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Abstract

Research in the behavioral and health sciences frequently involves the

application of one-factor analysis of variance models. The goal may be to

compare several independent groups of subjects on a quantitative dependent

variable or to compare measurements made on a single group of subjects on

different occasions or under different conditions. In analyzing data of this

kind, it is usually of interest to determine which pairs of population means

are likely to differ. In this paper, the selection of pairwise multiple

comparison procedures for one-way analysis of variance designs is considered,

following a discussion of Type I error and power issues as they apply to the

testing of multiple hypotheses. Procedures are included which are appropriate

when normality oi variance homogeneity assumptions are violated. The focus is

on procedures that are easy to understand and apply. Single-step procedures

are emphasized because of their simplicity and because they allow for the

construction of confidence intervals.
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Pairwise Comparison Procedures for

One-Way Analysis of Variance Designs

Research in the behavioral and health sciences frequently involves the

application of one-factor analysis of variance (ANOVA) models. The goal may

be to compare several independent groups of subjects on a quantitative

dependent variable or, alternatively, to compare measurements made on

different occasions or under different conditions on a single group of

subjects. If there is reason to believe that there are differences among

the groups (or occasions or conditions), the researcher frequently wishes

to compare the means in a pairwise fashion. Although the procedures for

conducting omnibus hypothesis tests for one-factor ANOVA models are

familiar to most researchers, the issues that must be considered in

choosing pairwise multiple comparison procedures (MCPs) are not as

well-understood. In this paper, the selection of pairwise MCPs for

one-factor ANOVA models is considered, following a discussion of Type I

error and power issues as they apply to the testing of multiple hypotheses.

Although the paper focuses on the independent-sample case, repeated

measures models are considered briefly as well.

Type I Error and Power

Any student who has taken an elementary statistics course can recite

the definitions of Type I error and power: The Type I error rate is the
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probability of rejecting tie null hypothesis when the null hypothesis is

true and power is the probability of rejecting the null hypothesis when the

null hypothesis is false. However, these concepts become much more complex

when applied to multiple hypothesis tests, such as MCPs. In the

multiple-comparison case, it is possible to define many varieties of Type I

error rates (Bernhardson, 1975; Zwick & Marascuilo, 1984). Two of the most

important (defined here in terms of Dairwise MCPs only) are the

comparisonwise error rate, ac, which is the probability of making a Type I

error on a particular comparison, and the experimentwise error rate, aE,

which is the probability of making at least one Type I error in conducting

the entire set of pairwise comparisoL.L associated with an experiment. (For

an experiment with k means, there are k(k - 1)/2 distinct pairwise

comparisons.)

Some MCPs are designed to allow direct control of the comparisonwise

error rate; that is, the researcher sets a nominal Type I error rate for

each comparison. In other methods, the researcher determines a nominal

value for the experimentwise error rate. If a method that allows direct

control of ac is chosen, probability inequalities such as the Bonferroni

inequality can be used to calculate an upper bound for aE The Bonferroni

inequality, as applied in this context, states that if k(k - 1)/2 pairwise

comparisons are performed, each with a Type I error probability equal to

ac, then the experimentwise Type I error rate, aE, will be less than or

equal to [k(k - 1)/2]ac. That is, the experimentwise error rate is less

than or equal to the sum of the comparisonwise error rates. (This upper

bound can exceed 1, whereas aE, of course, can not.) Other probability

7
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inequalities, such as the Dunn-'idak inequality (Dunn, 1958, 1959, 1974;

'idak, 1967) can be used to produce a more refined upper bound in certain

cases. The Bonferroni inequality, however, has the advantage of simplicity

and generality.

It is important to note that experimentwise and comparisonwise error

rates are not simply interchangeable ways of evaluating Type I error. This

can be illustrated with an example. Suppose we used computer simulation

techniques to investigate the Type I error rates of two competing MCPs. In

order to study Type I error in this way, random numbers are generated and

assigned to groups. (Because there are no "population" differences among

the groups, all statistically significant comparisons will be Type I

errors.) The test statistics of interest are then performed on the random

data. Suppose that the results for 100 simulated experiments with k - 3

groups and a nominal aE of .05 are as shown in Table 1.

Insert Table 1 about here

We can calculate an empirical estimate (etE) of the experimentwise error

rate for each of the two MCPs as follows:

[1] OcE

Number of experiments with at least one
significant pairwise comparison

Number of experiments

In calculating egE, the 100 experiments are divided into two classes: those

that have no Type I errors and those that have one or more Type I errors.

The value of CIE is simply the proportion of experiments in the second

class. For each of the MCPs, ecE .05; that is, the estimated
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experimentwise error rate is equal to the nominal aE. We therefore expect

that when the null hypothesis is true, application of either of these MCPs

will lead to at least one Type I error in five percent of the experiments

performed. The value of k tells us nothing about the likelihood of a Type

I error on a particular comparison. The estimated comparisonwise error

rate for this example can be calculated as follows:

IOC

Number of significant pairwise comparisons

[k(k - 1)/2] [Number of experiments]

Note that this is simply the overall proportion of pairwise comparisons

that reSulted in Type I errors. For MCP 1, ac - [1(4) + 2(1)]/3(100)

.02; for MCP 2, ac - 3(5)/3(100) - .05. Therefore, although the MCPs are

identical in terms of eitE, they differ in terms of etc. Which of these error

rates is most useful to the applied researcher?

If, as in most cases, the research conclusions depend on the

simultaneous correctness of the set of k(k - 1)/2 inferences,

experimentwlse error control is appropriate; if the researcher is concerned

instead about the correctness .3f individual inferences about pairs of

means, an MCP that allows direct control of the comparisonwise error rate

should be selected. An example of a case in which comparisonwise control

might be preferable is as follows. Suppose a researcher conducts a study

in which three groups, A, B, and C, are compared with aE - .05. The

reseatcher then conducts a similar study which includes two additional

groups, D and E, although her primary interest is still in groups A, B, and

C. If she again uses aE - .05, her tests of the three pairwise differences

9



Pairwise Comparison Procedures

6

among groups A, B, and C will be more conservative (i.e., less likely to

lead to statistically significant results) than in th previous study

because the experimental error rate of .05 will be allocated among a larger

number of comparisons. Therefore, it might be considered desirable to hold

the value of ac, rather than aE, constant across studies. Even if this

rationale were applied, however, it would still be important for the

researcher to be aware of the experimentwise error rate. That is, if the

researcher decides to set ac equal to .02, she should be prepared to accept

an experimentwise error rate as large as [k(k - 1)/2](.02) 10(.02) - .20

for the five-group study, assuming all pairwise comparisons are to be

conducted.

Just as there are several kinds of Type I error rates that are

pertinent to the choice of MCPs, there are several definitions of power

that may be useful as well. For instance, for a set of three means with

population values 1, 2, and 10, we could consider the probability of

detecting one or more of these differences (any-pair power) or the

probability of detecting all three pairwise differences (all-pairs power).

These definitions will not be explained in detail here; a good discussion

is given by Ramsey (1981; see also Einot & Gabriel, 1975; Gabriel, 1978;

Ramsey, 1978).

