DOCUMENT RESUME

ED 385 586	TM 024 024
AUTHOR TITLE	Tannenbaum, Richard J. Job Analyses of the Knowledge Important for Newly Licensed (Certified) Chemistry and Physics Teachers. The Praxis Series: Professional Assessments for Beginning Teachers.
INSTITUTION REPORT NO PUB DATE NOTE PUB TYPE	Educational Testing Service, Princeton, N.J. ETS-RR-92-78 Nov 92 205p. Reports - Research/Technical (143) Tests/Evaluation Instruments (160)
EDRS PRICE DESCRIPTORS	MF01/PC09 Plus Postage. *Beginning Teachers; *Chemistry; Competence; Job Analysis; Job Skills; *Knowledge Base for Teaching; *Physics; *Science Teachers; Secondary Education; Secondary School Teachers; Teacher Certification; Teacher Educators; Teacher Evaluation; Test Construction
IDENTIFIERS	*Praxis Series; *Subject Content Knowledge; Test Specifications

ABSTFACT

Two job analyses were conducted to define knowledge domains for newly certified chemistry and physics teachers, respectively, to perform their jobs competently. The results of the job analyses will be used to develop test specifications for the Praxis II Series subject Assessments in Chemistry and Physics. Initial draft domains were prepared for both subjects and reviewed by advisory panels. After revision, the draft domain for chemistry consisted of 8 major content areas and 181 knowledge statements. The domain for physics consisted of 8 major content areas and 184 statements. Survey responses of 175 teachers and 81 teacher educators supported 116 statements as important for the chemistry knowledge domain. Responses of 330 teachers and teacher educators supported 124 of the 184 physics statements. The supported statements and major content areas from both surveys should be used to construct test specifications to measure content knowledge for physics and chemistry teachers. Eight appendixes include the surveys and supplemental information about responses and methodology. Twelve tables present study findings. (Contains nine references.) (SLD)

ז'ר ז'ר ז'ר ז'ר ז'ר	***************************************	າ່ເ ກ່ເ
*	Reproductions supplied by EDRS are the best that can be made	×
*	from the original document.	×
3030303030		% %

Job Analyses of the Knowledge Important for Newly Licensed (Certified) Chemistry and Physics Teachers

Richard J. Tannenbaum

U.S. DEPARTMENT OF EDUCATION Office of Educational Research and Improveme

EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

- This document has been reproduced as received from the person or organization originating it
- C Minor changes have been made to improve reproduction quality

Points of view or opinions stated in this document do not necessarily represent official OERI position or policy.

November 1992

PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) "

BEST COPY AVAILABLE

RR. 92-78

(ÉS) Educational Testing Service

Copyright © 1992 by Educational Testing Service. All rights reserved.

EDUCATIONAL TESTING SERVICE, ETS, and the ETS logo are registered trademarks of Educational Testing Service. THE PRAXIS SERIES: PROFESSIONAL ASSESSMENTS FOR BEGINNING TEACHERS and its design logo are trademarks of Educational Testing Service.

Job Analyses of the Knowledge Important for

Newly Licensed (Certified) Chemistry and Physics Teachers

4

by

Richard J. Tannenbaum

Division of Applied Measurement Research

Educational Testing Service

Princeton, New Jersey

November 1992

Copyright [©] 1992 by Educational Testing Service. All rights reserved.

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Acknowledgements

I would like to extend my gratitude to the many individuals who helped make these job analysis studies a success. A number of colleagues at ETS played important roles in the completion of this project. Miriam Fuhrman, Michael Kaplan, Angie Holler, and John Economou did an outstanding job of constructing the initial drafts of the chemistry and physics knowledge domains. They were invaluable when it came to identifying and contacting external subject-matter experts to participate in the study and instrumental in making the Advisory/Test Development Committee meeting a success. This information was relayed to me by Scott Wesley, Patricia Bukatko, and Susan Wilson, who, in my absence, facilitated the conduct of the meeting. Thank you for being there, when I could not. My gratitude also extends to Michael Rosenfeld for his overall guidance and helpful feedback and Anne Reynolds for her development of a framework of content-specific pedagogy that was the basis for the construction of the Physical Sciences Pedagogy section of the job analysis studies. Many thanks to Cindy Hammell for producing the appendixes of this report. I would also like to thank the members of the External Review Panels and the Advisory/Test Development Committee for their significant contributions to the construction of the chemistry and physics knowledge domains. Lastly, I thank the professional associations that provided the mailing lists for the administration of the job analysis surveys, and the teachers, teacher educators, and administrators who spent time completing and returning the surveys.

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Job Analyses of the Knowledge Important For Newly Licensed (Certified) Chemistry and Physics Teachers

Richard J. Tannenbaum

Executive Summery

Two job analysis studies were conducted to define knowledge domains important for newly licensed (certified) chemistry and physics teachers, respectively, to perform their jobs in a competent manner. The results of the job analyses will be used to develop test specifications for the Praxis II Subject Assessments in Chemistry and Physics.

Initial draft domains of important knowledge statements were constructed by ETS Test Development staff with expertise in chemistry and physics and ETS Research staff with expertise in job analysis. In the process of developing these drafts, the ETS subject-matter experts reviewed previous National Teacher Examination (NTE) chemistry and physics test specifications, state licensure (certification) requirements, and relevant professional literature.

The draft domain for chemistry consisted of eight major content areas partitioned into various subareas and 162 specific knowledge statements. The eight major content areas were: (1) Chemistry as an Experimental Science, (2) Organization of Matter, (3) Chemical Bonding and Molecular Geometry, (4) The Kinetic Theory and States of Matter, (5) Thermodynamics and Chemical Reactions, (6) Solutions and Solubility, (7) Environmental/Societal Issues Related to Chemistry, and (8) Pedagogy Specific to Chemistry.

The draft domain for physics consisted of nine major content areas also partitioned into various subareas and 160 specific knowledge statements. The nine major content areas were: (1) Properties and States of Matter, (2) Mechanics, (3) Heat and Thermodynamics, (4) Electricity and Magnetism, () Wave Motion, (6) Atomic and Nuclear Physics, (7) Environmental/Societal Issues Related to Physics, (8) Mathematical and Measurement Skills, and (9) Pedagogy Specific to Physics.

After the draft domains were constructed each was mailed to a different panel of nine external subject-matter experts (one panel with content expertise in chemistry received the chemistry domain and the other with content expertise in physics received the physics domain). These subject-matter experts were secondary school teachers and teacher educators. The purpose of each External Review Panel was to review the draft domain in terms of: (1) the appropriateness of the overall structure (i.e., do the major content areas adequately define the important components of the knowledge domain) and (2) the appropriateness of the specific knowledge statements and their completeness and clarity. Revisions suggested by the panels, including additions and deletions of content areas and knowledge statements, were obtained via telephone interviews conducted by ETS Research staff. Based upon the compiled suggestions some reorganization of the domains occurred.

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

The structure of the chemistry domain was modified to include eight new major content areas partitioned into various subareas and 156 specific knowledge statements. The eight new major content areas were: (1) Scientific Methodology/Technology/History (which incorporated content from the original area Chemistry as an Experimental Science); (2) Basic Topics in Physical Science (which included content from the original areas Organization of Matter; Kinetic Theory and States of Matter; and Thermodynamics and Chemical Bonding Reactions); (3) Chemical Periodicity; (4) Nomenclature; (5) The Mole, Chemical Bonding, and Molecular Geometry; (6) Biochemistry; (7) Science, Technology, and Society (which included the content from the original area Environmental/Societal Issues Related to Chemistry); and (8) Pedagogy Specific to the Physical Sciences.

The structure of the physics domain was modified to include eight new major content areas partitioned into various subareas and 160 specific knowledge statements. The eight new major content areas were: (1) Scientific Methodology/Technology/History (which included content that originally was part of the area Mathematical and Measurement Skills); (2) Basic Topics in Physical Science (which incorporated content from the original areas Properties and States of Matter and Heat and Thermodynamics); (3) Mechanics; (4) Electricity and Magnetism; (5) Waves; (6) Modern Physics (which incorporated the original area Atomic and Nuclear Physics); (7) Science, Technology, and Society (which included the content from the original area Environmental/Societal Issues Related to Physics); and (8) Pedagogy Specific to the Physical Sciences.

The revised draft domains were then reviewed by an Advisory/Test Development Committee. This committee consisted of secondary school teachers, teacher educators, and a district administrator with expertise in both chemistry and physics. One committee was formed because of the large degree of overlap in the knowledge domains of chemistry and physics. The purpose of this committee was to modify the draft domains so that they accurately reflected what the members of the committee believed were the knowledge important for new licensed (certified) chemistry and physics teachers. This modification process occurred during a four-day meeting held at ETS. The outcomes of the modification included only minor wording changes and the additional deletion of some knowledge statements.

The revised domains were then subject to verification/refutation through national surveys of chemistry and physics education professionals (i.e., teachers, teacher educators, and state administrators). The chemistry education professionals received the chemistry knowledge domain; and the physics education professionals received the physics knowledge domain. The participants were asked to rate the specific knowledge statements in terms o *importance* for and *level of understanding* needed by newly licensed (certified) chemistry and physics teachers.

Three types of data analysis were conducted to support the development of content valid (content relevant) test specifications for the Subject Assessments in chemistry and physics: (1) means were computed of the importance ratings for each knowledge statement by the groups of education professionals and by the appropriate subgroups of respondents; (2) correlations of the profiles of these mean importance ratings were computed across the groups of education professionals and within the appropriate subgroups of respondents; and (3) percents were

۵

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

computed across each of the five response categories associated with the level of understanding rating scale for each knowledge statement. These percents were computed at the aggregate level of the survey respondents to provide more easily interpretable, and therefore, useful information to the Advisory/Test Development Committee. To be included in the mean and correlational analyses, a respondent category was required to have at least 30 respondents (e.g., ≥ 30 state administrators, ≥ 30 females). This is a necessary condition to ensure that the computed mean values are accurate estimates of the corresponding population mean values (Walpole, 1974).

A mean importance rating cutpoint of 2.50 (midpoint between moderately important and important) was established to designate knowledge statements as eligible (≥ 2.50) or ineligible (< 2.50) for inclusion in the development of test specification.

Study 1: Chemistry

The results of the mean analysis conducted by teachers and teacher educators (there were no respondents identified as state administrators) indicated 60 knowledge statements were rated less than 2.50. This represents 33% of the content domain. Five additional knowledge statements were rated below 2.50 by two of the subgroups (geographic region and teaching experience) of respondents. In total, 65 of the 181 statements (36%) did not meet the 2.50 criterion for inclusion. Still, however, 64% of the domain (116 statements) is eligible for inclusion in the development of test specifications.

The computation of correlation coefficients to assess agreement in terms of perceived relative importance of the knowledge statements indicated a very high level of agreement. The coefficient for the comparison between teachers and teacher educators was .92; the coefficients for the subgroup comparisons all exceeded .90.

The 116 knowledge statements that were verified to be important by the surveyed teachers, teacher educators, and the subgroups should be used as the foundation for the development of test specifications. Test specifications that are linked to the results of a job analysis provide support for the content validity of the derived assessment measures and may be considered as part of an initial step in ensuring the fairness (to subgroups of chemistry teacher candidates) of the derived assessment measures. It is reasonable to assume that, due to testing and psychometric constraints (e.g., time limits, ability to measure reliably some content), not all of the verified content may be included on the assessment measures. One source of information that may be used to guide the Advisory/Test Development Committee in its decision of what verified content to include on the assessment measures is the mean importance rating. Although a rank ordering of the content by mean importance rating is not implied, it is recommended that initial consideration be given to content that is well above the cutpoint and represents the appropriate breadth of content coverage.

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

The results of the analysis of the level of understanding rating scale indicated that 40% of the knowledge statements should be measured between the levels of *comprehension* and *application/utilization*; and an additional 48% should be measured between the levels of *application/utilization* and *analysis*.

Evidence was also provided in this study of judged importance of the eight major content areas and the comprehensiveness of the knowledge domain. These two pieces of information have implications for the adequacy of the chemistry knowledge domain. If the domain was adequately defined then each major content area should have been judged to be important and well covered. The results support the adequacy of the defined knowledge domain. With respect to importance (see Table 1), both teachers and teacher educators judged the same four content areas to be important and one or the other group judged the remaining content areas to be moderately important or important. With respect to content coverage (see Table 5), the teachers judged six content areas to be well covered and two to be between adequately covered and well covered. The teacher educators judged two content areas to be well covered and six to be between adequately covered and well covered.

Study 2: Physics

The results of the mean analysis conducted by teachers and teacher educators (there were no respondents identified as state administrators) indicated 56 knowledge statements were rated less than 2.50. This represents 30% of the knowledge domain. Four additional knowledge statements were rated below 2.50 by two of the subgroups (sex and teaching experience) of respondents. In total, 60 of the 184 statements (33%) did not meet the 2.50 criterion for inclusion. Still, however, 67% of the domain (124 statements) is eligible for inclusion in the development of test specifications.

The computation of correlation coefficients to assess agreement in terms of perceived relative importance of the knowledge statements indicated a very high level of agreement. The coefficient for the comparison between teachers and teacher educators was .91; the coefficients for the subgroup comparisons all exceeded .90.

The 124 knowledge statements that were verified to be important by the surveyed teachers, teacher educators, and the subgroups should be used as the foundation for the development of test specifications. Test specifications that are linked to the results of a job analysis provide support for the content validity of the derived assessment measures and may be considered as part of an initial step in ensuring the fairness (to subgroups of physics teacher candidates) of the derived assessment measures. It is reasonable to assume that, due to testing and psychometric constraints (e.g., time limits, ability to measure reliably some content), not all of the verified content may be included on the assessment measures. One source of information that may be used to guide the Advisory/Test Development Committee in its decision of what verified content to include on the assessment measures is the mean importance rating. Although a rank

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

ordering of the content by mean importance rating is not implied, it is recommended that initial consideration be given to content that is well above the cutpoint and represents the appropriate breadth of content coverage.

The results of the analysis of the level of understanding rating scale indicated that 58% of the knowledge statements should be measured between the levels of *comprehension* and *application/utilization*; and an additional 48% should be measured between the levels of *application/utilization* and *analysis*.

Evidence was also provided in this study of the judged importance of the eight major content areas and the comprehensiveness of the knowledge domain. These two pieces of information have implications for the adequacy of the physics knowledge domain. If the domain was adequately defined then each major content area should have been judged to be important and well covered. The results support the adequacy of the defined content domain. With respect to importance (see Table 7), both teachers and teacher educators judged the same five content areas to be important. Of the remaining three content areas, one was judged to be important by the teacher educators and moderately important by the teachers; and two were judged to be moderately important by both teachers and teacher educators. With respect to content coverage (see Table 11), both teachers and teacher educators judged all eight content areas to be well covered.

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Table of Contents

	Page
Executive Summary	i
List of Tables	ix
Introduction	1
Standards for Educational and Psychological Testing	1
Job Analysis	2
Objectives of the Job Analysis Studies	2
Method	2
Build Draft Domains of Knowledge	3
Review of Draft Domains by External Review Panels	3
Advisory/Test Development Committee Meeting	4
Pilot Test of the Job Analysis Surveys	5
Final Format of the Job Analysis Surveys	5
Administration of the Job Analysis Surveys	6
Results	7
Data Analyses of Survey Responses	7
Means	7
Correlations	8
Percents	8
Criterion for Interpretation of Mean Importance Ratings	8
Study 1: Chemistry	9
Survey Respondents	9
Response Rate	. 9
Demographic characteristics	9
Results of Data Analyses: Teachers and Teacher Educators	9
Mean Importance	9
Correlation of the Profiles of Mean Importance Ratings	10
Percents	13

	Page
Results of Data Analyses: Subgroups of Respondents	14
Mean Importance	14
Correlations of the Profiles of Mean Importance Ratings	14
Mean Ratings of Content Coverage	16
Mean Percentage Weights for Test Content Emphasis	16
Summary and Conclusion	17
Study 2: Physics	18
Survey Respondents	18
Response Rate	18
Demographic Characteristics	19
Results of Data Analyses: Teachers and Teacher Educators	19
Mean Importance	19
Correlation of the Profiles of Mean Importance Ratings	23
Percents	23
Results of Data Analyses: Subgroups of Respondents	23
Mean Importance	23
Correlations of the Profiles of Mean Importance Ratings	25
Mean Ratings of Content Coverage	25
Mean Percentage Weights for Test Content Emphasis	. 25
Summary and Conclusion	27
References	· 29
Appendix A: External Review Panel	A1
Chemistry	Aa1
Physics	Ab1
Appendix B: Advisory/Test Development Committee Members	B 1
Appendix C: Job Analysis Surveys	C1
Chemistry	Ca1
Physics	Cb1

	Page
Appendix D: Survey Cover Letters	D1
Chemistry	Da 1
Physics	Db1
Appendix E: Respondent Demographics	E1
Chemistry	Ea1
Physics	Eb1
Appendix F: Mean Importance Ratings by Teachers and Teacher Educators	F1
Chemistry	Fa1
Physics	Fb1
Appendix G: Percent of Responses by Level of Understanding Category	G1
Chemistry	Ga1
Physics	Gb1
Appendix H: Mean Importance Ratings by Subgroup	H1
Chemistry	Ha1
Physics	Hb1

List of Tables

.

Page

.

Study 1: Che	emistry	·
Table 1:	Overall Mean Importance Ratings for Each of the Eight Major Knowledge Areas by Teacher and Teacher Educators	10
Table 2:	Knowledge Statements Rated Below 2.50 by Teachers and/or Teacher Educators	11
Table 3:	Knowledge Statements Rated Below 2.50 by Geographic Region, Sex, and Teaching Experience	- 15
Table 4:	Correlations of the Profiles of Mean Importance Ratings by Geographic Region, Sex, and Teaching Experience	15
Table 5:	Mean Ratings of Content Coverage	16
Table 6:	Mean Percentage Weights	17
Study 2: Phy	vsics	
Table 7:	Overall Mean Importance Ratings for Each of the Eight Major Knowledge Areas by Teachers and Teacher Educators	20
Table 8:	Knowledge Statements Rated Below 2.50 by Teachers and/or Teacher Educators	20
Table 9:	Knowledge Statements Rated Below 2.50 by Geographic Region, Sex, and Teaching Experience	24
Table 10	Correlations of the Profiles of Mean Importance Ratings by Geographic Region, Sex, and Teaching Experience	25
Table 11	: Mean Ratings of Content Coverage	26
Table 12	: Mean Percentage Weights	26

.

;

Job Analyses of the Knowledge Important for Newly Licensed (Certified) Chemistry and Physics Teachers

Introduction

The Subject Assessments in the Sciences of The Praxis Series: Professional Assessments for Beginning Teachers[™] offer a multiple-choice core test and one or more candidateconstructed-response modules. The optional modules include Content Area Performance Assessments that allow candidates to demonstrate in-depth understanding of the subject and Content-Specific Pedagogy modules to demonstrate knowledge about teaching the subject. The Praxis Series can be used by state agencies as one of several criteria for initial teacher licensure (certification). Two of the Subject Assessments in the Sciences cover the physical sciences of chemistry and physics. To identify the content domains of these examinations and to support the content validity (content relevance) of these examinations, two job analysis studies were conducted of the knowledge important for newly licensed (certified) chemistry and physics teachers, respectively. This report will describe the job analysis studies. In particular, it will present the (1) methods used to identify and define the job-related knowledge, (2) types of statistical analysis conducted, (3) results of these analyses, and (4) implications of the results for developing test specifications.

Standards for Educational and Psychological Testing

The Standards for Educational and Psychological Testing (1985) is a comprehensive technical guide that provides criteria for the evaluation of tests, testing practices, and the effects of test use. It was developed jointly by the American Psychological Association (APA), the American Educational Research Association (AERA), and the National Council on Measurement in Education (NCME). The guidelines presented in the Standards have, by professional consensus, come to define the necessary components of quality testing. As a consequence, a testing program that adheres to the Standards is more likely to be judged to be valid (defensible) than one that does not.

There are two categories of criteria within the *Standards*, primary and secondary. Those classified as primary "should be met by all tests . . . unless a sound professional reason is available to show why it is not necessary, or technically feasible, to do so in a particular case. Test developers and users . . . are expected to be able to explain why any primary standards have not been met" (AERA/APA/NCME, 1985, p. 2). One of the primary standards is that the content domain of a licensure or certification test should be defined in terms of the importance of the content for competent performance in an occupation. "Job analyses provide the primary basis for defining the content domain." (p. 64).

The use of job analysis to define the content domain is a critical component in establishing the content validity of licensure and certification examinations. Content validity is the principle validation strategy used for these examinations. It refers to the extent to which the content covered by an examination overlaps with the important components (tasks, knowledge, skills, or abilities) of a job (Arvey & Faley, 1988). Demonstration of content validity is accomplished

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

through the judgments of subject-matter experts. It is enhanced by the inclusion of large numbers of subject-matter experts who represent the wide range of relevant areas of expertise (Ghiselli, Campbell, & Zedeck, 1981). The lack of a well-designed job analysis is frequently cited (by the courts) as a major cause of test invalidity.

Job Analysis

Job analysis refers to procedures designed to obtain descriptive information about the tasks performed on a job and/or the knowledge, skills, and abilities thought necessary to perform those tasks (Gael, 1983). The specific type of job information collected by a job analysis is determined by the purpose for which the information will be used. For purposes of developing licensure and certification examinations, a job analysis should identify the <u>important knowledge</u> or abilities necessary to protect the public -- interpreted as the importance of the content for competent performance in an occupation (*Standards for Educationa. and Psychological Testing*, AERA/APA/NCME, 1985). In addition, a well-designed job analysis should include the participation of various subject-matter experts (Mehrens, 1987); and the data collected should be representative of the diversity within the job. Diversity refers to regional or job context factors and to subject-matter-expert factors such as race/ethnicity, experience, and sex (Kuehn, Stallings, & Holland, 1990). The job analyses conducted for chemistry and physics were designed to be consistent with the *Standards* and current professional practices.

Objectives of the Job Analysis Studies

The objectives of these studies were: (1) to construct comprehensive domains of knowledge that are important for newly licensed (certified) chemistry and physics teachers; and then (2) to obtain, using survey methodology, the independent judgments of two national samples of chemistry and physics educational professionals (i.e., teachers, teacher educators, state administrators) to verify or refute the importance of the domains. The verification/refutation component serves a critical role to ensure that the domains (in whole or in part) are judged to be relevant to the job of newly licensed (certified) chemistry and physics teachers by a wide range of education professionals. Knowledge that is verified to be important will be used in the development of test specifications for The Praxis II Subject Assessments in the Sciences.

Method

In overview, the methodology consisted of defining the knowledge important for newly licensed (certified) chemistry and physics teachers to perform their jobs in a competent manner. This was accomplished first by having subject-matter experts define knowledge domains important for newly licensed (certified) chemistry and physics teachers and then by presenting these judgments for verification or refutation through national surveys of chemistry and physics education professionals. The chemistry education professionals received the chemistry knowledge domain; and the physics education professionals received the physics knowledge domain. The verification/refutation aspect of the survey approach functions as a "check and balance" on the judgments of the subject-matter experts and reduces the likelihood that

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

unimportant knowledge will be included in the development of the test specifications. The survey participants were chemistry and physics teachers, teacher educators, and state administrators whose names were obtained from the memberships of the (1) American Chemical Society, (2) American Association of Physics Teachers, and (3) National Science Teachers Association. The participants were asked to rate specific knowledge statements in terms of *importance* for and *level of understanding* needed by newly licensed (certified) chemistry and physics teachers to perform their jobs in a competent manner. The specific steps in the job analyses are described below.

Build Draft Domains of Knowledge

The first step in the process of conducting the job analyses was to construct preliminary knowledge domains. These drafts would function as the initial definition of the knowledge domains of newly licensed (certified) chemistry and physics teachers. The domains were constructed by Educational Testing Service (ETS) Test Development staff with subject-matter expertise in chemistry and physics and ETS Research staff with expertise in job analysis. In the process of developing these drafts, the ETS subject-matter experts reviewed previous National Teacher Examination (NTE) chemistry and physics test specifications, state licensure (certification) requirements, and relevant professional literature.

The draft domain for chemistry consisted of eight major content areas partitioned into various subareas and 162 specific knowledge statements. The eight major content areas were: (1) Chemistry as an Experimental Science, (2) Organization of Matter, (3) Chemical Bonding and Molecular Geometry, (4) The Kinetic Theory and States of Matter, (5) Thermodynamics and Chemical Reactions, (6) Solutions and Solubility, (7) Environmental/Societal Issues Related to Chemistry, and (8) Pedagogy Specific to Chemistry.

The draft domain for physics consisted of nine major content areas also partitioned into various subareas and 160 specific knowledge statements. The nine major content areas were: (1) Properties and States of Matter, (2) Mechanics, (3) Heat and Thermodynamics, (4) Electricity and Magnetism, (5) Wave Motion, (6) Atomic and Nuclear Physics, (7) Environmental/Societal Issues Related to Physics, (8) Mathematical and Measurement Skills, and (9) Pedagogy Specific to Physics.

Review of Draft Domains by External Review Panels

After the draft domains were constructed each was mailed to a different panel of nine external subject-matter experts (one panel with content expertise in chemistry received the chemistry domain and the other with content expertise in physics received the physics domain). These subject-matter experts were secondary school teachers and teacher educators and had representation by sex and geographic region (see Appendix A for list of members). The purpose of each External Review Panel was to review the draft domain in terms of: (1) the appropriateness of the overall structure (i.e., do the major content areas adequately define the important components of the knowledge domain) and (2) the appropriateness of the specific knowledge statements and their completeness and clarity. In addition, the members of the

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

panels were asked to identify other knowledge that they believed should be added to the domain. The recommendations of the panels were obtained via telephone interviews conducted by ETS Research staff. ETS Test Development staff then reviewed the compiled recommendations of the panels. Based upon the suggested revisions of the panels and Test Development staff's re-evaluation of the domains, some reorganization occurred.

The structure of the chemistry domain was modified to include eight new major content areas partitioned into various subareas and 156 specific knowledge statements. The eight new major content areas were: (1) Scientific Methodology/Technology/History (which incorporated content from the original area Chemistry as an Experimental Science); (2) Basic Topics in Physical Science (which included content from the original areas Organization of Matter; Kinetic Theory and States of Matter; and Thermodynamics and Chemical Bonding Reactions); (3) Chemical Periodicity; (4) Nomenclature; (5) The Mole, Chemical Bonding, and Molecular Geometry; (6) Biochemistry; (7) Science, Technology, and Society (which included the content from the original area Environmental/Societal Issues Related to Chemistry); and (8) Pedagogy Specific to the Physical Sciences.

The structure of the physics domain was movified to include eight new major content areas partitioned into various subareas and 160 specific knowledge statements. The eight new major content areas were: (1) Scientific Methodology/Technology/History (which included content that originally was part of the area Mathematical and Measurement Skills); (2) Basic Topics in Physical Science (which incorporated content from the original areas Properties and States of Matter and Heat and Thermodynamics); (3) Mechanics; (4) Electricity and Magnetism; (5) Waves; (6) Modern Physics (which incorporated the original area Atomic and Nuclear Physics); (7) Science, Technology, and Society (which included the content from the original area Environmental/Societal Issues Related to Physics); and (8) Pedagogy Specific to the Physical Sciences.

Advisory/Test Development Committee Meeting

Consistent with a content validity framework, the job analysis studies were designed to obtain input from many subject-matter experts at several critical points in the domain definition process. To this end, an Advisory/Test Development Committee of secondary school teachers (n=5), teacher educators (n=2), and a district administrator was formed (see Appendix B for list of members). This committee also had representation by race/ethnicity, sex, and geographic region. One committee was formed because of the large degree of overlap in the knowledge domains of chemistry and physics. The committee members, appropriately, had relevant expertise in both chemistry and physics. The purpose of this committee was to review the draft domains (both chemistry and physics) in terms of their overall structures, completeness, appropriateness of the knowledge statements and clarity of wording. In addition, the members were asked to identify other content areas and knowledge statements that they believed should be added to the domains and to delete content areas and knowledge statements that they believed should be added to the domains and to delete content areas and knowledge statements that they believed should be added not be included in the domains. In essence, the members were asked to modify the domains so that they accurately reflected what the committee believed were the knowledge important for newly licensed (certified) chemistry and physics teachers. The committee also

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

reviewed and approved the rating scales for the national surveys and the biographical data that would be asked of the survey participants. The biographical data were collected to describe the composition of those who returned completed surveys and to permit analysis of the survey responses by various subgroups of respondents (e.g., males and females).

The revision process occurred during a four-day meeting held at ETS. The meeting was led jointly by ETS Test Development and Research staff. (Prior to the meeting, the members of the committee were mailed copies of both draft domains to review. They were informed about the purpose of the meeting and asked to come prepared to discuss their reviews of the draft domains.) During the course of the meeting, the domains were revised to reflect the consensus of the committee. This resulted in minor wording changes and the addition and deletion of some knowledge statements. However, no significant changes occurred in the structure of either domain.

Pilot Test of the Job Analysis Surveys

Prior to the national administrations, the job analysis surveys were mailed to a small group of chemistry and physics secondary school teachers and teacher educators. These pilot participants were asked to review either the chemistry or physics survey for clarity of wording and instruction, ease of use, and comprehensiveness of content coverage. They were asked to make their comments on a questionnaire that accompanied the survey and to mail the questionnaire and survey back to ETS in a postage-paid envelope. No significant revisions were suggested by the pilot participants.

Final Format of the Job Analysis Surveys

The finalized job analysis surveys (see Appendix C for copies of the surveys) consisted of three parts. Part I of each survey included the content areas and specific knowledge statements. Space was also provided for respondents to add knowledge statements that they believed should be included in the domain. In addition, the respondents were asked to rate, using a 5-point scale, how well the knowledge statements within a major content area covered the important aspects of that major content area. This provides an indication of content coverage. The eight major content areas that defined the chemistry domain included 181 specific knowledge statements and eight overall content area importance statements. The eight major content area importance statements. The eight major content area importance statements. The knowledge statements were judged using two rating scales. (The same rating scales were used in each survey, except for the substitution of the terms chemistry and physics. For illustrative purposes, the scales for chemistry are presented below.) One was an importance scale:

 $\mathbf{20}$

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

How important is an understanding of this knowledge area for newly licensed (certified) chemistry teachers if they are to perform their jobs in a competent manner?

- (0) Of no importance
- (1) Of little importance
- (2) Moderately important
- (3) Important
- (4) Very important

This scale is consistent with the *Standards* emphasis on identifying a content domain that is important for competent job performance. The other scale addressed the level of understanding needed for competent job performance:

What level of understanding is typically needed by newly licensed (certified) chemistry teachers in each knowledge area?

- (0) An understanding of the content area is not needed
- (1) Requires the ability to define the terms used in the knowledge area
- (2) Requires the ability to comprehend the essential properties of the knowledge area
- (3) Requires the ability to <u>apply/utilize</u> the knowledge area to address problems or questions
- (4) Requires the ability to <u>analyze</u> the knowledge area into component parts and explain the interrelationships among the parts

This rating scale was designed to provide Test Development staff, responsible for developing test specifications, with information that may assist in their decisions about the level of cognitive complexity that should be represented on the specifications. Both of these rating scales were reviewed and approved by the Advisory/Test Development Committee.

Part II of each survey asked the participants to indicate the relative weight that each of the major content areas should receive on the examination. This was accomplished by their distributing 100 total points across the major content areas. These point distributions were easily converted into percentages, representing the percent of items that the survey respondents believed should be devoted to each area.

Part III of each survey was the background information section. The survey participants were asked to respond to several questions that described their demographic makeup (e.g., teaching experience, age, sex, race/ethnicity). This information was used to describe the survey respondents and to perform relevant subgroup analyses.

Administration of the Job Analysis Surveys

Each of the job analysis surveys, accompanied by a letter of invitation to participate (see Appendix D for copies of the letters), was mailed to 800 education professionals. The chemistry survey was mailed to 500 chemistry teachers (10 per state), 250 teacher educators (5 per state), and 50 administrators (1 per state). These individuals were randomly selected from the

6

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

memberships of the American Chemical Society and the National Science Teachers Association. The physics survey also was mailed to 800 education professionals in the same proportions as the chemistry survey. These individuals were randomly selected from the memberships of the American Association of Physics Teachers and the National Science Teachers Association. Approximately one week after the surveys were mailed, a follow-up postcard was mailed to the participants reminding them to complete and return the surveys.

The purpose of the survey administrations was to identify a core of knowledge statements that relatively large numbers of education professionals judged to be relevant (verified to be important) to newly licensed (certified) chemistry and physics teachers. The latter objective is accomplished by analyzing the mean importance ratings provided by the three groups of education professionals and by the appropriate subgroups of respondents. Knowledge statements that are judged to be important by **all** respondent groups and subgroups (within chemistry and physics) define the respective cores. Each core becomes the primary database for the development of test specifications. The derivation of test specifications from those knowledge statements verified to be important by the surveyed education professionals provides a substantial evidential basis for the content validity (content relevance) of the Subject Assessments in Chemistry and Physics.

Results

Data Analyses of Survey Responses

Three types of data analysis were conducted to support the development of content valid (content relevant) test specifications for the Subject Assessments in Chemistry and Physics: (1) means were computed of the importance ratings for each knowledge statement by the groups of education professionals and by the appropriate subgroups of respondents; (2) correlations of the profiles of these mean importance ratings were computed across the groups of education professionals and within the appropriate subgroups of respondents; and (3) percents were computed across each of the five response categories associated with the level of understanding rating scale for each knowledge statement. These percents were computed at the aggregate level of the survey respondents to provide more easily interpretable, and therefore, useful information to the Advisory/Test Development Committee. To be included in the mean and correlational analyses, a respondent category was required to have at least 30 respondents (e.g., \geq 30 state administrators, \geq 30 females). This is a necessary condition to ensure that the computed mean values are accurate estimates of the corresponding population mean values (Walpole, 1974).

<u>Means</u>. The mean analysis is used to determine the level (absolute value) of importance attributed to the knowledge statements by teachers, teacher educators and state administrators, and by appropriate subg. oups of respondents (sex, race/ethnicity, geographic region, teaching experience). Knowledge tatements that meet or exceed a mean importance value of 2.50 (to be discussed in a later section) by all groups of education professionals (teachers, teacher educators, and state administrators) and by all subgroups of respondents may be included in the

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

development of the test specifications. In addition, mean ratings were computed for the responses to the content coverage section and the recommendation for test content section of each job analysis survey.

<u>Correlations</u>. The correlational analysis is used to determine the extent of agreement among the groups of education professionals and within the subgroups of respondents about the relative importance of the knowledge statements. Relative importance refers to the similarity of the pattern of mean ratings generated by the different respondent groups. For example, the profile of 181 mean ratings for chemistry teachers is correlated with the profile of 181 mean ratings for teacher educators. If these two profiles are similar (the shapes of the profiles are complementary), the value of the correlation coefficient will be close to 1.00.

<u>Percents</u>. The percent analysis may be used by test development committees to guide their decisions about the level of cognitive complexity that should be represented on the examinations. By inspecting where among the five response categories the largest percentages are located, test developers may, more accurately, be able to construct examination items at an appropriate cognitive level for beginning (newly licensed or certified) chemistry and physics teachers.

Criterion for Interpretation of Mean Importance Ratings

Since the purpose of job analysis is to ensure that only the more important knowledge statements are included in the development of test specifications, a criterion (cutpoint) for inclusion needs to be established. A reasonable criterion that has been used in a similar job analysis study (Rosenfeld & Tannenbaum, 1991) is a mean importance rating that represents the midpoint between moderately important and the next higher scale value. For the importance rating scales used in the present job analysis studies, the value of this criterion is 2.50 (midpoint between moderately important and important). It is believed that this criterion is consistent with the intent of content validity, which is to include important knowledge and to exclude unimportant knowledge from the assessment measures. Therefore, knowledge statements that receive a mean importance rating of 2.50 or more may be considered eligible for inclusion in the development of test specifications; knowledge statements that receive a mean rating of less than 2.50 may not be considered for inclusion. (However, because survey participants were not involved in the development of the content domains, they may lack certain insights that the Advisory/Test Development Committee members have due to their high level of involvement in the definition of the domains. As a consequence, if the committee believes that a knowledge statement rated below 2.50 should be included in the specifications and the committee can provide compelling written rationales, that knowledge statement may be reinstated for inclusion in the test specifications.)

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Study 1: Chemistry

Survey Respondents

<u>Response rate</u>. Of the 800 total surveys that were mailed, eight were returned due to an invalid mailing address. Thus, 792 surveys were actually administered. Of these 792, 329 were returned. This represents an overall response rate of 42% (329/792).

Demographic characteristics. Sixty percent of the respondents were between the ages of 35 years and 54 years. Sixty-eight percent were males and 32% were females. The majority of respondents (92%) were White. Most (59%) had 11 or more years of teaching experience in chemistry. Fifty-five percent identified themselves as either regular teachers (not substitutes) or permanent substitutes; 26% identified themselves as college faculty; none of the respondents identified themselves as a state administrator. Twenty-one percent of the respondents were from the Northeast region of the country; 29% were from the Central region; 23% were from the Southern region; and 27% were from the Far West region. A complete breakdown of the demographic characteristics of the respondents is provided in Appendix E.

Results of Data Analyses: Teachers and Teacher Educators

<u>Mean importance</u>. The mean importance rating for each of the 181 knowledge statements is provided in Appendix F. The means are presented for (1) teachers (regular and permanent substitutes, n = 175) and (2) teacher educators (n = 81). Because none of the respondents identified himself/herself as a state administrator, this demographic group was not included in the analysis. Inspection of these distributions of mean ratings indicated that teachers rated 51% of the knowledge statements (n = 92) 3.00 (important) or higher; teacher educators rated 29% of the knowledge statements (n = 52) 3.00 or higher. A comparison of the means across the two groups indicated that teachers rated 158 knowledge statements (87%) higher than did teacher educators.

The overall mean importance ratings for the eight major content areas were also computed for teachers and teacher educators. The means are presented in Table 1. Four content areas, Scientific Methodology/Techniques/History; Basic Topics in Physical Science; Chemical Periodicity; and The Mole, Chemical Bonding, and Molecular Geometry, were judged to be important (scale vale of 3.00) by both groups of respondents. The other four content areas, Nomenclature; Biochemistry; Science, Technology, and Society; and Pedagogy Specific to the Physical Sciences, were judged to be moderately important (scale value of 2.00) or important by either teachers or teacher educators.

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Table 1

	Means		
Major Content Areas	Teachers	Teacher Educators	
Scientific Methodology/Techniques/History	3.33	3.22	
Basic Topics in Physical Science	3.30	3.19	
Chemical Periodicity	3.52	3.22	
Nomenclature	3.09	2.82	
The Mole, Chemical Bonding, and Molecular Geometry	3 56	3.41	
Biochemistry	2.19	2.40	
Science, Technology, and Society	2.75	2.49	
Pedagogy Specific to the Physical Sciences	3.11	2.79	

Overall Mean Importance Ratings for Each of the Eight Major Knowledge Areas by Teachers and Teacher Educators

As previously discussed, knowledge statements that receive a mean importance rating of less than 2.50 (midpoint between moderately important and important) may not be considered for inclusion in the development of test specifications, unless a *compelling written rationale* is provided by the Advisory/Test Development Committee for their reinstatement. Those knowledge statements rated less than 2.50 by the teachers and/or teacher educators are presented in Table 2. Of the 181 individual knowledge statements, 60 (33%) were rated below 2.50; and of these 60 statements, almost half (48%) were rated below 2.50 only by the teacher educators.

<u>Correlation of the profiles of mean importance ratings</u>. The profiles of mean importance ratings for the teachers and teacher educators were correlated. The value of the correlation coefficient was .92. This indicates that there is a very high level of agreement between the two respondent groups in terms of the relative importance of the knowledge statements.

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Table 2 Knowledge Statements Rated Below 2.50 by Teachers and/or Teacher Educators

		TEACHERS N = 175	TEACHER EDUCATORS N = 81
		Mean	Mean
A. SCIENTIFIC	METHODOLOGY/TECHNIQUES/HISTORY		
History and P	nilosophy of Science		
5. Historica	I roots of science	2.26	2.23
6. Contribu	tions of individuals	2.18	2.10
7. Contribu	tions of ethnic groups and cultures	1.73	1.27
Mathematics,	Measurement, and Date Manipulation		
15. Statistics	of distributions	2.01	1.99
16. Simple o	ligital (binary) logic	1.56	1.57
18. Different	iation and simple integration	1.53	1.81
B. BASIC TOPI	CS IN PHYSICAL SCIENCE		
Heat and The	rmodynamics		
33. Historica	I development of heat and energy	1.92	1.82
35. Brownia	n motion	2.28	2.01
38. Conduct	ion, convection, and radiation	2.42	2.26
42 Expansi	on and contraction		2.14
46. Third law	v of thermodynamics (i.e., the concept of absolute zero temperature)		2.46
Atomic and N	luciear Structure		
48. Historica	al discovery of particles (e.g., electron, neutron)		2.12
49. Atomic	models and their experimental bases (Thomson, Rutherford, and Bohr)		2.43
52. deBrogi	e's hypothesis	2. 46	2.31
53. Heisent	erg uncertainty principle		2.30
54. Schrödi	nger's wave equation	2.14	1.78
63. Nuclear	forces and binding energy		2.19
64. Mass/e	nergy transformation		2.20
65. Types o	f radioactive decay (e.g., alpha, beta, gamma emission)		2.46
66. Artificial	and natural radioactivity	2. 49	2.21
67. Half-life	of radioactive isotopes		2.31
68. Nuclear	reactions (transmutations, fission, fusion)		2.30

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

BEST COPY AVAILABLE

11

Table 2 (cont.)

