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A bstract

Methods for the analysis of within-subjects effects in multivariate groups by trials repeated

measures designs are considered in the presence of heteroscedasticity of the group variance-

covariance matrices and multivariate nonnormality. Under a doubly multivariate model

approach to hypothesis testing, within-subjects main and interaction effect procedures are

largely robust to the effects of heteroscedasticity when group sizes are equal, even when the

data are nonnormal. However, these tests are highly sensitive to the effects of covariance

heterogeneity when the design is unbalanced. An approximate degrees of freedom

multivariate statistic given by Johansen (1980) is shown to be largely robust to the combined

effects of these assumption violations for unbalanced designs, provided that the smallest of

the group sizes is sufficiently larger than the product of the number of dependent variables

times the number of repeated measurements minus one.



Multivariate Repeated Measures Designs
2

Analyzing Multivariate Repeated Measures Designs When

Covariance Matrices are Heterogeneous

In many experimental situations encountered by educational and psychological

researchers, individual response data are repeatedly collected on multiple dependent variables

over several experimental conditions. In the simplest of these multivariate repeated measures

designs containing a single between-subjects grouping factor, ni study participants in each of

J independent groups (En3 = N) are measured on each of L dependent variables over K

occasions or trials.

Multivariate repeated mewures data may be analyzed from either a multivariate mixed

model (MMM) or doubly multivariate model (DMM) perspective; each approach rests on its

own set of derivational assumptions. Specifically, the former assumes that the multivariate

multisample sphericity assumption is satisfied (Boik, 1988, 1991; Thomas, 1983), and that

the observations are independently distributed as multivariate normal variables. For

multivariate multisample sphericity to exist, a set of orthonormalized contrast variables on

the repeated measurements must exhibit a constant variance across the dependent variables

and the covariance matrices of these orthonormalized variables are assumed to be

homogeneous across the levels of the between-subjects grouping factor. Under a doubly

multivariate approach, no restrictions are placed on the structure of the common covariance

matrix, that is, the data need not be multivariate spherical. However, the assumptions of

homogeneity of the group covariance matrices, multivariate normality, and independence of

observations must be satisfied.

4
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Tests of within-subjects effects are known to be sensitive to departures from the

multivariate sphericity assumption under a MMM analysis (Robey & Barcikowski, 1986).

However, Boik (1991) has shown that when the data are not multivariate spherical, an

adjusted degrees of freedom (df) MMM test can control the Type I error rate for both

multivariate within-subjects main and interaction effect tests in repeated measures designs

containing a grouping factor (i.e., groups by trials designs). At the same time, Boik observed

very few instances in which an adjusted-df MMM analysis was preferable to a DMM

analysis, and found that the DMM analysis was almost always more powerful. Furthermore,

a DMM procedure can be used in almost all data-analytic situations, the exception being

when sample sizes are extremely small.

However, Boik (1991) did not investigate the effects of heteroscedasticity of the group

covariance matrices on the Type I error control offered by various multivariate criteria in a

DMM analysis. Keselman and Keselman (1990) have shown that in repeated measures

designs containing a single dependent variable, multivariate tests of within-subjects main and

interaction effects can not provide Type I error control when covariance matrices are

heterogeneous and group sizes are unequal. Consequently, tests of within-subjects effects in

multivariate repeated measures designs are also likely to be sensitive to violations of this

assumption, particularly when the design is unbalanced, an observation made by Thomas

(1983).

Keselman, Carriere, and Lix (1993) identified that an approximate df multivariate

Welch-James (James, 1951, 1954; Welch, 1938, 1951) statistic given by Johansen (1980) is

robust to the effects of covariance heterogeneity in repeated measuicz designs containing a
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single dependent variable, even when the data are skewed, provided that sample size is

sufficiently large. Keselman et al. observed that the critical factor in determining the

robustness of this statistic to the effects of covariance heteroscedasticity and nonnormality in

unbalanced designs is the ratio of the smallest group size (i.e., nmin) to (K -1). The authors

suggest that this ratio should be at least 3 or 4 to 1 for Johansen's procedure to provide

effective Type I error control when the data are normally distributed and slightly higher (i.e.,

5 to 1) for skewed data.

Tang and Algina (1993) evaluated the performance of a number of procedures which

do not depend on the assumption of homogeneity of group covariance matrices in the context

of a multivariate independent groups design with more than two groups. The authors

considered Johansen's (1980) statistic in addition to multivariate analogs of James' (1951,

1954) first and second order procedures. Johansen's (1980) statistic provided better Type I

error control than the other procedures under most situations, but only when the ratio of total

sample size (i.e., N) to the number of dependent variables (i.e., L) was at least 15 to 1 when

the data were normally distributed. However, the authors did not consider the effects of

multivariate nonnormality on the operating characteristics of the approximate df solutions.

