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Abstract

Among the computer-based methods used for the construction of trees such as AID,

TIT AID, ('ART and FACT, the only one that uses an algorithm that first grows a tree

and then prunes the tree is CART. The pruning component of CART is analogous

in spirit to the backward elimination approach in regression analysis. This idea

provides a tool in controling the tree sizes to some extent and thus estimating the

prediction error by the tree within a certain range of tree size. In the CART pruning

process, Breiman, Friedman, Olshen, and Stone (1984) use a linear combination of

the expected loss of the decisions by the tree and the total number of the terminal

nodes of the tree. In this paper, CART's pruning is extended by considering a

function of all the nodes of the tree in addition to the factors involved in the linear

combination. For example, if we consider the cost of observing a variable at each

node as is the main concern of this paper, or the structural complexity of the tree.

we can see such an extention.

Key Words: decision-support tree; optimal pruning; the smallest optimally

pruned subtree; sufficient tree.
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1 Introduction and Motivation

Consider a sequential decision making problem where observations are made

sequentially depending upon the outcome of the previous observation, and after each

observation a decision is to be made on whether to continue observation or to stop

observing and make a final decision about the dependent (or response) variable. If

we depict this sequential process from the first .observation of a random variable

through to the final decisions in a graph, we will end up with a. tree-like structure.

under the condition that the observations are made on categorical variables only.

We will call such a graph a tree. We define a tree in a graphics terminology as a

connected, directed and acyclic graph where there is only one path from one vertex

to another, and the direction indicates the sequence of observations. The graph (a)

of figure 2.1 in section 2 is an illustration of a tree, where observations are made at

the circles and a box symbolizes a final decision. We will call the circles the nodes.

and the boxes the terminal nodes.

Trees are among the data analysis tools (factor analysis. nonparamet ric scaling.

and so forth) that have been proposed by social and biomedical scientists motivated

by the need to cope with actual data problems involving large numbers of variables.

In particuldr. Brennan, Friedman, Olshen, and Stone (1(t1) note that the tree-

structured methods are very competent in finding a classification rule when the

complexity of a data set includes aspects such as high dimensionality, a mixture of
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data types (e.g., quantitative and qualitative, or front different .:tochastie mod* is..

variation of dimensions over elements in the data set. or nonhomogi it v.

The use of trees in regression analysis dates hack to the Automatic Interaction

Detection program (AID) developed at the institute for Social Research. University

of Michigan, by Morgan and Sonquist ,1963), which was followed by the classifi-

cation program 'MAID. developed by Morgan and Messenger (197:3). 13reiman et

al. (1984) proposed an algorithm, which they called C/assification Am/ litgn

Trees, that is designed as a sequential decision aid for classification or regression

problems. Given appropriate data. CART provides a guide. in a form of an upside .

down tree, for the order in which to observe predictor variables. when to stop of,

servation, and what decision to make about an interested yet-unkium it out cello'.

The computer program that is based on this algorithm is referred to as CART. 1.(,!,

and Vanichsetakul (1988) subsequently ,roposed an algorithm called hint Aliwritlou

for Classification 'Tress which involves recursive application of linear discriminant

analysis, with the predictor variables at each stage being appropriately chosen ac

cording to the data and the type of splits desired. The computer piogran, based o;l

the algorithm is called FA( T.

The algorithms that underly All), 'FHA lD and FACT grow a tree by additp, ill

branches (variables) as long as a part icula, condition 11,;(1,:. In c.,nt tho I 'A Pt

. algorithm constructs a tree in two steps first, growint_t it and then pruning it.

general terms, CART use: a irti two:lion in the glowing proce,s, \1/4 Inch ends whet;



the expected loss no longer decreases (i.e., remains the same). Then, in the CART

pruning process. the number of the terminal nodes of a tree is considered in addition

to the loss function, and the process ends when a linear combination of the number

of terminal nodes and the expected loss of the tree is minimized. A tree constructed

in this manner has several desirable properties. Since we use a single loss function

as a criterion in the growing process, we can read from the tree which predictor

variable is more informative (conditional on some other predictor variables) based

on the loss function. The grow-then- prune approach avoids trees being too small

or too large compared with the trees constructed by a top-down stopping method

(see Section 3.1 of Breiman et al. (1984) and Breiman and Friedman (1988)).

CART's pruning is analogous to the backward elimination in regression analysis.

