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Abstract

Among the computer-based methods used for the construction of trees such as AID,
THAID, "ART and FACT, the only one that uses an algorithm that first grows a tree
and then prunes the tree is CART. The pruning component oi CART is analogous
in spirit to the backward eliminationr approach in regression analysis. This.idea
provides a tool in controling the tree sizes to some extent and thus estimating the
prediction error by the tree within a certain range of tree size. In the CART pruning
process, Breiman, Friedman, Olshen, and Stone (1984) usc a linear combination of
the expected loss of the decisions by the tree and the total number of the terminal
nodes of the tree. In this paper, CART’s pruning is extended by considering a
function cf all the nodes of the tree in addition to the factors involved in the linear
combination. For example, if we consider the cost of observing a variable at each
node as is the main concern of this paper, or the structural complexity of the tree.

we can see such an extention.

Key Words: decision-support tree; optimal pruning; the smallest optimally

yruned subiree; sufficient tree.
)




1 Introduction and Motivation

Clonsider a sequential decision making problem where observations are made
sequentially depending upon the outcome of the previous observation, and after each
observation a decision is to be made on whether to continue observation or to stop

observing and make a final decision about the dependent (or response) variable. If

~

we depict this sequential process from the first .observation of a random variable
through to the final decisions in a graph, we will end up with a tree-like structure.
under the condition that the observations are made on categorical variables only.
We will call such a graph a tree. We define a tree in a graphics terminology as a
connected. directed and acyclic graph where there is only one path from one vertex
to another. and the direction indicates the sequence of observations. The graph (a)
of Figure 2.1 in section 2 is an iilustration of a tree, where observations are made at
the circles and a box symbolizes a final decision. We will call the circles the nodes.

and the boxes the terminal nodes.

Trees are among the data analysis tools (factor analysis. nonparametric scaling,
and so forth) that have been proposed by social and biomedical scientists motivated
by the need to cope with actual data problews involving large numbers of variables,
fn particular. Breiman, Priedman, Olshen, and Stone (1950) note that the tree.
structured methods are very competent in finding a classification rule when the

complexity of a data set includes aspects such as high dimensionality, a mixture of
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data types (e.g., quantitative and qualitative, or from different <tochastic niodels .

variation of dimensions over elements in the data set, or nonhomogeneity,

The use of trees in regression analysis dates back to the Automuatic Interaction
Detection program (AID) developed at the Institute for Social Rescarch. University
of Michigan, by Morgan and Sonquist (1963}, which was followed by the classifi-
cation program THAID. developed by Morgan and Messenger (1973). DBreiman et
al. (1984) proposed an algorithm. which they called Classification And Regression
Trees, that is designed as a sequential decision aid for classification or regression
problems. Given appropriate data. CART provides a guide,in a form of an upside.
down tree, for the order in which to abserve predictor variables, when to stop oh
servation, and what decision to make about an interested vet-unknowir outcome.
The computer program that is hased on this algorithm is referred to as CART. Lok
and Vanichsetakul (1988) subsequently proposed an algorithw called Fast Algorithin
for Classification Trees which involves recursive application of lincar discriminant
analysis, with the predictor variables at each stage being approoriately chosen ac
cording to the data and the type of splits desived. The computer proaram based o

the algorithm is called FACT,

The algorithms that underly AID.THALD and FACT grow a tree by adding in

branches (variables) as long as a parficular condition holds, Tn comtresr the C AU

-algorithm constructs a tree in two steps first, growing it and thew pruning it. L,

general terms, CART uses o lo-s function in the growing process, wliich ends whey
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the expected loss no longer decreases (i.c., remains the same). Then, in the CART
pruning process. the number of the terminal nodes of a tree is considered in addition
to the loss function, and the process ends when a linear combination of the number
of terminal nodes and the expected loss of the tree is minimized. A tree constructed
in this manner has scveral desirable properties. Since we use a single loss function
as a criterion-in the growing process, we can read from the tree which predictor

variable is more informative (conditional on some other predictor variables) based

on the loss function. The grow-then- prune approach avoids trees being too small

or too large compared with the trees constructed by a top-down stopping method

(see Section 3.1 of Breiman et al. (1984) and Breiman and Friedman (1988)).

