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ABSTRACT

Multiple comparison procedures for controlling familywise Type I error and the false discovery

rate are described and compared, including tho traditional Bonferroni correction, a sequential

(step-up) Bonferroni procedure (Hochberg. 1988), and a sequential false discovery rate

procedure proposed by Benjamini and Hochberg (1995). Motivation for formally considering

the false discovery rate is discussed. A simulation study demonstrates that the Benjamini and

Hochberg (BH) technique results in greater power than either of the Bonferroni procedures,

and the power advantage increases with the number of inferences in the family. Another

important advantage of the BH procedure is its relative consistency about the statistical

significance of comparisons over alternative family sizes. It is concluded that, in situations

where there is a great number of hypotheses to be tested and strong control of familywise error

is unnecessary, it is reasonable to apply the BH technique as a statistical approach to error

control.
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Some Advantages of Controlling for False Discoveries in Multiple Comparisons

For any study, it is necessary to use statistical procedures to maintain some kind of

error rate when testing a statistical hypothesis. By convention, the Type I error rate for the

test of a single hypothesis, such as Ho: j1 - = 0, is usually set to a = .05; that is, there is a

5% probability that a hypOthesis will be rejected when, in fact, it is true.

It is very uncommon for an educational researcher to conduct a survey or design an

experiment to measure only one variable and test only one hypothesis in order to answer a

single question. Multiplicity, and the need for multiple comparison procedures, arises in the

more common situation where more than one statistical hypothesis is evaluated. Unless some

correction is incorporaied, the simultaneous or familywise Type I error rate the probability

of one or more false rejections in a given set or family of hypotheses will exceed the

nominal a (which actually applies to any single test considered alone).

Definitions
Let pc61 be the critical p-value associated with the null sampling distribution of the test

statif:tic for any hypothesis test. Let m be the number of comparisons and i = 1, ..., m be the

rank of the observed p-value, p, ordered from smallest to largest, so that they are weakly

increasing from i 1 to i = m.

(1) The unadjusted test or per comparison approach: Declare any comparison

statistically significant if

Pu) 5- Pcrit = PUN = an
(2) The traditional Bonferroni correction is a simple and trustworthy statistical

procedure for assuring simultaneously that the probability of at least one Type

I error is no greater than a. Declare any comparison statistically significant if

P(i) 5- Pcrit = PB1 = al2n1

Two sequential approaches are defined as follows:

(3) The step-up Bonferroni procedure (Hochberg, 1988): Declare the

comparison statistically significant when, beginning with i = m and continuing

toward i = 1,

Po) s Pcnt = P132(1) = W2(mi+l)
then stop and declare significance for all comparisons for which j

(4) The Benjamini and Hochberg (1995) procedure (BH) controls the false

discovery rate or the average proportion of declared significances which are

erroneous: Declare the comparison statistically significant when, beginning

with i = m and continuing toward i = 1,

pm! = P1311(i) = icd2m
then stop and declare significance for all comparisons fot which./
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Both the step-up Bonferroni and the BH procedure are sequential multiple comparison

techniques which provide greater statistical power than the simple Bonferroni correction while

still attempting to control the overall error rates. The BH procedure controls familywise error

in the weak sense, that is, Type I error is bounded by a only in the complete null case, when

all null hypotheses are true. The step-up Bonferroni adjustment controls familywise error in

the strong sense, that is, Type I error is bounded by a under all configurations of hypotheses;

however, it is known to be conservative and lacking in statistical power, especially in the case

of very large family sizes. Both techniques provide "strong" control of the false discovery

rate.

An Illustration from the NAEP TSA

Summary data from the National Assessment of Educational Progress (NAEP) Trial

State Assessment (TSA) are used to illustrate the multiple comparison procedures. The data

are average eighth-grade mathematics scores for the 34 states which participated in both the

1990 and 1992 NAEP TSA (Johnson. Mazzeo, & Kline, 1993). Table 1 contains the computed

differences between 1990 and 1992 mathematics achievement means and the computed pooled

standard errors. The table also includes the decision about statistical significance, indicated by

an "*" in each column, for each state's change under the four multiplicity treatments (a = .05).

