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Abstract: For an intelligent tutoring system (ITS) to earn its "I", it must be able to (a)
accurately diagnose students' knowledge structures, skills, and/or learning styles using
principles, rather than pre-programmed responses, to decide what to do next, and then (b) adapt
instruction accordingly. While some maintain that remediation actually comprises the "T" in
intelligent tutoring systems, my position is that the two components (diagnosis and remediation),
working in concert, make up the intelligence in an ITS. A framework for developing and
assessing student models is presented, followed by a description of an attempt to apply the
framework in the development of a student model incorporated within a non-intelligent
computer tutor. The two systems (with and without a student model) will be compared in terms
of learning outcome and efficiency measures.

Jeremy (age 10) arrives at his math lab where he sits in front of a computer that is going to help him
learn to solve algebra word problems. Today's focus is on those troublesome distance-rate-time problems. After
stating his name, the computer accesses Jeremy's records, flagging his relevant strengths and weaknesses (i.e., not
only his higher-level aptitudes from his computerized school records, but also the low-level rules that he's
acquired and not yet acquired in this module). Beginning with an animated review of concepts and skills that he
learned the day before, the computer generates a problem which is just a little bit beyond his grasp. The system
then works out the correct solution to the problem, along with some alternative solutions that Jeremy is likely to
come up with based on its student model of him. In fact, he incorrectly solves the problem like the tutor predicted.
As part of its student model of him, the computer "knows" to instruct Jeremy with an emphasis on a graphical
representation of the problem to clarify the discrepancy between the correct and incorrect solutions and facilitate
the formation of a firnctional mental model (conceptual knowledge). Thus, the tutor presents two animated trains
appearing on opposite sides of the screen, and converging at a point almost in the middle of the screen. They
travel at different rates of speed. The problem statement stays up at the top of the screen, and the tutor points out,
as it periodically pauses the simulation, what elements should be attended to and when. After Jeremy states that
he understands the mapping between the explicated conceptual knowledge, the appropriate equation, and the
relevant parts of the word problem, the computer presents an isomorphic word problem. This time he solves it
correctly, without any supplemental graphics. The computer allows him to play around with some trains, missiles
and boats on his own for a while to test his emerging understanding. He views his "score" of curricular elements
acquired, and instruction and learning continue.

The above scenario could describe events in a class-lab 15 to 50 Years from now, or just remain a figment
of our imaginations. To achieve this future, w; need to conduct more systematic research on student modeling,
focusing on increased system flexibility and diagnostic accuracy. We also need to adopt some framework and
formalism for a more precise specification of models. All this presumes that the student model is the correct focus
for developing more intelligent tutoring systems, so we additionally need controlled evaluations testing which
modeling techniques are better for which kinds of domains, and even whether or not a student model, in general,
is worth the research and development costs.

The ability to diagnose student errors and tailor rernediation based on the diagnosis represents the critical
difference between intelligent and merely clever computer-assisted instruction. The working definition of
computer-tutor intelligence that I'll be using in this paper is that a system must behave intelligently, not actually
be intelligent, like a human. Specifically, an intelligent system must be able to accurately diagnose students'
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kmowledge structures, skills, and/or learning styles using principles, rather than pre-i)rogrammed responses, to
decide what to do next, and then adapt instruction accordingly (Shute & Psotka, in press).

Generic Intelligent Tutoring System

A student learns from an intelligent tutoring system (ITS) primarily by solving problems--ones that are
appropriately selected or tailor-made, and that serve as good learning experiences for that student. The system
starts by assessing what the student already knows. This is called the student model. The system concurrently,
must consider what the student needs to learn, embodied in the curriculum (or domain expert) as instructional
goals. Finally, the system must decide what curriculum element (unit of instruction) ought to be instructed next,
and how it shall be presented. This is achieved by the inherent teaching strategy, or tutor, in communication with
the student model. From all of these considerations, the system selects or generates a problem, then either works
out a solution to the problem (via the domain expert), or retrieves a prepared solution. The tutor then compares its
solution, in real-time, to the one the student has prepared and performs a diagnosis based on differences between
the two. Feedback is offered by the ITS based on issues such as how long it's been since feedback was last
provided, whether the student already received some particular advice, what the student's strengths and
weaknesses are, and so on. After this, the program updates the student model (the dynamic record of what thestudent knows and doesn't know). Following these updating activities, the entire cycle is repeated, starting with
selecting or generating a new problem.