CAR1"s pruning is analogous to the backward elimination in regression analysis.
As the latter is proposed as a remedy for stopping too early in the regression model
searching process, so is the former as a remedy for stopping with a too small tree.
In CART’s pruning, we consider the number of the terminal nodes as a complexity
penalty of the tree. By specifying the penalty rate. we can control the number of
the terminal nodes within a certain range. In other words, the pruning reduces the

tree to a certain range of tree sizes.

As mentioned above, CART’s pruning deals with the terminal nodes only. A
motivation for an extension of CART's pruning is that we may expand our attention
from the terminal nodes to all the nodes of a tree in the pruning process. In this

paper, we will consider the observation cost of the variables at the nodes along
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with the tree size in the pruning process. Here. we can expect an argument against

the idea of considering the observation cost at the pruning process rather than the
growing process. But. if we include the observation cost at the growing process.
the tree will be less informative about the concerned {iara structure compared with
the tree grown using a single loss function. The infarmation would be blurred bx
adding an extraneous factor to the loss function. In this paper. we will derive some
results that are useful in developing an optimal pruning algorithni using a linear
combination of the loss function, the number of the terminal nodes. and a function

of non-terminal nodes.

The remainder of this paper is organized in 3 sections. In Section 2. we specify
the basic notation and definitions concerning trees. In Section 3. we discuss the
basic properties of the function used in pruning. Section 4 is the main part of the
paper. In it we derive an optiinal pruning algorithm under our extended situation.
Section 5 gives a summary and a brief comment on a possible application of the idea

behind the methods of Section  to other pruning criteria.

2 Notation

We borrow most of the notation used here from Breiman et ol (1954, For
a tree 7. We let 7 be the set of all the terminal nodes of tree 7 and V(7) the set

of all the non-terminal nodes of tree 7. Tor a set A. we let |4} be the number of

10




elements in A. A subtree of a tree T is a tree as a part of 7. For t € N(7), we denote
by 7¢ the subtree of 7 whose root node is t and whose terminal nodes are those of
T that follow from the node t. For notational convenience, when a tree  notation
has a subscript as in 7., say, we write 7, for a subtree of () whose root node is
t € N(r()). For a non-trivial tree 7 and a non-terminal node t of 7, we denote by
7\ 7 the pruned subtree of 7 which is obtained by cutting 7, off of 7 while leaving

the node t on the tree.
{Figure 2.1 about here.}

If we denote by L the loss function which compares a prediction made from the
tree and the corresponding outcome of interest, then the conditional expected loss
of the prediction for the outcome given the results of the predictor variables, X; = 1

and X, = 1, say, is given by
E(L|X, =1,X, = 1).

Without loss of generality, we may assume that the predictor variables are finitely
discrete. We denote by r(t) the conditional expected loss at the node ¢ (i.e., when

we condition on the event described by the predictors up to that node) and we let
R(t) = P(t) -7 (1),

where P(t) is the arrival rate at node t in the tree 7 (i.e., the probability that the

tree send a subject from the root node to the node ). Ther, the risk in ma.ing
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predictions from the tree 7 is

' R(r) =" R(D). (2.1

tet

I{ ¢ is not the root node of a non-trivial tree 7, then we denote

R(r) =Y R(s),

€T

—_
[
[

where R(s)’s are obtained based on the tree 7.

3 Preliminaries

As we indicated at the end of Section 1, we wish to consider the cost or the
time of the variable observation at each non-terminal node, and we denote this cost
at the node t by W, (W for weight). We assume 1y > 0 for a non-terminal no(.lu
t and, W, = 0 when t is a terminal node since no observation is made there. We
define a cost function for t.he pruning process which involves Wy and investigate it

in this section.

We denote by par(t) the node which immediatelv precedes the node t. For a

node t of a tree 7 which is not the root node, we et

W= 1,

where the summation goes over the set of all the nodes on the path from the roor
node through par(t). When tis the root node, we let W (1) = 0. Then. we have the

following result.

6
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Theorem 3.1 For any tree T,

(a) Y POW() = Y POW,.
)

tEF teN(r

For a nodet €,

(b) YO P(s)W(s)= > P(s)W+.'(t)W(1).

SET, sEN(7¢)

Proof: The proof of (a) is by induction. If 7 is trivial, we have
Wi)=0=W,, for tef={t}.

Suppose that the result holds for 7 = 7/ and that 7’ is branched at a terminal node

t' into a new tree " such that #' = # U {t],t},---,t.}. Then,

> PHW(t)

YOPMW() - PYW (Y + Y. P(s)W(s)

te#" te SE{t],th o th )
= 3 POW.-PEW(E)+ S P(s)W(s),
teN(r') se{t],th,th}

where the second equality follows from the supposition. The last term on the right

hand side of the Jast equation is equal to

PV (th) = PA)(W (L) + Wy).