	TEACHERS N = 175	TEACHER EDUCATORS N = 81
r	Mean	Mean
C. CHEMICAL PERIODICITY		
71. The development of the periodic table		2.41
73. Trends in melting and boiling temperatures		2.29
D. NOMENCLATURE		
82. Nomenclature of the classes or organic compounds (e.g., aldehydes, ketones)	2.49	2.49
E. THE MOLE, CHEMICAL BONDING, AND MOLECULAR GEOMETRY		
98. Hybrid orbitals	2.46	2.46
99. Resonance and delocalization	2.27	2.43
The Kinetic Theory and States of Matter		
101. Maxwell-Blotzmann velocity distributions	2.00	2.01
102. Diffusion of gases		2.47
105. Real <i>versus</i> ideal gases		2.46
110. Rel. among phases of matter, forces between particles and particle energy		2.33
111. Characteristics of crystals	2.22	1.94
Chemical Reactions		
116. Spontaneity in chemical reactions (e.g., entropy, Gibbs-Helmholtz equation)		2.48
117. Collision theory and reaction rates		2.29
120. Rate expressions and orders of reactions	2.48	2.25
121. Reaction mechanisms	2.40	2.03
124. Properties and production of ammonia (e.g., the Haber equilibrium)	2.11	1.71
127. Metallurgical properties of the transition metals	1.97	1.63
128. Redox properties of the halogens and the halide ions	2.28	2.14
129. Faraday's laws of electrolysis	2.27	2.33
Solutions and Solubility		
131. Types of solutions (e.g., solid-solid, solid-liquid, liquid-gas)		2.48
135. Solubility product (K sp)		2.48
144. Production, properties, and use of the common acids (e.g., sulfuric,)	2.29	2.26

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Table 2 (cont.)

	TEACHERS N = 175	TEACHER EDUCATORS N = 81
	Mean	Mean
F. BIOCHEMISTRY		
150. Monomers and polymers	2.37	
151. Biologically important compounds (e.g., sugar, carbohydrates, proteins)	2.49	
152. Biologically important chemical processes (e.g., bioluminescence)	2.28	2.32
153. Structure and replication of nucleic acids	2.04	2.19
154. Energy storage and release in biological systems	2.09	2.09
G. SCIENCE, TECHNOLOGY, AND SOCIETY		
160. Risk mgmt issues associated with energy production, transmission, and use		2.28
161. Risk mgmt issues assoc. with production/storage/use/disposal of products		2.45
162. Waste management issues and recycling		2.46
163. Management of resources (e.g., soil, water, metals, and fossil fuels)		2.4
164. Use of science and technology to predict and prepare for natural disasters	2.31	1.7
166. Technology transfer (e.g., spin-offs from space technology,)	2.41	1.8
167. Issues assoc. with use of chem. in agriculture/food preparation/preservation		2.4
168. Social, political, and economic issues arising from science and technology		2.3
H. PEDAGOGY SPECIFIC TO THE PHYSICAL SCIENCES		
171. Recognition of and compensation for complex factors associated with societal school-related issues that may affect the <u>teaching</u> of the physical sciences	l and	2.4
Curriculum: Organization and Materials		
177. Scope and sequence of topics in the physical sciences curricula for all studen and justification for the scope and sequence	nts	2.4
178. Lesson plans in the physical sciences curricula for all students, justification for plans	r the	2.3
180. Selection/use of mass media (e.g., film) appropriate for topics in the physical sciences	I	2.2

<u>Percents</u>. The percent of responses for each of the five categories associated with the level of understanding rating scale was computed for the aggregate of the chemistry survey respondents. This analysis provides some overall guidance with respect to the level of cognitive complexity that should be represented on the Subject Assessment in Chemistry. The percents are displayed in Appendix G. Inspection of these percent distributions indicates that for 88

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

knowledge statements the two highest percentages were between levels 2 (comprehension) and 3 (application/utilization); and for 86 knowledge statements the two highest percentages were between levels 3 and 4 (analysis).

Results of Data Analyses: Subgroups of Respondents

Mean importance. A significant contribution towards the accumulation of evidence in support of the job-relevance of the Subject Assessment in Chemistry is the verification of the importance of the knowledge statements by a wide range of chemistry education professionals. Therefore, mean importance ratings for each knowledge statement were computed for the following subgroups of respondents: (1) geographic region (Northeast, n = 70; Central, n = 94; Southern, n = 76; Far West, n = 87); (2) sex (female, n = 105; male, n = 222); and (3) teaching experience¹ (\leq 5 years, n=33; > 5 years, n=141). The means are presented in Appendix H. An analysis of importance ratings by geographic region is consistent with recent legal emphasis on addressing regional job variability when conducting job analysis for content domain specification purposes (Kuehn et al., 1990). The four geographic regions included for analysis are consistent with the categorization established by the National Association of State Directors of Teacher Education and Certification (NASDTEC). Sex was included because it represents a protected "class" under Title VII of the Civil Rights ACT of 1964. (Race/ethnicity was not included in the subgroup analyses because of the insufficient number of minority respondents, i.e., < 30.) The dichotomous breakdown of teaching experience at the five-year point was chosen so that the judgments of less experienced teachers will be represented and so that the judgments of more experienced teachers will be represented.

The results of the subgroup analysis indicated that five additional knowledge statements (i.e., beyond the 60 statements previously identified by the mean analysis conducted on the teachers and teacher educators) were judged to be below the 2.50 cutpoint. The five statements are presented in Table 3. Three knowledge statements were rated below the cutpoint only by teachers with five or less years of teaching experience; and two knowledge statements were rated below the cutpoint only by respondents from the Central region of the country.

<u>Correlations of the profiles of mean importance ratings</u>. Correlation coefficients were computed for the profiles of mean importance ratings for the same subgroups used in the mean analysis. The coefficients are presented in Table 4. All the values exceeded .90. This indicates that there is a very high level of agreement within the subgroups of respondents in terms of the relative importance of the knowledge statements.

¹Teaching experience includes only those respondents who had identified themselves as regular teachers or permanent substitutes.

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Table 3

Knowledge Statements Rated Below 2.50 by Geographic Region, Sex, and Teaching Experience

		GEOGRAPHIC REGION			SEX		TEACHING EXPERIENCE		
		- NE	с	S	FW	F	м	≤5	>5
		N=70	N=94	N=76	N=87	N=105	N=222	N=33	N=141
	ASIC TOPICS IN PHYSICAL CIENCE							1	
51	Planck's hypothesis		2.33						
58	Spectroscopy	r	2.48						
	IE MOLE, CHEMICAL BONDING, ND MOLECULAR GEOMETRY								
96	Simple structures of isomers							2.42	
139	Colligative properties of solutions							2.45	
F. Bl	OCHEMISTRY								
149	Organic functional groups and their reactions							2.45	

Table 4

Correlations of the Profiles of Mean Importance Ratings by Geographic Region, Sex, and Teaching Experience

	1	2	3	4
GEOGRAPHIC REGION				
1. Northeast		.97	.97	.97
2. Central			.98	.97
3. Southern				.97
4. Far West				
SEX .				
1. Female		.95		
2. Male				
TEACHING EXPERIENCE (years)				
1. ≤ 5		.94		
2. > 5				

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Mean Ratings of Content Coverage

The survey participants were asked to rate, using a 5-point scale, how well the knowledge statements within a major content area covered the important aspects of that major content area. Responses to this provide an indication of the adequacy (comprehensiveness) of the domain of knowledge. The scale values ranged from a low of 1 (very poorly) to a high of 5 (very well); the midpoint of the scale was value 3 (adequately). The means of these ratings for teachers and teacher educators are presented in Table 5. For the teachers, all the means were close to or exceeded 4.00 (well covered). For the teacher educators, only two content areas, **Nomenclature** and **Biochemistry**, were judged to be a half unit or more below a mean value of 4.00 (both were judged to be more than adequately well covered). These results indicate that the content areas were judged, by both respondent groups, to be well covered.

Table 5

•		
	N	leans
Major Content Areas	Teachers	Teacher Educators
Scientific Methodology/Techniques/History	4.16	3.88
Basic Topics in Physical Science	4.28	3.99
Chemical Periodicity	4.32	4.05
Nomenclature	3.83	3.50
The Mole, Chemical Bonding, and Molecular Geometry	4.38	4.14
Biochemistry	3.82	3.47
Science, Technology, and Society	4.16	3.65
Pedagogy Specific to the Physical Sciences	4.18	3.86

Mean Ratings of Content Coverage

Mean Percentage Weights for Test Content Emphasis

The survey participants were asked to indicate the weight that each of the major content areas should receive on the Subject Assessment in Chemistry. This information may be used by the Advisory/Test Development Committee to assist in its decision about how much emphasis the content areas should receive on the test specifications. To obtain the weights, the participants were asked to distribute a total of 100 points across the major areas. The mean values were then converted into percentages. The mean percentage weights for teachers and teacher educators are presented in Table 6. For both groups, The Mole, Chemical Bonding, and Molecular Geometry and Basic Topics in Physical Science received the most emphasis; Biochemistry; Science, Technology, and Society; and Pedagogy Specific to the Physical Sciences, were among the least emphasized content areas.

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Table 6Mean Percentage Weights

	Means	
Major Content Areas	Teachers	Teacher Educators
Scientific Methodology/Techniques/History	11.75	10.94
Basic Topics in Physical Science	18.25	20.21
Chemical Periodicity	14.08	13.49
Nomenclature	11.08	8.83
The Mole, Chemical Bonding, and Molecular Geometry	22.03	23.05
Biochemistry	5.81	8.15
Science, Technology, and Society	. 8.72	7.31
Pedagogy Specific to the Physical Sciences	8.32	8.21

Summary and Conclusion

A job analysis was conducted to define a knowledge domain important for newly licensed (certified) chemistry teachers to perform their jobs in a competent manner. The results of the job analysis will be used to develop test specifications for the Praxis II Subject Assessment in Chemistry.

An initial draft domain of important knowledge statements was constructed by ETS Test Development staff with expertise in chemistry and ETS Research staff with expertise in job analysis. This draft domain was reviewed by an External Review Panel of subject-matter experts and then revised accordingly. The revised draft was then reviewed, modified, and approved by an external Advisory/Test Development Committee. The revised knowledge domain was then subjected to verification/refutation through the use of a national survey of chemistry teachers, teacher educators, and state administrators. The survey participants were asked to rate specific knowledge statements in terms of *importance* for and *level of understanding* needed by newly licensed (certified) chemistry teachers. A mean importance cutpoint of 2.50 (midpoint between moderately important and important) was established to designate knowledge statements as eligible (≥ 2.50) or ineligible (< 2.50) for inclusion in the development of test specifications.

The results of the mean analysis conducted by teachers and teacher educators indicated 60 knowledge statements were rated less than 2.50 (see Table 2). This represents 33% of the content domain. Five additional knowledge statements were rated below 2.50 by two of the subgroups (geographic region and teaching experience) of respondents (see Table 3). In total, 65 of the 181 statements (36%) did not meet the 2.50 criterion for inclusion. Still, however, 64% of the domain (116 statements) is eligible for inclusion in the development of test specifications.

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

The computation of correlation coefficients to assess agreement in terms of perceived relative importance of the knowledge statements indicated a very high level of agreement. The coefficient for the comparison between teachers and teacher educators was .92; the coefficients for the subgroup comparisons all exceeded .90.

The 116 knowledge statements that were verified to be important by the surveyed teachers, teacher educators, and the subgroups should be used as the foundation for the development of test specifications. Test specifications that are linked to the results of a job analysis provide support for the content validity of the derived assessment measures and may be considered as part of an initial step in ensuring the fairness (to subgroups of chemistry teacher candidates) of the derived assessment measures. It is reasonable to assume that, due to testing and psychometric constraints (e.g., time limits, ability to measure reliably some content), not all of the verified content may be included on the assessment measures. One source of information that may be used to guide the Advisory/Test Development Committee in its decision of what verified content to include on the assessment measures is the mean importance rating. Although a rank ordering of the content by mean importance rating is not implied, it is recommended that initial consideration be given to content that is well above the cutpoint and represents the appropriate breadth of content coverage.

The results of the analysis of the level of understanding rating scale indicated that 49% of the knowledge statements should be measured between the levels of *comprehension* and *application/utilization*; and an additional 48% should be measured between the levels of *application/utilization* and *analysis*.

Evidence was also provided in this study of judged importance of the eight major content areas and the comprehensiveness of the knowledge domain. These two pieces of information have implications for the adequacy of the chemistry knowledge domain. If the domain was adequately defined then each major content area should have been judged to be important and well covered. The results support the adequacy of the defined knowledge domain. With respect to importance (see Table 1), both teachers and teacher educators judged the same four content areas to be important and one or the other group judged the remaining content areas to be moderately important or important. With respect to content coverage (see Table 5), the teachers judged six content areas to be well covered and two to be between adequately covered and well covered. The teacher educators judged two content areas to be well covered and six to be between adequately covered and well covered.

Study 2: Physics

Survey Respondents

<u>Response rate</u>. Of the 800 total surveys that were mailed, six were returned due to an invalid mailing address. Thus, 794 surveys were actually administered. Of these 794, 330 were returned. This represents an overall response rate of 42% (330/794).

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Demographic characteristics. Seventy percent of the respondents were between the ages of 35 years and 54 years. Eighty-one percent were males and 18% were females. The majority of respondents (91%) were White. Most (67%) had 11 or more years of teaching experience in physics. Sixty percent identified themselves as either regular teachers (not substitutes) or permanent substitutes; 30% identified themselves as college faculty; none of the respondents identified themselves as a state administrator. Twenty-four percent of the respondents were from the Northeast region of the country; 29% were from the Central region; 25% were from the Southern region; and 22% were from the Far West region. A complete breakdown of the demographic characteristics of the respondents is provided in Appendix E.

Results of Data Analyses: Teachers and Teacher Educators

<u>Mean importance</u>. The mean importance rating for each of the 184 knowledge statements is provided in Appendix F. The means are presented for (1) teachers (regular and permanent substitutes, n = 191) and (2) teacher educators (n = 95). Because none of the respondents identified himself/herself as a state administrator, this demographic group was not included in the analysis. Inspection of these distributions of mean ratings indicated that teachers rated 44% of the knowledge statements (n = 81) 3.00 (important) or higher; teacher educators rated 33% of the knowledge statements (n = 60) 3.00 or higher. A comparison of the means across the two groups indicated that teachers rated 147 knowledge statements (80%) higher than did teacher educators.

The overall mean importance ratings for the eight major content areas were also computed for teachers and teacher educators. The means are presented in Table 7. Five content areas, Scientific Methodology/Techniques/History; Basic Topics in Physical Science; Mechanics; Electricity and Magnetism; and Waves, were judged to be important (scale value of 3.00) by both groups of respondents. The teacher educators also judged Modern Physics to be important. The other three content areas, Modern Physics; Science Technology, and Society, and Pedagogy Specific to the Physical Sciences, were judged to be within a half unit of a mean value of 3.00.

As previously discussed, knowledge statements that receive a mean importance rating of less than 2.50 (midpoint between moderately important and important) may not be considered for inclusion in the development of test specifications, unless a *compelling written rationale* is provided by the Advisory/Test Development Committee for their reinstatement. Those knowledge statements rated less than 2.50 by the teachers and/or teacher educators are presented in Table 8. Of the 184 individual knowledge statements, 56 (30%) were rated below 2.50; and of these 56 statements, almost half (43%) were rated below 2.50 only by the teacher educators.

19

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Table 7

Overall Mean Importance Ratings for Each of the Eight Major Knowledge Areas by Teachers and Teacher Educators

	Means	
Major Content Areas	Teachers	Teacher Educators
Scientific Methodology/Techniques/History	3.16	3.10
Basic Topics in Physical Science	3.15	3.07
Mechanics	3.69	3.70
Electricity and Magnetism	3.25	. 3.40
Waves	3.39	3.24
Modern Physics	2.80	3.05
Science, Technology, and Society	2.77	2.51
Pedagogy Specific to the Physical Sciences	2.90	2.76

Table 8

Knowledge Statements Rated Below 2.50 by Teachers and/or Teacher Educators

			TEACHERS N = 191	TEACHER EDUCATORS N = 95
			Mean	Mean
A.	SCI			
	<u>Histo</u>	bry and Philosophy of Science		
	5.	Historical roots of science	2.32	2.45
	6.	Contributions of individuals	2.27	2.18
	7.	Contributions of ethnic groups and cultures	1.72	1.63
	Math	nematics, Measurement, and Date Manipulation	•	
	15.	Statistics of distributions	2.12	2.06
	16.	Simple digital (binary) logic	1.73	1.58
	18.	Differentiation and simple integration	2.13	
8.	BAS	SIC TOPICS IN PHYSICAL SCIENCE		
	Heat	t and Thermodynamics		
	34.	Historical development of heat and energy	2.14	1.93
	36.	Equipartition of energy	2.32	2.06

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

20

35 BEST COPY AVAILABLE

Table 8 (cont.)

	TEACHERS N = 191	TEACHER EDUCATORS N = 95
	Mean	Mean
B. BASIC TOPICS IN PHYSICAL SCIENCE (cont.)		
37. Brownian motion	2.24	1.99
47. Third law of thermodynamics (i.e., the concept of absolute zero temperature)		2.47
48. Reversibility and irreversibility	2.47	2.36
Atomic and Nuclear Structure		
49. Historical discovery of particles (e.g., electron, neutron)	2.33	2.19
C. MECHANICS		
80. Orbital motion (e.g., Copernicus, Galileo, Kepler)		2.4
82. Fluid mechanics (e.g., Archimedes' principle, Bernoulli's principle)	2.48	
83. Pelativistic effects on length, mass, and time	2.35	2.1
D. ELECTRICITY AND MAGNETISM	•	
88. Gauss's law		2.3
94. Internal resistance of batteries		2.2
98. Alternating current circuits (e.g., average power, peak, effective current)		2.3
101. Transformers		2.3
103. Motors		2.2
104. Large scale generation and transmission of energy and power	2.34	2.0
105. n- and p-type semiconductors	2.22	1.9
106. Semiconductor devices (e.g., diodes, transistors)	2.35	2.0
107. Integrated circuits	2.16	1.8
108. Superconductivity	2.49	1.9
111. Gauss's law of magnetism (nonexistence of monopoles)	2.40	2.0
113. Principle and calibration of electrical meters (e.g., galvanometers)	2.52	2.1
114. Types of magnetism (e.g., diamagnetism)	2.13	1.8
115. Biot-Savart law and Ampere's law (relating current to magnetic field)	2.49	
116. Maxwell's equations	2.13	2.2
117. Lorentz force law and applications	2.33	

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Table 8 (cont.)

		TEACHERS N = 191	TEACHER EDUCATORS N = 95
		Mean	Mean
E.	WAVES		
	123. Absorption and transmission		2.47
	125. Scattering		2.32
	130. Dispersion		2.39
	134. Sound: air columns and strings (e.g., timbre, beats, harmonics)		2.41
	136. Color (addition and subtraction; relationship to frequency)		2.21
	137. Coherent radiation (sources and special properties)	2.41	2.25
	140. Thin films	2.41	2.01
F.	MODERN PHYSICS		
	143. Blackbody radiation	2.36	
	150. Schrödinger's wave equation	2.02	2.06
	151. Orbital theory - quantum numbers		2.46
	152. Pauli exclusion principle	2.36	
	155. Lorentz transformations and inertial reference frames	2.14	2.12
	157. Elementary particles (e.g., hadrons, leptons)	2.08	2.17
	158. Strong and weak forces	2.31	2.09
G	SCIENCE, TECHNOLOGY, AND SOCIETY		
	164. Risk mgmt issues associated with energy production/transmission/use		2.29
	165. Risk mgmt associated with production/storage/use/disposal of products		2.16
	166. Waste management issues and recycling		2.32
	167. Management of resources (e.g., soil, water, metals, and fossil fuels)		2.28
	168. Use of science and technology to predict/prepare for natural disasters	2.36	1.89
	170. Technology transfer (e.g., spin-offs from space technology)		1.98
	171. Social/political/economic issues arising from science and technology	•	2.34

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Table 8 (cont.)

		TEACHERS <u>N =</u> 191	TEACHER EDUCATORS N = 95
		Mean	Mean
Н.	PEDAGOGY SPECIFIC TO THE PHYSICAL SCIENCES	· .	
	174. Recognition of and compensation for complex factors associated wi and school-related issues that may affect the <u>teaching</u> of the physic sciences		2.37
	Curriculum: Organization and Materials		
	180. Scope and sequence of topics in the physical sciences curricula for students and justification for the scope and sequence	all	2.37
	 Lesson plans in the physical sciences curricula for all students, justi the plans 	fication for	2.07
	183. Selection/use of mass media (e.g., film) appropriate for topics in the sciences	physical	2.49

<u>Correlation of the profiles of mean importance ratings</u>. The profiles of mean importance ratings for the teachers and teacher educators were correlated. The value of the correlation coefficient was .91. This indicates that there is a very high level of agreement between the two respondent groups in terms of the relative importance of the knowledge statements.

<u>Percents</u>. The percent of responses for each of the five categories associated with the level of understanding rating scale was computed for the aggregate of the physics survey respondents. This analysis provides some overall guidance with respect to the level of cognitive complexity that should be represented on the Subject Assessment in Physics. The percents are displayed in Appendix G. Inspection of these percent distributions indicates that for 107 knowledge statements the two highest percentages were between levels 2 (comprehension) and 3 (application/utilization); and for 75 knowledge statements the two highest percentages were between levels 3 and 4 (analysis).

Results of Data Analyses: Subgroups of Respondents

<u>Mean importance</u>. A significant contribution towards the accumulation of evidence in support of the job-relevance of the Subject Assessment in Physics is the verification of the importance of the knowledge statements by a wide range of physics education professionals. Therefore, mean importance ratings for each knowledge statement were computed for the following subgroups of respondents: (1) geographic region (Northeast, n = 78; Central, n = 96; Southern, n = 80; Far West, n = 72); (2) sex (female, n = 60; male, n = 266); and (3) teaching experience¹ (≤ 5 years, n = 37; > 5 years, n = 153). The means are presented in Appendix H.

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

An analysis of importance ratings by geographic region is consistent with recent legal emphasis on addressing regional job variability when conducting job analysis for content domain specification purposes (Kuehn et al., 1990). The four geographic regions included for analysis are consistent with the categorization established by the National Association of State Directors of Teacher Education and Certification (NASDTEC). Sex was included because it represents a protected "class" under Title VII of the Civil Rights ACT of 1964. (Race/ethnicity was not included in the subgroup analyses because of the insufficient number of minority respondents, i.e., < 30.) The dichotomous breakdown of teaching experience at the five-year point was chosen so that the judgments of less experienced teachers will be represented and so that the judgments of more experienced teachers will be represented.

The results of the subgroup analysis indicated that four additional knowledge statements (i.e., beyond the 56 statements previously identified by the mean analysis conducted on the teachers and teacher educators) were judged to be below the 2.50 cutpoint. The four statements are presented in Table 9. Three knowledge statements were "flagged" by the teaching experience subgroup; and one was flagged by the sex subgroup.

Table 9	
Knowledge Statements Rated Below 2.50 by Geographic Region, Se	ex, and Teaching Experience

	G	GEOGRAPHIC REGION				EX	TEACHING EXPERIENCE		
	NE	С	S	FW	F	м	≤5	>5	
	N=78	N=96	N = 80	N=72	N=60	N = 266	N=37	N=153	
B. BASIC TOPICS IN PHYSICAL SCIENCE									
56 Artificial and natural radioactivity							2.41		
F. MODERN PHYSICS									
147 deBroglie's hypothesis								2.48	
154 Special relativity							2.45		
H. PEDAGOGY SPECIFIC TO THE PHYSIC SCIENCES	CAL								
197 Resources available in the community						2.47			

¹Teaching experience includes only those respondents who had identified themselves as regular teachers or permanent substitutes.

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

<u>Correlations of the profiles of mean importance ratings</u>. Correlation coefficients were computed for the profiles of mean importance ratings for the same subgroups used in the mean analysis. The coefficients are presented in Table 10. All the values exceeded .90. This indicates that there is a very high level of agreement within the subgroups of respondents in terms of the relative importance of the knowledge statements.

	1	2	3	4
GEOGRAPHIC REGION				
1. Northeast		.97	.96	.97
2. Central			.97	.97
3. Southern				.96
4. Far West				
SEX				
1. Female		.94		
2. Male				
TEACHING EXPERIENCE (years)				
1. ≤ 5		.91		
2. > 5				

Table 10		
Correlations of the Profiles of Mean Importance	e Ratings by Geographic	Region, Sex, and Teaching
Experience		

Mean Ratings of Content Coverage

The survey participants were asked to rate, using a 5-point scale, how well the knowledge statements within a major content area covered the important aspects of that major content area. Responses to this provide an indication of the adequacy (comprehensiveness) of the domain of knowledge. The scale values ranged from a low of 1 (very poorly) to a high of 5 (very well); the midpoint of the scale was value 3 (adequately). The means of these ratings for teachers and teacher educators are presented in Table 11. All the means were close to or exceeded 4.00. This indicates that both groups of respondents judged the major content areas to be well covered.

Mean Percentage Weights for Test Content Emphasis

The survey participants were asked to indicate the weight that each of the major content areas should receive on the Subject Assessment in Physics. This information may be used by the Advisory/Test Development Committee to assist in its decision about how much emphasis the

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

content areas should receive on the test specifications. To obtain the weights, the participants were asked to distribute a total of 100 points across the major areas. The mean values were then converted into percentages. The mean percentage weights for teachers and teacher educators are presented in Table 12. For both groups, Mechanics; Electricity and Magnetism; Basic Topics in Physical Science; and Waves received the most emphasis; Science, Technology, and Society and Pedagogy Specific to the Physical Sciences received the least emphasis.

	N	leans .
Major Content Areas	Teachers	Teacher Educators
Scientific Methodology/Techniques/History	4.04	3.89
Basic Topics in Physical Science	4.11	3.82
Mechanics	4.40	4.07
Electricity and Magnetism	4.27	4.04
Waves	4.32	4.08
Modern Physics	4.16	3.97
Science, Technology, and Society	4.07	3.79
Pedagogy Specific to the Physical Sciences	4.09	3.81

Table 11 Mean Ratings of Content Coverage

Table 12Mean Percentage Weights

	Mea	ins
Major Content Areas	Teachers	Teacher Educators
Scientific Methodology/Techniques/History	9.43	8.78
Basic Topics in Physical Science	14.29	14.11
Mechanics	20.95	19.77
Electricity and Magnetism	15.93	17.05
Waves	13.90	13.11
Modern Physics	9.91	13.00
Science, Technology, and Society	7.66	7.22
Pedagogy Specific to the Physical Sciences	7.52	6.99

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Summary and Conclusion

A job analysis was conducted to define a knowledge domain important for newly licensed (certified) physics teachers to perform their jobs in a competent manner. The results of the job analysis will be used to develop test specifications for the Praxis II Subject Assessment in Physics.

An initial draft domain of important knowledge statements was constructed by ETS Test Development staff with expertise in physics and ETS Research staff with expertise in job analysis. This draft domain was reviewed by an External Review Panel of subject-matter experts and then revised accordingly. The revised draft was then reviewed, modified, and approved by an external Advisory/Test Development Committee. The revised knowledge domain was then subjected to verification/refutation through the use of a national survey of physics teachers, teacher educators, and state administrators. The survey participants were asked to rate specific knowledge statements in terms of *importance* for and *level of understanding* needed by newly licensed (certified) physics teachers. A mean importance cutpoint of 2.50 (midpoint between moderately important and important) was established to designate knowledge statements as eligible (≥ 2.50) or ineligible (< 2.50) for inclusion in the development of test specifications.

The results of the mean analysis conducted by teachers and teacher educators indicated 56 knowledge statements were rated less than 2.50 (see Table 8). This represents 30% of the knowledge domain. Four additional knowledge statements were rated below 2.50 by two of the subgroups (sex and teaching experience) of respondents (see Table 9). In total, 60 of the 184 statements (33%) did not meet the 2.50 criterion for inclusion. Still, however, 67% of the domain (124 statements) is eligible for inclusion in the development of test specifications.

The computation of correlation coefficients to assess agreement in terms of perceived relative importance of the knowledge statements indicated a very high level of agreement. The coefficient for the comparison between teachers and teacher educators was .91; the coefficients for the subgroup comparisons all exceeded .90:

The 124 knowledge statements that were verified to be important by the surveyed teachers, teacher educators, and the subgroups should be used as the foundation for the development of test specifications. Test specifications that are linked to the results of a job analysis provide support for the content validity of the derived assessment measures and may be considered as part of an initial step in ensuring the fairness (to subgroups of physics teacher candidates) of the derived assessment measures. It is reasonable to assume that, due to testing and psychometric constraints (e.g., time limits, ability to measure reliably some content), not all of the verified content may be included on the assessment measures. One source of information that may be used to guide the Advisory/Test Development Committee in its decision of what verified content to include on the assessment measures is the mean importance rating. Although a rank ordering of the content by mean importance rating is not implied, it is recommended that initial consideration be given to content that is well above the cutpoint and represents the appropriate breadth of content coverage.

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

The results of the analysis of the level of understanding rating scale indicated that 58% of the knowledge statements should be measured between the levels of *comprehension* and *application/utilization*; and an additional 41% should be measured between the levels of *application/utilization* and *analysis*.

Evidence was also provided in this study of the judged importance of the eight major content areas and the comprehensiveness of the knowledge domain. These two pieces of information have implications for the adequacy of the physics knowledge domain. If the domain was adequately defined then each major content area should have been judged to be important and well covered. The results support the adequacy of the defined content domain. With respect to importance (see Table 7), both teachers and teacher educators judged the same five content areas to be important. Of the remaining three content areas, one was judged to be important by the teacher educators and moderately important by the teachers; and two were judged to be moderately important by both teachers and teacher educators. With respect to content coverage (see Table 11), both teachers and teacher educators judged all eight content areas to be well covered.

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

References

- American Educational Research Association, American Psychological Association, & National Council on Measurement in Education (1985). <u>Standards for educational and psychological</u> <u>testing</u>. Washington, DC: American Psychological Association.
- Arvey, R. D., & Faley, R. H. (1988). Fairness in selecting employees. Reading, MA: Addison-Wesley.

Civil Rights Act of 1964, Title VII, 42 U. S. C. § 2000e.

- Gael, S. (1983). Job analysis: A guide to assessing work activities. San Francisco: Jossey-Bass.
- Ghiselli, E. E., Campbell, J. P., & Zedeck, S. (1981). <u>Measurement theory for the behavioral</u> <u>sciences</u>. San Francisco, CA: W. H. Freeman.
- Kuehn, P. A., Stallings, W. M., & Holland, C. L. (1990). Court-defined job analysis requirements for validation of teacher certification tests. <u>Educational Measurement: Issues</u> and Practice, 9, 21-24.
- Mehrens, W. A. (1987). Validity issues in teacher licensure tests. <u>Journal of Personnel</u> <u>Evaluation in Education</u>, <u>1</u>, 195-229.
- Rosenfeld, M., & Tannenbaum, R. J. (1991). <u>Identification of a core of important enabling</u> <u>skills for the NTE Successor Stage I examination</u> (RR-91-37). Princeton, NJ: Division of Applied Measurement Research, Educational Testing Service.

Walpole, R. E. (1974). Introduction to statistics (2nd ed.). New York: Macmillan.

Educational Testing Service, ETS and the ETS logo are registered trademarks of Educational Testing Service. The Praxis Series: Professional Assessments for Beginning Teachers and its design logo are trademarks of Educational Testing Service.

Aa1 External Review Panel - Chemistry

Aa1

Secondary School Teachers

Willilam F. McKinney Grimsley High School 801 Westover Terrace Greensboro, NC 27408

Aileen Johnson Summit High School 125 Kent Place Blvd. Summit, NJ 07901

Blondell Bell Britton's Neck High School Rt. #1, Box 499 Gresham, SC 29546

R. Chris Rohde Chippewa Falls Senior High 735 Terrill STreet Chippewa Falls, WI 54729

Bill M. Brent Rolla High School East 10th Street Rolla, MO 65401

Norman E. Anderson Cedar Falls High School Tenth and Division Cedar Falls, IA 50613

Diana D. Doepken Air Academy High School USAF Academy, CO 80804

Clifford L. Schrader Dover High School 520 North Walnut Street Dover, OH 44622

T.J. Dieck Milton High School High Street Milton, WI 53563

Aa2

Ab1 External Review Panel - Physics

Ab1

47

Secondary School Teachers

J. Bruce Bauer, Stillwater High School 523 West Marsh Street Stillwater, MN 55082

Janie P. Edmonds Summit High School 125 Kent Place Blvd. Summit, NJ 07901

Mary Ann M. Kadooka President William McKinley High School 1039 South King Street Honolulu, HI 96814

Robert A. Morse St. Albans School Washington, D.C. 20016

Marty Schnittman Huntington High School Oakwood & McKay Roads Huntington, NY 11743

Donna Berry The Baylor School Williams Island Ferry Road Chattanooga, TN 37405

Ab2

Teacher Educators

Jacqueline Spears, Ph.D. Rural Clearinghouse for Lifelong Education and Development College Court Building Kansos State University Manhattan, KS 66506

Elvira Williams, Ph.D. North Carolina A & T State University Department of Physica, Marteena Hall Greensboro, NC 27411

Larry Kirkpatrick, Ph.D. Montana State University Department of Physics Bozeman, MT 59717

Appendix B

Advisory/Test Development Committee Members - Chemistry and Physics

Secondary School Teachers

Pricilla A. Costello Terre Haute South High School 3737 S. 7th Street Terre Haute, IN 47802

Fradelle Fuhrman, Ph.D. Berlin High School Berlin, CT 06037

Ann M. Justus Camelback High School 4612 N. 28th Street Phoenix, AZ 85016

Sr. Mary Ethel Parrot, SND Notre Dame Academy Hilton Drive Covington, KY 41011

Charles Reno Euclid Senior High School 711 East 222nd Street Euclid, OH 44123

Teacher Educators

James Dillon, Ph.D. Southern University Lab School P.O. Box 9414 Baton Rouge, LA 70813

Forrest Hentz, Jr., Ph.D. Department of Chemistry North Carolina State University Raleigh, NJ 27695

District Administrator

Fran Slowiczek, Ph.D. San Diego Unified School District 4100 Normal Street San Diego, CA 92103

B2

Appendix C

Cal Job Analysis Survey for Teachers of Chemistry

Cb1 Job Analysis Survey for Teachers of Physics

Ca1

JOB ANALYSIS INVENTORY
FOR TEACHERS
OF CHEMISTRY
· · ·
By
Educational Testing Service Princeton, New Jersey

Copyright © 1990 by Educational Testing Service. All rights reserved.

Ca2

INTRODUCTION

Educational Testing Service (ETS) is developing a new generation of assessments for the purpose of licensing (certifying) teachers. The inventory that follows is part of our development effort and is designed to gather information concerning the job of a newly licensed chemistry teacher. It was developed by high school teachers, college faculty, and state department of education officials, along with ETS staff.

Those who constructed this inventory recognize that chemistry teachers are required to teach students with varying backgrounds and levels of ability. For this reason, the collaborators believe that teachers should have a broad and deep understanding of chemistry in order to teach it. The inventory asks you to respond to a list of statements and to judge (a) the importance of the knowledge statements for newly licensed (certified) chemistry teachers and (b) the level of understanding needed by newly licensed (certified) chemistry teachers. Please do not relate each statement to your own job but rather to what you believe newly licensed chemistry teachers should know.

The information you provide will guide the development of the NTE Chemistry examination. It is expected that the new examination will differ from the current examination in both content and design. In addition to the development of a new examination, this study will contribute to our understanding of chemistry teaching as a profession. We expect the results of the study to be widely disseminated and to be very useful to the profession.

The inventory has been mailed to a group of approximately 800 professionals. Its value is directly related to the number of individuals who return their inventories. Because you represent a large number of professionals, your responses are extremely important. The inventory requires approximately 60 minutes to complete. Please return your completed inventory within 10 days.

СаЗ

PART I - KNOWLEDGE AREAS FOR CHEMISTRY TEACHERS

The purpose of this inventory is to determine what you believe <u>newly licensed (certified) chemistry teachers</u> should know in order to perform their job in a competent manner. On the following pages you will find eight major content areas and, beneath each, a list of knowledge and ability statements that define the particular content area. The order of presentation of the eight content areas in the inventory is not meaningful.

The eight content areas are:

- A. SCIENTIFIC METHODOLOGY/TECHNIQUES/HISTORY
- B. BASIC TOPICS IN PHYSICAL SCIENCE
- C. CHEMICAL PERIODICITY
- D. NOMENCLATURE
- E. THE MOLE, CHEMICAL BONDING AND MOLECULAR GEOMETRY
- F. **BIOCHEMISTRY**
- G. SCIENCE, TECHNOLOGY, AND SOCIETY
- H. PEDAGOGY SPECIFIC TO THE PHYSICAL SCIENCES

For each statement within each of these content areas, you will be asked to make the following judgments:

How <u>important</u> is an understanding of this knowledge area for <u>newly licensed (certified)</u> chemistry teachers if they are to perform their jobs in a competent manner?

- (0) Of no importance
- (1) Of little importance
- (2) Moderately important
- (3) Important
- (4) Very important

What <u>level of understanding</u> is typically needed by <u>newly licensed (certified)</u> chemistry teachers in each knowledge area?

(Note: These levels are hierarchically arranged: level #2 subsumes level #1; level #3 subsumes levels #2 and #1; level #4 subsumes levels #3, #2, and #1. The zero (0) point is <u>not</u> subsumed by any other scale point.)

- (0) An understanding of the knowledge area is not needed.
- (1) Requires the ability to <u>define</u> the terms used in the knowledge area.
- (2) Requires the ability to <u>comprehend</u> the essential properties of the knowledge area.
- (3) Requires the ability to apply/utilize the knowledge area to address problems or questions.
- (4) Requires the ability to <u>analyze</u> the knowledge area into component parts and explain the interrelationships among the parts.

Circle your responses using the scales adjacent to each statement. To familiarize yourself with the content areas and statements, you may wish to glance through Part I before making your judgments.

IMPORTANCE

LEVEL OF UNDERSTANDING

- (0) Of no importance(0)(1) Of little importance(1)
- (0) An understanding of the knowledge area is not needed
 - (1) <u>DEFINE</u> the terms used in the knowledge area
 - (2) <u>COMPREHEND</u> the essential properties of the knowledge area
- (2) Moderately important(3) important

- (4) Very important
- (3) <u>APPLY/UTILIZE</u> the knowledge area to address problems or questions
 (4) <u>ANALYZE</u> the knowledge area into component parts and explain the interrelationships among the parts

A.		<u>NTIFIC</u> IODOLOGY/TECHNIQUES/HISTORY	<u>IM</u>	<u>PO</u>	<u>RT</u> /	<u>4N(</u>	<u>CE</u>	LEVEL OF <u>UNDERSTANDING</u>					
	Metho	odology											
	1.	Scientific methods (e.g., formulation of problem, hypotheses, experiments, interpretations, predictions, conclusions)	0	1	2	3	4	0	1	2	3	4	
	2.	Science process skills (e.g., qualitative and quantitative observations, interpretations, communication, interences, applications)	0	ì	2	3	4	0	1	2	3	4	
	3.	Assumptions, models, laws, and theories	0	1	2	3	4	0	1	2	3	4	
	4.	4. Design of experiments (e.g., controls, independent and dependent variables)		1	2	3	4	0	1	2	3	4	
	History and Philosophy of Science												
	5.	Historical roots of science	0	1	2	3	4	0	1	2	3	4	
	6.	Contributions of individuals	0	1	2	3	4	0	1	2	3	4	
	7.	Contributions of ethnic groups and cultures	0	1	2	3	4	0	1	2	3	4	
	<u>Math</u>	ematics. Measurement, and Data Manipulation											
	8.	The metric and SI systems	0	1	2	3	4	0	1	2	3	4	
	9.	Scientific notation	0	1	2	3	4	0	1	2	3	4	
	10.	Estimation and approximation	0	1	2	3	4	· 0	1	2	3	4	
	11.	Significant figures in measurement and calculations	0	1	2	3	4	0	1	2	3	4	
	12.	Unit/dimensional analysis	0	1	2	3	4	0	1	2	3	4	
	13.	Experimental errors (e.g., sources, quantifications, precision, accuracy)	0	1	2	3	4	0	1	2	3	4	
	14.	Mathematical relationships and patterns in numerical data (e.g., direct, exponential)	0	1	2	3	4	0	1	2	3	4	
	15.	Statistics of distributions	0	1	2	3	4	0	1	2	3	4	

IMPORTANCE

LEVEL OF UNDERSTANDING

(0)	Of no importance	(0)	An understanding of the knowledge area is not needed
(1)	Öf little importance	(1)	DEFINE the terms used in the knowledge area
(2)	Moderately important	(2)	<u>COMPREHEND</u> the essential properties of the knowledge area
(3)	Important	(3)	APPLY/UTILIZE the knowledge area to address problems or questions
(4)	Very important	(4)	ANALYZE the knowledge area into component parts and explain the
			interrelationships among the parts

А.		<u> </u>	<u>IM</u>	PO	<u>RT.</u>	ANG	<u>CE</u>	LEVEL OF <u>UNDERSTANDING</u>						
	16.	Simple digital (binary) logic	0	1	2	3	4	0	1	2	3	4		
	17.	Organization and interpretation of data and equations (e.g., tables, graphs, spreadsheets)	0	1	2	3	4	0	1	2	3	4		
	18.	Differentiation and simple integration	0	1	2	3	4	0	1	2	3	4		
	Labor	ratory and Safety												
	19.	Use and calibration of laboratory equipment (e.g., balances, laboratory burners, glassware, thermometers, barometers, pH meters, spectroscopes)	0	1		3	4	0	1	2	3	4		
	20.	Maintenance of laboratory equipment (e.g., balances, laboratory burners, glassware, thermometers, barometers, pH meters, spectroscopes)	0	1	2	3	4	. 0	1	2	3	4		
	21.	Preparation and set-up of reagents, materials, and apparatus	0	1	2	3	4	0	1	2	3	4		
	22.	Laboratory safcty (e.g., laboratory hazards, storage and disposal of materials)	0	1	2	3	4	0	1	2	3	4		
	23.	Emergency procedures for laboratory accidents	0	1	2	3	4	0	1	2	3	4		
	24.	Overall evaluation of the importance of Scientific Methodology/Techniques/History	0	1	2	3	4							

		ns of <u>IMPORTANCE</u> for and <u>LEVEL OF UNDERSTANDING</u> needed y teachers if they are to perform their job in a competent manner.
IMPORTANCE	LEVE	L OF UNDERSTANDING
(0) Of no importance	(0)	An understanding of the knowledge area is not needed
(1) Of little importance	(1)	DEFINE the terms used in the knowledge area
(2) Moderately important	(2)	COMPREHEND the essential properties of the knowledge area
(3) Important	(3)	APPLY/UTILIZE the knowledge area to address problems or questions
(4) Very important	(4)	ANALYZE the knowledge area into component parts and explain the
	• •	Interrelationships among the parts
		· · · · · · · · · · · · · · · · · · ·

A. <u>SCIENTIFIC</u> <u>METHODOLOGY/TECHNIQUES/HISTORY (cont.)</u>

25. How well do the knowledge areas in section A cover the important aspects of Scientific Methodology/Techniques/History?

