VideoScheme user interface, with movie (top), monitor (right), and program editor (left).

Language Description

VideoScheme extends the Scheme language to accommodate digital media. In addition to the standard number,
string, list, and array data types VideoScheme supports the following objects:

movie -- a stored digital movie, with one or more tracks.
track -- a time-ordered sequence of digital audio, video, or other media.
monitor -- a digital video source, such as a camera, TV tuner, or videotape player.
image -- an array of pixel values, either 24-bit RGB or 8-bit gray level values.
sample -- an array of 8-bit Pulse Code Modulation audio data.

These objects are manipulated by new built-in functions. Movies can be created, opened, edited, and recorded:

(new-movie) ; creates and returns a reference to a new movie

(open-movie filename) ; opens a stored movie file

(cut-movie-clip movie time duration)
; moves a movie segment to the system clipboard

(copy-movie-clip movie time duration)
; copies a movie segment to the system clipboard

(past-movie-clid movie time duration)
; replaces a movie segment with the segment on the clipboard

(delete-track movie trackno)
; removes a movie track

386

inrevr nnimi Al /A 11 MI 11.

(copy-track movie trackno target)
: copies a movie track to another movie

(record-segment monitor filename duration)
; records a segment of live video from the monitor to a file

Images and sound samples can be extracted from movie tracks or monitors, and manipulated with standard array
functions:

(get-video-frame movie trackno time image)
; extracts a frame from a video track

(get-monitor-image monitor image)
; copies the cun.ent frame from a video source

(get-audio-samples movie trackno time duration samples)
; extracts sound samples from an audio track

With this small set of primitive objects, and small number of built-in functions, we can rapidly build a wide
variety of useful functions with applications in research, authoring and education.

Research Applications

With powerful computers and digital media it is possible to build systems that perform automatic analysis of
video and audio data. The results of this analysis can be used to make existing applications (such as indexing,
retrieval, and editing) more efficient, or to enable entirely new applications.[6, I I, 12] It would certainly be
desirable if computers could perform these analytical tasks as well as a trained human; but short of such a
breakthrough in artificial intelligence there are numerous less-ambitious goals to be pursued by researchers in
this field.

One important goal is an automatic system for dividing digital video into segments, by detecting the "cuts" that
divide one shot from another. There is no perfect definition of a "cut," but generally the term refers to a sharp
discontinuity in a video stream, such as the break between two recording bursts in unprocessed video, or the
point where two clips were concatenated in the editing process. Once cuts are found the segments they define
can be represented by a subset of the segment's data (e.g. the first and last frames), since the continuity of the
segment ensures a great dcal of information redundancy. This reduction ofa potentially long segment to a few
frames is a significant boon to a number of applications, such as indexing, logging, navigation, and editing,
since those tasks may be performed on a greatly reduced set of data.

A number of algorithms have been proposed for automatic cut detection, and one of the advantages of
Video Scheme is that such algorithms can be implemented as compactly as their mathematical formulation. For
example, a simple measure of visual continuity is a sum of pointwise differences in gray value or color. Such a
test can be performed by the following fragment of Video Scheme code:

(adiff framel frame2 delta)
(aabs delta)
(atotal delta)

; subtract arrays of gray value
; compute absolute difference values
; sum differences

Scene changes trigger large pointwise differences, but this measure is also very sensitive to camera motion and
zooming, which may change every pixel without introducing a new scene. Refinements of this algorithm, such
as one that counts the differences that exceed a threshold, have a similar weakness. So there appears to be somevalue in a test that is not so spatially sensitive, such as the difference between summed gray values:

((a t ot al f rame I) (atotal f rame2)) ; subtract summed gray values

This measure is insensitive to camera pans and zooms, but it is also insensitive to actual cuts, since the averagegray level may not change amatically across the cut. A more reliable indicator is the gray level or color
histogram. Using VideoScheme's built in color histogram function we can easily compute this measure:

387

MC,

(get-color-histogram64 framel histograml)
(get-color-histogram64 frame2 histogram2)
(adiff histograml histogram2 delta)
(aabs delta)
(atotal delta)

; compute 64-bucket color histograms

; subtract histograms
; compute absolute differences
; sum differences

This test can be further refined, by breaking each frame into a number of sub-frames and discarding the ones with
above-median changes, or counting the number of changes that exceed a threshold; either modification is quickly
implemented in Video Scheme, and each makes the algorithm more robust against local phenomena such as
object motion.