Thus, we have

YOPOW() = D> POW,+ P(YW,
teF! tEN(TI)
= Y PH)W.
tEN(T”)
7
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The proof of part (b) is direct:

> P(s)W(s) 3T P(s)(V(s) = W) + ()

SET; SE Tt
= 3 P(s)(W(s) = W (1)) + P(OW(2)
SET,
= Y P(W+ POW(1),
sEN(7)

where the last equality follows fivm (2). O

For non-negative real numbers j3;, ¢ = 1,2, we now define a new risk function for
our pruning process:
R (1) = R(7) + B ) POV (1) + a7, (3.1)
- ‘ tes
where 8 = (f1,02). Thus R B(T) is a linear combination of the risk function E(7)
used in growing the tree. the number of terminal nodes of the tree |7|, and the

expected value of W (¢) for the terminal nodes ¢. For any node t € N(7)U 7. let

R 5(1) = R(1) + BiP(HW (1) + Ba. (3.2)
and
R g(m) = R(r) + Br ) P(W (&) + Al 7. (3.3)
- SET,

The following theorem is straightforward.

Theorem 3.2 Let 1 be a non-trivial tree. Then, for t € N(7),

(a) R g(r)=R 3(r\m) = It 3(7)-R 4(1).




(b) For every ancestor s of the node t,
R @(Ts) - R @(‘rs \n)=R @(T,) - R @(t)

Proof: From expressions (2.1) and (2.2), we see that
R(t\ ) = R(t) = R(7) + R(t). (3.4)

By definition, we have

—

[T\ el = 7] = |7 + 1, (3.5)

and

R @(T \nt)+R @(Tt) -R @(t)
= [R(r\ )+ R(m) = R(t)] + 4] ; P(W(s)+ > P(s)W(s) — P()W(1)]

SET\ Tt s€T,

+B2(|7 \ 7ol + [ - 1]. (3. 6)
But for the expression in the second bracket in expression (3.6), we have

> P(s)W(s)+ D> P(s)W(s) -~ P()W(2)
SG""—\\"T: SET

Yo P(W,+ Y P()WV, + PO)W(1) — P()W(1)

sEN(7\1¢) seEN(7)

= Z P(S)Ws

seN(7)

ZP(S)VV(S),

SETF

where the first and the last equalities follow from Theorem 3.1. Hence, by combined

expressions (3.1), (3.4) and (3.5), we complete the proof of (a).

9

15




The proof of (b) proceeds in the same manner. First we note that

R@(Ts \n)+ R @(Tt) - R ﬂ(t)

is equal to the right-hand side of expression (3.6) with 7 replaced by 75. On the

other hand,

ST P(s)W(s)+ Y, P()W(s) - P(OOW ()
sET:\VTg SE€7
= ST P(u)Wy + P(s)I(s) + ST Pu)W, + P(OW(t) - P()W(¢)
u€N(7s\ ) w€N(m)

ST P(u)Wy + P(s)W(s)

ueN(r,)

Z P(u)W(u)

u€T,

Therefore, the result follows from expressions (3.4) and (3.5) with 7 replaced by 7s.

0

The extended loss function of expression (3.1) is rather difficult to handle, and
thus we will develop an alternative version of it below and examine its properties

for use in finding an optimal pruning method in Section 4. Let

W(r) =Y P(s)IV(s) - P()W(1). (3.7)

SETL

For a fixed non-trivial tree 7 and a node t € N(7), welet

R(t) — R(m1)

a(t.T) = W) | (3.8)
and
R(t) — R(m) .
g1, 7 o1 (3.9)




In equations (3.8) and (3.9), we note that, for a non-trivial iree 7,
|7l =1>1 and W(r) > 0. (3.10)

Since a branching gives rise to at least two new nodes, the first inequality of expres-

sion (3.10) is obvious. Rewriting equation (3.7) gives

W(r) = ) P(s)(W(s) - W (1)),

SET:

where W(s) — W(t) > 0 for s # t since each individual weight is positive. On the
other hand, we never grow a tree when the R-value does not decrease. In other
words, a branching is made at a terminal node t of a current tree, i.e., a simple
tree 7/, whose root node is t and whose terminal nodes are the child nodes of t, is
attached to t, only when

R(t) > R(™"). (3.11)
Therefore, we have that, for every non-terminal node t of 7, both g;(¢,7) and g(¢, 7)

are positive.