Comparing the Empirical Type I Error Rates and Powers of Competing MCPs

Simulation studies like the hypothetical one described above are often

performed in order to compare empirical estimates of the true Type I error
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rates and powers associated with competing MCPs. Unfortunately, many

published studies are misleading because they are flawed in design or

interpretation. For example, investigators conducting simulation studies

of competing MCPs have often failed to distinguish between procedures that

provide comparisonwise error control and those that control Type I errors

in an experimentwise fashion. It is not unusual to find an MCP with a

nominal ac of .05 being compared to a procedure with a nominal aE of .05

(Einot & Gabriel, 1975; Zwick & Marascuilo, 1984). Comparisons of this

kind provide no useful information about the relative performance of the

MCPs. Even without performing a simulation study, it can be predicted that

a procedure with a nominal ac of .05 will produce more Type I errors than a

procedure with a nominal aE of .05. To achieve a more useful comparison of

procedures that provide experimentwlse control with those that provide

comparisonwise control, MCPs with a nominal aE of .05 should be compared

with MCPs with a nominal ac of .05/[k(k - 1)/2]. The MCPs that controls ac

can then be regarded as having a nominal aE of approximately .05.1

Similarly, power comparisons can be meaningfully interpreted only if

the MCPs under evaluation have the same nominal aE. This is because the

probability of rejecting

larger by increasing a.

expected to lead to more

procedure with a nominal

a false null hypothesis (power) can always be

Thus, a procedure with a nominal ac of .05 is

rejections of false null hypotheses than a

aE of .05 because the former procedure is known

made

to

have a larger experimentwise error rate. This does not mean that the

former procedure is more powerful in any practical sense. (If meaningful

power increases could be achieved by increasing the Type I error rate, we

1



Pairwise Comparison Procedures

8

could simply set the nominal a equal to 1.00. By always rejecting the null

hypothesis, we would be assured of detecting any true differences!) A

related point that is often overlooked is that in making power comparisons,

it is important to consider whether the true Type I error rates for the

procedures being compared depart substantially from the nominal a. That

is, even if the nominal aE is equal to .05 for two MCPs, it may be that the

true error rate for one of the procedures is known to exceed the nominal aE

(as is the case with the protected t-test procedure, discussed below),

whereas the other MCP does, in fact, control the error rate at the nominal

aE. Here again, it would be a mistake to conclude that the former

procedure was more powerful.

These points have important implications for the MCP user, who may be

tempted to pick the MCP that tends to yield the largest number of

statistically significant differences without determining whether the

apparent power superiority is, in fact, achieved at the expense of an

increased risk of Type I error.

The Independent-Sample Case

One of the most common ANOVA designs involves a comparison of k

independent groups of subjects on a quantitative dependent variable. In

this section, five of the most common MCPs that are applicable to this

model are described and illustrated using a hypothetical example. Like the

ANOVA F test, these methods require the es= -tiot that observations are

independent random samples from normal populations with equal variances.
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The inclusion of an MCP in the discussion below does not constitute a

recommendation. Some of the MCPs were selected to be representative of

certain types of procedures or of particular philosophies of Type I error

control. A detailed evaluation of these five methods is provided, followed

by a discussion of MCPs for use when normality or variance equality are

thought to be violated.

Example

Suppose we are interested in comparing different forms of psychiatric

treatment for psychotic inpatients. We choose a random sample of 40

psychotics and then randomly assign them to one of four forms of treatment:

pharmacologic therapy (P), which involves the administration of

anti-psychotic drugs; group psychotherapy (G); individual psychotherapy

(I); and a combination of anti-psychotic drugs and individual psychotherapy

(C). After one month, we ask an experienced clinical researcher to rate

each patient on a series of items pertaining to the patient's ability to

perform everyday tasks, maintain personal relationships, and hold a job.

The rating scale yields overall scores ranging from 0 to 100, with higher

scores indicating greater ability to function. The scores, means,

variances, and sample sizes are as shown in Table 2.

Insert Table 2 about here

These hypothetical data will be used to illustrate the multiple comparison

methods presented in this paper.



Pairwise Comparison Procedures

10

MCPs for the Normal Equal-Variance Case

In this section, the following MCPs are discussed: a) Scheffd's

(1953) procedure, b) Tukey's (1953) Studentized range test and the

Tukey-Kramer (Kramer, 1956, Tukey, 1953) modification for unequal sample

sizes, c) the Dunn-Bonferroni method (Dunn, 1961), d) Fisher's (1935)

protected t-test procedure, and e) the Newman-Keuls (Keuls, 1952; Newman,

1939) test. All five of these procedures are described in Hochberg and

Tamhane (1987), Kirk (1982), and Miller (1981). It is important to note

that these five methods do not differ in terms of the formulation of the

test statistics used to make pairwise comparisons. In each case the test

statistic can be written as follows:

[3] tr Mit

rci

nti
MSW

.)

where 51, and 51i. are the two means being compared, n and n. are the sample

sizes associated with these two means, and MSW is the mean square within

groups for the entire k-sample study, defined as X (n1 - 1)s/(N - k)

where k is the number of groups, N - X ni is the overall sample size, and
i.1

2SI is the variance in each sample. Because the example involves samples of

equal size, Equation 3 can be simplified as follows:

14
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[4] t

MSW

where n - 10 is the sample size in each of the k 4 groups. For instance,

the test statistic for comparing group therapy (C) to the combination of

pharmacologic and individual therapy (C) is:

[5]

MSW

25 - 41

96.83 (1-)
10

- -3.64

The values of tr for the remaining five pairwise comparisons are given in

Table 2.

The difference among the five MCPs listed above lies in a) the rules,

if any, used to determine whether a given comparison is to be performed and

b) the choice of critical values to which the t-statistics are to be

compared. These aspects of each of the five procedures are described

below.

Scheffe's Procedure. Scheffé comparisons are ordinarily performed after a

significant ANOVA F-test. That is, the statistic F MSB/MSW is first

computed, where the mean square between groups MSB, is equal to X ni

i.1
a - 502, 51 is the grand mean, and MSW is defined as above. Then if the

observed value of F exceeds FkI,NIcl-cte the critical value of F with k - 1

and N - k degrees of freedom for the desired aE level, pairwise t-tests of

1_5
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critical value

12

[6] Sk- -lc I-% (k - 1) Fklul. CIE

The comparison is significant if It! > S (i.e., if t < -S or t > S). The

Scheffd method .-;ontrols the experimentwise Type I error rate at aE

regardless of the number of pairwise comparisons performed. In fact, the

method controls the experimentwise error rate at aE for the set of all

contrasts. A contrast is a linear combination of population means (A) of

the form a,A, + ag42 + + a,,A,, where the a, are weights chosen so that

0. For example, we might want to test the hypothesis that A,

i -1

t42 P3
2

- 0; that is, the mean of group 1 is equal to the mean of groups 2

and 3 combined. This contrast would be estimated in the sample as R, -

5Z2 )13 (1)(5-) + (-1/2)(2) + (-1/2)(51). Here, a, - 1, a2 - -1/2, and
2

a3 - -1/2. A pairwise comparison is a special case of a contrast, where

the weights are al - 1 and al. -1. Contrasts other than pairwise

comparisons are called complex contrasts. Although the Scheffé method

applies to all contrasts, it is often used even when only pairwise

comparisons are of interest. It is important to understand the

relationship between the overall F-test and the pairwise comparisons

performed via the Scheffé method. Although a significant F ratio implies

the existence of at least one significant contrast, it does not imply the

existence of a significant pairwise c.omparison. Therefore, the finding of



Pairwise Comparison Procedures

13

a significant F-test, but no significant pairwise t-tests is not

inconsistent with theory.' It should also be noted that no additional risk

of Type I error is incurred if the prior F-test is omitted. The F-test

can, however, be useful as a labor-saving device because, if the F-test is

not significant, no pairwise comparison (or other contrast) will be found

significant using S as a critical value.