While histogram comparison is widely considered a robust solution to detection of simple camera breaks, the
general problem remains a fertile area for new approaches. In recent months novel algorithms have been
proposed for detecting gradual transitions, and for using motion-sensitive measures in conjunction with a
projection detecting filter.[12, 7] The future is bound to bring still more proposed algorithms, targeted at
specific video sources and applications. We believe that Video Scheme's flexibility makes it a useful vehicle for
this research. Video Scheme's high-level primitives and ragid-turnaround programming erv.ironment make
programs compact and prototyping very rapid. Nagasaka and Tanaka's histogram-based algorithm has been
implemented as 25 lines of Video Scheme, and the Otsuji-Tonomura filter was implemented in a couple of
hours.[6, 7] We aim to implement and evaluate new cut detection algorithms as they are proposed, and
hopefully develop our own improvements.

Another area of research is the application of automatic video analysis to interactive multimedia. Linblad has
termed this "computer-participative multimedia" since the computer is actively involved, reacting to the content
of the video data.[2] Video Scheme's monitor object makes it possible to easily implement such applications.
For example, this Video Scheme code fragment implements the core of a video room monitor:

(set! camera (open-monitor 1))
(get-monitor-image camera baseline)
(while t

; create a monitor object for a camera
; capture a baseline image

(get-monitor-image camera new-image) ; capture a new image
(if (image-diff baseline new-image) ; compare to baseline
(record-segment camera "monitor-movie" 5 .) ; record 5 seconds of video

With a camera pointed at a door this fragment keeps a running log of all the people who enter and leave the
room. With the addition of a sound playback command this function could also serve as a video answering
machine: people approaching a closed door could be automatically prompted to leave a videotaped message.
This fragment assumes that any significant change in the image striking the camera represents a person. More
sophisticated analysis functions could look for more specific phenomena. So, for example, they could
automatically record television programs with a certain opening screen or on-screen logo.

Authoring with Programming

Digital media technology has enabled more than the creation of movies on computers; it has also made possible
new sorts of information systems. One example is the Parallel Computation, a CD-ROM that integrates digital
video, audio, animation, and hypertext to communicate the proceedings of an academic conference.[5] The
unusual nature of the system posed numerous challenges to the development staff, challenges that were only
partly addressed by existing authoring tools. For example, the centerpiece of the proceedings is 8 forty-live
minute synchronized audio/video presentation of speech with overhead slides. It was sometimes necessary to
move audio tracks independently of the accompanying video, to accommodate sound editing software. Our
commercial tools did not provide a way to do this without re-compressing six hours of animations, but
VideoScheme was quickly adapted to the task. Earlier in the process we needed to remove silences from the
original 12 hours of sound tracks, a painstaking manual process. Had VideoScheme been available at that time
it would have been a simple function:

388

(while (< time (get-movie-duration movie)
(if (silence? movie trackno time 0.1)
(cut-movie-clip movie time 0.1)
(set! time (+ time 0.1))))

: loop through whole movie
; if there is 0.1 seconds of silence
; thcn remove that segment
; otherwise move on to ncxt segment

We also removed noise words (such as "urn" and "ahh") hy hand, and we believe that Video Scheme could be
extended to assist in this step as well.

It was clear from our experience that while existing tools offer high-quality solutions for problems in their
domain, they are often poorly suited to the ad hoc tasks that arise in innovative multimedia authoring. In such
cases a programmable system may provide the necessary flexibility to turn a tedious, manual process into an
automatic operation. It may also permit entirely novel operations. In his work on a programmable graphics
editor Eisenberg noted that such an editor can produce effects, such as fractals and recursive Escher-like designs,
that would be near-impossible with manual tools.f1) Likewise we can imagine Video Scheme programs to
implement algorithmically defined effects, such as fades and wipes, that could hardly be achieveC any other way.

A critical concern with authoring tools is the speed with which new applications can be developed. Traditional
programming environments (featuring compiled languages such as C and C++) offer complete access to the
computer hardware and data, but can require months or years of effort to produce a usable tool. Object-oriented
frameworks accelerate the process somewhat, but even then many details must be coded by hand. By contrast, a
rapid-turnaround interpreted language like Video Scheme makes it possible to write applications in minutes or
hours. Tool authors do not need to master the low-level details, and powerful operations can be composed out
of very high-level primitives and previously-written functions.