We now let

t
8 plor(t7),92(7)) = g2(t,7) ~ 67 By sz ti (3.12)
and we focus on the difference in risk
D @(t,r) =R @(t) - R /?’(_Tz)-
Then, we have
A g(@i(tm), g2, 7)) = D g(t,7)/(I7 = 1) (3.13)

11
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From equations (3.10) and (3.13), we can see that, for any non-terminal node ¢ of a

non-trivial tree 7,
signlA 5(g1(t, ), 92(2,7))] = signlD g(t, 7). (3.14)

Because of equation (3.14), we may use the A-function of equation (3.12) in
place of R g to find an optimal pruning method since the increase or decrease of
R B33 given by the sign of D ﬂ(t,r), determines where to prune and when to stop

the pruning process. 5

4 Extended Optimal Pruning

We denote by 7/ < 7 the relationship that 7’ is a pruned subtreec of 7. and by
7' < 7 that 7' is a strictly pruned subtree of 7, i.e., when 7’ is a pruned subtree of
T and 7' # 7. We call 7y an optimally pruned subirce (OPST) of a non-trivial tree
7 with respect to B if

Rﬂ(rl) = min R @(T’),

p T'<r

and we denote by 7( 8) the smallest OPST of 7 with respect to 8.

The following theorem is immediate from the transitivity of the relationship <.
Theorem 4.1 Ifr(B) X 7' X7, then 7( B) = 7'( B).
For notational convenicnce, we write A ﬂ(f.,r) for A ﬂ(gl(!,r),gg(i.,r)). The

12
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following theorem provides us a convenient algebraic tool to deal with R ﬂ(-).

Theorem 4.2 Let v’ < 7, where 7' is not a trivial tree. Suppose t is a non-terminal
node of . Lett; € N N(r), fori=1,2,---,7, wherer = |7/ N N(7)|. Then

|72 - 1
A gt ') = Aﬂt‘r+z ()~ A@(t,-,‘r))rf”_l.

(4.1)

Proof:

= R(t) - R(r{) - (ByW(r}) + Ba(I7l] - 1))

= R(t) - (R(r) = 2(R(r) = R(t:))) = Bu(W(m) = 3 W(r,)

i=1

=Bl = (Il = 1) - 1)

=1

= R(t)— R(r) - /LW (r) — B2(|7| - 1) Z(R R(re,)

t

-/W ( ) ﬁz(l‘ft.|—1))

where the first equality follows from expressions (3.2), (3.3) and (3.7). Then, from

equation (3.13), we have

R g(t) ~ R (1)

& gler)IAl = 1= 28 (671l - 1) (. 2

Dividing both sides of (4.2) by (|| — 1) gives

A gt = A p(t,7) ol = Z =1

- |7

13
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Since

FENARDN AR

=1

the desired result follows. O

Recall that 8; = 0 in the CART method. The following corollary is immediate

from Theorem 4.2.

Corollary 4.1 Under the set-up of Theorem 4.2, if By = 0, then

ga(t,7) = ga(t,7) + D_(galtsT) - 92(t;,r))——?;'l -1

' =T (4.3)

From equation (4.3), we can determine the exact value of ga(t, ') — g2(t,7), rather
than whether the inequality ga(t,7') — g2(,7) > 0 is satisfied (see Theorem 10.11 of

Breiman et al. (1984)).

Given @ and a non-trivial tree T, we can get a sequence of pruned subtrees of 7

with the corresponding 7( #). Let 7 = 7, and

po( B) = min ){A @(1,7‘(0))}.

iEN(T(o)

We define a sequence of trees 7(;) and the corresponding numbers ji;( ,’j), for 1 =

1,2,---,w (w a finite number) sequentially as follows:

Definition 4.1 Lei 7 be such that

N(ry) = N(ron) = {N(raonds A gt maany) = pioa( 6} 4.4)

14

<0




fori=1.2,---,w, and then let

pi( B) = te!r_\r}nfr(ll)){A ,3 (t, 7))}, fori=1,2, (4.5)

We can continue to apply equations (4.4) and (4.5) sequentially until we rcach the

trivial tree (i.e., root(7)). Let () = root(r).

The following theorem is a big step towards the aim of establishing an algorithm

of an extended version of CART.