A lgina, Oshima, and Tang (1991) did investigate the effects of both variance-

covariance heteroscedasticity and nonnOrmality on James' (1951, 1954) and Johansen's

(1980) procedures in a multivariate independent groups design, but only for the two-group

situation. They found that for symmetric nonnormal distributions, all procedures were able to

maintain the Type I error rate close to cc. However, for asymmetric distributions, the rate of
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Type I errors could become seriously inflated when the data were heteroscedastic and the

ratio of N to L was small.

In light of the findings of previous research, the purpose of the present study was

two-fold: (1) to examine the operating characteristics of DMM test procedures under

departures from the assumptions of homogeneity of the group covariance matrices and

multivariate normality and (2) to determine whether the approximate df statistic pro-ided by

Johansen (1980) can offer robust tests of within-subjects main and interaction effects in

unbalanced multivariate repeated measures designs.

Definition of Test Stat6tics

The test procedures considered in this investigation of multivariate groups by trials

designs were Hotel ling's (1931) one-sample T2 statistic for tests of within-subjects main

effects, Hotel ling's two-sample statistic for tests of within-subjects interactions in two-group

designs, and the Hotelling-Lawley (Hotel ling, 1951; Law ley, 1938) trace, Pillai-Bartlett

(Bartlett, 1939; Pillai, 1955) trace, and Wilks' (1932) likelihood ratio for tests of interactions

in multi-group designs. Roy's (1957) largest root criterion was not considered in this paper

since the F approximation to this statistic is not highly accurate (Muller, LaVange, Ramey,

& Ramey, 1992). The DMM procedures were compared to the approximate df procedure

described by Johansen (1980).

All of these procedures for testing within-subjects effects in groups by trials designs

may be described within the context of the general linear model (GLM; See Timm, 1980).
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Y ---Xfii-E, (1)

where Y is an N x p matrix of scores, p = KL, K is the number of repeated measurements,

L is the number of dependent variables, N is the total sample size, X is an N x .1 design

matrix with rank(X) = J, # is an J x p matrix of nonrandom parameters (i.e., population

means), and t is an N x p matrix of random error components. Each row of Y contains the

p-dimensional response vector associated with a particular study participant, where the first K

columns correspond to the repeated measurements obtained on the first dependent variable,

the next K columns correspond to the repeated measurements obtained for the second

dependent variable, and so on.

DMM Test Procedures

Under a DMM approach to hypothesis testing, it is assumed that the rows of E are

independently and identically distributed normal p-vector variates with mean vector 0 and

variance-covariance matrix Ep [i.e., i.i.d. N(0, Ep)]. To illustrate the DMM approach to the

analysis of within-subjects main and interaction effects in a groups by trials designs

containing a single between-subjects factor and a single within-subjects factor, let

0 -C#(111,0 U) , (2)

where C, of dimension r x J with rank(C) = r, is used to define a set of r contrasts on the

0
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between-subjects effect, 13 is as previously defined and is estimated by

= (X-x)-1 )(Ty (3)

where superscript T denotes the transpose operator, IL is an identity matrix of dimension L,

0 is the Kronecker product function, and U, of dimension K x q with rank(U) = q, is used

to define a set of contrasts on the within-subjects effect. Thus, 0 is of dimension r x t, where

t = Lq. The statistics that are used to test hypotheses concerning 0 (i.e., H: 0 = 0) can all

be expressed in terms of the matrices H and E, where

H = VICT(XTX)-1C]-18 ,

and

(4)

E (IL 0 U)TYT[IN X(XTX)-AT]Y(IL U) . (5)

In Equation 4, e estimates 0 and in Equation 5, IN is an identity matrix of dimension N.

The Hotelling-Lawley (Hotelling, 1951; Lawley, 1938) trace is defined as

HT = tr(HE') where tr denotes the trace operator, the Pillai-Bartlett (Bartlett, 1939, Pillai,

1955) trace is defined as PB = tr(HT-') where 'I' = H + E, and Wilks's (1938) likelihood

criterion is given by W = det(Er1) where det denotes the determinant of a matrix.

Each of these statistics may be defined in terms of an F variable. For example, for

the Pillai-Bartlett trace (Bartlett, 1939; Pillai, 1955), let il(pB) = PB/s, where s = min(r, t).
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Cl(F,B) (r t)
(6)

where p(pg) = s[M t + s] and M = N - J. The statistic, F"), approximately follows an F

distribution with 111 = rt and v(,B) df. Approximate F statistics for the other multivariate

criteria may be found in a number of sources, including Muller et al. (1992). When s = 1,

all of these statistics are equivalent to Hotel ling's (1931) T2 statistic.