The unadjusted per comparison approach (peN) finds 15 differences to be statistically

significant, whereas the BH procedure (pm) finds 11. An ordinary Bonferroni adjustment for

control of Type I error, as used by NAEP, results in a critical p-value of pm = .000735 the

simple Bonferroni correction (pBI) indicates only four significant differences, as does the step-

up Bonferroni (p82) correction.

Insert Table 1 about here.

Mean (and standard error) eighth-grade mathematics achievement change by state, 1990 to

1992, t, p-value, and PM- values for four multiple comparison adjustment. m = 34 (df = 60t).

As a further example, all pairwise mean differences between the states 1992 eighth-

grade mathematics achievement scores were also compared. There were 41 states which

participated in the 1992 assessment, resulting in a family size of m = 41x40/2 = 820. Table 2

summarizes the number of statistically significant differences among the means. By the

Bonferroni adjustment (using a critical p-value of pB, = .0000304), there are 480 significant

differences between pairs of states; the step-up Bonferroni admits 13 more rejections, and the

use of the BH procedure results in an additional 159 declarations of significance. The

unadjusted analysis increases the number of statistically significant differences beyond the BH

technique by only 6.
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Insert Table 2 about here.

Number of statistically significant differences between all pairs of states, m = 820 (df 60).

Three Advantages of Controlling for False Discoveries
There axe three primary advantages of applying a technique, such as the BH procedure,

for the control of the rate of false discoveries in multiple hypothesis testing:

formal consideration of an alternative error rate,

increased statistical power, and

consistency of findings over differing family sizes.

Each of these will be considered in turn.

Formal Consideration of an Alternative Error Rate
The traditional emphasis on control of the Type I error rate and familywise error

neglects the practical importance of failure to detect true differences, i.e., committing a Type H

error. Although familywise Type I error rate is very easily controlled by simply manipulating

the value of a, Hays (1988) recommends that "in some situations, perhaps, we should be far

more attentive to Type II errors, and less attentive to setting a at one of the conventional

levels" (p. 263). Many others call for placing a higher priority on ability to detect real

differences (cf. Carmer & Swanson, 1973; Soric, 1989).
As Tamhane (1995) points out, familywise control of Type I error is essential in

studies "where the correctness of an overall decision depends on the simultaneous correctness

of all individual inferences" (p. 3); however, there are situations where "one erroneous

comparison will generally not jeopardize the conclusion" (Benjamini, Hochberg, & Kling,

1995, p. 6). Moreover, in some circumstances where a set of statistics are evaluated, an

overall decision may even be unnecessary and, instead, many separate decisions and

recommendations are involved in such cases, it may be more worthwhile to be assured of

the rate of false discovery rather than the probability that all inferences are correct.

Shaffer (1994), too, notes that false discovery rate control may be an attractive

alternative to strict control of the familywise Type I error rate; for example, when examining

all possible differences among pairs, researchers may be willing to admit a certain small

proportion of errors in order to discover as many significant differences as possible.

Statistical Power: A Simulation Study
To investigate the statistical power of the adjustment techniques, a simulation study

was performed, and structured to be similar to the data from the NAEP TM. For each of 48

states, mean "achievement levels," 1.1 were defined to be the approximate median values of

each of 48 ordered random observations from a normal (O,ai) distribution (for which s' = .98).

Five conditions of effect size were studied by setting the value of a,. For the near-null

condition of negligible differences among the p the value of (IA was set to 0.001; four non-



null conditions were considered, with increasing values of GA: {0.3, 1.0, 3.0, and 5.01. In each

case, for each of 10,000 replicates, an observed mean for each state, 5(i, was generated by

adding a number randomly selected from a normal (0,1) distribution to the corresponding

In the first of two families studied, each -X, was compared to a "national mean," treated

here as a known constant, M. This results in m 48 independent comparisons about which

we wish to determine the significance of M. The second family was comprised of all

pairwise comparisons where each R, was compared with each 5ci, resulting in m = 1128

comparisons about which we wish to determine the significance of pi pi. (See Williams,

Jones, and Tukey (1994) for a more detailed description.)