As the latter is proposed as a remedy for stopping too early in the regression model

searching process, so is the former as a remedy for stopping with a too small tree.

In CART's pruning, we consider the number of the terminal nodes as a complexity

penalty of the tree. By specifying the penalty rate, we can control the number of

the terminal nodes within a certain range. In other words, the pruning reduces the

tree to a certain range of tree sizes.

As mentioned above, CART's pruning deals with the terminal nodes only. A

motivation for an extension of CART's pruning is that we may expand our attention

from the terminal nodes to all the nodes of a tree in the pruning process. In this

paper, we will consider the observation cost of the variables at the n

3
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with the tree size in the pruning process. lIere, we can expect an argument against

the idea of considering the observation cost at the pruning process rather than

growing process. But, if we include the observation cost at the growing process.

the tree will be less informative about the concerned data structure compared with

the tree grown using a single loss function. The information would be blurred by

adding an extraneous factor to the loss function. In this paper. we will derive some

results that are useful in developing an optimal pruning algorithm using a linear

combination of the loss function, the number of the terminal nodes, and a function

of non-terminal nodes.

The remainder of this paper is organized in 5 sections. In Section 2. we specify

the basic notation and definitions concerning trees. In Section 3. we discuss the

basic properties of the function used in pruning. Section 4 is the main part of the

paper. In it we derive an optimal pruning algorithm under our extended situation.

Section .5 gives a summary and a brief comment on a possible application of the idea

behind the methods of Section .1 to other pruning criteria.

2 Notation

We borrow most of the notation used here front Breiman et al. WK1). Vur

a tree r. We let f. be the set of all the terminal nodes of tree 7 and .V(r) the set

of all the non-terminal nodes of tree r. For a set A, we let 1:11 be the number of

.1
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elements in A. A subtree of a tree r is a tree as a part of r. For t E N(7), we denote

by -rt the subtree of r whose root node is t and whose terminal nodes are those of

T that follow from the node t. For notational convenience, when a tree. notation

has a subscript as in 70, say, we write 7(.)i for a subtree of 7(.) whose root node is

t E N(7(.)). For a non-trivial tree r and a non-terminal node t of r, we denote by

r \ rt the pruned subtree of r which is obtained by cutting rt off of r while leaving

the node t on the tree.

{Figure 2.1 about here.}

If we denote by L the loss function which compares a prediction made from the

tree and the corresponding outcome of interest, then the conditional expected loss

of the prediction for the outcome given the results of the predictor variables, X1 = 1

and X2 = 1, say, is given by

E(LIX1 = 1,X2 1).

Without loss of generality, we may assume that the predictor variables are finitely

discrete. We denote by r(t) the conditional expected loss at the node t (i.e., when

we condition on the event described by the predictors up to that node) and we let

R(t) = P(t) r(t),

where P(t) is the arrival rate at node t in the tree r (i.e., the probability that the

tree send a subject from the root node to the node 1). Then, the risk in m..ing

5
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predictions from the tree r is

tEf
/1(1). (2.1)

If t is not the root node of a non-trivial tree r, then we denote

1?(.7-i) = R(8), (2.91
9E f,

where R(s)'s are obtained based on the tree r.

3 Preliminaries

As we indicated at the end of Section 1, we wish to consider the cost or the

time of the variable observation at each non terminal node, and we denote this cost

at the node t by Wt (W for weight). We assume WI > 0 for a non-terminal node

I and, Wi = 0 when t is a terminal node since no observation is made there. Wo

define a cost function for the pruning process which involves WI and investigate it

in this section.

\Ve denote by par(t) the node which immediately precedes the node t. For a

node t of a tree r which is not the root node, we let

IV (t) =

whore the summation goes over the set of all the nodes on the path from the root

node through par(t). When t is the root node, we let W(t) = 0. Then, we have the

following result.

6

12



Theorem 3.1 For any tree r,

(a) EP(t)1'V(t) = > P(1)1Vi.
tET teN(T)

For a node t E

(b) E p(s)wo) > P(s)Ws+;(t)147(t).
seft sEN(Tt)

Proof: The proof of (a) is by induction. If r is trivial, we have

W(t) = 0 = Wt, for t E T = {t}.