Approximate DF Test Procedure

To define Johansen's (1980) statistic, denote Yj = Y (Xj1Tp) as a Hadamard product

(Searle, 1987, p. 49), where N is the jth column of X (j = 1 J) and consists entirely of

zeros and ones, lp is a p x 1 vector of ones, and is the dot product function, such that Yj

is an element-by-element product matrix. It is assumed that the observations in Yj are

independently distributed normal variates with mean vector f3j and variance-covariance matrix

Ej [i.e., i.d. N(j3, Ej)], where flj is the jth row of (3 and Ej Ej, (j j'). Let

n. 1

estimate Ej, where nj = XIXj, and 13j estimates i3j.

The general linear hypothesis for Johansen's (1980) solution is

H.: R = 0 ,

where R = C (Ii. U)T and C, IL, and U are as previously defined. Furthermore,

(7)

(8)
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= vec(01) = if3, .. 13,1T, where [3, = such that jz is 'he column vector with Jp

elements obtained by stacking the columns of fiT. The 0 column vector is of order rt.

The generalized test statistic given by Johansen (1980) is

Tw (RI) RT) - 1 (RA ) (9)

where estimates t, and = diag[t1/n1 t,/n1, a block matrix with diagonal elements

LA. This test statistic divided by a constant, c, approximately follows an F distribution with

Pi = rt, and v = 1,1(v1 + 2)/(3A), where c = Pi + 2A (6A)/(v1 + 2). The formula for the

statistic A is

1
2

A = {tr ItRT(RtRT)-1RQJI + ftr (iRT(RtRT)-1RQ )} 1/ in. 11 .

2 ,171

(10)

The matrix Q, is a symmetric block matrix of dimension Jp associated with N, such that the

(g,h)-th diagonal block of Q = Ip if g = h = j and is 0 otherwise.

In order to test the within-subjects main effect in a multivariate groups by trials

design, C = 11 and U = Uk, so that for Johansen's (1980) solution, R = 1j 0 (IL 0 Uk)T,

where 1, is aJx 1 vector of ones and Uk is a K x (K 1) matrix which defines a set of

(K 1) linearly independent contrasts for the within-subjects factor. To test the within-

subjects interaction, C = q and U = Uk, so that R = C, 0 (IL 0 Uk), where C, is a

(J 1) x J matrix which defines a set of (J 1) linearly independent contrasts for the

between-subjects factor.
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Methodology

A Monte Carlo simulation study was undertaken to empirically evaluate the Type I

error performance of the approximate df solution given by Johansen (1980) to that of DMM

procedures for testing within-subjects main and interaction effects. These tests were

investigated for a multivariate design containing a single between-subjects factor and a single

within-subjects factor.

Nine variables were manipulated in the simulation study. These were: (a) number of

levels of the between-subjects factor, (b) number of dependent variables, (c) total sample

size, (d) degree of group size equality/inequality, (e) ratio of the smallest group size (i.e.,

nmin) to t, where t L(K 1), (f) equality/inequality of the group variance-covariance

matrices, (g) nature of the pairing of group sizes and group covariance matrices, (h)

multivariate normality/nonnormality, and (i) degree of correlation among the dependent

variables.

The one constant in the study was the number of levels of the within-subjects factor,

which was set at four across all of the investigated conditions. As well, the multivariate

sphericity assumption was not violated, since none of the previously described test

procedures are dependent on this assumption.

Much of the previous research which has investigated methods for testing within-

subjects main and interaction effects in groups by trials designs has focussed on the situation

in which the number of levels of the between-subjects grouping factor is held constant (i.e.,

Keselman & Keselman, 1990; Keselman et al., 1993). In their meta-analysis of the repeated

measures robustness literature, Keselman, Lix, and Keselman (1994) recommended that
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researchers consider the effect of variation in this variable on Type I error performance when

the effects of violation of the assumption of covariance heteroscedasticity is under

investigation. Accordingly, in this study a groups by trials design containing either two or

three levels of the between-subjects factor was considered.

Keselman et al. (1993) found that a critical determinant of the performance of

Johansen's (1980) approximate df solution in univariate groups by trials designs was the ratio

nmini(K 1). While the value of K was held constant in this study, the value of L was set at

either two or four and consequently t = L(K - 1) assumed values of either six or 12.