Not all ITS include these components, and the problem-test-feedback cycle does not adequatelycharacterize all systems. However, this generic depiction does describe many current ITS. Alternative
implementations exist, representing philosophical as well as practical differences in their design. For example,
the standard approach to building a student model involves representing emerging knowledge and skills of thelearner. The computer responds to updated observations with a modified curriculum that is minutely adjusted.This may be called a microadaptive approach to modeling, where instruction is very much dependent on
individual response histories. An alternative, macroadaptive approach involves assessing incoming knowledgeand skills, either instead of, or in addition to, emerging knowledge and skills. This enables the curriculum to
adapt to both persistent and/or momentary performance information as well as their interaction (see Shute, 1993a,1993b). I'll now present a student modeling framework designed to aid in the development and comparison of
different modeling techniques by providing a standard formalism.

A Framework for Student Modeling

Dillenbourg and Self (1992) outlined a two-dimensional framework and notation for student modeling.Their vertical dimension distinguishes among learner behavior, behavioral knowledge, and conceptual knowledge.This is crossed by the second dimension reflecting the representation of that knowledge--by the learner, the
system, and the system's representation of the learner. I modified the framework slightly (see Figure 1) torepresent specific knowledge and skill types required during the learning process (i.e., symbolic knowledge, SK;
procedural skill, PS; and conceptual knowledge, CK), rather than overt behaviors. The horizontal axis remainsbasically the same (i.e., learner's representation of the knowledge or skill, L; the system's representation of the
learner's knowledge, S/L; and the system's/expert's representation of the knowledge or skill, S). This modified
framework reflects the standard microadaptive approach to student modeling.

I also included in the framework a fourth element on the vertical axis reflecting cognitive processmeasures (or aptitudes). This was added to accommodate individual differences among learners (formacroadaptation), as well as differential cognitive requirements of problems or tasks. Finally, although not shownin the figure, I incorporated a correlated time dimension because, as learning progresses, cognitive demands onthe individual vary. For example, working-memory capacity and associative learning skills play an important role
early in the learning process in determining the degree of new knowledge and skill acquisition. But over time,these become less important, and other cognitive factors (e.g., perceptual-motor speed) gain importance.
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Figure 1: Framework for Student Modeling (adapted from Dillenbourg & Self, 1992)

Let's see bow this works. Suppose you were developing a computer program to teach statistical topics,
and you were at the part of the curriculum instructing the computation of a measure of central tendencythe
MEAN. Your system begins by introducing relevant symbolic knowledge (e.g., E, X, N, EX/N), then requiring
learners to solve problems to demonstrate their acquisition of this new knowledge. Differences between the
learner's and the system's representation (or understanding) of the knowledge would show up as errors on specific
problems, such as failing to recognize the denominator (N) as being a part of the final formula (see bottom section
of Figure 1, above). Next, the system directs students to apply their new knowledge by actually computing the
MEAN from a set of data (procedural skill). Disparities between the learner's actualsolution process (and product)
and the system's representation of the correct procedure would be apparent in procedural bugs. Finally, learners
are taught (and induce), the conceptual knowledge that the KEAN represents the arithmetic average of a set of data,
and how that relates to other measures of central tendency (e.g., the location of the MEAN in relation to the MEDIAN
and MODE in a skewed distribution). Discrepancies between the learner's and system's conceptual representations
(or mental models) can reflect fundamental misconceptions.