Figure 1 presents plots of the statistical power against effect size for the BH and the

two Bonferroni adjustment techniques, B1 and B2, a = .05. Power is'defined as what

Hochberg and Tamhane (1987) refer to as all-pairs power, the probability of claiming

significance for all true differences among all pairs; it is calculated as the average proportion

of rejections claimed over the 10,000 replications.

Insert Figure 1 about here.

Average statistical power for the BH and Bonferroni (B1 and B2) techniques,

48 independent comparisons (above) and 1128 pairwise differences among the 48 (below).

Under all effect-size conditions, for the independent and pairwise comparisons

families, the BH technique results in greater power than that for either the conventional

Bonferroni or the step-up Bonferroni procedures. The relative advantage in power for the BH

technique is greatest for the large pairwise family and for large effect sizes. These results are

consistent with the simulation findings reported by Benjamini and Hochberg (1995) and

Benjamini, Hochberg, and Kling (1994).

Two more sets of data were simulated to examine the effects of partial dependence and

family size on statistical power. In one condition, each of 1128 values of R, was compared to

M, the "national mean," yielding a family of independent comparisons of the same size as the

family of pairwise differences above. In the second condition, 10 state mean values were

compared among themselves as differences among all possible pairs (m = 10x9/2 45),

resulting in a family size similar to that for the 48 independent comparisons above. The same

five conditions of effect size were studied, with a = .05.

Figure 2 presents further plots of statistical power against effect size for the adjustment

techniques. The BH technique results in greater power than the other procedures under all

effect-size conditions, for both the 1128 independent comparisons (upper plot) and the pairwise
comparisons among 10 (lower plot). The relative advantage in power for the BH technique is

greatest for the large effect sizes. Comparing the results in Figure 2 with those presented in
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Figure 1, it is clear that the BH advantage in power is associated with the large family size

and is little affected by the dependence or the independence of the contrasts tested.

Insert Figure 2 about here.

Average statistical power for the BH and Bonferroni (B1 and B2) techniques,

1128 independent comparisons (above) and 45 pairwise differences among 10 (below).

Consistency of Findings over Differing Family Sizes
Saville (1990) makes a strong case for eschewing altogether multiple comparison

procedures on the grounds that they frequently lead to inconsistent decisions regarding

statistical significance. Multiple comparison procedures are inconsistent when the significance

of a given contrast value with a given standard error can vary from "not significant" to "highly

significant," depending simply on family size. Family size, or m, is defined as the number of

inferences under consideration; however, there are often legitimate ambiguities about what

constitutes the family of interest for a particular set of data. In large-scale comparative

education studies, such as NAEP, the determination of family size is critical to the

implementation of a multiple comparison procedure.

Using a real data example from NAEP, Williams, Jones, and Tukey (1994)

demonstrated that the BH procedure was a relatively consistent multiplicity adjustment across

several different plausible definitions of family. The conventional Bonferroni correction was

the least consistent and the most conservative, and the step-up Bonferroni procedure performed

very similarly. In this particular example, the BH procedure with the most conservative

definition of family admitted more statistically significant differences than the conventional

Bonferroni applied to the smaller, more lenient, family sizes.

The general lack of invariance of the various multiple comparison techniques is also

suggested in Table 2, where family size is defined as m = 820, all possible pairwise

comparisons among 41 states. The unadjusted result of 658 statistical sicznificances will

always be consistent (logically, when no adjustment is made, there are no inconsistencies

because each comparison essentially consists of a unique family of size m = 1, and p, = .05

is applied throughout, regardless of the total number of simultaneous inferences). For the

simple Bonferroni and the step-up Bonferroni techniques, there are 480 and 493 significant

differences, respectively. The BH procedure is comparable to the unadjusted per comparison

method as it allows 652 rejections. If family size were redefined to consider, say, 41 separate

families of 40 comparisons (each state compared with each other state), there would again be

658 statistical significances from the unadjusted approach, and somewhat more (up to a

maximum of 658) for each of the other adjustment procedures because of the increase in pc,

associated with smaller m.
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Conclusions
Although the BH and step-up Bonferroni techniques are both sequential in nature, they

are easily implemented (see the Appendix for SAS code).