The third variable in this study was total sample size. Based on the findings of Algina

et al. (1991) and Tang and Algina (1993), N was selected such that the ratio of N/t ranged

from five to 20. Thus, for t = 6, N = 30, 60, and 90 for J = 2 and N = 60, 120, and 180

for J = 3. For t = 12, N = 60, 90, and 120 for J = 2 and N = 120, 180, and 240 for

J = 3. Thus, for both values of J, small, medium, and large sample sizes were considered.

The operating characteristics of the various test procedures were investigated for both

balanced and unbalanced designs, given that DMM test procedures are likely to perform less

optimally when group sizes are unequal. Table 1 provides the J = 2 and J = 3 group sizes

that were investigated for each value of total sample size when the design was unbalanced.

Table 1 also provides the nmin/t ratios for each of these conditions, which ranged in value

from 2 to 5. For equal group sizes, this ratio equalled 2.5, 5.0 and 7.5 for J = 2, for the

small, medium, and large sample size conditions, respectively, while for J = 3, the

corresponding values were 3.33, 5.00, and 6.67. Finally, Table 1 contains the values

associated with a coefficient of variation of group size inequality, Atl , where

1 3
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\An.=

and ii is the average group size. This coefficient of variation has a value of zero when group

sizes are equal and increases in value as the group sizes become more disparate.

Insert Table 1 about here

The DMM and Johansen (1980) procedures were investigated when the group

variance-covariance matrices were equal and unequal. In the latter case, elements of the

matrices were in the ratio of 1:5 for J = 2 and 1:3:5 for J = 3. The degree and type of

covariance heterogeneity selected for J = 3 corresponds to that investigated by Keselman et

al. (1993) for a univariate groups by trials design. The ratio selected for J = 2 was chosen

for purposes of consistency in the relationship between the elements of the largest and

smallest group variance-covariance matrices.

Both positive and negative pairings of group sizes and covariance matrices were

investigated. A positive pairing refers to the case in which the largest nj is associated with

the covariance matrix containing the largest element values; a negative pairing refers to the

case in which the largest nr is associated with the covariance matrix with the smallest element

values. These pairings are known to produce liberal and conservative Type I error rates

respectively for tests of within-subjects main and interaction effects in univariate groups by

trials designs for mixed model test procedures (Keselman & Keselman, 1990).

14
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Error rates were obtained when the data were both normal and nonnormal in form.

With respect to the latter, the data were sampled from a )d. distribution, which is skewed to

the right, which was also investigated by Keselman et al. (1993).

Pseudorandom observation vectors Yi; = EY km? Yoz, -, (i = 1, ..., ni) from a

multivariate normal distribution with mean vector f and covariance matrix ; were obtained

using the SAS (SAS Institute, 1989) generator RANNOR. A row vector of p deviates in

which each element had a standard normal distribution (i.e., Zij), was transformed to a vector

of multivariate observations via a triangular (Cholesky) decomposition,

Yii =13i LZ;ri , (12)

where L is an upper triangular matrix of dimension p satisfying the equality L'L =

The RANNOR generator was also used in generating the )d data. Each element of the

p-vector Z1i was obtained by squaring and summing three standard normal deviates. These

chi-square deviates were then standardized; the multivariate observations were obtained via

the transformation of Equation 12.

This particular type of distribution was selected for two reasons. First, skewed

distributions are representative of educational and psychological research data (see Micceri,

1989). Second, this type of distribution has been reported to affect the Type I error rates of

statistics that are related to the approximate df solution of Johansen (1980). Specifically,

Sawilowsky and Blair (1992) investigated the effects of eight nonnormal distributions that

were identified by Micceri (1989) as representative of educational and psychological research

data on the robustness of Student's t test. Only distributions with the most extreme degree of
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skewness considered (e.g., -y, = 1.64) were found to affect the Type I error rates of the t

statistics. For the xi distribution, skewness and kurtosis are, respectively, 7, = 1.63 and

72 = 4.00.

The final variable investigated was the degree of correlation, p, among the dependent

variables at each level of the within-subjects factor. While Robey and Barcikowski (1986)

found that the value of p had little effect on error rates, this observation was made within the

context of testing within-subjects effects in designs containing only a single group of

subjects. Robey and Barcikowski set p = .2, .5, and .8; only the two extreme values, that

is, p = .2 and .8 were considered in this investigation.

The simulation program was written in the SAS/IML (SAS Institute, 1989)

programming language. Five thousand replications of each condition were performed using a

.05 significance level. For each replication, the various DMM statistics for testing hypotheses

concerning main and interaction effects were converted to F statistics and compared to an

appropriate critical value from an F distribution. Johansen's (1980) approximate df F statistic

was also computed.