Education in Multimedia

Education is an obvious application for multimedia, but it is also true that students will need education in
multimedia. As more data becomes available in multimedia form it will become more important for students to
understand the fundamentals of the technology, in order to use this form of communication and to be discerning
consumers of multimedia information. Commercial multimedia tool developers are one source of teaching
tools, since their products are typically very polished and focused on the task of making multimedia production
as easy as. possiblea] But there is also a call for more basic, flexible tools, thatexpose more of the underlying
technology and permit easy experimentation with features that might not be included in a commercial package.

We believe that Video Scheme is such a tool, and to that end made it the subject of a project in a multimedia
seminar for undergraduates and graduate students in computer science. All the students had programming
experience, but many had not used Scheme or a LISP dialect and none had written programs to manipulate
digital video. The lack of debugging facilities in Video Scheme was a troublesome obstacle, as was the
parentheses-heavy syntax of Scheme. Nonetheless, after a 90-minute tutorial most students were able to write
functioning Video Scheme programs to perform a specified editing task and implement a crude cut detection
algorithm. They were also able to informally analyze the performance of the cut-detection algorithm (which was
based on an average gray-level test) and thereby make classroom discussion of its faults more informed and
concrete. The flexibility of the system also prompted the students to suggest improvements and new
applications, including the video answering machine mentioned above.

While learning to program is a significant obstacle for most students, a programmable multimedia environment
appears to be a useful tool for exposing computer science students to digital media in a way that is concrete
without unnecessarily restricting their experimentation. By creating multimedia programs students can gain
appreciation for the ones they merely use, in the same way that writing fosters appreciation for literature. In thc
best of cases such an experience can help students to imagine and implement completely original applications
without the expertise required by conventional low-level progratnming tools.

Conclusion

Digital media arc producing exciting, and rapid changes in thc way we communicate. There is much research to
he done, and much that the multimedia producers and consumers of the future should learn, in order to fully
exploit the potential of this technology. We believe that programmable qnvironmcnts such as Video Scheme

389

provide the flexibility to meet this dynamic challenge, and we look forward to finding new applications for this
system.

[1] Eisenberg, M. "Programmable Applications: Interpreter Meets Interface." MIT Artificial Intelligence
Memo 1325, October 1991.
[2] Linblad, C. "The VuSystem: A Computer-Participative Multimedia Toolkit." MIT Laboratory for
Computer Science, 1993.
[2] Linblad, C., Wetherall, D., and Tennenhouse, D. "The VuSystem: A Programming System for Visual
Processing of Digital Video." TR-590, MIT Laboratory for Computer Science, 1993.
[3] Mackay, W. and Davenport, G. "Virtual Video Editing in Interactive Multimedia Applications."
Communications of the ACM, 32:7, July 1989.
[4] Matthews, J., Gloor, P. and Makedon, F. "Video Scheme: A Programmable Video Editing System for
Automation and Media Recognition." ACM Multimedia '93, Anaheim, CA, 1993.
15] Metaxas, T., Cheyney, M., Gloor, P., Johnson, D., Makedon, F., and Matthews, J. "Conference on a
Disk: An Experiment in Hypermedia Publishing." ED-MEDIA '94, Vancouver, Canada, 1994.
[6] Nagasaka, A. and Tanaka, Y. "Automatic Video Indexing and Full-Video Search for Object
Appearances." IFIP Transactions A (Computer Science and Technology), vol. A-7. 1992.
[7] Otsuji, K. and Tonomura, Y. "Projection Detecting Filter for Video Cut Detection." ACM
Multimedia '93, Anaheim, CA, 1993.
[81 Premiere. Adobe Systems Incorporated. Mountain View, CA.
[91 Quick Time. Apple Computer, Inc. Cupertino, CA.
[10] SIOD (Scheme-in-one-Defun). Paradigm Associates, Inc. Cambridge. MA.
[I I] Ueda, H., Miyatake, T., and Yoshizawa, S. "IMPACT: An Interactive Natural-Motion-Picture
Dedicated Multimedia Authoring System." CHI '91 Conference Proceedings, 1991.
[12] Zhang, H., Kankanhalli, A. and Smoliar, S. "Automatic partitioning of full-motion video."
Multimedia Systems, 1:1, August 1993.

390