Theorem 4.3 For a non-trivial tree T, suppose TO) T(1)s """ s T(w) = root(T) are
obtained as in Definition {.1. Then
(@) o) > Ty > -+ > T(w)

(b) Fort € N(ryy), i=1,2,---,w~1,

A gty = A (t T6) U T = T

Ag(tiy) < A @(ta"'(i)) tf Ty < (1) (4. 6)

Proof: Part (a) follows directly from Definition 4.1. Let tj,ta,---,t, € i) N
N(r(i-1)). For the node t in (b), we can tiink of two cases. They are (1) 7(;); =
Tii=1)es and (2) 7y < T(io1)e- In case (1), the result is immediate. In case (2), by

Definition 4.1, we have
A ﬂ(t,T(,‘_l)) -A ﬂ(tj,T(g_l)) > O, for ] = 1,2,-- T

Therefore, part (b) follows from Theorem 4.2. O

15
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In particular. if 3; = 0, then we can say, by Corollary 1.1, under the condition

of Theorem 1.3, that,

ot o)) = g2t T)) i Ty = ey (471

gati 7o) < Ga(timgy) i T < T
The result (4.7) is well harnessed in the CART method. However, when 4y # 0.

the result (4.7) is of no use.

The following result, which is useful in finding the smallest OPST 7( 3), is

immediate from Theorem 4.3.

Corollary 4.2 Let 7 be a non-trivial tree. Suppose we obtain {r(;)} be obtained as

in Definition 4.1 for some B. Then

pici( B) < pi( 8), fori=1,2.--- . w.
Proof:

wi( ) =  min {A 5(&1’({))}

16]\’(‘7’(,))

A\

min {& q(t.1,_y)} by Theorem 4.3)
tE.\'(T(,)){ @( w-ntt (b :

min A a(t.m-n)
tGN(r(‘_”){ 'L.;( ( 1‘ }

v

= pic(H). 0

The following result proves that the set of the pruned subtrees obtained as in

16




Definition 4.1 contains the smallest CPST.

Theorem 4.4 Let T be a non-trivial tree. Suppose that we obtain {r(;} as in Dcf-

inition 4.1 for some B. Then

T( @) € {T(O))T(l))" : )T(w)}-

Proof: For any 7’ such thar
r(8) <7 < o, (4.8)

we have, by Theorem 4.1, that

For any 7' sati. 'ying expression (4.8),

in {A 5(t,7)} <0.
te%l(g,){ gt} <0

Otherwise, there must exist a subtree 7' satisfying expression (4.8) such that R IB(T') <

R IB(T'( B)=R ﬂ(‘r( B)), which is a contradiction.

By the definition of 7( ), we have that for every t € N(7( B)),

A g(t,7(8)) > 0.

Therefore, we can find the smallest OPST 7( @) in the set of T(0)> T(1)s " * * » T(w)» Which

is obtained in the process of Definition 4.1. O

17
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Theorem 1.4 implies that we have only tolook at 7g). 71y« -+ . 7(,,) to find 7( 3).
But {:( 8)}¥L, is more useful for finding 7( 3) through the monotonicity of i, )

as shown in Corollary 4.2.

Theorem 4.5 Let 7 be a non-trivial tree. Suppose {7(;)} arc obtaincd as in Defini-

tion 4.1 for some B. If, for some 1", 1 <1* < w,
fie—1( B) <0 and pio( B) > 0,

then

T( ,[_3) = T(,-o).

Proof: Suppose, fori =1,2,---,w, there exist t;,%2,---,tr, € 7NN (7(;_1y). Then

by repeated use of Theorem 3.2 (a), we have

S (R p(t5) = R glre-ne)

=1 -

= 2.8t i-n) Uiyl = 1)
=t -

R @(T(i)) - ;:f(T(i—l))

= pict( 8) Y Rz, | = 1)

=1

where the last equation is apparent by Definition 4.1.

By Corollary 4.2, we have

il B) <0 for <=2 and
i BY>0 for >
18
3

A~




Thus

<0 fori <" -2
R 3(Ti41)) — R g(7(5))
) ) >0 fori> 1.

Furthermore

=0 ifﬂi‘—l(g)zo
R ,B(T(i')) - R ﬂ(T(i'—l))

<0 lf #i’-—-l( ,L_;) < 0.

Therefore,

kN

min {R@(T(i))} =R (7)),

o<i<w

and the result follows from Theorem 4.4. 3

We now have the following summarizing result.