Results

A quantitative measure of robustness suggested by Bradley (1978) was used to

evaluate the Type I error performance of the DMM and Johansen (1980) procedures.

According to Bradley's liberal criterion, in order for a test to be considered robust, its

empirical rate of Type 1 error (i.e., ese) must be contained in the interval .5a 1.5.

For the 5% level of significance used in this study, therefore, a test was declared robust for

a particular condition if its empirical rate of Type 1 error fell within the interval
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.025 & .075. Correspondingly, a test was considered to be nonrobust if, for a

particular condition, its Type I error rate was not contained in this interval. In the tables of

values reported in this section, the latter values are bolded. Also, in these tables, the error

rates associated with the DMM procedures are denoted by the abbreviation DM, while the

results associated with Johansen's procedure are denoted by the abbreviation WJ. Both main

and interaction effect test results are given; for the latter when J = 3, only the results

associated with the Pillai-Bartlett (Bartlett, 1939; Pillai, 1955) trace are reported, since the

the Hotelling-Lawley (Hotel ling, 1951; Law ley, 1938) trace and Wilks' (1932) likelihood

ratio procedures proved to be more sensitive to the combined effects of nonnormality and

covariance heterogeneity than the Pillai-Bartlett procedure, which is consistent with the

findings of other researchers, including Olson (1974). Finally, the tabled values have been

aVeraged across the two values of p due to similarities in results. However, it is worth noting

that the error rates obtained when the degree of correlation was strong tended to be slightly

larger that those obtained when the degree of correlation was weak.

Tables 2 and 3 contain the empirical percentages of Type I error associated with

balanced designs for both J = 2 and J = 3, when t = 6 and 12, respectively (i.e., L = 2

and 4). All of the procedures had error rates which were contained within the bounds of

Bradley's (1978) criterion when group covariance matrices were equal, even when the data

were nonnormal in form. The maximum value obtained for equal Eis was 7.02% and was

associated with the WJ interaction test procedure.

Insert Tables 2 and 3 about here



Multivariate Repeated Measures Designs
16

The Table 2 values (t = 6) indicate that when group sizes were equal, the DM and

WJ statistics were largely robust to the effects of covariance heterosecdasticity even under

violations of the multivariate normality assumption, as only a small number of values

exceeded the upper bound of Bradley's (1978) criterion. When J = 2, the DM main effect

procedure was liberal when covariance matrices were unequal and ninhlt = 2.5 for both

normal and nonnormal data, while this was true for the WJ main effect procedure only when

the data were nonnormal. On the other hand, the DM interaction effect test was liberal for

this same ratio of n,,,/t when the data were normally distributed. When J = 3, only a single

liberal value was obtained (7.93%) and was associated with the WJ interaction test procedure

when the data were sampled from a A distribution and nathlt was at its minimum value.

The results obtained for balanced designs when t = 12 (see Table 3) reveal a larger

number of liberal values. When the covariance homogeneity assumption was violated and

J = 2, the DM tests were liberal when nn,h,/t = 2.5, for both the normal and )d data; when

this ratio equalled five they were only liberal for the xi data. The maximum value obtained

for the DM procedures was 11.09%. At this same value of J, the WJ main and interaction

test procedures were also liberal when the data were both heteroscedastistic and nonnormal

for the smallest sample size condition; the maximum value was 9.11%. However, when the

number of groups was increased to three, only the WJ interaction test procedure was liberal

when sample size was at a minimum.

A comparison of corresponding normal and nonnormal values in Tables 2 and 3

reveal that the latter were almost always higher than the former for the main effect test

procedures. For the interaction effect test procedures, however, this was not always the case.
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Tables 4 and 5 contain the empirical percentages of Type I error associated with

unbalanced designs for J = 2, when t = 6 and 12, respectively. The DM procedures were

generally conservative for positive pairings of group sizes and group covariance matrices,

except when nmialt = 2.0 and N = 30, for t = 6. In fact, for a fixed value of ninmlt, these

procedures became increasing conservative as total sample size increased in value, due to a

corresponding increase in the magnitude of Ani. The minimum value obtained for the positive

pairing conditions was less than .001%. For negative pairings, the DM procedures were

always liberal and error rates were, in many cases, extremely inflated. The maximum value

obtained for t = 6 was 51.63% while for t = 12 it was 71.55%. As with the positive

pairings, the DM procedures became more liberal for a fixed value of nmin/t as the degree of

group gip- inequality increased. However, for a fixed value of tctal sample size, error rates

became less extreme for both positive and negative pairings as na,u,/t increased in magnitude,

Insert Tables 4 and 5 about here

As Tables 4 and 5 reveal, error rates for the WJ procedures were contained within the

bounds of Bradley's (1978) criterion when group sizes and covariance matrices were

positively paired. This was true even when the data were nonnormal in form.