In the present example MSB 536.67, the observed value of F is 5.54

and, for aE - .05, Fk.,,N-ic 1 -at F3. - 2.87.2 Therefore, the null

hypothesis of no group differences is rejected. Comparisons of the form

shown in Equation 4 can be performed, with S k1,N- - J3(2.87) - 2.93 as a

critical value. The only statistically significant pairwise comparisons

are those between the P and G groups and between the C and G groups. We

would therefore conclude that, although pharmacologic therapy or a

combination of pharmacologic and individual therapy differ from group

psychotherapy in terms of their impact on the functioning of psychotic

patients, no other distinctions can be made among the various modes of

therapy.

Examination of the means for the G and C groups indicates that there

is a 16-point difference in favor of the combined therapy group. Instead

of merely concluding that these groups differ, we may wish to make an

inference about the size of the difference between the G and C group means

in the population. We can do this by constructing 100(1 - ad%

simultaneous confidence intervals of the following form:



37; 1 S ,N - lc I

[7]
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n2

< (Pi

< (Ri xv) Sk 1,N -Ic 1 -eft\ MSW

Substituting in the values from the example, we can write the 95%

confidence interval for AG pc as follows:

14

10)

(25 - 41) - 2.93\96 83(2- < (AG - Ac) < (25 - 41) + 2.93 96.83 (

-28.89 < (AG - pc) < -3.11

Thus, we can state with 95% confidence, that in the population, the number

of points by which the mean for the combined therapy group exceeds the mean

for the group therapy group is between about 3 and 29. The reason that the

Scheffé intervals are called simultaneous confidence intervals is related

to the type of error control that characterizes the Scheffe procedure. As

stated above, the probability of at least one Type I error is controlled at

aE. This implies that, before the experiment is conducted, the probability

of no Type I errors is 1 - aE. Therefore, after performing the experiment,

we can state with 100(1 - ad% confidence that all statements of the form

shown in Equation 7 are true. In fact, the 95% confidence statement

applies to all contrasts, not merely pairwise comparisons. In interpreting

the results of a study, confidence intervals are usually more valuable than

hypothesis tests alone. They can help the researcher to determine whether

results that are statistically significant have any practical importance.

For instance, in the present example, the researcher must take into

lb
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consideration that the difference between the G and C groups may be as

small as about 3 points, a quantity that may be insignificant from a

clinical standpoint.

Tukey's Studentized Range Test and the Tukey-Kramer Modification. Tukey's

Studentized range test, also called the Honestly Significant Difference

(HSD) test or Wholly Significant Difference (WSD) test,3 is usually

described as follows: Find the largest and smallest sample means, compute

[8]

MSW

and compare T to a critical value, denoted as a based on the

distr ibut i on of the Studentized range. If this value is statistically

significant (i.e. IT1 > q), perform all other pairwise comparisons in the

same fashion. The test statistic in Equation 8 differs from that shown in

Equation 4 by a factor of .g in the denominator. Therefore, comparing T to

is the same as comparing the largest value of tir to aAsocisat /JI.

In order to find the appropriate critical value for the example, we must

enter a table of the percentiles of the Studentized range (e.g., see Kirk,

1982 or Miller, 1981) and find the critical value corresponding to the

number of means in the overall experiment (k), the error degrees of freedom

(N - k), and the desired level of aE. For four means, 36 degrees of

freedom, and aE - .05, the critical value of qk.N.k,.46 is found by linear
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interpolation to be approximately 3.81. Therefore, if we want to use test

statistics of the form shown in Equation 4, our critical value is

3.81/if 2.70. Because the largest value of to., shown in Equation 5,

exceeds the critical value, we conclude, as before, that combined and group

therapy produce different results. Proceeding to the remaining five

comparisons, we find that, as in the Scheffé procedure, the only other

statistically significant comparison is that between the P and G groups.

Like the Scheffé MCP (see Scheffe, 1953), the Tukey procedure

controls the experimentwise error rate at a nominal value of aE for the set

of all contrasts (Hochberg & Tamhane, 1987), which, of course, includes all

pairwise comparisons. (Although complex contrasts can be performed via the

Tukey approach, however, this is rarely done because the Bonferroni and

Scheffé methods are usually more powerful for this kind of test [Miller,

19811. Because a single procedure should be selected for all comparisons

of interest, a researcher who wanted to test a substantial number of

complex contrasts would be wise to select the Scheffé method.)

For the Tukey MCP, the "prior" test shown in Equation 8 is simply an

evaluation of the largest pairwise difference. There is no theoretical

reason that this test need be performed before the other pairwise

comparisons. It can save computational labor, however, because, if this

comparison is not significant, no other pairwise comparisons will be found

significant. For the significant comparisons, simultaneous confidence

intervals of the form shown in Equation 7 can be constructed, with

Clk,N lc 1 .4E /./2. replacing Sk Ic I .at

2u
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Although the HSD method per se is applicable in the case of equal

sample sizes only, the Tukey-Kramer modification for unequal sample sizes

has been shown to have an experimentwise Type I error rate that does not

exceed the noenal a (Hayter, 1984; see Hochberg & Tamhane, 1987, pp. 91

93). Applying the Tukey-Kramer method is equivalent to comparing

t-statistics of the form shown in Equation 3 to qt.N.ti.% /12. Note that

the substitution of the harmonic mean of the sample sizes of all k groups

for the n in the denominator of T in Equation 8, as recommended by Winer

(1962), leads to a test with poor Type I error control (Hochberg & Tamhane,

1987).

Dunn-Bonferroni Method. Dunn (1961) suggested the application of the

Bonferroni inequality to multiple comparisons of means. To apply this

method in its simplest form, we need only decide at what level we wish to

control ccE and then set the nominal ac for each pairwise comparison equal

to aE /[k(k - 1)/2]. (Fisher, 1935, also suggested this approach.) If, in

our example, we do not want the experimentwise error rate to exceed .05, we

set the nominal ac equal to .05/6 - .0083. The easiest way to achieve this

is to refer to a table of the Bonferroni t statistic (see Kirk, 1982 or

Miller, 1981). For ceE - .05, C k(k - 1)/2 6 comparisons, and N - k -

36 degrees of freedom, we find by linear interpolation that the critical

value for a two-sided test is t8 - ta - 2.80. Therefore, as was
c,N lc -4E 0,36: lie

the case with the Scheffé and Tukey procedures, only the comparisons of the

G and C groups and of the P and C groups are statistically significant.

2 1
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For significant comparisons, simultaneous 100(1 - aE)% confidence intervals

of the form shown in Equation 7 can be constructed, with tfcl,N.xl.aE

substituted for Sk.i.N.ki.cv In the case of the Bonferroni approach, each

interval could also be interpreted as an individual (non-simultaneous)

100(1 - ac)% confidence interval for the mean difference in question.

The Bonferroni approach is extremely flexible. It can be applied to

cases in which the researcher wishes to use an unequal allocation of error

rates (i.e., a different value of ac for each contrast) or to perform

one-sided tests. For these more complicated applications, the best table

of critical values is that of Dayton and Schafer (1973). The Bonferroni

approach is not limited to pairwise comparisons, but can be applied to any

contrasts of interest. Because this MCP controls aE at a nominal value,

there is no reason to precede Bonferroni t-tests with an F-test.

Fisher's Protected t-tests. The protected t-test procedure, also called

the Least Significant Difference (LSD) test, is unlike the procedures

described above in that it is a sequential or stagewise procedure. First,

an F-test is performed at the desired aE level, say, .05. If it is found

to be significant, all pairwise t-tests are performed, each with

ac ac- .05. The determination of whether the t-test are to be conducted

depends on the results of the prior F-test. It is not permissible to omit

the F-test here, as is allowed in the Scheffé approach. (Note that the

term "Least Significant Difference Test" is sometimes applied to multiple

t-tests performed without a prior F-test as well.)
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In the present example, the F-test was found to be significant.