Another variable believed to influence the probability that a learner will get a specific problem correct or
incorrect involves the match between a learner's aptitude (1..,Ard and the-cognitive requirements of a specific task
(SAP). That is, if the working memory demands/requirements for task X -were high (e.g., introduction of a new
curricular element requiring the integration of diverse knowledge), and the learner's actual working-memory
capacity was low, the predicted probability of success would be low. Cognitive process measures (aptitudes) can
easily be assessed. For example, the Cognitive Abilities Measurement (CAM) battery of computerized tests
(Kyllonen, Woltz, Christal, Shute, Tirre, and Chaiken, 1990) measures six different aptitudes (i.e., working-
memory capacity, inductive reasoning skills, information processing speed, associative learning skills, procedural
learning skills, and general knowledge) in each of three domains (quantitative, verbal, and spatial). The battery
has been widely-tested and validated, and individual tests can be extracted for different purposes. For instance, if
you were teaching a three-dimensional navigational task and wanted to know an individual's spatial aptitude, you
could select certain tests for administration (e.g., tests measuring spatial working memory). Differences between
the learners actual aptitude (LApt) and the system's representation of the learner's aptitude (SILA0), denotes the
construct validity of the aptitude measure (e.g., CAM test validity). Moreover, discrepancies between the system's
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representation of the learner's aptitude (S/LAD1) and the system's aptitude requirements (SAN) indicate -what kind of
remediation is required (e.g., decomposing the current task into more manageable units for a learner diagnosed as
having low working-memory capacity).

This general framework also allows for extensions. For instance, the learner's representation of his/her
own knowledge (e.g., L./La() would denote metacognitive awareness of his or her underlying knowledge
structure. I'll now use this framework as a basis for discussing student modeling within a single tutor that attempts
to teach a variety of knowledge types to different learners.

A Real-World Attempt to Add Intelligence to a Computer Tutor

Non-Intelligent Version of Stat Lady

Star Lady (SL) consists of an experiential learning environment and a curriculum that teaches statistical
concepts and skills (e.g., DESCRIPTIVE STATISTICS). The curriculum is presented in a relatively fixed order to all
learners. The curriculum focused on in this paper was built on a hierarchy of simple to more complex concepts
and skills, and consists of three 2-hour modules: (a) data organization and plotting, (b) measures of central
tendency, and (c) measures of variability. In addition to student problem solving within the three modules, and
the provision of specific feedback, the system also allows learners to engage in elective "extracurricular"
activities, such as viewing the on-line Dictionary and Formula Bank, playing around in the Number Factory, or
using the Grab-a-Graph features.

The non-intelligent version of SL is often clever, but not intelligent in the classical sense (see working
definition, above). The type of pedagogy embedded in the system may be called "near mastery learning." That is,
relevant concepts and rules are presented, then SL poses various problems for students to solve in order to
demonstrate comprehension of the curricular elements. If a learner continues to get a problem wrong, SL provides
three levels of feedback, progressively more explicit. For any particular problem, if the student fails to solve it
correctly after three attempts, he or she is given the correct answer. The system thus presumes that the learner has
actually acquired that concept or skill after explicitly being told. But this could be an erroneous presumption,
with problems arising later on when a student tries to learn higher-level skills that have only partially-learned
subskills as components. As the twig is bent, so grows the tree.

Suppose that two students, Tonya and Nancy, have advanced to the "Measures of Central Tendency"
module. Specifically, they are beginning the section concerning the computation of the MEAN. Stat Lady begins
this topic by identifying the MEAN as the most commonly used measure of Central Tendency, and as being
synonymous with the average--a term familiar to most students. After presenting these broad conceptual strokes,
Stat Lady quickly illustrates the concepts with a real-life example (e.g., computing an average grade in Biology
class from a group of test scores).

Tonya and Nancy then must obtain some test scores from the Number Factory (an activity that's
considered analogous to data collection), and Stat Lady walks them through the process of building the formulafor the MEAN. Even though they're -only in the earliest stages of learning this new concept, Stat Lady amstantly
challenges her students to think for themselves by drawing on bits and pieces of relevant information covered in a
previous section of the tutor. For instance, rather than simply giving Tonya and Nancy the formula for the MEAN,
she tests their symbolic knowledge (SK) and associative learning abilities by asking them to use a menu of options
to create the notation that stands for summing scores in a sample (IX). They'd worked with these two symbolsbefore, but never conjointly. Right away, we see some individual differences in learning--Nancy has no problemwith the task just described. She enters the correct answer on her first attempt, is congratulated with positiveauditory and textual feedback, and moves directly on to actually summing her scores (i.e., a test of procedural
skill, PS). Tonya, on the other hand, is struggling. She enters a series of incorrect responses, each of which is
followed by the increasingly explicit feedback (and encouragement) mentioned above. Stat Lady finally gives
Tonya the answer and tells her to go back and enter it, and then Tonya is advanced to the "Computation of theSum" exercise.