For negative pairings, consistent with the findings of Keselman et al. (1993), the WI

test procedures performed best when the ratio of timnit was not too small. When t = 6, the

WJ main and interaction test procedures were liberal for the smallest value of nIt, even

when the data were normal in form. For the xl data associated with t = 6, this finding also
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held when nr,It = 3 and N = 90, although error rates were only marginally greater than the

upper bound of Bradley's criterion (i.e., 7.97%). For t = 12, liberal values were obtained

when nmirit was 2 and 3, for both the normal and xl data.

The results associated with the three-group multivariate design are contained in Tables

6 and 7, for t = 6 and 12, respectively. Consistent with the J = 2 results, for positive

pairings of group sizes and covariance matrices, the DMM procedures were generally

conservative; error rates only slightly exceeded the lower bound of Bradley's (1978) criterion

when ninidt = 3 and total sample size was small. For negative pairings, these test procedures

were always liberal. As well, error rates became more inflated as t increased in value.

Insert Tables 6 and 7 about here

For both values of t and J = 3, the WJ main effect procedure always had rates of

Type I error which were contained within the bounds of Bradley's (1978) criterion, even

when there was a negative relationship between group sizes and covariance matrices. When t

= 6, the WJ interaction effect procedure was liberal for normal data in only a single

instance, when the ratio of nmin/t = 3.0 and N = 120, when t was increased in value to 12

and the data were normal, liberal values resulted for N = 180 and 240. For the )d data,

kink had to be at least 4 to 1 for the interaction test to control the error rate to a, for both

values of t.

Conclusions

The performance of tests of within-subjects main and interaction effects in

multivariate groups by trials designs which are based on a doubly multivariate analytic
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approach was consistent with findings obtained for univariate designs and was therefore not

unexpected. In most instances, these procedures can effectively control the rate of Type I

errors rate for balanced designs when group variance-covariance matrices are heterogeneous,

even when the data are nonnormal in form. However, they are extremely sensitive to

departures from the covariance homogeneity assumption when the design is unbalanced.

Furthermore, this sensitivity may increase when multivariate normality is not a tenable

assumption. Consequently, researchers who adopt the doubly multivariate analysis strategy

when group sizes are unequal may be drawing inaccurate and misleading conclusions about

their data.

Researchers do have an alternative strategy available to them. The results from this

study indicate that, under certain condition, the approximate df solution given by Johansen

(1980) can be used to test repeated measures hypotheses when covariance homogeneity is not

a tenable assumption and the design is unbalanced. However, the issue of sample size must

be attended to carefully. When it can be assumed that the data are normal in form, the

number of observations in the smallest of the groups should be at least three times the

product of the number of dependent variables times the number of repeated measurements

minus one. To obtain a robust test in the presence of multivariate nonnormality, this ratio

may need to be increased to at least 4 or 5 to 1, particularly if tests of the within-subjects

interaction effect are to be valid. It should be noted that these results concur with those

obtained by Keselman et al. (1993) for univariate groups by trials designs.

Implementation of Johansen's (1980) solution to test for mean equality is easily

accomplished using a SAS/IML (SAS Institute, 1989) program developed by Lix and
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Keselman (in press) which is based on the general linear model. This.program only requires

that the researcher enter the data, the group sizes, and one or more contrast matrices which

specify the hypothesis to be tested. As a final note, tnis progam may also be used to test

specific contrasts on multivariate data that may be useful in probing the nature of a

significant within-subjects main or interaction effect.
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Table 1

Group Sizes For Unbalanced Designs

kin/t Group Sizes Ani

J = 2

6 30 2 12; 18 .20
60 2 12; 48 .60

3 18; 42 .40
4 24; 36 .20

90 3 18; 72 .60
4 24; 66 .47
5 30; 60 .33

12 60 2 24; 36 .20
120 2 24; 96 .60

3 36; 84 .40
4 48; 72 .20

180 3 36; 144 .60
4 48; 132 .47
5 60; 120 .33

J = 3

6 60 3 18; 20; 22 .08
90 3 18; 30; 42 .33

4 24; 30; 36 .16
120 3 18; 40; 62 .45

4 24; 40; 56 .33
5 30; 40; 50 .20

12 120 3 36; 40; 44 .08
180 3 36; 60; 84 .33

4 48; 60; 72 .16
240 3 36; 80; 124 .45

4 48; 80; 112 .33
5 60; 80; 100 .20
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Table 2