Therefore, in accordance with the protected t approach, all six pairwise

t-tests are to be computed and compared to tN.k1.cy2 ;ears - 2.03. We

find that the P - G, G - I, and C - C comparisons are statistically

significant.

Because the protected t-test procedure tends to lead to a larger

number of statistically significant comparisons than many of its

competitors, it has sometimes been recommended as a powerful MCP (e.g.,

Carmer & Swanson, 1973; Cohen & Cohen, 1975). In fact, its apparent power

is, at least in part, a result of poor Type I error control: although this

MCP provides better Type I error control than multiple t-tests without a

prior F, use of the protected t procedure can still lead to excessive Type

I error rates. Contrary to what is often believed, the policy of

performing pairwise t-tests only when the F-test is significant does not,

in general, ensure that the experimentwise error rate will be controlled at

aE, the Type I error rate for the F-test. When there are more than k - 3

groups, the error rate will be controlled at aE in the complete null case;

that is, when all k means are identical in the population.

However, the true situation may be a partial null case: some pairs

of population means may differ, whereas others do not. Suppose, for

instance, that we were conducting an experiment with k 5 groups and that

the values of the five population means were as follows: 10, 3, 3, 3, 3.

If we found the F-test significant, this would not be a Type I error. We

would then perform k(k - 1)/2 - 10 pairwise t-ttsts, each at ac - .05. In
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doing so, we would have the opportunity to make Type I errors by falsely

concluding that the identical means were different. In fact, the number of

Type I errors could be as large as (k 1)(k - 2)/2 - 6, the number of

distinct pairwise comparisons among the k - 1 - 4 means with population

values of 3. The occurrence of these second-stage Type I errors leads to

an i-flated experimentwise error rate for this procedure (see Ryan, 1959,

1980; Zwick & Marascuilo, 1984).4 It should be mentioned, however, that

despite the liberalized error control in the second stage, a significant F

does not imply the existence of a signficiant pairwise comparison (see

Games, 1971, p. 558).

Hayter (1986) derived an exact expression for the maximum

experimentwise error rate that can be attained for Fisher's protected t

procedure in the equal-n case. (The same quantity serves as an upper bound

for the unequal-n case). With a nominal aE of .05 and infinite degrees of

freedom, the maximum experimentwise error rate is found to be .1222 for

k - 4, .5715 for k - 10, and .9044 for k - 20. Some empirical evidence on

the experimentwise error rates of the protected t-test procedure in partial

null cases is provided by Carmer and Swanson (1973). Computer simulation

techniques were used to estimate the experimentwise error rates of the

method in 14 partial null configurations said to be "somewhat

representative of situations found in actual experiments in the

agricultural sciences" (p. 69). The number of means was 5, 10, or 20.

With the nominal ccE set at .05, the egE values ranged from .023 to .455.

Five of the 14 error rotes were greater than .15. Thus, it can be
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demonstrated both theoretically and empirically that (for k > 3) the

protected t method, unlike the Scheffé and Tukey procedures, is not assured

to control the error rate in partial null cases.

Because this MCP is a sequential procedure, involving different

levels of error control at each stage, it is impossible to derive

confidence intervals corresponding to the protected t procedure. The

unavailability of confidence intervals is a property of all MCPs in which

the performance of certain comparisons is contingent on the significance of

other comparisons or of an omnibus test, such as the F-test.

Newman-Keuls Test. Another commonly used sequential procedure is the

Newman-Keuls test. Like the Tukey MCP, this method involves rank-ordering

the means and performing the test shown in Equation 8 (or the equivalent

test based on Equation 4) to compare the largest and smallest means. If

this initial range test is significant, further comparisons are made using

reduced critical values: the closer two means are to each other in the

ranking, the less stringent the criterion for significance. For testing

the range of p means, where p < k, the critical value is qp.N.,,,.at

assuming here that test statistics are of the form shown in Equation 4.

That is, in determining the critical values for all tests that follow the

first one, we simply ignore the fact that the experiment has k groups and

use the same critical value we would use if we were performing Tukey's test

with p groups.
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For example, with four groups of 10 subjects as in the present study,

the first step in performing the Newman-Keuls test is to rank-order the

means from smallest to largest (Re, R2, R3, R4). If we set the nominal ae

equal to .05, Re is compared to R, using a critical value of a.. / ./Y

3.81//Y - 2.70. If this test is significant, the tests of R2

versus R4 ar ' Rs versus RI (ranges of p - 3 means) are performed using a

critical value of ffi40 q3,36,95/j2 3.46/./Y. - 2.45. Finally if all

these tests prove to be significant, we test R, versus R2, R2 versus R3, and

R2 versus R4 with a critical value of C12.36:95/..a 2.87/12. 2.03. If

at any pol.nt, a range of p means is found to be nonsignificant, no

comparisons of means within that range are performed. Thus, no range

included in a nonsignificant range can be declared significant. In the

case of unequal sample sizes, the Newman-Keuls MCP can be modified in the

same manner as Tukey's test.

In the present example, the four means, from lowest to highest, are

Rs - 25, Re - 36, Rp - 40, and Rc - 41. The test of the range of all k - 4

means, shown in Equation 8, was statistically significant. We can

therefore proceed to test the two ranges of p - 3 means with a critical

value of 2.45, as described above. The P - G comparison is found to be

significant, whereas the I - C comparison is not. The G I comparison is

then tested with a critical value of 2.03 and is found to be statistically

significant. (The P - I and P - C comparisons are not tested because they

fall within a nonsignificant range.)

2 6
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As is the case with protected t-tests, the Newman-Keuls test is often

mistakenly believed to be a powerful procedure, because it tends to produce

a larger number of statistically significant differences than some of its

competitors. However, because its error control becomes lesa stringent at

each stage, the Newman-Keuls test, like the protected t procedure, does not

maintain the experimentwise error rate at the nominal aE for all possible

configurations of true mean values (unless k 3; see footnote 4). Some

empirical evidence of its lack of error control in partial null cases is

provided by Ramsey (1981) who found CIE to range from about .13 to .15 for k

- 6 and a nominal aE of .05. Another popular stagewise MCP that is based

on the Studentized range is Duncan's multiple range test. This procedure

provides even less stringent error control than the Newman-Keuls test. For

the same reason cited in connection with the protected t procedure,

confidence intervals cannot be derived for the Newman-Keuls or Duncan

tests.

Relation of MCPs to the ANOVA F-test. It is important at this point to

summarize the relation between pairwise MCPs and the ANOVA F-test: If a

researcher is interested only in pairwise comparisons between means, there

is no need to perform an F-test. In fact, an F-test and an MCP ,lay produce

inconsistent results: The F-test may be significant when there are no

significant pairwise comparisons and, except in the case of the Scheffé

MCP, a pairwise comparison may be significant when the F is not

significant. It is often believed that a prior F-test is necessary to

2 7
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achieve adequate Type I error control. However, the Tukey and Bonferroni

MCPs, which have been recommended here as the most desirable procedures.

provide experimentwise error control without a prior test. Requiring a

significant F prior to the performance of these tests will cause an

unnecessary reduction of thelr Type I error rates and a corresponding loss

in power. In the case of the Scheffé MCP, a prior F serves only as a

labor-saving device, but does not affect the compariaons found significant.