1	2	3	4	5	
Very Poorly	Poorly	Adequately	Well	Very Well	
What importan	t aspects, if àr	y, are not covered?			

B.	BASI	<u>IM</u>	<u>PO</u>	<u>RT</u>	AN	<u>CE</u>	-	LEVEL OF <u>UNDERSTANDING</u>					
	<u>Matte</u>	r and Energy											
	26.	Physical and chemical properties (e.g., states of matter, homogeneous, heterogeneous)	0	1	2	3	4	0	1	2	3	4	
	27.	Particulate nature of matter (e.g., atoms, ions, molecules)	0	1	2	3	4	0	1	2	3	4	
	28.	Elements, compounds, and mixtures	0	1	2	3	4	0	1	2	3	4	
	29.	Physical and chemical changes	0	1	2	3	4	0	1	2	3	4	
	30.	Conservation of mass/energy	0	1	2	3	4	0	1	2	3	4	
	31.	Forms of energy (e.g., kinetic, potential, mechanical, sound, magnetic, electrical, light, heat, nuclear, chemical)	0	1	2	3	4	0	1	2	3	4	
	32.	Energy transformations	0	1	2	3	4	0	1	2	3	4	
	<u>Heat</u>	and Thermodynamics											
	33.	Historical development of heat and energy concepts	0	1	2	3	4	0	1	2	3	4	
	34.	Kinetic molecular theory	0	1	2	3	4	0	1	2	3	4	
	35.	Brownian motion	0	1	2	3	4	0	1	2	3	4.	

Ca7

IMPORTANCE

LEVEL OF UNDERSTANDING

- (0) Of no importance(1) Of little importance
- An understanding of the knowledge area is not needed
 <u>DEFINE</u> the terms used in the knowledge area
- <u>DEFINE</u> the terms used in the knowledge area
 <u>COMPREHEND</u> the essential properties of the knowledge area
- (2) Moderately important(3) Important
 - rtant (2) <u>COMPREHEND</u> the essential p (3) <u>APPLY/UTILIZE</u> the knowledge
- (4) Very important
- (3) <u>APPLY/UTILIZE</u> the knowledge area to address problems or questions
 (4) <u>ANALYZE</u> the knowledge area into component parts and explain the interrelationships among the parts

B.	B. BASIC TOPICS IN PHYSICAL SCIENCE (cont.)					<u>4N(</u>	<u>) E</u>	LEVEL OF <u>UNDERSTANDING</u>					
	36.	Heat versus temperature	0	1	2	3	4	0	1	2	3	4	
	37.	Temperature scales and measurement	0	1	2	3	4	0	1	2	3	4	
	38.	Conduction, convection, and radiation	0	1	2	3	4	0	1	2	3	4	
	39.	Heat capacity, thermal exchange, heat of fusion, and heat of vaporization	0	1	2	3	4	0	1	2	3	4	
	40.	Concepts of enthalpy and entropy	0	1	2	3	4	0	1	2	3	4	
	41.	Phase changes	0	1	2	3	4	0	1	2	3	4	
	42.	Expansion and contraction	0	1	2	3	4	0	1	2	3	4	
	43.	Zeroth law of thermodynamics (i.e., direction of heat flow)	0	1	2	3	4	0	1	2	3	4	
	44.	First law of thermodynamics (i.e., energy is conserved)	0	1	2	3	4	0	1	2	3	4	
	45.	Second law of thermodynamics - entropy	0	1	2	3	4	0	1	2	3	4	
	46.	Third law of thermodynamics (i.e., the concept of absolute zero temperature)	0	1	2	3	4	0	1	2		4	
	47.	Reversibility and irreversibility	0	1	2	3	4	0	1	2	3	3 4	
	<u>Atom</u>	ic and Nuclear Structure											
	48.	Historical discovery of particles (e.g., electron, neutron)	0	1	2	3	4	0	1	2		34	
	49.	Atomic models and their experimental bases (Thomson, Rutherford, and Bohr)	0	1	2	3	4	0	1	2	2	34	
	.50.	Structure of the atom	0	1	2	3	4	0	1	2	2 3	34	
	, 51.	Planck's hypothesis	0	1	2	3	4	0	1	-	2 :	34	
	₹52.	deBroglie's hypothesis	0	1	2	3	4	0	1	2	2 :	34	
	53.	Heisenberg uncertainty principle	0	1	2	3	4	0	1	2	2 :	34	
	54.	Schrödinger's wave equation	0	1	2	3	4	0	1		2	34	
	55.	Orbital theory - quantum numbers	0	1	2	3	4	0	1		2	34	

Ca8

IMPORTANCE

LEVEL OF UNDERSTANDING

(0) Of no importance (0) An understanding of the knowledge area is not needed (1) Of little importance (1) **DEFINE** the terms used in the knowledge area (2) Moderately important (2) COMPREHEND the essential properties of the knowledge area (3) important (3) APPLY/UTILIZE the knowledge area to address problems or questions (4) Very important (4) ANALYZE the knowledge area into component parts and explain the interrelationships among the parts

B.	DAGIC TODICS IN DIRECAL SCIENCE (an	LEVEL OF						
D,	DASI	<u>C TOPICS IN PHYSICAL SCIENCE (cont.)</u>	IN	ΡŲ	RT	AN		<u>UNDERSTANDING</u>						
	56.	Characteristics of an electron in an atom (e.g., shells, orbitals)	0	1	2	3	4	0	1	2	3	4		
	57.	Properties of electromagnetic radiation	0	1	2	3	4	0	1	2	3	4		
	58.	Spectroscopy	0	1	2	3	4	0	1	2	3	4		
	59.	Pauli exclusion principle	0	1	2	3	4	0	1	2	3	4		
	60.	Hund's rule	0	1	2	3	4	0	1	2	3	4		
	61.	Chemical properties related to electron configuration (e.g., atomic valences and reactivity)	0	1	2	3	4	0	1	2	3	4		
	62.	Atomic mass, atomic number, mass number and isotopes	0	1	2	3	4	0	1	2	3	4		
	63.	Nuclear forces and binding energy	0	1	2	3	4	0	1	2	3	4		
	64.	Mass/energy transformation	0	1	2	3	4	. 0	1	2	3	4		
	65.	Types of radioactive decay (e.g., alpha, beta, gamma emission)	0	1	2	3	4	0	1	2	3	4		
	66.	Artificial and natural radioactivity	0	1	2	3	4	0	1	2	3	4		
	67.	Half-life of radioactive isotopes	0	1	2	3	4	0	1	2	3	4		
	68.	Nuclear reactions (transmutation, fission, fusion)	0	1	2	3	4	0	1	2	3	4		
	69.	Overall evaluation of the importance of Basic Topics in Physical Science	0	1	2	3	4							

Evaluate each knowledge area in terms of IMPORTANCE for and LEVEL OF UNDERSTANDING needed by newly licensed (certified) chemistry teachers if they are to perform their job in a competent manner. LEVEL OF UNDERSTANDING IMPORTANCE An understanding of the knowledge area is not needed (0) Of no importance (0) DEFINE the terms used in the knowledge area (1) Of little importance (1) COMPREHEND the essential properties of the knowledge area (2) Moderately important (2) APPLY/UTILIZE the knowledge area to address problems or questions (3) Important (3) ANALYZE the knowledge area into component parts and explain the (4) Very important (4) interrelationships among the parts

B. BASIC TOPICS IN PHYSICAL SCIENCE (cont.)

70. How well do the knowledge areas in section B cover the important aspects of Basic Topics in Physical Science?

1	2	3	4	5	
Very Poorly	Poorly	Adequately	Well	Very Well	
		•		•	

What important aspects, if any, are not covered?

C. <u>CHE</u>	MICAL PERIODICITY	IMPORTANCE					LEVEL OF <u>UNDERSTANDING</u>					
71.	The development of the periodic table	0	1	2	3	4	0	1	2	3	4	
72.	The position of metals, nonmetals, and metalloids	0	1	2	3	4	0	1	2	3	4	
73.	Trends in melting and boiling temperatures	0	1	2	3	4	0	1	2	3	4	
74.	Trends in atomic radii, ionization energy, electron affinity, and electronegativity	0	1	2	3	4	0	1	2	3	4	
75.	Relationship of periodic table to electron configurations of the atoms	0	1	2	3	4	0	1	2	3	4	
76.	Oxidation numbers for elements in a compound	0	1	2	3	4	0	1	2	3	4	

Evaluate each knowledge area in terms of IMPORTANCE for and LEVEL OF UNDERSTANDING needed by newly licensed (certified) chemistry teachers if they are to perform their job in a competent manner. IMPORTANCE LEVEL OF UNDERSTANDING (0) Of no importance (0) An understanding of the knowledge area is not needed (1) Of little importance **DEFINE the terms used in the knowledge area** (1) (2) Moderately important (2) COMPREHEND the essential properties of the knowledge area (3) important APPLY/UTILIZE the knowledge area to address problems or questions (3) (4) Very Important ANALYZE the knowledge area into component parts and explain the (4) interrelationships among the parts LEVEL OF UNDERSTANDING C. CHEMICAL PERIODICITY (cont.) IMPORTANCE 77. Periodicity of the oxidation states of the 0 1 2 3 4 elements 0 1 2'3 4 78. Chemical properties and reactions of the elements as reflected by their positions in the periodic table 0 1 2 3 4 0 1 2 3 4 79. Overall evaluation of the importance of Chemical Periodicity 0 1 2 3 4 80. How well do the knowledge areas in section C cover the important aspects of Chemical **Periodicity?** 1 • 2 3 5 4 Very Poorly Poorly Adequately Well Very Well What important aspects, if any, are not covered? **D. NOMENCLATURE** 81. Inorganic nomenclature of ionic compounds and 0 1 2 3 4 0 1 2 3 4 82. Nomenclature of the classes of organic compounds (e.g., saturated and unsaturated hydrocarbons, alcohols, ethers, aldchydes, ketones) 0 1 2 3 4 0 1 2 3 4

Evaluate each knowledge area in terms of IMPORTANCE for and LEVEL OF UNDERSTANDING needed by newly licensed (certified) chemistry teachers if they are to perform their job in a competent manner. LEVEL OF UNDERSTANDING **IMPORTANCE** An understanding of the knowledge area is not needed (0) Of no importance (0) DEFINE the terms used in the knowledge area (1) Of little importance (1) (2) COMPREHEND the essential properties of the knowledge area (2) Moderately important APPLY/UTILIZE the knowledge area to address problems or questions (3) (3) important (4) ANALYZE the knowledge area into component parts and explain the (4) Very important interrelationships among the parts

D. NOMENCLATURE (cont.)

84. How well do the knowledge areas in section D cover the important aspects of Nomenclature?

	1	2	3	4	5	
·	Very Poorly	Poorly	Adequately	Well	Very Well	

What important aspects, if any, are not covered?

E.		<u>MOLE, CHEMICAL BONDING, AND</u> ECULAR GEOMETRY	<u>IM</u>	<u>PO</u>	<u>RT/</u>	ANC	<u>)</u>	LEVEL OF <u>UNDERSTANDING</u>						
	85.	Mole concept and mass-mole-number relationships	0	1	2	3	4	0	1	2	3	4		
	86.	Information conveyed by a chemical formula	0	1	2	3	4	0	1	2	3	4		
	87.	Law of constant composition and law of multiple proportions	0	1	2	3	4	0	1	2	3	4		
	88.	Percent composition of elements in a compound	0	1	2	3	4	0	1	2	3	4		
	89.	Information conveyed by empirical and molecular formulas	0	1	2	3	4	0	1	2	3	4		
	90.	Ionic, covalent, and metallic bonds	0	1	2	3	4	0	1	2	3	4		
	91.	Rules for calculating oxidation numbers of atoms in a compound	0	1	2	3	4	O	1	2	3	4		
	92.	Electron dot formulas and structural formulas	0	1	2	3	4	0	1	2	3	4		
	93.	Multiple bonds	0	1	2	3	4	0	1	2	3	4		
	94.	Types of bonding related to electronegativity differences	0	1	2	3	4	0	1	2	3	4		

IMPORTANCE

LEVEL OF UNDERSTANDING

(0)	Of no importance	(0)	An understanding of the knowledge area is not needed
(1)	Of little importance	(1)	DEFINE the terms used in the knowledge area
(2)	Moderately important	(2)	COMPREHEND the essential properties of the knowledge area
(3)	important	(3)	APPLY/UTILIZE the knowledge area to address problems or questions
(4)	Very important	(4)	ANALYZE the knowledge area into component parts and explain the
	•	•••	interrelationships among the parts
Í			· · ·

E.		MOLE, CHEMICAL BONDING AND ECULAR GEOMETRY (cont.)	<u>IM</u>	<u>P0</u>	<u>RT.</u>	<u>4N(</u>	<u>CE</u>	LEVEL OF <u>UNDERSTANDING</u>						
	95.	Valence shell electron pair repulsion model for molecular shapes (VSEPR)	0	1	2	3	4	0	1	2	3	4		
	96.	Simple structures of isomers	0	1	2	3	4	0	1	2	3	4		
	97.	Chemical and physical properties of compounds related to type of bonding and geometry	0	1	2	3	4	0	1	2	3	4		
	98.	Hybrid orbitals	0	1	2	3	4	0	1	2	3	4		
	99.	Resonance and delocalization	0	1	2	3	4	0	1	2	3	4		
	The K	Linetic Theory and States of Matter												
	100.	Assumptions of the kinetic molecular theory of gases	0	1	2	3	4	0	1	2	3	4		
	101.	Maxwell-Boltzmann velocity distributions	0	1	2	3	4	0	1	2	3	4		
	102.	Diffusion of gases	0	1	2	3	4	0	1	2	3	4		
	103.	Relationships among volume, pressure, temperature, and quantity for ideal gases	0	1	2	3	4	0	1	2	3	4		
	104.	Dalton's law of partial pressures	0	1	2	3	4	0	1	2	3	4		
	105.	Real versus ideal gases	0	1	2	3	4	0	1	2	3	4		
	106.	Forces of attraction among molecules (e.g., hydrogen bonds, dipole-dipole interactions)	0	1	2	3	4	0	1	2	3	4		
	107.	Phase changes for a pure substance (c.g., pressure and temperature effects)	0	1	2	3	4	0	1	2	3	4		
	108.	Relationships among evaporation rate, boiling temperature, and vapor pressure	0	1	2	3	4	0	1	2	3	4		
	109.	Special properties of water (e.g., density of solid <i>versus</i> liquid, high heat capacity, unusually high boiling temperature)	0 [.]	1	2	3	4	0	1	2	3	4		
	1 1 0.	Relationships among phases of matter, forces between particles and particle energy (e.g., shape, volume, diffusion, density, and compressibility)	0	1	2	3	4	0	1	2	3	4		

Ca13

65

IMPORTANCE

LEVEL OF UNDERSTANDING

(0) Of no importance An understanding of the knowledge area is not needed (0) DEFINE the terms used in the knowledge area (1) Of little importance (1) COMPREHEND the essential properties of the knowledge area (2) Moderately important (2) APPLY/UTILIZE the knowledge area to address problems or questions (3) Important (3) (4) Very important ANALYZE the knowledge area into component parts and explain the (4) Interrelationships among the parts

E.		MOLE, CHEMICAL BONDING, AND ECULAR GEOMETRY (cont.)	<u>IM</u>	<u>P0</u>	<u>RT</u> /	<u>1N(</u>	<u>.</u>	LEVEL OF <u>UNDERSTANDING</u>						
	111.	Characteristics of crystals	0	1	2	3	4	0	1	2	3	4		
	<u>Chem</u> i	ical Reactions												
	112.	Equation balancing from written descriptions of chemical reactions	0	1	2	3	4	0	1	2	3	4		
	113.	General types of chemical reactions (i.e., composition, decomposition, ionic replacement)	0	1	2	3	4	0	1	2	3	4		
	114.	Stoichiometry	0	1	2	3	4	0	1	2	3	4		
	115.	Endothermic and exothermic reactions	0	1	2	3	4 ·	0	1	2	3	4		
	116.	Spontancity in chemical reactions (e.g., free energy, entropy, Gibbs-Helmholtz equation)	0	1	2	3	4	0	1	2	3	4		
	117.	Collision theory and reaction rates	0	1	2	3	4	0	1	2	3	4		
	118.	Activation energy and the effects of a catalyst	0	1	2	3	4	0	1	2	3	4		
	119.	Rate-influencing factors in chemical reactions (e.g., temperature, pressure, concentration, catalyst)	0	1	2	3	4	0	1	2	3	4		
	120.	Rate expressions and orders of reactions	0	1	2	3	4	0	1	2	3	4		
	121.	Reaction mechanisms	0	1	2	3	4	0	1	2	3	4		
	122.	Chemical equilibria	0	1	2	3	4	0	1	2	3	4		
	123.	Le Châtelier's principle and factors that disturb the equilibrium of systems (e.g., temperature, concentration)	0	1	2	3	4	0	1	2	3	4		
	124.	Properties and production of ammonia (e.g., the Haber equilibrium)	0	1	2	3	4	0	1	2	3	4		
	125.	Oxidation and reduction reactions	0	1	2	3	4	0	1	2	3	4		
	126.	Electrochemical cells and electrode reactions	0	1	2	3	4	0	1	2	3	4		
	127.	Metallurgical properties of the transition metals	0	1	2	3	4	· 0	1	2	3	4		

۰.

IMPORTANCE

E.

LEVEL OF UNDERSTANDING

- (0) Of no importance (1) Of little importance
- (0) An understanding of the knowledge area is not needed
 - (1) <u>DEFINE</u> the terms used in the knowledge area
- (2) Moderately important
- (2) <u>COMPREHEND</u> the essential properties of the knowledge area
- (3) Important (4) Very important
- (3) <u>APPLY/UTILIZE</u> the knowledge area to address problems or questions
 (4) <u>ANALYZE</u> the knowledge area into component parts and explain the interrelationships among the parts

THE MOLE, CHEMICAL BONDING, AND LEVEL OF MOLECULAR GEOMETRY (cont.) IMPORTANCE UNDERSTANDING 128. Redox properties of the halogens and the halide ions 0 1 2 3 4 1 2 3 - 4 0 129. Faraday's laws of electrolysis 0 1 2 3 1 2 3 - 4 -4 0 130. Practical applications of electrochemistry (e.g., electroplating, lead storage battery, pH meter) 0 1 2 3 4 1 2 3 4 0 Solutions and Solubility 131. Types of solutions (e.g., solid-solid, solid-liquid, liquid-gas) 0 1 2 3 4 3 4 1 2 132. Solutes, solvents and solubility 0 1 2 3 4 1 2 3 4 Ω 133. Effects of temperature and pressure on solubility 0 i 2 3 4 1 2 3 4 134. Dissolving process 0 1 2 3 4 0 1 2 3 4 135. Solubility product (K_m) 0 1 2 3 1 2 3 4 0 136. Concentration of solutes (e.g., dilute, concentrated, saturated; molarity) 1 2 3 0 4 0.12 3 - 4 137. Conductivity of solutions and the ionization 1 2 3 4 2 3 4 0 0 1 138. Strong and weak electrolytes; nonelectrolytes 0 1 2 3 - 4 0 1 2 3 4 139. Colligative properties of solutions 0 1 2 3 4 0 1 2 3 - 4 140. Characteristic properties of acids, bases, and salts 0 1 2 3 -4 0 1 2 3 - 4 141. Arrhenius, Brønsted-Lowry, and Lewis acid-base theories 0 1 2 3 - 4 1 2 3 4 142. pH of solutions of strong and weak acids and bases 0 1 2 3 4 1 2 3 4 143. Relative strengths of acids and bases 0 1 2 3 - 4 0 1 2 3 - 4

IMPORTANCE

LEVEL OF UNDERSTANDING

	(1) (2)	Of no importance Of little importance Moderately important Important	(0) (1) (2) (3)	An understanding of the knowledge area is not needed <u>DEFINE</u> the terms used in the knowledge area <u>COMPREHEND</u> the essential properties of the knowledge area <u>APPLY/UTILIZE</u> the knowledge area to address problems or questions
	(4)	Very Important	(4)	ANALYZE the knowledge area into component parts and explain the interrelationships among the parts
i				

.E.	THE MOLE, CHEMICAL BONDING, AND MOLECULAR GEOMETRY (cont.)					IMPORTANCE						LEVEL OF <u>UNDERSTANDING</u>							
	144.	Production, properties, and use of the common acids (e.g., sulfuric, phosphoric, nitric, hydrochloric)	C)	L	2	3	4	()	1	2	3	4					
	145.	Acid-base titration and indicators	()	I	2	3	4	()	1	2	3	4					
	146.	Buffer solutions	()	1	2	3	4	()	1	2	3	4					
	147.	Overall evaluation of the importance of the Mole, Chemical Bonding, and Molecular Geometry	()	1	2	3	4											
										~ -									

148. How well do the knowledge areas in section E cover the important aspects of The Mole, Chemical Bonding, and Molecular Geometry?

1	2	3	4	5
Very Poorly	Poorly	Adequately	Well	Very Well

.

What important aspects, if any, are not covered?

F. BIOCHEMISTRY

.

140	Organic functional groups and their										
177.	reactions	0	1	2	3	4	0	1	2	3	4
150.	Monomers and polymers	0	1	2	3	4	0	1	2	3	4
151.	Biologically important compounds (e.g., sugars, carbohydrates, amino acids, proteins, nucleic acids, carboxylic acids, enzymes)	0	1	[.] 2	3	4	0	1	2	3	4
152.	Biologically important chemical processes (e.g., photosynthesis, bioluminescence, respiration, hydrolysis, phosphorylation)	0	1	2	3	4	0	1	2	3	4
153.	Structure and replication of nucleic acids	0	1	2	3	4	0	1	2	3	4

	RTANÇE	LEVEL OF UNDERSTAN	IDING									
(1) (2) (3)	Of no importance Of little importance Moderately important mportant /ery important	 (0) An understanding (1) <u>DEFINE</u> the terms (2) <u>COMPREHEND</u> th (3) <u>APPLY/UTILIZE</u> th (4) <u>ANALYZE</u> the kno interrelationships 	i used in the ne essential (he knowledge wiedge area	kno prop are into	ertic ertic ea to cor	dge es of p ad	area i the k dress	nowledg problem	S 01	r que		
BIOC	HEMISTRY (cont.)		IM	<u>IPO</u>	RT	<u>AN(</u>	<u>CE</u>	I <u>UND</u>		/EL <u>Sta</u>		
154.	Energy storage and re systems	lease in biological	0	1	2	3	4	0	1	2	3	
155.	Overall evaluation of Biochemistry?	the importance of	0	1	2	3	4					
156.	How well do the know	ledge areas in section	F cover the	e im	por	tani	aspe	ects of H	Biod	hen	nist	1
		2 3 orly Adequately		4 ell			Ver	5 y Well				
		ts, if any, are not cover	icu.									
SCIE 157.			ies									
	Awareness of ethical a of scientists Awareness of ethical a benefits associated with	AND SOCIETY and moral responsibiliti ssues, risks, and h the application of	ies 0	•	-		4	Ū	-	2	-	
157. 158.	Awareness of ethical a of scientists Awareness of ethical a benefits associated with science	AND SOCIETY and moral responsibiliti ssues, risks, and th the application of	ies 0	1	2	3	4	0	1	2.	3	
157.	Awareness of ethical a of scientists Awareness of ethical a benefits associated wit science Detection of environn Risk management issu	AND SOCIETY and moral responsibiliti ssues, risks, and th the application of mental hazards	ies 0 0 0 rgy	1	2 2		4	0	1	_	3	
157. 158. 159.	Awareness of ethical a of scientists Awareness of ethical a benefits associated wi science Detection of environn Risk management issu production, transmissi Risk management issu production, storage, u	AND SOCIETY and moral responsibilition ssues, risks, and the application of the application of the application of the application of the application of the application of the application of the application of the applicati	ies 0 0 rgy 0	1 1 1	2 2	3 3 3	4 4	0	1	2. 2 2	3	
 157. 158. 159. 160. 	Awareness of ethical a of scientists Awareness of ethical a benefits associated wi science Detection of environn Risk management issu production, transmissi Risk management issu production, storage, u consumer products .	AND SOCIETY and moral responsibilition ssues, risks, and the application of the application of the application the application of the application the application of the application the application of the application of the application of the application the application of the ap	ies 0 0 rgy 0 0	1 1 1 1 1	2 2 2 2 2	3 3 3	4 4 4	0 0 0	1 1 1	2. 2 2	3 3 3 3	

Ca17

69

IMPORTANCE

LEVEL OF UNDERSTANDING

- (0) Of no importance (1) Of little importance
- (0) An understanding of the knowledge area is not needed
- (1) DEFINE the terms used in the knowledge area
- (2) Moderately important
- (3) Important
- (2) <u>COMPREHEND</u> the essential properties of the knowledge area
 (3) <u>APPLY/UTILIZE</u> the knowledge area to address problems or questions
- (4) Very important
- (4) <u>ANALYZE</u> the knowledge area into component parts and explain the interrelationships among the parts
- LEVEL OF UNDERSTANDING IMPORTANCE G. SCIENCE, TECHNOLOGY, AND SOCIETY (cont.) 164. Use of science and technology to predict and 0 1 2 3 4 prepare for natural disasters 0 1 2 3 4 Use of technology in everyday life (e.g., lamp, 165. smoke detector, TV, computer, internal 1 2 3 4 0 1 2 3 -4 0 combustion engine) 166. Technology transfer (e.g., spin-offs from space 0 1 2 3 4 0 1 2 3 4 technology, superconductors) 167. Issues associated with the use of chemicals in agriculture, food preparation and preservation 0 1 2 3 - 4 1 2 3 4 Social, political and economic issues arising from 168. 0 1 2 3 4 0 1 2 3 4 science and technology 169. Overall evaluation of the importance of Science, 0 1 2 3 4 Technology, and Society 170. How well do the knowledge areas in section G cover the important aspects of Science, Technology, and Society?

1	2	3	4	5
Very Poorly	Poorly	Adequately	Well	Very Well

What important aspects, if any, are not covered?

Evaluate each knowledge area in terms of <u>IMPORTANCE</u> for and <u>LEVEL OF UNDERSTANDING</u> needed by newly licensed (certified) chemistry teachers if they are to perform their job in a competant manner. IMPORTANCE LEVEL OF UNDERSTANDING (0) Of no importance An understanding of the knowledge area is not needed (0) (1) Of little importance (1) DEFINE the terms used in the knowledge area (2) Moderately important COMPREHEND the essential properties of the knowledge area (2) (3) important (3) APPLY/UTILIZE the knowledge area to address problems or questions (4) Very important (4) ANALYZE the knowledge area into component parts and explain the interrelationships among the parts

1

H.		GOGY SPECIFIC TO THE PHYSICAL NCES	IM	PO	<u>RT</u>	<u>4N(</u>	<u> </u>	LEVEL OF <u>UNDERSTANDING</u>						
	171.	Recognition of and compensation for complex factors associated with societal and school-related issues that may affect the <u>teaching</u> of the physical sciences.	0	1	2	3	4	0	1	2	3	4		
	172.	Recognition of and compensation for complex factors associated with societal and school-related issues that may affect <u>student's learning</u> of the physical sciences	0	1	2	3	4	0	1	2	3	4		
	<u>Curri</u>	culum: Organization and Materials												
	173.	Reasons for learning the physical sciences	0	1	2	3	4	0	1	2	3	4		
	174.	Reasons for teaching a particular topic in the physical sciences	0	1	2	3	4	0	.1	2	3	4		
	175. _.	Integration within topics in the physical sciences	0	1	2	3	4	· 0	1	2	3	4		
	176.	Integration among the physical sciences and other disciplines	0	1	2	3	4	0	1	2	3	4		
	177.	Scope and sequence of topics in the physical sciences curricula for all students and justification for the scope and sequence	0	1	2	3	4	0	1	2	3	4		
	178.	Lesson plans in the physical sciences curricula for all students and justification for the plans	0	1	2	3	4	0	1	2	3	4		
	179.	Selection and use of curricular materials and resources (e.g., textbooks and other printed materials, computer software, laboratory materials) for the physical sciences	0	1	2	3	4	0	1	2	3	4		

Ca19

IMPORTANCE

.

LEVEL OF UNDERSTANDING

(1) (2) (3)	Of no importance Of little importance Moderately important important Very important	(0) (1) (2) (3) (4)	An understanding of the knowledge area is not needed <u>DEFINE</u> the terms used in the knowledge area <u>COMPREHEND</u> the essential properties of the knowledge area <u>APPLY/UTILIZE</u> the knowledge area to address problems or questions <u>ANALYZE</u> the knowledge area into component parts and explain the interrelationships among the parts
-------------------	---	---------------------------------	--

H.		GOGY SPECIFIC TO THE PHYSICAL NCES (cont.)	IM	<u>PO</u>	<u>RT</u> /	NC	<u>:</u>	LEVEL OF <u>UNDERSTANDING</u>						
	180.	Selection and use of mass media (e.g., film, television, video) appropriate for topics in the physical sciences	0	1	2	3	4	0	1		2	3	4	
	181.	Selection and use of current technologies (e.g., computer, videodisc, interactive television, video) appropriate for laboratory data collection and other instructional purposes in the physical sciences	0	1	2	3	4	0	1		2	3	4	
	Instru	Iction												
	182.	Prerequisite knowledge, experience, and skills that students need for various topics in the physical sciences	0	1	2	3	4	0	1	L	2	3	4	
	183.	Recognition of and accommodation to the prior conceptions, experience, and skills that students bring to various topics in the physical sciences	0	1	2	3	4	0		ł	2	3	4	
	184.	Identification and selection of appropriate lab experiences for various instructional goals and student learning needs	0	1	2	3	4	0		1	2	3	4	
	185.	Design of appropriate lab experiences for various instructional goals and student learning needs	0	1	2	3	4	C		1	2	3	4	
	186.	Strategies for motivating and encouraging students to succeed in the physical sciences	0	1	2	3	4	()	1	2	3	4	
	187.	Strategies for addressing controversial and/or sensitive issues in the physical sciences	0	1	2	3	4	()	1	2	3	4	
	Asse	ssment and Evaluation												
	188.	Assessment strategies (e.g., laboratory reports, portfolios, observations, oral discussions, written tests, performance-based assessments, projects) to evaluate student performance in the physical sciences	0	1	2	3	4	()	1	2	3	4	

.

72

Evaluate each knowledge srea in terms of IMPORTANCE for and LEVEL OF UNDERSTANDING needed by newly licensed (certified) chemistry teachers if they are to perform their job in a competent manner. LEVEL OF UNDERSTANDING IMPORTANCE (0) Of no importance (0) An understanding of the knowledge area is not needed (1) Of little importance (1) DEFINE the terms used in the knowledge area (2) COMPREHEND the essential properties of the knowledge area (2) Moderately important (3) APPLY/UTILIZE the knowledge area to address problems or questions (3) important ANALYZE the knowledge area into component parts and explain the (4) Very important (4) interrelationships among the parts H. PEDAGOGY SPECIFIC TO THE PHYSICAL LEVEL OF SCIENCES (cont.) **IMPORTANCE** UNDERSTANDING 189. Errors in student work and performance that arise from prior conceptions about topics in the 0 1 2 3 4 physical sciences 0 1 2 3 4 **Professional Concerns** 190. Professional and scholarly literature (e.g., journals, reference works) appropriate for teachers and students in the physical sciences 0 1 2 3 4 0 1 2 3 - 4 191. Professional and scholarly organizations for 0 1 2 3 4 0 1 2 3 4 science educators 192. Legal responsibilities and liabilities for teachers in the physical sciences 0 1 2 3 4 0 1 2 3 4 193. Responsibilities for continuing education in the physical sciences and in science education 3 4 2 3 0 1 2 1 194. Resources available in the community 0 1 2 3 4 1 2 3 0 - 4 Science-related career information 0 1 2 3 4 0 1 2 3 4 195. 196. Overall evaluation of the importance of Pedagogy Specific to the Physical Sciences 0 1 2 3 4 197. How well do the knowledge areas in section H cover the important aspects of Pedagogy Specific to the Physical Sciences?

1	2	3	4	5
Very Poorly	Poorly	Adequately	Well	Very Well

What important aspects, if any, are not covered?

PART II - RECOMMENDATIONS FOR TEST CONTENT

Listed below are eight broad topics that may be covered on the new licensing examination for chemistry. If the examination contained 100 questions, how many questions should be included from each topic? If you feel a category should not be included in the exam, put 0 in the space provided. Make sure your responses sum to 100.

	TOPICS	NUMBER	OF TEST QUESTIONS (out of 100)
198.	SCIENTIFIC METHODOLOGY/TECHNIQUES/ HISTORY		
199.	BASIC TOPICS IN PHYSICAL SCIENCE		
200.	CHEMICAL PERIODICITY		
201.	NOMENCLATURE		
202.	THE MOLE, CHEMICAL BONDING AND MOLECULA GEOMETRY	R	
203.	BIOCHEMISTRY		
204.	SCIENCE, TECHNOLOGY, AND SOCIETY		
205.	PEDAGOGY SPECIFIC TO THE PHYSICAL SCIENCES	5	
		TOTAL	100

PART III - BACKGROUND INFORMATION

The information that you provide in this section is completely confidential and will be used for research purposes only. Please answer the questions by circling the number that most closely describes you or your professional activities. Unless otherwise indicated, please circle only one response for each question.

206. Where do you work?

1. Alabama 2. Alaska 3. Arizona 4. Arkansas 5. California 6. Colorado 7. Connecticut 8. Delaware 9. District of Columbia 10. Florida 11. Georgia 12. Hawaii 13. Idaho 14. Illinois 15. Indiana 16. Iowa

17. Kansas

18. Kentucky 19. Louisiana 20. Maine 21. Maryland 22. Massachusetts 23. Michigan 24. Minnesota 25. Mississippi 26. Missouri 27. Montana 28. Nebraska 29. Nevada 30. New Hampshire 31. New Jersey 32. New Mexico 33. New York 34. North Carolina 35. North Dakota

36. Ohio 37. Oklahoma 38. Oregon 39. Pennsylvania 40. Puerto Rico 41. Rhode Island 42. South Carolina 43. South Dakota 44. Tennessee 45. Texas 46. Utah 47. Vermont 48. Virginia 49. Washington 50. West Virginia 51. Wisconsin 52. Wyoming

207. What is your age?

- 1. Under 25
- 2. 25-34
- 3. 35-44
- 4. 45-54
- 5. 55-64
- 6. Over 64

208. What is your sex?

- 1. Female
- 2. Male

209.

Which of the following best describes the area in which you work?

- 1. Urban
- 2. Suburban
- 3. Rural

- 210. How do you describe yourself?
 - 1. Native American, American Indian, or Alaskan Native
 - 2. Asian American, Asian, Native Hawaiian, or Pacific Islander 👘 -
 - 3. African American or Black
 - 4. Mexican American or Chicano
 - 5. Puerto Rican
 - 6. Latin American, South American, Central American, or other Hispanic
 - 7. White
 - 8. Other
- 211. Which of the following best describes your highest educational attainment?
 - -1. Less than a bachelor's
 - 2. Bachelor's
 - 3. Bachelor's + additional credits
 - 4. Master's
 - 5. Master's + additional credits
 - 6. Doctorate

212. Which of the following best describes your current employment status?

- 1. Temporary substitute (assigned on a daily basis)
- 2. Permanent substitute (assigned on a longer term basis)
- 3. Regular teacher (not a substitute)
- 4. Principal or assistant principal
- 5. School administrator
- 6. Curriculum supervisor
- 7. State administrator
- 8. College faculty
- 9. Other (please specify)
- 213. How many years have you taught chemistry?
 - 1. Never taught chemistry
 - 2. Less than a year
 - 3. 1 2 years
 - 4. 3 5 years
 - 5. 6 **1**0 years
 - 6. 11 15 years
 - 7. 16 20 years
 - 8. 21 or more years

214. What grade level(s) are you currently teaching? (Circle all that apply)

- 1. Preschool/Kindergarten
- 2. Grades 1-4
- 3. Grades 5-8
- 4. Grades 9-12
- 5. College
- 6. Do not teach
- 7. Other (please specify)_

Ca24

76

215.

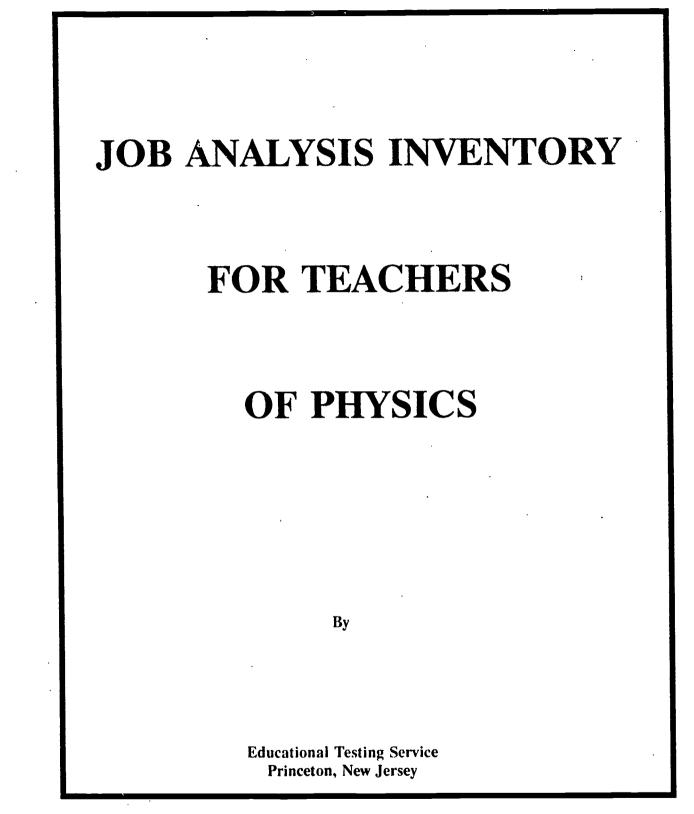
- 1. Biology
- 2. Earth and Space Science
- 3. Ecology
- 4. General Science
- 5. Marine Science
- 6. Physical Science
- 7. Physics
- 8. Chemistry
- 9. College
- 10. Do not teach
- 11. Other (please specify)_

216. Circle the following organizations to which you belong.

1. American Association of Physics Teachers

- 2. American Association for the Advancement of Science
- 3. American Chemical Society
- 4. American Federation of Teachers
- 5. National Association of Biology Teachers
- 6. National Association for Research in Science Teaching
- 7. National Science Supervisors Association
- 8. National Science Teachers Association
- 9. National Association for Science, Technology, and Society
- 10. National Education Association
- 11. Other (please specify)

THANK YOU FOR COMPLETING THIS INVENTORY. PLEASE RETURN IT WITHIN <u>10 DAYS</u> USING THE ENCLOSED ENVELOPE.


Ca25 77

Cb1 Job Analysis Survey for Teachers of Physics

Cb1

 $\mathbf{78}$

Copyright [©] 1990 by Educational Testing Service. All rights reserved.

Cb2

INTRODUCTION

Educational Testing Service (ETS) is developing a new generation of assessments for the purpose of licensing (certifying) teachers. The inventory that follows is part of our development effort and is designed to gather information concerning the job of a **newly** licensed physics teacher. It was developed by high school teachers, college faculty, and state department of education officials, along with ETS staff.

Those who constructed this inventory recognize that physics teachers are required to teach students with varying backgrounds and levels of ability. For this reason, the collaborators believe that teachers should have a broad and deep understanding of physics in order to teach it. The inventory asks you to respond to a list of statements and to judge (a) the importance of the knowledge statements for newly licen (certified) physics teachers and (b) the level of understanding needed by newly licensed (certified) physics teachers. Please do not relate each statement to your own job but rather to what you believe newly licensed (certified) physics teachers should know.

The information you provide will guide the development of a new NTE Physics examination. It is expected that the new examination will differ from the current examination in both content and design. In addition to the development of a new examination, this study will contribute to our understanding of physics teaching as a profession. We expect the results of the study to be widely disseminated and to be very useful to the profession.

The inventory has been mailed to a group of approximately 800 professionals. Its value is directly related to the number of individuals who return their completed inventories. Because you represent a large number of professionals, your responses are extremely important. The inventory requires approximately 60 minutes to complete. Please return your completed inventory within 10 days.

Cb3

PART I - KNOWLEDGE AREAS FOR PHYSICS TEACHERS

The purpose of this inventory is to determine what you believe <u>newly licensed (certified) physics teachers</u> should know in order to perform their job in a competent manner. On the following pages you will find eight major content areas and, beneath each, a list of knowledge statements that define the particular content area. The order of presentation of the eight content areas in the inventory is not meaningful.

The eight content areas are:

- A. SCIENTIFIC METHODOLOGY/TECHNIQUES/HISTORY
- **B. BASIC TOPICS IN PHYSICAL SCIENCE**
- C. MECHANICS
- D. ELECTRICITY AND MAGNETISM
- E. WAVES
- F. MODERN PHYSICS
- G. SCIENCE, TECHNOLOGY, AND SOCIETY
- H. PEDAGOGY SPECIFIC TO THE PHYSICAL SCIENCES

For each statement within each of these content areas, you will be asked to make the following judgments:

!fow <u>important</u> is an understanding of this knowledge area for <u>newly licensed (certified)</u> physics teachers if they are to perform their jobs in a competent manner?

- (0) Of no importance
- (1) Of little importance
- (2) Moderately important
- (3) Important
- (4) Very important

What <u>level of understanding</u> is typically needed by <u>newly licensed (certified)</u> physics teachers in each knowledge area?

(Note: These levels are hierarchically arranged: level #2 subsumes level #1; level #3 subsumes levels #2 and #1; level #4 subsumes levels #3, #2, and #1. The zero (0) point is <u>not</u> subsumed by any other scale point.)