Empirical Percentages of Type I Error (Equal Group Sizes; t = 6)

nrninit

Normal 2
x3

DM WJ DM WJ DM WJ DM W.J

Main Main Int Int Main Main Int Int

J = 2

2.5 30 = E 4.35 4.80 5.20 5.63 5.94 6.39 4.27 4.69; 8.10 6.51 8.39 6.86 8.94 7.62 7.36 6.24

5.0 60 = 5.54 5.46 5.22 5.17 6.08 5.96 5.30 5.25; 6.82 5.20 6.73 5.36 7.60 6.08 6.71 5.20

7.5 90 = 5.10 5.03 4.25 4.13 4.90 4.79 5.12 4.97; 6.69 5.60 6.09 5.00 6.98 5.94 6.78 5.82

J = 3

3.33 60 = E 5.09 4.95 4.78 6.12 5.82 5.66 5.06 6.87; 6.04 5.05 5.59 6.47 6.22 5.28 6.19 7.93

5.0 90 = 5.31 5.12 4.99 5.08 5.43 5.28 4.55 5.16; 5.75 5.00 6.11 6.15 5.77 5.09 6.24 5.81

6.67 120 = ; 4.46 4.34 4.47 4.61 4.97 4.82 4.67 5.32; 4.97 4.29 6.04 5.21 5.77 5.1.4 5.67 5.41

Note: DM Main = Doubly multivariate main effect test; WJ Main = Welch-James main
effect test; DM Int = Doubly multivariate interaction effect test; WJ Int = Welch-James
interaction effect test; Bold values are not contained in the interval 2.5 - 7.5.
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Table 3

Empirical Percentages of Type I Error (Equal Group Sizes: t = 12)

nmidt ;

DM
Main

Normal

WJ DM
Main Int

WJ
Int

DM
Main

WI
Main

DM
Int

Wi
Int

J = 2

2.5 60 = E 5.25 6.04 4.76 5.47 6.07 6.89 4.15 4.76; 9.44 7.53 9.23 7.21 11.09 9.11 9.72 7.95

5.0 120 = ; 4.44 4.44 5.18 5.18 5.42 5.41 4.73 4.71; 7.37 5.68 7.15 5.72 7.74 5.95 8.22 6.48

7.5 180 = 5.08 4.98 4.52 4.49 5.56 5.51 4.92 4.81; 6.76 5.40 6.13 4.92 6.75 5.30 6.29 5.05

3.33 120 = E 5.20 5.19 4.73 6.42 5.57 5.51 4.80 7.02; 7.05 5.93 6.70 7.64 7.09 5.98 6.61 7.91

5.00 180 = E 5.27 5.17 5.14 5.64 5.21 5.10 4.91 5.49; 6.14 5.28 6.63 5.91 6.20 5.30 6.78 6.32

6.67 240 = E 5.09 4.96 5.34 5.48 5.09 4.96 4.84 5.30; 5.58 4.91 6.15 5.20 5.78 5.17 6.17 5.59

Note: See the note from Table 2.
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Table 4

Empirical Percentages of Type I Error (Unequal Group Sizes: J = 2: t = 6)

Normal X3
2

rimin/t N Pairing

DM
Main

WJ
Main

DM
Int

WJ
Int

DM
Main

WJ
Main

DM
Int

WJ
Int

2.0 30 +P 2.97 5.83 2.90 5.95 3.28 6.24 3.27 6.07
-P 18.75 9.11 18.29 8.05 19.38 9.92 17.33 9.18

60 +P 0.03 4.74 0.05 5.19 0.14 5.70 0.04 4.49
-P 51.56 11.14 51.11 11.30 50.44 11.70 50.13 12.02

3.0 60 +P 0.25 4.79 0.28 4.84 0.52 5.19 0.55 4.77
-P 32.30 6.72 31.28 6.63 30.98 7.24 30.78 6.60

90 +P 0.00 4.86 0.00 5.69 0.00 5.69 0.04 5.37
-P 51.63 7.24 50.95 6.88 50.85 7.73 49.18 7.97

4.0 60 +P 1.83 4.95 2.24 5.27 2.29 5.26 2.02 5.42
-P 16.45 5.92 16.56 6.10 17.99 7.05 17.59 6.71

90 +P 0.10 4.73 0.09 4.93 0.16 5.14 0.18 4.55
-P 37.28 5.94 36.29 6.33 37.71 7.38 38.69 7.24

5.0 90 +P 0.68 5.18 0.50 5.12 0.73 5.45 0.58 5.02
-P 25.50 5.27 25.44 5.44 26.26 6.68 25.49 6.21

Note: +P = Positive pairing of nj and Ej; -P = Negative pairing of nj and Ei; See the note
from Table 2.
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Table 5