The protected t procedlie does rely on a prior F to maintain the

experimentwise error control at the nominal level in the complete null

case. Similarly, a Studentized

smallest means must precede all

However, as stated above, these

range test of the largest versus the

other tests in the Newman-Keuls MCP.

two sequential procedures should be avoided

because, for k > 3, they provide inadenuate error control in partial null

cases despitq the use of prior overall tests.

In practice, most MCPs are now conducted using statistical software

packages which perform MCPs only in conjunction with an ANOVA F-test.

However, the results of the F-test need not be used as a criterion for

consideration of MCP results; rather, the researcher can proceed directly

to the MCP results, regardless of whether the F is significant.

Evaluation of the Five MCPs. Five MCPs have been described for the case

of k independent samples: a) Scheffe's procedure, b) Tukey's Studentized

range test and the Tukey-Kramer modification, c) the Dunn-Bonferroni

approach, d) Fisher's protected t-tests, and e) the Newman-Keuls test. A

28
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summary of the properties of these methods is given in Table 3. How can we

choose among these procedures?

Insert Table 3 about here

Ideally, we would like to select a method that provides a powerful test

while maintaining adequate Type I error control, requires few statistical

assumptions, and is easy to apply. All five procedures can be performed by

hand, although the Newman-Keuls becomes unwieldy for large k, and all can

be conducted using software packages such as SPSS (SPSS, Inc., 1986), SAS

(SAS Inc., 1988), and BMDP (Dixon, Brown, Engelman, Hill, & Jennrich,

1988). They all require the assumption that the observations are

independent random samples from normal populations with equal variances.

One way in which the five MCPs can be distinguished is in terms of

the number of statistically significant comparisons. Two of the MCPs --

the protected t procedure and the Newman-Keuls -- yielded three significant

comparisons for the psychotherapy data, whereas the remaining MCPs found

only two comparisons to be significant. However, this evidence alone is

not sufficient to draw conclusions about the relative power of the methods.

The Type I error rates of the MCPs must also be considered. The protected

t-tests and Newman-Keuls test can be ruled out as acceptable procedures

because (for k > 3) they do not control the experimentwise Type I error

rate at the nominal ae for all possible configurations of true mean values.

It should be stressed that there is no reason (other than tradition) that

the Type I error rate need be controlled at .05. However, it is important

29
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to choose a procedure that allows the researcher to control the error rate

at some prespecified level. The protected t-test and Newman-Keuls

procedures do not satisfy this criterion. In addition, the conditional

nature of these MCPs makes the derivation of confidence intervals

impossible.

The remaining three MCPs provide adequate Type I error control for

pairwise contrasts. Because the test statistics for these MCPs are

identical, we can compare their power for k - 4 groups, N k - 36 degrees

of freedom, and aE .05 by comparing their critical values for the

example. The Scheffé, Bonferroni, and Tukey critical values for test

statistics of the form of Equation 3 or 4 were 2.93, 2.80, and 2.70,

respectively, indicating that the Tukey method is the most powerful. For

performing the set of all pairwise comparisons, the superiority in power of

the Tukey (and Tukey-Kramer) methods to the Bonferroni and Scheffé methods

holds in general (Miller, 1985; Stoline, 1981); the superiority of the

Bonferroni to the Scheffé methods nearly always holds, with some exceptions

occurring at small values of N - k. (For a fixed value of N - k, the

discrepancies between the critical values increase with k. For instance,

with N - k - 36 degrees of freedom as above and k - 6, the critical values

for the Scheffé, Bonferroni, and Tukey methods are 3.52, 3.15, and 3.01,

respectively; for k - 10, the values are 4.40, 3.55, and 3.37. For fixed

values of k, the disparities between the critical values decrease slightly

as the error degrees of freedom increase.) These three MCPs can also be

applied to complex contrasts. In most practical, situations, the
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Bonferroni method will have the highest power for tests of this kind;

followed in order by the Scheffé and Tukey methods (Miller, 1981). (The

LSD test could be extended to apply to complex contrasts, but this would

compound its lack of Type I error control. Extension of the Newman-Keuls

test to complex contrasts would not be straightforward.)

The Tukey or Tukey-Kramer approach is therefore recommended as the

best method, in general, for performing pairwise comparisons in the normal

equal-variance case. There are, however, special circumstances in which

the Bonferroni MCP may be preferred. If only a subset of all pairwise

comparisons is to be performed, the Bonferroni approach may be more

powerful than the Tukey method. For example, if only three of the six

pairwise comparisons in the psychotherapy study had been of interest, the

Bonferroni critical value would have been tg ta3,36,9,5 - 2.52, which is

smaller than the Tukey critical value of 2.70. Furthermore, the Bonferroni

approach, unlike the Tukey method, controls the Type I error rate in a

comparisonwise fashion, which may be desirable if conclusions are to be

based in the truth of individual statements. Also, the method can provide

efficient tests of one-sided hypotheses and can accommodate unequal

allocation of error rates, which may be useful in certain applications.

As a postscript to this evaluation of MCPs, it must be noted that

there do exist stepwise MCPs that control the Type I error rate at a pre-

specified cre and are more powerful than the Tukey and Bonferroni methods

(see Hochberg & Tamhane, 1987; Shaffer, 1986). However, application of

these methods may require more effort than most researchers are willing to

31
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invest. A more important drawback is that stepwise methods do not allow

the construction of confidence intervals, which are extremely useful for

the interpretation of results. For these reasons, single-step procedures

are recommended here.

MCPs for Use Unde,.- Violation of the Equal-Variance and Normality

Assumptions

The five MCPs described in the preceding sections are based on the

assumptions of normality and equality of variances. If these assumptions

are violated, neither the MCPs described above nor the ANOVA F-test are

strictly valid. Alternative procedures that can be substituted in these

cases are discussed in this section. In determining whether these

alternative methods are required, it is important to consider that slight

deviatiOns from normality have been found to have little effect on the

power and Type I error rates of normal theory ANOVA-based procedures,

except when sample sizes are very small. On the other hand, relatively

small departures from variance equality can have substantial effects,

particularly when sample sizes are unequal.

MCPs for the Normal Unequal-Variance Case. A number of MCPs have been

proposed for the normal unequal-variance case (see Dunnett, 1980; Games,

Keselman, and Rogan, 1981, and Tamhane, 1979). Many of these are based in

Welch's (1938) modification of the t-test, which requires that a test

statistic of the form
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__LLS2

be compared to the desired percentile of the t distribution with vr degrees

of freedom, where

[10]

2 2(S sdni.) 2

4/[nI(n, - 1)] + - 1)]

Non-integer values of vr are rounded to the nearest integer. A simple way

to apply this procedure to the case of multiple comparisons is to perform

all k(k - 1)/2 tests of this kind, controlling aE via the Bonferroni

inequality (Ury and Wiggins, 1971). The procedure is somewhat cumbersome

to perform by hand because the degrees of freedom, vr, must be recomputed,

and a new critical value, tg , obtained for each comparison. In
.111-

practice, however, the significance probabilities (p-values) for Welch

t-tests can be obtained from packaged software,.such as the SPSS' T-TEST

program (SPSS, Inc., 1986), the SAS TTEST program (SAS Institute, Inc.,

1988), or BMDP7D (Dixon, et al., 1988). The Bonferroni inequality can then

be applied by declaring significant those comparisons for which the p-value

is less than aE /[k(k - 1)/2].