- (0) An understanding of the knowledge area is not needed.
- (1) Requires the ability to <u>define</u> the terms used in the knowledge area.
- (2) Requires the ability to comprehend the essential properties of the knowledge area.
- (3) Requires the ability to apply/utilize the knowledge area to address problems or questions.
- (4) Requires the ability to <u>analyze</u> the knowledge area into component parts and explain
 - the interrelationships among the parts.

Circle your responses using the scales adjacent to each statement. To familiarize yourself with the content areas and statements, you may wish to glance through Part I before making your judgments.

IMPORTANCE

(1)

(2)

A.

LEVEL OF UNDERSTANDING

- (0)Of no importance **Of little importance**
- An understanding of the knowledge area is not needed (0)
- DEFINE the terms used in the knowledge area (1)
- COMPREHEND the essential properties of the knowledge area (2)
- (3) Important
- (4) Very important

Moderately important

APPLY/UTILIZE the knowledge area to address problems or questions (3) ANALYZE the knowledge area into component parts and explain the (4) interrelationships among the parts

SCIENTIFIC LEVEL OF METHODOLOGY/TECHNIQUES/HISTORY IMPORTANCE UNDERSTANDING Methodology Scientific methods (e.g., formulation of problem, 1. hypotheses, experiments, interpretations, predictions, conclusions) 0 1 2 3 4 0 1 2 3 4 2. Science process skills (e.g., qualitative and quantitative observations, interpretations, communication, inferences, applications) 1 2 0 1 2 3 4 0 3 - 4 3. Assumptions, models, laws, and theories 0 1 2 3 0 1 2 3 4 -4 4. Design of experiments (e.g., controls, independent and dependent variables) 0 1 2 1 2 3 -4 0 3 - 4 **History and Philosophy of Science** Historical roots of science 5. 0 1 2 3 0 1 2 3 4 6. Contributions of individuals 0 2 3 1 2 3 4 1 4 Ω 7. Contributions of ethnic groups and cultures ... 2 3 1 2 3 0 1 4 0 - 4 Mathematics, Measurement, and Data Manipulation 8. The metric and SI systems 0 2 1 2 3 4 1 3 4 O 9. Scientific notation 0 1 2 3 4 0 1 2 3 - 4 Estimation and approximation 10. 0 1 2 3 4 0 1 2 3 - 4 Significant figures in measurement and 11. calculations 0 1 2 3 4 1 2 3 4 0 12. Unit/dimensional analysis 0 1 2 3 1 2 3 4 4 0 13. Experimental errors (e.g., sources, quantifications, precision, accuracy) 0 1 2 2 3 3 -4 0 1 -4 14. Mathematical relationships and patterns in numerical data (e.g., direct, exponential) 0 1 2 3 4 O 1 2 3 4 15. Statistics of distributions +0 1 2 3 -4 0 1 2 3 -4

IMPORTANCE

LEVEL OF UNDERSTANDING.

An understanding of the knowledge area is not needed Of no importance (0) (0) DEFINE the terms used in the knowledge area (1) Of little importance (1) (2) COMPREHEND the essential properties of the knowledge area Moderately important (2) APPLY/UTILIZE the knowledge area to addreas problems or questions (3) important (3) ANALYZE the knowledge area into component parts and explain the (4) (4) Very important interrelationships among the parts

А.		<u>NTIFIC</u> HODOLOGY/TECHNIQUES/HISTORY (cont.)	<u>IM</u>	PO	<u>RT</u>	<u>AN(</u>	<u>CIE</u>	LEVEL OF UNDERSTANDING							
	16.	Simple digital (binary) logic	0	1	2	3	4	0	1	2	3	4			
	17.	Organization and interpretation of data and equations (e.g., tables, graphs, spreadsheets)	0	1	2	3	4	0	1	2	3	4			
	18.	Differentiation and simple integration	0	1	2	3	4	0	1	2	3	4			
	19.	Vector algebra	0	1	2	3	4	0	1	2	3	4			
	<u>Laboi</u>	ratory and Safety													
	20.	Use and calibration of laboratory equipment (e.g., balances, electrical meters, barometers, optical equipment)	0	1	2	3	4	0	1	2	3	4			
	21.	Maintenance of laboratory equipment (e.g., balances, electrical meters, barometers, optical equipment)	0	1	2	3	4	0	1	2	3	4			
	22.	Preparation and set up of materials and apparatus	0	1	2	3	4	0	1	2	3	4			
	23.	Laboratory safety (e.g., laboratory hazards, storage and disposal of materials)	0	1	2	3	.1	0	1	2	3	4			
	24.	Emergency procedures for laboratory accidents	0	1	2	3	4	0	1	2	3	4			
	25.	Overall evaluation of the importance of Scientific Methodology/Techniques/History	0	1	2	3	4								

IMPORTANCE

LEVEL OF UNDERSTANDING

- (0) Of no importance Of little importance
- (0) An understanding of the knowledge area is not needed
- (1) DEFINE the terms used in the knowledge area
- Moderately important (2) (3) Important
- (2) <u>COMPREHEND</u> the essential properties of the knowledge area
- (4) Very Important

,

(3) APPLY/UTILIZE the knowledge area to address problema or questions (4) ANALYZE the knowledge area into component parts and explain the interrelationships among the parts

LEVEL OF

SCIENTIFIC A.

(1)

METHODOLOGY/TECHNIOUES/HISTORY (cont.)

26. How well do the knowledge areas in section A cover the important aspects of Scientific Methodology/Techniques/History?

1	2	3	4	5
Very Poorly	Poorly	Adequately	Well	Very Well

What important aspects, if any, are not covered?

B.	BASIC	C TOPICS IN PHYSICAL SCIENCE	<u>IM</u>	PO	RT.	ANO	<u>]</u>	UNDERSTANDING						
	Matte	r and Energy												
	27.	Physical and chemical properties (e.g., states of matter, homogeneous, heterogeneous)	0	1	2	3	4	0	1	2	3	4		
	28.	Particulate nature of matter (e.g., atoms, ions, molecules)	0	1	2	3	4	0	1	2	3	4		
	29.	Elements, compounds, and mixtures	0	1	2	3	4	0	1	2	Ż	4		
	30.	Physical and chemical changes	0	1	2	3	4	0	1	2	3	4		
	31.	Conservation of mass/energy	0	1	2	3	4	0	1	2	3	4		
	32.	Forms of energy (e.g., kinetic, potential, mechanical, sound, magnetic, electrical, light, heat, nuclear, chemical)	0	1	2	3	4	0	1	2	3	4		
	33.	Energy transformations	0	1	2	3	4	0	1	2	3	4		
	<u>Heat</u>	and Thermodynamics												
	34.	Historical development of heat and energy concepts	0	1	2	3	4	0	1	2	3	4		

84

Cb7

IMPORTANCE

LEVEL OF UNDERSTANDING

An understanding of the knowledge area is not needed Of no importance (0) (0) DEFINE the terms used in the knowledge area (1) Of little importance (1) COMPREHEND the essential properties of the knowledge area (2) Moderately important (2) APPLY/UTILIZE the knowledge area to address problems or questions Important (3) (3) (4) Very important (4) ANALYZE the knowledge area into component parts and explain the interrelationships among the parts

В.	<u>BASIC</u>	C TOPICS IN PHYSICAL SCIENCE (cont.)	IM	PO	<u>RT/</u>	<u> </u>	<u>ce</u>	LEVEL OF UNDERSTANDING							
	35.	Kinetic molecular theory	0	1	2	3	4	C)	1	2	3	4		
	36.	Equipartition of energy	0	1	2	3	4	C)	1	2	3	4		
	37.	Brownian motion	0	1	2	3	4	0)	1	2	3	4		
	38.	Heat versus temperature	0	1	2	3	4	0)	1	2	3	4		
	39.	Temperature scales and measurement	0	1	2	3	4	()	1	2	3	4		
	40.	Conduction, convection, and radiation	0	1	2	3	4	()	1	2	3	4		
	41.	Heat capacity, thermal exchange, heat of fusion, and heat of vaporization	0	1	2	3	4	()	1	2	3	4		
	42.	Phase changes	0	1	2	3	4	()	1	2	3	4		
	43.	Expansion and contraction	0	1	2	3	4	()	1	2	3	4		
	44.	Zeroth law of thermodynamics (i.e., direction of heat flow)	0	1	2	3	4	()	1	2	3	4		
	45.	First law of thermodynamics (i.e., energy is conserved)	0	1	2	3	4	(0	1	2	3	4		
	46.	Second law of thermodynamics - entropy	0	1	2	3	4	(0	1	2	3	4		
	47.	Third law of thermodynamics (i.e., the concept of absolute zero temperature)	0	1	2	3	4		0	1	2	3	4		
	48.	Reversibility and irreversibility	0	1	2	3	4	I	0	1	2	3	4		
	<u>Atom</u>	ic and Nuclear Structure													
	49.	Historical discovery of particles (e.g., electron, neutron)	0	1	2	3	4		0	1	2	3	4		
	50.	Atomic models and their experimental bases (Thomson, Rutherford, and Bohr)	0	1	2	3	4		0	1	2	3	4		
	51.	Structure of the atom	0	1	2	3	4		0	1	2	3	4		
	52.	Characteristics of an electron in an atom (e.g., shells, orbitals)	0	1	2	3	4		0	1	2	3	4		

IMPORTANCE

LEVEL OF UNDERSTANDING

(0)	Of no importance	(0)	An understanding of the knowledge area is not needed
(1)	Of little importance	(1)	DEFINE the terms used in the knowledge area
(2)	Moderately important	(2)	COMPREHEND the essential properties of the knowledge area
(3)	important	(3)	APPLY/UTILIZE the knowledge area to address problems or questions
(4)	Very important	(4)	ANALYZE the knowledge area into component parts and explain the
	•		interrelationships among the parts
			· ·

BASI	<u>C TOPICS IN P</u>	S IN PHYSICAL SCIENCE (cont.)				RT	AN	<u>CE</u>	LEVEL OF <u>UNDERSTANDING</u>						
53.	C TOPICS IN PHYSICAL SCIENCE (cont. Atomic mass, atomic number, mass number isotopes Nuclear forces and binding energy Types of radioactive decay (e.g., alpha, bet gamma emission) Artificial and natural radioactivity Half-life of radioactive isotopes Nuclear reaction (transmutation, fission, fusion) Overall evaluation of the importance of B Topics in Physical Science How well do the knowledge areas in section Physical Science?		0	1	2	3	4	0	- 1	2	3	4			
54.	Nuclear forces	and binding er	nergy	0	1	2	3	4	0	1	2	3	4		
55.				0	1	2	3	4	0	1	2	3	4		
56.	Artificial and r	natural radioact	livity	0	1	2	3	4	0	1	2	3	4		
57.	Half-life of rad	lioactive isotop	es	0	1	2	3	4	0	1	2	3	4		
58.		•		0	1	2	3	4	0	1	2	3	4		
59.		-		0	1	2	3	4							
60.			areas in section B cove	er the	e in	1po i	rtan	t aspe	ects of l	Basi	ic T	`opi	cs i		
	1 Very Poorly	2 Poorly	3 Adequately		4 'ell				5 y Well						

What important aspects, if any, are not covered?

C. <u>MECHANICS</u>

61.	Vector quantities	0	1	2	3	4	0	1	2	3	4
62.	Relationships among position, velocity, acceleration, and time for straight line motion	0	1	2	3	4	0	1	2	3	4

IMPORTANCE

LEVEL OF INDERSTANDING

- Of no importance (0) Of little importance
- An understanding of the knowledge area is not needed (0)
- DEFINE the terms used in the knowledge area (1) COMPREHEND the essential properties of the knowledge area
- **Moderately important** (2)
- (2)
- important (3) (4) Very Important

(1)

APPLY/UTILIZE the knowledge area to address problems or questions (3) (4) ANALYZE the knowledge area into component parts and explain the interrelationships among the parts

C.	<u>MECI</u>	IANICS (cont.)	<u>IM</u>	<u>PO</u>	RT/	<u>in</u>	<u>E</u>	LEVEL OF <u>UNDERSTANDING</u>							
	63.	Reference frames and relative velocity (e.g., Galilean relativity)	0	1	2	3	4	0	1	2	3	4			
	64.	Relationships among position, velocity, constant acceleration, and time for projectile motion	0	1	2	3	4	0	1	2	3	4			
	65.	Relationships among position, velocity, and centripetal acceleration for uniform circular motion	0	1	2	3	4	0	1	2	3	4			
	66.	Periodic motion (e.g., frequency, period, amplitude)	0	1	2	[.] 3	4	0	1	2	3	4			
	67.	Simple harmonic motion (oscillations)	0	1	2	3	4	0	1	2	3	4			
	68.	Newton's laws of motion	0	1	2	3	4	0	1	2	3	4			
	69.	Weight versus mass	0	1	2	3	4	0	1	2	3	4			
	70.	Friction (e.g., static and dynamic coefficients)	0	1	2	3	4	0	1	2	3	4			
	71.	Statics (e.g., equilibrium of forces and/or torques)	0	1	2	3	4	0	1	2	3	4			
	72.	Relationships between work and kinetic energy changes	0	1	2	3	4	0	1	2	3	4			
	73.	Conservative forces and potential energy	0	1	2	3	4	0	1	2	3	4			
	74.	Springs (c.g., Hooke's law, energy considerations)	0	1	2	3	4	0	1	2	3	4			
	75.	Concepts of rigid body motion (e.g., moment of inertia, center of mass, torque, angular momentum)	0	1	2	3	4	0	1	2	3	4			
	76.	Impulse-momentum principle	0	1	2	3	4	0	1	2	3	4			
	77.	Conservation of momentum (in both elastic and inelastic collisions)	0	1	2	3	4	0	1	2	3	4			
	78.	Conservation of angular momentum	0	1	2	3	4	0	1	2	3	4			

IMPORTANCE

LEVEL OF UNDERSTANDING

- (0) Of no importance(1) Of little importance
- (0) An understanding of the knowledge area is not needed (1) <u>DEFINE</u> the terms used in the knowledge area
- Of little importance (1) <u>DEFINE</u> the terms
- (2) Moderately important(3) important

٠.

- (2) <u>COMPREHEND</u> the essential properties of the knowledge area
 (3) <u>APPLY/UTILIZE</u> the knowledge area to address problems or questions
- (4) Very important
- (3) <u>APPLY/UTILIZE</u> the knowledge area to address problems or question
 (4) <u>ANALYZE</u> the knowledge area into component parts and explain the interrelationships among the parts

C.	MECHANICS (cont.) 79. Conservation of energy					<u>IPO</u>	RT	AN	<u>CE</u>	LEVEL OF <u>UNDERSTANDING</u>							
	79.	Conservation of	of energy		0	1	2	3	4	0	1	2	3	4			
	80.		n (e.g., Copernio	cus, Galileo,	0	1	2	3	4	0	1	2	3	4			
	81.	Newton's law	of universal grav	vitation	0	1	2	3	4	0	1	2	3	4			
	82.	Archimedes' r	cs (e.g., Pascal's rinciple, Bernou		0	1	2	3	4	0	1	2	3	4			
	83.		ects on length, transformations	mass, and time)	0	1	2	3	4	0	1	2	3	4			
	84.		ation o f the im p	ortance of	0	1	2	3	4								
	85.	How well do t	he knowledge a	reas in section C cove	er th	e in	npo	rtan	t asp	pects of	Me	chai	nics	?			
			-	3 Adequately y, are not covered?		4 'ell			Ve	5 ry Well							
		•	• ·	•													

D. ELECTRICITY AND MAGNETISM

86.	Electric forces and Coulomb's law (e.g., electroscope, pith ball experiments)	0	1	2	3	4	0	1	2	3	4
87.	Electric fields	0	1	2	3	4	0	1	2	3	4
88.	Gauss's law	0	1	2	3	4	0	1	2	3	4

IMPORTANCE

(3)

D.

LEVEL OF UNDERSTANDING

- Of no importance (0)
- An understanding of the knowledge area is not needed (0)
- DEFINE the terms used in the knowledge area (1)
- (1) Of little importance **Moderately important** (2) Important
- COMPREHEND the essential properties of the knowledge area (2)
 - APPLY/UTILIZE the knowledge area to address problems or questions (3)
- Very important (4)
- ANALYZE the knowledge area into component parts and explain the (4) interrelationships among the parts

LEVEL OF UNDERSTANDING **IMPORTANCE** ELECTRICITY AND MAGNETISM (cont.) 89. Electric potential energy, electric potential, 2 3 4 and potential difference 0 1 2 3 4 **n** 1 .1 2 3 4 2 3 4 0 90. Conductors, insulators, semiconductors 0 1 2 3 1 - 4 2 3 - 4 0 0 1 2 3 4 2 0 1 92. 0 . 3 - 4 Series and parallel circuits (e.g., Ohm's law, 93. 1 2 3 4 2 3 4 0 1 Kirchhoff's laws) 2 3 4 internal resistance of batteries 0 1 2 3 4 0 1 94. 2 3 4 0 1 2 3 4 0 1 Capacitance 95. 2 3 4 2 3 0 1 0 1 - 4 96. Inductance Measurement of potential difference, current, 97. 2 3 - 4 2 3 - 4 n 1 0 1 resistance, and capacitance Alternating current circuits (e.g., average power, 98. 0 1 2 3 4 2 3 - 4 peak, effective current) 0 1 2 3 - 4 99. 0 1 2 3 - 4 0 1 Magnetic flux 100. Faraday's and Lenz's laws of electromagnetic 1 2 3 - 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 101. Transformers Sources of EMF (e.g., batteries, photo cclls, 102. 2 3 -4 3 4 1 0 1 2 generators) 2 3 4 1 0 1 2 3 4 0 103. Motors 104. Large scale generation and transmission of 2 3 4 2 3 0 1 - 4 energy and power 0 1 2 3 4 2 3 4 0 1 105. *n*- and *p*-type semiconductors 0 1 106. Semiconductor devices (e.g., diodes, 0 1 2 3 4 0 1 2 3 -4 transistors) 0 1 2 3 4 0 1 2 3 4 107. Integrated circuits

IMPORTANCE

(2)

(3)

LEVEL OF UNDERSTANDING

- Of no importance (0) (1) **Of little importance**
- (0) An understanding of the knowledge area is not needed
- **DEFINE** the terms used in the knowledge area (1)
- **Moderately important** (2) COMPREHEND the essential properties of the knowledge area
 - APPLY/UTILIZE the knowledge area to address problems or questions (3)
- Important Very important (4)
- ANALYZE the knowledge area into component parts and explain the (4) interrelationships among the parts

LEVEL OF · IMPORTANCE UNDERSTANDING D. ELECTRICITY AND MAGNETISM (cont.) Superconductivity 0 1 2 3 4 108. 0 1 2 3 4 109. Magnets 0 1 2 3 4 1 2 3 4 0 110. Magnetic fields 0 1 2 3 4 1 2 3 4 0 111. Gauss's law of magnetism (nonexistence of 0 1 2 3 4 0 1 2 3 4 112. Magnetic forces 0 1 2 3 4 0 1 2 3 4 113. Principle and calibration of electrical meters (e.g., galvanometers, voltmeters, ammeters) 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 114. Types of magnetism (e.g., diamagnetism) 0 1 2 3 4 115. Biot-Savart law and Ampere's law (relating current to magnetic field) 0 1 2 3 4 0 1 2 3 4 116. Maxwell's equations 0 1 2 3 4 0 1 2 3 4 117. Lorentz force law and applications (force on a charged particle moving in an electric and/or a magnetic field; cyclotron; mass spectrometry) 0 1 2 3 4 0 1 2 3 4 118. Overall evaluation of the importance of Electricity and Magnetism +0 1 2 3 4 119. How well do the knowledge areas in section D cover the important aspects of Electricity and Magnetism? 2 3 5 4 1 Very Poorly Poorly Adequately Well Very Well

What important aspects, if any, are not covered?

IMPORTANCE

(3)

LEVEL OF UNDERSTANDING

- (0) Of no importance (1) Of little importance
- An understanding of the knowledge area is not needed (0)
- DEFINE the terms used in the knowledge area (1)
- Moderately important (2)
- COMPREHEND the essential properties of the knowledge area (2)
- APPLY/UTILIZE the knowledge area to address problems or questions (3)
- Important (4) Very important
- ANALYZE the knowledge area into component parts and explain the (4)
- interrelationships among the parts

E.	WAVE	<u>25</u>	<u>IM</u>	<u>P0</u>	RT/	<u> </u>		UND			OF <u>ND</u>	
	120.	Wave characteristics (speed, amplitude, wavelength, frequency)	0	1	2	3	4	· 0	1	2	3	4
	121.	Inverse square law for intensity	0	1	2	3	4	0	1	2	3	4
	122.	Transverse and longitudinal waves	0	1	2	3	4	0	1	2	3	4
	123.	Absorption and transmission	0	1	2	3	4	0	1	2	3	4
	124.	Reflection	0	1	2	3	4	0	1	2	3	4
	125.	Scattering	0	1	2	3	4	0	1	2	3	4
	126.	Refraction and Snell's law	0	1	2	3	4	0	1	2	3	4
	127.	Interference and superposition of waves	0	1	2	3	4	. 0	1	2	3	4
	128.	Standing waves	0	1	2	3	4	0	1	2	3	4
	129.	Diffraction (Fraunhofer and Fresnel)	0	1	2	3	4	0	1	2	3	4
	130.	Dispersion	0	1	2	3	4	0	1	2	3	4
	131.	Resonance and natural frequencies	0	1	2	3	4.	0	1	2	3	4
	132.	Doppler effect	0	1	2	3	4	0	1	2	3	4
	133.	Characteristics of sound waves (pitch, loudness [dB], speed)	0	1	2	3	4	0	1	2	3	4
	134.	Sound: air columns and strings (e.g., timbre, beats, harmonics)	0	1	2	3	4	0	1	2	3	4
	135.	The electromagnetic spectrum (gamma rays to radio waves)	0	1	2	3	4	0	1	2	3	4
	136.	Color (addition and subtraction; relationship to frequency)	0	1	2	3	4	0	1	2	3	4
	137.	Coherent radiation (sources and special properties)	0	1	2	3	4	0	1	2	3	4
	138.	Geometric optics (e.g., mirrors, lenses, prisms, fiber optics)	0	1	2	3	4	0	1	2	3	4

۱

91

Cb14

IMPORTANCE

LEVEL OF UNDERSTANDING

(0)	Of no Importance	(0)	An understanding of the knowledge area is not needed
(1)	Of little importance	(1)	DEFINE the terms used in the knowledge area
(2)	Moderately important	(2)	COMPREHEND the essential properties of the knowledge area
(3)	important	(3)	APPLY/UTILIZE the knowledge area to address problems or questions
(4)	Very important	(4)	ANALYZE the knowledge area into component parts and explain the
	•		interrelationships among the parts

LEVEL OF UNDERSTANDING E. WAVES (cont.) **IMPORTANCE** 139. Polarization 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 140. Thin films 0 1 2 3 4 141. Overall evaluation of the importance of 0 1 2 3 4 142. How well do the knowledge areas in section E cover the important aspects of Waves?

1	2	3	4	5
Very Poorly	Poorly	Adequately	Well	Very Well

What important aspects, if any, are not covered?

F. MODERN PHYSICS

143.	Blackbody radiation	0	1	2	3	4	0	1	2	3	4
144.	Photoelectric effect	0	1	2	3	4	0	1	2	3	4
145.	Spectroscopy	0	1	2	3	4	0	1	2	3	4
146.	Planck's hypothesis	0	1	2	3	4	0	1	2	3	4
147.	deBroglie's hypothesis	0	1	2	3	4	0	1	2	3	4
148.	Wave-particle duality	0	1	2	3	4	0	1	2	3	4
149.	Heisenberg uncertainty principle	0	1	2	3	4	0	1	2	3	4
150.	Schrödinger's wave equation	0	1	2	3	4	0	1	2	3	4

IMPORTANCE

LEVEL OF UNDERSTANDING

(0) An understanding of the knowledge area is not needed Of no importance (0) (1) DEFINE the terms used in the knowledge area Of little importance (1) (2) COMPREHEND the essential properties of the knowledge area **Moderately important** (2) APPLY/UTILIZE the knowledge area to address problems or questions Important (3) (3) ANALYZE the knowledge area into component parts and explain the Very Important (4) (4) interrelationships among the parts

LEVEL OF **UNDERSTANDING IMPORTANCE** F. MODERN PHYSICS (cont.) 0 1 2 3 4 151. Orbital theory - quantum numbers 0 1 2 3 - 4 2 0 1 2 3 4 Pauli exclusion principle 0 1 3 4 152. Michelson-Morley experiment (ether and the 153. 3 4 0 1 2 3 4 speed of light) 0 1 2 0 1 2 3 4 154. Special relativity 0 1 2 3 4 Lorentz transformations and inertial reference 155. frames 0 1 2 3 4 0 1 2 3 4 156. Mass/energy transformations 0 1 2 3 4 0 1 2 3 0 1 2 3 4 0 1 2 3 4 157. Elementary particles (e.g., hadrons, leptons) ... 0 1 2 3 4 1 2 3 4 158. Strong and weak forces 0 159. Overall evaluation of the importance of Modern 0 1 2 3 4 Physics How well do the knowledge areas in section F cover the important aspects of Modern Physics? 160. 2 3 4 5 1 Very Well Very Poorly Poorly Adequately Well What important aspects, if any, are not covered? ł

7.

IMPORTANCE

LEVEL OF UNDERSTANDING

(0)	Of	no importance
(1)	Of	Inde importance

- (0) An understanding of the knowledge area is not needed
- (1) <u>DEFINE</u> the terms used in the knowledge area
- (2) Moderately important
- (2) <u>COMPREHEND</u> the essential properties of the knowledge area
- (3) important
- (4) Very Important
- (3) <u>APPLY/UTILIZE</u> the knowledge area to address problems or questions
 (4) <u>ANALYZE</u> the knowledge area into component parts and explain the interrelationships among the parts

LEVEL OF

G.	<u>SCIE</u>	NCE. TECHNOLOGY, AND SOCIETY	<u>IM</u>	PO	<u>RT</u>	AN(<u>CE</u>	<u>UND</u>	ER	ST/	NE	<u>DING</u>
	161.	Awareness of ethical and moral responsibilities of scientists	0	1	2	3	4	0	1	2	3	4
	162.	Awareness of ethical issues, risks, and benefits associated with the applications of science	0	1	2	3	4	0	1	2	3	4
	163.	Detection of environmental hazards	0	1	2	3	4	0	1	2	3	4
	164.	Risk management issues associated with energy production, transmission, and use	0	1	2	3	4	0	1	2	3	4
	165.	Risk management issues associated with production, storage, use, and disposal of consumer products	0	1	2	3	4	0	1	2	3	4
	166.	Waste management issues and recycling	0	1	2	3	4	0	1	2	3	4
	167.	Management of resources (e.g., soil, water, metals, fossil fuels)	0	1	2	3	4	0	1	2	3	4
	168.	Use of science and technology to predict and prepare for natural disasters	0	1	2	3	4	0	1	2	3	4
	169.	Use of technology in everyday life (e.g., lamp, smoke detector, TV, computer, internal combustion engine)	0	1	2	3	4.	0	1	2	3	4
	170.	Technology transfer (e.g., spin-offs from space technology, superconductors)	0	1	2	3	4	0	1	2	3	. 4
	171.	Social, political and economic issues arising from science and technology	0	1	2	3	4	0	1	2	3	4
	172.	Overall evaluation of the importance of Science, Technology, and Society	0	1	2	3	4					

IMPORTANCE

LEVEL OF UNDERSTANDING

- (0)Of no importance(0(1)Of little importance(1
- (0) An understanding of the knowledge area is not needed
 - (1) <u>DEFINE</u> the terms used in the knowledge area
- (2) Moderately important
- (2) <u>COMPREHEND</u> the essential properties of the knowledge area
- (3) important
- (4) Very important
- (2) <u>COMPRETEND</u> the estimate properties of the internetige area
 (3) <u>APPLY/UTILIZE</u> the knowledge area to address problems or questions
 (4) <u>ANALYZE</u> the knowledge area into component parts and explain the interrelationships among the parts

G. SCIENCE, TECHNOLOGY, AND SOCIETY (cont.)

173. How well do the knowledge areas in section G cover the important aspects of Science, Technology, and Society?

1	2	3	4	5
Very Poorly	Poorly	Adequately	Well	Very Well

What important aspects, if any, are not covered?

H.		<u>SOGY SPECIFIC TO THE PHYSICAL</u>	<u>IM</u>	(PO	RT.	ANG	<u>CE</u>				OF <u>NE</u>	r DING
	174.	Recognition of and compensation for complex factors associated with societal and school-related issues that may affect the <u>teaching</u> of the physical sciences	0	- 1	2	3	4	0	1	2	3	4
	175.	Recognition of and compensation for complex factors associated with societal and school-related issues that may affect <u>students' learning</u> of the physical sciences	0	1	2	3	4	0	1	2	3	4
	<u>Curri</u>	culum: Organization and Materials										
	176.	Reasons for learning the physical sciences	0	1	2	3	4	0	1	2	3	4
	177.	Reasons for teaching a particular topic in physical sciences	0	1	2	3	4	0	1	2	3	4

IMPORTANCE

LEVEL OF UNDERSTANDING

- (0) Of no importance(1) Of little importance
- (0) An understanding of the knowledge area is not needed
- (1) <u>DEFINE</u> the terms used in the knowledge area
- (2) <u>COMPREHEND</u> the essential properties of the knowledge area
- (2) Moderately important(3) important
- (3) <u>APPLY/UTILIZE</u> the knowledge area to address problems or questions
- (3) Important (4) Very Important
- (3) <u>APPLT/UTILIZE</u> the knowledge area to address problems or question
 (4) <u>ANALYZE</u> the knowledge area into component parts and explain the
 - interrelationships among the parts

H.		GOGY SPECIFIC TO THE PHYSICAL NCES (cont.)	<u>IM</u>	PO	RT	AN	<u>CE</u>			EL <u>STA</u>		7 DING
	178.	Integration within topics in the physical sciences	0	1	2	3	4	0	1	2	3	4
	179.	Integration among the physical sciences and other disciplines	0	1	2	3	4	0	1	2	3	4
	180.	Scope and sequence of topics in the physical sciences curricula for all students and justification for the scope and sequence	0	1	2	3	4	0	1	2	3	4
	181.	Lesson plans in the physical sciences curricula for all students and justification for the plans	0	1	2	3	4	0	1	2	3	4
	182.	Selection and use of curricular materials and resources (e.g., textbooks and other printed materials, computer software, laboratory materials) for the physical sciences	0	1	2	3	4	0	1	2	3	4.
	183.	Selection and use of mass media (e.g., film, television, video) appropriate for topics in the physical sciences	0	1	2	3	4	0	1	2	3	4
	184.	Selection and use of current technologies (e.g., computer, videodisc, interactive television, video) appropriate for laboratory data collection and other instructional purposes in the physical sciences	0	1	2	3	4	0	1	2	3	4
	Instr	uction										
	185.	Prerequisite knowledge, experience, and skills that students need for various topics in the physical sciences	0	1	2	3	4	0	1	2	3	4
	186.	Recognition of and accommodation to the prior conceptions, experience, and skills that students bring to various topics in the physical sciences	0	1	2	3	4	0	1	2	3	4

IMPORTANCE

LEVEL OF UNDERSTANDING

(0)	Of no Importance	(0)	An understanding of the knowledge area is not needed
(1)	Of little importance	(1)	DEFINE the terms used in the knowledge area
(2)	Moderately important	(2)	COMPREHEND the essential properties of the knowledge area
(3)	Important	(3)	APPLY/UTILIZE the knowledge area to address problems or questions
(4)	Very important	(4)	ANALYZE the knowledge area into component parts and explain the
			interrelationships among the parts

Н.		GOGY SPECIFIC TO THE PHYSICAL NCES (cont.)	<u>IM</u>	PO	<u>RT.</u>	<u>AN(</u>	<u>Ce</u>				OF	<u>DING</u>
	187 .	Identification and selection of appropriate lab experiences for various instructional goals and student learning needs	0	1	2	3	4	0	1	2	3	4
	188.	Design of appropriate lab experiences for various instructional goals and student learning needs	0	1	2	3	4	0	1	2	3	4
	189.	Strategies for motivating and encouraging students to succeed in the physical sciences	0	1	2	3	4	0	1	2	3	4
	190.	Strategies for addressing controversial and/or sensitive issues in the physical sciences	0	1	2	3	4	0	1	2	3	4
	Asses	sment and Evaluation										
	191.	Assessment strategies (e.g., laboratory reports, portfolios, observations, oral discussions, written tests, performance-based assessments, projects) to evaluate student performance in the physical sciences	0	1	2	3	4	0	1	2	3	4
	192.	Errors in student work and performance that arise from prior conceptions about topics in the physical sciences	0	1	2	3	4	0	1	2	3	4
	Profe:	ssional Concerns										
	193.	Professional and scholarly literature (e.g., journals, reference works) appropriate for teachers and students in the physical sciences	0	1	2	3	4	0	1	2	3	4
	194.	Professional and scholarly organizations for science educators	0	1	2	3	4	0	1	2	3	4
	195.	Legal responsibilities and liabilities for teachers in the physical sciences	0	1	2	3	4	0	1	2	3	4
	196.	Responsibilities for continuing education in the physical sciences and in science education	0	1	2	3	4	0	1	2	3	4
	197.	Resources available in the community	0	[`] 1	2	3	4	0	1	2	3	4

97

.

IMPORTANCE

.

LEVEL OF UNDERSTANDING

(0)	Of no importance	(0)	An understanding of the knowledge area is not needed
(i)	Of little importance	(1)	DEFINE the terms used in the knowledge area
(2)	Moderately important	(2)	COMPREHEND the essential properties of the knowledge area
(3)	Important	(3)	APPLY/UTILIZE the knowledge area to address problems or questions
(4)	Very important	(4)	ANALYZE the knowledge area into component parts and explain the
	•	• •	interrelationships among the parts

H.	<u>PEDAGOGY SPECIFIC TO THE PHYSICAL</u> <u>SCIENCES (cont.)</u>					IMPORTANCE					LEVEL OF <u>UNDERSTANDING</u>					
	198.	Science-related career information				1	2	3	4		. 0	1	2	3	4	
	199.	Overall evaluation of the importance of Pedagogy Specific to the Physical Sciences					2	3	4							
	200.	How well do the knowledge areas in section H cover the important aspects of Pedagogy Specific to the Physical Sciences?														
		1 Very Poorly	1234PoorlyPoorlyAdequatelyWell					5 Very Well								
		What important aspects, if any, are not covered?														

PART II - RECOMMENDATIONS FOR TEST CONTENT

Listed below are eight broad topics that may be covered on the new licensing examination for physics. If the examination contained 100 questions, how many questions should be included from each topic? If you feel a category should not be included in the exam, put 0 in the space provided. Make sure your responses sum to 100.

	TOPICS	NUMBER (<u>)F TEST QUESTIONS</u> (out of 100)
201.	SCIENTIFIC METHODOLOGY/TECHNIQUES/ HISTORY		
202.	BASIC TOPICS IN PHYSICAL SCIENCE		
203.	MECHANICS		
204.	ELECTRICITY AND MAGNETISM		
205.	WAVES		
206.	MODERN PHYSICS		
207.	SCIENCE, TECHNOLOGY, AND SOCIETY		
208.	PEDAGOGY SPECIFIC TO THE PHYSICAL SCIENCES		
		TOTAL	100

ERIC Full fact Provided By ERIC

PART III - BACKGROUND INFORMATION

The information that you provide in this section is completely confidential and will be used for research purposes only. Please answer the questions by circling the number that most closely describes you or your professional activities. Unless otherwise indicated, please circle only one response for each question.

209. Where do you work?

1. Alabama 2. Alaska 3. Arizona 4. Arkansas 5. California 6. Colorado 7. Connecticut 8. Delaware 9. District of Columbia 10. Florida 11. Georgia 12. Hawaii 13. Idaho 14. Illinois 15. Indiana 16. Iowa

17. Kansas

18. Kentucky 19. Louisiana 20. Maine 21. Maryland 22. Massachusetts 23. Michigan 24. Minnesota 25. Mississippi 26. Missouri 27. Montana 28. Nebraska 29. Nevada 30. New Hampshire 31. New Jersey 32. New Mexico 33. New York 34. North Carolina

35. North Dakota

36. Ohio 37. Oklahoma 38. Oregon 39. Pennsylvania 40. Puerto Rico 41. Rhode Island 42. South Carolina 43. South Dakota 44. Tennessee 45. Texas 46. Utah 47. Vermont 48. Virginia 49. Washington 50. West Virginia 51. Wisconsin 52. Wyoming

210. What is your age?

- 1. Under 25
- 2. 25-34
- 3. 35-44
- 4. 45-54
- 5. 55-64
- 6. Over 64

211. What is your sex?

- 1. Female
- 2. Male

212. Which of the following best describes the area in which you work?

- 1. Urban
- 2. Suburban
- 3. Rural

- 213. How do you describe yourself?
 - 1. Native American, American Indian, or Alaskan Native
 - 2. Asian American, Asian, Native Hawaiian, or Pacific Islander
 - 3. African American or Black
 - 4. Mexican American or Chicano
 - 5. Puerto Rican
 - 6. Latin American, South American, Central American, or other Hispanic
 - 7. White
 - 8. Other

214. Which of the following best describes your highest educational attainment?

- 1. Less than a bachelor's
- 2. Bachelor's
- 3. Bachelor's + additional credits
- 4. Master's
- 5. Master's + additional credits
- 6. Doctorate

215. Which of the following best describes your current employment status?

- 1. Temporary substitute (assigned on a daily basis)
- 2. Permanent substitute (assigned on a longer term basis)
- 3. Regular teacher (not a substitute)
- 4. Principal or assistant principal
- 5. School administrator
- 6. Curriculum supervisor
- 7. State administrator
- 8. College faculty
- 9. Other (please specify)
- 216. How many years have you taught physics?
 - 1. Never taught physics
 - 2. Less than a year
 - 3. 1 2 years
 - 4. 3 5 years
 - 5. 6 10 years
 - 6. 11 15 years
 - 7. 16 20 years
 - 8. 21 or more years

217. What grade level(s) are you currently teaching? (Circle all that apply)

- 1. Preschool/Kindergarten
- 2. Grades 1-4
- 3. Grades 5-8
- 4. Grades 9-12
- 5. College
- 6. Do not teach
- 7. Other (please specify)

Cb24

218. Which of the following describes your current teaching assignment? (Circle all that apply)?

- 1. Biology
- 2. Earth and Space Science
- 3. Ecology
- 4. General Science
- 5. Marine Science
- 6. Physical Science
- 7. Physics
- 8. Chemistry
- 9. College
- 10. Do not teach
- 11. Other (please specify)

219. Circle the following organizations to which you belong.

- 1. American Association of Physics Teachers
- 2. American Association for the Advancement of Science
- 3. American Chemical Society
- 4. American Federation of Teachers
- 5. National Association of Biology Teachers
- 6. National Association for Research in Science Teaching
- 7. National Science Supervisors Association
- 8. National Science Teachers Association
- 9. National Association for Science, Technology, and Society
- 10. National Education Association
- 11. Other (please specify)

THANK YOU FOR COMPLETING THIS INVENTORY. PLEASE RETURN IT WITHIN <u>10 DAYS</u> USING THE ENCLOSED ENVELOPE.

Appendix D

Da1 <u>Survey Cover Letter - Chemistry</u>

Db1 <u>Survey Cover Letter - Physics</u>

103

D1

Da1 Survey Cover Letter - Chemistry

EDUCATIONAL TESTING SERVICE

PRINCETON, N.J. 08541

609-921-9000 609-734-1090 (Fax) CABLE-EDUCTESTSVC

DIVISION OF APPLIED MEASUREMENT RESEARCH

October 1990

Dear Colleague:

I am writing to ask your cooperation in a project that should be of importance to teachers, college faculty, administrators, and other professionals in your field. Educational Testing Service (ETS) is in the process of developing a new generation of assessments for the purpose of licensing teachers. One type of assessment will be created to measure the prospective teacher's subject-matter or specialty-area knowledge and will likely take place upon completion of the undergraduate teacher education program. One such assessment is a new version of the NTE Chemistry examination. I am asking for your help as we develop this examination.

As part of the developmental process, ETS has worked closely with an advisory committee of classroom teachers, college faculty, and school administrators to identify potentially important knowledge and skill areas in chemistry instruction. The enclosed inventory has been constructed as a way to obtain your judgments of the importance of these areas for newly licensed (certified) chemistry teachers. Your responses and those of other professionals to this inventory will guide the development of the new examination.

You will notice that the inventory asks for some background information about you; this is solely for purposes of describing respondents. Your answers will be treated in strict confidence.

A postage-paid envelope is enclosed for the return of your completed inventory. Thank you for your participation in this very important project.

Sincerely,

Richard Tannenbaum, Ph.D. Associate Research Scientist

Enclosures (2)

Db1 Survey Cover Letter - Physics

EDUCATIONAL TESTING SERVICE

PRINCETON, N.J. 08541

609-921-9000 609-734-1090 (Fax) CABLE-EDUCTESTSVC

DIVISION OF APPLIED MEASUREMENT RESEARCH

October 1990

Dear Colleague:

I am writing to ask your cooperation in a project that should be of importance to teachers, college faculty, administrators, and other professionals in the field. Educational Testing Service (ETS) is in the process of developing a new generation of assessments for the purpose of licensing teachers. One type of assessment will be created to measure the prospective teacher's subject-matter or specialty-area knowledge and will likely be administered upon completion of the undergraduate teacher education program. One such assessment is a new version of the NTE Physics examination. I am asking for your help as we develop this examination.

As part of the developmental process, ETS has worked closely with an advisory committee of classroom teachers, college faculty, and school administrators to identify potentially important knowledge and skill areas in physics instruction. The enclosed inventory has been constructed as a way to obtain your judgments of the importance of these areas for newly licensed (certified) physics teachers. Your responses and those of other professionals to this inventory will guide the development of the new examination.

You will notice that the inventory asks for some background information about you; this is solely for purposes of describing respondents. Your answers will be treated in strict confidence.

A postage-paid envelope is enclosed for the return of your completed inventory. Thank you for your participation in this important project.