. A desirable feature for a multiple comparison procedure is that it provide decisions

about significance that f-re relatively invariant over alternative choices of family size. The BH

technique behaves more consistent] ./ than the more conservative Bonferroni techniques so that

discrepancies in the reporting of different statistical.results to different audiences with different

interests are, to some extent, minimized.
The BH procedure demonstrates an important gain in power over the simple

Bonferroni and step-up Bonferroni adjustments. As indicated from the results shown both here

and in Benjamini and Hochberg's (1995) simulation studies, the power advantage of the BH

procedure increases with the number uf comparisons when the true differences remain about

the same size: The loss of power with increasing m for the BH technique is slower than the

corresponding loss of power for the Bonferroni adjustment. This may seem too good to be

true, but it is important to keep in mind that the error rate controlled here is different: The BH

procedure maintains a 5% error rate such that only 1 out of 20 declarations c.,f significance are

erroneous; the conservatism of the Bonferroni procedures is due to the small pcn, required for

strong protection against Type I error.
The traditional emphasis on control of the Type I error rate and familywise error

neglects the importance of failing to detect true differences, the Type II error. Recalling that

power is the complement of the Type II error rate power = 1 [3, where is the Type II

error rate it is apparent that in the basic configurations presented in the simulation study the

BH procedure results in far fewer Type II errors than do either of the Bonferroni techniques.

The error control of the BH multiple comparison procedure can be characterized as providing

strong control of the false discovery rate and weak. control of the familywise Type I error rate

as the configuration of the set of hypotheses moves away from the general null case, the

control of familywise error (and the false discovery rate) gives way to control of the false

discovery rate. The BH procedure is an approach worth considering whenever it is acceptable

to entertain the particular redefinition of a that the BH procedure invokes.
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Table 1

Mean (and standard error) eighth-grade mathematics achievement change by state, 1990 to 1992,

t, p-value, and pericvalues for four multiple comparison adjustments, tn = 34 (df taken as 60t).

State 5C92-5Z90 (se) t (p-value) PUN PBH(i) PLOW

GA -0.323 (1.77571) -0.18190 (.42814) .025 .025000 .025000 .000735
AR -0.777 (1.48529) -0.52313 (.30141) .025 .024265 .012500 .000735
AL -1.568 (2.01745) -0.77722 (.22004) .025 .023529 .008333 .000735
NJ 1.565 (1.92728) 0.81203 (.20999) .025 .022794 .006250 .000735
NE 1.334 (1.52772) 0.87320 (.19320) .025 .022059 .005000 .000735
ND 1.526 (1.68552) 0.90536 (.18445) .025 .021324 .004167 .000735
DE 1.374 (1.34651) 1.02042 (.15581) .025 .020588 .003571 .000735
MI 2.215 (1.84727) 1.19906 (.11761) .025 .019853 .003125 .000735
LA 2.637 (2.07943) 1.26814 (.10482) .025 .019118 002778 .000735
IN 2.149 (1.63556) 1.31392 (.09694) .025 .018382 .002500 .000735
WI 2.801 (1.96269) 1.42713 (.07936) .025 .017647 .002273 .000735
VA 2.859 (1.92992) 1.48141 (.07187) .025 .016912 .002083 .000735
WV 2.331 (1.39639) 1.66930 (.05013) .025 .016176 .001923 .000735
MD 3.399 (1.92320) 1.76737 (.04113) .025 .015441 .001786 .000735
CA 3.777 (2.11460) 1.78615 (.03956) .025 .014706 .001667 .000735
OH 3.466 (1.85022) 1.87329 (.03295) .025 .013971 .001563 .000735
NY 4.893 (2.53195) 1.93250 (.02901) .025 .013235 .001471 .000735