For illustration, the procedure will be applied to the data of

Table 2. For the G - C comparison,
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95.334/[102(9)] +94.224/[102(9)]
- 17.97

The appropriate critical value is tgv i.a quoes 2.97; therefore, the
-E

contrast is again found significant. The t* values for the P - G, P - I,

P - C, G - I, and I - C comparisons are 3.40, .90, -.23, -2.50, and -1.14,

respectively. The value of pr is, in each case, 18 when rounded to the

nearest integer, leading, once again, to a critical value of 2.97.

Therefore, only the G - C and P - G comparisons are statistically

significant. An alternative to the Bonferroni approach is the Tukey-type

MCP developed by Games & Howell (1976). However, the Type I error rates

for this MCP sometimes exceed their nominal levels to a small degree

(Dunnett, 1980; Tamhane, 1979). A Scheffé-type MCP has been developed for

the unequal-variance case as well (Brown & Forsythe, 1974), but its power

is low for pairwise comparisons. (Also, Rubin, 1983, has described some

problems associated with the approximation proposed by Brown & Forsythe.)

Although the methods mentioned here do not require a prior test, it should

be noted that overall hypothesis tests analogous to F-test exist for the

one-way ANOVA model in the unequal-variance case (e.g., Welch, 1951; see

Rubin, 1983).

MCPs for the Nonnormal Case. In this section; nonparametric MCPs for the

nonnormal case are described. All the procedures in this section

34
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(Equations 11-14) are based on large-sample approximations. As a rule of

thumb, it is suggested that they be used with caution for N < 20. If there

is reason to believe that normality does not hold, one option is to use

Scheffé-type MCPs based on the Kruskal-Wallis (1952) rank analogue to

parametric ANOVA. This approach, which was presented by Nemenyi (1963) and

is described in Marascuilo and McSweeney (1977) and Miller (1981), is

illustrated for the data of Table 2. To perform a Kruskal-Wallis test, the

observations must first be ranked from 1 to N, ignoring group membership.

Midranks are assigned to ties. The ranked observations and the sums of the

ranks for each group (Rd are shown in Table 4.

Insert Table 4 about here

The Kruskal-Wallis statistic is computed as follows:

12 k 1
[11] H --- R2 - 3(N + 1)

N(N + 1) ni

12

40(41)
[249.52/10 + 101.52/10 + 207.52/10 +261.52/10] - 3(41)

- 11.63.

Because the value of H exceeds X2k -1:1 -at Xlm - 7.81, the null hypothesis of

no group differences is rejected at aE - .05. In order to compare groups i

and i", the following test statistic is computed:

[12] Z. -
N(N1+2 1) 1 1

3b
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where R and iii. are the mean ranks for groups i and i', respectively.

The critical value is

[13] s- -N

This is analogous to the use of S (Equation 6) as a critical value for

parametric ANOVA. A comparison is statistically significant if Z > S' or

Z < -S'. The Zr statistic for comparing the G and C groups is

101.5 - 261.5
Zec - - -3.06,

--\\40(41)

12 10

which exceeds S 1778I - 2.79. Therefore, as in the previous analyses,

it is concluded that the combined therapy and group therapy groups differ

in ability to function. The Zr values for the P - G, P I, P - C, G I,

and I - C comparisons are 2.83, .80, -.23, -2.03, and -1.03, respectively.

Again, only the G - C and P - G comparisons are statistically significant.

For a more precise test, a correction for ties should be used in the

computation of both the H statistic and the Z-statistics (see Marascuilo &

McSweeney, 1977, pp. 302, 318). Use of the correction increases the

likelihood of rejecting the null hypothesis. In the present example, the

use of the correction would not have changed the conclusions.

As was true of the Scheffé approach in the parametric case, it is

possible to find that the Kruskal-Wallis test is significant, but that no

pairwise comparisons are significant. Another similarity to the parametric

case is that no additional risk of Type I error is incurred if the
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Kruskal-Wallis test itself is omitted; the researcher can proceed directly

to the performance of pairwise MCPs using S as a critical value. However,

if only pairwise comparisons are of interest, a more powerful test can be

achieved j employing the Bonferroni critical val,lq, t2.. where No"

indicates that the critical value for infinite degrees of freedom should be

used (Dunn, 1964). The Bonferroni critical value for the example is

- 2.64, as compared to S' - 2.79. A still more powerful approach is the

joint-ranking analog to Tukey's test, for which the critical value is

- q4,01,5 /12- - 3.63 - 2.57. This method was proposed for the

equal-n case by Nemenyi (1963, see Levy, 1979; Miller, 1981) but provides a

good approximation in the case of unequal sample sizes (Miller, 1985; Zwick

& Marascuilo, 1984).

The three MCPs described above make use of ranks based on all k

groups (joint ranking). This may be considered undesirable because it

leads to a situation in which the hypothesis test for each pair of

populations is conditional on the location of the other k - 2 populations

in the study. (In addition, Dude Voshaar [1980] has shown that, because of

this property, the experimentwise Type I error rate for the rank analog to

Tukey's test can exceed the nominal aE in partial null cases.) A related

disadvantage of MCPs based on joint ranking is that it is nearly impossible

to obtain confidence intervals in the original metric of the observations.

The complexity of the calculations is a result of the dependence of each

pairwise comparison on all observations in the study (Miller, 1981,

pp. 168-169). Because of these properties, the researcher may prefer an

3"4
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MCP in which a separate ranking is performed for each comparison (pairwise

ranking). For example, all pairwise independent-sawle Wilcoxon tests

could be performed, controlling ae via the Bonferroni inequality (see Dunn,

1964). A Z-statistic of the form shown in Equation 12 is then compared to

tiel...at (Although the Z-statistic in Equation 12 does not resemble a

conventional Wilcoxon test, it is equivalent to the normal approximation to

the Wilcoxon test when pairwise ranking is used.) The only difference

between this MCP and the previously described rank-based Bonferroni

approach is that, in this MCP, the ranks for a given comparison are based

only on the groups included in that comparison. A more powerful test is

the k-sample Steel-Dwass procedure, which is an analog to Tukey's test

based on pairwise ranking (see Miller, 1981; Hochberg & Tamhane, 1987).

The use of MCPs based on pairwise, rather than joint ranking, allows the

construction of confidence intervals (Miller, 1981, pp. 145-146). It

should be noted that joint and pairwise ranking procedures will not

necessarily lead to the same conclusion (see Dunn, 1964, Hollander & Wolfe,

1973, and Hochberg & Tamhane, 1987 for further discussion of this issue).

Rank procedures are useful when there is reason to believe that

normality does not hold. If normality is violated, rank tests can be

substantially more powerful than parametric tests. (Under some

circumstances, related nonparametric methods called normal score procedures

are more powerful than rank tests; see Marascuilo and McSweeney, 1977.)

Unfortunately, rank methods, like their parametric counterparts, do not

provide adequate Type I error control if the equal-variance assumption is
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not met (e.g., see Van der Vaart, 1961). They are therefore not

well-suited to the situation in which both the normality and equal-variance

assumptions are violated. A procedure that may perform adequately in this

situation is the MCP based on the all pairwise median tests. The first

step is to find the median for the combined data for each pair of groups.

Then the observations in each pair of groups are categolized according to

whether they fall above or below the median for that pair. For example, if

the data for the G and C groups in Table 2 are combined and ranked, the

median is found to be 32.5. Two observations in the G group and eight

observations in the C group are found to be above the median. For equal

sample sizes, the appropriate test statistic is

[14] Z PI.

11 1/2n

where 15, and pr represent the proportion of cases in groups i and i that

are above the median. These Zir values are compared to

(Critical values based on the Scheffé or Bonferroni approach could be used

but would lead to less powerful tests.)