Suppose that the result holds for r = r' and that r' is branched at a terminal node

t' into a new tree r" such that i"-" = "71' U t2, ,tla}. Then,

p(t)w(t) = E P(t)W (t) P(e)W(e) > P(s)W(s)
tEim tEV sE{tj

P(t)Wt P(e)W(e) E P(s)ill(s),
tEN(T') sE{q,q,,t0

where the second equality follows from the supposition. The last term on the right

hand side of the last equation is equal to

Thus, we have

P(ti)W(ti) = P(e)(W(I1)-1- We).

E P(t)1V(t) = > p(olv, + pot,
to--"

E
teN(r")

7
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The proof of part (b) is direct:

p(s)w(s) =
serf

E Pow(s) 1i-co + 11-(0)
sEft

E P(s)(ww ".(t))
P(t)W(t)

s Efi

E P(s)it's + P (OW (t),
sEN (TO

where the last equality follows ft om (a).

For non-negative real numbers i = 1,2, we now define a new risk function for

our pruning process:

R 0(7) = R(7)-1- 01
tE

p(t)iir(t)+ 1.321n. (3.1)

where 13 = (01,02). Thus R 0(7) is a linear combination of the risk function R(7)

used in growing the tree, the number of terminal nodes of the tree If-I, and the

expected value of (t) for the terminal nodes t. For any node t E Ar(r)U T. let

and

I? 0(t) = R(t) + A311)(011/(0 + 02. (3.2)

R 0(7i), R(7t) 1.31 P(s)1V(s) + 132if11. (3.3)
SE ft

The following theorem is straightforward.

Theorem 3.2 Let r be a non-trivial trm Then, for t E N(7),

(a) 1? 0(7)R 0(7\7t) = I? 3(70-1? 0(0.

8
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(b) For every ancestor s of the node t,

R 0(70 R p(rs\-rt) = R 0( ) R o(t).

Proof: From expressions (2.1) and (2.2), we see that

R(7- \ = R(7-) R(rt) R(t). (3.4)

By definition, we have

and

R (7- \ Tt) R 0(70 R 0(0

= [NT \ + R(r t) R(t)] + at [

+ 13 2[iTT r tl + 1].

= Iftl + 1,

Ser rt

(3.5)

P(s)TV(s)-1- P(s)W(s) P(t)11/(t)]
sEft

But for the expression in the second bracket in expression (3.6), we have

E P(s)W(s)d- > P(s)1.11(s) P(1)W(t)
se sEftr\-rt

E P(s)W, E P(s)W, P(t)W(t) P(t)W(t)
sEN(Tvr,) sEN(rt)

E P(s)W,
sEN(T)

EP(s)W(s),
sEf

(3. 6)

where the first and the last equalities follow from Theorem 3.1. Hence, by combined

expressions (3.1), (3.4) and (3.5), we complete the proof of (a).

9



The proof of (b) proceeds in the same manner. First we note that

R 16(rs\rt)-i- R o(rt) R #(1)

is equal to the right-hand side of expression (3.6) with r replaced by rs. On the

other hand,

2 P(s)IV(s)+ >2 P(s)HT(s) P(t)W(t)

sET3 \re

E P(u)Wu I'(s)IV(s) + >2 P(u)Wu P(t)W(t) P(t)W(t)
ueN(T3\ tieN(Tt)

E P(u)w. + p(s)147(3)
uEN(rs)

E P(u)W(u).

sEft

Therefore, the result follows from expressions (3.4) and (3.5) with r replaced by r8.

The extended loss function of expression (3.1) is rather difficult to handle, and

thus we will develop an alternative version of it below and examine its properties

for use in finding an optimal proning method in Section 4. Let

1,)1(7,:) =
sEft

P(.5)117(s) P(t)117(t). (3.7)

For a fixed non-trivial tree r and a node I E N(r), we let

and

R(t) R(rt)
gi(t, 7) =

1.1.2( T) =
1(1) R(rt)

Ifil 1

10
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In equations (3.8) and (3.9), we note that, for a non-trivial tree r,

iftl 1 > 1 and W(7t) > 0. (3.10)

Since a branching gives rise to at least two new nodes, the first inequality of expres-

sion (3.10) is obvious. Rewriting equation (3.7) gives

W(7t) = > P(s)(W(s) W(t)),

where W(s) W(t) > 0 for s t since each individual weight is positive. On the

other hand, we never grow a tree when the R-value does not decrease. In other

words, a branching is made at a terminal node t of a current tree, i.e., a simple

tree r', whose root node is t and whose terminal nodes are the child nodes of t, is

attached to t, only when

R(t) > R(7'). (3.11)

Therefore, we have that, for every non-terminal node t of r, both gi(t,r) and g2(t, 7)

are positive.