PA 4.303 (2.20545) 1.95108 (.02786) .025 .012500 .001389 .000735
FL 3.784 (1.93266) 1.95792 (.02745) .025 .011765 .001316 .000735

WY 2.226 (1.09641) 2.03026 (.02339) .025 * .011029 .001250 .000735
NM 2.334 (1.14816) 2.03282 (.02325) .025 * .010294 .001190 .000735
CT 3.204 (1.53443) 2.08807 (.02052) .025 * .009559 .001136 .000735
OK 4.181 (1.75467) 2.38278 (.01018) .025 * .008824 .001087 .000735
KY 4.327 (1.61804) 2.67422 (.00482) .025 * .008088 * .001042 .000735

AZ 4.994 (1.85110) 2.69785 (.00452) .025 * .007353 * .001000 .000735
ID 2.956 (1.06775) 2.76845 (.00374) .025 * .006618 * .000962 .000735
TX 5.645 (1.88770) 2.99041 (.00202) .025 * .005882 * .000926 .000735
CO 4.326 (1.38868) 3.11519 (.00141) .025 * .005147 * .000893 .000735
IA 4.811 (1.48805) 3.23309 (.00100) .025 * .004412 * .000862 .000735
NH 4.422 (1.35399) 3.26591 (.00090) .025 * .003676 * .000833 .000735
NC 7.265 (1.58701) 4.57779 (.00001) .025 * .002941 * .000806 * .000735 *
HI 5.550 (1.17134) 4.73817 (.00001) .025 * .002206 * .000781 * .000735 *
MN 6.421 (1:35226) 4.74836 (.00001) .025 * .001471 * .000758 * .000735 *
RI 5.097 (0.94844) 5.37407 (.00000) .025 * .000735 * .000735 * .000735 *

tnt 2.00 2.47 3.30 3.33

* Confident direction of change.

t Note: The number of students sampled within states is generally close to 2000; however, because of the clustered
naturc of the sample design and the use of plausible values in NAEP, the effective sample size per state is estimated to
be about 30, so that the degrees of freedom for a pairwise mean comparison is about 60.



Table 2.
Number of statistically significant differences between all pairs of states, ni = 820 (df = 60).

Procedure Number

Unadjusted 658

BH 652

Step-up Bonferroni 493

Bonferroni 480

10
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Average statistical power for the Beniamini and Hochberg procedure, and the simple and step-
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Appendix

SAS Code for Implementing

the Step-Up Bonferroni and the BH Multiple Comparison Procedures

*************************************************A*****************
Computes t-statistics evaluating the state change compared to the
average change for NAEP TSA, 1990-1992 (m = 34) t, df = 60.

Compares unadjusted p-values with Bonferroni adjusted significance,
Hochberg's (1988), and Benjamini & Hochberg's (1995) techniques.

******************************************************************;

data tsa;
t = (natdiff-meandiff)/pooled;
p_value = 1-(probt(abs(t),60));
if p_value le (.05/2) then un = '*'; else un = '

if p_value le (.05/68) then bl = '*'; else bl =
cards;
...;
proc sort data = tsa out = psortl; by p_value;

data compute; set psortl;
= _n_;

p_bh = (i/34)*.025;
p_b2 = (1/(34+1-i))*.025;
proc sort data = compute out = psort2; by descending p_value;

data do_bh; set psort2;
retain value 0;
if value then goto seq;
if p_value le p_bh then value = 1;

else do;
value = 0;
bh =
return;

end;
seq: bh =
drop value;

proc sort; by state;

data do_b2; set psort2;
retain value 0;
if value then goto seq;
if p_value le p_b2 then value = 1;

else do;
value = 0;
b2 = ";
return;

end;
seq: b2 =
drop value;

proc sort; by state;

data print; merge do_bh do_b2; by state;
proc sort; by p_value;
proc print; var state meandiff pooled t p_value

un bl p_bh bh p_b2 b2;
run;
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