The test statistic for the G - C comparison is

ZG-c

Z-GC

exceeds ql,0:95 /i/ C14.1°:96

.8 - .2
- 2.68.

-1 1/20

/./2. - 2.57, so it can be concluded once again

that the G and C groups differ. Analogous computations show that the P - G

comparison is also significant, but the remaining four comparisons are not.

Further discussion of pairwise median test is given by Hochberg and Tamhane

3 9
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(1987). Another median-based MCP that has been proposed (see Miller, 1981)

is conducted by obtaining the combined median for all k groups and then

calculating what proportion of each group is above it. This procedure is

subject to the problems associated with all joint ranking procedures and

can also lead to nonsensical conclusions in some circumstances (see

Hochberg & Tamhane, p. 269).

As an alternative to the traditional nonparametric MCPs for the non-

normal case discussed in this section, it may be possible to transform the

data and then apply standard MCPs. Another alternative is the application

of robust MCPs, which involve t-like statistics based on estimators other

than the sample mean and variance (Dunnett, 1982). Robust methods may be a

good choice when both the normality and equal-variance assumptions are

thought to be violated.

One-Factor Repeated Measures Designs

The example of Table 2 involved three independent groups, each of

which was exposed to a different condition. Another commonly used design

involves a single group of subjects examined under k different conditions

or on k occasions. An analysis of variance can be performed to test the

hypothesis that all k means are equal in the population. If an overall

test of this kind is desired, the researcher muet choose between two

general analysis strategies: the multivariatP approach and the univariate

mixed-model approach. Useful discussions of the computational details of

these analyses and of the issues involved in choosing between the two

4
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approaches are given by in the chapter by Lewis in this volume and by

Barcikowski and Robey (1984), Finn and Mattson (1978), McCall and Appelbaum

(1973), and Vitaliano (1981). Only a brief description of the two methods

is given here.

In the multivartate approach, the k original variables (one for each

occasion or condition) are transformed to k - 1 new variables, each of

which may represent a contrast of interest (see Morrison, 1976, pp. 145-146

for details). One possibility is to transform the k observations for each

subject (x, x2,....x,) to differences between successive observations

(x,- x2, x2 - x3,. - x). These k - 1 difference scores are then

treated as a single multivariate observation and a one-sample Hotelling's

(1931) T2 is applied. In the univariate mixed-model approach, the analysis

is treated as a Subjects x Conditions ANOVA. The appropriate F statistic

is the mean square for subjects divided by the mean square for the Subjects

x Conditions interaction.

Both the multivariate and mixed-model approaches require the

assumption that the k observations for each subject are drawn from a

multivariate normal distribution (Rouanet & Lépine, 1970) and that subjects

are independently sampled. A disadvantage of the mixed-model approach is

that, in order for the analysis to be valid, the variance-covariance matrix

of the repeated measures must satisfy a condition called sphericity or

circularity. This property is equivalent tc equality of the variances of

difference scores for ell possible pairs of the k conditions included in

the experiment (Huynh & Feldt, 1970). The multivariate approach does not
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require this assumption, but will often be less powerful than the

mixed-model analysis.

Fortunately, if a researcher is interested only in comparing pairs of

conditions, it is not necessary to choose between the two analysis

strategies or to be concerned about sphericity. The researcher need only

perform all k(k - 1)/2 correlated-sample t-tests (or any subset of these),

using an error term based only on the two groups being compared, and

controlling aE via the Bonferroni equality (Myers, 1979). To illustrate

this approach, assume that the data of Table 2 represent a series of four

measurements (which, for ease of reference, will continue to be denoted as

P. G, I, and C) on a single group of n - 10 subjects. A correlated-sample

t-test comparing conditions i and i can be calculated according to the

following formula

1-5w

[15] -

2
SD

where -150. 51, - 5-(1. is the mean difference between the two conditions and

sg the variance of the difference scores (xl - xr). The appropriate

critical value of tB can be obtained from a table of the Bonferroni tC,n ctt

statistic. It can be shown that

[16] S
2 2 2
o ° SI sc - 2r11.s1s1. ,
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where rw is the correlation between the two sets of observations.

However, the simplest way to calculate sit is to actually compute the

difference scores and then calculate their variance. Table 5 shows all

three sets of difference scores, along with their means and variances.

Insert Table 5 about here

A pairwise comparison of the G and C conditions can be conducted as

follows:

tGC

-16

N
1.15

10

- -47.1P

39

For n - 1 - 9 degrees of freedom, C - 6 comparisons, and aE - .05, the

critical value can be found by linear interpolation to be approxlmately

3.40. Therefore, we would conclude that there is a difference between the

G and C conditions. The t-statistics for the remaining five pairwise

comparisons, given at the bottom of Table 5, are also statistically

significant. Confidence intervals could be constructed for these mean

differences as well. This example demonstrates that the inadvertent

application of an MCP intended for independent samples to a

repeated-measures design can lead to a substantial reduction in power: The

Bonferroni approach led to two significant comparison in the

independent-sample case and six in the repeated measures analysis.
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Examination of Equation 16 reveals the reason for this: If an independent

sample test is mistaken].) applied, the square of the denominator of the

test statistic will be

instead of

MSW
(n - 1)s21 + (n - 1)s21.

2(n - 1)

S 2

r
S2 + S2 - 2r s

11. 11

\ S2 + S2
I

The term 2r11.s1s1. will be positive whenever the correlation between the two

sets of measurements is positive, which is the case in most applications.

Therefore, by using an independent-sample MCP, the researcher is forfeiting

the opportunity to subtract a positive term from the error estimate.

An important property of the correlated-sample t-tests described above

is that, unlike the sets of t-tests conducted in the independent-sample,

equal-variance case, they do not make use of a common error term. It is

because there is no pooled error term that the sphericity assumption is not

needed for these pairwise comparisons (see Boik, 1981).5 Because the

Bonferroni t-tests require no prior F-test, the best procedure to follow if

only pairwise tests are of interest is to perform the t-tests only. It

should be noted that, in the multivariate approach to repeated measures

ANOVA, pairwise comparisons of condition means performed via the Roy-Bose

(1953) method reduce to correlated-sample t-tests of the form shown in

Equation 15. The critical value, however, is larger than that used in the

Bonferroni approach, leading to a more conservative test.

4 4
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Some empirical evidence on the performance of the Bonferroni approach

with separate error terms is given by Maxwell (1980). He compared Tukey's

Studentized range test (with a pooled error term based on the Subjects x

Conditions interaction), two modifications of Tukey's test, both of which

make use of separate error terms, the Roy-Bose method associated with the

multivariate approach, and the Bonferroni method described above. For

conditions in which sphericity held, both Tukey's test and the Bonferroni

approach performed well. However, when sphericity was violated, the only

procedure that provided adequate power while controlling the Type I error

rate at the nominal level was the Bonferroni method.

When normality cannot be assumed, nonparametric procedures can be

applied. For instance, multiple sign tests or multiple Wilcoxon

signed-rank tests can be conducted, using the normal approximation (see

Marascuilo & McSweeney, 1977) and controlling aE via the Bonferroni

inequality. Alternatively, the multiple comparison approach associated

with the Friedman (1937) model can be applied (Levy, 1979; Marascuilo &

McSweeney, 1977; Miller, 1981).

Summary

In order to select the appropriate pairwisc MCP for use in a

one-factor ANOVA model, the researcher should have a good understanding of

experimentwise and comparisonwise Type I error rates. When testing

45



Pairwise Comparison Procedures

42

multiple hypotheses, the experimentwise error rate is usually of primary

interest, although there are occasions in which comparisonwise control is

useful. These two methods of assessing error rates are related but not

interchangeable.