We now let

A i3(gi(t, 7), g2(t,7)) = .92(t,r) 02 gigg2((tt:1,

and we focus on the difference in risk

D o(t,7) = R 0(0 R 0(7-t).

Then, we have

(3.12)

A o(g1(t,r),g2(t,r)) = 1) o(t,7)1(11--,' 1). (3.13)

11
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From equations (3.10) and (3.13), we can see that, for any non-terminal node t of a

non-trivial tree r,

sign[A (gi(l, 7), g2(t, = sign[D (t, 7)]. (3.14)

Because of equation (3.14), we may use the 0- function of equation (3.12) in

place of R 0 to find an optimal pruning method since the increase or decrease of

R 0, as given by the sign of D 0(t,r), determines where to prune and when to stop

the pruning process. 5

4 Extended Optimal Pruning

We denote by r' - r the relationship that r' is a pruned subtree of 7, and by

r' that r' is a strictly pruned subtree of r, i.e., when r' is a pruned subtree of

r and r' T. We call 71 an optimally pruned subtree (OPST) of a non-trivial tree

7 with respect to a if

R 0(71) = R 0(7'),

and we denote by 7( /3) the smallest OPST of 7 with respect to a.

The following theorem is immediate from the transitivity of the relationship

Theorem 4.1 if r( /3) T, then r(q) = r'(

For notational convenience, we write A a(t, 7) for A a(91(1,7),g2(t, T)). The

12
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following theorem provides us a convenient algebraic tool to deal with R a().

Theorem 4.2 Let 7.1 r, where Ti is not a trivial tree. Suppose t is a non-terminal

node of 71. Let ti E Tt n N(r), for i = 1, 2, , r, where r = 1-1-:n N(r)1. Then

Proof:

Ift,I 1A 0(t,r1) = A g(t,r) + (A j3(t,T) A 0(4, 7))

R 0(0 R

= R(t) R(4) (130,51(4)-F 02(1711 1))

r r
= R(t) (R(Tt) E(110-t, R(tt))) 01(VArt)

i=1 t=1

-02(Ift I E(Ift, I 1) 1)
i=1

= R(t) Rert) 006.'(n) 02(Iftl 1) DR(ti) R(rt,)

W(rt,))

-01W(Tt;) 02(Ift, I 1)),

i=1

(4.1)

where the first equality follows from expressions (3.2), (3.3) and (3.7). Then, from

equation (3.13), we have

R 0(t) R 0(4)

r

= A fi(t,r)(Iftl 1 ) A p(ti,r)(Ift,I 1). (4. 2)
i=1

Dividing both sides of (4.2) by (171I 1) gives

A 0(t,r1) = A p(t,T)I 7-_,,

tI

13

r
1

i=1 r-t/1 1
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Since
r

= IT:1 + 7(Ift,1 1) ,

i=1

the desired result follows.

Recall that 01 = 0 in the CART method. The following corollary is immediate

from Theorem 4.2.

Corollary 4.1 Under the set-up of Theorem 4.2, if N1 = 0, then

g2(t,r1) = g2(t,r)-1-
r

i=1

771 1
(g2(t,T)- g2(ti,r))

1

1

(4.3)

From equation (4.3), we can determine the exact value of g2(t,r') g2(t,r), rather

than whether the inequality g2(t, r') g2(t,7) > 0 is satisfied (see Theorem 10.11 of

Breiman et al. (1984)).

Given Q and a non-trivial tree r, we can get a sequence of pruned subtrees of r

with the corresponding r( 13). Let 7(o) = r, and

Ito( e) = min {L 0(i, 7(0)) 1.
tEN(T(0))

We define a sequence of trees 7(0 and the corresponding numbers /3), for i

1,2, ,w (w a finite number) sequentially as follows:

Definition 4.1 Let ri be such that

Ar(r(0)::= N (r(i-o) {N(r(i-1)t); A 0(1,T(i -1)) = 13))

1.1

(44)



for i = 1,2,- ,w, and then let

= min {A a(t,r(i))), for i =1,2,- ,w. (4.5)
tEN(.7-(,))

We can continue to apply equations (4.4) and (4.5) sequentially until we reach the

trivial tree (i.e., root(r)). Let 7(,,) = root(r).