Empirical Percentages of Type I Error (Unequal Group Sizes: J = 2: t = 12)

Normal 2
x3

11rninIt N Pairing

DM
Main

W.1

Main
DM
Int

WJ
Int

DM
Main

WJ
Main

DM
Int

WJ
Int

2.0 60 +P 2.20 5.87 2.34 6.40 2.23 6.56 2.28 6.48
-P 24.99 10.22 25.00 10.24 25.69 11.19 25.01 10.51

120 +P 0.02 5.27 0.00 4.98 0.00 5.94 0.00 5.32
-P 71.38 13.00 70.47 12.71 71.33 14.47 70.78 14.42

3.0 120 +P 0.12 4.49 0.05 4.83 0.17 5.32 0.11 5.25
-P 45.51 7.42 46.29 6.98 47.26 8.71 47.22 8.81

180 +P 0.00 5.02 0.00 4.75 0.00 5.70 0.00 4.76
-P 71.55 8.08 71.74 8.17 70.88 8.84 71.16 8.65

4.0 120 +P 1.30 4.47 1.09 4.83 1.61 5.25 1.21 4.65
-P 22.73 6.34 22.57 6.42 23.01 6.81 22.72 6.48

180 +P 0.03 4.88 0.04 5.20 0.01 5.05 0.02 4.62
-P 55.19 6.56 54.40 6.54 55.19 6.96 54.45 6.55

5.0 180 +P 0.13 4.53 0.22 5.00 0.17 5.35 0.20 5.21
-P 36.84 6.04 37.28 5.75 38.16 6.53 37.88 6.72

Note: See the notes from Tables 2 and 4.
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Table 6

Empirical Percentages of Type I Error (Unequal Group Sizes: J = 3: t = 6)

Normal 2
x3

nminit N Pairing

DM
Main

WJ
Main

DM
Int

WJ
Int

DM
Main

WJ
Main

DM
Int

WJ
Int

3.0 60 +P 4.33 5.39 4.19 5.89 4.32 5.10 4.26 6.77
-P 7.94 4.88 8.02 6.75 9.81 6.35 8.15 7.76

90 +P 1.18 5.40 1.08 5.18 1.12 5.25 1.12 5.47
-P 20.29 5.88 20.80 7.10 19.95 6.05 19.09 7.91

120 +P 0.30 5.23 0.54 4.71 0.30 5.29 0.74 5.55
-P 28.32 5.67 29.64 7.92 28.68 6.79 28.95 9.28

4.0 90 +P 2.43 5.05 2.64 5.15 2.84 5.54 2.61 5.41
-P 10.84 4.85 11.96 5.92 11.39 5.37 11.17 6.90

120 +P 0.77 4.82 1.05 4.50 1.00 5.00 1.37 5.42
-P 19.76 5.08 19.57 5.12 19.79 5.41 19.56 7.51

5.0 120 +P 1.84 5.07 2.49 5.62 2.21 5.57 2.58 5.95
-P 13.04 4.99 13.71 5.73 12.46 5.06 13.01 5.91

Note: See the notes from Tables 2 and 4.
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Table 7

Empirical Percentages of Type I Error (Unequal Group Sizes: J = 3: t = 12)

Normal 2
x3

nathlt N Pairing

DM
Main

Wi
Main

DM
Int

WJ
Int

DM
Main

WJ
Main

DM
Int

WJ
Int

3.0 120 +P 3.84 5.08 3.74 6.19 4.04 5.42 3.67 7.01
-P 10.09 4.99 9.87 5.73 10.39 6.00 9.36 8.16

180 +P 0.31 4.77 0.74 5.73 0.62 5.52 0.72 5.76
-P 27.69 5.46 28.94 7.86 27.94 6.14 28.96 9.08

240 +P 0.09 4.49 0.30 5.65 0.08 5.29 0.14 5.80
-P 42.89 6.07 43.18 7.90 42.56 7.00 44.60 9.41

4.0 180 +P 1.85 4.92 2.31 5.34 1.75 4.65 2.28 5.80
-P 13.10 4.89 14.39 5.82 14.69 6.00 14.60 6.39

240 +P 0.34 4.87 0.71 5.60 0.35 5.17 0.68 5.08
-P 28.53 5.49 28.76 6.28 27.97 5.67 28.56 7.47

5.0 240 +P 1.30 5.25 1.76 5.03 0.91 5.14 1.63 5.22
-P 16.81 4.88 17.98 5.86 16.92 5.32 18.26 6.17

Note: See the notes from Tables 2 and 4.