Sincerely,

Richard Tannenbaum, Ph.D. Associate Research Scientist

Enclosures (2)

Appendix E

Ea1 Respondent Demographic - Chemistry

Eb1 Respondent Demographic - Physics

108

E1

Ea1 Respondent Demographic - Chemistry

Eat

	Number	Percent
GEOGRAPHIC REGION		
Northeast	70	21.4
Central	94	28.7
Southern	76	23.2
Far West	. 87	26.6
Total	327	
Missing Responses	2	
AGE (years)		
Under 25	4	1.2
25 - 34	66	20.2
35 - 44	79	24.2
45 - 54	118	36.1
55 - 64	47	14.4
Over 64	13	4.0
Total	327	
Missing Responses	2	
SEX		
Female	105	32.1
Male	222	67.9
Total.	327	
Missing Responses	2	
SCHOOL SETTING		
Urban	100	30.8
Suburban	142	43.7
Rural	83	25.5
Total	, 325	
Missing Responses	4	

Ea2

· · · · ·	Number	Percent
RACE/ETHNICITY		
Native American	5	1.6
Asian American	9	2.8
Black	5	1.6
Mexican American	1	0.3
Puerto Rican	1	0.3
Hispanic	1	0.3
White	297	92.2
Other	3	0.9
Total	322	
Missing Responses	7	
HIGHEST EDUCATIONAL ATTAINMENT		
Less than Bachelor's	0	0.0
Bachelor's	3	0.9
Bachelor's + Credits	49	15.0
Master's	22	6.7
Master's + Credits	136	41.7
Doctorate	116	35.6
Total	326	
Missing Responses	3	
CURRENT EMPLOYMENT STATUS		
Temporary Substitute	2	0.6
Permanent Substitute	1	0.3
Regular Teacher (not a substitute)	174	55.1
Principal/Assistant Principal	0	0.0
School Administrato;	1	0.3
Curriculum Supervisor	4	1.3
State Administrator	0	0.0
College Faculty	81	25.0

Ea3

111

.

	Number	Percent
CURRENT EMPLOYMENT STATUS (cont.)		
Other	53	16.8
Total	316	
Missing Responses	13	
TEACHING EXPERIENCE (years)		
Never taught	11	3.4
Less than 1	3	0.9
1 - 2	29	8.9
3 - 5	39	12.0
6 - 10	51	15.6
11 - 15	47	14.4
16 - 20	43	13.2
21 or more	103	· 31.6
Total	326	
Missing Responses	. 3	
GRADES CURRENTLY TEACHING ¹		
Preschool/Kindergarten	1	0.2
Grades 1 - 4	2	0.5
Grades 5 - 8	19	5.0
Grades 9 - 12	183	48.2
College	114	30.0
Do Not Teach	29	7.0
Other	32	8.4
Total	380	
CURRENT TEACHING ASSIGNMENT		
Biology	35	5.
Earth and Space Science	17	2.
Ecology	5	0.

Ea4 112

	Number	Percent
CURRENT TEACHING ASSIGNMENT (cont.)		
General Science	19	3.2
Marine Science	6	1.0
Physical Science	50	8.3
Physics	60	10.0
Chemistry	265	44.0
College	61	10.1
Do Not Teach	30	5.0
Other	55	9.1
Total	603	
MEMBERSHIP IN ORGANIZATIONS ¹		
American Association of Physics Teachers	28	. 4.0
American Association for the Advancement of Science	56	8.0
American Chemical Society	257	36.3
American Federation of Teachers	7	1.0
National Association of Biology Teachers	6	0.8
National Association for Research in Science Teaching	6	0.8
National Science Supervisors Association	4	0.6
National Science Teachers Association	126	17.8
National Association for Science, Technology, and Society	1	0.1
National Educational Association	107	15.1
Other	110	15.5
Total	708	1012

¹ NOTE: Multiple responses were permitted. Hence, the total will exceed 329 and 100%.

Ea5

Eb1 Respondent Demographic - Physics

Eb1

	Number	Percent
GEOGRAPHIC REGION		
Northern	78	23.9
Central	96	29.4
Southern	80	24.5
Far West	72	22.1
Total	326	
Missing Responses	4	
AGE (years)		1
Under 25	2	0.6
25 - 34	32	9.8
35 - 44	98	30.1
45 - 54	131	40.2
55 - 64	53	16.3
Over 64	10	3.1
Total	326	
Missing Responses	4	
SEX		
Female	60	18.4
Male	266	80.0
Total	326	
Missing Responses	4	
SCHOOL SETTING		
Urban	. 80	25.
Suburban	126	39.
Rural	113	35.
Total	319	
Missing Responses	11	

Eb2

	Number	Percent
RACE/ETHNICITY		
Native American	9	2.8
Asian American	9	2.8
Black	2	0.6
Mexican American	0	0.0
Puerto Rican	0	0.0
Hispanic	3	0.9
White	292	91.3
Other	5	1.6
Total	320	
Missing Responses	10	
HIGHEST EDUCATIONAL ATTAINMENT		
Less than Bachelor's	0	0.0
Bachelor's	3	0.9
Bachelor's + Credits	46	14.2
Master's	13	4.0
Master's + Credits	168	51.7
Doctorate	95	29.2
Total	325	
Missing Responses	5	
CURRENT EMPLOYMENT STATUS		
Temporary Substitute	0	0.0
Permanent Substitute	2	0.0
Regular Teacher (not a substitute)	189	59.
Principal/Assistant Principal	3	0.9
School Administrator	3	0.
Curriculum Supervisor	8	2
State Administrator	0	0.0
College Faculty	95	29.

Eb3

	Number	Percent
CURRENT EMPLOYMENT STATUS (cont.)		
Other	20	6.3
Total	320	
Missing Responses	10	
TEACHING EXPERIENCE (years)		
Never taught	5	1.5
Less than 1	2	0.6
1 - 2	9	2.8
3 - 5	36	11.1
6 - 10	56	17.3
11 - 15	43	13.3
16 - 20	59	18.2
21 or more	114	35.2
Total	324	
Missing Responses	6	
GRADES CURRENTLY TEACHING		
Preschool/Kindergarten	1	0.3
Grades 1 - 4	2	0.6
Grades 5 - 8	11	3.1
Grades 9 - 12	194	54.0
College .	121	33.7
Do Not Teach	12	3.3
Other	18	5.0
Total	359	
CURRENT TEACHING ASSIGNMENT ¹		
Biology	11	1.7
Earth and Space Science	22	3.4
Ecology	7	1.1

117

Eb4

	Number	Percent
CURRENT TEACHING ASSIGNMENT (cont.)	_	
General Science	18	. 2.8
Marine Science	4	0.6
Physical Science	70	10.8
Physics	280	43.3
Chemistry	80	12.4
College	53	8.2
Do Not Teach	12	1.9
Other	89	13.8
Total	646	
MEMBERSHIP IN ORGANIZATIONS ¹		
American Association of Physics Teachers	258	36.
American Association for the Advancement of Science	21	3.0
American Chemical Society	28	4.
American Federation of Teachers	19	2.'
National Association of Biology Teachers	6	0.9
National Association for Research in Science Teaching	2	0.:
National Science Supervisors Association	13	1.9
National Science Teachers Association	123	17.
National Association for Science, Technology, and Society	5	0.
National Educational Association	114	16.
Other	113	16.
Total	702	

¹ NOTE: Multiple responses were permitted. Hence, the total will exceed 330 and 100%.

Eb5

Appendix F

- Fa1 <u>Mean Importance Ratings by Teachers and Teacher Educators -</u> <u>Chemistry</u>
- \$
- Fb1 <u>Mean Importance Ratings by Teachers and Teacher Educators -</u> <u>Physics</u>

F1

Fa1 <u>Mean Importance Ratings by Teachers and Teacher Educators -</u> <u>Chemistry</u>

Fa1

			HERS 175	TEAC EDUCA N =	TORS
		Mean	SD	Mean	SD
A. SCIE	INTIFIC METHODOLOGY/TECHNIQUES/HISTORY				
<u>Meth</u>	odology				
1.	Scientific methods (e.g., formulation of problem, hypotheses, experiments)	3.53	0.68	3.44	0.72
2.	Science process skills (e.g., qualitative and quantitative observations)	3.62	0.60	3.40	0.66
3.	Assumptions, models, laws, end theories	3.36	0.67	3.21	0.75
4.	Design of experiments (e.g., independent and dependent variables)	3.29	0.81	2.96	0.89
<u>Histo</u>	pry and Philosophy of Science				
5.	Historical roots of science	2.26	0. 79	2.23	0.83
6.	Contributions of individuals	2.18	0.79	2.10	0.85
7.	Contributions of ethnic groups and cultures	1.73	0.87	1.27	0.94
Matt	nematics, Measurement, and Date Manipulation				
8.	The metric and SI systems	3.73	0.55	3.57	0.63
9.	Scientific notation	3.64	0.63	3.49	0.69
10.	Estimation and approximation	3.11	0.81	3.07	0.83
11.	Significant figures in measurement and calculations	3.30	0.81	3.22	0.87
12.	Unit/dimensional analysis	3.56	0.74	3.25	0.92
13.	Experimental errors (e.g., sources, quantifications, precision, accuracy)	3.10	0.74	2.79	0.7 9
14,	Mathematical relationships and patterns in numerical data	3.17	0.74	2.83	0. 86
15.	Statistics of distributions	2.01	0.90	1.99	0.83
16.	Simple digital (binary) logic	1.56	1.09	1.57	0.86
17.	Organization and interpretation of data and equations	3.40	0.67	3.08	0.82
18.	Differentiation and simple integration	1.53	1.01	1.81	0.95
Lab	oratory and Safety				
19.	Use and calibration of laboratory equipment (e.g., laboratory burners)	3.60	0.65	3.24	0.81
20.	Maintenance of laboratory equipment (e.g., laboratory burners, glassware)	3.16	0.86	2.73	0.91
21.	Preparation and set-up of reagents, materials, and apparatus	3.73	0.64	3.22	0.78
22.	Laboratory safety (e.g., storage and disposal of meterials)	3.90	0.32	3.71	0.58
23.	Emergency procedures for laboratory accidents	3.86	0.38	3.63	0.58
B. BAS	IC TOPICS IN PHYSICAL SCIENCE				
<u>Mat</u>	ter and Energy				
26.	Physical and chemical properties (e.g., homogeneous, heterogeneous)	3.32	0.71	3.36	0.74
27.	Particulate nature of matter (e.g., atoms, lons, molecules)	3.72	0.52	3.64	0.56

				HERS 175	EDUC	CHER ATORS 81
			Mean	SD	Mean	SD
B.	BASI	C TOPICS IN PHYSICAL SCIENCE (cont.)				
	2 8 .	Elements, compounds, and mixtures	3.65	0.58	3.58	0.61
	29.	Physical and chemical changes	3.54	0.65	3.47	0.70
	30.	Conservation of mass/energy	3.49	0.63	3.34	0.79
	31.	Forms of energy (e.g., kinetic, sound, magnetic, electrical, light)	3.05	0.79	2.97	0.89
	32.	Energy transformations	3.00	0.82	2.7 8	0. 8 2
	<u>Heat</u>	and Thermodynamics				
•	33.	Historical development of heat and energy	1.92	0.82	1.82	0. 8 5
	34.	Kinetic molecular theory	3.37	0.76	2.64	0.87
	35.	Brownian motion	2.2 8	0.95	2.01	0.77
	`36.	Heat <u>versus</u> temperature	3.20	0.80	3.02	0.76
	37.	Temperature scales and measurement	3.26	0.74	2.90	0.80
	38.	Conduction, convection, and radiation	2.42	0.98	2.26	0.95
	39.	Heat capacity, thermal exchange, heat of fusion, and heat of vaporization	3.00	0.76	2.77	0.69
	40.	Concepts of enthalpy and entropy	3.05	0.85	2.70	0.83
	41.	Phase changes	3.34	0.67	2.84	0.75
	42.	Expansion and contraction	2.51	0.95	2.14	0.87
	43.	Zeroth law of thermodynamics (i.e., direction of heat flow)	2.59	1.00	2.59	0.91
	44.	First law of thermodynamics (i.e., energy is conserved)	3.10	0.89	3.15	0.85
	45.	Second law of thermodynamics - entropy	2.86	0.93	2.88	0.91
	46.	Third law of thermodynamics (i.e., concept of absolute zero temperature)	2.89	0.91	2.46	0.90
	47.	Reversibility and irreversibility	2.73	0.92	2.55	0.99
	<u>Ator</u>	nic and Nuclear Structure				1
	48.	Historical discovery of particles (e.g., electron, neutron)	2.55	0.91	2.12	0.87
	49.	Atomic models and their experimental bases	3.02	0.83	2.43	0.95
	50.	Structure of the atom	3.69	0.58	3.49	0.63
	51.	Planck's hypothesis	2.60	0.83	2.52	1.13
	52.	deBroglie's hypothesis	2.46	0.84	2.31	1.09
	53.	Heisenberg uncertainty principle	2.57	0.93	2.30	1.10
	54.	Schrödinger's wave equation	2.14	1.05	1.78	1.15
	55.	Orbital theory - quantum numbers	3.10	0.85	2.61	1.07
	56.	Characteristics of an electron in sn stom (e.g., shells, orbitals)	3.52	0.61	3.22	0.76
	57.	Properties of electromagnetic radiation	2.87	0.92	2.73	0.87
						-

.

			TEAC		TEACHER EDUCATORS N = 81		
			Mean	SD	Mean	SD	
B. E	ASK	C TOPICS IN PHYSICAL SCIENCE (cont.)					
5	8.	Spectroscopy	2.64	0.84	2.53	0.94	
5	9 .	Pauli exclusion principle	2.85	0.95	2.68	1.00	
6	ю.	Hund's rule	2.76	0.96	2.51	0.99	
6	i1.	Chemical properties related to electron configuration	3.72	0.55	3.51	0. 69	
6	62.	Atomic mass, atomic number, mass number and isotopes	3.74	0.52	3.49	0.73	
e	3 .	Nuclear forces and binding energy	2.61	0.95	2.19	1.02	
e	54 .	Mass/energy transformation	2.63	0.91	2.20	0.93	
e	i5.	Types of radioactive decay (e.g., alpha, beta, gamma emission)	2.74	0.93	2.46	0.91	
e	6 .	Artificial and natural radioactivity	2.49	0.96	2.21	0.98	
e	67.	Half-life of radioactive isotopes	2.59	0.98	2.31	0. 9 3	
6	5 8 .	Nuclear reactions (transmutations, fission, fusion)	2.61	1.01	2.30	0.93	
C. (CHEI	MICAL PERIODICITY					
7	71.	The development of the periodic table	2. 94	0.90	2.41	1.00	
-	72.	The position of metals, nonmetala, and metalloids	3.59	0.62	3.20	0.78	
7	73.	Trenda in melting and boiling temperatures	2.75	0.85	2.29	1.00	
	74.	Trends in atomic radil/ionization energy/electron affinity/ electronegativity	3.18	0.79	2.77	0.93	
;	75.	Relationship of period table to electron configurations of the atoms	3.65	0.61	3.41	0.75	
•	76.	Oxidation numbers for elements in a compound	3.58	0.62	3.02	0.77	
	77.	Periodicity of the oxidation states of the elements	3.26	0.81	2.83	0. 86	
	78.	Chemical properties/reactions of elements as reflected by positions in periodic table	3 .60	0.62	3.41	, 0 .65	
D.	NON	IENCLATURE		ļ			
	81.	inorganic nomenciature of ionic compounds and acids	3.40	0.70	2.91	0.90	
	82.	Nomenclature of the classes or organic compounds	2.49	0.86	2.49	0.89	
E.	THE	MOLE, CHEMICAL BONDING, AND MOLECULAR GEOMETRY					
	85.	Mole concept and mass-mole-number relationships	3.82	0.45	3.71	0.53	
	86.	information conveyed by a chemical formula	3.78	0.45	3.71	0.53	
	87.	Law of constant composition and law of multiple proportions	3.19	0.76	2.89	1.00	
	88.	Percent composition of elements in a compound	3.32	0.74	2.90	0.89	
	89.	Information conveyed by empirical and molecular formulas	3.46	0.65	3.24	0.79	
	90.	lonic, covalent, and metallic bonds	3.52	0.61	3.31	0.79	
	91.	Rules for calculating oxidation numbers of atoms in a compound	3.31	0.78	2.82	0.86	

BEST COPY AVAILABLE

	TEACHERS N = 175			
	Mean	SD	Mean	SD
E. THE MOLE, CHEMICAL BONDING, AND MOLECULAR GEOMETRY (cont.)				
92. Electron dot formulas and structural formulas	3.34	0.69	2.99	0.90
93. Multiple bonds	2. 99	0.84	2.96	0.82
94. Types of bonding related to electronegativity differences	3.13	0.82	2.87	0.77
95. Valence shell electron pair repulsion model for molecular shapes (VSEPR)	2.62	1.02	2.65	0.95
96. Simple structures of isomers	2.66	0.90	2.72	0.75
97. Chemical/physical properties of compounds	2.78	0.87	2.89	0.80
98. Hybrid orbitals	2.46	1.00	2.46	0.96
99. Resonance and delocalization	2.27	0.96	2.43	0.93
The Kinetic Theory and States of Matter				
100. Assumptions of the kinetic molecular theory of gases	3.35	0.75	2.85	0.92
101. Maxwell-Blotzmann velocity distributions	2.00	0.96	2.01	0.93
102. Diffusion of gases	2.78	0.80	2.47	0. 85
103. Rel. among volume, pressure, temperature, and quantity for ideal gases	3.67	0.59	3.34	. 0.70
104. Dalton's law of partial pressures	3.25	0.76	3.00	0.72
105. Real <u>versus</u> ideal gases	2.91	0.87	2.46	0. 84
106. Forces of attraction among molecules	2.95	0.83	3.04	0.85
107. Phase changes for a pure substance	2.86	0.88	2.56	0.87
108. Rel. among evaporation rate, boiling temperature, and vapor pressure	2.86	0.81	2.61	0.87
109. Special properties of water (e.g., density of solid <u>versus</u> liquid)	3.00	0.80	2.99	0.74
110. Rel. among phases of matter, forces between particles and particle energy	2.75	0.86	2.33	0.81
111. Characteristics of crystals	2.22	0.89	1.94	0.81
Chemical Reactions				
112. Equation balancing from written descriptions of chemical reactions	3.73	0.49	3.41	0.71
113. General types of chemical reactions	3.49	0.68	2.86	0 .98
114. Stoichiometry	3.70	0.56	3.62	0.61
115. Endothermic and exothermic reactions	3.32	0.71	2.95	0. 78
116. Spontaneity in chemical reactions	2.58	0.85	2.48	1.00
117. Collision theory and reaction rates	2.87	0.86	2.29	0. 99
118. Activation energy and the effects of a catalyst	2.96	0.79	2.63	0.90
119. Rate-influencing factors in chemical reactions	3.19	0.76	· 2.96	0.80
120. Rate expressions and orders of reactions	2.48	0.84	2.25	0.95
121. Reaction mechanisms	2.40	0.91	2.03	1.03

	TEACHERS N = 175		TEAC ÉDUCA N =	TORS
	Mean	SD	Mean	SD
E. THE MOLE, CHEMICAL BONDING, AND MOLECULAR GEOMETRY (cont.)				
122. Chemical equilibria	3.25	0. 78	3.25	0.84
123. Le Châtelier's principle and factors that disturb the equilibrium of systems	3.35	0.75	3.18	0.83
124. Properties and production of ammonia (e.g., the Haber equilibrium)	2.11	1.01	1.71	0.82
125. Oxidation and reduction reactions	3.34	0.69	3.18	0.80
126. Electrochemical cells and electrode reactions	2.89	0.84	2.71	0.80
127. Metallurgical properties of the transition metals	1.97	0.93	1.63	0.85
128. Redox properties of the halogens and the halide lons	2.28	0.99	2.14	0. 84
129. Faraday's lawa of electrolysis	2.27	0.95	2.33	0.96
130. Practical applications of electrochemistry (e.g., electroplating, pH meter)	2.57	0.90	2.50	0. 76
Solutions and Solubility				
131. Types of solutions (e.g., solid-solid, solid-liquid, liquid-gas)	3.00	0.89	2.48	0. 78
132. Solutes, solvente and solubility	3.38	0. 68	2.99	0. 6 7
133. Effects of temperature and pressure on solubility	3.1 6	0.80	2.63	0. 80
134. Dissolving process	3.08	0.77	2.51	0.87
135. Solubility product (K _{sp})	2.88	0.87	2.48	0. 80
136. Concentration of solutes (e.g., dllute, concentrated, saturated; molarity)	3.50	0.65	3.26	0.82
137. Conductivity of solutions and the ionization process	2.99	0.81	2.70	0.82
138. Strong and weak electrolytes; non-electrolytes	3.10	0.81	2.83	0.81
139. Colligative properties of solutions	2.76	0.93	2.59	0.91
140. Characteristics of properties of acids, bases, and saits	3.63	0.56	3.58	0.59
141. Arrhenius, Brønsted-Lowery, and Lewis acid-base theories	3.13	0.88	3.06	0. 88
142. pH of solutions of strong and weak acids and bases	3.39	0.75	3.31	0.76
143. Relative strengths of acids and bases	3.20	0.74	3.10	0.82
144. Production, properties, and use of the common acids	2.29	0.94	2.26	0.96
145. Acid-base titration and indicators	3.24	0.75	2.99	0.90
146. Buffer solutions	2.70	0.84	3.01	0.77
F. BIOCHEMISTRY		1		
149. Organic functional groups and their reactions	2.53	0.97	2.63	0.91
150. Monomers and polymers	2.37	0.95	2.56	0.92
151. Biologically important compounds (e.g., carbohydrates, amino acids,)	2.49	0.95	2.65	0.91
152. Biologically Important chemical processes (e.g., bioluminescence)	2.28	1.02	2.32	0.92
· ·				

.

.

		TEACHERS N = 175		TEACHER EDUCATORS N = 81	
		Mean	SD	Mean	SD
F. BIOC	HEMISTRY (cont.)				
153.	Structure and replication of nucleic acids	2.04	1.11	2.19	0. 99
154.	Energy storage and release in biological systems	2.09	1.10	2.09	0. 98
G. SCIE	NCE, TECHNOLOGY, AND SOCIETY				
157.	Awareness of ethical and moral responsibilities of scientists	3.05	0.93	2.86	0.97
158.	Awareness of ethical issues/risks/benefits assoc. w/application of science	3.06	0.95	2.85	0.90
159.	Detection of environmental hazards	3.10	0.81	2.51	1. 06
160.	Risk mgmt issues assoc. with energy production, transmission, and use	2.69	1.02	2.28	0. 95
161.	Risk mgmt issues assoc. w/production/storage/use/disposal of products	2.97	0.91	2.45	0.99
162.	Waste management issues and recycling	2.99	0.94	2.46	0.92
163.	Management of resources (e.g., soil, water, metals, and fossil fuels)	2.92	0.97	2.46	1.10
1 64 .	Use of science and technology to predict and prepare for natural disasters	2.31	1.03	1.77	0.97
1 65.	Use of technology in everyday life (e.g., smoke detector, TV, computer)	2.74	0.98	2.52	1.00
1 66 .	Technology transfer (e.g., spin-offs from space technology,)	2.41	0.95	1.89	0 .99
167.	issues assoc. with use of chemicals in agriculture/food prep./preservation	2.67	0.93	2.41	0.86
1 68 .	Social, political, and economic issues arising from science and technology	2.67	0.94	2.31	1.03
H. PED/	AGOGY SPECIFIC TO THE PHYSICAL SCIENCES				
171.	Recognition of and compensation for complex factors associated with societal and school-related issues that may affect the <u>teaching</u> of the physical sciences	2.65	0.94	2.43	1.07
1 72 .	Recognition of and compensation for complex factors associated with societal and school-related issues that may affect <u>student's learning</u> of the physical sciences	2.91	0.95	2.70	1.05
Curri	culum: Organization and Materials				
1 73 .	Reasons for learning the physical sciences	3.22	0.79	2.94	0.89
174.	Reasons for teaching a particular topic in the physical sciences	3.19	0.76	2.78	0.92
175.	integration within topics in the physical sciences	3.24	0.77	2.94	0.71
176.	Integration among the physical sciences and other disciplines.	3.09	0.83	2.75	0.78
177.	Scope and sequence of topics in the physical sciences curricula for all students and justification for the scope and sequence	2.96	0.85	2.49	0.80
1 78 .	Lesson plans in the physical sciences curricula for all students, justification for the plans	2.86	0.97	2.30	1.02
1 79 .	Selection and use of curricular materials and resources (e.g., textbooks, and other printed materials, computer software, laboratory materials) for the physical sciences	3.14	0.90	3.00	0.78

		TEACI N =	1	EDUCA N =	
		Mean	SD	Mean	SD
PEDA	GOGY SPECIFIC TO THE PHYSICAL SCIENCES (cont.)				
180.	Selection/use of mass media (e.g., film) appropriate for topics in the physical sciences	2.70	0.90	2.21	0. 9
181.	Selection and use of current technologies (e.g., computer, videodisc, interactive television, video) appropriate for laboratory data collection and other instructional purposes in the physical sciences	2.89	0. 9 2	2.50	0. 8
<u>Instru</u>	uction				
182.	Prerequisite knowledge/experience/skills that students need for the physical sciences	3.14	0.76	3.04	0.7
183.	Recognition of and accommodation to the prior conceptions, experience, and skills that students bring to various topics in the physical sciences	3.05	0.78	2.82	0.7
184.	Identification and selection of appropriate lab experiences for various instructional goals and student learning needs	3.52	0.63	3.14	• 0.7
185.	Design of appropriate lab experiences for various instructional goals and student learning needs	3.40	0.78	3.01	0.8
186.	Strategies for motivating and encouraging students to succeed in the physical sciences	3.46	0.64	3.36	0.7
187.	Strategies for addressing controversial and/or sensitive issues in the physical sciences	2.95	0.87	2.78	0.8
Asse	ssment and Evaluation				
18 8 .	Assessment strategies (e.g., laboratory reports, portfolios, observations, oral discussions, written tests, performance-based assessments, projects) to evaluate atudent performance in the physical sciences	3.44	0.63	3.06	0.7
189.	Errors in student work/performance from prior conceptions about the physical sciences	2.80	0.91	2.65	0.4
<u>Profe</u>	essional Concerns				
190.	Professional and scholarly literature (e.g., journals, reference works) appropriate for teachers and students in the physical sciences	2.83	0.86	2.81	0.3
191.	Professional and scholarly organizations for science educators	2.80	0.86	2.65	0.1
192.	Legal responsibilities/liabilities for teachers in the physical sciences	3.49	0.66	2.71	0.
193.	Responsibilities for continuing education in the physical sciences/in science education	3.18	0. 76	2.81	0.
194.	Resources available in the community	2.95	0.81	2.74	0.
195.	Science-related career information	2.84	0.86	2.83	0.

Fb1 Mean Importance Ratings by Teachers and Teacher Educators -Physics

		·					
	,	TEACHERS N = 191		TEACHER EDUCATORS N = 95			
		Mean	SD	Mean	SD		
A. SCI	IENTIFIC METHODOLOGY/TECHNIQUES/HISTORY	_	1				
Met	thodology						
1.	Scientific methods (e.g., hypotheses, experiments)	3.40	0.77	3.29	0.84		
2.	Science process skills	3.45	0.71	3.40	0.69		
3.	Assumptions, models, laws, and theories	3.19	0.78	3.12	0. 80		
4.	Design of experiments (e.g., independent and dependent variables)	3.20	0.88	3.01	0.82		
His	tory and Philosophy of Science						
5.	Historical roots of science	2.32	0.81	2.45	0.92		
6.	Contributions of Individuals	2.27	0.75	2.18	0. 84		
7.	Contributions of ethnic groups and cultures	1.72	0.90	1.63	†.02		
Ma	thematics, Measurement, and Date Manipulation						
8.	The metric and SI systems	3.78	0.47	3.63	0. 58		
9.	Scientific notation	3.65	0.59	3.57	0. 6 1		
10.	Estimation and approximation	3.17	0.80	3.20	0.85		
11.	Significant figures in measurement and calculations	3.05	0.80	2.96	0.80		
12.	. Unit/dimensional analysis	3.46	0.68	3. 36	0.71		
13.	Experimental errors (e.g., quantifications, precision, accuracy)	2.93	0.80	2.78	0.79		
14	. Mathematical relationships and patterns in numerical data	3.32	0.77	3.15	0. 82		
15	. Statistics of distributions	2.12	0.80	2.06	0 .90		
16	. Simple digital (binary) logic	1.73	0.96	1. 58	0.89		
17	. Organization and interpretation of dsta and equations	3.43	0.6 8	3.31	0. 80		
18	. Differentiation and simple integration	2.13	1.04	2.64	1.02		
19	. Vector algebra	3.24	0.88	3.05	0. 86		
<u>La</u>	boratory and Safety						
20	. Use and calibration of laboratory equipment (e.g., balances,)	3.22	0.80	3.14	0. 85		
21	. Maintenance of laboratory equipment (e.g., balances, glassware)	2.71	0.99	2.66	0.89		
22	Preparation and set-up of reagents, materials, and apparatus	3. 33	0.80	3.16	0.83		
23	Laboratory safety (e.g., storage and disposal of materials)	3.50	0.77	3.27	0.80		
24	Emergency procedures for laboratory accidents	3.62	0.70	3.21	0.89		

			•		
		TEACHERS N = 191		TEACHER EDUCATOR: N = 95	
		Mean	SD	Mean	SD
B. BASIC TOP	PICS IN PHYSICAL SCIENCE				
Matter and	Energy				
27. Phys	sical and chemical properties	2.84	0.90	2.76	0.91
28. Parti	iculate nature of matter (e.g., atoms, ions, molecules)	3.20	0.78	3.1 6	0.75
29. Elen	nents, compounds, and mixturea	2.79	0.95	2.74	0.88
30. Phys	sical and chemical changes	2.90	0.94	2.72	0.96
31. Con:	servation of mass/energy	3.65	0. 58	3.59	0. 66
32. Form	ns of energy (e.g., kinetic, potential, magnetic, electrical, light)	3.68	0.55	3.60	0.59
33. Ener	7gy transformations	3.55	0.62	3.46	0. 68
Heat and T	<u>Thermodynamics</u>				
34. Hist	orical development of heat and energy	2.14	0.80	1.93	0.76
35. Kine	tic molecular theory	3.03	0.85	2.52	0.85
36. Equi	ipartition of energy	2.32	0.99	2.06	0.86
37. Brow	wnian motion	2.24	0. 86	1.99	0.87
38. Hee	t <u>versus</u> temperature	3.30	0.75	3.34	0.73
39. Tem	perature scales and measurement	3.11	0. 8 2	2.94	0.79
40. Con	duction, convection, and radiation	2.99	0.80	2.93	0.71
41. Hea	t capacity, thermal exch., heat of fusion, and heat of vaporization	3.14	0.79	2.99	0.75
42. Pha	se changea	3.13	0.78	2.83	0.79
43. Exp	ansion and contraction	2.91	0.82	2.67	0. 79
44. Zer o	oth law of thermodynamics (i.e., direction of heat flow)	2.89	0. 86	2.98	0.85
45. Firs	t law of thermodynamics (i.e., energy is conserved)	3.36	0.76	3.46	0.76
46. Sec	ond law of thermodynamics - entropy	2.97	0.88	3.03	0.89
47. Thir	d law of thermodynamics	2.94	0.90	2.47	0. 84
48. Rev	ersibility and irreversibility	2.47	0.90	2.36	0.95
Atomic and	d Nuclear Structure				
49. Hist	torical discovery of particles (e.g., electron, neutron)	2.33	0.83	2.19	0.82
50. Ator	mic models and their experimental bases	2.68	0.86	2.85	0.70
51. Stru	icture of the atom	3.19	0.78	3.40	0.61
52. Cha	racteristica of an electron in an atom (e.g., shells, orbitals)	2.94	0.91	2.87	0.82
53. Ator	mic mass, atomic number, mass number and isotopes	3.00	0.93	3.03	0.7 9
54. Nuc	lear forces and binding energy	2.80	0.89	2.65	0. 86
55. Typ	es of radioactive decay (e.g., alpha, beta, gamma emission)	2.91	0.87	2.92	0. 84

Fb3

٦

.

130 BEST COPY AVAILABLE

		TEACHERS N = 191		TEACHE EDUCATO N = 95	
		Mean	SD	Mean	SD
B. BAS	IC TOPICS IN PHYSICAL SCIENCE (cont.)		_		
56.	Artificial and natural radioactivity	2.62	0.92	2.71	0.92
57.	Half-life of radioactive isotopes	2.81	0.86	2.81	0.91
58.	Nuclear reactions (transmutations, fission, fusion)	2.92	0.88	2.78	0.75
C. MEC	CHANICS				
61.	Vector quantities	3.73	0.49	3.52	0.62
62.	Rel. among position/velocity/acceleration/time straight line motion	3.81	0.45	3.66	0.54
63.	Reference frames and relative velocity (e.g., Galliean relativity)	3.09	0.84	2.59	0. 8 7
64.	Rel. position/velocity/constant acceleration/time for projectile motion	3.54	0.63	3.24	0.77
65.	Rel. position/velocity/centripetal acceleration for uniform circular motion	3.35	0.73	3.15	0.7 5
66.	Periodic motion (e.g., frequency, period, amplitude)	3.31	0.69	3.24	0.71
67.	Simple harmonic motion (oscillations)	3.13	0.74	3.13	0.82
68.	Newton's laws of motion	3.87	0.35	3.85	0. 36
69.	Weight <u>versus</u> mass	3.62	0.60	3.48	0.63
70.	Friction (e.g., static and dynamic coefficients)	3.17	0.76	2.83	0.7 6
71.	Static (e.g., equilibrium of forces and/or torques)	3.28	0.77	3.03	0.83
72.	Relationships between work and kinetic energy changes	3.56	0.58	3.52	0.54
73.	Conservative forces and potential energy	3.41	0.65	3. 36	0.67
74.	Springa (e.g., Hooke's law, energy considerations)	2.81	0.83	2.85	0.7 8
75.	Concepts of rigid body motion (e.g., moment or inertia, torque)	2.81	0.79	2.61	0.89
76.	Impulse-momentum principle	3.36	0.67	2.88	0. 85
77.	Conservation of momentum (In both elastic and inelastic collisions)	3.57	0.58	3.54	0. 60
78.	Conservation of angular momentum	2.75	0.82	3.08	0.7 8
79.	Conservation of energy	3.79	0.42	3.86	0. 38
80.	Orbital motion (e.g., Copernicus, Galileo, Kepler)	2.64	0.87	2.42	0.72
81.	Newton's law of universal gravitation	3.46	0.68	3.32	0.71
82.	Fluid mechanics (e.g., Pascal's principle, Bernoulli's principle)	2.48	0.84	2.51	0. 80
83.	Relativistic effects on length, mass, and time	2.35	0.87	2.16	0. 98
D. ELI	ECTRICITY AND MAGNETISM				
86.	Electric forces and Coulomb's law (e.g., pith ball experiments)	3.44	0.68	3.47	0.68
87.	Electric fields	3.19	0.69	3.22	0.72
88.	Gauss's law	2.52	0.90	2.32	1.01
89.	Electric potential energy, electric potential, and potential difference	3.45	0.63	3.31	0.64

.

	TEACHERS N = 191		TEAC EDUCA N =	TORS
	Mean	SD	Mean	SD
D. ELECTRICITY AND MAGNETISM (cont.)		_		,
90. Conductors, insulators, semiconductors	3.19	0.75	2.94	0.7 6
91. Current	3.63	0.57	3.48	0. 56
92. Resistance	3.60	0.59	3.41	0.61
93. Series and parallel circuits (e.g., Ohm's law, Kirchhoff's laws)	3.50	0.61	'3.14	0.80
94. Internal resistance of batteries	2.60	0.95	2.28	0.93
95. Capacitance	2.83	0.87	2.77	0.91
96. Inductance	2. 65	0.96	2.61	0.91
97. Measurement of potential difference/current/resistance/capacitance	3.27	0.72	3.13	0.72
98. Alternating current circuits (e.g., average power, peak, effective current)	2.60	0.88	2.36	0.97
99. Magnetic flux	2.69	0.86	2.69	0.89
100. Faraday's and Lenz's laws of electromagnetic induction	2.79	0.87	2.93	0.92
101. Transformer 2	2.74	0.86	2.36	0.91
102. Sources of EMF (e.g., batteries, photo cells, generators)	2 .9 7	0.78	2. 68	0. 82
103. Motors	2. 86	0.76	2.29	0. 85
104. Large scale generation and transmission of energy and power	2.34	0.88	2.05	0 .90
105. <u>n</u> - and <u>p-type semiconductors</u>	2.22	0.91	1.97	0. 93
106. Semiconductor devices (e.g., diodes, transistors)	2.35	0. 86	2.03	0.99
107. Integrated circuits	2.16	0. 9 1	1.82	1.05
108. Superconductivity	2.49	0.86	1.98	0.81
109. Magnets	3.18	0.71	2.77	0.82
110. Magnetic fields	3.27	0.66	3.16	0.75
111. Gauss's law of magnetism (nonexistence of monopoles)	2.40	0.95	2.05	1. 06
112. Magnetic forces	3.08	0.75	3.02	0.82
113. Principle and calibration of electrical meters (e.g., galvanometers)	2.52	0.95	2.17	0.97
114. Types of magnetism (e.g., diamagnetism)	2.13	0.87	1.82	0.82
115. Biot-Savart law and Ampere's law (relating current to magnetic field)	2.49	0.97	2.51	0.99
116. Maxweii's equations	2.13	0.99	2.20	1.16
117. Lorentz force law and applications (force on a charged particle moving in an electric and/or a magnetic field; cyclotron; mass spectrometry)	2.33	0.87	2.69	0.91
E. WAVES				
120. Wave characteristics (speed, amplitude, wavelength, frequency)	3.70	0.51	3.58	0.61
121. Inverse square law for intensity	3.06	0.85	2.72	0.81

.

		-		TEACHERS N = 191		HER TORS 95	
			Mean	SD	Mean	SD	
E. W	AVE	S (cont.)					
1:	22.	Transverse and longitudinal waves	3.45	0.67	3.07	0.82	
12	23.	Absorption and transmission	2.98	0.79	2.47	0.82	
· 12	24.	Reflection	3.47	0.67	3.06	0.82	
1:	25.	Scattering	2.79	0.85	2.32	0.87	
1:	26.	Refraction and Snell's law	3.48	0.64	3.23	0.72	
1:	27.	Interference and superposition of waves	3.41	0.69	3.24	0.77	
1:	28.	Standing waves	3.15	0.77	2.96	0. 86	
1:	29.	Diffraction (Fraunhofer and Fresnei)	3.03	0.81	2.73	0.88	
1:	30.	Dispersion	2.66	0.84	2.39	0.79	
1:	31.	Resonance and natural frequencies	2.98	0.78	3.04	0.80	
1	32.	Doppler effect	3.20	0.75	2.79	0.77	
1	33.	Characteristics of sound waves (pitch, loudness [dB], speed)	3.15	0.82	2.60	0.99	
1	34.	Sound: air columns and stringa (e.g., timbre, beats, harmonics)	2.71	0.97	2.41	0.84	
1	35.	The electromagnetic spectrum (gamma rays to radio waves)	3.36	0.74	3.24	0.86	
1	36.	Color (addition and subtraction; relationship to frequency)	2.81	0.92	2.21	0.77	
1	37.	Coherent radiation (sources and special properties)	2.41	0.93	2.25	0.90	
1	38.	Geometric optics (e.g., mirrors, ienses, prisms, fiber optics)	3.37	0.72	3.20	0.79	
1	39.	Polarization	2.86	0.79	2.55	0.82	
1	40.	Thin filma	2.41	0.83	2.01	0 .8 7	
F. N	IOD	ERN PHYSICS					
1	43.	Blackbody radiation	2.36	0.89	2.56	0.94	
1	44.	Photoelectric effect	3.02	0.81	2.97	0.82	
1	45.	Spectroscopy	2.82	0.84	2.95	0.82	
1	46.	Planck's hypothesis	2.74	0.92	2.85	1.02	
1	47.	deBrogile's hypothesis	2.51	0.90	2.85	0. 98	
1	48.	Wave-particle duality	3.05	0.82	3.03	0.93	
1	49.	Heisenberg uncertainty principle	2.61	0.89	2.67	0.93	
1	50.	Schrödinger's wave equation	2.02	0.94	2.06	1.09	
	51.	Orbital theory - quantum numbers	2.55	0.98	2.46	0. 98	
	52.	Pauli exclusion principle	2.36	0.97	2.62	1.00	
1	53.	Michelson-Morley experiment (ether and the speed of light)	2.65	0.92	2.52	0.95	
1	54.	Special relativity	2.61	0.88	2.62	0.96	

ERIC Prull Taxt Provided by ERIC

, ·

.

Fb6

. ...