Another important issue is the relationship between Type I error rate

and power. The power of competing MCPs can not be compared meaningfully

unless the MCPs have equivalent experimentwise Type I error rates.

Therefore, the selection of MCPs solely on the basis of the number of

statistically significant results they produce is not well-founded. If a

researcher wants to increase power, he should not attempt to do so by

allowing the Type I error to exceed the desired level, but by increasing

sample size, increasing the homogeneity of the sample, and improving the

quality of measurement (see Cohen, 1982). There is, however, no reason

that the experimentwise Type I error rate need be set to .05. A larger

error rate certainly may be acceptable in some situations. What is

Important is that the researcher know and report the level at which the

error has been controlled.

For the case of independent samples drawn from normal populations with

equal variances, the Tukey method and, for unequal sample sizes, the

Tukey-Kramer modification, were recommended as the best procedures in most

situations. For certain specialized applications, such as those requiring

one-sided tests or unequal allocation of error rates, the Bonferroni method

may be preferred. For the normal unequal-variance case, Welch t-tests were

recommended, with the Bonferroni approach used to control the

experimentwise error rate. For the nonnormal case, a number of rank

4 6'
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procedures were discussed. The performance of all pairwise Wilcoxon tests,

with the experimentwise error rate controlled via the Bonferroni or

Steel-Dwass approach, has certain advantages over the procedures based on

joint ranking. For the case in which both normality and equality of

variances are thought to be violated, the MCP based on all pairwise median

tests may be a good choice. For one-factor repeated measures designs,

dependent t-tests with separate error terms were recommended, with error

control achieved through the Bonferroni approach. Nonparametric MCPs for

this design include multiple sign tests, multiple Wilcoxon signed-rank

tests, and MCPs based on the Friedman model. In all MCP applications, the

computation of confidence intervals can provide a useful supplement to

significance testing. For this reason, as well as simplicity of

computation, single-step MCPs, rather than more powerful stepwise methods,

were recommended.

This paper was limited to the discussion of pairwise MCPs in

one-factor designs. MCPs for complex contrasts, two-way ANOVA designs, and

special situations, such as comparing experimental groups to a control

group, are discussed by Hochberg and Tamhane (1987) and Miller (1981).

Information about Bayesian, decision-theoretic, and robust MCPs, as well as

extensive discussion of stepwise MCPs, is given in Hochberg and Tamhane

(1987).
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Footnotes

'According to the Bonferroni inequality, if a, - .05/[k(k - 1)/2],

then ciE cannot exceed .05; that is, aE k(k - 1)/2 a, - .05. If a, is

small and the number of comparisons is not too large, the Bonferroni

approach provides a surprisingly good upper bound, i.e., the bound does not

exceed the true error rate by a large amount (Miller, 1981).

'All critical values for 36 degrees of freedom were obtained by

linear interpolation between values for 30 and 40 degrees of freedom.

3"WSD" is sometimes used to refer to a different procedure developed

by Tukey in which the critical values are obtained by averaging the

critical values from the HSD and Newman-Keuls methods.

4For k - 3, the protected t and Newman-Keuls MCPs are assured to

control aE even in partial null cases; see Hayter, 1986; Hochberg and

Tamhane, 1987; Shaffer, 1979; 1986. Also see Hochberg and Tamhane, 1987,

p. 4 and elsewhere, for a detailed discussion of the power of the protected

t method.

5Boik (1981) shows that if sphericity does not hold, use of a pooled

error term will, in general, lead to unsat. 'factory tests of individual

contrasts even if one of the available corrections for nonsphericity is

applied. Even under minimal departures from sphericity, these "corrected"

tests can have poor power properties and Type I error rates that differ

substantially from their nominal values.
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Table 1

Hypothetical Data on 100 Simulated Experiments with k 3

Number of significant
comparisons

(type 1 errors)

Number of experiments with the indicated number
of significant comparisons

Multiple comparison
procedure 1

Multiple comparison
procedure 2

0 95 95

1 4 0

2 1 0

3 0 5

Total 100 100
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Table 2

Hypothetical Data for Psychiatric Treatment Study'

Pharmacologic
Therapy (P)

Group
Psychotherapy (G)

Individual
Psychotherapy (I)

Combination of
P and I (C)

24 12 21 27

29 13 25 28

33 18 30 35

36 20 32 37

38 21 36 39

42 29 3 44

44 30 38 45

47 30 42 46

51 35 43 52

56 42 56 57

40 25 36 41

99.11 95.33 98.67 94.22

n; 10 10 10 10

- 35.5, MSB 536.o7, MSW 96.83, N - 40, tpG 3.41, t, .91, tpc -.23,

tc, -2.50, tGc .-, -3.64, and tc - -1.14.
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Table 3

Properties of Pairwise Multiple Comparison Procedurts_ for Independent Samples in the Normal Eoual-Variance Case

Allows control of ezperimentwise
Type I error rate at preassigned
level

Allows computation of confidence
intervals

Allows efficient one-sided tests
and unequal allocation of error
rates

Can provide tests of complex
contrasts

Power ranking for pairwise
comparisons*

General critical value for
t-statistics of Equation 4

Scheffé Tukey HSD Dunn-Bonferroni

Fisher's protected
t-tests Newman-Keuls

Yes Yes Yes Error rate.is not controlled at nominal at

for all possible configurations of means

Yes Yes Yes No No

No No Yes No No

Yes Yes Yes Yes, but Type I error No

control is inadequate

3 1 2 Not ranked because of inadequate

gb.N.ti.et/J.2- t:s -et

Type I error control

t-tests p < k

perforried only if No comOarisons are
j(k -

> performed within
ranges declared non-
significant

Type of table required F Studentited range Bonferroni t F, t Studentized range

Critical value for example of
Table 2 (N - 40, k 4,

C - k(k - 1)12 - 6, a( - .05)

2.93 2.70 2.80 2.03 2.70 for p - 4,
2.45 for p 3,

2.03 for p 2.

*This ranking holds in almost all cases. It is assumed that all k(k - 1)/2 pairwise comparisons are of interest.
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Table 4

Ranked Data for Psychiatric Treatment Study'

Pharmacologic
Therapy (P)

Group
Psychotherapy (G)

Individual
Psychotherapy (I)

Combination of
P and I (C)

7 1 5.5 9

11.5 2 8 10

17 3 14 18.5

20.5 4 16 22.5

24.5 5.5 20.5 26

28 11.5 22.5 31.5

31.5 14 24.5 33

35 14 28 34

36 18.5 30 37

38.5 28 38.5 40

249.5 101.5 207.5 261.5

n, 10 10 10 10

a ZpG - 2.83, Zm - .80, ZpG - -.23, Za -2.03, ZGG - -3.06, and Z,c - -1.03.
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Difference Scores for the Data of Table 2 Treated as a Repeated Measures

Design with n = 10

P-G P-I P-C G-I G-C I-C

tii

12 3 -3 -9 -15 -6

16 4 -1 -12 -15 -3

15 3 -2 -12 -17 -5

16 4 -1 -12 -17 -5

17 2 -1 -15 -18 -3

13 5 -2 -8 -15 -7

14 6 -1 -8 -15 -7

17 5 -1 -12 -16 -4

16 8 -1 -8 -17 -9

14 0 -1 -14 -15 -1

15 4 -1.40 -11 -16 -5

2.89 4.89 .70 6.67 1.15 2.36

27.90 5.72 -5.29 -13.47 -47.18 -10.29
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