While both students eventually proceed through the identification of "N" as the denominator of the
formula, determination of the actual sample size, and the computation of the MEAN of the obtained test scores, an
examination of their performance histories reveals two very different stories. Nancy is successful time and again,
and even computes the MEAN correctly on her first attempt. Stat Lady congratulates her and she moves on to solve
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colorful problem sets, applying the formula she's just created. In contrast, Tonya has a rough time of it. She
never seems to catch on and has to be given the answer to everything except the actual sample size (N), a concept
she remembered from the "Data Organization and Plotting" module.

Even a quick illustration such as this makes the inherent problem apparent. Although it seems safe to
assume that Nancy has a firm understanding of the MEAN (symbolic knowledge and procedural skill), the same
can't be said for poor Tonya. It's possible that, at some point during, or after, the presentation of the full formula,
all of the puzzle pieces coalesce for Tonya and she actually acquires the desired knowledge and skill, but there's
no firm proof that this ever happened. Ideally, all students would walk away from a tutor having demonstrated the
knowledge level that Nancy evidenced. How can Stat Lady be modified to yield more guarantees of successful
knowledge and skill acquisition?

Intelligent Version of Stat Lady

The first step in rendering Stat Lady intelligent was to perform an extensive cognitive task analysis of the
curriculum, employing two subject-matter experts for reliability. This yielded more than 250 curricular elements
that were classified into: symbolic knowledge, procedural skills, and conceptual knowledge. Next, these elements
were arranged in a hierarchy, relating higher-level knowledge and skills to one another and to successively lower-
level knowledge and skills. In the example above concerning the acquisition of symbolic knowledge of the MEAN,
correctly specifying the formula presumes familiarity with (if not complete comprehension of) four lower-level
SK curricular elements: the summation notation (E), variable values (X), total sample size (N), and the way in
which these components are combined (EX/N). A more conceptual understanding of this concept requires
comprehension of frequency distributions, learned earlier, as well as realizing that the MEAN represents one of
three measures of central tendency, all related to one another. Moving -up the hierarchy, the MEAN also relates to
issues of variability, where computing or understanding standard deviation is dependent on successful acquisition
of the MEAN (SK, PS, and CK). Unfortunately, the size limitations of this paper make it impossible to depict the
entire network.

The intelligent version of Star Lady (ISL) includes a student model. Actually, there are three student
models, one each for SK, PS, and CK, but I'll just refer to them collectivelyas "student model" because they apply
the same basic updating heuristics. The student model is represented by a directed graph with values associated
with each node/element showing the mastery level of each student. The edges of the graph represent prerequisite
knowledge and skills. This is called an "inheritance hierarchy" where different elements are shown along with
their "children" or component parts.

Initial values for the model are obtained from students' performance on a comprehensive pretest designed
to assess incoming knowledge of all curriculum elements resulting from the cognitive task analysis. Based on the
assessment of pretest performance, subjects are then placed into the appropriate part of the curriculum
(macroadaptation). For instance, if a learner correctly answered all items relating to frequency distributions,
proportions, percentages, MEAN, MEDIAN, and MODE, those items would all receive a "1" in the preliminary student
model. If he or she failed all items relating to variance, standard deviation, skewness, and kurtosis, those values
would retain their initialized values of "0" and that individual would start the tutor at the section of the curriculum
containing the lowest level of curricular element containing a value of "0."