		TEACHERS N = 191		EDUCA	TORS
		Mean	SD	Mean	SD
MODE	ERN PHYSICS (cont.)				. `
155.	Lorentz transformations and inertial reference frames	2.14	0.88	2.12	0.95
156.	Mass/energy transformations	2.84	0.87	2.74	0.89
157.	Elementary particles (e.g., hadrons, leptons)	2.08	0.90	2.17	1.05
158.	Strong and weak forces	2.31	0.91	2.09	1.04
SCIE	ICE, TECHNOLOGY, AND SOCIETY				
161.	Awareness of ethical and moral responsibilities of scientists	2.94	0.90	2.84	0.96
162.	Awareness of ethical issues, risks, and benefits assoc. with the application of science	2.92	0.89	2.88	0 .90
163.	Detection of environmental hazt	2.88	0.86	2.60	0.99
164.	Risk management issues associated with energy production, transmission, and use	2.64	0.88	2.29	0.92
165.	Risk mgmt issues associated with production/storsge/use/disposal of products	2.64	0.92	2.16	0.91
166.	Waste management issues and recycling	2.70	0.97	2.32	0.96
167.	Management of resources (e.g., soli, water, metals, and fossil fuels)	2.67	0.96	2.28	0.93
168.	Use of science and technology to predict and prepare for natural disastera	2.36	1.04	1.89	1.00
169.	Use of technology in everyday life (e.g., lamp, smoke detector, TV, computer)	3.02	0.86	2.71	0. 94
170.	Technology transfer (e.g., spin-offs from space technology, superconductors)	2.59	0.89	1.98	0.93
171.	Social, political, and economic issues arising from science and technology	2.75	0.88	2.34	0.93
. PED	AGOGY SPECIFIC TO THE PHYSICAL SCIENCES				
174.	Recognition of and compensation for complex factors associated with societal and school-related issues that may affect the <u>teaching</u> of the physical sciences	2.58	0.98	2.37	1.04
175.	Recognition of and compensation for complex factors associated with societal and school-related issues that may affect <u>student's learning</u> of the physical sciences	2.89	0.96	2.65	0. 98
Curr	iculum: Organization and Materials				
176.	Reasons for learning the physical sciences	3.22	0.86	2. 9 4	0.94
177.	Reasons for teaching a particular topic in the physical sciences	3.19	0.85	2.88	0.95
178.	Integration within topics in the physical sciences	2.99	0.81	2.82	0.85
179.	Integration among the physical sciences and other disciplines	2.86	0.82	2.64	0.79
180.	Scope and sequence of topics in the physical sciences curricula for all students and justification for the scope and sequence	2.63	0.92	2.37	1.00
	155. 156. 157. 158. SCIEJ 161. 162. 163. 165. 165. 166. 167. 168. 169. 170. 171. 170. 171. 175. <u>Curr</u> 176. 177. 178. 179.	 157. Elementary particles (e.g., hadrons, leptons) 158. Strong and weak forces SCIENCE, TECHNOLOGY, AND SOCIETY 161. Awareness of ethical and moral responsibilities of scientists 162. Awareness of ethical issues, risks, and benefits assoc, with the application of science 163. Detection of environmental haz: 164. Risk management issues associated with energy production, transmission, and use 165. Risk mgmt issues associated with production/storsge/use/disposal of products 166. Waste management issues and recycling 167. Management of resources (e.g., soil, water, metals, and fossil fuels) 168. Use of science and technology to predict and prepare for natural cleastera 169. Use of science and technology to predict and prepare for natural cleastera 169. Use of sciences (e.g., spin-offs from space technology, superconductors) 171. Social, political, and economic issues arising from science and technology PEDAGOGY SPECIFIC TO THE PHYSICAL SCIENCES 174. Recognition of and compensation for complex factors associated with societal and school-related issues that may affect the teaching of the physical sciences 175. Recognition of and compensation for complex factors associated with societal and school-related issues that may affect the teaching of the physical sciences 176. Reasons for learning the physical sciences 177. Reasons for learning the physical sciences 178. Integration within topics in the physical sciences 179. Integration among the physical sciences and other disciplines 180. Scope and sequence of topics in the physical sciences curricula for all 	N = Mean MODERN PHYSICS (cont.) 155. Lorentz transformations and inertial reference frames 2.14 156. Lorentz transformations 2.84 157. Elementary particles (e.g., hadrons, leptons) 2.08 158. Strong and weak forces 2.31 SCIENCE, TECHNOLOGY, AND SOCIETY 161. 161. Awareness of ethical issues, risks, and benefits assoc. with the application of science 2.92 163. Detection of environmental haz: 2.88 164. Risk management issues associated with energy production, transmission, and use 2.64 165. Risk mgmt issues associated with production/storage/use/disposal of products 2.64 166. Waste management issues and recycling 2.70 167. Management of resources (e.g., soil, water, metals, and fossil fuels) 2.67 168. Use of sciences and technology to predict and prepare for natural disastera 2.36 169. Use of sciencogy in everyday ilfe (e.g., lamp, smoke detector, TV, computer) 3.02 170. Technology transfer (e.g., spin-offs from space technology, upperconductors) 2.58 174. Recognition of and compensation for complex factors associated with societal and school-related issues that may affect the teaching of the physical sciences 2.89 175. Recognition of and compensation for complex factors associated with societal and s	N = 191 Neam SD MODERN PHYSICS (cont.)	N = 191 N = Mean SD Mean MODERN PHYSICS (cont.) 5. Lorentz transformations and inertial reference frames 2.14 0.88 2.12 155. Lorentz transformations 2.84 0.87 2.74 157. Elementary particles (e.g., hadrons, leptons) 2.08 0.90 2.17 158. Strong and weak forces 2.31 0.91 2.09 2.84 151. Awareness of ethical and moral responsibilities of scientists 2.94 0.90 2.84 152. Awareness of ethical issues, risks, and benefits assoc, with the application of science 2.92 0.89 2.88 153. Bisk management issues associated with production/storsge/use/disposal of any transmission, and use 2.84 0.86 2.60 165. Waste management issues and recycling 2.70 0.97 2.32 165. Waste management issues and recycling 2.70 0.97 2.32 166. Waste management issues and recycling 2.70 0.97 2.32 168. Use of technology to predict and prepare f

134 BEST COPY AVAILABLE

		TEACHERS N = 191					HER ATORS 95
		Mean	SD	Mean	SD		
PED	AGOGY SPECIFIC TO THE PHYSICAL SCIENCES (cont.)						
181.	Lesson plans in the physical sciences curricula for all students, justification for the plans	2.51	1.00	2.07	1.1		
182.	Selection and use of curricular materials and resources (e.g., textbooks, and other printed materials, computer software, laboratory materials) for the physical sciences	3.10	0.80	2.80	0. 8		
183.	Selection/use of mass media (e.g., film) appropriate for topics in the physical sciences	2.83	0.85	2.49	0.9		
184.	Selection and use of current technologies (e.g., computer, videodisc, interactive television, video) appropriate for laboratory data collection and other instructional purposes in the physical sciences	2.95	0.80	2.59	0.9		
instr	uction						
185.	Prerequisite knowledge/experience/skills that students need for the physical sciences	3.00	0.82	2.90	0.9		
186.	Recognition of and accommodation to the prior conceptions, experience, and skills that students bring to various topics in the physical sciences	2.94	0.87	2.99	0.9		
187.	Identification and selection of appropriate lab experiences for various instructional goals and student learning needs	3.33	0.74	3.26	0.7		
1 88 .	Design of appropriate lab experiences for various instructional goals and student learning needs	3.24	. 0.80	3.10	0.8		
189.	Strategies for motivating and encouraging students to succeed in the physical sciences	3.38	0.72	3.36	0.7		
190.	Strategies for addressing controversial and/or sensitive issues in the physical sciences	2.70	0.92	2.56	0.9		
<u>Asse</u>	ssment and Evaluation						
191.	Assessment strategies (e.g., laboratory reports, portfolios, observations, oral discussions, written tests, performance-based assessments, projects) to evaluate student performance in the physical sciences	3.22	0.77	2.98	0.7		
192.	Errors in student work/performance from prior conceptions about the physical sciences	2.95	0.87	2.87	0.7		
Profe	essional Concerns						
193.	Professional and scholarly literature (e.g., journals, reference works) appropriate for teachers and students in the physical sciences	2.82	0.82	2.74	0.8		
194.	Professional and scholarly organizations for science educators	2.76	0.88	2.78	0.8		
195.	Legal responsibilities/liabilities for teachers in the physical sciences	3.06	0.98	2.52	0.9		
196.	Responsibilities for continuing education in the physical sciences/in science education	3.00	0.81	2.67	0.9		
1 97 .	Resources available in the community	2.75	0.95	2.66	1.0		
198.	Science-related career information	2.86	0.85	2.71	0.8		

135

Fb8

Appendix G

- Ga1 Percent of Responses by Level of Understanding Category Chemistry
- Gb1 Percent of Responses by Level of Understanding Category Physics

Gal Percent of Responses by Level of Understanding Category - Chemistry

Ga1

	•						
			Level of Understanding				
			% Responding				
	·	0	1	2	3	4	
A SC	IENTIFIC METHODOLOGY/TECHNIQUES/HISTORY						
Metho	dology						
1	Scientific methods (e.g., formulation of problem, hypotheses, etc.)	.00	1.82	12.16	37.0 8	48.94	
r	Science process skills (e.g., qualitative/quantitative observations)	.00	.61	10.03	41.34	48.02	
3	Assumptions, models, laws, and theories	.00	2.45	19.27	44.65	33.64	
4	Design of experiments (e.g., independent/dependent variables)	.00	3.06	17.43	29.45	40.06	
Histor	y and Philosophy of Science						
5	Historical roots of science	2.78	19.44	56.79	17.59	3.40	
6	Contributions of individuals	3.08	24.62	53.23	16.31	2.77	
7	Contributions of ethnic groups and cultures	19 .50	29.41	40.56	8.98	1.55	
Math	ematics, Measurement, and Data Manipulation						
8	The metric and SI systems	.00	1.53	5.50	37.00	55.96	
9	Scientific notation	.00	2.15	7.67	40.49	49.69	
10	Estimation and approximation	.31	2.45	19.88	53.21	24.16	
11	Significant figures in measurement and calculations	.31	1.23	16.56	47.24	34.66	
12	Unit/dimensional analysis	.92	2.45	9.48	37.61	49.54	
13	Experimental errors (e.g., sources, precision, accuracy)	.00	3.37	23.93	44.48	28.22	
14	Mathematical relationships and patterns in numerical data	.31	4.91	21.78	43.56	29.45	
15	Statistics of distributions	6.42	16.21	42.81	29.97	4.59	
16	Simple digital (binary) logic	17.30	28.30	32.39	17.30	4.72	
17	Organization and interpretation of data and equations	.00	1.54	11.69	46.77	40.00	
18	Differentiation and simple integration	15.00	16.88	35.63	27.50	5.00	
Labo	ratory and Salety						
19	Use and calibration of laboratory equipment	.00	1.23	10.80	51.85	36.11	
20	Maintenance of laboratory equipment	1.54	4.62	26.15	45.85	21.85	
21	Preparation and set-up of reagents, materials, and apparatus	.62	.62	12.46	48.29	38.01	
2 2	Laboratory safety	.00	.62	6.46	36.31	56.62	
23	Emergency procedures for laboratory accidents	.00	.31	5.85	40.00	53.85	

Level of Understanding: 0 = An understanding of the knowledge area is not needed: 1 = Define the terms used in the knowledge area; 2 = Comprehend the essential properties of the knowledge area; 3 = Apply/Utilize the knowledge area to address problems or questions; 4 = Analyze the knowledge area into component parts and explain the interrelationships among the parts.

			Level of Understanding				
			% Responding				
		0	1	2	3	4,	
B. B /	SIC TOPICS IN PHYSICAL SCIENCE						
Matte	r and Energy						
26	Physical and chemical properties	.00	2.79	15.17	40.25	41.80	
27	Particulate nature of matter	.00	.31	6.83	31.99	60.87	
28	Elements, compounds, and mixtures	.00	.00	9.03	32.40	58.57	
29	Physical and chemical changes	.00	1.56	10.28	37.07	51.09	
30	Conservation of mass/energy	.00	.63	14.42	36.99	47.96	
31	Forms of energy	.00	3.11	26.40	38.20	32.30	
32	Energy transformations	.31	4.05	24.30	43.93	27.41	
Heat	and Thermodynamics						
33	Historical development of heat and energy concepts	3.45	20.69	51.72	20.38	3.76	
34	Kinetic molecular theory	.31	4.64	22.60	38.39	34.06	
35	Brownian motion	2.16	16.98	48.15	24.07	8.64	
36	Heat <u>versus</u> temperature	.00	6.44	20.25	34.66	38.65	
37	Temperature scales and measurement	.00	4.00	18.46	46.15	31.38	
38	Conduction, convection, and radiation	1.55	14.55	38.08	29.41	16.41	
39	Heat capacity/thermal exchange/heat of fusion and vaporization	.00	3.07	23.01	45.40	28.53	
40	Concepts of enthalpy and entropy	.31	4.60	27.91	34.97	32.21	
41	Phase changes	.00	3.68	19.33	42.33	34.66	
42	Expansion and contraction	1.25	12.85	36.05	33.86	15.99	
43	Zeroth law of thermodynamics	2.45	11.66	35.28	34.66	15.95	
44	First law of thermodynamics	.61	5.52	23.01	37.12	33.74	
45	Second law of thermodynamics	.62	5.54	29.23	39.69	24.92	
46	Third law of thermodynamics	.61	7.95	32.42	36.39	22.63	
47	Reversibility and irreversibility	.62	9.32	30.75	38.51	20.81	
Atom	nic and Nuclear Structure						
48	Historical discovery of particles	1.23	16.62	44.31	25.23	12.62	
49	Atomic models and their experimental bases	.62	7.72	35.49	32.72	23.46	
50	Structure of the atom	.00	1.25	11.84	32.40	54.52	

.

Level of Understanding: 0 = An understanding of the knowledge area is not needed; 1 = Define the terms used in the knowledge area; 2 = Comprehend the essential properties of the knowledge area; 3 = Apply/Utilize the knowledge area to address problems or questions; 4 = Analyze the knowledge area into component parts and explain the interrelationships among the parts.

Ga3

:

		Level of Understanding					
		% Responding			ding		
		0	1	2	3	4	
B. BA	SIC TOPICS IN PHYSICAL SCIENCE (cont.)						
51	Planck's hypothesia	1.55	11.46	37.15	35. 60	14.24	
52	deBroglie's hypothesis	1.85	13.54	40.00	33.54	11.08	
53	Heisenberg uncertainty principle	1.85	12.35	39.81	31.79	14.20	
54	Schrödinger's wave equation	8.02	20.37	41.67	23.15	6.79	
55	Orbital theory - quantum numbers	1,54	5.85	21.23	42.77	28.62	
56	Characteristics of an electron in an atom	.00	2.45	12.58	41.72	43.25	
57	Properties of electromagnetic radiation	.92	6.75	30.98	40.49	20.86	
5 8	Spectroscopy	.61	8.28	37.12	35.89	18.10	
59	Pauli exclusion principle	1.53	9.48	32.72	37.00	19.27	
60	Hund's rule	1.85	10.15	31.38	38.15	18,46	
61	Chemical properties related to electron configuration	.00	.61	6.69	31.91	60.79	
62	Atomic mass, atomic number, mass number and isotopes	.00	2.14	7.03	31.19	59.63	
63	Nuclear forces and binding energy	2.15	12.00	37.54	36.00	12.31	
64	Mass/energy transformation	.92	10.12	41.41	33.44	14.11	
65	Types of radioactive decay	.30	12.80	35.37	38.72	12.80	
66	Artificial and natural radioactivity	1.24	17.65	37.15	34.67	9.29	
67	Half-life of radioactive isotopes	.92	12.27	37.12	36.50	13.19	
68	Nuclear reactiona	.92	14.07	36.09	35.78	13.15	
C. C	HEMICAL PERIODICITY						
71	The development of the periodic table	.61	8.87	31.50	33.03	25.99	
72	The position of metals, nonmetals, and metalloids	.00	2.45	15.64	35.58	46.32	
73	Trends in melting and boiling temperatures	.61	7.06	32.21	40.80	19.33	
74	Trends in atomic radii/ionization energy/electron affinity/ electronegativity	.31	4.00	16.92	43.08	35.69	
75	Relationship of periodic table to electron configurations	.00	.61	9.51	31.90	57.98	
76	Oxidation numbers for elements in a compound	.00	1.54	11.08	43.0 8	44.31	
77	Periodicity of the oxidation states of the elements	.00	2.47	20.68	41.36	35.49	
78	Chemical properties/reactions of elements as reflected by their positions in the periodic table	.00	.31	9.54	42.15	48.00	

Level of Understanding: 0 = An understanding of the knowledge area is not needed: 1 = Define the terms used in the knowledge area; <math>2 = Comprehend the essential properties of the knowledge area; 3 = Apply/Utilize the knowledge area to address problems or questions; 4 = Analyze the knowledge area into component parts and explain the interrelationships among the parts.

Ga4

		Level of Understanding				
		% Responding				
		0	1	2	3	4
D. NC	D. NOMENCLATURE					
81	inorganic nomenciature of ionic compounds and acids	.00	4.36	15.58	46.42	33.64
82	Nomenclature of the classes of organic compounds	.63	7.52	30.72	44.83	16.30
e. Th	E. THE MOLE, CHEMICAL BONDING, AND NOLECULAR GEOMETRY					
85	Mole concept and mass-mole-number relationships	.00	.31	2.81	23.13	73.75
86	Information conveyed by a chemical formula	.00	.31	4.72	25.1 6	69.81
87	Law of constant composition and law of multiple proportions	.31	3.14	18.55	42.14	35.85
88	Percent composition of elements in a compound	.00	1.57	11.95	43.71	42.77
89	information conveyed by empirical and molecular formulas	.00	1.89	11.04	37.54	49.53
90	ionic, covalent, and metallic bonds	.00	2.20	9.75	35.22	52.83
91	Rules for calculating oxidation numbers of atoms in a compound	.32	2.84	14.51	44.16	38.17
92	Electron dot formulas and structural formulas	.00	1.58	12.30	45.43	40.69
93	Multiple bonds	.31	3.14	25.47	41.51	29.56
94	Types of bonding related to electronegativity differences	.00	2.53	20.25	42.41	34.81
95	Valence shell electron pair repulsion model (VSEPR)	1.57	9.12	31.45	35.22	22.64
96	Simple structures of isomers	.31	5.97	32.70	40.25	20.75
97	Chemical/physical properties of compounds related to type of bonding/geometry	.94	3.76	31.97	39.50	23.82
98	Hybrid orbitals	1.57	7.23	37.42	37.11	16.67
99	Resonance and delocalization	1.89	12.89	36.79	32.08	16.35
The #	Gnetic Theory and States of Matter					
100	Assumptions of the kinetic molecular theory of gases	.32	3.48	22.78	35.13	38.29
101	Maxwell-Boltzmann velocity distributions	5.38	18.67	42.09	26. 58	7.28
102	Diffusion of gases	.00	6.69	35.99	42.99	14.33
103	Relationships among volume/pressure/temperature/quantity for ideal gases	.00	.31	7.23	31.45	61.01
104	Dalton's law of partial pressures	.00	1.57	14.78	49.06	34.59
105	Real <u>versus</u> ideal gases	.95	6.62	27.76	38.17	26.50
106	Forces of attraction among molecules	:63	4.39	24.76	41.07	29.15
107	Phase changes for a pure substance	.63	5.02	34.17	39.81	20.38
108	Relationships among evaporation rate/bolling temperature/vapor pressure	.94	5.03	27.99	44.65	21.38
	- · · · · · ·		•	•	•	•

ŝ

Level of Understanding: 0 = An understanding of the knowledge area is not needed; 1 = Define the terms used in the knowledge area; 2 = Comprehend the essential properties of the knowledge area; 3 = Apply/Utilize the knowledge area to address problems or questions; 4 = Analyze the knowledge area into component parts and explain the interrelationships among the parts.

Ga5

141 BEST COPY AVAILABLE

		Level of Understanding					
		% Responding					
		0	1	2	⁻ 3	4	
e. Th	E MOLE, CHEMICAL BONDING, AND MOLECULAR GEOMETRY (cont.)						
10 9	Special properties of water	.00	2.81	27.50	40.31	29.38	
110	Relationships among phases of matter, forces between particles/particle energy	1.25	6.27	34.80	34.80	22.88	
111	Characteristics of crystals	1 .86	17.65	51.08	23.84	5.57	
Chem	ical Reactions						
112	Equation balancing from written description of chemical reaction	.00	.62	6.54	28. 66	64.17	
113	General types of chemical reactions	.31	3.10	16.10	33.44	47.06	
114	Stoichiometry	.00	.31	5.59	23.29	70.81	
115	Endothermic and exothermic reactions	.00	1.24	14.91	40.68	43.17	
116	Spontaneity in chemical reactions	.31	10.49	31.79	35.49	21.91	
117	Collision theory and reaction rates	.62	7.14	33.23	36.65	22.36	
1 18	Activation energy and the effects of a catalyst	.31	3.74	27.73	42.37	25.86	
119	Rate-Influencing factors in chemical reactions	.00	1.86	24.22	41.30	32.61	
12 0	Rate expressions and orders of reactions	.93	12.11	33.54	37.89	15.53	
1 21	Reaction mechanisms	1.25	13.44	39.06	31.2 5	15.00	
122	Chemical equilibria	.00	1.86	15.79	36.53	45.82	
123	Le Châteiler's principle and factors that disturb the equilibrium systems	.00	2.48	14.55	36.84	46.13	
124	Properties and production of ammonia	4.35	18.94	44.41	24.84	7.45	
1 25	Oxidation and reduction reactions	.00	.62	13.89	40.74	44.75	
1 26	Electrochemical cells and electrode reactions	.31	4.64	27.24	42.72	25.08	
127	Metallurgical properties of the transition metals	4.63	25.31	46.30	20.06	3.70	
128	Redox properties of the halogens and the halide ions	2.79	13.31	44.58	30.96	8.36	
129	Faraday's law of electrolysis	3.09	12.04	40.43	32.72	11.73	
130	Practical applications of electrochemistry	.92	9.85	35.69	39.69	13.85	
Solu	tions and Solubility						
131	Types of solutions	.00	7.12	33.44	36.22	23.22	
132	Solutes, solvents and solubility	.00	2.47	17.28	44.75	35.49	
133	Effects of temperature	.31	2.15	27.08	39.08	31.38	
134	Dissolving process	.00	4.92	33.23	35.69	26.15	
1 3 5	Solubility product (K _{sp})	.00	6.19	22.60	45.82	25.39	

Level of Understanding: 0 = An understanding of the knowledge area is not needed: 1 = Define the terms used in the knowledge area; 2 = Comprehend the essential properties of the knowledge area; 3 = Apply/Utilize the knowledge area to address problems or questions; 4 = Analyze the knowledge area into component parts and explain the interrelationships among the parts. Ga6

ERIC Autorited by Eric

			Level of Understanding				
		% Responding			ding		
		0	1	2	3	4	
e. The	MOLE, CHEMICAL BONDING, AND MOLECULAR GEOMETRY (cont.)	-					
136 (Concentration of solutes	.00	.62	13.23	35.38	50.77	
137 (Conductivity of solutions and the ionization process	.00	4.33	24.77	42.41	28.48	
138 \$	Strong and weak eletrolytes; non-electrolytes	.00	5.59	23.60	41.30	29.50	
139 (Colligative properties of solutions	.62	7.43	30.34	39.63	21.98	
140 (Characteristic properties of acids, bases, and saits	.00	.93	10.84	36.53	51.70	
141 /	Arrhenius, Brensted-Lowry, and Lewis acid-base theories	.00	5.85	19.08	36.92	38.15	
142	pH of solutiona of strong and weak acids and bases	.00	2.77	11.38	44.92	40.92	
143 I	Relative strengths of acids and bases	.00	1.54	19.14	43.52	35.80	
144 I	Production, properties, and use of the common acids	3.08	17.23	40.00	28.00	11.69	
145	Acid-base titration and indicators	.00	.92	16.92	44.62	37.54	
146	Buffer solutions	.31	4,62	26.46	42.77	25.85	
F. BIOC	HEMISTRY						
149 (Organic functional groups and their reactions	1.25	8.13	34.06	39.69	16.88	
150	Monomers and polymers	.62	12.15	43.30	31.46	12.46	
151 i	Biologically important compounds	.94	11.29	39.18	34.17	14.42	
152 i	Biologically important chemical processes	2.82	15.67	41.69	27.27	12.54	
153	Structure and replication of nucleic acids	5.99	17.98	43.85	21.77	10.41	
154 1	Energy storage and release in biological systems	6. 94	18.93	39.43	24.29	10.41	
155	Overall importance of Blochemistry		Ì				
G. SCI	ENCE, TECHNOLOGY, AND SOCIETY						
157	Awareness of ethical and moral responsibilities of scientists	.31	9.20	30.37	27.61	32.52	
	Awareness of ethical issues/risks/benefits associated with the application of science	.31	7.33	31. 08	30.46	30.77	
159	Detection of environmental hazards	.61	6.44	33.74	30.98	28.22	
160	Risk management issues assoc. with energy production/transmission/use	2.78	10.49	39.81	28.40	18.52	
161	Risk mgmt issues assoc. with production/storage/use/disposal of cons. products	1.55	7.43	34.98	33.44	22.60	
162	Waste management issues and recycling	.93	6.79	33.64	34.26	24.38	
163	Management of resources	1.85	9.23	31.38	33.54	24.00	
164	Use of science and technology to predict and prepare for natural disaster	6.15	18.46	41.23	22.77	11.38	

Level of Understanding: 0 = An understanding of the knowledge area is not needed; 1 = Define the terms used in the knowledge area; 2 = Comprehend the essential properties of the knowledge area; 3 = Apply/Utilize the knowledge area to address problems or questions; 4 = Analyze the knowledge area into component parts and explain the interrelationships among the parts.

Ga7

: 143

	-	Level of Understanding					
		% Responding					
		0	1	2	3	4	
G. SC	CIENCE, TECHNOLOGY, AND SOCIETY (cont.)						
165	Use of technology in everyday life	1.86	9.29	34. 98	33.13	20.74	
166	Technology transfer	2.79	14.24	47.06	23.84	12.07	
167	issues assoc. with the use of chemicals in agriculture/food preparation/ preservation	1.23	10. 46	39.69	32.31	16.31	
168	Social, political and economic issues arising from science and technology	2.46	11.38	37.23	30.46	18.46	
H. PE	DAGOGY SPECIFIC TO THE PHYSICAL SCIENCES	·					
171	Recognition of/compensation for complex factors - teaching	2.55	8.60	36.62	31.85	20.38	
1 72	Recognition of/compensation for complex factors - learning	1.58	6.96	30.38	32.59	28.48	
Curri	culum: Organization, Materials and Management						
173	Reasons for learning the physical sciences	.31	5.00	22.50	38.13	34.06	
174	Reasons for teaching a particular topic in the physical sciences	.00	5.66	25.47	38.68	30.19	
175	Integration within topica in the physical sciences	.00	2.81	24.69	40.94	31. 56	
176	Integration among the physical sciences and other disciplines	.00	3.74	29.60	38.94	27.73	
177	Scope and sequence of topica in the physical sciences	.64	6.69	30.89	37.26	24.52	
178	Lesson plans in the physical sciences curricula	1.89	6.92	32.08	36.16	22.96	
179	Selection and use of curricular materials and resources	.62	2.79	19.50	41.49	35.60	
180	Selection and use of masa media	1.24	5.90	33.54	45.96	13.35	
181	Selection and use of current technologies	.31	5.92	28.66	48.60	16.51	
instr	uction						
182	Prerequisite knowledge, experience, and skills	.63	4.06	22.50	50.00	22.81	
[·] 183	Recognition of and accommodation to the prior conceptions, experience, and skills	.31	4.40	26.10	46.23	22.96	
184	identification/selection of appropriate lab experiences for various instructional goals	.31	.93	13.04	47.83	37.89	
185	Design of appropriate lab experiences for various instructional goals	.62	2.18	11.84	47.66	37.69	
186	Strategies for motivating and encouraging students to succeed	.00	1.25	13.08	46.42	39.25	
187	Strategies for addressing controversial and/or sensitive issues	.93	4.67	25.55	43.93	24.92	
Assessment and Evaluation							
188	Assessment strategies for student performance in the physical sciences	.00	1.55	13.98	45.03	39.44	
189	Errors in student work and performances that arise from prior conceptions	1.25	4.05	30.53	40.81	23.36	

Level of Understanding: 0 = An understanding of the knowledge area is not needed; 1 = Define the terms used in the knowledge area; <math>2 = Comprehend the essential properties of the knowledge area; 3 = Apply/Utilize the knowledge area to address problems or questions; 4 = Analyze the knowledge area into component parts and explain the interrelationships among the parts.

Ga8

			Level	of Under	standing	
			9	Respon	ding	
		0	1	2	3	4
H. PE	DAGOGY SPECIFIC TO THE PHYSICAL SCIENCES (cont.)					
Profe	ssional Concerns					
190	Professional and scholarly literature	.94	6. 58	33.86	43.89	14.73
191	Professional and scholarly organizations for science educators	1.26	8.18	34.28	42.14	14.15
1 92	Legal responsibilities and liabilities for teachers in the physical sciences	.94	3.76	25.08	40.75	29.47
193	Responsibilities for continuing education	.63	5.02	24.76	45.45	24.14
194	Resources available in the community	.95	8.20	29.65	44.48	16.72
195	Science-related career information	.00	5.96	34.48	39.50	20.06
196	Overail Importance of Pedagogy Specific to the Physical Sciences					

Gb1 Percent of Responses by Level of Understanding Category - Physics

Nome Nome Nome 0 1 2 3 4 A. SCIENTFIC METHODOLOGY/TECHNIQUES/HISTORY 0 1 2 3 4 Methodology 1 Science process akills (a.g., qualitative/quantitative observations) .00 1.84 1.86 40.18 45.54 2 Science process akills (a.g., qualitative/quantitative observations) .00 1.84 1.86 40.18 46.32 3 Assemptions, models, laws, and theories .00 2.75 19.88 42.51 34.85 History and Philosophy of Science 2.48 12.39 55.42 25.08 4.64 6 Contributions of actionic groups and cultures 12.69 25.39 45.51 14.24 2.17 Mathematics, Messarement, and Daba Maripulation .00 1.83 6.10 36.28 55.79 10 Estimation and approximation .00 1.83 1.743 43.43 37.31 11 Significant figures in measurement and calculations .00 1.83 1.744 <t< th=""><th></th><th></th><th colspan="3">Level of Understanding</th><th></th></t<>			Level of Understanding				
A. SCIENTIFIC METHODOLOGY/TECHNHOUES/HISTORY I <thi< th=""> I I<th></th><th></th><th></th><th>%</th><th>Respondi</th><th>ng</th><th></th></thi<>				%	Respondi	ng	
Methodology Inspace Inspace <thinspace< th=""></thinspace<>			0	1	2	3	4
1 Scientific methods (a.g., formulation of problem, hypotheses. etc.) 0.0 2.15 10.46 41.85 45.54 2 Science process skills (e.g., qualitative/quantitative observations) 0.00 1.84 11.66 40.18 46.32 3 Assumptions, models, laws, and theories 3.11 3.07 19.94 44.48 32.21 4 Design of experiments (e.g., independent/dependent variables) 0.00 2.75 19.88 42.51 3.486 Historical roots of science 2.48 12.39 55.42 25.09 4.64 6 Contributions of individuais 2.80 18.01 52.80 23.29 3.11 7 Contributions of ethnic groups and cultures 12.69 25.39 45.51 14.24 2.17 Mathematics, Measurement, and Deta Manipulation .00 1.83 6.10 35.28 5.79 10 Estimation and approximation .00 1.83 1.44 43.43 3.731 11 Significant figures in measurement and calculations .00 3.07 18.4	A. SCIE	NTIFIC METHODOLOGY/TECHNIQUES/HISTORY					
1 Sciencie process skills (e.g., qualitative/quantitative observations) .00 1.84 11.66 40.18 45.32 2 Science process skills (e.g., qualitative/quantitative observations) .00 1.84 11.66 40.18 45.32 3 Assumptions, models, laws, and theories .31 3.07 19.94 44.48 32.21 4 Design of experiments (e.g., independent/dependent variables) .00 2.75 19.88 42.51 34.86 5 Historical roots of science 2.48 12.38 55.42 25.08 4.64 6 Contributions of individuals 2.80 18.01 52.80 23.29 3.11 7 Contributions of ethnic groups and cultures 12.69 25.39 45.51 14.24 2.17 Mathematics, Measurement, and Data Manipulation .00 1.83 17.43 43.43 37.31 10 Estimation and approximation .00 1.83 17.43 43.43 37.31 11 Significant figures in measurement and calculations .00 3.07 18.40 44.44 4.34 12 Unit/dim	Method	clogy					
2 Science process same (rg), quantative operation(r) 100 100 100 100 3 Assumptions, models, laws, and theories 31 3.07 19.94 44.48 32.21 4 Design of experimenta (e.g., independent/dependent variables) .00 2.75 19.86 42.51 34.86 Filistory and Philocophy of Science 2.48 12.38 55.42 25.08 4.64 5 itilitorical roots of science 2.48 12.69 25.39 45.51 14.24 2.17 Mathematics, Messurement, and Data Manipulation .00 1.83 6.10 36.28 55.79 10 Estimation and approximation .00 1.83 6.10 36.28 55.79 10 Estimation and approximation .00 1.83 17.43 43.43 37.31 11 Significant figures in measurement and calculations .00 1.83 17.43 43.43 37.31 11 Significant figures in measurement and calculations .00 3.07 18.40 44.04 44.34 13 Experimental errors (e.g., sources, precision, accuracy) .0	1	Scientific methods (e.g., formulation of problem, hypotheses, etc.)	.00	2.15	10.46	41.85	45.54
3 Assumptions, incours, text, and betweendent/dependent variables) .00 2.75 19.86 42.51 34.86 History and Philosophy of Science 2.48 12.38 55.42 25.08 4.64 6 Contributions of individuals 2.80 18.01 52.80 23.29 3.11 7 Contributions of individuals 2.80 18.01 52.80 23.29 3.11 7 Contributions of tehic groups and cultures 12.69 25.91 45.51 14.24 2.17 Mathematics, Measurement, and Data Manipulation .00 2.44 4.88 32.01 60.67 9 Scientific notation .00 1.83 6.10 36.28 55.79 10 Estimation and approximation .00 1.83 1.743 43.43 37.31 11 Significant figures in measurement and calculations .00 3.07 18.40 47.85 30.67 12 Unit/dimensional analysis .31 1.83 9.48 44.04 44.34 13 Experimental errors (e.g., sources, precision, accuracy) .00 2.45 22.02	2	Science process skills (e.g., qualitative/quantitative observations)	.00	1.84	11.66	40.18	46.32
1 1	3	Assumptions, models, laws, and theories	.31	3.07	19. 94	44.48	32.21
5 Historical roots of science 2.48 12.38 55.42 25.08 4.64 6 Contributions of individuals 2.80 18.01 52.80 23.29 3.11 7 Contributions of ethnic groups and cultures 12.69 25.39 45.51 14.24 2.17 Mathematics, Measurement, and Data Manipulation 00 2.44 4.88 32.01 60.67 9 Scientific notation 00 1.83 6.10 36.28 55.79 10 Estimation and approximation .00 1.83 17.43 43.43 37.31 11 Significant figures in measurement and calculations .00 1.83 9.48 44.04 44.34 13 Experimental errors (e.g., sources, precision, accuracy) .00 2.45 22.02 51.99 23.55 14 Mathematical relationships and patterns in numerical data .31 1.83 14.44 43.33 5.81 15 Statistics of distributions .398 12.84 44.34 3.33 5.81 16 Simple digital (binary) logic .00.23 .929 3	4	Design of experiments (e.g., Independent/dependent variables)	.00	2.75	1 9.88	42.51	34.86
S Instrume In	History	and Philosophy of Science					
B Contributions of ethnic groups and cultures 12.69 25.39 45.51 14.24 2.17 Mathematics, Measurement, and Deta Manipulation 0.00 2.44 4.88 32.01 60.67 9 Scientific notation 0.00 1.83 6.10 36.28 55.79 10 Estimation and approximation 0.00 1.83 6.10 36.28 55.79 10 Estimation and approximation 0.00 1.83 17.43 43.43 37.31 11 Significant figures in measurement and calculations 0.00 3.07 18.40 47.85 30.67 12 Unit/dimensional analysis .31 1.83 9.48 44.04 44.34 13 Experimental errors (e.g., sources, precision, accuracy) .00 2.45 22.02 51.99 23.55 14 Mathematical relationships and patterns in numerical data .31 1.83 14.98 42.20 40.67 15 Statistics of distributions .398 12.84 43.43 30.33 581	5	Historical roots of science	2.48	12.38	55.42	25. 08	4.64
Mathematics, Measurement, and Data Manipulation Intermetric Intermet	6	Contributions of individuals	2.80	18.01	52.80	23.29	3.11 `
8 The metric and SI systems .00 2.44 4.88 32.01 60.67 9 Scientific notation .00 1.83 6.10 36.28 55.79 10 Estimation and approximation .00 1.83 17.43 43.43 37.31 11 Significant figures in measurement and calculations .00 3.07 18.40 47.85 30.67 12 Unit/dimensional analysis .31 1.83 9.48 40.04 44.34 13 Experimental errors (e.g., sources, precision, accuracy) .00 2.45 22.02 51.99 23.55 14 Mathematical relationships and patterns in numerical data .31 1.83 14.98 42.20 40.67 15 Statistics of distributions .398 12.84 43.33 1.90 4.05 16 Simple digital (binary) logic .00 .93 9.29 39.94 49.85 18 Differentiation and simple integration .42 .18.0 32.30 37.89 14.60 19 Vector algebra .62 1.87 15.89 43.30 <td>7</td> <td>Contributions of ethnic groups and cultures</td> <td>12.69</td> <td>25.39</td> <td>45.51</td> <td>14.24</td> <td>2.17</td>	7	Contributions of ethnic groups and cultures	12.69	25.39	45.51	14.24	2.17
Bit interface and streptions No.	Mathen	natics, Measurement, and Data Manipulation					
Scientific rotation No.	8	The metric and SI systems	.00	2.44	4.88	32.01	60.67
10 Example of the approximation 100	9	Scientific notation	.00	1.83	6.10	36.28	55.79
11 Significant figures in measurement and calculations 100 100 100 100 100 12 Unit/dimensional analysis .31 1.83 9.48 44.04 44.34 13 Experimental errors (e.g., sources, precision, accuracy) .00 2.45 22.02 51.99 23.55 14 Mathematical relationships and patterns in numerical data .31 1.83 14.98 42.20 40.67 15 Statistics of distributions .398 12.84 44.34 33.03 5.81 16 Simple digital (binary) logic 10.28 22.74 43.93 19.00 4.05 17 Organization and interpretation of data and equations .00 .93 9.29 39.94 49.85 18 Differentiation and simple integration .62 1.87 15.89 43.30 38.32 20 Use and calibration of laboratory equipment .00 2.17 17.08 54.35 26.40 21 Maintenance of laboratory equipment .00 1.87 17.76 46.11 34.27 20 Use and calibration of reagents, materia	10	Estimation and approximation	.00	1.83	17.43	43.43	37.31
12 Only dimensional analysis 1.0.0 1.0	11	Significant figures in measurement and calculations	.00	3.07	18.40	47.85	30.67
13 Experimental errors (e.g., solices, precision, accurery) 100 100 100 100 100 14 Mathematical relationships and patterns in numerical data 31 1.83 14.98 42.20 40.67 15 Statistics of distributions 3.98 12.84 44.34 33.03 5.81 16 Simple digital (binary) logic 10.28 22.74 43.93 19.00 4.05 17 Organization and interpretation of data and equations .00 .93 9.29 39.94 49.85 18 Differentiation and simple integration 3.42 11.80 32.30 37.89 14.60 19 Vector algebra .62 1.87 15.89 43.30 38.32 20 Use and calibration of laboratory equipment .00 2.17 17.08 54.35 26.40 21 Maintenance of laboratory equipment 1.24 6.19 29.41 48.92 14.24 22 Preparation and set-up of reagents, materials, and apparatus .00 1.87 17.76 46.11 34.27 23 Laboratory safety .62 <td>12</td> <td>Unit/dimensional analysis</td> <td>.31</td> <td>1.83</td> <td>9.48</td> <td>44.04</td> <td>44.34</td>	12	Unit/dimensional analysis	.31	1.83	9.48	44.04	44.34
14 Maintenance of laboratory equipment 3.98 12.84 44.34 33.03 5.81 15 Statistics of distributions 3.98 12.84 44.34 33.03 5.81 16 Simple digital (binary) logic 10.28 22.74 43.93 19.00 4.05 17 Organization and interpretation of data and equations .00 .93 9.29 39.94 49.85 18 Differentiation and simple integration 3.42 11.80 32.30 37.89 14.60 19 Vector algebra .62 1.87 15.89 43.30 38.32 Laboratory and Safety .00 2.17 17.08 54.35 26.40 20 Use and calibration of laboratory equipment .00 2.17 17.08 54.35 26.40 21 Maintenance of laboratory equipment 1.24 6.19 29.41 48.92 14.24 22 Preparation and set-up of reagents, materiais, and apparatus .00 1.87 17.76 46.11 34.27 23 Laboratory safety .62 1.24 13.31 45.51	13	Experimental errors (e.g., sources, precision, accuracy)	.00	2.45	22.02	51.99	23.55
10 Statistics of distributions 10.00 10.00 10.00 10.00 4.05 16 Simple digital (binary) logic 10.28 22.74 43.93 19.00 4.05 17 Organization and interpretation of data and equations .00 .93 9.29 39.94 49.85 18 Differentiation and simple integration 3.42 11.80 32.30 37.89 14.60 19 Vector algebra .62 1.87 15.89 43.30 38.32 Laboratory and Safety .00 2.17 17.08 54.35 26.40 20 Use and calibration of laboratory equipment .00 2.17 17.08 54.35 26.40 21 Maintenance of laboratory equipment .00 1.87 17.76 46.11 34.27 22 Preparation and set-up of reagents, materiais, and apparatus .00 1.87 17.76 46.11 34.27 23 Laboratory safety .62 1.24 13.31 45.51 39.32	14	Mathematical relationships and patterns in numerical data	.31	1.83	14.98	42.20	40.67
16 Simple digital (binary) regio 100 101 100 11.80 32.30 37.89 14.60 19 Vector algebra .62 1.87 15.89 43.30 38.32 Laboratory and Safety .00 2.17 17.08 54.35 26.40 20 Use and calibration of laboratory equipment .000 2.17 17.08 54.35 26.40 21 Maintenance of laboratory equipment 1.24 6.19 29.41 48.92 14.24 22 Preparation and set-up of reagents, materiais, and apparatus .00 1.87 17.76 46.11 34.27 23 Laboratory safety .62 1.24 13.31 45.51 39.32	15	Statistics of distributions	3.98	12.84	44.34	33.03	5.81
18 Differentiation and simple integration 3.42 11.80 32.30 37.89 14.60 19 Vector algebra .62 1.87 15.89 43.30 38.32 Laboratory and Safety .00 2.17 17.08 54.35 26.40 20 Use and calibration of laboratory equipment .00 2.17 17.08 54.35 26.40 21 Maintenance of laboratory equipment 1.24 6.19 29.41 48.92 14.24 22 Preparation and set-up of reagents, materiais, and apparatus .00 1.87 17.76 46.11 34.27 23 Laboratory safety .62 1.24 13.31 45.51 39.32	16	Simple digital (binary) logic	10.28	22.74	43.93	19.00	4.05
19 Vector algebra .62 1.87 15.89 43.30 38.32 Laboratory and Safety .00 2.17 17.08 54.35 26.40 20 Use and calibration of laboratory equipment .00 2.17 17.08 54.35 26.40 21 Maintenance of laboratory equipment 1.24 6.19 29.41 48.92 14.24 22 Preparation and set-up of reagents, materials, and apparatus .00 1.87 17.76 46.11 34.27 23 Laboratory safety .62 1.24 13.31 45.51 39.32	17	Organization and interpretation of data and equations	.00	.93	9.29	39. 94	49.85
Laboratory and Safety.002.1717.0854.3526.4020Use and calibration of laboratory equipment.002.1717.0854.3526.4021Maintenance of laboratory equipment1.246.1929.4148.9214.2422Preparation and set-up of reagents, materials, and apparatus.001.8717.7646.1134.2723Laboratory safety.621.2413.3145.5139.32	18	Differentiation and simple integration	3.42	11.80	32.30	37.89	14.60
20 Use and calibration of laboratory equipment .00 2.17 17.08 54.35 26.40 21 Maintenance of laboratory equipment 1.24 6.19 29.41 48.92 14.24 22 Preparation and set-up of reagents, materials, and apparatus .00 1.87 17.76 46.11 34.27 23 Laboratory safety .62 1.24 13.31 45.51 39.32	19	Vector algebra	.62	1.87	15.89	43.30	38.32
20 Ose and cansilation of factoratory equipment 1.00 2.01 48.92 14.24 21 Maintenance of laboratory equipment 1.24 6.19 29.41 48.92 14.24 22 Preparation and set-up of reagents, materials, and apparatus .00 1.87 17.76 46.11 34.27 23 Laboratory safety .62 1.24 13.31 45.51 39.32	Labora	nory and Safety					
22 Preparation and set-up of reagents, materials, and apparatus .00 1.87 17.76 46.11 34.27 23 Laboratory safety .62 1.24 13.31 45.51 39.32	20	Use and calibration of laboratory equipment	.00	2.17	17.08	54.35	26.40
23 Laboratory safety .62 1.24 13.31 45.51 39.32	21	Maintenance of laboratory equipment	1.24	6.19	29.41	48.92	14.24
	22	Preparation and set-up of reagents, materials, and apparatus	.00	1.87	17.76	46.11	34.27
24 Emergency procedures for laboratory accidents .62 .31 12.77 45.17 41.12	23	Laboratory safety	.62	1.24	13.31	45.51	39.32
	24	Emergency procedures for laboratory accidents	.62	.31	12.77	45.17	41.12