Theorem 4.6 Let T be a non-trivial tree. Suppose {7} are obtained as in Defini-

tion 4.1 for some @ Then

;

Tty fux(B) =0

7( @)= T(k) if pi( [_3) >0 and pp_q( @)<0, fork >1

o)  #f po( B) > 0.

Proof: If ug( B) > 0, then the result is obvious. If ux( 8) = 0. then by Corollary
4.2, it is immediate that
p;(@)SOforiSk

and

19

g
(3]




pi( By >0fori>k+1.
Thus, by Theorem 4.5, 7(8) = T(k+1)- By the same theorem, we can see that

“T( B) = k), when pui( By>0and pp_1(B)<0,fork>1. 0

Theorem 4.6 is the main result of this section and the paper. For a given 3.
however, it is by no means desirable to grow a tree far beyond the optimal tree 7( j)
before pruning up until 7( 8) is reached. Theorem 4.6 is available whenever the tree
7 thereof contains 7( 8). At the end of Section 10.é, Breiman et al. (1984) discuss
a method by which one can find a tree which may not be fully grown involving all
the possible predictor variables and which contains 7( #). The following results up
to Theorem 4.9 are straightforward extensions of Theoremn 10.31, Theorem 10.32.

and the subsequent paragraphs in Section 10.2 of Breiman et al. (1984) and thus

their proofs will be omitted.

Let node(s,t) denote the set of nodes on the path from node s through node ¢
and {(s,1) the number of connections on the same path, i.e., I(s,1) = nodc(s. 1) - 1.
For t € N(r) U 7, denote by anc(t,7) the set of all the ancestors of node t in the

tree 7. Define, for a non-terminal node t of a non-trivial tree 7,

Vﬂ(t) =  min }{R(s) - BiW(s,t) = B2(I(s, 1) + 1)}

s€anc(t)u{t
where

W(s,t)= Y. P,

u€node(s,t)
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Theorem 4.7 Let 7 be a non-trivial tree. Then,

Vg(t) >0, ¥ te N(r(3)).

If we define
Tousf(B)={te N{T)U 7";' Vﬂ(s) >0, Vs€anc(t)}, (4.9)

then we have the following result.

Theorem 4.8 For a given @,

T( @) = Tsujj( ’?) =T

The tree 74, 7( B) contains 7( B), so we don’t need to go beyond 75, 7 ( 8) before

starting pruning toward 7( 8).

Vﬂ(-) can be defined recursively as in the theorem below.

Theorem 4.9 For any non-terminal node t of a trcc T and a non-negative vector

8

)

V (1) = min{R(1),V g(par())} - By P(OW - fz.

5 Concluding Remarks

In CART, Breiman et al. (1984) prune trees using as criterion a linear combination

of the risk of the predictions and the total number of the terminal nodes. Here, we
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have extended the CART pruning algorithm, in the sense that we consider the cost
of the variable observation in addition to the factors used in the CARL’s pruning
criterion, and we have derived results useful for a pruning algorithm uunder this new
criterion. CART’s pruning algorithm can thus be viewed as a special case (8, = 0

in expression (3.1)) of the algorithm considered in this paper.

Equation (4.1) of Theorem 4.2 plays a key role in deriving the pruning algorithm.
It is a useful algebraic tool in dealing with functions defined on trees. Versions of this
equation would be possible under various pruning criteria. For example, Arbab and

Miche (1985) considered degree of linearity of a tree as a measure of desirability for

trees. Their degree of linearity is represented in terms of the non-linearity measure

whicl. is defined as follows:

Let 7 be a tree which is composed of the root node and m major
subtrees, 7,12, -,y as in Fig. 5.1. Then the non-linearity of the tree

T is given by

NL(r) = % x SN L(7) + (m - ) x [N (m)]},

1=1
where N L(r) = 0if 7 is trivial, and N(7;) arc sorted in increasing order

of |N(m)l.

Given a tree, the non-linearity of the tree is defined over the set of the major
subtrees of the tree. And thus at each non-terminal node ¢, say, of the tree we can

assign a non-linearity measure of the subtree whose root node is ¢. 1l we considered
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this linearity of a tree in addition to the cost function considered in this paper. our

pruning method should be more complicated than the present one. This further

extended version of the pruning method secems to be an interesting uroblem to

pursue.
{Figure 5.1 about here.}
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