Fuzzy student modeling variables may be associated with each curricular element. Values assigned to
these variables range from 0 to 1 representing knowledge states, from "most likely unknown" to "most likely
known" (see Derry & Hawkes, 1993; Lesgold, Eggan, Katz, & Rao, 1992). The preliminary student model,
instantiated with binary (0/1) data from the pretest performance, is then continuously updated during the course of
learning--at the conclusion of each problem solving endeavor. Updating (i.e., upgrading and downgrading values)
occurs first at the lowest levels (e.g., individual components), then is propagated up the hierarchy. A student is
moved on to the next appropriate unit of instruction upon exceeding a student-model value of .89, the mastery
criterion for each curricular element.

Following placement in the curriculum from pretest assessment, Stat Lady introduces the current topic,
and students proceed to solve related problems. The student can correctly solve the problem on his/her first try, or
incorrectly solve it. As described above, SL has three levels of feedback for incorrect responses, thus a person can
receive 0, 1, 2, or 3 hints for a given problem. The probability of successful acquisition of that problem is simply
defined as: [1 - (misses/3)J * Pretest constant (see Figure 2). The Pretest constant is: if correct, multiply by .91; if
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incorrect, multiply by .89. Learners therefore won't be advanced if they are not quite successful (< .9). These twodifferential weights (.91, .89) are used because, if a learner correctly solves an item on the pretest and is alsocorrect on her firsi attempt during problem solution, the evidence suggests that she knows the item and can beadvanced given the above-threshold value ([1 - 0/3)] * .91 =,9.1). This is slightly higher than the case where a
person misses a particular item on the pretest, but solves the problem correctly without any hints ([1 - 0/3)] * .89 =29.) during the tutor. In the latter case, the learner does not advance to the next unit of instruction because it'seasier to solve a problem following some instruction compared to initially coming up with an answer on one's
own, as required in the pretest. Beginning values for the eight different conditions are shown below.

1

Problem Performance
Numbed* et Muses (Numbed' d Hints)

1 2 3

.91 .61 .30 0

.89 .59 .30 0
Figure 2: Student Model of One Curricular Element Following a Problem-Solving Episode

For values less than .9, the system presents a fresh problem, and, depending on the learner's performance,
the new value is combined with the old to yield a composite success score. To illustrate, suppose Nancy failed allpretest items relating to curriculum element X. When placed in the curriculum to learn about X, she required one
hint before successfully solving the problem. Her initial 'student model value would be: ,5_9. (i.e., (1 - 1/3) * .89).Another problem is presented, and this time she gets it correct without any assistance, so her new score is 1 (1 -0/3 = 1) (Note: the pretest function only enters into the equation with the first problem solving episode). The
combined success score at this point updates to: (1 + 39)12 = .8. While close, this value is still slightly below
criterion performance. Thus a third problem is presented, and Nancy completes the problem effortlessly (with nohints). The combined score now reaches threshold (.8 + 1)/2 = .9, and Nancy begins the next topic. In contrast, alearner beginning with a value of 0 would require a minimum of 4 fresh problems before advancement, providinghe or she was successful on each of those (i.e., start at 0, then update to .5, .75, .88, .94). Slower students maytake even more problems, carefully tailored to fit the specifically-diagnosed deficits or misconceptions.

These values are also propagated up the inheritance hierarchy to provide preliminary estimates forcomplex curricular elements that contain element X as a component knowledge or skill. As mentioned, the
STANDARD DEVIATION requires an understanding of the mEAN in addition to an understanding about distributions,deviations from the MEAN, sum of squares, and so forth. The current student-model value for wiEAN, then,becomes part of the preliminary value for the standard deviation, along with other information, such as pretestperformance data, complexity of the curricular element, and additional information concerning the learner'saptitude (the last two have not yet been implemented). A curricular element's difficulty or complexity may bebased on indicators such as the number of required elements and operators, expert ratings of difficulty, and
empirically-determined indices of element difficulty. The learner's aptitude may be assessed via the CAMbattery, mentioned earlier.