Gb2

				_		
			Level	of Unders	tanding	
			%	Respond	ing	
		0	1	2	3	4
B. BAS	IC TOPICS IN PHYSICAL SCIENCE					
Matter	and Energy					
27	Physical and chemical properties	:31	4.64	26.63	43.34	25.08
28	Particulate nature of matter	.00	1.54	18.83	45.37	34.26
29	Elements, compounds, and mixtures	.06	4.66	29.19	40.06	26.09
30	Physical and chemical changes	.00	5.28	26.71	41.61	. 26.40
31	Conservation of mass/energy	.00	.31	8.64	36.73	54.32
32	Forms of energy	.00	.93	7.10	35.19	56.79
33	Energy transformations	.31	.62	7.74	41.49	49.85
Heat a	nd Thermodynamics					
34	Historical development of heat and energy concepts	2.18	13.71	53.58	25.86	4.67
35	Kinetic molecular theory	.62	2.79	27.55	44.89	24.15
36	Equipartition of energy	2.58	16.77	37.74	34.84	8.06
37	Brownian motion	1.56	14.02	45.17	33.64	5.61
38	Heat <u>versus</u> temperature	.00	1.86	14.24	40.25	43.65
39	Temperature scales and measurement	.31	2.78	16.36	52.78	27.78
40	Conduction, convection, and radiation	.31	2.78	21.91	48.46	26.54
41	Heat capacity/thermal exchange/heat of fusion and vaporization	.00	.93	15.17	51.08	32.82
42	Phase changes	.00	2.48	18.58	48.92 .	30.03
43	Expansion and contraction	.00	3.41	25.70	50.15	20.74
44	Zeroth law of thermodynamics	.62	4.97	26.40	45.65	22.36
45	First law of thermodynamics	.93	.00	12.42	45.65	40.99
46	Second law of thermodynamics	1.25	4.98	24.92	42.37	26.48
47	Third law of thermodynamics	.93	5.90	31.37	40.68	21.12
48	Reversibility and irreversibility	2.48	9.29	37.15	37:77	13.31
Atomic	c and Nuclear Structure					
49	Historical discovery of particles	.93	15.74	46.30	29.32	7.72
50	Atomic models and their experimental bases	.62	6.17	31.79	45.99	15.43
51	Structure of the atom	.00	2.48	18.89	43.96	34.67
52	Characteristics of an electron in an atom	.62	4.01	26.23	43.83	25.31

Gb3

		Level of Understanding				
			%	Respondi	ng	
		0	1	2	3	4
B. BASI	C TOPICS IN PHYSICAL SCIENCE (cont.)					
53	Atomic mass, atomic number, mass number and isotopes	.00	5.61	18.69	43.30	32.40
54	Nuclear forces and binding energy	.31	7.79	33.02	39.56	19.31
55	Types of radioactive decay	.31	4.95	31.27	43.34	20.12
56	Artificial and natural radioactivity	.31	8.02	36.42	42.28	12.96
57	Half-life of radioactive isotopes	.31	5.25	28.70	47.22	18.52
58	Nuclear reactions	.31	6.48	25.93	48.15	19.14
C. MEC	HANICS					
61	Vector quantities	.00	.62	3.42	33.85	62.11
62	Rel. among position, velocity, acceleration, and time for straight line motion	.00	.31	1.86	27.95	69.88
63	Reference frames and relative velocity (e.g., Galilean relativity)	.62	3.74	26.17	41:74	27.73
64	Rel. among position/velocity/constant acceleration/time for projectile motion	.00	.93	6.50	38.08	54.49
65	Rel: among position, velocity, centripetal acceleration for uniform circular motion	.31	1.24	8.39	44.72	45.34
66	Periodic motion	.00	.93	11.15	49.23	38.70
67 [°]	Simple harmonic motion (oscillations)	.62	1.55	13.35	51 .55	32.92
68	Newton's law of motion	.00	.31	.93	21.98	76.78
69	Weight <u>versus</u> mass	.00	.93	7.12	28.79	63.16
70	Friction (e.g., static and dynamic coefficients)	.00	2.17	16.77	50.00	31.06
71	Statics (e.g., equilibrium of forces and/or torques)	.00	1.86	14.60	44.10	39.44
72	Relationships between work and kinetic energy changes	.31	.31	5.57	41.49	52.32
73	Conservative forces and potential energy	.00	.93	9.03	42.68	47.35
74	Springs (e.g., Hooke's iaw)	.00	2.80	23.60	52.17	21.43
75	Concepts of rigid body motion	.00	3.74	28.66	46.11	21.50
76	Impulse-momentum principle	.31	2.80	14.29	45.65	36.96
77	Conservation of momentum	.00	.62	6.50	39.32	53.56
78	Conservation of angular momentum	.00	4.33	23.22	46.75	25.70
79	Conservation of energy	.00	.31	2.77	26.46	70.46
80	Orbital motion	.00	5.25	39.20	41.67	13.89
81	Newton's law of universal gravitation	.00	1.55	13.62	39.94	44.89

Gb4

149

		Level of Understanding				
			%	Respond	ing	
		0	1	2	3	4
C. MECH	WICS (cont.)					
82 F	Fluid mechanics	.31	8.05	29.72	49.23	12.69
83 F	Relativistic effects on length, mass, and time	1.85	12.35	38.58	37.65	9.57
D. ELECT	RICITY AND MAGNETISM					
86 E	Electric forces and Coulomb's law	.00	.62	9.63	47.52	42.24
87 E	Electric fields	.00	1.55	16.41	50.77	31.27
88 (Gauss's law	4.10	6.62	32.18	43.22	13. 88
89 I	Electric potential energy, electric potential, and potential difference	.00	.95	9.84	48.89	40.32
90 (Conductors, insulators, semiconductors	.00	1.59	27.30	47.30	23.81
91 (Current	.00	.32	6.35	46.67	46.67
92	Resistance	.00	.32	6.69	48.41	44.58
93 9	Series and parallel circuits	.00	.32	8.28	46.82	44.59
94 i	Internal resistance of batteries	2.22	6.35	36.19	41.90	13.33
95	Capacitance	.32	5.10	24.84	50.00	19.75
96	Inductance	.32	7.96	27.07	47.45	17.20
97	Measurement of potential difference, current, resistance, and capacitance	.00	.96	14.65	50.96	33.44
98	Alternating current circuits	1.27	6.05	31.85	46.82	14.01
. 99 1	Magnetic flux	.32	6.05	31.53	43.95	18.15
100	Faraday's and Lenz's laws of electromagnetic induction	.64	4.14	28.03	46.18	21.02
101	Transformers	.96	5.41	33.12	46.82	13.69
102	Sources of EMF	.00	3.18	28.34	51.91	16.56
10 3	Motors	.64	5.10	33.44	47.45	13.38
104	Large scale generation and transmission of energy and power	1.27	11.15	50.32	28.03	9.24
105	n- and p-type semiconductors	4.82	12.86	43.41	34.08	4.82
106	Semiconductor devices	3.49	13.02	43.81	33.65	6.03
107	Integrated circuits	5.38	18.67	44.62	26.5 8	4.75
10 8	Superconductivity	1.60	14.74	47.76	30.13	5.77
109	Magnets	.00	.95	29.75	46.84	22.47
110	Magnetic fields	.00	1.27	17.72	49.37	31.65

Gb5

150 BEST COPY AVAILABLE

			Level of Understanding			
			%	Respond	ing	
		0	1	2	3	4
d. ele	CTRICITY AND MAGNETISM (cont.)					
111	Gauss's law of magnetism	5.41	11.15	40.45	33.76	9.24
112	Magnetic forces	.32	1.90	22.47	51.58	23.73
113	Principle and calibration of electrical meters	3.83	8.31	35.78	38.34	13.74
114	Types of magnetism	2.56	21.73	47.28	23.96	4.47
115	Biot-Savart law and Ampere's law	2.23	11.15	35.35	35.99	15.29
116	Maxwell's equations	5.71	18.10	39.05	26.03	11.11
117	Lorentz force law and applications	· 1.61	10.29	37.62	35.37	15.11
E. WAN	VES					
120	Wave characteristics	.00	.93	5.86	33.64	59.57
121 -	Inverse square law for intensity	.62	2.48	20.74	46.13	30.03
122	Transverse and longitudinal waves	.00	3.10	17.03	41.80	38.08
123	Absorption and transmission	.31	5.56	31.48	42.28	20.37
124	Reflection	.00	1.23	14.51	47.53	36.73
125	Scattering	.93	5.56	31.48	48 .15	13.89
126	Refraction and Snell's law	.00	.62	9.57	46.30	43.52
127	interference and superposition of waves	.00	1.23	12.96	47.84	37.96
128	Standing waves	.31	.93	19.14	53.09	26.54
129	Diffraction	.62	5.56	25.93	50.00	17.90
130	Dispersion	.31	9.01	37.89	42.24	10.56
131	Resonance and natural frequencies	.00	1.54	25.31	50.00	23.15
132	Doppler effect	.31	2.17	22.67	49.07	25.78
133	Characteristics of sound waves	1.55	4.02	27.24	38.39	28.79
134	Sound: air columns and strings	1.85	5.25	37.35	37.04	18.52
135	The electromagnetic spectrum	.00	3.09	20.37	39.20	37.35
136	Color	1.24	6.19	38.08	37.46	17.03
137	Coherent radiation	2.19	10.00	44.69	34.69	8.44
138	Geometric optics	.00	.62	11.76	47.06	40.56
139	Polarization	.00	5.64	30.72	50.47	13.17
140	Thin films	2.51	10.03	42.32	35.74	9.40

			Level o	f Unders	tanding	
		% Responding				
		0	1	2	3	4
F. MOD	ERN PHYSICS					
143	Blackbody radiation	1.56	8.75	46.56	34.38	8.75
144	Photoelectric effect	.00	2.50	32.50	44.38	20.63
145	Spectroscopy	.31	3.75	35.94	42.81	17.19
146	Pianck's hypothesis	.63	7.21	33. 86	40.44	17.87
147	deBroglie's hypothesis	.94	8.75	34.69	40.94	14.69
148	Wave-particle duality	.31	4.97	28.26	42.24	24.22
149	Heisenberg uncertainty principle	.31	9.35	36.76	38.94	14.64
150	Schrödinger's wave equation	4.08	20.38	41.69	27.59	6.27
151	Orbital theory - quantum numbers	1.25	9.66	37.69	38.01	13.40
152	Pauli exclusion principle	1.25	11.29	41.07	35.74	10.56
153	Michelson-Morley experiment	1.57	8.46	40.44	36.68	12.85
154	Special relativity	.31	10.31	36.88	41.25	11.25
155	Lorentz transformations and inertial reference frames	3.44	16.56	44.06	30.00	5.94
1 56	Mass/energy transformations	.63	7.21	31.66	44.51	15.99
157	Elementary particles	2.50	22.19	46.25	24.38	4.69
158	Strong and weak forces	3.14	22.64	40.57	28.30	5.35
g. sci	ENCE, TECHNOLOGY, AND SOCIETY					
161	Awareness of ethical and moral responsibilities of scientists	1.25	6.54	33.96	36.45	21.81
162	Awareness of ethical issues/risks/benefits assoc, with the application of science	1.24	6.21	34.47	38.51	19.57
163	Detection of environmental hazards	1.25	8.10	40.50	32.71	17.45
164	Risk management issues assoc. with energy production/transmission/use	1.57	11.95	42.77	31.13	12.58
165	Risk mgmt issues assoc. with production/storage/use/disposal of cons. products	3.1 3	12.85	42.32	29.47	12.23
166	Weste management issues and recycling	3.13	10.31	42.19	32.19	12.19
167	, Management of resources	2.51	12.85	39.18	32.29	13.17
1 68	Use of science and technology to predict and prepare for natural disaster	7.23	15.41	41.82	26.73	8.81
169	Use of technology in everyday life	1.25	5.63	31.56	43.44	18.13
170	Technology transfer	1.88	15.63	40.31	32.81	9.38
171	Social, political and economic issues arising from science and technology	2.19	8.44	38.44	37.50	13.44

Gb7

			Level o	of Unders	tanding	
			%	Respond	ling	
		0	1	2	3	4
H. PED	AGOGY SPECIFIC TO THE PHYSICAL SCIENCES					
174	Recognition of/compensation for complex factors - teaching	4.17	9.62	37.18	33.97	15.06
175	Recognition of/compensation for complex factors - learning	3.54	6.11	⁻ 28.94	40.84	20.58
Curricu	lum: Organization, Materials and Management					
176	Reasons for learning the physical sciences	1.60	3.19	22.04	41.21	31.95
[′] 177	Reasons for teaching a particular topic in the physical sciences	.64	4.78	24.20	41.72	28.66
178	Integration within topics in the physical sciences	.31	5.03	28.62	39.94	26.10
179	Integration among the physical sciences and other disciplines	.31	6.60	31.76	42.14	19.18
180	Scope and sequence of topics in the physical sciences	2.55	8.92	34.71	39.49	14.33
181	Lesson plans in the physical sciences curricula	3.81	9.84	35.87	35.87	14.60
182	Selection and use of curricular materials and resources	1.58	4.73	21.45	52.05	20.19
183	Selection and use of mass media	1.91	6.05	29.30	49.04	13.69
184	Selection and use of current technologies	1.59	4.76	29.21	48.25	16.19
Instruct	ion .					
185	Prerequisite knowledge, experience, and skills	1.60	5.43	23.64	45.05	24.28
186	Recog. of and accommodation to the prior conceptions, experience, and skills	1.58	6.33	26.58	40.51	25.00
187	Identification/selection of approp. lab experiences for various instructional goals	.95	1.89	15.77	43.85	37.54
188	Design of appropriate lab experiences for various instructional goals	1.27	2.53	17.09	43.35	35.76
189	Strategies for motivating and encouraging students to succeed	.94	2.20	16.67	40.25	39.94
190	Strategies for addressing controversial and/or sensitive issues	2.83	6.60	30.50	40.88	19.18
Assess	ment and Evaluation					
191	Assessment strategies for student performance in the physical sciences	.63	3.16	19.62	44.30	32.28
192	Errors in student work and performances that arise from prior conceptions	.95	4.43	25.00	46.52	23.10
Profess	tional Concerns					
193	Professional and scholarly literature	2.22	7.28	37.97	39.24	13.29
194	Professional and scholarly organizations for science educators	3.18	8.28	35.03	40.13	13.38
195	Legal responsibilities and liabilities for teachers in the physical sciences	.32	7.94	35.87	32.38	23.49
196	Responsibilities for continuing education	1.92	6.73	33.33	38.78	19.23
197	Resources available in the community	2.56	8.31	34.19	39.94	15.02
198	Science-related career information	.32	7.72	35.69	39.87	15.40

Gb8

Appendix H

Ha1 Mean Importance Ratings by Subgroups - Chemistry

Hb1 Mean Importance Ratings by Subgroups - Physics

Ha1 Mean Importance Ratings by Subgroups - Chemistry

Ha1

		ERIC [®]
L	۰,	

A. SCIENTIFIC METHODOLOGY/TECHNIQUES/HISTORY		9	EOGRAPH	GEOGRAPHIC REGION	z	S	SEX	TEACHING	TEACHING EXPERIENCE
A. Scientific Methodology/Techniques/His		NE	ပ	S	FW	iL.	¥	VI	× ۲
A. SCIENTIFIC METHODOLOGY/TECHNIQUES/HIS		N=70	N=94	N=76	N=87	N=105	N=222	N= 33	N=141
	ISTORY								
Methodology							·		
1. Scientific methods (e.g., formulation of problem, hypotheses, experiments)	oblem, hypotheses, experiments)	3.49	3.44	3.53	3.51	3.41	3.63	3.55	3.52
2. Science process skills (e.g., qualitative and quantitative observations)	d quantitative observations)	3.59	3.55	3.51	3.44	3.40	3.68	3.64	3.62
3. Assumptions, models, laws, and theories		3.23	3.26	3.36	3.30	3.22	3.40	3.15	3.41
4. Design of experiments (e.g., independent and dependent v	and dependent variables)	3.25	3.17	3.22	3.19	3.13	3.38	3.39	3.27
History and Philosophy of Science									
5. Historical roots of science		2.23	2.09	2.32	2.28	2.26	2.22	2.21	2.27
6. Contributions of Individuals		2.23	1.96	2.25	2.16	2.25	2.07	2.09	2.18
7. Contributions of ethnic groups and cultures	6S	1.44	1.55	1.41	1.70	1.48	1.70	1.76	1.70
Mathematics, Measurement, and Date Manipulation	ation								
8. The metric and SI systems		3.61	3.68	3.75	3.69	3.63	3.73	3.73	3.74
9. ScientIfic notation		3.56	3.63	3.63	3.56	3.53	3.67	3.64	3.65
10. Estimation and approximation		3.17	3.01	3.12	3.08	2.95	3.15	3.00	3.14
11. Significant figures in measurement and calculations	alculations	3.26	3.17	3.38	3.24	3.11	3.45	3.30	3.30
12. Unit/dimensional analysis		3.47	3.30	3.57	3.48	3.34	3.60	3.55	3.56
13. Experimental errors (e.g., sources, quantifications, precision, accuracy)	fications, precision, accuracy)	3.09	2.99	3.05	2.93	3.00	3.11	3.18	3.09
14. Mathematical relationships and patterns in numerical data	n numerical data	3.09	2.95	3.16	2.94	2.75	3.24	3.06	3.19
15. Statistics of distributions		2.09	1.96	2.16	2.00	2.04	2.04	2.06	1.99
16. Simple digital (binary) logic		1.53	1.49	1.75	1.62	1.50	1.68	1.38	1.59

.

A southeast; C × Centrel; S = Southern; FW = Far West; F = Famale; M = Male; 55 = Less than of equal 10 5 years teaching experience; >5 = Greater than 5 years teaching experience; >5 = Greater than 5 years teaching experience

15:51

157

Ha2

		CENCRAPHIC REGION	C REGIO	2	SEX	×	TEACHING F	TEACHING EXPERIENCE
	NE N	υ	s	FV	u .	٤.	≤5	- >5
	N=70	N=94	N = 76	N=87	N= 105	N= 222	N = 33	N = 141
A. SCIENTIFIC METHODOLOGY/TECHNIQUES/HISTORY (cont.)								
17. Organization and interpretation of data and equations (e.g., tables, graphs,)	3.23	3.22	3.38	3.30	3.25	3.41	3.41	3.40
18. Differentiation and simple integration	1.78	1.67	1.88	1.75	1.82	1.64	1.81	1.46
Laboratory and Safety	-							
19. Use and calibration of laboratory equipment (e.g., laboratory burners)	3.47	3.47	3.53	3.36	3.46	3.60	3.78	3.56
20. Maintenance of laboratory equipment (e.g., laboratory burners, glassware)	2.74	3.05	3.08	3.08	2.99	3.16	3.16	3.16
21. Preparation and set-up of reagents, materials, and apparatus	3.46	3.52	3.44	3.52	3.38	3.65	3.72	3.73
22. Laboratory safety (e.g., storage and disposal of materials)	3.87	3.77	3.85	3.82	3.79	3.89	3.91	3.89
23. Emergency procedures for laboratory accidents	3.81	3.76	3.82	3.84	3.76	3.86	3.91	3.85
24. Overall evaluation of the importance of Scientific Methodology/ Techniques/History	3.19	3.22	3.36	3.34	3.24	3.33	3.39	3.32
B. BASIC TOPICS IN PHYSICAL SCIENCE				_				
Matter and Energy								
26. Physical and chemical properties (e.g., states of matter, homogeneous,)	3.22	3.29	3.49	3.24	3.24	3.41	3.26	3.34
27. Particulate nature of matter (e.g., atoms, ions, molecules)	3.71	3.61	3.78	3.64	3.61	3.76	3.71	3.72
28. Elements, compounds, and mixtures	3.59	3.56	3.71	3.52	3.46	3.72	3.71	3.63
29. Physicai and chemical changes	3.47	3.48	3.59	3.43	3.36	3.60	3.45	3.56
30. Conservation of mass/energy	3.37	3.47	3.44	3.43	. 3.36	3.51	3.55	3.49
31. Forms of energy (e.g., kinetic, potential, magnetic, electrical, light)	2.93	3.02	3.15	3.14	3.03	3.09	3.26	3.01
32. Energy transformations	2.94	2.86	2.97	3.05	2.91	2.94	3.00	3.01

Ξ.

ERIC FullTaxt Provided by ERIC NE = Northeast; C = Central; 8 × Southern; FW = Far West; F = Female; M = Male; 55 = Less than or equal to 5 years teaching experience; >5 = Greater than 5 years teaching experience

Ha3

158

153

,

		0)	
E	R	I	(, '
Full	fext Prov	ided	by ERI	2

TEACHING EXPERIENCE

SEX

GEOGRAPHIC REGION

Q
4
_
9
>
4
~
α.
0
Ö
S
<u>II</u>
0

ш

NE = Northeast; C = Central; S = Southem; FW = Far Weet; F = Female; M = Male; 55 = Less than or equel to 5 years beaching experience; >5 = Greater than 5 years beaching experience

Ha4

>5	N=141	 1.94	3.43	2.26	3.26	3.26	2.37	3.04	3.09	3.36	2.49	2.60	3.12	2.86	2.91	2.74	2.59	3.08	3.70	2.60
₹ 5	N = 33	1.88	3.19	2.41	2.94	3.30	2.64	2.85	2.88	3.24	2.58	2.55	3.06	2.88	2.82	2.66	2.45	2.79	3.69	2.67
X	N=222	1.90	3.25	2.30	3.17	3.28	2.44	3.00	3.00	3.33	2.63	2.70	3.10	2.89	2.81	2.74	2.56	2.89	3.71	2.71
Ľ.	N= 105	1.91	3.00	2.04	3.10	3.04	2.46	2.96	2.95	3.06	2.38	2.66	3.19	2.90	2.77	2.60	2.36	2.83	3.52	2.55
FW	N=87	2.05	3.20	2.29	3.17	3.07	2.60	3.07	3.10	3.27	2.52	2.64	3.30	3.01	2.92	2.75	2.46	2.98	3.59	2.72
s	N=76	2.08	3.01	2.22	3.16	3.26	2.50	2.99	2.88	3.03	2.46	2.64	3.09	2.95	2.76	2.71	 2.37	2.68	3.55	2.70
ပ	N = 94	1.78	3.01	2.14	3.08	3.23	2.28	2.84	2.86	3.11	2.35	2.51	3.03	2.77	2.65	2.67	 2.33	2.67	3.59	2.33
NE	N=70	1.72	3.35	2.13	3.14	2.93	2.27	2.99	3.11	3.26	2.40	2.70	3.21	2.97	2.90	2.86	2.31	2.86	3.64	2.70
								tion												

39. Heat capacity, thermal exchange, heat of fusion, and heat of vaporization 43. Zeroth law of thermodynamics (i.e., direction of heat flow) 48. Historical discovery of particles (e.g., electron, neutron) 44. First law of thermodynamics (i.e., energy is conserved) 49. Atomic models and their experimental bases 33. Historical development of heat and energy 45. Second law of thermodynamics - entropy B. BASIC TOPICS IN PHYSICAL SCIENCE (cont.) 37. Temperature scales and measurement Conduction, convection, and radiation 40. Concepts of enthalpy and entropy 47. Reversibility and Irreversibility 46. Third law of thermodynamics 42. Expansion and contraction Atomic and Nuclear Structure 36. Heat versus temperature 34. Kinetic molecular theory 50. Structure of the atom Heat and Thermodynamics 51. Planck's hypothesis Brownian motion 41. Phase changes 38. 35.

101

Full Text Provided by ERIC	

		0	EOGRAPH	GEOGRAPHIC REGION		SEX	X	TEACHING E	TEACHING EXPERIENCE
		NE	υ	s	FW	۳	æ	≤ 5	>5
		N=70	N=94	N = 76	N=87	N= 105	N=222	N=33	N=141
B. B^	B. BASIC TOPICS IN PHYSICAL SCIENCE (cont.)								
52.	deBroglie's hypothesis	2.60	2.20	2.50	2.57	2.40	2.61	2.48	* 2.47
53.	Heisenberg uncertainty principle	2.70	2.32	2.57	2.61	2.53	2.66	2.61	2.57
54.	Schrödinger's wave equation	2.29	1.73	2.12	2.16	2.02	2.21	2.15	2.14
55.	Orbital theory - quantum numbers	3.09	2.83	2.99	3.02	2.92	3.07	3.21	3.09
56.	Characteristics of an electron in an atom (e.g., shells, orbitals)	3.44	3.37	3.31	3.45	3.38	3.49	3.58	3.51
57.	Properties of electromagnetic radiation	2.80	2.67	2.96	2.88	2.80	2.83	2.94	2.86
58.	Spectroscopy	2.61	2.48	2.71	2.76	2.67	2.62	2.67	2.63
59.	Pauli exclusion principie	2.77	2.65	2.83	2.89	2.66	2.97	2.82	2.87
60.	Hund's rule	2.71	2.55	2.75	2.75	2.60	2.84	2.70	2.79
61.	Chemical properties related to electron configuration	3.59	3.65	3.53	3.70	3.57	3.73	3.52	3.78
62.	Atomic mass, atomic number, mass number and isotopes	3.57	3.72	3.64	3.55	3.58	3.75	3.67	3.76
63.	Nuclear forces and binding energy	2.51	2.35	2.55	2.48	2.40	2.56	2.79	2.56
64.	Mass/energy transformation	2.65	2.32	2.64	2.56	2.39	2.71	2.79	2.59
65.	Types of radioactive decay (e.g., alpha, beta, gamma emission)	2.66	2.54	2.66	2.66	2.61	2.62	2.73	2.74
66.	Artificial and natural radioactivity	. 2.43	2.29	2.42	2.40	2.27	2.48	2.61	2.46
67.	Half-life of radioactive isotopes	2.51	2.42	2.57	2.55	2.44	2.50	2.58	2.60
68.	Nuclear reactions (transmutations, fission, fusion)	2.47	2.42	2.55	2.69	2.59	2.51	2.59	2.62
69.	. Overall evaluation of the Importance of Basic Topics in Physical Science	3.31	3.16	3.26	3.30	3.22	3.33	3.24	3.33
C C	C. CHEMICAL PERIODICITY								
71.	71. The development of the periodic table	2.52	2.78	2.74	2.85	2.68	2.89	2.97	2.94
72.	. The position of metals, nonmetals, and metalloids	3.32	3.50	3.45	3.44	3.36	3.63	3.52	3.60
NF - Nor	NF = Northmant: C = Central: B = Bouthann: 6V = 64 Want: 6 = 6-mula: M = 1444: /4 = 1444 Ann an ann an ann		•						

NE = Northeest; C = Centrel; S = Southern; FW = Fer West; F = Fermele; M = Mole; 55 = Less then or equal to 5 years teaching experience; >5 = Greener then 5 years teaching experience

Ha5

162

1

0
ERIC
Full Text Provided by ERIC

,

.

		GE	OGRAPHI	GEOGRAPHIC REGION		SEX	×	TEACHING F	TEACHING EXPERIENCE
		RE	υ	s	FW	ų	¥	12 12	~ 5
		N = 70	N=94	N=76	N=87	N= 105	N=222	N= 33	N = 141
C. CHI	C. CHEMICAL PERIODICITY (cont.)								
73.	Trends in meiting and bolling temperatures	2.52	2.50	2.79	2.78	2.59	2.83	2.73	2.75
74.	Trends in atomic radii, ionization energy, electron affinity, and electronegativity	3.04	3.10	3.08	3.14	3.08	3.24	3.03	3.22
75.	Relationship of period table to electron configurations of the atoms	3.66	3.53	3.46	3.61	3.45	3.68	3.45	3.70
76.	Oxidation numbers for elements in a compound	3.35	3.43	3.41	3.43	3.36	3.58	3.61	3.58
77.	Periodicity of the oxidation states of the elements	3.19	3.18	3.05	3.16	2.99	3.37	3.30	3.24
78.	Chem. prop./reactions of elements as reflected by positions in periodic table	3.55	3.59	3.47	3.56	3.46	. 3.57	3.42	3.64
79.	Overall evaluation of the importance of Chemical Periodicity	3.39	3.45	3.29	3.49	3.36	3.46	3.42	3.55
D. NO	D. NOMENCLATURE								
81.	Inorganic nomenclature of tonic compounds and acids	3.06	3.32	3.34	3.14	3.05	3.34	3.27	3.44
82.	Nomenclature of the classes or organic compounds	2.49	2.67	2.62	2.51	2.59	2.46	2.45	2.50
83.	Overall evaluation of the importance of Nomenclature	2.87	3.11	3.12	2.87	2.92	2.99	2.94	3.13
ETH	E. THE MOLE, CHEMICAL BONDING, AND MOLECULAR GEOMETRY								
85.	Mole concept and mass-mole-number relationships	3.84	3.82	3.73	3.74	3.70	3.81	3.68	3.86
86.	Information conveyed by a chemical formula	3.77	3.74	3.68	3.78	3.60	3.79	3.65	3.82
87.	Law of constant composition and law of multiple proportions	3.10	3.07	3.14	3.15	3.08	3.16	3.23	3.18
88.	Percent composition of elements in a compound	3.19	3.21	3.31	3.13	3.18	3.27	3.13	3.37
89.	information conveyed by empirical and molecular formulas	3.46	3.37	3.34	3.43	3.35	3.44	3.16	3.53
.0 6	. Ionic, covalent, and metallic bonds	3.51	3.46	3.48	3.45	3.44	3.57	3.42	3.55
91.	. Ruies for calculating oxidation numbers of atoms in a compound	3.09	3.31	3.27	3.11	3.07	3.35	3.19	3.34
92.	. Electron dot formulas and structural formulas	3.17	3.32	3.19	3.26	3.20	3.34	3.19	3.37
93.	. Multiple bonds	3.06	3.03	3.11	2.98	3.00	3.03	2.77	3.04
- No.	NG = Mortheest: C = Central: S = Southern: FW = Ear Weat: F = Eamsio: M = Maje: <5 = { ass than of equal to 5 vasr	re traching av	taching availance: > 5	- Greater the	= Greater than 5 veere teaching	china exnerience			

NE = Northeast; C = Central; S = Southern; FW = Far West; F = Femalo; M = Male; 55 × Less than or equal to 5 years teaching experience; >5 = Greater than 5 years teaching experience

Ha6

164

•								VALOUTING
•	5		כאבפוס		ñ	5		
	NE	υ	S	FW	u.	X	S A	> 2
	N=70	N=94	N=76	N=87	N= 105	N=222	N= 33	N=141
E. THE MICLE, CHEMICAL BONDING, AND MOLECULAR GEOMETRY (cont)								
94. Types of bonding related to electronegativity differences	3.14	3.11	3.08	3.09	2.96	3.17	2.94	3.18
95. Valence shell electron pair repuision model for molecular shapes (VSEPR)	2.61	2.73	2.64	2.73	2.85	2.57	2.63	2.62
96. Simple structures of isomers	2.78	2.73	2.74	2.69	2.80	2.57	2.42	2.72
97. Chem./physical properties of compounds rel. to type of bonding and geometry	2.91	2.89	2.81	2.81	2.89	2.78	2.65	2.81
98. Hybrid orbitals	2.49	2.43	2.54	2.65	2.52	2.39	2.39	2.47
99. Resonance and delocalization	2.37	2.32	2.50	2.51	2.43	2.35	2.32	2.26
The Kinetic Theory and States of Matter								
100. Assumptions of the kinetic molecular theory of gases	3.17	3.03	3.19	3.25	3.06	3.32	3.10	3.40
101. Maxwell-Blotzmann velocity distributions	2.16	1.80	2.10	2.21	2.16	1.97	1.83	2.04
102. Diffusion of gases	2.68	2.55	2.82	2.71	2.53	2.83	2.71	2.79
103. Relationships among volume/pressure/temperature/quantity for ideal gases	3.64	3.55	3.57	3.56	3.52	3.71	3.42	3.73
104. Daiton's law of partial pressures	3.24	3.04	3.20	3.20	3.13	3.20	3.16	3.27
105. Real <u>versus</u> ideal gases	2.83	2.70	2.88	2.81	2.68	2.91	2.81	2.93
106. Forces of attraction among molecules (e.g., dipole-dipole interactions)	3.00	2.98	3.03	3.00	3.02	2.99	2.97	2.96
107. Phase changes for a pure substance (e.g., pressure and temperature effects)	2.79	2.67	2.84	2.90	2.73	2.89	3.00	2.83
108. Relationships among evaporation rate, boiling temperature, and vapor pressure	2.77	2.67	2.84	2.93	2.72	2.84	2.73	2.89
109. Special properties of water (e.g., density of solid <u>versus</u> liquid)	2.93	2.99	3.14	3.12	3.08	3.06	3.00	2.99
110. Rei. among phases of matter/forces between particles and particle energy	2.64	2.54	2.64	2.82	2.59	2.84	2.87	2.73
111. Characteristics of crystals	2.07	2.13	2.21	2.15	2.02	2.29	2.36	2.19

ERIC Full Taxt Provided by ERIC NE < Northewat; C < Central; 8 × Southern; FW × Far Weet; F = Female; M = Male; 53 = Less than or equal to 5 years teaching experience; >5 × Greater than 5 years teaching experience

Ha7

0
ERIC
Full Text Provided by ERIC

	0	GEOGRAPHIC REGION	C REGION		SEX	×	TEACHING EXPERIENCE	XPERIENCE
	NE	v	s	FW	ч	¥	V VI	~ 5
	N = 70	N=94	N=76	N=87 ⁻	N=105	N=222	N=33	N=141
E. THE MOLE, CHEMICAL BONDING, AND MOLECULAR GEOMETRY (cont.)								
Chemical Reactions								
112. Equation balancing from written descriptions of chemical reactions	3.66	3.67	3.65	3.54	3.45	3.77	3.67	3.75
113. General types of chemical reactions (i.e., decomposition, lonic replacement)	3.21	3.38	3.33	3.23	3.14	3.44	3.52	3.49
114. Stoichiometry	3.75	3.72	3.63	3.72	3.63	3.72	3.42	3.78
115. Endothermic and exothermic reactions	3.31	3.28	3.28	3.18	3.21	3.37	3.30	3.32
116. Spontaneity in chemical reactions (e.g., entropy, Gibbs-Heimholtz equation)	2.71	2.54	2.69	2.69	2.63	2.58	2.52	2.59
117. Collision theory and reaction rates	2.76	2.61	2.79	2.79	2.66	2.71	2.56	2.94
118. Activation energy and the effects of a catalyst	2.90	2.80	2.93	3.05	2.85	2.91	2.88	2.97
119. Rate-influencing factors in chernical reactions (e.g., pressure, catalyst)	3.18	3.13	3.17	3.21	3.13	3.15	2.97	3.24
120. Rate expressions and orders of reactions	2.68	2.20	2.57	2.54	2.46	2.44	2.55	2.47
121. Reaction mechanisms	2.37	2.12	2.39	2.57	2.37	2.29	2.48	2.39
122. Chemical equilibria	3.35	3.18	3.25	3.32	3.30	3.14	3.03	3.30
123. Le Châteller's principle and factors that disturb the equilibrium of systems	3.34	3.29	3.32	3.36	3.38	3.25	3.15	3.40
124. Properties and production of ammonia (e.g., the Haber equilibrium)	1.84	1.89	2.19	2.03	2.02	1.96	1.94	2.15
125. Oxidation and reduction reactions	3.32	, 3.2 6	-3.44	3.29	3.27	3.33	3.21	3.37
126. Electrochemical cells and electrode reactions	2.99	2.80	2.87	2.86	2.85	2.76	2.76	2.92
127. Metallurgical properties of the transition metals	1.82	1.83	1.93	1.99	1.82	1.89	2.09	1.94
128. Redox properties of the halogens and the halide lons	2.20	2.27	2.39	2.28	2.20	2.23	2.33	2.26

NE = Northeast; C = Central; S = Southern; FW = Far Wast; F = Female; M = Male; S5 = Lass than or equal to 5 years teaching experience; >5 = Greeker than 5 years teaching experience

!

163

Ha8

160. .

~

2.31 2.53

2.09 2.73

2.20 2.51

2.37 2.64

2.28 2.56

2.49 2.71

2.25 2.51

2.32 2.57

130. Practical applications of electrochemistry (e.g., electroplating, pH meter)

•

129. Faraday's laws of electrolysis

0
FRIC
Full Text Provided by ERIC

	G	OGRAPH	GEOGRAPHIC REGION	z	SEX	X	TEACHING E	TEACHING EXPERIENCE
	NE	ပ	s	FV	ų.	Σ	5 25	~ 5
	N=70	¥6=N	N=76	N=87	N=105	N=222	N=33	N= 141
E. THE MOLE, CHEMICAL BONDING, AND MOLECULAR GEOMETRY (cont.)								
Solutions and Solubility								
131. Types of solutions (e.g., solid-solid, solid-liquid, liquid-gas)	2.81	2.82	2.85	2.83	2.68	3.06	3.09	2.98
132. Solutes, solvents and solubility	3.20	3.30	3.29	3.29	3.22	3.35	3.33	3.38
133. Effects of temperature and pressure on solubility	3.06	2.96	3.05	2.96	2.81	3.20	2.94	3.21
134. Dissolving process	2.68	2.81	2.92	2.89	2.72	2.99	2.91	3.12
135. Solubility product (K _{ep})	2.77	2.66	2.89	2.97	2.82	2.76	2.52	2.97
136. Concentration of solutes (e.g., dilute, concentrated, saturated; molarity)	3.36	3.54	3.47	3.37	3.37	3.49	3.42	3.53
137. Conductivity of solutions and the ionization process	2.84	2.89	2.97	2.91	2.86	2.92	2.82	3.04
138. Strong and weak electrolytes; non-electrolytes	2.91	2.98	3.13	3.05	2.95	3.09	2.94	3.14
139. Colligative properties of solutions	2.74	2.58	2.68	2.66	2.63	2.75	2.45	2.84
140. Characteristics of properties of acids, bases, and saits	3.51	3.70	3.61	3.52	3.60	3.65	3.52	3.66
141. Arrhenius, Brønsted-Lowery, and Lewis acid-base theories	3.10	3.18	3.17	3.10	3.15	3.06	2.82	3.21
142. pH of solutions of strong and weak acids and bases	3.43	3.44	3.37	3.33	3.39	3.39	3.21	3.44
143. Relative strengths of acids and bases	3.13	3.24	3.31	3.17	3.22	3.20	3.12	3.22
144. Production, properties, and use of the common acids (e.g., sulfuric,)	2.01	2.37	2.48	2.25	2.24	2.33	2.41	2.27
145. Acid-base titration and indicators	3.20	3.26	3.28	3.09	3.12	3.25	3.22	3.25
146. Buffer solutions	2.64	2.85	2.93	2.86	2.89	2.74	2.63	2.72
147. Overall evaluation of the importance of the Mole, Chemical Bonding, and Molecular Geometry	3.58	3.51	3.56	3.47	3.48	3.56	3.48	3.57

NE = Northeast; C = Central; S = Southern; FW = Far Weet; F = Female; M = Male; 55 = Less than or equal to 5 years tasching experience; >6 = Greeter than 5 years tasching experience

.

Ha9

171

0
ERIC
Full Text Provided by ERIC

•.

.