The following theorem is a big step towards the aim of establishing an algorithm

of an extended version of CART.

Theorem 4.3 For a non-trivial tree r, suppose r(0),r(i), ,roo = root(r) are

obtained as in Definition A.1. Then

(a) T(o) > T(1) > >-

(b) For t E N(r(i)), i = 1,2, ,w 1,

A 0(t,r(i_i) = A p(t,r(i)) 1f T(i)t =

0(t, < A R (t, r(i)) if T(i)t r(i-1)t. (4. 6)

Proof: Part (a) follows directly from Definition 4.1. Let ti, t2, ,tr E T-(0 n

N(r(i_i)). For the node t (b), we can think of two cases. They are (1) 7-(i); =

r(i_nt, and (2) r(ot r(i_nt. In case (1), the result is immediate. In case (2), by

Definition 4.1, we have

A A > 0, for j = 1,2, , r.

Therefore, part (b) follows from Theorem 4.2.

15



In particular. if /31 = 0, then we can say, by Corollary .1.1, under the condition

of Theorem .1.3, that,

92(2% r(i.-1)) = 92(1,T(0) if 7(ot = ro-1)t,

gAti 17(i-1)) < g2(t, r(i)) if 7-(ilt 7-(i-Ot

(4.7)

The result (4.7) is well harnessed in the CART method. However, when 31 5A- 0.

the result (4.7) is of no use.

The following result, which is useful in finding the smallest OPST 7-( 3), is

immediate from Theorem 4.3.

Corollary 4.2 Let r be a non-trivial tree. Suppose we obtain {r(i)} be obtained as

in Definition 4.1 for some 13. Then

Proof:

< iii( for i = 1,2, ,

ILi( 13) = min {A a(t, 7(0)1
tEN(To))

> min {A 3 (t, 7(, -1)1} (by Theorem 4.3)
tEN(1-0))

min {A
tEN(7-0_,))

pi-i(13). 0

The following result proves that the set of the pruned subtrees obtained as in

16
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Definition 4.1 contains the smallest OPST.

Theorem 4.4 Let r be a non-trivial tree. Suppose that we obtain {r(,)} as in Dcf-

inition 4.1 for some . Then

r( E {7(o), r(i), ,7(w)).

Proof: For any r' such that

we have, by Theorem 4.1, that

7( I?) - - T(011

For any r' sati. 'ying expression (4.8),

min {A (t, r')} < 0.
tEN(7-1)

(4.8)

Otherwise, there must exist a subtree Ti satisfying expression (4.8) such that I? (r') <

R o(r'( I-3)) = R o(r( fp), which is a contradiction.

By the definition of r( ,q), we have that for every t E N (r( /D),

A 0(t,r( P.)) > 0.

Therefore, we can find the smallest OPST r( 0) in the set of r(0), T(I), , r(to, which

is obtained in the process of Definition 4.1.

17
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Theorem .4 implies that we have only to look at 7(0). 7(1). .70, ) to find 7( ,3 ).

But {pi( is more useful for finding 7( :3) through the monot on.c.ty of /1,( 3)

as shown in Corollary 4.2.

Theorem 4.5 Let r be a non-trivial tree. Suppose {T(i)} arc obtained as in Defini-

tion 4.1 for some 13. If, for some i*, 1 < i* < w,

then

iii_1( iD 5 0 and iii( > 0,

T( = T(;.)

Proof: Suppose, for i = 1,2, ,w, there exist t1 , t2, E fl iv(

by repeated use of Theorem 3.2 (a), we have

r,

R 0(7-(0) it 0(7_0) = > (R 0(
j =1

r,

R 3(7(i-1)t,))

1_0). Then

A 0(ii,7(i-1)) (1%-(1-1)t.,i 1)

r,

= iii-1( fq) (Ii-(i-l)t .71 1).
3=1

3=1

where the last equation is apparent by Definition 4.1.

By Corollary 4.2. we have

/L(i3)<0 for i < 2. and

/Li( 13) > 0 for >

Is
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Thus

<0 for i < i' 2
R /3(r(i+1)) R 13(r(1))

{

> 0 for i >

Furthermore

=0 if Ai.-1( = 0
R R f3(Ri -1))13(7.w))

<0 if < 0.

Therefore,

amiiito{R (T(i))) = R o(ro)),

and the result follows from Theorem 4.4.