The student model is visible to the student in the form of an on-line Report Card, presented as a bar graphshowing the level of mastery the system believes the student has achieved (i.e., S/LSK, S/Lps, S/LcK). The ReportCard represents concepts and skills at a global level (e.g., SK of the MEAN, PS in computing the MEAN), then isfurther decomposable into individual elements (e.g., success on /, N, X, IX/N). Additional records aremaintained on students' usage of the elective tools, referred to earlier (e.g., number of times they accessed the on-line Dictionary). This information is inspectable as well, and eventually will work its way into the formal studentmodel. That is, a person who supplements his/her tutorial instruction by engaging in self-initiated reading of the
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hypertext Dictionary, for instance, is probably more successful in knowledge and skill acquisition (compared to
passive learners) given their active, motivated learning behaviors.

Discussion

There is a large cost associated with incorporating a student model into a tutoring system. This raises
two important questions: (1) How much, and what kind of, information about a learner is required to adequately
diagnose knowledge and skill acquisition and subsequently tailor instruction to the learner's needs? (2) What is
the payoff of increasing a system's adaptability? Sleeman (1987) has argued that "... if one takes seriously the
findings of the ATI work of Cronbach and Snow (1977), it would appear that there is little likelihood of producing
instruction that is uniquely individualhvd" (p. 242). The key word in this statement is "uniquely." An exhaustive
characterization of a learner would plobably not warrant the effort and expense in terms of increases in final
outcome. But the empirical question rvmains: How much is enough? In other words, does inclusion of a student
model in a tutor enhance overall learning outcome or efficiency? There is equivocal evidence in the literature
concerning these issues. In some cases, researchers have reported no advantage of error remediation in relation to
learning outcome (e.g., Bunderson & Olsen, 1983; Sleeman, Kelly, Martinak, Ward & Moore, 1989), whereas in
others, some advantage has been reported for more personalized remediation (e.g., Anderson, 1993; Shute, I993a,
1993b; Swan, 1983).

Another question asks whether the student model is even the right framework around which to build good
learning systems. Derry and Lajoie (1993) presented several reasons why the student modeling paradigm is
problematic. Among the morm compelling reasons cited were that: (a) In complex domains, the student model can
not specify all possible soluticn paths, nor determine all possible "buggy" behaviors, (b) Reflection and diagnosis
should be performed by the student, not the tutor, and (c) Model-tracing is only applicable to procedural learning,
but the focus should be on crit cal thinking and problem solving. The approach to student modeling taken in this
paper does not attempt to delineate all possible solution paths or buggy behaviors. Rather, the information about
curriculum elements, derived from the cognitive task analysis and arranged in an inheritance hierarchy, provides a
basis for inferences about what knowledge and skills have been acquired and to what degree. Furthermore, this
approach models not only procedural skill acquisition, but also symbolic and conceptual knowledge acquisition.

Another contribution of this approach is the inclusion of aptitude in the equation as a predictor of
subsequent learning. That is, ATI research provides information about initial states of learners that can be applied
in macroadaptive instruction (e.g., selection of Jeremy's graphics emphasis in the opening scenario, or location in
the curriculum that a learner shoule be placed to maximize instructional efficiency). Subsequently, microadaptive
instruction can be used as a response to particular actions (e.g., selection of the next small unit of instruction to be
presented based on a specific respolse history). Initial states may be characterized by an aptitude profile, then
microadaptive instructional systems can focus on strengths, circumvent weaknesses, or highlight deficits to be
remediated.

The two versions of Stat Lady, described herein, provide the basis for an experiment testing the degree to
which inclusion of a student model may (a) enhance learning outcome measures, and/or (b) improve learning
efficiency. Approximately 400 subjects will be run in an upcoming experiment (August, 1994) testing the
efficacy of this student modeling approach. Subjects will be randomly assigned to one of the two versions of Stat
Lady (intelligent vs. non-intelliget,t). An on-line pretest will be administered, students will proceed through their
respective tutors, and then a posttea will be given. We will be looking at pretest to posttest changes in scores,
learning rates (the systems are both self-paced), as well as any aptitude by treatment interactions. Finally, this
study will provide the basis for a cost-benefit analysis and some preliminary answers to burning questions about
the worth of student modeling.
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