	GI	GEOGRAPHIC REGION	C REGION		SEX	×	TEACHING E	EXPERIENCE
	R	v	S	FW	u	Σ	S S	ы ^
	N= 70	N=94	N = 76	N=87	N= 105	N=222	N=33	N=141
F. BIOCHEMISTRY								
149. Organic functional groups and their reactions	2.64	2.69	2.66	2.59	2.70	2.54	2.25	2.59
150. Monomers and polymers	2.39	2.40	2.61	2.55	2.54	2.42	2.28	2.39
151. Biologically important compounds (e.g., sugar, amino acids, proteins)	2.59	2.56	2.73	2.52	2.56	2.52	2.69	2.45
152. Biologically important chemical processes	2.21	2.32	2.39	2.36	2.39	2.28	2.59	2.21
153. Structure and replication of nucleic acids	2.03	1.94	2.28	2.23	2.21	2.02	2.16	2.01
154. Energy storage and release in biological systems	2.07	1.94	2.22	2.25	2.20	2.11	2.34	2.04
155. Overall evaluation of the importance of Blochemistry	2.12	2.27	2.47	2.36	2.35	2.20	2.34	2.16
G. SCIENCE, TECHNOLOGY, AND SOCIETY		•						
157. Awareness of ethical and moral responsibilities of scientists	2.89	2.94	3.03	3.09	2.90	3.13	2.94	3.06
158. Awareness of ethical Issues/risks/benefits assoc. with the applic. of science	2.91	3.02	2.91	3.15	2.99	3.13	3.00	3.06
159. Detection of enviror:mental hazards	2.99	2.73	3.03	3.06	2.89	3.19	3.22	3.07
160. Risk mgmt issues associated with energy production, transmission, and use	2.46	2.38	2.61	2.74	2.47	2.62	2.61	2.69
161. Risk mgmt issues associated with production/storage/use/disposal of products	2.69	2.66	2.85	2.90	2.74	2.92	3.06	2.94
162. Waste management issues and recycling	2.76	2.69	3.05	2.92	2.83	2.98	3.06	2.96
163. Management of resources (e.g., soll, water, metals, and fossil fuels)	2.73	2.55	3.04	2.86	2.73	2.92	3.03	2.89
164. Use of science and technology to predict and prepare for natural disasters	1.84	1.98	2.37	2.30	2.09	2.28	2.44	2.27
165. Use of technology in everyday life (e.g., lamp, smoke detector, TV, computer)	2.59	2.77	2.84	2.65	2.71	2.75	2.70	2.74
166. Technology transfer (e.g., spin-offs from space technology, superconductors)	2.03	2.27	2.45	2.40	2.35	2.30	2.30	2.42
167. issues assoc. with chemicals in agriculture/food preparation/preservation	2.41	2.56	2.72	2.64	2.69	2.58	2.67	2.66
168. Social, political, and economic issues arising from science and technology	2.43	2.48	2.59	2.64	2.61	2.69	2.73	2.65
169. Overall evaluation of the importance of Science, Technology, and Society	2.52	2.60	2.77	2.76	2.68	2.71	2.81	2.73
						:		

NE = Northeast; C = Central; S = Southern; FW = Far West; F = Female; M = Maie; S5 = Less than or equal to 5 years teaching experience; > 5 = Greater than 5 years teaching experience Ha10 ن **1** ا

172

مرً

								-
		OGRAPH	GEOGRAPHIC REGION	-	SEX	X	TEACHING E	TEACHING EXPERIENCE
	NE	υ	s	FW	ïL	Σ	S 25 21	~ 5
	N=70	N=94	N = 76	N=87	N=105	N=222	N= 33	N=141
H. PEDAGOGY SPECIFIC TO THE PHYSICAL SCIENCES								
171. Recognition of and compensation for complex factors associated with societal and school-related issues that may affect the <u>teaching</u> of the physical sciences	2.60	2.63	2.56	2.58	2.62	2.65	2.63	2.64
172. Recognition of and compensation for complex factors associated with societal and school-related issues that may affect <u>student's learning</u> of the physical sciences	2.87	2.88	2.75	2.86	2.89	2:91	2.91	2.90
Curriculum: Organization and Materials								
173. Reasons for learning the physical sciences	3.12	3.09	3.12	3.21	3.11	3.19	3.09	3.25
174. Reasons for teaching a particular topic in the physical sciences	2.90	2.98	3.14	3.19	3.08	3.16	3.38	3.15
175. Integration within topics in the physical sciences	3.14	3.08.	3:17	3.15	3.05	3.26	3.24	3.24
176. Integration among the physical sciences and other disciplines	2.97	2.96	3.05	3.03	2.98	3.17	3.21	3.06
177. Scope and sequence of topics in the physical sciences curricula for all students and justification for the scope and sequence	2.67	2.74	2.92	2.92	2.73	3.00	3.00	2.94
178. Lesson plans in the physical sciences curricula for all students, justification for the plans	2.58	2.62	2.76	2.81	2.54	2.93	3.09	2.80
179. Selection and use of curricular materials and resources (e.g., textbooks, and other printed materials, computer software, laboratory materials) for the physical sciences	2.97	3.13	3.25	3.09	2.99	3.13	3.18	3.12
180. Selection/use of mass media (e.g., film) appropriate for topics in the physical sciences	2.50	2.51	2.61	2.63	2.54	2.69	2.66	2.70
181. Selection and use of current technologies (e.g., computer, videodisc, interactive television, video) appropriate for laboratory data collection and other instructional purposes in the physical sciences	2.69	2.79	2.87	2.85	2.78	2.90	2.81	2.91

ERIC FullTaxt Provided by ERIC NE = Northeest; C = Centrel; S = Southern; FW = Fer West; F = Female; M = Male; 55 = 1.000 than or equal to 5 years teaching experience; >5 = Greater than 5 years teaching experience

Ha11

174

0
ERIC
Full Text Provided by ERIC

	GEC	GRAPHI	GEOGRAPHIC REGION		SEX	X	TEACHING E	TEACHING EXPERIENCE
	NE	v	s	FW	ш.	¥	S Vi	> 5
	N=70	N=94	N=76	N=87	N= 105	N=222	N = 33	N= 14 1
H. PEDAGOGY SPECIFIC TO THE PHYSICAL SCIENCES (cont.)								
Instruction								
182. Prerequisite knowledge/experience/skills that students need for the physical sciences	3.00	3.09	3.04	3.07	3.02	3.22	3.19	3.13
183. Recognition of and accommodation to the prior conceptions, experience, and skills that atudents bring to various topics in the physical sciences	2.99	2.93	2.95	2.94	2.89	3.17	3.13	3.02
184. Identification and selection of appropriate lab experiences for various Instructional goals and student learning needs	3.29	3.28	3.48	3.41	3.33	3.52	3.50	3.52
185. Design of appropriate iab experiences for various instructional goals and student learning needs	3.19	3.21	3.26	3.41	3.21	3.35	3.31	3.41
186. Strategles for motivating and encouraging students to succeed in the physical sciences	3.36	3.35	3.35	3.56	3.31	3.49	3.41	3.47
187. Strategies for addressing controversial and/or sensitive issues in the physical sciences	2.80	2.74	2.97	3.01	2.85	2.97	3.03	2.92
Assestment and Evaluation								
189. Assessment strategies (e.g., laboratory reports, portfollos, observations, oral discussions, written tests, performance-based assessments, projects) to evaluate student performance in the physical sciences	3.38	3.33	3.36	3.26	3.29	3.51	3.59	3.40
189. Errors in student work/performance from prior conceptions about the physical sciences	2.84	2.67	2.72	2.81	2.71	2.91	2.91	2.77
Professional Concerns								-
190. Professional and scholarly literature (e.g., jcurnals, reference works) appropriate for teachers and students in the physical sciences	2.87	2.63	3.00	2.91	2.80	2.86	2.81	2.83
191. Professional and scholarly organizations for science educators	2.60	2.68	2.99	2.72	2.77	2.76	2.84	2 74
192. Legal responsibilities/liabilities for teachers in the physical sciences	3.20	3.12	3.21	3.14	3.03	3.46	3.53	3.4.

NE + Northeast; C + Central; B + Southern; FW + Far West; F + Female; M + Male; 55 + Less than of equal to 5 years teaching experience; >5 = Greeter than 5 years teaching experience

Ha12

.

•

176

H. PEDAGOGY SPECIFIC TO THE PHYSICAL SCIENCES (cont.)

- 193. Responsibilities for continuing education in the physical sciences/in science education
- 194. Resources available in the community
- 195. Science-related career information
- 196. Overall evaluation of the importance of Pedagogy Specific to the Physical Sciences

TEACHING EXPERIENCE	~ ~	N = 141	3.20	2.92	2.80	3.07
TEACHING I	S A	N=33	3.09	3.06	2.97	3.27
SEX	¥	N=222	3.21	2.93	2.85	3.09
SE	u.	N= 105	3.00	2.80	2.86	2.97
Z	FW	N=87	3.18	2.98	3.04	3.13
GEOGRAPHIC REGION	S	N = 76	3.14	2.85	2.85	2.91
EOGRAPH	ပ	N = 94	3.01	2.74	2.77	2.97
.9	NE	N=70	2.90	2.75	2.75	2.92

Ha13

179

NE = Northeest; C = Central; S = Southern; FW = Far Weet; F = Female; M = Male; 55 = Lese then or equal to 5 years teaching experience; >5 = Greater than 5 years teaching experience

Hb1

٢
ERIC
Full Text Provided by ERIC

₹

•

•

ш
-
•
-
>
1
>
5
0
5
$\mathbf{\nabla}$
F
ČΛ
$\mathbf{\omega}$

NE * Northeast; C = Central; S = Southern; FW × Fer West; F × Femele; M × Male; 55 × Less than or equal to 5 years teaching experience; >5 = Greater than 5 years teaching experience

Hb2

	35	GEOGRAPHIC REGION	C REGION		SEX	×	TEACHING I	TEACHING EXPERIENCE
	NE	υ	s	ž	u	Σ	155	>5
	N=78	96 = N	N=80	N=72	N=60	N=266	N=37	N= 153
. SCIENTIFIC METHODOLOGY/TECHNIQUES/HISTORY								
Methodology								
1. Scientific methods (e.g., formulation of problem, hypotheses, experiments)	3.38	3.36	3.41	3.38	3.48	3.45	3.32	3.41
2. Science process skills (e.g., qualitative and quantitative observations)	3.44	3.45	3.46	3.44	3.45	3.57	3.49	3.43
3. Assumptions, models, laws, and theories	3.13	3.21	3.27	3.17	3.23	3.26	3.16	3.20
4. Design of experiments (e.g., controls, independent and dependent variables)	3.03	3.18	3.25	3.19	3.00	3.37	3.30	3.18
History and Philosophy of Science								
5. Historical roots of science	2.46	2.28	2.46	2.35	2.28	2.30	2.19	2.35
6. Contributions of Individuals	2.33	2.23	2.40	2.14	2.18	2.28	2.14	2.31
7. Contributions of ethnic groups and cuitures	1.68	1.69	1.74	1.69	1.40	1.92	1.76	1.71
Mathematics, Measurement, and Date Manipulation								
8. The metric and SI systems	3.71	3.72	3.78	3.69	3.68	3.70	3.76	3.78
9. Scientific notation	3.55	3.70	3.68	3.60	3.58	3.63	3.70	3.64
10. Estimation and approximation	3.17	3.05	3.28	3.35	3.12	3.17	3.19	3.16
11. Significant figures in measurement and calculations	2.94	3.08	3.18	2.97	2.98	3.18	2.92	3.07
12. Unit/dimensional analysis	3.21	3.43	3.48	3.49	3.33	3.43	3.53	3.44
13. Experimental errors (e.g., sources, quantifications, precision, accuracy)	2.77	2.92	3.13	2.83	2.88	2.98	3.00	2.91
14. Mathematical relationships and patterns in numerical data	3.30	3.25	3.31	3.24	3.20	3.34	3.35	3.30
15. Statistics of distributions	2.03	2.19	2.29	2.13	2.05	2.23	2.38	2.04
16. Simple digital (binary) logic	1.51	1.71	1.97	1.76	1.63	1.98	1.94	1.67
17. Organization and interpretation of data and equations	3.49	3.34	3.39	3.39	3.47	3.46	3.43	3.43

_____ 2,**1**

161

_____) _____

	9	EOGRAPH	GEOGRAPHIC REGION	2	Ñ	SEX	TEACHING	TEACHING EXPERIENCE
	NE	υ	S	FW	u.	X	≥5	>5
	N=78	N= 96	N=80	N=72	N=60	N = 266	N=37	N= 153
SCIENTIFIC METHODOLOGY/TECHNIQUES/HISTORY (cont.)								
18. Differentiation and simple integration	2.32	2.22	2.37	2.46	2.35	2.17	2.14	2.11
19. Vector algebra	3.04	3.18	3.26	3.18	3.31	3.29	3.38	3.20
Laboratory and Safety		-						
20. Use and calibration of laboratory equipment (e.g., balances, laboratory burnera)	3.13	3.23	3.38	3.14	3.23	3.37	3.25	3.21
21. Maintenance of laboratory equipment (e.g., laboratory burners, glassware)	2.51	2.88	2.80	2.65	2.70	2.75	2.68	2.72
22. Preparation and set-up of reagents, materials, and apparatus	3.26	3.33	3.35	3.17	3.20	3.39	3.35	3.33
23. Laboratory safety (e.g., laboratory hazards, storage and disposal of materials)	3.33	3.49	3.55	3.46	3.18	3.71	3.65	3.47
24. Emergency procedures for laboratory accidents	3.47	3.55	3.65	3.39	3.37	3.83	3.65	3.61
 Overall evaluation of the importance of Scientific Methodology/Techniques/ History 	3.16	3.23	3.13	3.10	3.19	3.28	3.23	3.14
BASIC TOPICS IN PHYSICAL SCIENCE								
Matter and Energy						•		
27. Physical and chemical properties (e.g., states of matter, heterogeneous)	2.79	2.87	2.92	2.81	2.78	2.97	3.03	2.78
26. Particulate nature of matter (e.g., atoms, ions, molecules)	3.12	3.23	3.23	3.17	3.10	3.15	3.16	3.21
29. Elements, compounds, and mixtures	2.77	2.84	2.88	2.82	2.63	2.95	2.89	2.75
30. Physical and chemical changes	2.71	2.95	3.04	2.79	2.71	3.00	3.11	2.84
31. Conservation of mass/energy	3.67	3.53	3.68	3.64	3.64	3.81	3.81	3.61
32. Forms of energy (e.g., kinetic, potential, mechanical, magnetic, electrical, light)	3.69	3.63	3.76	3.57	3.61	3.73	3.62	3.69
33. Energy transformations	3.65	3.47	3.58	3.38	3.56	3.51	3.54	3.55

<

.

NE = Northeest; C = Central; S = Southern; FW = Far West; F = Female; M = Male; 55 = Less then or equal to 5 years teaching experience; >5 = Greater then 5 years teaching experience

184

ġ

Нbз

щ
Õ
4
1
2
4
>
2
-
Q
S
0
ш
0

H04

NE = Northeast; C = Central; S = Southern; FW = Far West; F = Female; M = Male; 55 = Less than or equal to \$ years teaching experience; >3 = Greater than \$ years teaching experience

	GE	OGRAPHI	GEOGRAPHIC REGION		SEX	×	TEACHING E	TEACHING EXPERIENCE
	NE	ပ	S	FW		¥	₹22 22	>5
•	N= 78	96 = N	N=80	N=72	N=60	N=266	N=37	N= 153
BASIC TOPICS IN PHYSICAL SCIENCE (cont.)								
Heat and Thermodynamics								
34. Historical development of heat and energy	2.10	2.04	2.28	1.97	2.07	2.07	1.95	2.17
35. Kinetic molecular theory	2.95	2.77	3.00	3.00	2.88	2.98	2.97	3.04
36. Equipartition of energy	2.28	2.08	2.53	2.36	2.24	2.46	2.33	2.31
37. Brownian motion	2.15	2.16	2.32	2.24	2.17	2.29	2.19	2.25
38. Heat <u>versus</u> temperature	3.36	3.29	3.43	3.28	3.43	3.25	3.19	3.32
39. Temperature scales and measurement	3.05	3.06	3.28	2.89	3.05	3.12	3.00	3.13
40. Conduction, convection, and radiation	3.06	2.91	3.24	2.82	2.93	3.03	3.03	2.98
41. Heat capacity, thermal exchange, heat of fusion, and heat of vaporization	3.09	3.08	3.34	2.91	3.07	3.14	3.03	3.16
42. Ph ase changes	2.99	2.99	3.33	2.86	3.00	3.20	3.14	3.13
43. Expansion and contraction	2.85	2.78	3.10	2.69	2.78	3.00	2.83	2.92
44. Zeroth law of thermodynamics (i.e., direction of heat flow)	2.99	2.92	3.06	2.87	3.13	3.05	2.81	2.91
45. First law of thermodynamics (i.e., energy is conserved)	3.50	3.38	3.35	3.46	3.65	3.25	3.19	3.40
46. Second law of thermodynamics - entropy	2.95	3.06	3.05	3.10	3.27	2.95	2.86	2.99
47. Third law of thermodynamics (i.e., the concept of absolute zero temperature)	2.76	2.77	2.99	2.94	2.87	2.93	2.78	2.97
48. Reversibility and irreversibility	2.46	2.45	2.59	2.55	2.39	2.58	2.44	2.46
Atomic and Nuclear Structure								
49. Historical discovery of particles (e.g., electron, neutron)	2.27	2.79	2.44	2.21	2.32	2.25	2.08	2.39
50. Atomic models and their experimental bases (Thomson, Rutherford, and Bohr)	2.85	2.76	2.73	2.83	2.78	2.57	2.50	2.71
51. Structure of the atom	3.25	3.27	3.33	3.32	3.25	3.30	3.19	3.19
52. Characteristics of an electron in an atom (e.g., shells, orbitais)	2.88	2.95	3.00	2.94	2.70	3.07	2.95	2.93

,

ERIC Full Text Provided by ERIC

ß

185

: i

00 €0 ₩

0
ERIC
Full Text Provided by ERIC

		5	OGRAPH	GEOGRAPHIC REGION		SEX	×	TEACHING	TEACHING EXPERIENCE
		NE	v	°.	ž	Ľ	Σ	≤5	×5
		N = 78	96 = N	N = 80	N=72	N=60	N = 266	N=37	N= 153
8 8	BASIC TOPICS IN PHYSICAL SCIENCE (cont.)	<u> </u>							-
53.	. Atomic mass, atomic number, mass number and isotopes	2.97	3.03	3.14	3.11	2.83	3.12	2.97	3.00
54.	Nuclear forces and binding energy	2.64	2.69	2.97	2.78	2.75	2.87	2.78	2.79
55.	. Types of radioactive decay (e.g., alpha, beta, gamma emission)	2.94	2.99	2.96	2.82	2.87	2.95	2,62	2.97
56.	. Artificial and natural radioactivity	2.67	2.70	2.69	2.62	2.63	2.72	2.41	2.66
57.	. Half-life of radioactive isotopes	2.74	2.90	2.85	2.79	2.78	2.68	2.68	2.83
58.	. Nuclear reactions (transmutations, fission, fusion)	2.86	2.89	2.96	2.89	2.90	2.90	2.92	2.91
59.	. Overall evaluation of the Importance of Basic Topics in Physical Science	3.13	3.17	3.20	3.10	3.11	3.12	3.15	3.15
Ш С	MECHANICS								
61.	. Vector quantities	3.64	3.64	3.69	3.59	3.63	3.72	3.73	3.72
62.	. Rel. among position, velocity, acceleration, and time for straight line motion	3.83	3.70	3.74	3.75	3.75	3.77	3.78	3.81
63.	. Reference frames and relative velocity (e.g., Galilean relativity)	3.00	2.88	3.03	2.94	3.00	3.00	3.05	3.09
64.	. Rel. among position/velocity/constant acceleration/time for projectile motion	3.51	3.33	3.62	3.40	3.39	3.48	3.57	3.53
65.	. Rel. of position/velocity/centripetal acceleration for uniform circular motion	3.47	3.23	3.38	3.17	3.27	3.23	3.41	3.33
66.	. Perlodic motion (e.g., frequency, period, amplitude)	3.33	3.33	3.41	3.25	3.29	3.42	3.43	3.28
67.	. Simple harmonic motion (oscillations)	3.16	3.19	3.24	3.13	3.16	3.28	3.32	3.08
68.). Newton's laws of motion	3.87	3.82	3.88	3.92	3.90	3.90	3.89	3.87
69.). Weight <u>versus</u> mass	3.56	3.55	3.69	3.51	3.46	3.58	3.68	3.60
70.). Friction (e.g., static and dynamic coefficients)	2.97	2.95	3.44	2.86	3.07	3.31	3.27	3.14
71.	. Static (e.g., equilibrium of forces and/or torques)	3.17	3.13	3.44	3.08	3.15	3.32	3.35	3.26
72.	2. Relationships between work and kinetic energy changes	3.64	3.49	3.62	3.51	3.56	3.54	3.54	3.56
73.	 Conservative forces and potential energy 	3.42	3.33	3.53	3.39	3.39	3.51	3.56	3.38
NE - Nor	NE = Northeast C = Central; S = Southern; FW = Far Weet; F = Famale; M = Male; 55 = Less than ar equal to 5 years teaching experience; >5 = Greater than 5 years teaching experience	teening aupe	rience; >5 =	Greater then	5 years teach	ing experience	-		

Hib5

187

0	
ERIC	
Full Text Provided by ERIC	ł

		GE	OGRAPHI	GEOGRAPHIC REGION		SEX	×	TEACHING	TEACHING EXPERIENCE
		NE	ပ	s	FW	ш.	×	≥5	>5
		N=78	N=96	N = 80	N=72	N=60	N=266	N= 37	N = 153
C ME	MECHUNICS (cont.)								_
74.	Springs (e.g., Hooke's law, energy considerations)	2.87	2.73	3.03	2.71	2.71	2.92	3.00	2.76
75.	Concepts of rigid body motion (e.g., moment or inertia, center of mass, torque)	2.70	2.69	3.01	2.69	2.73	2.92	2.92	2.78
76.	Impuise-momentum principle	3.31	3.06	3.37	3.13	3.09	3.31	3.22	3.39
77.	Conservation of momentum (in both elastic and inelastic collisions)	3.58	3.55	3.56	3.58	3.54	3.59	3.54	3.58
78.	Conservation of angular momentum	2.75	2.94	3.01	2.86	2.85	2.92	2.92	2.70
79.	. Conservation of energy	3.90	3.75	3.80	3.85	3.92	3.83	3.84	3.78
80.	Orbital motion (e.g., Copernicus, Galileo, Kepler)	2.68	2.64	2.61	2.62	2.58	2.67	2.75	2.61
81.	. Newton's law of universal gravitation	3.53	3.36	3.44	3.49	3.42	3.43	3.50	3.45
82.	. Fluid mechanics (e.g., Pascal's principle, Bernoulti's principle)	2.43	2.55	2.76	2.41	2.61	2.68	2.67	2.43
83.	. Relativistic effects on length, mass, and time (e.g., Lorentz transformations)	2.32	2.27	2.54	2.21	2.36	2.39	2.35	2.34
84.	. Overall evaluation of the importance of Mechanics	3.72	3.73	3.70	3.61	3.72	3.68	3.68	. 3.69
D. EL	ELECTRICITY AND MAGNETISM								
86.	. Electric forces and Coulomb's law (e.g., electroscope, pith ball experiments)	3.62	3.40	3.49	3.38	3.47	3.43	3.43	3.44
87.	. Electric fields	3.34	3.17	3.20	3.21	3.10	3.23	3.24	3.17
88.	. Gauss's law	2.45	2.45	2.61	2.47	2.29	2.67	2.89	2.42
89.	. Electric potential energy, electric potertial, and potential difference	3.45	3.42	3.38	3.33	3.25	3.46	3.53	3.42
90.	. Conductors, insulators, semiconductors	3.06	3.13	3.14	3.10	3.05	3.20	3.21	3.18
91.	. Current	3.62	3.63	3.59	3.45	3.47	3.70	3.62	3.64
92.	2. Resistance	3.57	3.59	3.61	3.35	3.38	3.70	3.55	3.61
93.	3. Series and parallel circuits (e.g., Ohm's law, Kirchhoff's laws)	3.42	3.38	3.53	3.14	3.32	3.63	3.44	3.51
94.	 Internal resistance of batteries 	2.51	2.40	2.63	2.30	2.23	2.66	2.68	2.57
NF = Nor	us = Morthaast C = Contrat S = Southarm FW = Ear Weatt F = Famala: M = Mala: <5 = Lass than of equal to 5 wants traching experience: >5 = Greater than 5 years traching experience	theching arm	rianca: >5 -	. Greater than	i 5 vears hec)	aing experience	•		

NE = Northeast;

Hb6

189

.

े • •

0
ERIC
Full Text Provided by ERIC

ġ

• .

. .

;

·

		ing a South			240	 ,	TEACHING	
	5 -					5		ALENENCE
	NE	v	s	FW	Ľ.	£	22 72	10 ^
	N=78	N=96	N = 80	N=72	N = 60	N=266	N=37	N= 153
ELECTRICITY AND MAGNETISM (cont.)								١
95. Capacitance	2.83	2.80	2.92	2.75	2.68	2.82	2.91	2.80
96. Inductance	2.65	2.67	2.74	2.59	2.60	2.78	2.85	2.59
97. Measurement of potential difference, current, resistance, and capacitance	3.27	3.28	3.29	3.07	3.08	3.38	3.12	3.30
98. Alternating current circuits (e.g., average power, peak, effective current)	2.47	2.58	2.69	2.48	2.35	2.89	2.74	2.56
99. Magnetic flux	2.77	2.68	2.73	2.67	2.65	2.86	2.88	2.64
100. Faraday's and Lenz's laws of electromagnetic induction	2.82	2.88	2.92	2.88	2.83	2.96	2.94	2.75
101. Transformers	2.66	2.62	2.72	2.54	2.67	2.79	2.79	2.72
102. Sources of EMF (e.g., batteries, photo cells, generators)	3.00	2.92	2.87	2.83	2.78	2.96	2.97	2.96
103. Motors	2.75	2.65	2.76	2.62	2.82	2.84	2.85	2.86
104. Large scale generation and transmission of energy and power	2.34	2.27	2.34	2.15	2.30	2.54	2.39	2.32
105. n- and p-type semiconductors	2.19	2.28	2.13	. 2.16	2.23	2.38	2.12	2.23
106. Semiconduc:or devices (e.g., diodes, transistors)	2.31	2.34	2.31	2.25	2.37	2.46	2.32	2.34
107. Integrated circuits	2.17	2.16	2.13	1.99	2.10	2.43	2.21	2.14
108. Superconductivity	2.17	2.48	2.40	2.41	2.46	2.66	2.59	2.45
109. Magnets	3.06	3.04	3.10	3.01	3.20	3.20	3.00	3.22
110. Magnetic fields	3.26	3.16	3.28	3.26	3.27	3.36	3.24	3.27
111. Gauss's law of magnetism (nonexistence of monopoles)	2.17	2.36	2.43	2.42	2.28	2.65	2.56	2.35
112. Magnetic forces	3.18	3.05	3.14	3.00	3.05	3.25	3.12	3.07
113. Principle and calibration of electrical meters (e.g., voltmeters, ammeters)	2.32	2.48	2.59	2.34	2.35	2.66	2.42	2.53
114. Types of magnetism (e.g., diamagnetism)	2.03	2.04	2.19	2.00	1.93	2.36	2.12	2.12
115. Blot-Savart law and Ampere's law (relating current to magnetic field)	2.65	2.53	2.47	2.50	2.47	2.66	2.74	2.42
= NorthMast C = Central: 8 = Southern: FW = Far West: F = Famale: H = Helo: <5 = her ward to 5 ward	erne publicant s	- 24 10000						

NE = Northeest; C = Central; S = Southern; FW = Far West; F = Female; M = Male; 55 = Less than or equal to 5 years teaching experience; >5 = Greeter than 5 years teaching experience

Hb7

.

191

-

ш
_
1
\mathbf{z}
5
2
~
0.
\mathbf{O}
()
j
20
M
m

S	\mathfrak{c}
	S

m
Δ
ᆕ
-

NE = Northeest; C = Central; B > Southern; FW = Fer West; F = Female; M = Male; 55 = Less than of equal to 5 years teaching experience; >5 = Grenter than 5 years teaching experience

		5	OGRAPH	GEOGRAPHIC REGION		SEX	×	TEACHING E	TEACHING EXPERIENCE
		NE	v	s	F	Ľ	Σ	≥5 ≥5	>5
		N=78	N = 96	N = 80	N=72	N = 60	N=266	N=37	N= 153
Ċ	ELECTRICITY AND MAGNETISM (cont.)								·
	116. Maxwell's equations	2.12	2.14	2.31	2.36	2.10	2.30	2.38	2.05
	117. Lorentz force law and applications (force on a charged particle moving in an electric and/or a magnetic field; cyclotron; mass spectrometry)	2.43	2.60	2.41	2.70	2.52	2.30	2.33	2.32
	118. Overall evaluation of the importance of Electricity and Magnetism	3.36	3.31	3.31	3.31	3.28	3.31	3.19	3.26
ຟ	WAVES								
	120. Wave characteristics (speed, amplitude, wavelength, frequency)	3.76	3.65	3.66	3.64	3.77	3.73	3.72	3.69
	121. Inverse square law for Intensity	3.12	2.89	3.10	2.88	3.08	3.03	2.94	3.09
	122. Transverse and longitudinal waves	3.40	3.41	3.37	3.19	3.38	3.47	3.42	3.46
	123. Absorption and transmission	2.91	2.81	2.97	2.69	2.80	3.22	3.00	2.97
	124. Reflection	3.38	3.29	3.44	3.27	3.32	3.53	3.44	3.47
	125. Scattering	2.72	2.68	2.80	2.57	2.63	2.88	2.97	2.74
	126. Refraction and Snell's law	3.44	3.40	3.46	3.31	3.33	3.51	3.42	3.49
	127. Interference and superposition of waves	3.50	3.43	3.19	3.35	3.30	3.31	3.31	3.43
	128. Standing waves	3.19	3.07	3.06	3.03	3.00	3.14	3.06	3.17
	129. Diffraction (Fraunhofer and Fresnei)	3.00	3.03	2.96	2.79	2.97	2.95	2.72	3.09
	130. Dispersion	2.64	2.64	2.67	2.49	2.65	2.81	2.49	2.69
	131. Resonance and natural frequencies	3.12	2.98	2.97	3.06	3.10	2.95	2.83	3.01
	132. Doppier effect	3.05	3.04	3.29	2.96	2.95	3.32	3.28	3.17
	133. Characteristics of sound waves (pitch, loudness [dB], speed)	2.90	2.96	3.15	2.84	2.82	3.27	3.08	3.16
	134. Sound: air columns and strings (e.g., timbre, beats, harmonics)	2.50	2.65	2.84	2.50	2.57	2.76	2.64	2.72
	135. The electromagnetic spectrum (gamma rays to radio waves)	3.41	3.46	3.24	3.21	3.32	3.44	3.17	3.40

.

. .

ERIC Afult face provided by Eric الح الح الح

۲
ERIC
Full Text Provided by ERIC

	· · · · · · · · · · · · · · · · · · ·	G.	OGRAPHI	ĜEOGRAPHIC REGION		SE	SEX	TEACHING	TEACHING EXPERIENCE
		NE	υ	s	FW	u.	¥	, IV 2	> 5
		N=78	N=96	N = 80	N=72	N=60	N = 266	N = 37	N= 153
ᆈ	WAVES (cont.)								
	136. Color (addition and subtraction; relationship to frequency)	2.60	2.60	2.66	2.72	2.65	2.92	2.75	2.82
	137. Coherent radiation (sources and special properties)	2.36	2.46	2.47	2.33	2.28	2.59	2.17	2.45
	138. Geometric optics (e.g., mirrors, ienses, prisms, fiber optics)	3.40	3.36	3.28	3.21	3.22	3.37	3.28	3.39
	139. Potarization	2.79	2.86	2.82	2.75	2.77	2.96	2.80	2.87
	140. Thin films	2.27	2.39	2.44	2.27	2.23	2.49	2.42	2.40
	141. Overall evaluation of the importance of Waves	3.40	3.33	3.37	3.21	3.39	3.33	3.23	3.42
ц,	MODERN PHYSICS								
	143. Blackbody radiation	2.53	2.38	2.53	2.49	2.37	2.61	2.57	2.30
	144. Photoelectric effect	3.14	2.91	3.08	3.01	2.95	3.18	2.97	3.02
	145. Spectroscopy	2.92	2.88	2.86	2.91	2.95	2.95	2.83	2.81
	146. Planck's hypothesis	2.87	2.77	2.77	2.86	2.77	2.84	2.77	2.72
	147. deBroglie's hypothesis	2.73	2.67	2.66	2.63	2.60	2.74	2.63	2.48
	148. Wave-particle duality	3.14	3.03	3.13	3.12	3.13	3.16	3.00	3.06
	149. Heisenberg uncertainty principle	2.67	2.62	2.75	2.81	2.72	2.79	2.66	2.58
	150. Schrödinger's wave equation	2.10	1.98	2.23	2.17	1.97	2.33	2.25	1.95
	151. Orbital theory - quantum numbers	2.55	2.49	2.73	2.54	2.50	2.79	2.59	2.53
	152. Pauli exclusion princip	2.50	2.39	2.58	2.62	2.40	2.59	2.36	2.35
	153. Michelson-Morley experiment (ether and the speed of light)	2.71	2.68	2.66	2.61	2.67	2.64	2.47	2.68
	154. Special relativity	2.66	2.63	2.71	2.70	2.68	2.64	2.44	2.64
	155. Lorentz transformations and inertial reference frames	2.18	2.07	2.31	2.21	2.08	2.11	2.11	2.13
	156. Mass/energy transformations	2.94	2.82	2.85	2.82	2.85	2.98	2.78	2.84
NE.	NE = Northeest; C = Central; S = Southern; FW = Far West; F = Female; M = Male; 55 = Less than of equal to 5 years teaching experience; >5 = Greeter than 5 years teaching experience	ra basching aupr	rience; >5 =	. Greeter than	5 years hact	ling experienc	•		

6qH

195

	0)
ER	I	C
Full Text Pro	wided	by ERIC

		GE	OGRAPHI	GEOGRAPHIC REGION		SEX	×	TEACHING I	TEACHING EXPERIENCE
		NE	v	s	ξ	Ľ.	¥	13 Vi	>5
		N = 78	N = 96	N = 80	N=72	N = 60	N=266	N=37	N=: 153
u.	MODERN PHYSICS (cont.)						_		
	157. Elementary particles (e.g., hadrons, leptons)	2.19	2.23	2.09	2.06	2.18	2.16	1.97	2.09
	158. Strong and weak forces	2.21	2.26	2.40	2.30	2.29	2.49	2.22	2.32
	159. Overall evaluation of the importance of Modern Physics	2.94	2.88	2.89	2.91	2.91	2.82	2.72	2.83
ය	SCIENCE, TECHNOLOGY, AND SOCIETY								
	161. Awareness of ethical and moral responsibilities of scientists	2.81	2.97	2.97	2.91	2.90	3.05	3.00	2.92
	162. Awareness of ethical issues, risks, and benefits associated with the application of science	2.81	2.96	3.03	2.87	2.92	3.10	2.97	5.90
	163. Detection of environmental hazards	2.70	2.83	3.00	2.70	2.92	3.00	3.16	2.80
	164. Risk mgmt issues associated with energy production, transmirsion, and use	2.57	2.48	2.69	2.51	2.63	2.59	2.78	2.60
	165. Risk mgmt issues associated with production/storage/use/disposal of products	2.44	2.48	2.73	2.43	2.60	2.71	2.83	2.59
	166. Waste management issues and recycling	2.51	2.57	2.82	2.50	2.71	2.84	2.78	2.67
	167. Management of resources (e.g., soil, water, metals, and fossil fuels)	2.41	2.55	2.83	2.55	2.52	2.86	2.94	2.60
	168. Use of science and technology to predict and prepare for natural disasters	2.09	2.24	2.59	2.09	2.17	2.62	2.61	2.29
	169. Use of technology in everyday life (e.g., lamp, smoke detector, TV, computer)	2.83	2.93	3.13	2.88	2.85	3.26	3.17	2.97
	170. Technology transfer (e.g., spin-offs from space technology, superconductors)	2.17	2.51	2.74	2.26	2.22	2.91	2.78	2.53
	171. Social, political and economic issues arising from science and technology	2.53	2.72	2.79	2.51	2.72	2.91	2.83	2.72
	172. Overall evaluation of the importance of Science, Technology, and Society	2.57	2.75	2.87	2.60	2.72	2.91	2.86	2.74

.

,

NE = Northeast; C = Central; S = Southern; FW = Far West; F = Female; M = Male; 55 = Less than or equal to 5 years teaching experience; >5 = Greater than 5 years teaching experience

Hb10

۰.

197

	0	EOGRAPH	GEOGRAPHIC REGION	,	SEX	X	TEACHING	TEACHING EXPERIENCE
	NE	U	s	FW	Ľ.	¥	2 ∑	>5
	N = 78	N=96	N = 80	N=72	N=60	N = 266	N=37	N= 153
H. PEDAGOGY SPECIFIC TO THE PHYSICAL SCIENCES								
174. Recognition of and compensation for complex factors associated with societal and school-related issues that may affect the <u>teaching</u> of the physical sciences	2.41	2.66	2.64	2.49	2.58	2.91	2.56	2.59
175. Recognition of and compensation for complex factors associated with societal and school-related issues that may affect <u>student's learning</u> of the physical sciences	2.74	2.89	2.94	2.75	2.86	3.16	2.76	2.91
Curriculum: Organization and Materials								
176. Reasons for learning the physical sciences	3.14	3.14	3.23	3.10	3.34	3.32	3.19	3.23
177. Reasons for teaching a particular topic in the physical sciences	3.06	3.12	3.24	2.96	3.28	3.32	3.17	3.19
178. Integration within topics in the physical sciences	2.92	2.93	3.09	3.06	2.97	3.22	3.17	2.95
179. Integration among the physical sciences and other disciplines	2.73	2.75	3.04	2.90	2.78	3.18	3.00	2.83
180. Scope and sequence of topics in the physical sciences curricula for all students and justification for the scope and sequence	2.54	2.56	2.80	2.57	2.55	, 2.92	2.58	2.64
181. Lesson plans in the physical sciences curricula for all students, justification for the plans	2.21	2.46	2.61	2.35	2.50	2.73	2.44	2.52
182. Selection and use of curricular materials and resources (e.g., textbooks, and other printed materials, computer software, laboratory materials) for the physical sciences	2.88	3.03	3.10	3.07	2.98	3.10	3.06	3.11
183. Selection/use of mass media (e.g., film) appropriate for topics in the physical sciences	2.60	2.77	2.87	2.64	2.66	3.02	2.64	2.87
184. Selection and use of current technologies (e.g., computer, videodisc, interactive television, video) appropriate for laboratory data collection and other instructional purposes in the physical sciences	2.74	2.90	2.97	2.87	2.77	3.12	2.71	5.68

NE = Northeest; C = Central; S = Bouthern; FW = Far West; F = Famale; M = Male; s5 = Less than or equal to 5 years teaching experience; >5 = Greater than 5 years teaching experience

Hb11

199

0
ERIC
Full Text Provided by ERIC

	GEC	DGRAPHI	GEOGRAPHIC REGION		SEX	×	TEACHING E	TEACHING EXPERIENCE
	NE	v	s	FW	u.	¥	ŝ	>5
	N=78	N = 96	N = 80	N=72	N = 60	N = 266	N=37	N= 153
H. PEDAGOGY SPECIFIC TO THE PHYSICAL SCIENCES (cont.)								
Instruction								
185. Prerequisite knowledge/experience/skills that students need for the physical sciences	2.91	2.98	3.01	3.12	3.08	3.22	3.14	2.96
186. Recognition of and accommodation to the prior conceptions, experience, and skills that atudents bring to various topics in the physical sciences	3.00	3.01	3.00	2.94	3.07	3.13	3.00	2.91
187. Identification and selection of appropriate lab experiences for various Instructional goals and student learning needs	3.38	3.29	3.46	3.28	3.30	3.45	3.26	3.34
188. Design of appropriate lab experiences for various instructional goals and student learning needs	3.21	3.20	3.29	3.22	3.23	3.30	3.12	3.26
189. Strategies for motivating and encouraging students to succeed in the physical sciences	3.40	3.38	3.50	3.37	3.45	3.60	3.37	3.38
190. Strategies for addressing controversial and/or sensitive issues in the physical sciences	2.64	2.74	2.76	2.78	2.75	2.97	2.68	2.70
Assessment and Evaluation		_						
191. Assessment strategies (e.g., laboratory reports, portfollos, observations, oral discussions, written tests, performance-based assessments, projects) to evaluate student performance in the physical sciences	3.24	3.23	3.28	2.96	3.20	3.40	3.15	3.24
192. Errors in student work/performance from prior conceptions about the physical sciences	2.83	2.99	3.04	2.99	3.00	3.13	3.03	2.92
Professional Concerns								
193. Professional and scholarly literature (e.g., journals, reference works) appropriate for teachers and students in the physical sciences	2.73	2.80	2.91	2.88	2.68	2.83	3.03	2.76
194. Professional and scholarly organizations for science educators	2.73	2.82	2.91	2.78	2.61	2.97	2.88	2.73
195. Legal responsibilities/liabilities for teachers in the physical sciences	2.87	2.84	3.18	2.82	2.78	3.20	2.94	3.08

NE = Northeast; C = Central; B = Southern; FW = Far West; F = Female; M = Male; 55 = Less than or equal to 5 years teaching experience; >5 = Greater than 5 years teaching experience

Hb12

201

1
F.
X
X
¥
ΩQ.
ш
Δ.
×
.
ш
弄
0
ŝ
-
.
0
.
ŝ
<u>حد</u>
÷.
Ξ
ш
Ë
-
-
0
_
-
0
¥
Ē
=
C
Ш
Σ
S
~
6
Ŷ
0
ō
3
5
0
ΠŪ.
E.
-
~
- - i

- 196. Responsibilities for continuing education in the physical sciences/in science education
- 197. Resources available in the community
- 198. Science-related career information
- 199. Overall evaluation of the Importance of Pedagogy Specific to the Physical Sciences

9	EOGRAPH	GEOGRAPHIC REGION		SEX	, x	TEACHING I	TEACHING EXPERIENCE
NE	ပ	s	FW	ï۲	¥	55 V	- SS -
N=78	N = 96	N=80	N=72	N=60	N=266	N=37	N= 153
2.90	2.93	3.06	2.86	2.81	3.30	3.21	2.95
2.56	2.72	3.08	2.60	2.47	3.14	3.03	2.68
2.57	2.89	3.05	2.76	3.08	2.77	3.21	2.78
2.83	2.95	2.96	2.87	3.16	2.89	2.94	2.89

NE = Mortheaet; C = Central; S = Southern; FW = Fer Weet; F = Female; M = Male; SS = Lese than or equel to 5 years teaching experience; >5 = Greater than 5 years teaching experience

203

Hb13

ł

.

.

53905-08960 • Y23M3.5 • 291145