We now have the following summarizing result.

Theorem 4.6 Let r be a non-trivial tree. Suppose {r(o) are obtained as in Defini-

tion 4.1 for some 0. Then

T(k +1) if Ilk( P) = 0

r( ID= T(k) if ilk( P) > 0 and/4_1( 0) < 0, for k > 1

TM if 11o( P) > 0.

Proof: If pa( /3) > 0, then the result is obvious. If pk( /3) = 0, then by Corollary

4.2, it is immediate that

and

p( < 0 for i < k
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t(i3)>Ofori >k +l.

Thus, by Theorem 4.5, r( = r(k4-1) By the same theorem, we can see t hat

-7( = T(0, when itk( > 0 and pk_1( 12) < 0, for k > 1. 0

Theorem 4.6 is the main result of this section and the paper. For a given d.

however, it is by no means desirable to grow a tree far beyond the optimal tree r( ;3)

before pruning up until 7( p) is reached. Theorem 4.6 is available whenever the tree

7 thereof contains r( /3). At the end of Section 10.2, Breiman et al. (198.1) discuss

a method by which one can find a tree which may not be fully grown involving all

the possible predictor variables and which contains r( 13). The following result s u

to Theorem 4.9 are straightforward extensions of Theorem 10.31, Theorem 10.32.

and the subsequent paragraphs in Section 10.2 of Breiman et al. (195.1) and thus

their proofs will he omitted.

Let node(s, t) denote the set of nodes on the path from node s through node I

and /(s,t) the number of connections on the same path, i.e., /(s, t) nodc(s. ) 1.

For t E N(T) U T, denote by ane(t,r) the set of all the ancestors of node I iii t he

tree T. Define, for a non-terminal node t of a non- trivial tree r,

where

V (t) = ,Eannct(ittilu{t){.1(s) /.31W(s, t) /32(1(s, I) -1; 1)).

W(si t) = 1)(v)W.
uEnodc(s,t)
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Theorem 4.7 Let T be a non-trivial tree. Then,

V /3(t) > 0, t E N(7-( q)).

If we define

rsuff( /3) = {t E N (r)U f-; o(s) > 0, V s E aflc(t) }, (4.9)

then we have the following result.

Theorem 4.8 For a given /3,

r( iq) rsuff(0)-r.

The tree rsuff( 0) contains r( 0), so we don't need to go beyond Ts f f 0) before

starting pruning toward r( 0).

V0() can be defined recursively as in the theorem below.

Theorem 4.9 For any non-terminal node t of a tree r and a non - negative vector

3

Vo(t) = minfR(t),Vo(par(t))) 011)(1)1Vt

5 Concluding Remarks

In CART, Breiman et al. (1984) prune trees using as criterion a linear combination

of the risk of the predictions and the total number of the terminal nodes. here, we
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have extended the CART pruning algorithm, in the sense that we consider the cost

of the variable observation in addition to the factors used in the CART's pruning

criterion, and we have derived results useful for a pruning algorithm under this new

criterion. CART's pruning algorithm can thus be viewed as a special case (th = 0

in expression (3.1)) of the algorithm considered in this paper.

Equation (4.1) of Theorem 4.2 plays a key role in deriving the pruning algorithm.

It is a useful algebraic tool in dealing with functions defined on trees. Versions of this

equation would be possible under various pruning criteria. For example, Arhab and

Miche (1985) considered degree of linearity of a tree as a measure of desirability for

trees. Their degree of linearity is represented in terms of the non-linearity measure

whicl. is defined as follows:

Let r be a tree which is composed of the root node and in major

subtrees, r1,r2, ,r, as in Fig. 5.1. Then the non-linearity of the tree

r is given by

NL(r) =
1

x ; {NL(r,) + (in i) x IN (ri)11,
n-I

i = 1

where NL(r) = 0 if r is trivial, and N(Ti) are sorted in increasing order

of I N(ri )1.

Given a tree, the non-linearity of the tree is defined over the set of the ma jor

subtrees of the tree. And thus at each non-terminal node t, say, of the tree we can

assign a non-linearity measure of the subtree whose root node is t. If we considered

22



this linearity of a tree in addition to the cost function considered in this paper, our

pruning method should he more complicated than the present one. This further

extended version of the pruning method seems to be an interesting ;,roblem to

pursue.

{Figure 5.1 about here.}
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